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TUTORIAL: APPLYING PHASE-MODE THEORY TO THE DESIGN OF CYL. ARRAYS

1. Introduction

The design and analysis of a large phased array is a difficult problem often handled using approxima-
tions. Finite array analysis of a large array using typical computational electromagnetic (CEM) tools is
often limited by computational resources, and using measurements to do so is limited by the cost and time
required to construct and characterize such an array. There are many tools available for modern phased array
design that rely on approximation to make the problem tractable, many of which involve using commercially
available simulation tools. A common simulation technique uses the infinite array approach, which takes
advantage of the inherent symmetry in a phased array. This typically reduces the computational domain to
a single element with appropriate boundary conditions that simulate an infinite periodic extension along the
lattice of the array. This approach is limited in its usefulness for planar/linear arrays, with the usefulness
increasing with the size of the array. This technique treats all elements as identical, and thus neglects the
impact of edge effects, providing a good approximation of the impedance match and embedded element
pattern only for elements far enough away from the edge of the array [1, 2]. In 1968, Wheeler presented
a design approach for linear/planar arrays to improve the accuracy of the approximated results that com-
bines three techniques—small array analysis, infinite array simulations, and application of a grating lobes
series—and argued that none were sufficient in isolation [3]. Oliner discussed a similar approach in [4],
where he discusses element-by-element and periodic-structure approaches, and Amitay suggests the inclu-
sion of semi-infinite array simulations to isolate edge effects [5].

In this report, we outline a simulation, design, and optimization technique for cylindrical phased arrays
that builds on the same techniques used in planar/linear array design. The basic simulation and analysis
technique follows Fulton’s work detailed in [6], and it has been implemented in a Matlab-based framework
that uses ANSYS HFSS as the solver. The discussion begins with an explanation of phase-mode theory,
which is the basis of our design approach where we apply phase mode-theory concepts to a wedge-shaped
unit cell with boundary conditions that create infinite array conditions both circumferentially and vertically.
Then, this approach is applied to the example design of a 2.0 – 10.0 GHz cylindrical phased array antenna.

2. Circular Array Overview and Terminology

A circular array consists of N antenna elements having phase centers arranged around a circle of radius
R with an angular spacing of 2π/N between adjacent elements, with the z-axis being the axis of rotation.
The N elements in the array are located in the x-y plane at spherical coordinates (R, π/2, 2πn/N) for
n = 0, 1, . . . , N − 1. We can also define ξ = Rφ to define the circumferential distance about the aperture
of the array. Far-field coordinates are defined generically as (r, θ, φ). The x-y plane of this configuration is
shown in Fig. 1.

Manuscript approved August 29, 2019.
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Fig. 1: An N-element circular array of radiusR. This diagram shows the array elements and far-field vector.
The unit cell boundaries are also shown.

The rotational symmetry of a uniform circular array (UCA) simplifies the application of infinite array
simulations. This becomes apparent if we apply the concept of eigenexcitations, described in detail in [7],
which are array excitation vectors that are eigenvectors of the array scattering matrix. The scattering matrix
for an N -port network is an N × N matrix S that relates the reflected waves (b) to the incident waves (a)
according to b = Sa. The scattering matrix is also related to the admittance matrix of the N -port network
through S = (YgI−Y)(YgI + Y)−1, where I is the identity matrix and Yg is the characteristic impedance
of the transmission line. The admittance matrix Y has eigenvectors e(i) and corresponding eigenvalues
Y (i). The scattering matrix has the same set of eigenvectors, and its eigenvalues are related to those of the
admittance matrix through Γ(i) =

Yg−Y (i)
Yg+Y (i) [7]. The eigenvalues of the admittance matrix are the active

admittances, while the eigenvalues for the scattering matrix are the active reflection coefficients. Another
parameter of interest, the eigenpattern ~g(i,k), is the pattern of the full array when excited by an eigenvector.
Now, any arbitrary array excitation can be represented as a weighted sum of the eigenexcitations, and the
corresponding array pattern can be represented as a weighted sum of the corresponding eigenvectors [8, 9].

The scattering and admittance matrix of an N-element UCA areN×N circulant matrices [10], meaning
each column is obtained from the previous through a cyclic permutation [8]. For example, the admittance
matrix for an N -element UCA has the following form

Y =


Y0 Y1 . . . YN−1

YN−1 Y0 . . . YN−2
...

...
. . .

...
Y1 Y2 . . . Y0

 ,
where each row (or column) vector is shifted one element to the right (or bottom) compared to the preceding
row (or column). This matrix has N normalized eigenvectors of the form
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e(m) = 1/
√
N(1, wm, w

2
m, . . . , w

N−1
m )T ,where wm = exp(j2πm/N). (1)

In a phased array, this excitation corresponds to uniform-amplitude excitation with a progressive phase
shift between elements.

We simulate the performance of a single element in a circular array under eigenexcitation conditions
by adopting an approach that utilizes the information from N unit-cell simulations. For eigenvector e(m)
having phase shift of 2πm/N between elements, we can enforce the proper phase shift between periodic
boundary conditions of a wedge-shaped unit cell with angular separation of 2π/N between boundaries as
shown in Fig. 1. The admittance and reflection coefficient obtained from this simulation gives us the eigen-
value corresponding to the given eigenexcitation. The simulation of the unit cell will also give us the current
distribution in that cell. We know that the remaining N − 1 cells will have current distributions differing
only by a known progressive phase shift. Therefore, we can recreate the current distribution on the aper-
ture by rotating a known current distribution and applying the appropriate phase shift to those replications.
And, from this current distribution, we can compute the corresponding eigenpattern. Doing this for all N
eigenexcitations yields the N eigenpatterns of the array using only unit-cell simulations.

The eigenexcitation form shown in (1) reveals the progressive phase shift between UCA elements, lead-
ing to the term phase mode often used to define an eigenexcitation. The following section will provide an
overview of phase-mode theory which is applied to the efficient design of a UCA.

3. Phase-Mode Theory

The array pattern for the N -element circular can be written generically

~F (k) =
N∑
n=1

wn ~fn(k) (2)

in terms of complex excitation {wn} and complex embedded element patterns {~fn(k)}, which are functions
of vector wavenumber k, as discussed in [11]. Each element in the circular array has a unique pointing
direction, and thus all embedded element patterns are unique. Since the element patterns are related through
rotation rather than translation, we are unable to approximate the array pattern as the product of an average
embedded element pattern and an array factor. For a circular array, the embedded pattern of each element
can be related to that of element N , serving here as the prototype, via

~fn(k) = Rn ~f0(R−nk) (3)

for some fixed 3 × 3 rotation matrix R. To ensure uniform element distribution and that no elements are
duplicated, R should have the property that RM = I if and only if M is a multiple of N .

Now, we focus attention to the θ = π plane for the far-field pattern as shown in Fig. 1 and define
co-polarized unit-vector ûco. Using this, we define the co-polarized embedded element pattern f(φ)

∆
=
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~f(φ) · ûco and apply (2) and (3)

F (θ = π, φ)
∆
= F (φ) =

N∑
n=1

wnf0(φ− n2π

N
) (4)

to define the pattern in terms of prototype pattern f0(φ).

Instead of the familiar array-pattern representation from (4), we can use the phase mode representation
of the array pattern. As is well known, the outputs of an inverse discrete Fourier transform (inverse DFT or
IDFT) driven by a UCA’s element outputs are termed the phase modes of the array, and those phase modes
can be weighted and summed to create array patterns. As will be seen in the following section, the phase
mode representation is also useful in the design of a circular array.

The math is quite simple and generally follows Taylor [12] or a modern restatement in [13]. Express the
prototype embedded element pattern using the usual doubly infinite Fourier series as

f0(φ) =
∑
k

ak e jkφ.

For n = 0, . . . , N−1, element n has pattern f0

(
φ− 2πn

N

)
or, using the Fourier series,

fn(φ) =
∑
k

ak e−j2πkn/N e jkφ.

For m = 0, . . . , N−1, the mth phase mode then has pattern

Ym(φ) =
1

N

N−1∑
n=0

fn(φ) e j2πmn/N

and the array pattern is a weighted sum of the IDFT output patterns:

F (φ) =
N−1∑
m=0

WmYm(φ)

=
∑
k

ak

(N−1∑
n=0

( 1

N

N−1∑
m=0

Wm e j2πmn/N
)

e−j2πkn/N

)
e jkφ .

The inner parentheses contain just the IDFT of Wm, with the IDFT evaluated at n. The outer parentheses in
turn contain the DFT of that IDFT, with the DFT evaluated at k. The DFT inverts the IDFT, so those outer
parenthesis contain just Wk. Per that DFT expression, Wk is periodic in k with period N , but for clarity we
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can write it as a function of a single period of Wk values as Wk mod N . Therefore

F (φ) =
∑
k

akWk mod N e jkφ (5)

=
N−1∑
m=0

Wm

∑
`

am+`N e j(m+`N)φ (6)

where (5) follows from the fact that the combinations of ` and m summed over are precisely all possible k
with k = m + `N . Ultimately (5) and (6) provide two equivalent ways to look at the pattern. In (5) we
see which Fourier series terms ak are subjected to a given IFFT output weight Wm, and in (6) we see which
weight Wm scales a given Fourier-series term.

Following (5), we see that the discrete sampling of the UCA excites harmonics of the desired phase
modes. These harmonics are often referred to as distortion modes [14, 15]. The UCA pattern

F (φ) = Fdesired(φ) + Fdist(φ) (7)

where

Fdesired(φ) =

N−1∑
m=0

amcme
jmφ (8)

and where the impact of the distortion modes is contained in

Fdist =
∑

m6∈{0,...,N−1}

amcmmodNe
jmφ. (9)

In (8), the desired and distortion patterns are computed as weighted summations of far-field patterns that
vary as ejmφ that are referred to as phase modes with order m. The distortion pattern defined in (9) results
from the unwanted – but unavoidable – excited harmonics of the desired phase modes.

This discussion shows that we can compute/synthesize the array pattern from a circular array using the
traditional method of a weighted summation of embedded element patterns using (2). However, we can also
compute the pattern in the Fourier-series domain by performing a weighted summation of phase-modes as
shown in (7). In the following section, we apply phase-mode theory to the efficient design of a UCA.

4. Circular Array Design and Analysis

This section details a simulation technique used to simplify cylindrical array computer-aided design. The
technique builds on that presented by Fulton in [6] and facilitates the design and simulation of cylindrical
arrays, while enabling the efficient computation of embedded element patterns and the full scattering matrix.

For this discussion, we assume that we have a cylindrical array with Naz elements arranged about a
radius R with angular increments of 2π

Naz
between elements for each of the Nel tiers of the cylinder. This
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(a) Full Cylindrical Array (b) Break Down 1

Fig. 2: Simplification from cylindrical to circular array

simulation technique is centered on applying the fundamentals of phase-mode theory to a wedge-shaped
unit cell representation of a cylindrical array. This simplification is important in the simulation technique,
allowing us to simplify a full cylindrical array down to a unit cell with appropriate boundaries, similar to
simulation techniques for planar arrays.

To begin the design process, we simplify the full cylindrical array to a unit cell. Starting out with a
full cylindrical array shown in Fig. 2(a) we reduce to a circular array by pulling out a row, highlighted in
Fig. 2(b). This circular cell has absorbing radiation boundaries around its circumference and master/slave
boundaries on the top and bottom boundaries. The phasing between these master/slave boundaries is set
to form a directional beam in the desired elevation scan angle θs. Note that this technique is making the
assumption of a cylindrical array extended infinitely along its axis, and has the same limitations and approx-
imations as infinite array simulations for a linear array. Moreover, this technique is easily be applied to a
circular array by replacing the top and bottom master/slave boundaries with absorbing radiation boundaries.

Next, we simplify the cylindrical array further by reducing the computational domain to a single element
within a wedge-shaped unit cell. Fig. 3(a) shows the circular array we pulled out in the last step, and a
wedge-shaped unit cell is highlighted in Fig. 3(b). We apply a second set of master/slave boundaries on the
non-parallel walls of the cell. We use these boundaries – separated by an inter-element angular spacing of
2π
N – to simulate the eigenexcitation (or phase-mode excitation) by applying a phase shift of m2π

N between
the two boundaries. This will simulate a phase-mode of indexm. Iterating through indicesm = 0, 1, . . . , N
simulates the N unique eigenexcitations for the circular array geometry. This process must also be repeated
for each unique elevation scan angle θs.

The key results to store from each unit-cell simulation are the unit cell radiation pattern Fms
sim(θ, φ) and

reflection coefficient Γms
0 for m = 0, 1, . . . , N . The superscript ms in these results defines the phasing

conditions of the unit cell. The m indicates the phase-mode index that defines inter-element m2π
N , and the s

is an indicator of elevation phase progression to define scan angle θs. Once we have these results for each
phase mode, we can follow the process of Fulton [6]. The unit-cell pattern Fms

sim(θ, φ) is the pattern radiated
from a single-cell of the array under eigenexcitation conditions. Using the fact that all cells in the array are
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(a) Circular Array (b) Breakdown 2

Fig. 3: Simplification from circular array to wedge unit cell

(a) Wedge Unit Cell (b) Boundaries

Fig. 4: Wedge Unit Cell

identical with the exception of a rotation, and their excitations are identical with the exception of a known
phase delay, we can superimpose rotated and phase-delayed versions of Fms

sim(θ, φ)

Fms(θ, φ) =
N−1∑
n=0

Fms
sim(θ, φ− n2π

N
) ej

2π
N
nm (10)

to obtain the eigenpattern (phase-mode pattern) for phase mode of order m. Now, superposition of phase
modes

F semb(θ, φ) =
N−1∑
m=0

Fms(θs, φ) (11)
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Fig. 5: Cylindrical Array Design Process

yields embedded element pattern F semb(θ, φ). It should be noted that the expressions in (10) and (11) are
functions of elevation scan angle θs as they need to be solved for unique boundary conditions providing the
proper phase delay between vertical master/slave boundaries.

In taking the inverse transform of the active reflection coefficient we get

Ss0n =
1

N

N−1∑
m=0

Γms
0 e−jnm

2π
N (12)

a column of the scattering matrix Ss = [Ssmn]. The remaining rows of the scattering matrix, Ssmn, are
obtained from Ss0n by noting the scattering matrix for a circular array is a circulant matrix. The superscript
s carries through in the scattering matrix computation as this matrix is unique for each scan angle.

The flow chart in Fig. 5 outlines an iterative process which applies the basic simulation and processing
techniques discussed in this section for designing and optimizing a cylindrical array. The procedure starts
with the basics: sizing the array and selecting an appropriate element geometry. The array size is dictated
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either through radiation performance requirements (i.e. required gain in directional mode) or though physi-
cal constraints placed on the array itself (i.e. diameter limitations of a mast for integration). At this point, a
parameterized model is developed in appropriate unit-cell boundary conditions as defined in Fig. 4(b). The
element is initially optimized under mode 0 phase-mode conditions. This mode is selected because it has
the widest frequency bandwidth of the phase-modes. Once mode 0 performance meets design criteria, a full
phase-mode analysis is performed. The results of this are processed to compute the scattering matrix and
embedded element pattern, and full array analysis is performed. This analysis most likely includes array
pattern computation and active impedance calculations. If the results do not meet requirements, the process
is iterated as needed until a satisfactory design is obtained and built. In the following section, we will walk
through the design process of Fig. 5 step-by-step for the design of a wideband cylindrical array.
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5. Design of a 2.0 – 10.0 GHz Cylindrical Array

In this section we apply the procedure of Fig. 5 to design a cylindrical array covering 2.0 – 10.0 GHz
by walking through each step, explaining where key design decisions are made, showing and discussing
important intermediate results and their impact on the final design.

5.1 Sizing a Cylindrical Array

A key factor in configuring a cylindrical array is determining the size: radius, height, and element count.
In our analysis, we assume that the cylindrical array configuration allows it to be separated into a circular
array and linear array. Sizing the vertical extent of the cylindrical array is much the same as sizing a linear
array, and it is dictated by the elevation gain, beamwidth, and scanning requirements. Sizing the diameter
of the cylindrical array requires a different perspective.

One method of sizing the circumference of a cylindrical array is to view an equivalent linear array as
shown in Fig. 6. This equivalence follows from the phase-mode transformation [16,17]. For a given circular
array size, the equivalent linear array’s length is equal to the diameter of the circular array, with both arrays
containing elements at λ/2 spacing. Array size is most often constrained by its given space for its appli-
cation, however, sizing can also be determined by a beamwidth requirement. For a linear array beamwidth
can be determined by φ3dB = 57.3◦/N . Similarly a circular array’s beamwidth can be determined by
φ3dB = 180◦/M , with N and M as the number of elements in the respective arrays [15].

Knowing a required beamwidth can help size an array due to the relationships between the frequency,
radius, and beamwidth. Array beamwidth can be shown as a function of frequency and radius, seen in
Fig. 7. Assuming λ/2 spacing at the high frequency, the element count for a particular array size is found
by N = 2πR

λ/2 , dividing the circumference of the array by critical spacing at the high frequency.

For the design in this report, the diameter of the array is set to 6 inches to limit element count in
the prototype array. The desired element count is set by N = 2πR

λ/2 , the circumference of the circular array

Fig. 6: Equivalent Circular - Linear Arrays
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Fig. 7: Beamwidth as a Function of Frequency and Array Radius - color bar indicates beamwidth as fre-
quency and radius vary

divided by the critical spacing at 10.0 GHz. At this size the element count is found to beN = 32 in azimuth.
For elevation the element count is set to 8. With these dimensions, the anticipated directional-mode array
patterns are shown in Fig. 8. Here we see that the cylindrical array has slightly narrower beamwidth and
higher sidelobes compared to a linear array of length equal to its diameter. This results from the fact that,
for a directional pattern in any given direction, the cylindrical array has a higher concentration of elements
at its edges [15].
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(a) 2.0 GHz

-90 -60 -30 0 30 60 90
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(b) 4.0 GHz

Fig. 8: Anticipated directional-mode patterns (azimuth cut) for a 6.0 inch diameter cylindrical array with 32
elements at 4.0 and 10.0 GHz. The patterns here are compared to those of a linear array with length equal
to array diameter with half-wavelength element spacing at 10.0 GHz.

5.2 Element Geometry - Antenna Element Selection

Once the array sizing has been determined, a suitable antenna element must be chosen. An antenna
element must be selected to enable the desired bandwidth, polarization, and manufacturing requirements. A
step notch element, shown in Fig. 9, is picked for this array design. The step notch element chosen is similar
to those used in [18]. This element is chosen for its wide-bandwidth capabilities, vertical polarization, and
simple geometry. The simple geometry of the step notch was one of the driving factors in choosing this
element.
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Fig. 9: Step Notch Element

5.3 Unit Cell and Boundary Condition Setup

Once the antenna element geometry is chosen, the simulation must be set up properly. As discussed in
Section 3.1, the element must be placed in a wedge-shaped unit cell with appropriate boundary conditions.
In Fig. 10(a) we see the step notch element contained within the wedge unit cell. Fig. 10(b) shows the setup
of the master/slave periodic boundaries for the phase mode simulation. The master and slave boundaries are
defined with 2π

N angular separation between the two walls. The slave boundary is defined such that it has a
phase shift of m2π

N with respect to the master boundary, where m is the phase-mode index. Then Fig. 10(c)

(a) Unit Cell (b) Phase Mode Boundaries (c) Elevation Boundaries

Fig. 10: HFSS Setup

depicts the master/slave boundaries for elevation scanning. The boundaries are set to apply a phase shift
scanning the beam to θs. This phase shift is defined as−k∆zsin(θs), where the scalar wavenumber k = 2π

λ
with λ the frequency for scanning, ∆z the spacing in elevation, and θs as the desired scan angle measured
from the x-y plane. Once the element is fully defined in the wedge cell with the phase mode and elevation
boundaries set the element is ready to be optimized.

5.4 Mode 0 Optimization

Continuing along the design process outlined in Fig. 5, the element is ready to be optimized for phase
modem = 0. The circumferential sampling rate of a circular array should be at least twice the highest spatial
frequency [15], which tells us that our array elements should have a circumferential spacing no greater than
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a half-wavelength at the highest frequency. We also know that for an N-element array we can form, at most,
N unique phase modes. Now, we can say that our radiating modes are bound by −mmax < m ≤ mmax,
where

mmax =
N

2
= kR =

2π

λ
R. (13)

This relates array radius, element count, and wavelength. It also tells us that mode 0 is the mode that operates
over all frequencies in the operating range of the array, which is why we focus our initial optimization stages
on this mode. If elevation scanning is desired, the mode 0 optimization should include a look at a coarse
sampling of desired θs. However, for this array we are mainly interested in performance over the horizon so
the boundaries in elevation are set at broadside, with θs = 0.

2 3 4 5 6 7 8 9 10

-40

-30

-20

-10

0

Fig. 11: Mode 0 Match

The element depicted in Fig. 10(a) is optimized over 2 − 10 GHz for m = 0 and θs = 0. The cost
function minimized in the optimization

gcost = max(|Γ(f) + 10dB|)

pushes the active reflection coefficient Γ(f) below the target value of −10 dB over the desired bandwidth
of 2− 10 GHz, shown in Fig. 11, demonstrating that the element is well matched. The unit cell patterns for
mode 0 are shown with Fig. 12(a) the azimuth patterns and Fig. 12(b) the elevation patterns, where azimuth
is defined as the polar angle φ and elevation as θ − π, the angle off of the xy plane.

The optimized element can be seen in Fig. 13 with dimensions shown in Table 1. From the single
element, we can form the full column element by stacking the single element using λ/2 spacing at 10 GHz,
shown in Fig. 14 with dimensions also shown in Table 1.

5.5 Phase Mode Simulation

Once the element is properly optimized the next step in the design process is to run the full simulation of
phase modes and elevation scan angles. Recalling that the boundaries on the azimuthal walls are set to have
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(a) Azimuth Patterns
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(b) Elevation Patterns

Fig. 12: Unit Cell Patterns

(a) Front View (b)

Fig. 13: Detailed View of Step Notch Element. Dimensions are provided in Table 1

m2π
N phase shift, m is run as a parametric sweep for m = 0, ..., N − 1 thus obtaining all the unique phase

modes for the array. To obtain all desired θs, this process of simulating the phase modes form = 0, ..., N−1
would be repeated for each scan angle. However, as mentioned before, for this array we are only concerned
about broadside so the phase mode sweep is run for only θs = 0.

One of the outputs of these parametric simulations is Γms
0 , the active reflection coefficient as a function

of frequency, phase-mode index m, elevation and scan angle θs for element index 0. Reflection coefficients
are plotted in Fig. 15 as a function of phase-mode index for various frequencies. Here, we see that more
modes are well-matched at higher frequencies, which is an expected result given (13).

From the active reflection coefficient data, we can compose the contour plot of the reflection coefficient
Γ for all phase modes, shown in Fig. 16. It can be seen again that mode 0 is matched from 2 − 10 GHz,
however, as we move to higher order modes they are only well matched at the higher frequencies. This is due



Tutorial: Applying Phase-Mode Theory to the Design of Cyl. Arrays 15

Table 1: Element Dimensions

Parameter Value

ht 0.60 in
h1 0.38 in
h2 0.20 in
h3 0.10 in
h4 0.07 in
hcav 0.18 in
hcut 0.12 in
wt 1.88 in
w1 0.42 in
w2 0.41 in
w3 0.49 in
w4 0.16 in
wgap 0.07 in
wcav 0.51 in
t 0.20 in

ht col 4.88 in
wt col 2.13 in
esp 0.60 in

Fig. 14: Column Element

to the bounding caused by the theoretical limits of well-matched modes from (13). These limits are shown
as the white lines on the contour plot, tracing the limits of mmax = ±2πR

λ , and showing good agreement of
the theory discussion to the simulated results.

The patterns obtained from the unit-cell simulation are not entirely useful on their own, but they are
combined in post processing to create the patterns for eigenexcitations by applying (10).

5.6 S-Matrix and Embedded Element Computation

At this point all necessary information is available from the simulations in HFSS and must be exported
to perform the S-matrix and embedded element pattern computations. This is where the HFSS-MATLAB
script that was developed is implemented. This script exports the active reflection coefficient data as well
as the unit cell patterns for azimuth and elevation cuts for all simulated phase modes (and scan angles if
multiple cases were run). From here the S-Matrix can be obtained using (12), if desired, then the active
reflection coefficients of the array for any arbitrary excitement are obtained.

Once the active reflection coefficient information is processed the embedded element patterns need to
be computed. To do this, we take the unit cell patterns from HFSS, like Fig. 12(a) and Fig. 12(b), for all
simulated phase modes and apply (11). In doing so, we end up with embedded element patterns shown
in Fig. 17 for select frequencies. In order to verify that the simulation technique is valid and the patterns
are correct, a full array analysis was set up and run in CST Microwave Studio to compare results. The
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Fig. 15: Simulated reflection coefficient for the phase modes of the cylindrical array at various frequencies

Fig. 16: Simulated reflection coefficient for the phase modes of the cylindrical array. White lines define the
theoretical limits for well-matched phase modes.

pattern comparisons shown in Fig. 18, demonstrate good agreement between full array simulation and the
simulation technique used, therefore validating the method.

5.7 Array Analysis

Once the embedded elements have been computed, array performance is analyzed for the desired appli-
cation(s). At this stage, we must consider the final application of the array. If the patterns do not satisfy
the performance needed, we must go back in the design process, whether that be in phase mode simulation,
mode 0 optimization, or even element geometry redesign, and iterate until the desired performance metrics
are satisfied. The example array designed in this tutorial is not aimed at a specific application. However,
we will apply a few pattern synthesis techniques to suggest possible pattern analyses that could be done
to highlight achievable performance. For a complete array system design and analysis, these pattern anal-
yses would need to be coupled with a system requirements analysis and knowledge of the beamforming
architecture to be able to perform an accurate analysis.
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Fig. 17: Simulated Embedded Element Patterns Using Simulation Technique

5.7.1 Transmit Patterns

To maximize the power delivered to a desired receive node, we want our transmit patterns to have
maximum effective radiated power (ERP). For that, we design an array excitation of the form

wn =
[fmb]n · ĉ
|[fmb]n · ĉ|

, n = 0, 1, . . . , N − 1, (14)

where [fmb]n is the complex pattern vector for element n in the direction of the desired mainbeam, and ĉ
is a unit-vector defining co-polarization. As discussed in [19], the downside to using a circular array for
directional patterns is that each element has a unique pointing direction. Thus, for any given mainbeam
direction, a majority of the elements are pointed elsewhere. Therefore, while the excitation in (14) maxi-
mizes ERP, it also will result in elevated sidelobes if all elements are used. One potential way to alleviate
this issue without applying a transmit-power taper is to only excite a subset of the circular array elements.
This presents a tradeoff between ERP and sidelobe level (SLL). These patterns are easily steered to any φ
direction by simply changing the desired mainbeam direction in (14) and selecting the appropriate subset of
elements.

In Fig. 19 we compare transmit patterns for the cylindrical array at 7.0 GHz using array excitations com-
puted from (14) where [fmb]n is the measured embedded element pattern and ĉ defines vertical polarization.
In the first case, the transmit pattern uses all 32 elements in the array, while the second case uses only a
15-element subset. In each case, the power at each element has been limited to provide 0dB ERP for the
phase-only case, while the second case has a total power of −3.0 dB compared to the first. This assumption
was made to represent a system where the maximum power at each element is fixed. The patterns in Fig. 19
show that using all elements in the array results in a greater ERP at the expense of increased SLL.

5.7.2 Receive Patterns

On receive, the goal is typically to maximize the signal-to-noise ratio (SNR) and minimize interference
from unwanted sources. In Fig. 20, we show 7.0 GHz receive patterns synthesized using the approach de-
tailed in [20] – where second-order cone programs (SOCPs) were formulated to maximize SNR while upper
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Fig. 18: Embedded Element Pattern Verification

bounding SLL or minimize SLL while upper bounding SNR-loss. The optimal SNR pattern of Fig. 20(a)
is synthesized to maximize SNR without bounds on SLL, while the curve fo 25 dB SLL upper bounds SLL
at 25 dB below the peak value. The SLL-constrained pattern has a SNR-loss of 0.23 dB compared to the
optimal SNR case. In Fig. 20(c), we upper bound the SNR-loss at 1.0 dB while minimizing the L1 norm of
the sidelobe region of the array pattern. This is used to minimize the total power contained in the sidelobes.
The result in Fig. 20(d) instead uses the L∞ to minimize the peak sidelobe level; this result also enforces a
1.0 dB upper bound on SNR-loss.

5.7.3 Pattern Steering

Once the array weights wn have been designed, the resulting array pattern can then be quickly steered
to any pointing direction by the technique of [13, 21]. In this section, we demonstrate the ability to steer
the pattern shown in Fig. 20(a). Multiple steered patterns are shown in Fig. 21 with the mainbeam steered
to θs = [45◦, 90◦, 180◦, 300◦]. The results demonstrate that the directional beam is steered with minimal
changes to SLL or beamwidth, indicating its ability to support base station applications with 360◦ visibility.
If the array has not been designed properly (for example, if there was more phase-center variation with fre-
quency than anticipated), then the steered patterns would exhibit greater deviation from the desired, baseline
case.

When performance needs are met it is time to build the full array. The final design can be seen in Fig. 22
for the element shown earlier. The manufacturing process is discussed further in the next section.
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Fig. 19: Directional transmit patterns for the cylindrical array formed using phase-only excitation at
7.0 GHz.
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(b) Minimize taper loss with −25 dB upper bound on sidelobes
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(c) L1 minimization of sidelobes with 1.0 dB upper bound on taper
loss
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(d) L∞ minimization of sidelobes with 1.0 dB upper bound on taper
loss

Fig. 20: Optimized 7.0 GHz receive array patterns with varying on taper loss and sidelobe level.
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Fig. 21: Directional transmit patterns for the cylindrical array formed using phase-only excitation at
7.0 GHz.

Fig. 22: Cylindrical Array Design
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6. Manufactured Array and Results

This section presents the manufactured parts and apertures that were designed using the methods de-
scribed in the previous section of this report. The final array design – shown in Fig. 23 – consists of 32
8-element stepped notch elements with the dimensions shown in Table 1 arranged about a 6.0 inch outer
diameter. A prototype array was also designed using the design technique of this report, and it was manu-
factured first to validate the design technique. This array also consisted of 32 8-element columns of stepped
notches, but, for this array, the elements were arranged about a 12.0 inch diameter. The larger inter-element
spacing (λ/2 at 5.0 GHz instead of 10.0 GHz) alleviated the challenge of connector-integration and eased the
manufacturing process to allow initial measurements to focus on design-process validation. With critical-
sampling, the array would have had 64 elements and thus, it could have supported 64 unique phase modes.
While this array only has 32 elements and cannot form all 64 phase modes, we were willing to sacrifice
some performance for simplified manufacturing since our goal is to validate the simulation and design tools.

This prototype array is shown in Fig. 24. The plot of Fig. 25 shows that the radiating phase modes are
well-matched. The mechanical and manufacturing challenges are being resolved, and an upcoming report
will provide full details and characterization of the array in Fig. 23.

This report will focus on a cylindrical array that was manufactured using Electrical Discharge Machining
(EDM). Other manufacturing techniques, including additive manufacturing have been applied, and those
techniques are described in more in [22].

(a) 8-Element Column (b) Cylindrical Array

Fig. 23: Prototype cylindrical array. (Left) shows an 8-element column of wideband stepped-notch elements.
(Right) shows a 6 inch diameter array consisting of 32 8-element columns.
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Fig. 24: Prototype cylindrical array consisting of 32 8-element columns arranged around a 12.0 inch outer
diameter.

Fig. 25: Simulated reflection coefficient for the phase modes of the prototype cylindrical array shown in
Fig. 24.
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6.1 S-Parameter Measurements

The initial characterization of the elements in the array shown in Fig. 24 consisted of scattering param-
eter measurements. In these measurements, we measured the input impedance match of elements in the
array with other elements terminated in a 50Ω load. The results of Fig. 26 show good agreement between
measurements and simulations. Those results are for a centrally-located element, and they are indicative of
the results seen at other elements in the array which indicates uniform manufacturing around the array. It
should be noted that this is not the active impedance match of the element, and thus the results do not show
the bandwidth that is expected. The mutual coupling between elements in the array is what leads to the
wide-band performance of these elements.

2 4 6 8 10
-20

-10

-5

0

Fig. 26: Comparison between simulated and measured S11 for a central element of the array shown in
Fig. 24.

6.2 Radiation Pattern Measurements

The focus of the cylindrical array characterization was antenna element and array pattern measurements
using the planar near-field (PNF) scanner and compact range. A sampling of the measured results are
shown below. Fig. 27 and Fig. 28 show PNF-measured volumetric patterns when a column of the array is
excited with uniform amplitude and phase. The results are compared to simulations at 7.0 and 10.0 GHz,
respectively. The measurements and simulations show good agreement in both the co- and cross-polarized
components. Good agreement is also shown in Fig. 29 and Fig. 30 where we compare the patterns when
three columns are excited with uniform amplitude and phase.
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(a) Measured Pattern: 7.0 GHz

(b) Predicted Pattern: 7.0 GHz

Fig. 27: Comparison of planar near-field (PNF) measured 7.0 GHz radiation patterns to predicted (simu-
lations) when a single 8-element column of the array from Fig. 24 is excited with uniform amplitude and
phase.
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(a) Measured Pattern: 10.0 GHz

(b) Predicted Pattern: 10.0 GHz

Fig. 28: Comparison of planar near-field (PNF) measured 10.0 GHz radiation patterns to predicted (simu-
lations) when a single 8-element column of the array from Fig. 24 is excited with uniform amplitude and
phase.
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(a) Measured Pattern: 7.0 GHz

(b) Predicted Pattern: 7.0 GHz

Fig. 29: Comparison of planar near-field (PNF) measured 7.0 GHz radiation patterns to predicted (simu-
lations) when three 8-element columns of the array from Fig. 24 are excited with uniform amplitude and
phase.
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(a) Measured Pattern: 10.0 GHz

(b) Predicted Pattern: 10.0 GHz

Fig. 30: Comparison of planar near-field (PNF) measured 10.0 GHz radiation patterns to predicted (simu-
lations) when three 8-element columns of the array from Fig. 24 are excited with uniform amplitude and
phase
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Fig. 31: Comparison of azimuth and elevation patterns of a single-column of the cylindrical array. Measure-
ment and simulations are taken at 9.0 GHz.
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Fig. 32: Comparison of azimuth and elevation patterns of a three-column sector of the cylindrical array.
Measurement and simulations are taken at 9.0 GHz.
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7. Conclusions

One reason cylindrical arrays are not as widely utilized as their functional benefits would suggest is
the difficulty in designing them compared to the more familiar linear/planar arrays. This report develops
a step-by-step approach to alleviate the design challenges of a cylindrical array, and it makes analogies to
planar/linear array design where applicable to further enhance the antennas designers’ understanding.

This report presents a discussion of phase-mode theory and outlines its application to the simulation,
design, and optimization of circular/cylindrical phased array antennas. The basic simulation concept is an
adaptation of prior work by Caleb Fulton at University of Oklahoma, and it is implemented here in a Matlab
framework utilizing ANSYS HFSS as the solver.

The simulation technique discussed in this report provides a logical, step-by-step approach that stream-
lines the design of cylindrical arrays. This technique is then applied to the design of a wideband cylindrical
array covering 2.0 – 10.0 GHz with stepped-notch elements. The array was designed, built, assembled, and
characterized. The array characterization shows good agreement with simulations both in impedance match
and radiation pattern measurements, thus validating the design technique presented in this report.
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