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(U) Theory of Radial Indications 

(U) Abstract:  Computed Tomography is usually not an option when 
inspecting manufactured parts in a production environment.  This is largely 
due to time constraints and allocation of resources.  X-Radiographic 
Inspection can be enhanced by capturing multiple angular radiographs of 
the item.  In this paper we derive a formula for the radius of rotation of a 
relevant indication based on the starting and ending position of the 
indication.   

(U) Research Innovation and Objective(s):  To derive a mathematical 
relationship between the distance between two arbitrary points, the rotation 
angle and the radius of rotation.   

(U) Impacts on Warfighter Mission:  Locating the position of relevant 
indications relative to the surface of the shell body allows for quality product 
to get to the warfighter.   

(U) Keywords:  Non Destructive Testing (NDT), Radius of Rotation, 
Relevant Indication, Radiographs 
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1. (U) Introduction 

(U) Radiographic testing is a non-destructive 
testing technique which allows for the detection 
of subsurface flaws.  It is applicable to most 
materials and can reveal fabrication and 
underlying assembly errors. [1] By way of 
oversampling, computed tomography gives the 
radiographer important information that is 
otherwise not available with a single radiograph.  
Due to budget and time constraints, computed 
tomography is usually not a viable option in a 
production setting.  Sometimes, two or more 
radiographs can be obtained.  In this setting, an 
object is radiographed at two angles, zero and 
some angle 𝜃.  If one finds a relevant indication 
that moves under rotation, theoretically its 
position within the shell body can be calculated.  
The goal of this paper is to identify where the 
relevant indication is located relative to the 
center of rotation.   

2. (U) Theory 

2.1 (U) Setup 

(U)  Consider a radiographic setup diagrammed 
in Figure 1 below.  We have an x ray source, some 
cylindrical object placed in the beam path for 
nondestructive testing and a detector.  Note that 
the geometry shown in figure 1 would yield the 
following radiograph shown in figure 2.  The axis 
of rotation is depicted with the straight vertical 

line with the relevant indication shown as a filled 
in circle.  Figure 3 depicts a top down view of our 
cylindrical object.  Referring to figure 3, assume 
the standard Cartesian coordinate system placed 
at the center of the circle.  Let us assume there is 
a relevant indication at point 𝑃1 located a distance 
r from the center of a cylindrical object.  We then 
rotate our object counter clockwise so that the 
relevant indication has moved to a point 𝑃2.  
Referring to the above discussion, distances 
labelled a, d in the figure are measurable known 
quantities obtainable from the radiographs.  We 
derive an equation for r via the steps below.   

 

Figure 1.  Radiographic Setup 

mailto:Walter.s.rose5.civ@mail.mil


Unclassified 

Approved for public release: distribution unlimited.   
 

 

Figure 2.  Not drawn to scale.  A radiograph of the 
scenario described in section 2.1.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Geometry where points lie in the fourth 
quadrant with clockwise rotation 

 

2.1.1 (U) Derivation  

(U) Referring to figure 3, a is the distance from 

the center to the point closest to the center of 

rotation, and d is the distance between the two 

points under consideration.  𝜃 is the angle of 

rotation and 𝜙 is the angle the rotated point 

makes with the horizontal.  We can write an 

equation for a using trigonometry.   

𝑎 = 𝑟cos(𝜃 + 𝜙)       (1) 

We expand this expression for a, and substitute 

sin𝜑 for √1 − cos2𝜙 

𝑎 = 𝑟cos(𝜃 + 𝜙) = 𝑟(cos𝜃cos𝜙 − sin𝜃sin𝜙)             

= 𝑟𝑐𝑜𝑠𝜃cos𝜙 − 𝑟sin𝜃√1 − cos2𝜙 

It is also evident from the figure that 

𝑎 + 𝑑 = 𝑟cos𝜙       (2) 

so that  

𝑎 + 𝑑

𝑟
= cos𝜙 

Therefore,  

𝑎 = (𝑎 + 𝑑)cos𝜃 − 𝑟sin𝜃√1 − (
𝑎 + 𝑑

𝑟
)

2

 

    =  (𝑎 + 𝑑)cos𝜃 − sin𝜃√𝑟2 − (𝑎 + 𝑑)2 

Solving for 𝑟2 we get,  

𝑟2 = {
𝑎 − (𝑎 + 𝑑)cos𝜃

sin𝜃
}

2

+ (𝑎 + 𝑑)2 

𝒓 =
√𝟐𝒂(𝒂 + 𝒅)(𝟏 − 𝐜𝐨𝐬𝜽) + 𝒅𝟐

𝐬𝐢𝐧𝜽
       (𝟑) 

Let us generalize figure 3 to the next four cases 
outlined below.  The four cases illustrated in 
figures 4a-4d are characterized by the fact that 
whatever quadrant the point is in before the 
rotation, it ends up in the same quadrant after 
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rotation.  This restricts us to rotation angles 
strictly less than 90 degrees.   

Consider the case in figure 4a.  This is where the 
initial point is at a small angle with the horizontal, 
and it’s rotated clockwise.  But the derivation 
doesn’t actually distinguish between which point 
is which, or the direction of rotation, so you’d 
expect to get the same answer.  Equations 1 and 2 
are applicable to figures 4a-4d and so we can 
expect the previous derivation to follow 
culminating in equation 3.   

 

Figure 4a.  Geometry where points lie in the 
fourth quadrant with clockwise rotation 

 

 

Figure 4b.  Geometry where points lie in the first 
quadrant with clockwise rotation 

 

Figure 4c.  Geometry where points lie in the 
second quadrant with clockwise rotation 

 

Figure 4d.  Geometry where points lie in the third 
quadrant with clockwise rotation 

 

We now consider a different geometry.  Consider 
the cases diagrammed in figure 5a-5b.  Here, the 
point moves to a different quadrant, but both 
points lie either to the left or to the right of the y-
axis.   
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Figure 5a.  Point initially in fourth quadrant ends 
up in first quadrant after rotation.   

 

Figure 5b.  Point initially in fourth quadrant ends 
up in first quadrant after rotation.   

In both figures 5a and 5b we derive an expression 
for r in a similar manner.   

Referring to figures 5a-5b  

𝑎 = 𝑟cos(𝜃 − 𝜙) = 𝑟cos𝜃cos𝜙 + 𝑟sin𝜃√1 − cos2𝜙 

𝑎 + 𝑑 = 𝑟cos(𝜙) 

Combining these two equations yields, 

𝑎 = (𝑎 + 𝑑)cos𝜃 + 𝑟sin𝜃√1 − (
𝑎 + 𝑑

𝑟
)

2

 

After simplifying and rearranging we obtain, 

𝑟2 − (𝑎 + 𝑑)2 = [
𝑎 − (𝑎 + 𝑑)cos𝜃

sin𝜃
]

2

 

This is identical to the equation obtained 
previously and so the rest of the derivation will be 
identical and we’ll again obtain equation (3).   

We now derive an expression for r for the last two 
cases.  Consider figures 6a-6b shown below.   

 

Figure 6a.  Point initially in third quadrant ends 
up in fourth quadrant after rotation.   
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Figure 6b.  Point initially in first quadrant ends 
up in second quadrant after rotation.   

 

As before, a is the distance from the center to the 
point closest to the center of rotation, and d is the 
distance between the two points under 
consideration.  𝜃 is the angle of rotation and 𝜑 is 
the angle the rotated point makes with the 
horizontal.  We also introduce the angle 𝛼, the 
angle the initial point makes with the horizontal.   

𝛼 = 180 − 𝜃 − 𝜙 

𝑎 = 𝑟cos𝛼 

𝑑 − 𝑎 = 𝑟cos𝜙 

Notice the difference between these equations to 

what we had before.  Using these equations and 

simplifying we would obtain this equation for r, 

𝑎 = 𝑟cos(180 − 𝜃 − 𝜙) 

𝑟 =
√2𝑎(𝑎 − 𝑑)(1 − cos𝜃) + 𝑑2

sin𝜃
   

It is important to note that this answer makes 
sense in the context of how we defined a and d.  
That is, in all the previous cases one travels from 
the center of rotation a distance a, until we reach 

the closest point.  Then one continues travelling 
an additional distance d in the same direction to 
get to the next point.  However, in pictures 6a and 
6b, one must travel a distance d, in the opposite 
direction to get to the next point.  So in this sense, 
d is assigned a negative value.   

 

3. (U) Results & Discussion 

(U) Using equation (3) we can demonstrate the 
applicability of our formula to 155mm shells.  
Consider an example where the following 
parameters were measured.   

𝑎 = 1.6 𝑖𝑛𝑐ℎ𝑒𝑠 

𝑑 = 0.15 𝑖𝑛𝑐ℎ𝑒𝑠 

𝜃 = 30 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 

Equation 3 yields a radius of rotation of 1.76 
inches or 44.7 mm.   

Intuitively, one might expect that as the distance 
between the points increases, the radius of 
rotation also increases.  This is confirmed in 
figure 7 below.  We fixed the distance a and the 
angle 𝜃 to the values displayed above.  The x-axis 
in figure 7 represents increasing the distance d, in 
increments of .01 inches.  The y axis is the radius 
of rotation in units of inches.   

 

 

Figure 7. Plot of the radius of rotation of a 
relevant indication while increasing the distance 
between the points.  𝜃 was set to thirty degrees.  
Distance a was fixed at 1.6 inches.   

 

Now, keeping the variables a and d fixed, we can 
increase the rotation angle 𝜃.  As the rotation 
angle increases, the calculated radius of rotation 
increases.  In figure 8 below, the radius of 
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rotation is plotted on the y axis in units of inches.  
The x axis is the angle 𝜃, in degrees.   

 

Figure 8. Plot of the radius of rotation of a 
relevant indication while increasing the rotation 
angle in increments of 5 degrees.  Distance a was 
fixed at 1.6 inches.  Distance d was fixed at 0.15 
inches.   

 

4. (U) Conclusion and Future Work 

(U) The formula derived here was confirmed 
qualitatively in recent investigations.  Further 
confirmation of the theory presented here using a 
combination of non-destructive testing and 
destructive methods will be explored.  Currently 
the radiographic laboratory is obtaining a high 
energy computed tomography system that will 
aid in experimental verification of the theory 
presented here.   
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