

 ARL-TR-8801 ● SEP 2019

Generation of a Gridded Meteorological
Message (METGM) from Weather Research
and Forecasting (WRF) Output Files and Initial
Results

by J Cogan

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-8801 ● SEP 2019

Generation of a Gridded Meteorological
Message (METGM) from Weather Research
and Forecasting (WRF) Output Files and Initial
Results

J Cogan
Computational and Information Sciences Directorate, CCDC Army Research
Laboratory

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

September 2019
2. REPORT TYPE

Technical Report
3. DATES COVERED (From - To)

25 March 2019–6 August 2019
4. TITLE AND SUBTITLE

Generation of a Gridded Meteorological Message (METGM) from Weather
Research and Forecasting (WRF) Output Files and Initial Results

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

J Cogan
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

CCDC Army Research Laboratory
ATTN: FCDD-RLC-E
Adelphi, MD 20783-1138

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-8801

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

14. ABSTRACT

Effective support for deep-fire missions requires a more accurate knowledge of atmospheric conditions than is presently
available, especially for longer ranges. One key capability already in use by several NATO countries is the gridded
meteorological (MET) message (METGM). The METGM consists of numerical weather prediction (NWP) output data that are
presented in a standard format. The 3-D METGM (4-D if more than one forecast time) provides better MET information than
the older 1-D computer MET message (METCM). Countries that adopted the METGM can convert NWP output into a METGM,
but software developed for specific systems may not be readily available. Furthermore, development of conversion software has
centered on European models and NWP formats used for models from major centers. There is no widely available capability to
convert mesoscale model data using the Network Common Data Form format. This report presents a means to convert Weather
Research and Forecasting model output in NetCDF format into a METGM. The METGM output of the current report is suitable
for computation of firing solutions, but may not have all the optional output necessary for additional applications.
15. SUBJECT TERMS

mesoscale model output, alternate model output format, artillery meteorology, meteorological support, model output
conversion software

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

61

19a. NAME OF RESPONSIBLE PERSON

J Cogan
a. REPORT

Unclassified
b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

301-394-2304
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures iv

List of Tables vi

1. Introduction 1

2. Procedure Outline: Bash Scripts 2

3. Included Scripts and Programs 4

3.1 NCL Script 4

3.2 Python 3 Script 5

3.3 FORTRAN Program 6

3.4 Additional Program for METGM Analysis 7

4. Sample Output 8

4.1 Input Files 8

4.2 METGM Data in Text Format 16

5. Comparison: METGM-WRF 21

5.1 Height as Vertical Coordinate 22

5.2 Pressure as the Vertical Coordinate 26

6. Conclusion 36

7. References 38

8. Additional Resources 39

Appendix A. High-level Flowcharts 40

Appendix B. Source Code for Selected Scripts 45

List of Symbols, Abbreviations, and Acronyms 49

Distribution List 51

iv

List of Figures

Fig. 1 Comparison of pressure (hPa) between METGM and WRF where the
vertical coordinate of the input is height. In the scale of chart a), the
curves essentially overlap. Chart b) presents the differences (METGM
value – WRF value) at a different scale. The absolute differences
remain below 0.25 hPa at all heights (maximum difference of 0.20
hPa), and at the highest levels as well as a couple of other levels the
differences are not far from 0 (minimum differences ±0.01 hPa). 22

Fig. 2 Comparison of temperature (K) between METGM and WRF where the
vertical coordinate of the input is height. In the scale of chart a), the
curves essentially overlap. Chart b) presents the differences (METGM
value – WRF value) at a different scale. All 25 data levels including
the surface had absolute values of the differences less than or equal to
0.12 K (14 ≤ 0.05 K). ... 23

Fig. 3 Comparison of RH (%) between METGM and WRF where the vertical
coordinate of the input is height. In the scale of chart a), the curves
essentially overlap. Chart b) presents the differences (METGM value –
WRF value) at a different scale. At most levels, the values from both
sources are close to one another (< 0.1% and a few < 0.01%), but at
two levels the differences (METGM value – WRF value) are
noticeable (‒0.71% at 250 m and ‒7.53% at 1500 m). 24

Fig. 4 Comparison of u and v wind components between METGM and WRF
where the vertical coordinate of the input is height. In the scale of
chart a) the curves mostly overlap. Chart b) presents the differences
(METGM value – WRF value) at a different scale. At most levels, the
values from both sources are close to one another (a few <0.01 ms‒1),
but the u absolute difference (METGM value – WRF value) reaches a
maximum of 1.12 ms‒1 at 1500 m, and v maximum difference is 1.43
ms‒1 at 750 m. ... 25

Fig. 5 Comparison of pressure (hPa) between METGM and WRF where the
vertical coordinate of the input is pressure. In the scale of chart a) the
curves seem to overlap. Chart b) presents the differences (METGM
value ‒ WRF value) at a different scale. The differences are near 0 up
through 2000 m, but are near ‒0.5 hPa from about 4000 through 16000
m. The absolute values of the differences at most levels exceed those
when height is the vertical coordinate (Fig. 1). 26

Fig. 6 Comparison of u and v wind components between METGM and WRF
where the input vertical coordinate is pressure vs. height as in Fig. 4.
In the scale of chart a) the curves seem to mostly overlap. Chart
b) presents the differences (METGM value – WRF value) at a
different scale. At most levels, the values from both sources were not
as close to one another as in Fig. 4. The u absolute differences
(METGM value ‒ WRF value) reached a value of 1.18 ms‒1 at 100 m
and even larger at 16000 and 19000 m (1.42 and 1.52 ms‒1,

v

respectively). Near the surface the maximum v differences were much
larger, 7.29, 6.87, and 4.01 ms‒1 at 100, 250, and 500 m, respectively).
... 27

Fig. 7 Comparison of pressure (hPa) between METGM and WRF from a
smaller WRF subdomain where the vertical coordinate of the input is
pressure. In the scale of chart a), the curves seem to overlap. Chart
b) presents the differences (METGM value ‒ WRF value) at a
different scale. The differences are not far from 0 up through 5000 m,
but are near ‒0.4 hPa at 13000 and 15000 m. The absolute values of
the differences at many heights are similar to those when height is the
vertical coordinate (Fig. 1). ... 28

Fig. 8 Comparison of u and v wind components between METGM and WRF
from a smaller WRF subdomain where the vertical coordinate of the
input is pressure. In the scale of chart a), the curves seem to overlap at
many heights. Chart b) presents the differences (METGM value ‒
WRF value) at a different scale. At most levels, the values from both
sources are fairly close to one another. Nevertheless, the u absolute
difference (METGM value ‒ WRF value) reached a maximum of 1.62
ms‒1 at 16000 and 19000 m, greater than in Fig. 6. The maximum
absolute v differences were still large (4.09 ms‒1 at 100 m and 2.75
ms‒1 at 17000 m), but not as much as in Fig. 6. 29

Fig. 9 Comparison of pressure (hPa) between METGM and WRF where the
vertical coordinate of the input is pressure and the horizontal grid
resolution is 1 km. The WRF subdomain covered an area centered to
the west of SV, with a center near that of the METGM; the METGM
was centered at 31.5002°N and 110.6507°W. The model terrain height
for the profiles of this figure was 1538.6 m MSL. In the scale of chart
a), the curves seem to overlap. Chart b) presents the differences
(METGM value ‒ WRF value) at a different scale............................. 30

Fig. 10 Comparison of u and v wind components between METGM and WRF
where the vertical coordinate of the input is pressure and the horizontal
grid resolution is 1 km. The location of the WRF subdomain and
centers of the WRF and METGM are the same as in Fig. 9. In the
scale of chart a), the curves nearly overlap at many heights. Chart b)
presents the differences (METGM value – WRF value) at a different
scale. Note that the scale of b) is smaller than Figs. 6b and 8b. 31

Fig. 11 Comparison of pressure (hPa) between METGM and WRF as in Fig.
9, but where the vertical coordinate of the input is height 32

Fig. 12 Comparison of u and v wind components between METGM and WRF
as in Fig. 10, but where the vertical coordinate of the input is height. 33

Fig. 13 Comparison of temperature (K) between METGM and WRF profiles
for the same location near SV where the blue line is for data having
height (m AGL) as the vertical coordinate and the orange line is for
data having pressure (hPa) as the vertical coordinate. The horizontal
grid resolution was 3 km. .. 34

vi

Fig. 14 Comparison of RH (%) between METGM and WRF profiles for the
same location near SV where the blue line is for data having height (m
AGL) as the vertical coordinate and the orange line is for data having
pressure (hPa) as the vertical coordinate. The horizontal grid resolution
was 3km. ... 35

Fig. A-1 Flowchart of wrf2text.sh .. 41

Fig. A-2 Flowchart of wrf2textgmh.ncl. Details in text. For wrf2textgmp.ncl,
the interpolation of WRF data to height (geopotential) levels is
replaced by interpolation to pressure levels. 42

Fig. A-3 Flowchart for wrftexth.py. The flowchart for wrftextp.py is the same
though the script itself differs from wrftesth.py in some details. 43

Fig. A-4 Flowchart for metascii2metgm.f. Use of height as the vertical
coordinate is recommended as the preferred option. 43

Fig. A-5 Flowchart for readmetgm.f ... 44

Fig. A-6 Flowchart showing main parts of wrf2metgm.sh. For the script
mentioned in the first box, the option for text table output for the entire
domain available in wrf2text.sh was removed since it is not needed.
Otherwise that script is the same as wrf2text.sh. 44

List of Tables

Table 1 WRF output data in text format in the form required for input to the
program to convert text data to a METGM. Text for three consecutive
WRF files is presented. The part shown contains header information:
line 1 has the date and time of the first input WRF file
(yyyymmddhhmm); line 2 has the size in terms of grid points (x or
longitude direction and y or latitude direction), number of forecast
times, and number of input variables (must equal 8); and line 3 has the
forecast time hours (UTC). The following lines have longitude
(decimal degrees), latitude (decimal degrees), and terrain height (m
MSL). .. 9

Table 2 Part of WRF output data in the text format required for input to the
program to convert text data to a METGM. Text for three consecutive
WRF files is presented. The section immediately follows the
longitude, latitude, and elevation data of Table 1. The first line shown
has the number of data levels, “parameter number” (indicates the
variable, in this case pressure), and a number indicating whether the
data lines are based on (0) height (m) MSL; (1) height (m) AGL,
which was used for this report; or (2) pressure (hPa). The following
single column has the height levels (m) followed by three columns of
pressure (hPa), one column for each forecast time. If only one forecast
time is chosen then there is only one column of pressures. Data for all
heights for the first horizontal grid point are shown followed by the
first few data lines of the second... 10

vii

Table 3 Part of WRF output data in the text format required for input to the
program to convert text data to a METGM. Text for three consecutive
WRF files is presented. The temperature section immediately follows
the pressure data of Table 2. Except for the number for the temperature
parameter, 5, the first line is the same as in Table 2. The height levels
also are the same as in Table 2 and are followed by temperature (K)
values as shown for the three forecast times. Data for one grid point
are shown. ... 11

Table 4 Part of WRF output data in the text format required for input to the
program to convert text data to a METGM. Text for three consecutive
WRF files is presented. The v wind component section immediately
follows the u component data. The first line that follows the u
component data contains numbers for the parameters as noted in Table
2, except that for the v component the indicator is 3. The heights for
the v component are the same as for temperature and are not repeated
in this table. The v component (ms‒1) values for the three forecast
times for one grid point are shown. .. 12

Table 5 Part of WRF output data in the text format required for input to the
program to convert text data to a METGM. Text for three consecutive
WRF files is presented. The sea-level pressure section immediately
follows the w component data. Here the first line contains numbers for
the parameters as noted in Table 2, except that there is only one level
and the sea-level pressure indicator is 7. This indicator value is the
same as for the pressures of Table 2, but the combination with 1 for
the number of levels (sea-level surface only) and the position within
the overall text file tells the conversion to METGM program that the
data are for sea-level pressure. .. 13

Table 6 Part of WRF output data in the text format required for input to the
program to convert text data to a METGM when pressure is the
vertical coordinate. The values of the vertical coordinate pressures are
followed by their respective heights for each grid point. Data for the
first 16 levels for one grid point are presented. The section
immediately follows the longitude, latitude, and elevation data of
Table 1. The first line shown has the number of data levels, “parameter
number” (indicates the variable, in this case height MSL), and a
number indicating whether the data lines are based on (0) height (m)
MSL, (1) height (m) AGL, or (2) pressure (hPa). The following single
column has the input pressure levels (hPa) followed by one column of
height MSL (m) since there was only 1 forecast time. Since the
elevations are the surface heights, they are not repeated here and there
is no surface indicator. .. 14

Table 7 Part of WRF output data in the text format required for input to the
program to convert text data to a METGM when pressure is the
vertical coordinate. In this sample, the values of the vertical coordinate
pressures are followed by the first 10 respective temperatures for one
grid point. The surface indicator is 2001.00. 15

viii

Table 8 Section of text output from the program to read a METGM and extract
data for selected grid points. Many of the listed parameters are self-
explanatory or are explained in the text. The line following the
“Identifier vert. coord.” denotes that the initial AGL height (= 0 m)
has an output index of 0. The next line has the value of m and the time
slice (e.g., 1 for first forecast time). The data lines are in groups of two
that start with the words “Grid point”. The first line has grid point
numbers and longitude and latitude, and the second has the respective
output line number (0) and terrain height MSL (m). The first 5 data
line groups are shown. .. 17

Table 9 Section of text output for temperature (K) from the program to read a
METGM and extract data for selected grid points. Many of the listed
parameters are self-explanatory or are explained in the text. Only
output for the header, heights, and part of the data for the first forecast
time is shown. ... 18

Table 10 Section of text output for the v wind component (ms-1) from the
program to read a METGM and extract data for selected grid points.
Many of the listed parameters are self-explanatory or are explained in
the text. Only part of the data for the first time slice is shown. The data
level heights are the same, and the header values are the same except
that m = 6 and p = 3. ... 20

Table 11 Extract data for selected grid points. Many of the listed parameters are
self-explanatory or are explained in the text. The header and the data
lines are similar to those for terrain height as shown in Table 8.
However, the values of m and p are 8 and 7, respectively, and the
height of 0 represents sea level. Sea-level pressure replaces terrain
height in the data section. The first 5 data groups of the first forecast
time are shown. ... 21

Table 12. Number of METGM height levels for the data with height or pressure
as the vertical coordinate where the absolute difference in a variable is
less than the respective specified value as listed in the table. The
specified values are for pressure (P in hPa), temperature (T in K), RH
(in %), u wind component (U in ms‒1), and v wind component (V in
ms‒1). H vert coord and P vert coord indicate the data with height and
pressure as the vertical coordinate, respectively. 36

Table B-1 Example of a gm_parameters text file for use with the
metascii2metgm FORTRAN program. The first line has the first part
of the output (METGM) file name. The name shown indicates the
METGM is for part of southeast Arizona. The rest of the output file
name has the date and time normally followed by the suffix “.gm”.
The second line tells the program to extract a small 3 × 3 horizontal (x,
y) grid from the input WRF text file. The third line has the grid
interval in terms of longitude and latitude followed by the time interval
in seconds (it must be listed even if using only one time). The
longitude and latitude intervals shown closely approximate those for
the 9-km WRF domain of this sample with a center latitude as listed in
the fourth line, which contains the center point in longitude and

ix

latitude. The remaining lines have the vertical heights (m AGL) of the
output METGM grid. .. 48

Table B-2 Sample gmread_pars file for use with readmetgm. The values listed
are the minimum and maximum x and y grid point numbers
respectively. In this sample the program will write values for 4 grid
points. Output for 1 grid point still requires four numbers. For
example, replace 3 in both lines with 2 to write values for grid point x
= 2, y = 2 only. .. 48

1

1. Introduction

Effective support for deep-fire missions requires a more accurate knowledge of
atmospheric conditions than is presently u. Many nations already have cannon
artillery that can outrange current US systems. Information on the current
capabilities of US and foreign artillery systems may be found on a variety of
publically accessible websites, some of which are listed in Section 8. A comparison
of foreign tactical missile systems on open sites (e.g., Military-Today.com [2019])
suggests there may be a disparity with respect to missile systems as well. To address
this situation, the United States has programs underway that should begin to have
an effect over the next several years.

For longer artillery ranges, the need for accurate meteorological (MET) information
increases. Many NATO countries, and potential adversaries, have adopted newer,
more effective means to obtain required MET information. More modern
capabilities normally produce more accurate MET input to fire control systems.
One of the key capabilities already in use by several NATO countries, but not yet
adopted by the United States as of the writing of this report, is the use of a gridded
MET message (METGM). The METGM consists of numerical weather prediction
(NWP) output data that are presented in a standard format as described in a NATO
document, STANAG 6022 MET (2010). The 3-D METGM (4-D if more than one
forecast time is used) provides better MET information than the 1-D computer MET
message (METCM) described in STANAG 4082 MET (2012) still in use by US
forces. The METGM accounts for variability in MET variables in all spatial
dimensions plus time if the model data have more than one forecast time. On the
other hand, the METCM assumes horizontal homogeneity and is for one time only.
For shorter ranges (e.g., 15 km), the difference in a firing solution between using a
METGM to obtain the required MET information and using a METCM is small.
However, for longer ranges (e.g., 70 km), the difference can be large, especially if
over mountainous regions.

The countries that have adopted the METGM have the ability to convert NWP
output into a METGM, but software developed for specific systems may not be
readily available elsewhere. Furthermore, development of conversion software
within NATO has centered on European models and NWP formats (e.g., GRIB2)
used for global and larger regional models such as models from the European
Center for Medium-range Weather Forecasting (ECMWF) and other major centers.
However, there is no widely available ability to convert mesoscale or regional
model data using the Network Common Data Form (NetCDF) format. This report
presents a means to convert Weather Research and Forecasting (WRF) model
output in NetCDF format into a METGM. It involves two primary steps. The first

2

converts WRF output into a text file with a specified format and the second converts
the text file into a METGM. The WRF text output may have the vertical coordinate
as height above ground level (AGL) or pressure.

In this report, the emphasis is on the version with height as the vertical coordinate
since the one using pressure often does not replicate the WRF output as well as the
height version for more complex or higher terrain. Information on WRF may be
found at https://www.mmm.ucar.edu/weather-research-and-forecasting-model and
the included links. The METGM output of the current report is suitable for
computation of firing solutions, but may not have all the optional output necessary
for additional applications.

2. Procedure Outline: Bash Scripts

The first part of the process for generating a METGM from a WRF output file is to
produce a text file version of the WRF file. A Bash script, wrf2text.sh, calls in turn
an NCAR Command Language (NCL) script, wrf2textgmh.ncl (height vertical
coordinate) or wrf2textgmp.ncl (pressure vertical coordinate), and a Python 3
script, wrftexth.py (height vertical coordinate) or wrftextp.py (pressure vertical
coordinate). Appendix A contains a high-level flowchart of wrf2text.sh (Fig. A1)
and Appendix B has its source listing via an attached file in in the PDF attachment
pane. The resultant text file becomes the input file for a FORTRAN program
originally written in Germany (Weber 2002a) to process Global Forecast System
(GFS) text output. Here the emphasis is on height (AGL) as the vertical coordinate,
as noted previously. The NCL script converts the parts of the WRF file that are
relevant for a METGM into a text file for each WRF forecast time (one time slice).
The Python 3 script further modifies the text output from the NCL script and
combines output files for up to nine time slices.

The Bash script is run by typing its name preceded by “./”.

 ./wrf2text.sh

The script queries the user for whether the run is the first one or not. If “yes” or “y”
is entered, the output text file is deleted to avoid appending multiple sets of output
that could have, for example, different domains. The user then decides whether the
output will have height AGL (h) or pressure (p) as the vertical coordinate. The next
query asks for the number of time slices (1 to 9 in the current version). The next
request asks the user whether to (option 1) produce text in the format for the
FORTRAN program, plus output for the subdomain in a tabular format for easier
human reading, or (option 2) output for the entire domain in the tabular format.

https://www.mmm.ucar.edu/weather-research-and-forecasting-model

3

Option 2 may be useful for checking the data values within the WRF output without
proceeding through the entire process, but the file can be very large. The script then
queries the user for the input WRF file’s name, including the path if not in the same
directory. If the user wanted text output in the format for the FORTRAN program,
the NCL script is called and produces information on the size of the WRF domain
in terms of the minimum and maximum latitudes and longitudes, then asks for the
user to enter minimum and maximum values for a subdomain. The NCL script is
called a second time with the coordinates and other information, and a text file is
produced that is used as input to the Python 3 script. Note that the NCL program
will run up to eight more additional times with respective queries for input
filenames depending on the number of time slices requested.

The Bash script then asks the user for a text output filename. After entering the
name, the Python 3 script is called, which produces the final text output, and the
Bash script ends. The intermediate output files from the NCL script have names
corresponding to the number of files, that is, gm_text1, gm_text2, …, gm_text9 for
1 to 9 model forecast times. The text table output from the NCL script for option 1
or 2 has the name wrf_text. The user provides the name of the final text output file
(e.g., locationA_text).

A second Bash script, ascii2metgm.sh, may be used in the generation of the
METGM. It is run by typing its name preceded by “./”.

 ./ascii2metgm.sh

This script calls the FORTRAN program, metascii2metgm, which converts the text
file generated by wrf2text.sh into a METGM with four dimensions (x,y,z,t) where
t is time. The script queries the user for the name of the input file (e.g.,
locationA_wrf-text). The input file is copied to ncl2text.txt, which is the “standard”
name of the input for metascii2metgm. This FORTRAN program ingests some of
the runtime parameters (e.g., center longitude and latitude) from a separate text file,
gm_parameters. That file holds several parameters that may be changed by the
user, such as the grid spacing as well as a list of METGM levels.

The aforementioned Bash scripts were combined into one that calls the same
included NCL and Python 3 scripts, and the same FORTRAN program. The
included scripts and the program should be in the same directory as the combined
Bash script, wrf2metgm.sh. The combined script is run by typing its name preceded
by “./”.

 ./wrf2metgm.sh

4

The requests to the user are much the same except that the option for generation
and output of a file of text tables (wrf_text) for the entire domain is eliminated since
it is not needed for generation of a METGM. Also, this script produces the
“standard” text filename for the input to metascii2metgm and consequently there
is no request for the text filename. The FORTRAN program also prints text
information to the screen that is redirected to a file (screenoutput). An additional
query after screenoutput is produced asks if the user wants to view the text
information before the script ends via the vi editor. This text output is useful as a
check on the operation of the program and it contains the output filename. The user
may view the file afterward using vi or another editor, but should save it to a file
with another name before running the script again since the screen output will be
overwritten.

3. Included Scripts and Programs

The aforementioned Bash scripts call an NCL script, a Python 3 script, and a
FORTRAN program. These scripts and programs perform the main work of the
overall software set.

The following subsections briefly describe those components and flowcharts
indicating the main sections of each may be found in Appendix A. An additional
FORTRAN program may be used to extract METGM profiles for comparison with
profiles extracted directly from the WRF output. Appendix A also has a flowchart
to illustrate the primary sections of that program. Appendix B contains source
listings of the height coordinate versions of the NCL and Python 3 scripts as well
as the Bash script as attached files in in the PDF attachment pane. The pressure
coordinate versions of the scripts are almost the same except for those lines of code
that relate to the choice of the vertical coordinate. The FORTRAN program
processes input with either height or pressure as the vertical coordinate.

3.1 NCL Script

There are two NCL scripts, one for output with the vertical coordinate in
geopotential height (m) and the other in pressure (hPa). Both scripts
(wrf2textgmh.ncl and wrf2textgmp.ncl, respectively) have several main sections.
The first one reads the WRF output file and extracts the variables of interest. Those
variables include pressure (hPa), geopotential height (km), temperature (K),
humidity (%), u, v, and w wind components (ms-1), and sea-level pressure (hPa).
The next major part converts the vertical coordinate of the extracted WRF data from
its standard coordinate (e.g., sigma levels or for newer versions of WRF sigma
levels near the surface changing to pressure levels nearer to the model top) to

5

user-defined height AGL or pressure levels. Following the conversion to height or
pressure levels, the script extracts a subdomain defined in terms of user-defined
maximum and minimum latitudes and longitudes that may have a size from only a
few grid points to almost the entire parent domain. The resultant subdomain data
are processed in the output section that writes the data in a text format that becomes
the input for the subsequent Python 3 script. In addition, the data for the subdomain
are written to a separate file in a tabular format that is more readable. As an option,
the user can skip the generation of output for the Python 3 script and go directly to
the output section that produces only the tabular output file. This latter option may
be useful for test purposes.

3.2 Python 3 Script

The Python 3 script has two versions, wrftexth.py and wrftextp.py, for text input
from the NCL script with height (AGL) or pressure vertical coordinates,
respectively. Both versions reformat some of the data, add some additional header
information, and remove other header information not currently used in the
generation of a METGM. It also combines up to nine text output files from
wrf2textgmh.ncl or wrf2textgmp.ncl into a single file. The NCL script text output
has the data for each variable by horizontal layer, that is, all x,y grid point values
for each value of the vertical coordinate. The FORTRAN program requires data by
grid point, that is, values for all vertical levels for each x,y grid point. Consequently,
wrftexth.py or wrftextp.py reorders the data values for all of the 3-D variables (e.g.,
temperature, humidity). The 2-D variables such as terrain height and sea-level
pressure are not reordered.

The script wrftexth.py or wrftextp.py may be run in a standalone mode, but
generally is not recommended due to the extra work involved. The user would have
to first modify the Bash script so that the output for each run for one to nine forecast
times of the respective NCL script is saved. In that case, the user could have, for
example, gm_text1 and gm_text2 for two forecast times. With those files in place,
then in this example, one would run wrftexth.py:

 python3 wrftexth.py gm_textoutput gm_text1 gm_text2

where gm_textoutput is the name of the output text file (input for the FORTRAN
program) with the vertical coordinate in height (m) and gm_text1 and gm_text2 are
input files produced by the NCL script for two WRF forecast times. The current
version of the Python 3 script allows for one to nine input files. A similar procedure
using wrftextp.py will produce an output text file with pressure (hPa) as the vertical
coordinate.

6

3.3 FORTRAN Program

The FORTRAN program (metascii2metgm) converts the text output from the
Python script into a METGM. As noted earlier, the program was originally
developed in Germany (Weber 2002a) to provide METGMs from GFS model data.
Further modification here has enabled it to ingest text files derived from WRF
model data, incorporated additional changes to enhance the ease of use, and others
to enhance or correct issues with the program. For example, it has an improved
vertical aligning of METGM and input height levels for interpolation, and a
different means to compute heights from pressure levels. The program handles text
files that have height mean sea level (MSL), height AGL, or pressure as the vertical
coordinate. The procedure for text files with pressure as the vertical coordinate
requires the conversion of pressure levels to height levels (AGL) for each grid
point. Then the program computes the mean value of each height level over the
domain of the METGM. Pressure values are computed at each grid point using the
profile of mean height values. The use of mean height values and multiple
interpolations result in the procedure being less direct when using pressure as the
vertical coordinate.

Perhaps the largest change to the program was the replacement of the subroutine
that converts pressure levels to heights AGL. The new subroutine is completely
rewritten and uses newly written FORTRAN functions. For example, the program
now uses the standard hypsometric formula to obtain surface pressure from the
input sea-level pressure and surface temperature, humidity, and elevation versus
using a linear interpolation. Some other important changes include some to
eliminate potential negative weighting values where they should always be
positive. Others help prevent access to locations outside the bounds of the input
data arrays, such as implementing a bounds check.

Values for many of the parameters for running the original program were defined
within data statements and a few within the program code itself. Changes to one or
more parameters required changes to data statements or the coding followed by
recompilation. The current version of the program has most parameter values
defined using a separate parameter file in text format (gm_parameters). For
example, the METGM grid sizes and intervals are defined using values in the
parameter file versus filling in lengthy data statements and then recompiling. Also,
the first part of the output filename is in the parameter file, allowing the user to
input identifying information such as the name of the region (e.g., EastCoast).
Appendix A has a high-level flowchart of metascii2metgm.f (Fig. A-4) and
Appendix B has an example gm_parameters file with typical values (Table B-1).

7

This program may be run easily in a standalone mode. The user manually copies
the text file output from wrf2text.sh to a file named ncl2text.txt, which is the
generic name used by the FORTRAN program. The data printed to screen are
lengthy and may be saved by redirecting to a file named by the user, for example,

 cp wrf_text_2019042300 ncl2text.txt
 ./metascii2metgm > screentextdata

where wrf_text_2019042300 is the name of the text file produced via wrf2text.sh
and the file screentextdata contains the output otherwise printed on the screen from
metascii2metgm. The current form of the output is name_datetime.gm (e.g.,
wrf_201904120600.gm), where “name” is defined by the user via the parameter
file. Appendix B has an example gm_parameters file with typical values (see
Table B-2).

3.4 Additional Program for METGM Analysis

The ability to extract data from a METGM is essential for proper evaluation of the
output from the set of scripts and programs discussed earlier. Another FORTRAN
program, readmetgm (Weber 2002b), reads a METGM and originally wrote output
for a single grid point to the screen. The program was modified with respect to ease
of use and printing of additional information for each grid point, and allow printing
of data for multiple grid points. In the earlier version, data were extracted for one
grid point that was defined in the code. Changing the grid point required
recompilation. Also, the input filename (e.g., us-201901141500-wac) was “hard
coded” within the program, and changing it required recompilation. In the current
version, the user enters the number of the minimum and maximum x,y grid points
into a parameter file named gmread_pars, and the user copies the METGM file to
one with the standard name metgm_input before running the program. No
recompilation is needed. Normally, the output would be redirected to a file since
the program sends the output to the screen. There is no set filename and the user
may choose whatever name is convenient. An example of the procedure follows:

 cp wrf_201904120600.gm metgm_input
 ./readmetgm > textout

where the file textout holds information and data in text format extracted from the
METGM (wrf_201904120600.gm, in this example).

8

4. Sample Output

Samples of the text output from the Bash script wrf2text.sh are presented as well
as samples in text format extracted from a METGM by the additional FORTRAN
program readmetgm. The METGM is produced by the FORTRAN program
metascii2metgm from the wrf2text.sh text output. Samples of text output are
presented for files with height as the vertical coordinate. The output data with
pressure as the vertical coordinate have much the same format except for pressure
and height. The differences are noted at the end of Section 4.1.

4.1 Input Files

The sample WRF output files are for a region centered over Toledo Bend Reservoir
(TBR), Louisiana, with a 9-km grid resolution domain covering 25.33° to 37.55°

latitude and ‒101.30° to ‒86.20° longitude. This large area includes ocean (Gulf of
Mexico), lakes, non-complex (“flat”) terrain over, for example, southern
Mississippi, southern Louisiana, and east Texas, and complex terrain in parts of the
northern half of the domain. Table 1 shows a section of the output of latitude,
longitude, and terrain height for three model forecast times (aka time slices) for a
subdomain covering approximately ‒97° to ‒89° longitude and 29° to 35° latitude.
The initial forecast time was 2019-03-14-0600 (Coordinate Universal Time
[UTC]), as seen in Table 1.

9

Table 1 WRF output data in text format in the form required for input to the program to
convert text data to a METGM. Text for three consecutive WRF files is presented. The part
shown contains header information: line 1 has the date and time of the first input WRF file
(yyyymmddhhmm); line 2 has the size in terms of grid points (x or longitude direction and y
or latitude direction), number of forecast times, and number of input variables (must equal
8); and line 3 has the forecast time hours (UTC). The following lines have longitude (decimal
degrees), latitude (decimal degrees), and terrain height (m MSL).

201903140600
85 75 3 8
6.0 7.0 8.0
-97.0337 29.0187 57.313
-96.9413 29.0211 45.035
-96.8488 29.0234 33.903
-96.7563 29.0257 28.507
-96.6639 29.0279 25.420
-96.5714 29.0300 22.573
-96.4790 29.0320 21.583
-96.3865 29.0340 22.106
-96.2940 29.0359 22.270
-96.2015 29.0378 21.635
-96.1091 29.0395 21.263
-96.0166 29.0412 20.791
-95.9241 29.0429 19.091
-95.8316 29.0444 17.146
-95.7391 29.0459 15.251
-95.6466 29.0474 12.852
-95.5541 29.0487 11.230
-95.4616 29.0500 9.745
-95.3691 29.0513 6.422
-95.2766 29.0524 2.710
-95.1841 29.0535 0.602
-95.0916 29.0546 0.057

Table 2 illustrates a portion of the text output from wrf2text.sh that lists the model
output geopotential height levels followed by their respective pressures for each
grid point of the subdomain. Height values are in meters AGL.

10

Table 2 Part of WRF output data in the text format required for input to the program to
convert text data to a METGM. Text for three consecutive WRF files is presented. The section
immediately follows the longitude, latitude, and elevation data of Table 1. The first line shown
has the number of data levels, “parameter number” (indicates the variable, in this case
pressure), and a number indicating whether the data lines are based on (0) height (m) MSL;
(1) height (m) AGL, which was used for this report; or (2) pressure (hPa). The following single
column has the height levels (m) followed by three columns of pressure (hPa), one column for
each forecast time. If only one forecast time is chosen then there is only one column of
pressures. Data for all heights for the first horizontal grid point are shown followed by the
first few data lines of the second.

23 7 1
 0.00
 100.00
 200.00
 500.00
 1000.00
 2000.00
 3000.00
 4000.00
 5000.00
 6000.00
 7000.00
 8000.00
 9000.00
10000.00
11000.00
12000.00
13000.00
14000.00
15000.00
16000.00
17000.00
18000.00
19000.00
 1001.148 1000.612 1001.905
 989.380 988.982 990.154
 978.064 977.646 978.815
 944.845 944.365 945.493
 892.112 891.605 892.394
 793.966 793.552 794.087
 704.422 703.962 704.080
 623.039 622.392 622.200
 549.558 548.870 548.469
 483.293 482.672 482.213
 423.489 422.912 422.460
 369.413 368.886 368.518
 321.036 320.582 320.272
 277.802 277.419 277.186
 239.412 239.033 238.887
 206.039 205.639 205.590
 176.474 176.127 176.167
 150.425 150.119 150.204
 127.814 127.536 127.583
 108.351 108.173 108.127

11

 91.525 91.428 91.337
 77.243 77.167 77.001
 65.217 65.097 64.896
 1002.596 1002.101 1003.115
 990.824 990.479 991.362
 979.484 979.121 980.006
 946.226 945.773 946.619

The following sections for temperature (K), relative humidity (RH) (%), and u and
v wind components (ms-1) list the respective values for one to nine forecast times
(three in the examples presented here), each section following a list of all the height
levels (23) including the surface. If pressure is the vertical coordinate, a value of
2001 is used to indicate the surface for the program to convert text to METGM. For
WRF output with height coordinates, all levels have values of the vertical (w) wind
component (“surface” for wind is at 10 m), but for pressure coordinates the surface
value is skipped (e.g., leaving only 22 values). Tables 3 and 4 present samples of
the text output for temperature and the v wind component. The other data listings
are similar and are not shown.

Table 3 Part of WRF output data in the text format required for input to the program to
convert text data to a METGM. Text for three consecutive WRF files is presented. The
temperature section immediately follows the pressure data of Table 2. Except for the number
for the temperature parameter, 5, the first line is the same as in Table 2. The height levels also
are the same as in Table 2 and are followed by temperature (K) values as shown for the three
forecast times. Data for one grid point are shown.

 294.740 294.612 294.546
 294.247 294.033 294.021
 293.958 293.628 293.438
 294.170 293.419 292.693
 293.966 294.342 293.578
 289.063 289.065 286.920
 280.668 280.085 279.413
 274.852 274.089 272.553
 268.646 268.515 268.080
 262.076 262.012 261.546
 254.504 254.270 254.214
 246.523 246.503 246.639
 238.902 239.016 239.111
 232.845 232.684 232.903
 228.781 228.140 228.592
 223.868 223.678 224.364
 217.791 217.717 218.359
 211.427 211.243 211.499
 207.767 208.107 207.165
 205.677 206.177 205.812
 201.464 202.468 201.290
 201.906 201.380 199.534
 201.906 201.380 199.534
 201.380 201.181 200.550

12

Table 4 Part of WRF output data in the text format required for input to the program to
convert text data to a METGM. Text for three consecutive WRF files is presented. The v wind
component section immediately follows the u component data. The first line that follows the u
component data contains numbers for the parameters as noted in Table 2, except that for the
v component the indicator is 3. The heights for the v component are the same as for
temperature and are not repeated in this table. The v component (ms‒1) values for the three
forecast times for one grid point are shown.

 6.304 6.958 5.181
 13.469 14.664 12.128
 15.991 17.172 14.203
 19.911 21.696 17.490
 12.773 13.421 14.336
 1.548 2.484 5.149
 -2.165 -3.634 2.567
 7.323 7.284 5.306
 11.692 12.848 13.591
 12.421 14.376 15.077
 12.085 13.001 12.993
 11.189 11.040 10.564
 9.960 10.160 10.119
 9.796 11.089 11.827
 10.993 12.960 13.199
 12.685 11.837 12.511
 11.306 10.897 10.979
 5.872 5.517 6.794
 4.543 4.874 3.527
 8.047 10.174 6.943
 9.517 8.878 11.104
 6.543 7.854 8.534
 5.431 5.593 4.749

The last section of text output contains values for sea-level pressure. Sea-level
pressure has one level only, which is indicated by the surface indicator of 0.00
(2001.00 for pressure coordinate input). For this section, the “surface” is not the
same as for the other variables, but instead indicates sea level. Table 5 presents a
sample of this section for several grid points.

13

Table 5 Part of WRF output data in the text format required for input to the program to
convert text data to a METGM. Text for three consecutive WRF files is presented. The sea-
level pressure section immediately follows the w component data. Here the first line contains
numbers for the parameters as noted in Table 2, except that there is only one level and the
sea-level pressure indicator is 7. This indicator value is the same as for the pressures of
Table 2, but the combination with 1 for the number of levels (sea-level surface only) and the
position within the overall text file tells the conversion to METGM program that the data are
for sea-level pressure.

1 7 1
 0.00
 1007.477 1007.056 1008.258
 1007.505 1007.126 1008.053
 1007.543 1007.187 1007.963
 1007.610 1007.256 1007.907
 1007.675 1007.333 1007.841
 1007.654 1007.399 1007.836
 1007.543 1007.442 1007.801
 1007.517 1007.508 1007.733
 1007.629 1007.424 1007.810
 1007.725 1007.379 1007.792
 1007.921 1007.367 1007.865
 1008.035 1007.410 1007.902
 1008.090 1007.485 1008.034
 1008.257 1007.562 1008.047
 1008.354 1007.637 1008.083
 1008.447 1007.659 1008.067
 1008.531 1007.798 1008.050

As noted earlier, the text files with pressure as the vertical coordinate have a similar
format as those that use height for the vertical coordinate. The formats for latitude,
longitude, and grid point elevation data are the same as with the height-based data
(e.g., Table 1). The data sections for temperature, RH, wind components, and sea-
level pressure are the same as well. The indicator in the header of each section for
the vertical coordinate changes from 1 to 2. In addition, for pressure-based data
2001.00 is used to indicate the surface in the list of pressure vertical coordinates
versus 0.00 for height-based data, and pressure values proceed from the highest
value to the lowest. Table 6 shows a header line, pressure coordinate values, and
heights (MSL) of those pressures for one grid point. The section of text output
shown in this table immediately follows the longitude, latitude, and elevation data
(Table 1). The surface value of height is not listed since it is the same as the
elevation, and consequently there is no surface indicator. For the list of pressure
values for the other data sections (e.g., Table 7), the surface indicator is the first
value that appears.

14

Table 6 Part of WRF output data in the text format required for input to the program to
convert text data to a METGM when pressure is the vertical coordinate. The values of the
vertical coordinate pressures are followed by their respective heights for each grid point. Data
for the first 16 levels for one grid point are presented. The section immediately follows the
longitude, latitude, and elevation data of Table 1. The first line shown has the number of data
levels, “parameter number” (indicates the variable, in this case height MSL), and a number
indicating whether the data lines are based on (0) height (m) MSL, (1) height (m) AGL, or (2)
pressure (hPa). The following single column has the input pressure levels (hPa) followed by
one column of height MSL (m) since there was only 1 forecast time. Since the elevations are
the surface heights, they are not repeated here and there is no surface indicator.

24 7 2
 925.00
 900.00
 875.00
 850.00
 825.00
 800.00
 775.00
 750.00
 725.00
 700.00
 650.00
 600.00
 550.00
 500.00
 450.00
 400.00
 350.00
 300.00
 250.00
 200.00
 150.00
 100.00
 70.00
 50.00
 742.183
 980.728
 1224.761
 1474.586
 1730.209
 1992.214
 2260.814
 2536.218
 2818.686
 3108.271
 3712.507
 4357.588
 5047.675
 5792.002
 6596.724
 7475.945

15

Table 7 Part of WRF output data in the text format required for input to the program to
convert text data to a METGM when pressure is the vertical coordinate. In this sample, the
values of the vertical coordinate pressures are followed by the first 10 respective temperatures
for one grid point. The surface indicator is 2001.00.

25 5 2
 2001.00
 925.00
 900.00
 875.00
 850.00
 825.00
 800.00
 775.00
 750.00
 725.00
 700.00
 650.00
 600.00
 550.00
 500.00
 450.00
 400.00
 350.00
 300.00
 250.00
 200.00
 150.00
 100.00
 70.00
 50.00
 294.740
 295.770
 294.570
 293.216
 292.624
 291.081
 289.444
 287.684
 285.404
 282.784

The lowest pressure level (highest pressure) in the list is the highest value in the
input list of vertical pressures that is less than the lowest surface pressure value in
the requested WRF subdomain. For the data shown in Table 6, the highest value is
725 hPa and the lowest surface pressure over the subdomain is 744.6 hPa (the
highest elevation over the same subdomain is 2583.2 m). Consequently, over
complex terrain the other horizontal grid points (have higher surface pressures and
lower terrain heights) require interpolation of surface pressure in the program over
larger height differences, which may lead to greater differences between METGM
and WRF surface pressure values. Other than the aforementioned differences, the

16

format of the output text file is the same whether the vertical coordinate is pressure
or height.

4.2 METGM Data in Text Format

The FORTRAN program readmetgm (Weber 2002b), as modified for the work of
this report, extracts header information and profile data for selected grid points of
the input METGM. The sample output presented herein was extracted from a
METGM for the same location and times as the input data used for Tables 1–5 of
the previous section (Table 8). The METGM grid had 21 × 21 horizontal (x,y) grid
points with a grid spacing of 0.095° longitude and 0.081° latitude, and the domain
center was at ‒93.0405° longitude and 31.1368° latitude. Those coordinates were
chosen so as to best align with a specific grid point in the WRF text output data.
All the output text headers have the same type of information though the specific
values may change for different variables or parameters. The one exception is that
the first line of the first header has the “number of parameters”, which is the total
number of output variables (e.g., heights; temperature; u, v, w wind components)
in the METGM. For all headers, the letter m is the index value for the indicated
parameter (variable) in the program and p is the standard parameter identifier within
the METGM and may not be the same as m. The “number of points (time)” refers
to the number of forecast times (i.e., number of time slices), and for terrain heights
(first header), it is set to 1 since terrain remains the same for all forecast times. The
timestep is the time in seconds between forecast times. However, for terrain heights
(first header) the timestep is the value in seconds for 1 day and is really a
placeholder since terrain heights normally do not change over the time of a
METGM. The value for reference meridian is a place holder. The “identifier ref.
level” refers to heights MSL (0) or AGL (1), and the “identifier vert. coord.” refers
to use of only one set of height levels for all grid points. Nominally, each grid point
could have a different number of METGM heights, but normally heights for all grid
points are the same. Table 8 contains header information and values for terrain
heights (m MSL) for the grid points listed. The longitude and latitude in decimal
degrees are listed after the grid point numbers (x and y in the output of this program
represent grid point numbers). The index values written along with the output data
lines were changed to base 0 to match output line numbers from programs that
generate data profiles in text format directly from WRF output (Cogan 2017, 2019).

17

Table 8 Section of text output from the program to read a METGM and extract data for
selected grid points. Many of the listed parameters are self-explanatory or are explained in
the text. The line following the “Identifier vert. coord.” denotes that the initial AGL height
(= 0 m) has an output index of 0. The next line has the value of m and the time slice (e.g., 1 for
first forecast time). The data lines are in groups of two that start with the words “Grid point”.
The first line has grid point numbers and longitude and latitude, and the second has the
respective output line number (0) and terrain height MSL (m). The first 5 data line groups are
shown.

Number of parameters: 8

m = 1 Parameter p = 0
Number of Points (z,x,y) 1 21 21
Number of Points (time) 1
Grid spacing (x,y) 0.095 0.081
Time step 86400.00
Center Point (lon/lat) -93.04050 31.16380
Reference Meridian 9999.000
Identifier ref. level 0.00
Identifier vert. coord. 1.00

 0 height = 0.00

m = 1 time slice = 1

Grid point (x,y,lon,lat): 10 10 -93.13566 31.08272
 0 102.000000

Grid point (x,y,lon,lat): 10 11 -93.13566 31.16380
 0 101.000000

Grid point (x,y,lon,lat): 10 12 -93.13566 31.24488
 0 100.000000

Grid point (x,y,lon,lat): 11 10 -93.04050 31.08272
 0 100.000000

Grid point (x,y,lon,lat): 11 11 -93.04050 31.16380
 0 99.0000000

The text output for pressure, temperature, RH, and wind components have the same
format. Parts of the temperature and v wind component text are shown in Tables 9
and 10. As noted previously, the index values written along with the output data
lines were changed to base 0 so as to coincide with data lines from programs that
produce vertical profiles from the WRF output itself. This change allows for a
clearer comparison between the METGM and WRF derived profiles. The header
information for each variable contains the same type of data as in Table 8, but some
of the values are different. For example, the values for m and “Parameter p” are
different for each variable. The number of times (“Number of Points (time)”) has
the number of forecast times for these variables. The heights AGL (m) are listed
following the header lines along with the data line number (base 0). After the height

18

list, the m value is repeated along with the number of forecast times (aka time
slices). A series of profiles of the variable with each profile preceded by a line with
the grid point (x, y) and its longitude and latitude appear for all grid points in
sequence for that forecast time. The last section of the text has the header and data
for sea-level pressure (Table 11). The format is nearly the same as for terrain
heights except that the total number of parameters (first line in Table 8) does not
appear. In this case, sea-level pressure replaces terrain height and values are
presented for all time slices.

Table 9 Section of text output for temperature (K) from the program to read a METGM
and extract data for selected grid points. Many of the listed parameters are self-explanatory
or are explained in the text. Only output for the header, heights, and part of the data for the
first forecast time is shown.

m = 3 Parameter p = 5
Number of Points (z,x,y) 25 21 21
Number of Points (time) 1
Grid spacing (x,y) 0.095 0.081
Time step 3600.00
Center Point (lon/lat) -93.04050 31.16380
Reference Meridian 9999.000
Identifier ref. level 1.00
Identifier vert. coord. 1.00

 0 height = 2.00
 1 height = 100.00
 2 height = 250.00
 3 height = 500.00
 4 height = 750.00
 5 height = 1000.00
 6 height = 1500.00
 7 height = 2000.00
 8 height = 3000.00
 9 height = 4000.00
10 height = 5000.00
11 height = 6000.00
12 height = 7000.00
13 height = 8000.00
14 height = 9000.00
15 height = 10000.00
16 height = 11000.00
17 height = 12000.00
18 height = 13000.00
19 height = 14000.00
20 height = 15000.00
21 height = 16000.00
22 height = 17000.00
23 height = 18000.00
24 height = 19000.00

m = 3 time slice = 1

Grid point (x,y,lon,lat): 10 10 -93.13566 31.08272

19

 0 293.799988
 1 293.500000
 2 293.000000
 3 292.100006
 4 291.200012
 5 290.399994
 6 288.399994
 7 285.399994
 8 281.600006
 9 277.000000
 10 270.700012
 11 264.100006
 12 257.799988
 13 251.800003
 14 245.100006
 15 239.000000
 16 234.699997
 17 232.100006
 18 228.399994
 19 224.600006
 20 219.800003
 21 215.000000
 22 210.199997
 23 205.300003
 24 202.199997

Grid point (x,y,lon,lat): 10 11 -93.13566 31.16380
 0 293.899994
 1 293.500000
 2 293.000000

20

Table 10 Section of text output for the v wind component (ms-1) from the program to read
a METGM and extract data for selected grid points. Many of the listed parameters are self-
explanatory or are explained in the text. Only part of the data for the first time slice is shown.
The data level heights are the same, and the header values are the same except that m = 6 and
p = 3.

m = 6 time slice = 1

Grid point (x,y,lon,lat): 10 10 -93.13566 31.08272
 0 7.59999990
 1 9.10000038
 2 11.6000004
 3 15.8999996
 4 20.1000004
 5 21.1000004
 6 15.5000000
 7 14.8000002
 8 9.69999981
 9 10.6999998
 10 14.1999998
 11 13.8999996
 12 14.3000002
 13 15.8999996
 14 13.8000002
 15 11.6000004
 16 10.6000004
 17 10.1000004
 18 6.90000010
 19 3.50000000
 20 2.70000005
 21 1.89999998
 22 1.70000005
 23 1.89999998
 24 2.29999995

Grid point (x,y,lon,lat): 10 11 -93.13566 31.16380
 0 7.80000019
 1 9.30000019
 2 11.8000002

21

Table 11 Extract data for selected grid points. Many of the listed parameters are self-
explanatory or are explained in the text. The header and the data lines are similar to those for
terrain height as shown in Table 8. However, the values of m and p are 8 and 7, respectively,
and the height of 0 represents sea level. Sea-level pressure replaces terrain height in the data
section. The first 5 data groups of the first forecast time are shown.

m = 8 time slice = 1

Grid point (x,y,lon,lat): 10 10 -93.13566 31.08272
 0 1009.79999

Grid point (x,y,lon,lat): 10 11 -93.13566 31.16380
 0 1009.59998

Grid point (x,y,lon,lat): 10 12 -93.13566 31.24488
 0 1009.40002

Grid point (x,y,lon,lat): 11 10 -93.04050 31.08272
 0 1009.90002

Grid point (x,y,lon,lat): 11 11 -93.04050 31.16380
 0 1009.70001

5. Comparison: METGM-WRF

METGM profiles of the atmospheric variables may be compared with the
respective profiles generated from WRF output. The method for extracting and
processing profiles of atmospheric variables from WRF is described in Cogan
(2017, 2019) and the included references. In brief, a Bash script calls an NCL script
originally written by Reen (2017) that extracts vertical profiles of relevant variables
for a user specified grid point. The Bash script then calls a version of the C program
described in Cogan (2017) to convert the extracted profiles into a sounding with a
user defined vertical structure. Given the different interpolation methods and the
need to interpolate the input WRF based data horizontally to METGM grid points,
profiles nominally for the same latitude and longitude most often would have some
differences. However for non-extreme atmospheric conditions, values from
METGM and “directly” from WRF for the same variable at the same heights should
be fairly close and have much the same trends. For example, a trend toward
increasing u wind component with height in one should relate to a similar trend in
the other. MET profiles from METGMs derived from WRF output that has height
(AGL) as the vertical coordinate are examined first. Later some results are
presented for METGM profiles derived from WRF output with pressure as the
vertical coordinate and compared with profiles from the same location within the
same WRF domain using height as the vertical coordinate.

22

5.1 Height as Vertical Coordinate

Figure 1 compares the vertical profile of pressure extracted from a METGM
derived from WRF output for ‒93.5685° longitude and 31.0374° latitude with
profiles “directly” extracted from that WRF output for the same grid point. The
selected grid point was at the center of the METGM domain, using the data for the
first forecast time (2019-03-14-0600) of the same domain (TBR) as used for the
tables of the previous section. The METGM latitude and longitude grid intervals
were chosen to be nearly equivalent to 9 km (the WRF grid interval), and the center
latitude and longitude were chosen to be the same to 0.0001° at a WRF grid point
not far from the center of the WRF domain. Consequently, the METGM and WRF
grid points are very close. Larger differences in METGM and WRF grid intervals
(i.e., grid resolution) and locations will lead to larger differences in the MET
variables.

 (a) (b)

Fig. 1 Comparison of pressure (hPa) between METGM and WRF where the vertical
coordinate of the input is height. In the scale of chart a), the curves essentially overlap. Chart
b) presents the differences (METGM value – WRF value) at a different scale. The absolute
differences remain below 0.25 hPa at all heights (maximum difference of 0.20 hPa), and at the
highest levels as well as a couple of other levels the differences are not far from 0 (minimum
differences ±0.01 hPa).

23

The comparison of temperature profiles for the same grid point has a similar
outcome as with pressure, that is, the two profiles nearly overlapped. The absolute
values of the differences only exceeded 0.1 K at 1 of the 25 levels including the
surface. A maximum absolute difference (METGM value – WRF value) of 0.12 K
occurred at 1500 m.

Fig. 2 Comparison of temperature (K) between METGM and WRF where the vertical
coordinate of the input is height. In the scale of chart a), the curves essentially overlap. Chart
b) presents the differences (METGM value – WRF value) at a different scale. All 25 data levels
including the surface had absolute values of the differences less than or equal to 0.12 K
(14 ≤ 0.05 K).

RH does show some greater differences. For the example of this report, all but 1 of
the 25 levels had absolute differences less than 1.00%. That one level, 1500 m, had
a difference (METGM value ‒ WRF value) of ‒7.53%. Since RH is highly variable,
the somewhat different interpolation methods, and the different nearby grid point
locations of the METGM and WRF output used for interpolation, could lead to
greater differences as compared to, for example, temperature. The outlier of ‒7.53%
may not be as odd as it seems. The RH directly from WRF one grid point to the
west had a RH of 55.0% and one to the east had a value of 78.5%. The RH from
the METGM one point to the west was about the same (55.2%) as the WRF value,
but the one to the east was less (67.7%) than the WRF value. For both the WRF
and METGM profiles, the vertical difference from 1000 to 2000 m was about ‒
83%. Given the large vertical, as well as horizontal, differences a small difference
in interpolation could lead to a noticeable difference in RH.

 (a) (b)

24

Fig. 3 Comparison of RH (%) between METGM and WRF where the vertical coordinate
of the input is height. In the scale of chart a), the curves essentially overlap. Chart b) presents
the differences (METGM value – WRF value) at a different scale. At most levels, the values
from both sources are close to one another (< 0.1% and a few < 0.01%), but at two levels the
differences (METGM value – WRF value) are noticeable (‒0.71% at 250 m and ‒7.53% at
1500 m).

Figure 4 presents the u and v wind component comparisons on the same chart. The
curves for the u component appear to nearly overlap at many heights at the scale of
the chart, and the same holds for the v component. However, the differences
(METGM value ‒ WRF value) of the u and v components for a few data levels
differed by noticeable magnitudes. The absolute values of the differences in u and
v were <0.1 ms‒1 for 22 and 21 of the 25 levels, respectively. The differences
(METGM value ‒ WRF value) with the largest magnitudes were 1.12 ms‒1
(1500 m) and ‒1.43 ms‒1 (750 m) for u and v, respectively. For v at 1500 m, there
was a second large magnitude difference of ‒1.36 ms‒1.

25

Fig. 4 Comparison of u and v wind components between METGM and WRF where the
vertical coordinate of the input is height. In the scale of chart a) the curves mostly overlap.
Chart b) presents the differences (METGM value – WRF value) at a different scale. At most
levels, the values from both sources are close to one another (a few <0.01 ms‒1), but the u
absolute difference (METGM value – WRF value) reaches a maximum of 1.12 ms‒1 at 1500 m,
and v maximum difference is 1.43 ms‒1 at 750 m.

The comparisons shown in Figs. 1–4 were derived from data for WRF and METGM
output with a 9-km horizontal grid interval for a location centered near TBR.
Similar comparisons (not shown) using 9-km gridded output for a domain centered
not far from Sierra Vista (SV), Arizona, that contains complex terrain showed
similar or smaller differences. The few relatively large differences that appeared in
the TBR RH and u, v data were mostly smaller in the SV data. An example is the
fairly large RH difference of 7.58% at 1500 m (TBR) versus 1.55% at the same
height AGL (SV). The v difference of 1.43 ms‒1 at 750 m for the TBR grid dropped
to 1.36 ms‒1 for the SV grid.

Although the comparisons to date are limited and do not cover a large number of
distinct climate regions, they do suggest that the procedure that uses height (AGL)
as the vertical coordinate can generate METGMs that reproduce profiles of MET
variables from WRF output to a reasonably good accuracy.

26

5.2 Pressure as the Vertical Coordinate

Profiles of MET variables from METGMs that were derived from WRF output that
used pressure as the vertical coordinate generally do not match profiles extracted
directly from WRF as well as those for METGMs derived using height AGL as the
vertical coordinate. The data for Fig. 5 were derived for the same region as for
Fig. 1, but the input vertical coordinate was pressure. Figure 5 has the same units
and format as Fig. 1.

Fig. 5 Comparison of pressure (hPa) between METGM and WRF where the vertical
coordinate of the input is pressure. In the scale of chart a) the curves seem to overlap. Chart
b) presents the differences (METGM value ‒ WRF value) at a different scale. The differences
are near 0 up through 2000 m, but are near ‒0.5 hPa from about 4000 through 16000 m. The
absolute values of the differences at most levels exceed those when height is the vertical
coordinate (Fig. 1).

The differences for the other variables were mostly larger as well. Figure 6 presents
comparisons of the u and v wind components as in Fig. 4, but where the input had
pressure as the vertical coordinate. The differences for several levels were
noticeably larger, especially nearer the surface. However, the difference for any one
level may be smaller for the pressure-based data.

 (a) (b)

27

Fig. 6 Comparison of u and v wind components between METGM and WRF where the
input vertical coordinate is pressure vs. height as in Fig. 4. In the scale of chart a) the curves
seem to mostly overlap. Chart b) presents the differences (METGM value – WRF value) at a
different scale. At most levels, the values from both sources were not as close to one another
as in Fig. 4. The u absolute differences (METGM value ‒ WRF value) reached a value of 1.18
ms‒1 at 100 m and even larger at 16000 and 19000 m (1.42 and 1.52 ms‒1, respectively). Near
the surface the maximum v differences were much larger, 7.29, 6.87, and 4.01 ms‒1 at 100, 250,
and 500 m, respectively).

One possible cause of the mostly larger differences may be the use in the
FORTRAN program, metascii2metgm, of the mean vertical profile of height AGL
calculated from the available pressure and height data. Although WRF output
normally includes pressure at the model terrain surface, it is not used in the
FORTRAN program. The direct use of the surface pressure from WRF output will
be addressed in a future version. This procedure should lead to reasonable results
if the terrain does not vary significantly over the WRF subdomain. As an initial
check, the program was run for the same region, but a smaller subdomain was
extracted that excluded some of the more complex terrain. The outcome appears to
support this hypothesis. Figures 7 and 8 are similar to Figs. 5 and 6, but were
computed using a smaller subdomain (13 × 13 vs. 85 × 75 grid points). The pressure
differences were smaller at most heights, but the u and v differences were
noticeably smaller only at the lowest heights. The scale of Fig. 8b presenting the
pressure differences was kept the same as Fig. 6b so as to show the differences
more clearly.

 (a) (b)

28

Fig. 7 Comparison of pressure (hPa) between METGM and WRF from a smaller WRF
subdomain where the vertical coordinate of the input is pressure. In the scale of chart a), the
curves seem to overlap. Chart b) presents the differences (METGM value ‒ WRF value) at a
different scale. The differences are not far from 0 up through 5000 m, but are near ‒0.4 hPa
at 13000 and 15000 m. The absolute values of the differences at many heights are similar to
those when height is the vertical coordinate (Fig. 1).

 (a) (b)

29

Fig. 8 Comparison of u and v wind components between METGM and WRF from a
smaller WRF subdomain where the vertical coordinate of the input is pressure. In the scale of
chart a), the curves seem to overlap at many heights. Chart b) presents the differences
(METGM value ‒ WRF value) at a different scale. At most levels, the values from both sources
are fairly close to one another. Nevertheless, the u absolute difference (METGM value ‒ WRF
value) reached a maximum of 1.62 ms‒1 at 16000 and 19000 m, greater than in Fig. 6. The
maximum absolute v differences were still large (4.09 ms‒1 at 100 m and 2.75 ms‒1 at
17000 m), but not as much as in Fig. 6.

Another potential cause of greater differences between a profile from a METGM
and the respective one directly from WRF output when using pressure coordinate
input is the computation of pressure at the model domain surface (terrain elevation).
For the METGM surface, pressure is calculated from the sea-level pressure, terrain
elevation, and surface temperature and humidity. Values of temperature and
humidity at sea level are not available and extrapolation may lead to a greater
difference in surface pressure. Over low terrain heights, the METGM’s pressure
profile should be fairly close to the model’s pressure profile, but for high terrain,
the difference between them may be relatively large. Differences with respect to
the other variables may occur, but may not be as pronounced. The combination of
the use of a mean METGM height profile along with the computation of surface
pressure may lead to noticeable differences over complex terrain at higher
elevations. Figures 9 and 10 show the pressure and u, v wind component profiles,
respectively, similar to those in Figs. 1 and 4. The WRF subdomain and smaller
area of the computed METGM were centered a short distance to the west of SV.

 (a) (b)

30

The WRF output had a forecast date and time of 21 January 2019 at 1800 UTC and
the horizontal grid resolution was 1 km. The center of the METGM was at
31.5002°N and 110.6507°W (‒110.6507°), which coincides with a grid point in the
WRF subdomain to the nearest 0.0001°. Model subdomain terrain heights varied
from less than 1200 to over 2500 m MSL. The center point of the METGM had an
elevation of 1538.6 m.

 (a) (b)

Fig. 9 Comparison of pressure (hPa) between METGM and WRF where the vertical
coordinate of the input is pressure and the horizontal grid resolution is 1 km. The WRF
subdomain covered an area centered to the west of SV, with a center near that of the METGM;
the METGM was centered at 31.5002°N and 110.6507°W. The model terrain height for the
profiles of this figure was 1538.6 m MSL. In the scale of chart a), the curves seem to overlap.
Chart b) presents the differences (METGM value ‒ WRF value) at a different scale.

31

 (a) (b)

Fig. 10 Comparison of u and v wind components between METGM and WRF where the
vertical coordinate of the input is pressure and the horizontal grid resolution is 1 km. The
location of the WRF subdomain and centers of the WRF and METGM are the same as in
Fig. 9. In the scale of chart a), the curves nearly overlap at many heights. Chart b) presents
the differences (METGM value – WRF value) at a different scale. Note that the scale of b) is
smaller than Figs. 6b and 8b.

The profiles of pressure from METGM and directly from WRF nearly overlap at
the scale of Fig. 9a. However, as seen in Fig. 9b, the differences are somewhat
larger, especially at the surface. The differences in the horizontal wind components
are noticeable at several heights, but at the scale of Fig. 10a they appear to overlap
at many heights. The differences at many levels are not as large as in Figs. 6b and
8b; the smaller scale of the horizontal axis in Fig. 10b should be taken into account.

Figures 11 and 12 present profiles for the same location where height is the vertical
coordinate. The profiles of pressure in Fig. 11a overlap at the scale of the chart, and
the differences in pressure of Fig. 11b are smaller than in Fig. 9b at most heights.
In Fig. 10a (pressure vertical coordinate) and Fig. 12a (height vertical coordinate),
the u and v values appear nearly the same at the scale of those charts. However, for
all but a few heights, the magnitude of the difference in u and v were smaller for
the data with height as the vertical coordinate, as can be seen by comparing Fig.
10b with Fig. 12b, especially for heights greater than or equal to 2000 m. On
average, the values of the absolute differences in u and v were greater for the data

32

using pressure as the vertical coordinate by 0.39 ms‒1 (u) and 0.44 ms‒1 (v),
respectively.

 (a) (b)

Fig. 11 Comparison of pressure (hPa) between METGM and WRF as in Fig. 9, but where
the vertical coordinate of the input is height

33

 (a) (b)

Fig. 12 Comparison of u and v wind components between METGM and WRF as in Fig. 10,
but where the vertical coordinate of the input is height.

Figures 13 and 14 present profiles of the difference in temperature and RH between
a METGM profile and one extracted directly from WRF for the same location near
SV at a horizontal resolution of 3km, where one line shows the differences when
the vertical coordinate is height AGL and the other when the vertical coordinate is
pressure. In Fig. 13, the differences for the pressure coordinate are much larger
below 1000 m (except for the surface) and from 11000 to 14000 m. In Fig. 14, the
magnitude of the differences are greater for the data with pressure as the vertical
coordinate at most heights, and especially larger at 14000, 7000, and below
1000 m, except at the surface. At 1500 m, the absolute value for the data with height
AGL as the vertical coordinate is notably larger.

34

Fig. 13 Comparison of temperature (K) between METGM and WRF profiles for the same
location near SV where the blue line is for data having height (m AGL) as the vertical
coordinate and the orange line is for data having pressure (hPa) as the vertical coordinate.
The horizontal grid resolution was 3 km.

35

Fig. 14 Comparison of RH (%) between METGM and WRF profiles for the same location
near SV where the blue line is for data having height (m AGL) as the vertical coordinate and
the orange line is for data having pressure (hPa) as the vertical coordinate. The horizontal
grid resolution was 3km.

Another way to examine the data with the different vertical coordinates is to
compare the number of data levels (METGM heights) where the absolute value of
the difference is less than some value. Table 12 presents the number of data levels
where the absolute value of the difference is less than a specified value for all the
variables examined. The WRF subdomain, and date and time, were the same as
used for Figs. 9–14. As shown in Table 12, the differences using the height vertical
coordinate are generally smaller and have fewer large differences.

36

Table 12. Number of METGM height levels for the data with height or pressure as the
vertical coordinate where the absolute difference in a variable is less than the respective
specified value as listed in the table. The specified values are for pressure (P in hPa),
temperature (T in K), RH (in %), u wind component (U in ms‒1), and v wind component (V in
ms‒1). H vert coord and P vert coord indicate the data with height and pressure as the vertical
coordinate, respectively.

 Variable
 P T RH U V
Criterion < 0.5 < 0.5 <1.0 <0.5 <0.5
H vert coord 24 24 23 22 22
P vert coord 23 16 16 18 15

Criterion <0.1 <0.1 <0.1 <0.1 <0.1
H vert coord 17 23 21 19 21
P vert coord 6 11 4 7 5

6. Conclusion

This report presents a method to obtain a METGM from WRF output. A Bash script
that calls an NCL script and then a Python 3 script produces a text version of a
WRF output file. The text file in turn is input to a FORTRAN program originally
developed by Weber (2002a) that was modified here for the work of this report.
The software may be run via a single Bash script that combines the several scripts
and a FORTRAN program. The limited comparisons presented in this report
suggest that the version of the software that uses height AGL as the vertical
coordinate produces METGMs that contain vertical profiles of the several variables
that are close to those extracted directly from the respective WRF output. The
version using pressure as the vertical coordinate generates METGM-derived
vertical profiles that are not as close to the profiles from the respective WRF output.
Additional work is planned for an upgrade that may improve the output when
pressure is the vertical coordinate. Nevertheless, both versions produce files that
verify as valid METGMs based on results from a standard software tool developed
elsewhere for NATO application.

Given the relative abilities of the two versions of the program to reproduce profiles
from the WRF output, use of the version using height as the vertical coordinate is
recommended whenever possible. If output from other models can only be
converted to text with pressure as the vertical coordinate, then the version of the
software the uses pressure as the vertical coordinate may be used as a backup. For
terrain that is not complex and is relatively close to sea level, both versions should
produce comparable results.

37

The current package of code is not proposed as an operational set of software, but
can be used in experimentation and evaluation, and to test other methods that
produce a METGM or applications that may employ a METGM as input. The
METGM’s primary application is to provide MET information for use in fire
control systems, but may be used for other purposes such as for transport and
diffusion of smoke or other obscurants.

38

7. References

Cogan J. Extraction of multiple soundings from model output files. Adelphi (MD):
Army Research Laboratory (US); 2019. Report No. ARL-TN-0940.

Cogan J. Evaluation of model-generated vertical profiles of meteorological
variables: method and initial results. Meteorol Appl. 2017;24:219–229.

Reen B. Army Research Laboratory (US), Adelphi Laboratory Center, MD.
Personal communication, 2017.

STANAG 4082 MET – edition 3. Adoption of a standard artillery computer
meteorological message. Brussels (Belgium): Military Agency for
Standardization, NATO; 2012.

STANAG 6022 MET – edition 2. Adoption of a standard gridded data
meteorological message. Brussels (Belgium): Military Agency for
Standardization, NATO; 2010.

Weber H. Schule ABC-Abwehr und Gesetzliche Schutzaufgaben, BerWiss, Dez
GeoInfo, Private communication. 2002a.

Weber H. Schule ABC-Abwehr und Gesetzliche Schutzaufgaben, BerWiss, Dez
GeoInfo, Private communication. 2002b.

39

8. Additional Resources

Various web sites have links to information on artillery systems around the world.
Examples include the following:

• http://www.military-today.com/artillery.htm,

• https://www.army-technology.com/features/featurethe-10-most-effective-
self-propelled-artillery-4180888/, and

• http://www.deagel.com/Artillery-Systems.htm.

The Army-technology site has further information on some specific systems:
https://www.army-technology.com/projects/2s35-koalitsiya-sv-152mm-self-
propelled-howitzer/.

The following National Center for Atmospheric Research (NCAR) and University
Corporation for Atmospheric Research (UCAR) website and the included links
have information on WRF:

• https://www.mmm.ucar.edu/weather-research-and-forecasting-model

https://www.mmm.ucar.edu/weather-research-and-forecasting-model

40

Appendix A. High-level Flowcharts

41

This appendix contains higher-level flowcharts (Figs. A-1 through A-6) for six of
the scripts and programs of this report. The flowchart for the Bash script
wrf2metgm.sh mostly shows the differences from wrf2text.sh. It does not query
the user for the name of the text file to be used as input to metascii2metgm and
adds a query on whether or not the user wants to directly view the output to screen.

Fig. A-1 Flowchart of wrf2text.sh

42

Fig. A-2 Flowchart of wrf2textgmh.ncl. Details in text. For wrf2textgmp.ncl, the interpolation
of WRF data to height (geopotential) levels is replaced by interpolation to pressure levels.

43

Fig. A-3 Flowchart for wrftexth.py. The flowchart for wrftextp.py is the same though the
script itself differs from wrftesth.py in some details.

Fig. A-4 Flowchart for metascii2metgm.f. Use of height as the vertical coordinate is
recommended as the preferred option.

44

Fig. A-5 Flowchart for readmetgm.f

Fig. A-6 Flowchart showing main parts of wrf2metgm.sh. For the script mentioned in the first
box, the option for text table output for the entire domain available in wrf2text.sh was
removed since it is not needed. Otherwise that script is the same as wrf2text.sh.

45

Appendix B. Source Code for Selected Scripts

46

Appendix B contains the source code listings as attached files in the PDF
attachment pane for wrf2text.sh, wrf2textgmh.ncl, and wrftexth.py. They are in
text file format and end with the extension “.txt” (e.g., wrf2textgmh.ncl.txt). The
versions of the NCAR Command Language (NCL) and Python 3 scripts for
pressure (wrf2textgmp.ncl and wrftextp.py) are nearly the same except for several
lines of code concerning the choice of the vertical coordinate. A sample of the
parameter file (gm_parameters) for the metascii2metgm program is included in
this appendix as Table B1.

The Bash script wrf2text.sh is attached as (wrf2text.sh.txt). It requests information
from the user that guides the script as to what actions to undertake and as to what
input to provide to the called NCL and Python 3 scripts. It acts as an overall main
script to generate text versions of Weather Research and Forecasting (WRF) output
files that become the input to the FORTRAN program (metascii2metgm) that
generates a gridded meteorological message (METGM). More details are discussed
in the main text of this report.

The NCL script converts a WRF output file into text output for one forecast time
for a domain specified by user supplied minimum and maximum longitudes and
latitudes. The version presented here, wrf2textgmh.ncl, has geopotential height
(above ground level [AGL]) as the vertical coordinate. It extracts data for the
required variables from the entire domain, generates a subdomain, and reorders the
data in the subdomain onto geopotential height levels. The version that uses
pressure as the vertical coordinate is the same except for several lines of code
directly related to the type of vertical coordinate. Details and sample output appears
in the main text of this report.

The Python 3 script consolidates text output from the NCL script into a single text
file for one to three forecast times, modifies the header, and reorders the output
from lists of values for each height over the entire subdomain to values from the
surface to the highest level (vertical profile) for each grid point in the subdomain.
The version presented here, wrftexth.py, has geopotential height (AGL) as the
vertical coordinate. The version that uses pressure as the vertical coordinate is the
same except for various lines of code directly related to the type of vertical
coordinate. Details and sample output appears in the main text of this report.

The FORTRAN program metascii2metgm was modified to allow input of many of
the parameters via a text file, gm_parameters, instead of hard coding via data
statements and fixed definitions. Consequently, operation of the program is more
user friendly now that most changes to the operating parameters do not require
recompilation. It also means a smaller chance of making unintended changes to
other parts of the program when modifying one or more parameters. Other changes

47

included replacement of the subroutine for computation of heights AGL that is
employed when the input file has pressure as the vertical coordinate. Issues with
some parts of the interpolation code were resolved. Additional information on
gm_parameters and the program metascii2metgm.f may be found in the main text
of this report. Table B-1 shows an example gm_parameters file. The FORTRAN
program readmetgm was modified to allow input of minimum and maximum x and
y METGM grid points via a text file, gmread_pars. Previously data for only 1 grid
point, with the x and y position hard coded within the program, was written to the
screen.

48

Table B-1 Example of a gm_parameters text file for use with the metascii2metgm FORTRAN
program. The first line has the first part of the output (METGM) file name. The name shown
indicates the METGM is for part of southeast Arizona. The rest of the output file name has
the date and time normally followed by the suffix “.gm”. The second line tells the program to
extract a small 3 × 3 horizontal (x, y) grid from the input WRF text file. The third line has the
grid interval in terms of longitude and latitude followed by the time interval in seconds (it
must be listed even if using only one time). The longitude and latitude intervals shown closely
approximate those for the 9-km WRF domain of this sample with a center latitude as listed in
the fourth line, which contains the center point in longitude and latitude. The remaining lines
have the vertical heights (m AGL) of the output METGM grid.

SouthEastAZ
3 3
0.095164 0.081081 3600.
-110.6823 31.5091
0
100
250
500
750
1000
1500
2000
3000
4000
5000
6000
7000
8000
9000
10000
11000
12000
13000
14000
15000
16000
17000
18000
19000

Table B-2 Sample gmread_pars file for use with readmetgm. The values listed are the
minimum and maximum x and y grid point numbers respectively. In this sample the program
will write values for 4 grid points. Output for 1 grid point still requires four numbers. For
example, replace 3 in both lines with 2 to write values for grid point x = 2, y = 2 only.

2 3
2 3

49

List of Symbols, Abbreviations, and Acronyms

AGL above ground level

MET meteorological

METGM gridded meteorological message

NATO North Atlantic Treaty Organization

NCAR National Center for Atmospheric Research

NCL NCAR Command Language

NetCDF Network Common Data Form

NWP numerical weather prediction

UCAR University Corporation for Atmospheric Research

WRF Weather Research and Forecasting model

50

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 1 CCDC ARL
 (PDF) FCDD RLD CL
 TECH LIB

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 1 CCDC ARL
 (PDF) FCDD RLC E
 J COGAN

	List of Figures
	List of Tables
	1. Introduction
	2. Procedure Outline: Bash Scripts
	3. Included Scripts and Programs
	3.1 NCL Script
	3.2 Python 3 Script
	3.3 FORTRAN Program
	3.4 Additional Program for METGM Analysis

	4. Sample Output
	4.1 Input Files
	4.2 METGM Data in Text Format

	5. Comparison: METGM-WRF
	5.1 Height as Vertical Coordinate
	5.2 Pressure as the Vertical Coordinate

	6. Conclusion
	7. References
	8. Additional Resources
	Appendix A. High-level Flowcharts
	Appendix B. Source Code for Selected Scripts
	List of Symbols, Abbreviations, and Acronyms

#!/bin/bash

#Name: wrf2text.sh

#Converts a WRF output file (netCDF) into text that is later converted

#into a METGM. The text data consists of (1) a text file for input to

#a FORTRAN program tnat converts it into a METGM and (2) a file having

#text tables that include gridded and surface data. The user can select

#a subdomain by latitude and longitude (decimal format) for both types

#of text files, or text tables only. The option for text tables only

#produces tables for the entire domain. That text file can be very large.

echo

echo -n 'Is this a new run of the script? Enter "y" for yes, otherwise no. '

read first_run

if [$first_run == "y"]

then

 rm gm_text

 rm wrf_text

 rm wrfout_?

 rm surface_pressures

fi

echo

echo '!!!'

echo 'NOTE: Height (AGL) is recommended for the vertical coordinate at this time.'

echo 'Using pressure as the vertical coordinate leads to useful output, but overall'

echo 'replication of the WRF output generally is not as good, especially over complex'

echo 'terrain or terrain with very high elevations on the order of 1000m or more.'

echo '!!!'

echo

echo -n 'Enter type of vertical coordinate: h for height AGL, p for pressure. '

read vertical_coord_type

echo

if [$vertical_coord_type != "h"] && [$vertical_coord_type != "p"]

then

 echo 'Require entry of h (height AGL) or p (pressure).'

 echo 'Re-run and enter either h or p. Exiting script.'

 echo

 exit

fi

echo

echo 'Enter number of WRF model times to process (e.g., 2 for 00 and 03 forecasts).'

echo 'The maximum number of times is 9. Note that the input files should have'

echo 'the same WRF domain, grid interval, and 0-hour forecast (analysis) time.'

read number_runs

echo

echo 'number of runs = ' $number_runs

echo

echo 'Enter choice of: 1) WRF output in text format as input to FORTRAN program to generate'

echo 'METGM plus output of WRF text table (enter 1), or 2) WRF text table only (other integer).'

echo 'Note: WRF table only (option 2) is for the entire domain. That file may be very large.'

read output_choice

echo

echo 'output_choice = ' $output_choice

echo

echo "Enter the name of the first WRF output file to be used as input including the path."

read wrf_file

counter=1

ln -s $wrf_file "wrfout_"$counter

cp "wrfout_"$counter ./wrfoutput.nc

echo

if [$output_choice == 1]

then

 #Run to get the available min/max latitudes and longitudes.

 if [$vertical_coord_type == "h"]

 then

 eval ncl subdomain=$output_choice minlat=-999 maxlat=-999 minlon=-999 maxlon=-999 wrf2textgmh.ncl

 else

 eval ncl subdomain=$output_choice minlat=-999 maxlat=-999 minlon=-999 maxlon=-999 pres_sfc_min=1999 wrf2textgmp.ncl

 fi

 echo

 echo 'The min/max coordinates must be within the bounds of the WRF output file as'

 echo 'displayed on the screen.'

 echo

 echo -n 'Select minimum and maximum latitudes of sub-domain. '

 read minlat maxlat

 echo -n 'Select minimum and maximum longitudes of sub-domain. '

 read minlon maxlon

else

 minlat=0

 maxlat=0

 minlon=0

 maxlon=0

fi

echo

#

Enter additional WRF filenames.

#

counter=2

while [$counter -le $number_runs]

 do

 echo 'Enter input WRF filename '$counter' including the path'

 echo 'The additional files should have the same location and domain.'

 read wrf_file

 ln -s $wrf_file "wrfout_"$counter

 cp "wrfout_"$counter ./wrfoutput.nc

 echo

 ((counter++))

 done

#

If type is "p" then run ncl script to find minimum surface pressure

for the subdomain over all forecast times.

#

if [$vertical_coord_type == "p"]

then

 counter=1

 while [$counter -le $number_runs]

 do

 cp "wrfout_"$counter ./wrfoutput.nc

 echo

 echo 'maxlon, maxlat ',$maxlon' '$maxlat

 eval ncl subdomain=$output_choice minlat=$minlat maxlat=$maxlat minlon=$minlon maxlon=$maxlon wrfminsurfprs.ncl

 echo

 ((counter ++))

 done

 echo

 surfp="surface_pressures"

 echo "Surface pressures"

 while IFS= read -r pline

 do

 echo "$pline"

 done <"$surfp"

 echo

 python3 minpressure.py surface_pressures

 input="minimumprs"

 echo

 mprs=$(<minimumprs)

 surfpress=$(bc <<< "scale=6; $mprs")

 echo

fi

#

Now compute the output text files.

#

counter=1 # Reset the value of counter.

input_list=' '

while [$counter -le $number_runs]

 do

 echo 'counter = '$counter

 echo

 cp "wrfout_"$counter ./wrfoutput.nc

 echo 'wrf_file for run '$counter' is: wrfout_'$counter

 echo

 if [$vertical_coord_type == "h"]

 then

 eval ncl subdomain=$output_choice minlat=$minlat maxlat=$maxlat minlon=$minlon maxlon=$maxlon wrf2textgmh.ncl

 else

echo

echo 'pres_sfc_min = '$surfpress

echo

 eval ncl subdomain=$output_choice minlat=$minlat maxlat=$maxlat minlon=$minlon maxlon=$maxlon pres_sfc_min=$surfpress wrf2textgmp.ncl

 fi

 echo

 echo 'wrf_file: '$wrf_file

 if [$output_choice == 1]

 then

 cp gm_text gm_text$counter

 rm gm_text

fi

gm_file=gm_text$counter

 list_input+=' gm_text'$counter

 echo 'list_input: '$list_input

 fi

 ((counter++))

 done

echo

if [$output_choice == 1]

then

 echo 'Enter name of file for text input to Fortran program.'

 read input_text

 echo

 if [$vertical_coord_type == "h"]

 then

 python3 wrftexth.py $input_text $list_input

 else

 python3 wrftextp.py $input_text $list_input

 fi

fi

 echo

 echo 'END OF wrf2text.sh SCRIPT'

echo

load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"

load "$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl"

load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/contributed.ncl"

begin

 print("Code to convert WRF output in netCDF into a text file. Height as vertical coordinate.")

; Read a WRF output file.

; Need to copy output file to wrfout.nc or other means to obtain a file with .nc.

; Extra statements for generation of text file for input to text to METGM program.

 wrf_name = "wrfoutput.nc"

 wrf_file = addfile(wrf_name, "r")

 print("Read from file " + wrf_name)

 output_name = "wrf_text"

 output_gm = "gm_text"

 output_test = "testfile" ;For test purposes only !!!

; Choose whether or not you want to produce a sub-domain within the WRF output domain.

; If subdomain choice commented out then determined by user input.

; 1 for compute a sub-domain, any other number for not computing a sub-domain.

; subdomain = 1 ; Can uncomment for test purposes.

;if (subdomain .eq. 1) then ; +++++++++++++++++

; minlat = 31.2 ;Normally determined by user input. Can uncomment for testing.

; maxlat = 31.7

; minlon = -93.3

; maxlon = -92.8

;end if ; +++++++++++++++++++++++++++++++++++++++

 cr = tochar(10) ;Creates a carraige return. Can use to skip a line.

 number_variables = 8 ;This number is what was used in text to METGM program.

 variable_number = (/7,5,6,2,3,4,7/)

; The variable numbers denote: pressure/heights, temperature, relative humidity, U, V, W,

; sea level pressure. Presumably the missing number 1 refers to terrain height. Sea level

; pressure is at the 1st level, but has the same number as pressure/height.

; The forecast_time is used for the METGM FORTRAN program.

;

; This script generates text output from parts of the WRF output file that are useful for a METGM.

; It produces a text file for 1 forecast time. A python script combines from 1 to 9 of those text

; files into a single file with the format used by the FORTRAN program.

;

 surf_id = 0.000 ;Used if gph is the vertical coordinate as in this version.

 vertical_level_type = 1 ; This parameter is: 2 for pressure levels, 1 for heights AGL, and 0 for heights MSL.

 blankline = [/" "/] ; Write a blank line in text table. Use for gridded and surface data headers.

; How big is the input file (wrf_file), that is, spatial and temporal dimensions?

 print("name of text table file = "+ output_name+cr)

 times = wrf_user_getvar(wrf_file, "times", -1) ;Get all times in input file (only 1 in this version).

 max_time_dimension = dimsizes(times) - 1 ;max index for time for 0-base

; print(max_time_dimension + " = maximum time dimension (0 base)")

; print(dimsizes(times) + " = number of model times in file")

 wrf_date_time = times(0)

 datetime_str = str_split(wrf_date_time, "-_:")

 if (datetime_str(3) .eq. "00") then

 forecast_tim = "0.0"

 elseif (datetime_str(3) .eq. "10") then

 forecast_tim = "10.0"

 elseif (datetime_str(3) .eq. "20") then

 forecast_tim = "20.0"

 else

 datetime_str = str_split(datetime_str(3), "0")

 forecast_tim = datetime_str(4) + ".0"

 end if

 forecast_time = [/forecast_tim/]

 print_table(forecast_time, "forecast time %6s")

 km2m = 1000. ;Used to change from km to m. Applied in METGM output statements.

; Read some field for one time (e.g., temperature in K) to get dimensions.

 time_index_extract = 0 ;Use first and only time slice.

 temperature_degk = wrf_user_getvar(wrf_file, "tk", time_index_extract)

 temperature_k_dims = dimsizes(temperature_degk)

 max_dim_x = temperature_k_dims(2)-1 ;For 0-based arrays

 max_dim_y = temperature_k_dims(1)-1

 max_dim_z = temperature_k_dims(0)-1

 print("Max dimensions in x, y, z = " + max_dim_x + ", " + max_dim_y + ", " + max_dim_z)

; Need latitude and longitude to print warning notice.

 Lat = wrf_user_getvar(wrf_file, "lat", time_index_extract) ;latitude

 Lon = wrf_user_getvar(wrf_file, "lon", time_index_extract) ;longitude

 print("subdomain value " + subdomain)

 if (subdomain .eq. 1) then ; +++++++++++++++++++++++

 minLat = minlat

 maxLat = maxlat

 minLon = minlon

 maxLon = maxlon

 else

 minLat = min(Lat)

 maxLat = max(Lat)

 minLon = min(Lon)

 maxLon = max(Lon)

 end if ; ++++++++++++++++++++++++++++++

 if (minLat .gt. -999 .and. maxLat .gt. -999) then

 LatLon_warning = [/" Selection of sub-domain must be within the min/max lat and lon."+cr/]

 print_table(LatLon_warning, "%s")

 end if

 printMinMax(Lat,0)

 printMinMax(Lon,0)

 print(" ")

; Print out user selected latitudes and longitudes.

 if (subdomain .eq. 1) then ; +++++++++++++++++++++++++++++++

 print("User selected min and max latitudes = " + minLat + ", " + maxLat)

 print("User selected min and max longitudes = " + minLon + ", " + maxLon)

; In case user did not heed warning check to see if sub-domain within lat/lon bounds.

 lat_min = min(Lat)

 lat_max = max(Lat)

 lon_min = min(Lon)

 lon_max = max(Lon)

 print(" ")

 if (minLat .lt. lat_min) .or. (maxLat .gt. lat_max) .or. (minLon .lt. lon_min) .or. (maxLon .gt. lon_max) then

; print("Min and max latitudes = " + minLat + ", " + maxLat)

; print("Min and max longitudes = " + minLon + ", " + maxLon)

 if (minLat .gt. -999 .and. maxLat .gt. -999) then

 print("One or more coordinates are outside of WRF domain. Exiting script.")

 else

 print("Determination of bounds of WRF domain only. Exiting script.")

 end if

 exit

 end if

 end if ; +++

 opt = True

; For NCL-6.6 or higher can use wrf_user_ll_to_xy (wrf_user_ll_to_ij deprecated).

 loc = wrf_user_ll_to_ij(wrf_file, (/minLon,maxLon/),(/minLat,maxLat/), opt)

 loc = loc-1

;

; *********** Full sized output from WRF file (no sub-domain). ************

;

 time_index_extract = 0

 temperature_degk = wrf_user_getvar(wrf_file, "tk", time_index_extract)

 Lat = wrf_user_getvar(wrf_file, "lat", time_index_extract) ;latitude

 Lon = wrf_user_getvar(wrf_file, "lon", time_index_extract) ;longitude

 pressure_hpa = wrf_user_getvar(wrf_file, "pressure", time_index_extract)

; print("dimsizes of pressure_hpa")

; print(dimsizes(pressure_hpa))

 rh_pcent = wrf_user_getvar(wrf_file, "rh", time_index_extract)

 height_mslvl = wrf_user_getvar(wrf_file, "z", time_index_extract)

 height_mean_sea = wrf_user_getvar(wrf_file, "z", time_index_extract)

 uv_mass_earth = wrf_user_getvar(wrf_file, "uvmet", time_index_extract)

; print("uv mass earth")

; print(dimsizes(uv_mass_earth))

 wcomp_mass_earth = wrf_user_getvar(wrf_file, "W", time_index_extract)

 sea_level_p = wrf_user_getvar(wrf_file,"slp",time_index_extract)

 ucomp_mass_earth = uv_mass_earth(0,:,:,:)

 vcomp_mass_earth = uv_mass_earth(1,:,:,:)

; print("u and v mass earth")

; print(dimsizes(ucomp_mass_earth))

; print(dimsizes(vcomp_mass_earth))

 terrain_height_msl = wrf_user_getvar(wrf_file, "ter", time_index_extract)

 terrain_hgts_3d = conform(height_mean_sea, terrain_height_msl, (/1,2/))

 latitude_3d = conform(height_mean_sea, Lat, (/1,2/))

 longitude_3d = conform(height_mean_sea, Lon, (/1,2/))

 slp_3d = conform(height_mean_sea, sea_level_p, (/1,2/))

;

; **

; Arrange variables onto constant pressure levels as defined herein.

; **

;

; Remove unneeded single dimension for some variables.

 temperature_kdegrees = rm_single_dims(temperature_degk)

; print("temp kdegrees")

; print(dimsizes(temperature_kdegrees))

 pressure_hpascal = rm_single_dims(pressure_hpa)

 rh_percnt = rm_single_dims(rh_pcent)

 height_mslevel = rm_single_dims(height_mslvl)

 vert_coord = "ght_agl"

 print("vertical coordinate = "+vert_coord+cr)

;

; ************ Interpolate data to height levels. *************

;

; Find minimum surface pressure within user defined sub-domaina and

; the maximum terrain height.

 pres_0m_pa = wrf_user_getvar(wrf_file, "PSFC", time_index_extract)

 pres_0m_hpa = pres_0m_pa * 0.01

 if (subdomain .eq. 1) then

 pres_0m_hpa_sub = pres_0m_hpa(loc(1,0):loc(1,1),loc(0,0):loc(0,1))

 pres_sfc_min = min (pres_0m_hpa_sub)

 ter_hgt_sub = terrain_height_msl(loc(1,0):loc(1,1),loc(0,0):loc(0,1))

 terrain_ht_max = max(ter_hgt_sub)

 else

 pres_sfc_min = min (pres_0m_hpa)

 terrain_ht_max = max(terrain_height_msl)

 end if

 print("min sfc pressure (hPa) " + pres_sfc_min)

 print("max terrain height (m) " + terrain_ht_max)

; Find height levels above surface (AGL) for domain or sub_domain.

; Height levels used by NCL are in km. Note: need to adjust based on

; maximum terrain height since WRF top in terms of pressure level and

; therefore MSL heights, not AGL as in the interp_level list.

 interp_level = [/0.1, 0.2, 0.5, 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19./]

 print("List size interp_level " + ListCount(interp_level))

 listindex = (ListCount(interp_level)-1)

 max_height = interp_level[listindex] + 0.001

 print("max_height (km) = " + max_height)

 interp_lvl = NewList("lifo") ; Create lists

 do i=0,(ListCount(interp_level)-1)

 if (interp_level[i] .lt. max_height) then

 ListAppend(interp_lvl, interp_level[i])

 end if

 end do

 print_table(interp_lvl, "%5.2f%5.1f")

 ListSetType(interp_lvl,"CAT") ; Convert lists to arrays. Procedure seems a little odd, but it works.

 interp_lvls = interp_lvl[0:ListCount(interp_lvl)-1]

;

; print(interp_lvls)

;

 opts = True

 opts@extrapolate = True

; opts@field_type = "t"

 opts@field_type = "z"

; opts@field_type = "ght"

 opts@logP = True

 opts@time = time_index_extract

 temperature_k = wrf_user_vert_interp(wrf_file, temperature_kdegrees, vert_coord, interp_lvls, opts)

; printVarSummary(temperature_k)

 rh_pct = wrf_user_vert_interp(wrf_file, rh_percnt, vert_coord, interp_lvls, opts)

 pressure_hPa = wrf_user_vert_interp(wrf_file, pressure_hpascal, vert_coord, interp_lvls, opts)

 u_mass_earth = wrf_user_vert_interp(wrf_file, ucomp_mass_earth, vert_coord, interp_lvls, opts)

 v_mass_earth = wrf_user_vert_interp(wrf_file, vcomp_mass_earth, vert_coord, interp_lvls, opts)

 Lat_3d = wrf_user_vert_interp(wrf_file, latitude_3d, vert_coord, interp_lvls, opts)

 Lon_3d = wrf_user_vert_interp(wrf_file, longitude_3d, vert_coord, interp_lvls, opts)

 terrain_height_3d = wrf_user_vert_interp(wrf_file, terrain_hgts_3d, vert_coord, interp_lvls, opts)

 wcomp_mass_earth_unstag = wrf_user_unstagger(wcomp_mass_earth, "Z")

 w_mass_earth = wrf_user_vert_interp(wrf_file, wcomp_mass_earth_unstag, vert_coord, interp_lvls, opts)

 slpressure_3d = wrf_user_vert_interp(wrf_file, slp_3d, vert_coord, interp_lvls, opts)

; printVarSummary(Lat_3d)

 tmp_lvls_dims = dimsizes(temperature_k)

 max_lvls_dim = tmp_lvls_dims(0)-1

;

; print("max lvls dims") ; May be useful for checking operation of script at this point.

; print(max_lvls_dims)

; test_list = [/Lat_3d, Lon_3d, terrain_height_3d, temperature_k, height_msl/]

; print_table(test_list, "%6.3f %7.3f %6.1f %6.2f %6.2f")

; write_table(output_test, "a", test_list, "%6.3f %7.3f %6.1f %6.2f %6.2f")

; exit

;

; **

; Obtain and process data for sub-domain.

; **

 if (subdomain .eq. 1) then ; +++++++++++++++++++++++++++++++++++

; Need to process one variable at one model level (i.e., 0) to get maximum

; dimension sizes for printing to output file.

 do x=0,max_lvls_dim

 tmp_k_sub = temperature_k(x,loc(1,0):loc(1,1),loc(0,0):loc(0,1))

 tmp_k_sub_dims = dimsizes(tmp_k_sub)

; print("sub tmp")

; print(tmp_k_sub)

 max_sub_dim_x = tmp_k_sub_dims(1)-1 ;For 0-based arrays

 max_sub_dim_y = tmp_k_sub_dims(0)-1

; print("Dimensions in x, y, z = " + max_sub_dim_x + ", " + max_sub_dim_y + ", " + x)

 end do

 max_sub_dim_z = max_lvls_dim

 print("Max dimensions (0 base) in x, y, z = " + max_sub_dim_x + ", " + max_sub_dim_y + ", " + max_sub_dim_z)

 end if ; ++

;

; ********** Print header before entering do loop. Avoid multiple entries. **************

;

 header_list = [/"Lat", "Lon", "terrain_height_3d", "temperature_k", "rh_pct", "pres_hpa", "u_mass_earth", "v_mass_earth"/]

 title = [/"Converting WRF output to text file: ", wrf_date_time/]

 sub_title1 = [/"Gridded data section."/]

 print_table(title, "%40s")

 write_table(output_name, "a", blankline, "%s")

 write_table(output_name, "a", title, "%40s%20s")

 write_table(output_name, "a", sub_title1, "%30s")

 if (subdomain .eq. 1) then ; ++++++++++++++++++++++++++++++++++

 subdims = [/"Max dimensions (0-based) in x, y, z = " + max_sub_dim_x + ", " + max_sub_dim_y + ", " + max_sub_dim_z/]

 write_table(output_name, "a" , subdims, "%45s %5i %5i %5i")

 end if ; ++

 write_table(output_name, "a", header_list, "%6s %7s %19s %15s %9s %11s %14s %14s")

;

; ********** Header text for METGM program. *****************

;

 if (subdomain .eq. 1) then ; ++++++++++++++++++++++++++++++++++

 header_first_line = [/wrf_date_time/]

 print_table(header_first_line, "Date and time: %20s")

 write_table(output_gm, "a", header_first_line, "%12s")

 X = max_sub_dim_x + 1 ; X and Y start with 1 vs. 0.

 Y = max_sub_dim_y + 1

 TM = max_time_dimension + 1 ; Back to start at 1 for initial time.

 num_interp_levels = num(interp_lvls.gt.-0.001)

 print("number interp_levels " + num_interp_levels)

 header_second_line = [/X, Y, TM, number_variables, num_interp_levels/]

 write_table(output_gm, "a", header_second_line, "%5d %5d %4d %4d %4d")

 write_table(output_gm, "a", forecast_time, "%6s") ;forecast_time defined near begining of script.

 number_levels = max_sub_dim_z + 2 ; Convert to base 0 and add surface indicator.

;

; ***

; Obtain data for subdomain of WRF output file.

; ***

;

 do x = 0,max_sub_dim_z

 tmp_k_sub = temperature_k(x,loc(1,0):loc(1,1),loc(0,0):loc(0,1))

 lat_3d_sub = Lat_3d(x,loc(1,0):loc(1,1),loc(0,0):loc(0,1))

 lon_3d_sub = Lon_3d(x,loc(1,0):loc(1,1),loc(0,0):loc(0,1))

 rh_pct_sub = rh_pct(x,loc(1,0):loc(1,1),loc(0,0):loc(0,1))

 p_hpa_sub = pressure_hPa(x,loc(1,0):loc(1,1),loc(0,0):loc(0,1))

 u_mass_e_sub = u_mass_earth(x,loc(1,0):loc(1,1),loc(0,0):loc(0,1))

 v_mass_e_sub = v_mass_earth(x,loc(1,0):loc(1,1),loc(0,0):loc(0,1))

 ter_hgt_3d_sub = terrain_height_3d(x,loc(1,0):loc(1,1),loc(0,0):loc(0,1))

 w_mass_e_sub = w_mass_earth(x,loc(1,0):loc(1,1),loc(0,0):loc(0,1))

 sealvl_p_3d_sub = slp_3d(x,loc(1,0):loc(1,1),loc(0,0):loc(0,1))

;

; print("Max-Min values") ;Useful check on output properties - if needed.

; printMinMax(tmp_k_sub,0)

; printMinMax(lat_3d_sub,0)

; printMinMax(lon_3d_sub,0)

;

 grid_list = [/lat_3d_sub, lon_3d_sub, ter_hgt_3d_sub, tmp_k_sub, rh_pct_sub, p_hpa_sub, u_mass_e_sub, v_mass_e_sub/]

; print_table(grid_list, " %6.3f %8.3f %8.2f %9.3f %9.2f %9.2f %9.3f %9.3f")

 write_table(output_name, "a", grid_list, " %6.3f %8.3f %8.2f %9.3f %9.2f %9.2f %9.3f %9.3f")

; latlon = [/lat_3d_sub, lon_3d_sub/]

; print_table(latlon, "%10.3f %10.3f")

 end do

 end if ; ++

;

; ***

; Surface data extraction. First extract for entire domain,

; then for subdomain.

; ***

;

 temperature_2m_k = wrf_user_getvar(wrf_file, "T2", time_index_extract)

 rh_2m_pct = wrf_user_getvar(wrf_file, "rh2", time_index_extract)

 pressure_0m_pa = wrf_user_getvar(wrf_file, "PSFC", time_index_extract)

 pressure_0m_hpa = pressure_0m_pa*0.01

 sea_pressure = wrf_user_getvar(wrf_file, "slp", time_index_extract)

 uv_mass_earth_10m = wrf_user_getvar(wrf_file, "uvmet10", time_index_extract)

; Get u and v components from uv_mass_earth_10m.

 u_mass_earth_10m = uv_mass_earth_10m(0,:,:)

 v_mass_earth_10m = uv_mass_earth_10m(1,:,:)

; print("v_mass_earth_10m" + v_mass_earth_10m)

;

; Extract for subdomain (subdomain = 1).

 if (subdomain .eq. 1) then ; ++++++ Some needed for surface section of wrf_text, some for gm_text output, and some for both.

 lat_sub = Lat(loc(1,0):loc(1,1),loc(0,0):loc(0,1)) ; Need for surface data section of wrf_text.

 lon_sub = Lon(loc(1,0):loc(1,1),loc(0,0):loc(0,1)) ; Need for surface data section of wrf_text.

 terrain_hgt_msl_sub = terrain_height_msl(loc(1,0):loc(1,1),loc(0,0):loc(0,1)) ; Need for surface data section of wrf_text.

 tmp_2m_k_sub = temperature_2m_k(loc(1,0):loc(1,1),loc(0,0):loc(0,1))

 rh_2m_pct_sub = rh_2m_pct(loc(1,0):loc(1,1),loc(0,0):loc(0,1))

 sea_p_sub = sea_pressure(loc(1,0):loc(1,1),loc(0,0):loc(0,1)) ; Need for surface data section of wrf_text.

 p_0m_hpa_sub = pressure_0m_hpa(loc(1,0):loc(1,1),loc(0,0):loc(0,1))

; Get u and v components from uv_mass_earth_10m.

 u_mass_e_10m_sub = u_mass_earth_10m(loc(1,0):loc(1,1),loc(0,0):loc(0,1))

 v_mass_e_10m_sub = v_mass_earth_10m(loc(1,0):loc(1,1),loc(0,0):loc(0,1))

; Have w for 10 m = value for lowest model level.

 w_mass_e_10m_sub = w_mass_earth(0,loc(1,0):loc(1,1),loc(0,0):loc(0,1))

 end if ; +++++++++++++++++++++++++++++++++++

;

; **

; This section is for the text for METGM program.

; **

;

 if (subdomain .eq. 1) then ; ++++++++++++++++++++++++++++++++++

; Longitude, latitidue, and terrain height (m)

 latlonter_list = [/lon_3d_sub, lat_3d_sub, ter_hgt_3d_sub/]

 write_table(output_gm, "a", latlonter_list, "%9.4f %10.4f %10.3f")

 print("end of terrain height")

 num_levels = max_sub_dim_z + 1 ; Convert to base 1.

; Following line not needed for ght (AGL).

; number_levels = num_levels + 1 ; Add surface indicator for all variables.

 n = 0 ; Start of the variable list numbers as denoted in the text to METGM program.

;

; Pressure (hPa)

; print(n)

 m = tostring(n)

 lista = "list" + m

 listn = [/lista/]

 listn = [/number_levels, variable_number(n), vertical_level_type/]

 write_table(output_gm, "a", listn, " %5i %4i %4i")

 surface_id = [/surf_id/]

 interp_levels = [/interp_lvls*km2m/]

 write_table(output_gm, "a", surface_id, " %10.3f")

 write_table(output_gm, "a", interp_levels, " %10.3f")

;

 p0m_hpa_sub = [/p_0m_hpa_sub/]

 write_table(output_gm, "a", p0m_hpa_sub, " %10.3f")

 do x=0,max_sub_dim_z

 p_hpa_sub = pressure_hPa(x,loc(1,0):loc(1,1),loc(0,0):loc(0,1))

 p_hpa_list = [/p_hpa_sub/]

 write_table(output_gm, "a", p_hpa_list, " %10.3f")

 end do

 print("end of p_hpa")

;

; Temperature (K)

 n = n+1

; print(n)

 m = tostring(n)

 lista = "list" + m

 listn = [/lista/]

 listn = [/number_levels, variable_number(n), vertical_level_type/]

 write_table(output_gm, "a", listn, " %5i %4i %4i")

 surface_id = [/surf_id/]

 interp_levels = [/interp_lvls*km2m/]

 write_table(output_gm, "a", surface_id, " %10.3f")

 write_table(output_gm, "a", interp_levels, " %10.3f")

;

 temp2m_k_sub = [/tmp_2m_k_sub/]

 write_table(output_gm, "a", temp2m_k_sub, " %10.3f")

 do x=0,max_sub_dim_z

 tmp_k_sub = temperature_k(x,loc(1,0):loc(1,1),loc(0,0):loc(0,1))

 tempk_list = [/tmp_k_sub/]

 write_table(output_gm, "a", tempk_list, " %10.3f")

 end do

 print("end of tempk")

;

; Relative humidity (%)

 n = n+1

; print(n)

 m = tostring(n)

 lista = "list" + m

 listn = [/lista/]

 listn = [/number_levels, variable_number(n), vertical_level_type/]

 write_table(output_gm, "a", listn, " %5i %4i %4i")

 surface_id = [/surf_id/]

 interp_levels = [/interp_lvls*km2m/]

 write_table(output_gm, "a", surface_id, " %10.3f")

 write_table(output_gm, "a", interp_levels, " %10.3f")

;

 relhum_2m_sub = [/rh_2m_pct_sub/]

 write_table(output_gm, "a", relhum_2m_sub, " %10.3f")

 do x=0,max_sub_dim_z

 rh_pct_sub = rh_pct(x,loc(1,0):loc(1,1),loc(0,0):loc(0,1))

 rh_pct_list = [/rh_pct_sub/]

 write_table(output_gm, "a", rh_pct_list, " %10.3f")

 end do

 print("end of rh")

;

; U component (m/s)

 n = n+1

; print(n)

 m = tostring(n)

 lista = "list" + m

 listn = [/lista/]

 listn = [/number_levels, variable_number(n), vertical_level_type/]

 write_table(output_gm, "a", listn, " %5i %4i %4i")

 surface_id = [/surf_id/]

 interp_levels = [/interp_lvls*km2m/]

 write_table(output_gm, "a", surface_id, " %10.3f")

 write_table(output_gm, "a", interp_levels, " %10.3f")

;

 ucomp_10m_sub = [/u_mass_e_10m_sub/]

 write_table(output_gm, "a", ucomp_10m_sub, " %10.3f")

 do x=0,max_sub_dim_z

 u_mass_e_sub = u_mass_earth(x,loc(1,0):loc(1,1),loc(0,0):loc(0,1))

 u_mass_list = [/u_mass_e_sub/]

 write_table(output_gm, "a", u_mass_list, " %10.3f")

 end do

 print("end of u mass earth")

;

; V component (m/s)

 n = n+1

; print(n)

 m = tostring(n)

 lista = "list" + m

 listn = [/lista/]

 listn = [/number_levels, variable_number(n), vertical_level_type/]

 write_table(output_gm, "a", listn, " %5i %4i %4i")

 surface_id = [/surf_id/]

 interp_levels = [/interp_lvls*km2m/]

 write_table(output_gm, "a", surface_id, " %10.3f")

 write_table(output_gm, "a", interp_levels, " %10.3f")

;

 vcomp_10m_sub = [/v_mass_e_10m_sub/]

 write_table(output_gm, "a", vcomp_10m_sub, " %10.3f")

 do x=0,max_sub_dim_z

 v_mass_e_sub = v_mass_earth(x,loc(1,0):loc(1,1),loc(0,0):loc(0,1))

 v_mass_list = [/v_mass_e_sub/]

 write_table(output_gm, "a", v_mass_list, " %10.3f")

 end do

 print("end of v mass earth")

;

; W component (m/s)

 n = n+1

; print(n)

 m = tostring(n)

 lista = "list" + m

 listn = [/lista/]

 listn = [/number_levels, variable_number(n), vertical_level_type/]

 write_table(output_gm, "a", listn, " %5i %4i %4i")

 surface_id = [/surf_id/]

 interp_levels = [/interp_lvls*km2m/]

 write_table(output_gm, "a", surface_id, " %10.3f")

 write_table(output_gm, "a", interp_levels, " %10.3f")

; print_table(interp_levels, "%10.3f")

;

 wcomp_10m_sub = [/w_mass_e_10m_sub/]

 write_table(output_gm, "a", wcomp_10m_sub, " %10.3f")

 do x=0,max_sub_dim_z

 w_mass_e_sub = w_mass_earth(x,loc(1,0):loc(1,1),loc(0,0):loc(0,1))

 w_mass_list = [/w_mass_e_sub/]

 write_table(output_gm, "a", w_mass_list, " %10.3f")

 end do

 print("end of w mass earth")

;

; Sea level pressure (hPa)

 number_levels = 1 ; Surface only. For application surface denoted by level 1, not level 0.

 n = n+1

; print(n)

 m = tostring(n)

 lista = "list" + m

 listn = [/lista/]

 listn = [/number_levels, variable_number(n), vertical_level_type/]

 write_table(output_gm, "a", listn, " %5i %4i %4i")

 surface_id = [/surf_id/]

; interp_levels = [/interp_lvls/]

 write_table(output_gm, "a", surface_id, " %10.3f")

;

 sealvl_p_3d_sub = slp_3d(x,loc(1,0):loc(1,1),loc(0,0):loc(0,1))

 slpres_list = [/sealvl_p_3d_sub/]

 write_table(output_gm, "a", slpres_list, " %10.3f")

 print("end of slpres earth")

;

; The following section for output_test may be uncommented and modified

; as needed for test purposes. Not needed for writing to output_gm

; or output_name.

;

; write_table(output_test, "a", blankline, "%s")

; vlist1 = NewList("lifo")

; do x=0,max_sub_dim_z

; print(dimsizes(v_mass_earth(x,loc(1,0):loc(1,1),loc(0,0):loc(0,1))))

; v_mass_eth_sub = v_mass_earth(x,loc(1,0):loc(1,1),loc(0,0):loc(0,1))

; if i .eq. 0 then

; v_list1 = [/v_mass_eth_sub/]

; print("i = 0")

; else

; print("i = 1")

; ListAppend(vlist1, v_mass_eth_sub)

; v_list1 = [/v_mass_eth_sub/]

; end if

; end do

; if i .eq. 0 then

; separator = [/"v_list values"/]

; write_table(output_test, "a", blankline, "%s")

; write_table(output_test, "a", separator, "%s")

; write_table(output_test, "a", v_list1, " %10.3f")

; else

; separator = [/"v_list values"/]

; write_table(output_test, "a", blankline, "%s")

; write_table(output_test, "a", separator, "%s")

; write_table(output_test, "a", v_list1, " %10.3f %10.3f")

; end if

;

; End of gm_text output section.

;

; **

; Tabular text output of subdomain.

; **

; print_table(grid_list, " %6.3f %8.3f %8.2f %9.3f %9.2f %9.2f %9.3f %9.3f")

 write_table(output_name, "a", grid_list, " %6.3f %8.3f %8.2f %9.3f %9.2f %9.2f %9.3f %9.3f")

;

; **

; Tabular text output of full domain.

; **

 else

 grid_list_full = [/latitude_3d, longitude_3d, terrain_hgts_3d, temperature_degk, rh_pcent, pressure_hpa, ucomp_mass_earth, vcomp_mass_earth/]

; print_table(grid_list_full, " %6.3f %8.3f %8.2f %9.3f %9.2f %9.2f %9.3f %9.3f")

 write_table(output_name, "a", grid_list_full, " %6.3f %8.3f %8.2f %9.3f %9.2f %9.2f %9.3f %9.3f")

;

 end if ; ++

 print(" Gridded end")

;Surface data (P at 0m, T at 2m, u and v at 10 m AGL, etc.)

 write_table(output_name, "a", blankline, "%s")

 sub_title3 = [/"Surface data."/]

 write_table(output_name, "a", sub_title3, "%30s")

 surf_header = [/"Latitude", "Longitude", "Terrain_Hgt_msl", "Sea_Lvl_Prs", "Temperature_2m", "RH_2m%", "Pressure_0m", "U_mass_earth_10m", "V_mass_earth_10m"/]

 write_table(output_name, "a", surf_header, "%9s %9s %12s %11s %12s %9s %14s %17s %17s")

;

 if (subdomain .eq. 1) then ; +++++++++++++++++++++++++++++++++++

 surf_list = [/lat_sub, lon_sub, terrain_hgt_msl_sub, sea_p_sub, tmp_2m_k_sub, rh_2m_pct_sub, p_0m_hpa_sub, u_mass_e_10m_sub, v_mass_e_10m_sub/]

 write_table(output_name, "a", surf_list, "%9.4f %9.4f %9.2f %12.3f %12.3f %12.3f %12.3f %12.3f %14.3f")

 else

 surf_list = [/Lat, Lon, terrain_height_msl, sea_pressure, temperature_2m_k, rh_2m_pct, pressure_0m_hpa, u_mass_earth_10m, v_mass_earth_10m /]

 write_table(output_name, "a", surf_list, "%9.4f %9.4f %9.2f %12.3f %12.3f %12.3f %12.3f %12.3f %14.3f")

 end if ; ++

 print(" Surface end")

end

#!/bin/env python3

#This python3 script is used to concatenate in a specified form several text output

#versions of WRF output. The combined text output is used as input to a FORTRAN

#program that converts text to a METGM.

#

First line of the first file has file name and date-time of the analysis/0h forecast.

Second line has number of x-grid points, y-grid points, time steps, and forecast intervals.

The last two are related, but not the same in the FORTRAN program.

The third line has the forecast times.

import re

import sys

import math

import argparse

#

Various lists defined here, and only have 3 input files.

header_list = []

largedata_list0 = []

largedata_list1 = []

largedata_list2 = []

largedata_list3 = []

terrain_list0 = []

latitude_list0 = []

longitude_list0 = []

terrain_list1 = []

latitude_list1 = []

longitude_list1 = []

input_list = []

#Begin definition for rearrangement of data lists.

#

def reorder(input_list, nlon, nlat, listlength):

 output_list = []

 length = nlon*nlat

 y=0

 while y < length:

 for k in range(y, listlength, length):

 output_list.append(input_list[k])

 y = y+1

 return(output_list)

Begin long definition for all data within 1 time slice.

def wrftextout(m, inputlines):

 linein = []

 terrain_hgt_list = []

 lat_list = []

 lon_list = []

 temperaturek_list = []

 rhpct_list = []

 ucomp_list = []

 vcomp_list = []

 wcomp_list = []

 slp_list = []

height_list = []

 press_list = []

 ter_lat_lon = []

 hlevel_list = []

 hlevelshort_list = []

 head_list = []

 intermediatedata_list = []

 fulldata_list = []

 n=0

 for currentline in inputlines:

 j=0

 inputline1 = currentline.strip()

 if not inputline1.strip(): #line is blank

 continue

 if n == 0:

 if m == 0:

 date_time_header = inputline1

 else:

 date_time_header = ' '

print(date_time_header)

 elif n == 1:

 linein = inputline1.split()

 ind=int(linein[0])*int(linein[1])+3

 print("linein[0], linein[1], ind ", linein[0], linein[1], ind)

 nx = int(linein[0]) # nx and ny are the numbers of grid points in the x (lon) and y (lat) directions.

 ny = int(linein[1])

 grid_info = linein[0] + ' ' + linein[1] + ' ' + linein[2] + ' ' + linein[3]

 nlvls = int(linein[4]) # nlvls is the number of model geopotential height levels above the surface.

 print('nlvls ', nlvls)

Compute more indices.

 ind2 = ind + nlvls+2

 data_points = nx*ny*nlvls

 data_points_s = nx*ny*(nlvls+1)

 print('data points, data_points_s ', data_points, data_points_s)

 ind3 = ind2 + data_points_s

 ind4 = ind3 + nlvls+2

 ind5 = ind4 + data_points_s

 ind6 = ind5 + nlvls+2

 ind7 = ind6 + data_points_s

 ind8 = ind7 + nlvls+2

 ind9 = ind8 + data_points_s

 ind10 = ind9 + nlvls+2 # #####

 ind11 = ind10 + data_points_s

 ind12 = ind11 + nlvls+2

 ind13 = ind12 + data_points_s

 ind14 = ind13 + 1 # Added 1 to ind13 to account for surface indicator (0.000).

 ind15 = ind14 + ind-2

 elif n == 2:

 forecast_times = inputline1

print(forecast_times)

#Back to reading input.

 elif n > 2 and n < ind:

 if m == 0:

 #print("inputline1 ", inputline1)

 ter_lat_lon = inputline1.split()

 lat_list.append(ter_lat_lon[0])

 lon_list.append(ter_lat_lon[1])

 terrain_hgt_list.append(ter_lat_lon[2])

 else:

 lat_list.append(' ')

 lon_list.append(' ')

 terrain_hgt_list.append(' ')

 elif n == ind:

 if m == 0:

 head_list.append(inputline1)

 print(inputline1)

 else:

 head_list.append(' ')

 elif n > ind and n < ind2:

 if m == 0:

 hlevel_list.append(float(inputline1)) # Write out the ght (AGL) levels without the surface indicator.

print('hlevel_list ', inputline1)

 else:

 hlevel_list.append(' ')

print('last hlevel, n, ind2 ',inputline1,n,ind2)

 elif n >= ind2 and n < ind3:

print('n, inputline1 ', n,inputline1)

 press_list.append(float(inputline1))

 elif n == ind3:

 if m == 0:

 head_list.append(inputline1)

 else:

 head_list.append(' ')

 print("after pressure ", inputline1)

 elif n >= ind4 and n < ind5:

 temperaturek_list.append(inputline1)

print('temp K ', inputline1)

 elif n == ind5:

 if m == 0:

 head_list.append(inputline1)

 else:

 head_list.append(' ')

 print("after temperature K ", inputline1)

print(hlevel_list) # Repeat the hlevel_list again.

 elif n >= ind6 and n < ind7:

 rhpct_list.append(inputline1)

 elif n == ind7:

 if m == 0:

 head_list.append(inputline1)

 else:

 head_list.append(' ')

 print("after rhpct ", inputline1)

print(hlevel_list) # Repeat hlevel_list.

 elif n >= ind8 and n < ind9:

 ucomp_list.append(inputline1)

 elif n == ind9:

 if m == 0:

 head_list.append(inputline1)

 else:

 head_list.append(' ')

 print("after ucomp ", inputline1)

print(hlevel_list) # Repeat hlevel_list.

 elif n >= ind10 and n < ind11:

 vcomp_list.append(inputline1)

 elif n == ind11:

 if m == 0:

 head_list.append(inputline1)

 else:

 head_list.append(' ')

 print("after vcomp ", inputline1)

print(hlevel_list) # Repeat hlevel_list.

 elif n >= ind12 and n < ind13:

 wcomp_list.append(inputline1)

print("n, wcomp", inputline1)

 elif n == ind13:

 if m == 0:

 head_list.append(inputline1)

 else:

 head_list.append(' ')

 print("after wcomp ", inputline1)

 elif n == ind13+1:

 if m == 0:

 surfID = ' '+inputline1

 else:

 surfID = ' '

 print('surfID ',inputline1)

 elif n > ind14 and n < ind15:

 slp_list.append(inputline1)

print("End of slp n ", n)

 n=n+1

#

 newpress_list = []

 newtemperaturek_list = []

 newrhpct_list = []

 newucomp_list = []

 newvcomp_list = []

 newwcomp_list = []

 newslp_list = []

 newpress_list = reorder(press_list, nx, ny, data_points_s)

 print('len of newpres_list ', len(newpress_list))

 newtemperaturek_list = reorder(temperaturek_list, nx, ny, data_points_s)

 print('len of temperaturek_list ', len(temperaturek_list))

 newrhpct_list = reorder(rhpct_list, nx, ny, data_points_s)

 print('len of newrhpct_list ', len(newrhpct_list))

 newucomp_list = reorder(ucomp_list, nx, ny, data_points_s)

 print('len of newucomp_list ', len(newucomp_list))

 newvcomp_list = reorder(vcomp_list, nx, ny, data_points_s)

 print('len of newvcomp_list ', len(newvcomp_list))

 newwcomp_list = reorder(wcomp_list, nx, ny, data_points_s)

 print('len of newwcomp_list ', len(newwcomp_list))

 newslp_list = reorder(slp_list, nx, ny, nx*ny)

 print('ind at end ', ind)

 fulldata_list = [date_time_header,grid_info,forecast_times,lat_list,lon_list,terrain_hgt_list,head_list,hlevel_list,newpress_list,newtemperaturek_list,newrhpct_list,newucomp_list,newvcomp_list,newwcomp_list,newslp_list,hlevelshort_list,surfID]

print(fulldata_list[0])

 print('Ended computation for time slice number ',m+1)

 return(fulldata_list)

#

End of very long definition.

#

#Set up argparse command line arguments.

#

parser = argparse.ArgumentParser(description='Combines multiple text file representations of WRF output for respective output times.')

parser.add_argument('outfile', help='Text file for combined text output file.')

parser.add_argument('infile0', help='Text file for first WRF output file.')

parser.add_argument('infile1', nargs='?', default='Empty string 1', help='Text file for second WRF output file.')

parser.add_argument('infile2', nargs='?', default='Empty string 2', help='Text file for third WRF output file.')

parser.add_argument('infile3', nargs='?', default='Empty string 3', help='Text file for fourth WRF output file.')

parser.add_argument('infile4', nargs='?', default='Empty string 4', help='Text file for fifth WRF output file.')

parser.add_argument('infile5', nargs='?', default='Empty string 5', help='Text file for sixth WRF output file.')

parser.add_argument('infile6', nargs='?', default='Empty string 6', help='Text file for seventh WRF output file.')

parser.add_argument('infile7', nargs='?', default='Empty string 7', help='Text file for eighth WRF output file.')

parser.add_argument('infile8', nargs='?', default='Empty string 8', help='Text file for ninth WRF output file.')

parser.add_argument('-v', '--verbosity', action='store_true')

arg = parser.parse_args()

output_file = arg.outfile

try:

 with open(arg.infile0, 'r') as f0:

 inputlines0= f0.readlines()

 m=0

 largedata_list0 = wrftextout(m, inputlines0)

except FileNotFoundError:

 print('No input files. Exiting script.')

 exit()

try:

 with open(arg.infile1, 'r') as f1:

 inputlines1 = f1.readlines()

 m=1

 largedata_list1 = wrftextout(m, inputlines1)

except FileNotFoundError:

 largedata_list1 = largedata_list0

 print('No second input file.')

try:

 with open(arg.infile2, 'r') as f2:

 inputlines2 = f2.readlines()

 m=2

 largedata_list2 = wrftextout(m, inputlines2)

except FileNotFoundError:

 largedata_list2 = largedata_list0

 print('No third file')

try:

 with open(arg.infile3, 'r') as f3:

 inputlines3 = f3.readlines()

 m=3

 largedata_list3 = wrftextout(m, inputlines3)

except FileNotFoundError:

 largedata_list3 = largedata_list0

 print('No fourth file')

try:

 with open(arg.infile4, 'r') as f4:

 inputlines4 = f4.readlines()

 m=4

 largedata_list4 = wrftextout(m, inputlines4)

except FileNotFoundError:

 largedata_list4 = largedata_list0

 print('No fifth file')

try:

 with open(arg.infile5, 'r') as f5:

 inputlines5 = f5.readlines()

 m=5

 largedata_list5 = wrftextout(m, inputlines5)

except FileNotFoundError:

 largedata_list5 = largedata_list0

 print('No sixth file')

try:

 with open(arg.infile6, 'r') as f6:

 inputlines6 = f6.readlines()

 m=6

 largedata_list6 = wrftextout(m, inputlines6)

except FileNotFoundError:

 largedata_list6 = largedata_list0

 print('No seventh file')

try:

 with open(arg.infile7, 'r') as f7:

 inputlines7 = f7.readlines()

 m=7

 largedata_list7 = wrftextout(m, inputlines7)

except FileNotFoundError:

 largedata_list7 = largedata_list0

 print('No eighth file')

try:

 with open(arg.infile8, 'r') as f8:

 inputlines8 = f8.readlines()

 m=8

 largedata_list8 = wrftextout(m, inputlines8)

except FileNotFoundError:

 largedata_list8 = largedata_list0

 print('No ninth file')

#

#

Extract the lists for the several variables and headerss for the first column of output.

latitude_list0 = largedata_list0[3]

longitude_list0 = largedata_list0[4]

terrain_list0 = largedata_list0[5]

header_list = largedata_list0[6]

hgt_level_list = largedata_list0[7]

press_list0 = largedata_list0[8]

tempk_list0 = largedata_list0[9]

rhpct_list0 = largedata_list0[10]

ucomp_list0 = largedata_list0[11]

vcomp_list0 = largedata_list0[12]

wcomp_list0 = largedata_list0[13]

slp_list0 = largedata_list0[14]

hlvlshort_list = largedata_list0[15]

surfaceID = largedata_list0[16]

#

#

OUTPUT SECTION (for now)

#

Get index for output sections.

mm = m + 1

Extract date and time from the first line of the header of the first input file (0 hour forecast time)

and put into the form yyyymmddhhmm using slicing.

year = largedata_list0[0][0:4]

month = largedata_list0[0][5:7]

day = largedata_list0[0][8:10]

hour = largedata_list0[0][11:13]

minute = largedata_list0[0][14:16]

date_time = year+month+day+hour+minute

Enter the number of time slices into the grid data header line.

grid_data = []

grid_data = largedata_list0[1].split()

grid_string = grid_data[0]+' '+grid_data[1]+' '+str(mm)+' '+grid_data[3]

#print('grid_string ', grid_string)

#

with open(output_file, "a") as fo:

 print('\nWriting to output file ', output_file, '\n')

print('Combined text output from ' + arg.infile1 + ' and ' + arg.infile2 + '\n')

 print('Forecast day and time started at: ' + largedata_list0[0] + ' Initial forecast time ' + largedata_list0[2])

 header_string = '{0:28s}\n{1:25s}\n'.format(date_time, grid_string)

 fo.write(header_string)

 if mm < 1:

 print('No input files!! Ending script.')

 exit()

 if mm == 1:

 header_string = '{0:10s}\n'.format(largedata_list0[2])

 if mm == 2:

 header_string = '{0:10s} {1:10s}\n'.format(largedata_list0[2], largedata_list1[2])

 if mm == 3:

 header_string = '{0:10s} {1:10s} {2:10s}\n'.format(largedata_list0[2], largedata_list1[2], largedata_list2[2])

 if mm == 4:

 header_string = '{0:10s} {1:10s} {2:10s} {3:10s}\n'.format(largedata_list0[2],largedata_list1[2],largedata_list2[2],largedata_list3[2])

 if mm == 5:

 header_string = '{0:10s} {1:10s} {2:10s} {3:10s} {4:10s}\n'.format(largedata_list0[2], largedata_list1[2], largedata_list2[2],largedata_list3[2],largedata_list4[2])

 if mm == 6:

 header_string = '{0:10s} {1:10s} {2:10s} {3:10s} {4:10s} {5:10s}\n'.format(largedata_list0[2], largedata_list1[2], largedata_list2[2],largedata_list3[2],largedata_list4[2],largedata_list5[2])

 if mm == 7:

 header_string = '{0:10s} {1:10s} {2:10s} {3:10s} {4:10s} {5:10s} {6:10s}\n'.format(largedata_list0[2], largedata_list1[2], largedata_list2[2],largedata_list3[2],largedata_list4[2], largedata_list5[2],largedata_list6[2])

 if mm == 8:

 header_string = '{0:10s} {1:10s} {2:10s} {3:10s} {4:10s} {5:10s} {6:10s} {7:10s}\n'.format(largedata_list0[2], largedata_list1[2], largedata_list2[2],largedata_list3[2],largedata_list4[2], largedata_list5[2],largedata_list6[2],largedata_list7[2])

 if mm == 9:

 header_string = '{0:10s} {1:10s} {2:10s} {3:10s} {4:10s} {5:10s} {6:10s} {7:10s} {8:10s}\n'.format(largedata_list0[2], largedata_list1[2], largedata_list2[2],largedata_list3[2],largedata_list4[2], largedata_list5[2],largedata_list6[2],largedata_list7[2],largedata_list8[2])

 fo.write(header_string)

 length=len(latitude_list0)

print("length = ", length)

 for n in range(0, length):

 data_string = '{0:8.4f} {1:9.4f} {2:9.3f}\n'.format(float(latitude_list0[n]), float(longitude_list0[n]), float(terrain_list0[n]))

 fo.write(data_string)

print("last lat/lon data string", data_string)

 header_string = '{0:25s}\n'.format(header_list[0])

 fo.write(header_string)

 length=len(hgt_level_list)

print("length = ", length)

 for n in range(0, length):

 hgt_string = '{0:8.2f}\n'.format(float(hgt_level_list[n]))

print("hgt_string ", hgt_string)

 fo.write(hgt_string)

Pressure (hPa)

 length=len(press_list0)

print("length = ", length)

 for n in range(0, length):

 if mm == 1:

 data_string = '{0:9.3f}\n'.format(float(largedata_list0[8][n]))

print("data_string", data_string)

 if mm == 2:

 data_string = '{0:9.3f} {1:9.3f}\n'.format(float(largedata_list0[8][n]), float(largedata_list1[8][n]))

 if mm == 3:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f}\n'.format(float(largedata_list0[8][n]),float(largedata_list1[8][n]),float(largedata_list2[8][n]))

 if mm == 4:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f}\n'.format(float(largedata_list0[8][n]), float(largedata_list1[8][n]), float(largedata_list2[8][n]), float(largedata_list3[8][n]))

 if mm == 5:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f} {4:9.3f}\n'.format(float(largedata_list0[8][n]), float(largedata_list1[8][n]), float(largedata_list2[8][n]), float(largedata_list3[8][n]), float(largedata_list4[8][n]))

 if mm == 6:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f} {4:9.3f} {5:9.3f}\n'.format(float(largedata_list0[8][n]), float(largedata_list1[8][n]), float(largedata_list2[8][n]), float(largedata_list3[8][n]), float(largedata_list4[8][n]), float(largedata_list5[8][n]))

 if mm == 7:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f} {4:9.3f} {5:9.3f} {6:9.3f}\n'.format(float(largedata_list0[8][n]), float(largedata_list1[8][n]), float(largedata_list2[8][n]), float(largedata_list3[8][n]), float(largedata_list4[8][n]), float(largedata_list5[8][n]), float(largedata_list6[8][n]))

 if mm == 8:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f} {4:9.3f} {5:9.3f} {6:9.3f} {7:9.3f}\n'.format(float(largedata_list0[8][n]), float(largedata_list1[8][n]), float(largedata_list2[8][n]), float(largedata_list3[8][n]), float(largedata_list4[8][n]), float(largedata_list5[8][n]), float(largedata_list6[8][n]),float(largedata_list7[8][n]))

 if mm == 9:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f} {4:9.3f} {5:9.3f} {6:9.3f} {7:9.3f} {8:9.3f}\n'.format(float(largedata_list0[8][n]), float(largedata_list1[8][n]), float(largedata_list2[8][n]), float(largedata_list3[8][n]), float(largedata_list4[8][n]), float(largedata_list5[8][n]), float(largedata_list6[8][n]),float(largedata_list7[8][n]),float(largedata_list8[8][n]))

 fo.write(data_string)

 header_string = '{0:25s}\n'.format(largedata_list0[6][1])

print("\nheader_string ",header_string)

 fo.write(header_string)

 length=len(hgt_level_list)

 for n in range(0, length):

 hgt_string = '{0:8.2f}\n'.format(float(hgt_level_list[n]))

 fo.write(hgt_string)

Temperature (K)

 length=len(tempk_list0)

print("length = ", length)

 for n in range(0, length):

 if mm == 1:

 data_string = '{0:9.3f}\n'.format(float(largedata_list0[9][n]))

 if mm == 2:

 data_string = '{0:9.3f} {1:9.3f}\n'.format(float(largedata_list0[9][n]), float(largedata_list1[9][n]))

 if mm == 3:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f}\n'.format(float(largedata_list0[9][n]),float(largedata_list1[9][n]),float(largedata_list2[9][n]))

 if mm == 4:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f}\n'.format(float(largedata_list0[9][n]),float(largedata_list1[9][n]),float(largedata_list2[9][n]),float(largedata_list3[9][n]))

 if mm == 5:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f} {4:9.3f}\n'.format(float(largedata_list0[9][n]),float(largedata_list1[9][n]),float(largedata_list2[9][n]), float(largedata_list3[9][n]), float(largedata_list4[9][n]))

 if mm == 6:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f} {4:9.3f} {5:9.3f}\n'.format(float(largedata_list0[9][n]),float(largedata_list1[9][n]),float(largedata_list2[9][n]),float(largedata_list3[9][n]),float(largedata_list4[9][n]),float(largedata_list5[9][n]))

 if mm == 7:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f} {4:9.3f} {5:9.3f} {6:9.3f}\n'.format(float(largedata_list0[9][n]),float(largedata_list1[9][n]),float(largedata_list2[9][n]),float(largedata_list3[9][n]),float(largedata_list4[9][n]),float(largedata_list5[9][n]),float(largedata_list6[9][n]))

 if mm == 8:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f} {4:9.3f} {5:9.3f} {6:9.3f} {7:9.3f}\n'.format(float(largedata_list0[9][n]),float(largedata_list1[9][n]),float(largedata_list2[9][n]),float(largedata_list3[9][n]),float(largedata_list4[9][n]),float(largedata_list5[9][n]),float(largedata_list6[9][n]),float(largedata_list7[9][n]))

 if mm == 9:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f} {4:9.3f} {5:9.3f} {6:9.3f} {7:9.3f} {8:9.3f}\n'.format(float(largedata_list0[9][n]),float(largedata_list1[9][n]),float(largedata_list2[9][n]),float(largedata_list3[9][n]),float(largedata_list4[9][n]),float(largedata_list5[9][n]),float(largedata_list6[9][n]),float(largedata_list7[9][n]),float(largedata_list8[9][n]))

 fo.write(data_string)

 header_string = '{0:25s}\n'.format(largedata_list0[6][2])

 fo.write(header_string)

 length=len(hgt_level_list)

 for n in range(0, length):

 hgt_string = '{0:8.2f}\n'.format(float(hgt_level_list[n]))

 fo.write(hgt_string)

Relative humidity (%)

 length=len(rhpct_list0)

print("length = ", length)

 for n in range(0, length):

 if mm == 1:

 data_string = '{0:9.2f}\n'.format(float(largedata_list0[10][n]))

 if mm == 2:

 data_string = '{0:9.2f} {1:9.2f}\n'.format(float(largedata_list0[10][n]),float(largedata_list1[10][n]))

 if mm == 3:

 data_string = '{0:9.2f} {1:9.2f} {2:9.2f}\n'.format(float(largedata_list0[10][n]),float(largedata_list1[10][n]),float(largedata_list2[10][n]))

 if mm == 4:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f}\n'.format(float(largedata_list0[10][n]),float(largedata_list1[10][n]),float(largedata_list2[10][n]),float(largedata_list3[10][n]))

 if mm == 5:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f} {4:9.3f}\n'.format(float(largedata_list0[10][n]),float(largedata_list1[10][n]),float(largedata_list2[10][n]), float(largedata_list3[10][n]), float(largedata_list4[10][n]))

 if mm == 6:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f} {4:9.3f} {5:9.3f}\n'.format(float(largedata_list0[10][n]),float(largedata_list1[10][n]),float(largedata_list2[10][n]),float(largedata_list3[10][n]),float(largedata_list4[10][n]),float(largedata_list5[10][n]))

 if mm == 7:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f} {4:9.3f} {5:9.3f} {6:9.3f}\n'.format(float(largedata_list0[10][n]),float(largedata_list1[10][n]),float(largedata_list2[10][n]),float(largedata_list3[10][n]),float(largedata_list4[10][n]),float(largedata_list5[10][n]),float(largedata_list6[10][n]))

 if mm == 8:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f} {4:9.3f} {5:9.3f} {6:9.3f} {7:9.3f}\n'.format(float(largedata_list0[10][n]),float(largedata_list1[10][n]),float(largedata_list2[10][n]),float(largedata_list3[10][n]),float(largedata_list4[10][n]),float(largedata_list5[10][n]),float(largedata_list6[10][n]),float(largedata_list7[10][n]))

 if mm == 9:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f} {4:9.3f} {5:9.3f} {6:9.3f} {7:9.3f} {8:9.3f}\n'.format(float(largedata_list0[10][n]),float(largedata_list1[10][n]),float(largedata_list2[10][n]),float(largedata_list3[10][n]),float(largedata_list4[10][n]),float(largedata_list5[10][n]),float(largedata_list6[10][n]),float(largedata_list7[10][n]),float(largedata_list8[10][n]))

 fo.write(data_string)

 header_string = '{0:25s}\n'.format(largedata_list0[6][3])

 fo.write(header_string)

 length=len(hgt_level_list)

 for n in range(0, length):

 hgt_string = '{0:8.2f}\n'.format(float(hgt_level_list[n]))

 fo.write(hgt_string)

U wind component (m/s)

 length=len(ucomp_list0)

print("length = ", length)

 for n in range(0, length):

 if mm == 1:

 data_string = '{0:9.3f}\n'.format(float(largedata_list0[11][n]))

 if mm == 2:

 data_string = '{0:9.3f} {1:9.3f}\n'.format(float(largedata_list0[11][n]), float(largedata_list1[11][n]))

 if mm == 3:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f}\n'.format(float(largedata_list0[11][n]),float(largedata_list1[11][n]),float(largedata_list2[11][n]))

 if mm == 4:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f}\n'.format(float(largedata_list0[11][n]),float(largedata_list1[11][n]),float(largedata_list2[11][n]),float(largedata_list3[11][n]))

 if mm == 5:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f} {4:9.3f}\n'.format(float(largedata_list0[11][n]),float(largedata_list1[11][n]),float(largedata_list2[11][n]), float(largedata_list3[11][n]), float(largedata_list4[11][n]))

 if mm == 6:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f} {4:9.3f} {5:9.3f}\n'.format(float(largedata_list0[11][n]),float(largedata_list1[11][n]),float(largedata_list2[11][n]),float(largedata_list3[11][n]),float(largedata_list4[11][n]),float(largedata_list5[11][n]))

 if mm == 7:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f} {4:9.3f} {5:9.3f} {6:9.3f}\n'.format(float(largedata_list0[11][n]),float(largedata_list1[11][n]),float(largedata_list2[11][n]),float(largedata_list3[11][n]),float(largedata_list4[11][n]),float(largedata_list5[11][n]),float(largedata_list6[11][n]))

 if mm == 8:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f} {4:9.3f} {5:9.3f} {6:9.3f} {7:9.3f}\n'.format(float(largedata_list0[11][n]),float(largedata_list1[11][n]),float(largedata_list2[11][n]),float(largedata_list3[11][n]),float(largedata_list4[11][n]),float(largedata_list5[11][n]),float(largedata_list6[11][n]),float(largedata_list7[11][n]))

 if mm == 9:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f} {4:9.3f} {5:9.3f} {6:9.3f} {7:9.3f} {8:9.3f}\n'.format(float(largedata_list0[11][n]),float(largedata_list1[11][n]),float(largedata_list2[11][n]),float(largedata_list3[11][n]),float(largedata_list4[11][n]),float(largedata_list5[11][n]),float(largedata_list6[11][n]),float(largedata_list7[11][n]),float(largedata_list8[11][n]))

 fo.write(data_string)

 header_string = '{0:25s}\n'.format(largedata_list0[6][4])

 fo.write(header_string)

 length=len(hgt_level_list)

 for n in range(0, length):

 hgt_string = '{0:8.2f}\n'.format(float(hgt_level_list[n]))

 fo.write(hgt_string)

V wind component (m/s)

 length=len(vcomp_list0)

print("length = ", length)

 for n in range(0, length):

 if mm == 1:

 data_string = '{0:9.3f}\n'.format(float(largedata_list0[12][n]))

 if mm == 2:

 data_string = '{0:9.3f} {1:9.3f}\n'.format(float(largedata_list0[12][n]), float(largedata_list1[12][n]))

 if mm == 3:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f}\n'.format(float(largedata_list0[12][n]),float(largedata_list1[12][n]),float(largedata_list2[12][n]))

 if mm == 4:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f}\n'.format(float(largedata_list0[12][n]),float(largedata_list1[12][n]),float(largedata_list2[12][n]),float(largedata_list3[12][n]))

 if mm == 5:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f} {4:9.3f}\n'.format(float(largedata_list0[12][n]),float(largedata_list1[12][n]),float(largedata_list2[12][n]), float(largedata_list3[12][n]), float(largedata_list4[12][n]))

 if mm == 6:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f} {4:9.3f} {5:9.3f}\n'.format(float(largedata_list0[12][n]),float(largedata_list1[12][n]),float(largedata_list2[12][n]),float(largedata_list3[12][n]),float(largedata_list4[12][n]),float(largedata_list5[12][n]))

 if mm == 7:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f} {4:9.3f} {5:9.3f} {6:9.3f}\n'.format(float(largedata_list0[12][n]),float(largedata_list1[12][n]),float(largedata_list2[12][n]),float(largedata_list3[12][n]),float(largedata_list4[12][n]),float(largedata_list5[12][n]),float(largedata_list6[12][n]))

 if mm == 8:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f} {4:9.3f} {5:9.3f} {6:9.3f} {7:9.3f}\n'.format(float(largedata_list0[12][n]),float(largedata_list1[12][n]),float(largedata_list2[12][n]),float(largedata_list3[12][n]),float(largedata_list4[12][n]),float(largedata_list5[12][n]),float(largedata_list6[12][n]),float(largedata_list7[12][n]))

 if mm == 9:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f} {4:9.3f} {5:9.3f} {6:9.3f} {7:9.3f} {8:9.3f}\n'.format(float(largedata_list0[12][n]),float(largedata_list1[12][n]),float(largedata_list2[12][n]),float(largedata_list3[12][n]),float(largedata_list4[12][n]),float(largedata_list5[12][n]),float(largedata_list6[12][n]),float(largedata_list7[12][n]),float(largedata_list8[12][n]))

 fo.write(data_string)

 header_string = '{0:25s}\n'.format(largedata_list0[6][5])

 fo.write(header_string)

 length=len(hgt_level_list)

print("length ", len(plvlshort_list))

 for n in range(0, length):

 hgt_string = '{0:8.2f}\n'.format(float(hgt_level_list[n]))

 fo.write(hgt_string)

W wind component (m/s)

 length=len(wcomp_list0)

print("length = ", length)

 for n in range(0, length):

 if mm == 1:

 dat_string = float(0.000)

 data_string = '{0:9.3f}\n'.format(float(largedata_list0[13][n]))

 if mm == 2:

 data_string = '{0:9.3f} {1:9.3f}\n'.format(float(largedata_list0[13][n]), float(largedata_list1[13][n]))

 if mm == 3:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f}\n'.format(float(largedata_list0[13][n]),float(largedata_list1[13][n]),float(largedata_list2[13][n]))

 if mm == 4:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f}\n'.format(float(largedata_list0[13][n]),float(largedata_list1[13][n]),float(largedata_list2[13][n]),float(largedata_list3[13][n]))

 if mm == 5:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f} {4:9.3f}\n'.format(float(largedata_list0[13][n]),float(largedata_list1[13][n]),float(largedata_list2[13][n]), float(largedata_list3[13][n]), float(largedata_list4[13][n]))

 if mm == 6:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f} {4:9.3f} {5:9.3f}\n'.format(float(largedata_list0[13][n]),float(largedata_list1[13][n]),float(largedata_list2[13][n]),float(largedata_list3[13][n]),float(largedata_list4[13][n]),float(largedata_list5[13][n]))

 if mm == 7:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f} {4:9.3f} {5:9.3f} {6:9.3f}\n'.format(float(largedata_list0[13][n]),float(largedata_list1[13][n]),float(largedata_list2[13][n]),float(largedata_list3[13][n]),float(largedata_list4[13][n]),float(largedata_list5[13][n]),float(largedata_list6[13][n]))

 if mm == 8:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f} {4:9.3f} {5:9.3f} {6:9.3f} {7:9.3f}\n'.format(float(largedata_list0[13][n]),float(largedata_list1[13][n]),float(largedata_list2[13][n]),float(largedata_list3[13][n]),float(largedata_list4[13][n]),float(largedata_list5[13][n]),float(largedata_list6[13][n]),float(largedata_list7[13][n]))

 if mm == 9:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f} {4:9.3f} {5:9.3f} {6:9.3f} {7:9.3f} {8:9.3f}\n'.format(float(largedata_list0[13][n]),float(largedata_list1[13][n]),float(largedata_list2[13][n]),float(largedata_list3[13][n]),float(largedata_list4[13][n]),float(largedata_list5[13][n]),float(largedata_list6[13][n]),float(largedata_list7[13][n]),float(largedata_list8[13][n]))

 fo.write(data_string)

 header_string = '{0:25s}\n {1:8.2f}\n'.format(largedata_list0[6][6], float(surfaceID))

 fo.write(header_string)

Sea level pressure (hPa)

 length=len(slp_list0)

print('slp list length ',length)

 for n in range(0, length):

 if mm == 1:

 data_string = '{0:9.3f}\n'.format(float(largedata_list0[14][n]))

 if mm == 2:

 data_string = '{0:9.3f} {1:9.3f}\n'.format(float(largedata_list0[14][n]), float(largedata_list1[14][n]))

 if mm == 3:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f}\n'.format(float(largedata_list0[14][n]),float(largedata_list1[14][n]),float(largedata_list2[14][n]))

 if mm == 4:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f}\n'.format(float(largedata_list0[14][n]),float(largedata_list1[14][n]),float(largedata_list2[14][n]),float(largedata_list3[14][n]))

 if mm == 5:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f} {4:9.3f}\n'.format(float(largedata_list0[14][n]),float(largedata_list1[14][n]),float(largedata_list2[14][n]), float(largedata_list3[14][n]), float(largedata_list4[14][n]))

 if mm == 6:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f} {4:9.3f} {5:9.3f}\n'.format(float(largedata_list0[14][n]),float(largedata_list1[14][n]),float(largedata_list2[14][n]),float(largedata_list3[14][n]),float(largedata_list4[14][n]),float(largedata_list5[14][n]))

 if mm == 7:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f} {4:9.3f} {5:9.3f} {6:9.3f}\n'.format(float(largedata_list0[14][n]),float(largedata_list1[14][n]),float(largedata_list2[14][n]),float(largedata_list3[14][n]),float(largedata_list4[14][n]),float(largedata_list5[14][n]),float(largedata_list6[14][n]))

 if mm == 8:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f} {4:9.3f} {5:9.3f} {6:9.3f} {7:9.3f}\n'.format(float(largedata_list0[14][n]),float(largedata_list1[14][n]),float(largedata_list2[14][n]),float(largedata_list3[14][n]),float(largedata_list4[14][n]),float(largedata_list5[14][n]),float(largedata_list6[14][n]),float(largedata_list7[14][n]))

 if mm == 9:

 data_string = '{0:9.3f} {1:9.3f} {2:9.3f} {3:9.3f} {4:9.3f} {5:9.3f} {6:9.3f} {7:9.3f} {8:9.3f}\n'.format(float(largedata_list0[14][n]),float(largedata_list1[14][n]),float(largedata_list2[14][n]),float(largedata_list3[14][n]),float(largedata_list4[14][n]),float(largedata_list5[14][n]),float(largedata_list6[14][n]),float(largedata_list7[14][n]),float(largedata_list8[14][n]))

 fo.write(data_string)

print('\n End of script to combine multiple WRF text output files.\n')

