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1. Introduction

The emergence of high-throughput (HiTp) methodologies in materials science re-
sults in the need of efficient frameworks capable of collecting, storing, and an-
alyzing large data sets. From a material science perspective, HiTp has tradition-
ally focused on the development of computational tools1,2 since HiTp experimental
(HiTpE) approaches present many challenges. While many great advancements and
discoveries have been enabled through computational materials science, any model
is only as good as its least accurate assumption. Therefore, the development of
HiTpE methods is essential to overcoming limitations inherent to computational
materials science. In fact, HiTpE has taken a greater significance as the main ap-
proach to achieving the accelerated materials discovery goals set forward by the
Material Genome Initiative.3,4

Recent advancements in automation and computing resources have enabled the de-
velopment of true HiTpE methodologies as applied to materials science. While
great progress has been made on HiTpE methods for 1D data (e.g., spectral5,6

and/or patterns7,8), these reduced-order data type only provide limited information.
Furthermore, these usually analyze small volumes of material, which have limited
applications within the scope of the Army. For example, HiTp X-ray diffraction
typically consists of analyzing deposited thin films with compositional variations
across the deposition substrate.7,8 Of special interest to more applied research (i.e.,
Army needs) is the collection of microstructural data, which reveal features that di-
rectly influence a material’s performance. One approach is the use of in-situ focused
ion beam (FIB) pulsed-laser ablation for characterization of bulk 3D microstruc-
tures9,10 In these systems, a femtosecond laser couples to a dual beam FIB, giving
the advantage of removing larger volumes of material while maintaining the imag-
ing resolution of an scanning electron microscope (SEM).

Microstructural features (e.g., grain and phase size and distributions) tend to strongly
influence a material’s performance. For example, the Hall–Petch effect is a well-
known relationship between a material’s strength and the average grain size. Addi-
tionally, the process-property-performance paradigm suggests that a microstructure
is dependent on processing conditions,11 which dictate how these features evolve.
Characterizing these microstructural features is important as they are related to how
a material will deform when subjected to mechanical work (i.e., for structural ap-
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plications). Therefore, being able to quickly characterize these features is essential
for accelerated materials discovery and processing optimization. Considering the
importance of microstructural information, there has been significant development
of frameworks to analyze highly indexed data (e.g., electron backscattered diffrac-
tion [EBSD] through DREAM.3D12). However, limited efforts have been devoted
to developing tools that can reconstruct grayscale highly contrasted backscattered
electron micrographs. While these data are not as information rich as EBSD data,
they provide useful information that is faster to collect and more economic to store.

Grayscale micrographs are suitable for characterizing phase distributions of multi-
phase materials. Additionally, this type of mesoscale information is essential for
computational models that aim to understand how a material responds to external
stimuli (e.g., pressure). Hence, a systematic approach to characterizing grayscale-
based microstructural information is presented. A Python script was developed to
clean and analyze highly contrasted electron backscatter micrographs and build a
Visualization ToolKit (VTK) readable file.13 This file type can be further analyzed
(e.g., phase clustering) in ParaView.14 As a demonstration, the systematic analysis
was used to analyze a silicon carbide (SiC) boron carbide (B4C) ceramic composite.
Understanding the distribution of the B4C within the SiC matrix is important to
understand its protective performance.

2. Image Collection

Coupons, 200 µm thick, of a commercially available SiC–B4C composite were ac-
quired following mechanical polishing to a final surface roughness of 20 nm. A
more detailed description of the sample alignment and sectioning procedure can be
found in the report by Ligda et al.15 In short, the sample mounts onto a piezo-based
positioning stage and is then pre-tilted such that the desired sample face is paral-
lel to the incoming laser beam. The laser is a Clark MXR-CPA with a wavelength
of 775 nm and a pulse width of 150−200 fs. For serial sectioning, a total of 120
slices were cut using a laser pulse energy of 13 µJ, scan speed of 33 µm/s, and slice
thickness of 1 µm. Each slice takes on average approximately 3−5 min to laser cut
and image, with the bulk of this time going to the former. Secondary electron im-
ages were taken of each slice at a magnification of 500× (equivalent scan area of
256×221 µm) and electron beam settings of 20 kV, 2.4 nA. Due to the difference in
atomic number between boron (B) and silicon (Si), the contrast and brightness of
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these images is adjusted so that the SiC phase is bright while the B4C phase is dark.
This binary type of image should be ideal for the later segmentation procedures.

3. Microstructural Analysis

One of the disadvantages of these grayscale images is that it is challenging to
fully align layers based on intensity values. Moreover, this is complicated when
fast scans and laser-induced periodic surface structures (LIPSS) form, which cause
noisy micrographs.16–18 Therefore, images must be cleaned in order to minimize any
artifacts. The random walker segmentation algorithm,19 as implemented in scikit-
image,20 was used to segment the micrographs into SiC and B4C features. These
segmented micrographs are then stacked to form a reconstructed microstructure.
The reconstructed microstructures can be post analyzed to obtain information not
attainable from 2D micrographs.

3.1 Image Segmentation

The random walker algorithm (RWA) relies on the labeling of “seed” pixels. Then,
unlabeled pixels are imagined to have released “walkers”, which have a given prob-
ability to reaching a labeled (seeded) pixel. Hence, the walker’s probability of
reaching a specific seed will determine the value that an unlabeled pixel will adopt.
The RWA aims to minimize the “energy” (combinatorial formulation of the Dirich-
let integral):

D[x] =
1

2

∫
Ω

|∇x|2dΩ =
1

2
xTLx =

1

2

∑
eij∈E

wij(xi − xj)2, (1)

where eij is the edge connecting two neighboring pixels, wij is the edge weight-
ing function and xi is a real-valued number for a given pixel. The edge weighting
function encodes similarities between pixels, as is defined as,

wij = exp
(
−β(gi − gj)2

)
, (2)

where β is a free parameter and gi is the pixel intensity. Grady19 likens the objective
of this algorithm to analyzing the steady-state (infinite time) diffusion equation.

Figure 1 shows the image analysis framework used in segmenting the micrographs
into distinct phases. The noisy image shows the as-collected SEM where white and
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Experimental Image

Labels (seeds)

Segmented Image

Fig. 1 Example of systematic approach for analyzing highly contrasted micrographs via seg-
mentation
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black regions correspond to SiC and B4C, respectively. It also shows a significant
number of gray regions, which arise intrinsically from the measurements. To seed
the labels, the experimental images were first normalized as

ḡi = 2 · gi −min(G)

max(G)−min(G)
− 1, (3)

where the G is the pixel intensity set and the projection results in the {gi ∈ G : 0 ≤
gi ≤ 1} → {ḡi ∈ Ḡ : −1 ≤ ḡi ≤ 1} renormalization. To properly identify these as
either SiC or B4C, the noisy image is seeded with markers based on some criterion

si =

{
dark/purple, ḡi ≤ −gc
bright/yellow, ḡi ≥ gc

, (4)

where gc is a cutoff pixel intensity. It should be noted that the black regions in the
“labels” image in Fig. 1 are the unlabeled pixels from which walkers are “ejected”
in search of a seed to adopt. This labeled image is then used by the RWA to segment
the image into the distinct phases.

3.2 Stack Reconstruction and Analysis

The segmented images provide a planar 2D representation of the microstructure.
To get a fully representative microstructure, these segmented micrographs were
“stacked” onto each other. Due to the regular array nature of pixelated images,
these were converted into a VTK image (VTI) file (i.e., a structured file). A repre-
sentative stack of 20 micrographs is shown in Fig. 2 where the blue and red regions
correspond to B4C and SiC, respectively. It is shown that B4C is fairly dispersed
throughout the SiC matrix.

To better understand the microstructure, the stack was analyzed with ParaView’s
Connectivity filter. The B4C’s connectivity was analyzed on a 50-stack microstruc-
ture taken from a reduced region of the original data set. ParaView’s Connectiv-
ity filter clusters voxels by assigning “connected components” (adjacent voxels)
a given “region ID” (i.e., unique integer). The resulting connectivity is shown in
Fig. 3, where a very large cluster (dark blue region) can be observed. The largest
cluster can be filtered out by thresholding it’s region ID, as shown in Fig. 3b. By
comparing Fig. 3a and b, it is determined that the largest cluster is approximately
93% of the B4C phase. Further thresholding isolates the smaller clusters (Fig. 3c).
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Fig. 2 Representative stack of 20 ablated layers of SiC (red) and B4C (blue)

3.3 Comments on Post Processing

The analysis previously highlighted can be useful in determining important mi-
crostructural characteristics, but it is essential to properly treat these features. It
should be noted that in order to obtain a large representative microstructure, large
sectioning steps were used. While the X and Y resolution is fairly small (δx,y ∼0.125

µm), the sectioning steps were δz ∼1 µm. This can be observed in Fig. 4. This
enables HiTpE data collection, but the large δz could result in artifacts. Avoiding
these artifacts are of most importance when attempting to obtain representative fea-
ture topologies. For instance, smoothing the voxelized B4C precipitate in Fig. 4 will
result in very different-looking precipitates. This is shown for smoothing of the pre-
cipitates for different number of smoothening iterations. Clearly, the topology and
overall precipitate size are influenced by the number of smoothening operations.
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a)

b)

c)

Fig. 3 Connectivity analysis showing the B4C precipitate clusters. It is shown that a large
fraction of the secondary phase is highly connected.
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500 1000 2000

Fig. 4 Application of ParaView’s smoothening filter. It is shown that the number of smoothen-
ing iterations can cause a feature’s topology to change drastically

To showcase the importance of proper filtering, the B4C precipitates resulting after
1000 and 2000 smoothening iterations are subjected to planar loads. The objective
was to determine if the differences in post-processing would influence mechanical
responses. These smoothed precipitates were imported as ParaView generated stere-
olithography (STL) files into the COMSOL finite-element analysis platform. Then,
a SiC cuboid was overimposed, to enclose the precipitate with matrix material. Fi-
nally, planar loads (σ±z = 1N/m2) were applied on the top and bottom surfaces of
the SiC cuboid. The resulting strained microstructure are shown in Fig. 5. It is qual-
itatively shown that for fewer iterations, the SiC cuboid deforms more uniformly.
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1000 2000

Fig. 5 SiC matrix deforms in drastically different forms depending on how the precipitate was
smoothen

4. Conclusion

A systematic framework to analyzing grayscale reconstructed 3D microstructures
is presented. It is demonstrated that the RWA is able to segmented highly con-
trasted micrographs, which then can be stacked into the reconstructed microstruc-
ture. These microstructures can then be post analyzed to characterize mesoscale fea-
tures. For instance, it was shown that the vast majority of the secondary B4C phase
is connected into a large cluster. Furthermore, the importance of careful and consis-
tent post-processing these microstructural features (e.g., smoothening of precipitate
voxelated surfaces) is shown. Performing a simple micromechanical analysis on an
isolated precipitate subjected to different smoothening iterations results in a differ-
ent mechanical response.

9



5. References

1. Jain A et al. Commentary: The materials project: A materials genome ap-
proach to accelerating materials innovation. Apl Materials. 2013;1(1):011002.

2. Curtarolo S, Hart GL, Nardelli MB, Mingo N, Sanvito S, Levy O. The
high-throughput highway to computational materials design. Nature Materials.
2013;12(3):191.

3. Executive Office of the President. Materials Genome Ini-
tiative for Global Competitiveness. Washington (DC): Na-
tional Science and Technology Council; 2011 [accessed 2019].
https://www.mgi.gov/sites/default/files/documents/materials_genome_initiative-
final.pdf

4. Green ML et al. Fulfilling the promise of the materials genome initiative
with high-throughput experimental methodologies. Applied Physics Reviews.
2017;4(1):011105.

5. Sebba DS, Watson DA, Nolan JP. High throughput single nanoparticle spec-
troscopy. ACS Nano. 2009;3(6):1477–1484.

6. Ferrari AC et al. Raman spectrum of graphene and graphene layers. Physical
Review Letters. 2006;97(18):187401.

7. Ohtani M et al. Concurrent x-ray diffractometer for high throughput structural
diagnosis of epitaxial thin films. Applied Physics Letters. 2001;79(22):3594–
3596.

8. Zarnetta R, Buenconsejo PJS, Savan A, Thienhaus S, Ludwig A. High-
throughput study of martensitic transformations in the complete Ti–Ni–Cu sys-
tem. Intermetallics. 2012;26:98–109.

9. Echlin MP, Mottura A, Torbet CJ, Pollock TM. A new TriBeam system for
three-dimensional multimodal materials analysis. Review of Scientific Instru-
ments. 2012;83(2):023701.

10. Echlin MP, Mottura A, Wang M, Mignone PJ, Riley DP, Franks GV, Pol-
lock TM. Three-dimensional characterization of the permeability of W–Cu
composites using a new “TriBeam” technique. Acta Materialia. 2014;64:307–
315.

10



11. McDowell DL, Olson GB. Concurrent design of hierarchical materials and
structures. In: Scientific Modeling and Simulations; Verlag Berlin Heidelberg
(Germany): Springer; 2008; p. 207–240.

12. Groeber MA, Jackson MA. Dream. 3D: a digital representation environment
for the analysis of microstructure in 3D. Integrating Materials and Manufactur-
ing Innovation. 2014;3(1):5.

13. Schroeder WJ, Lorensen B, Martin K. The visualization toolkit: an object-
oriented approach to 3D graphics. 4th ed. Clifton Park (NY): Kitware; 2006.

14. Ayachit U. The paraview guide: a parallel visualization application. Clifton
Park (NY): Kitware, Inc.; 2015.

15. Ligda JP, Jordan W, Lorenzo N, Sano T, Schuster BE. Three-dimensional mi-
crostructural characterization using a femtosecond laser coupled focused ion
beam microscope. Aberdeen Proving Ground (MD): Army Research Labora-
tory (US); 2018. Report No.: ARL-TR-8295.

16. Bonse J, Krüger J, Höhm S, Rosenfeld A. Femtosecond laser-induced periodic
surface structures. J Laser Appl. 2012;24(4):042006.

17. Sedao X, Maurice C, Garrelie F, Colombier JP, Reynaud S, Quey R, Pi-
geon F. Influence of crystal orientation on the formation of femtosecond laser-
induced periodic surface structures and lattice defects accumulation. Applied
Physics Letters. 2014;104(17):171605.

18. Tan B, Venkatakrishnan K. A femtosecond laser-induced periodical surface
structure on crystalline silicon. Journal of Micromechanics and Microengineer-
ing. 2006;16(5):1080.

19. Grady L. Random walks for image segmentation. IEEE Transactions on Pat-
tern Analysis & Machine Intelligence. 2006;(11):1768–1783.

20. Van der Walt S, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD,
Yager N, Gouillart E, Yu T. scikit-image: image processing in python. PeerJ.
2014;2:e453.

11



List of Symbols, Abbreviations, and Acronyms

1D one-dimensional

2D two-dimensional

3D three-dimensional

B boron

B4C boron carbide

EBSD electron backscatter diffraction

FIB focused ion beam

HiTp high-throughput

HiTpE high-throughput experimental

LIPSS laser induced periodic surface structures

RWA random walker algorithm

SEM scanning electron microscope

Si silicon

SiC silicon carbide

VTI Virtual ToolKit image

VTK Virtual ToolKit
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