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Abstract—This work proposes novel hybrid mixed-membership blockmodels (HMMB) that integrate three canonical network models to
capture the characteristics of real-world interactions: community structure with mixed-membership, power-law-distributed node
degrees, and sparsity. This hybrid model provides the capacity needed for realism, enabling control and inference on individual
attributes of interest such as mixed-membership and popularity. A rigorous inference procedure is developed for estimating the
parameters of this model through iterative Bayesian updates, with targeted initialization to improve identifiability. For the estimation of
mixed-membership parameters, the Cramér-Rao bound is derived by quantifying the information content in terms of the Fisher
information matrix. The effectiveness of the proposed inference is demonstrated in simulations where the estimates achieve
covariances close to the Cramér-Rao bound while maintaining good truth coverage. We illustrate the utility of the proposed model and
inference procedure in the application of detecting a community from a few cue nodes, where success depends on accurately
estimating the mixed-memberships. Performance evaluations on both simulated and real-world data show that inference with HMMB is
able to recover mixed-memberships in the presence of challenging community overlap, leading to significantly improved detection
performance over algorithms based on network modularity and simpler models.
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1 INTRODUCTION

N ETWORK modeling and inference provide structural
and formation insights as well as information on the

key attributes of the population and individuals. Such infor-
mation, often not directly observable, is valuable in many
real-world applications. One example of such information
is the individuals’ community membership. Much work has
been done both in network modeling and inference and
in community detection. This section begins with a brief
survey of previous models closely related to ours and rep-
resentative works in community detection as an application
area for network modeling and inference. It ends with a
description of the overall structure and contributions of this
paper, which proposes a novel hybrid model to capture the
key characteristics of real-world networks, especially in the
presence of overlapping communities.

1.1 Background

The three canonical network models that compose the novel
hybrid model in this paper are the Erdős-Rényi model,
the Chung-Lu model, and the mixed-membership stochastic
blockmodels (MMB). Erdős-Rényi model the network with
a sparsity parameter that indicates the probability of any
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edge to be present [1]. This simple model led to elegant
mathematical properties such as the graph percolation theo-
ries, but does not express real-world network characteristics
such as node degree variation and social structures. Chung,
Lu, and Aiello model the node degrees variation using a
Power-Law distribution, commonly known as the Chung-
Lu model [2]. This model captures the realism of the small-
world property with a few nodes having much higher
degrees and the existence of a short path between any two
nodes. Wang and Wong explain the social structure through
group membership, using stochastic blockmodels where the
blocks represent the communities through which the nodes
interact based on their membership [3]. Airoldi et al. ex-
tend this model to allow mixed-membership for the nodes,
known as the mixed-membership stochastic blockmodels
(MMB) [4]. The mixed-membership begins to capture the
realism of overlapping communities which has received
more attention in recent years.

Some recent network models have also attempted to
capture the real-world network characteristics addressed in
this paper. For example, both the works by Soufiani and
Airoldi [5] and Yang and Leskovec [6] explicitly model the
community overlap by allowing each node to belong to
multiple communities. The model in Soufiani and Airoldi
has the elegant interpretation of a multiple-scale decom-
position referred to as the graphlet decomposition. Karrer
and Newman [7] incorporate the degree correction terms to
the blockmodels to capture both the community structure
and the varying node degrees. Peixoto [8] builds upon
Karrer and Newman’s model and extends it to include
multiple community memberships for each node. Peixoto’s
model is perhaps the closest to ours, so it will be in-
cluded as a baseline performance comparison for commu-
nity detection in Section 4. None of these existing models
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capture all three of the real-world network characteristics
in our model: community-based interactions with mixed-
membership, varying node degree, and sparsity.

Community detection, with much existing work [9], is
a natural application for network modeling and inference.
A well-known algorithm is the spectral method by New-
man [10] where detection is done through the eigenspec-
trum of the modularity matrix. Most existing algorithms
maximize modularity by partitioning the network into com-
munities (i.e. modules) that have much stronger interactions
within than between them [11]. Smith et al. exploit network
modularity through random walks on graph, for cued net-
work detection where a few nodes in the community of
interest is known a priori [12]. Some recent works detect
communities through membership estimates in a generative
model. Huang et al. propose a fast tensor method to the
mixed-membership stochastic blockmodels [13], and Ball
and Newman use the degree corrected stochastic block-
model (DCSB) [14]. Peixoto’s extension on the DCSB with
multi-community memberships [8] can be used for commu-
nity detection in the presence of overlapping communities.
Section 4 selects from these existing approaches as baseline
comparisons against our proposed model in performing
community detection.

1.2 Contributions

This paper proposes in Section 2 a novel hybrid mixed-
membership blockmodels (HMMB) that integrate three
canonical network models to capture the characteristics of
real-world networks: community-based interactions with
mixed-membership, varying node degree, and sparsity. The
hybrid model provides the richness for realism and en-
ables inference on useful latent attributes such as mixed-
membership and popularity. A rigorous inference proce-
dure is developed in Section 3 for estimating the model
parameters through iterative Bayesian updates with tar-
geted initialization to improve identifiability. For the mixed-
membership estimate, the Cramér-Rao bound is derived
from quantifying the information content of the network
data through Fisher information analysis. The effectiveness
of the proposed inference is demonstrated in simulations
where the estimated posterior intervals achieve covariances
close to the Cramér-Rao bound while maintaining good
truth coverage. As an application demonstration, the mixed-
membership estimate is used for community detection in
Section 4. With community overlap in both simulated and
real-world graphs, the HMMB-based approach is shown
to significantly outperform existing approaches based on
network modularity and simpler models.

2 HYBRID MIXED-MEMBERSHIP
BLOCKMODELS (HMMB)
For a growing body of real-world network interactions data,
a desirable statistical model should be rich and realistic
enough to capture its fundamental characteristics. Examples
of network interactions span a wide range of data types: in
emails [15], social encounters [16], trips between locations
[17], social network messages [18], tweets [19], relationship
between accounts [20], co-authorship [21], co-sponsorship

of legislations [22], and interactions between molecules and
proteins [23]. The statistical model should be interpretable
and intuitive so that estimating the model parameter will
provide useful information on the individuals and the na-
ture of their interactions. These are the key motivations for
the design of the hybrid mixed-membership blockmodels
(HMMB), which simultaneously captures the characteris-
tics of these real-world interaction networks: community-
based interactions with mixed-membership, varying node
degree, and sparsity. Section 4.3 demonstrates on DBLP
co-authorship network the advantage of the HMMB over
previous models which do not fully account for these char-
acteristics.

2.1 Model Description

Let G = (V ,E ) denote a weighted and directed network
consisting of N = |V | nodes. The edge set E is represented
as an adjacency matrix A where each element (i.e. edge
weight) aij is the number of interactions from node i to
node j. Modeling the interactions as Poisson point processes
over time, similar to Karrer and Newman’s model [7], each
weighted edge is drawn from a Poisson distribution with
expected value λijT (rate times duration):

aij ∼ Poisson(λijT ) (1)

where the duration T is a time constant in units appropriate
for the given application, and ‘∼’ denotes “is distributed
as”. For example, when modeling email interactions, T may
be measured in hours. The Poisson interactions has the
elegant interpretation as the accumulative count of Bernoulli
events in infinitesimally small time intervals. This interpre-
tation provides a connection back to the classical random
graph models with Bernoulli edges. The HMMB models
properties of the real-world networks, by combining three
canonical network models:

1) Power-Law degree distribution and small world net-
work: Chung-Lu model [2], [24]

2) Overlapping communities: mixed-membership
stochastic blockmodels [4], [25]

3) Sparsity: Erdős-Rényi model [1]

This is accomplished by modeling the rate of interaction
from each node i to j as:

λij = (λiλj)× (πT
i Bπj)× Iij (2)

where λiλj , the Chung-Lu term, captures variation in node
degrees (i.e. activity level), πT

i Bπj the mixed-membership
stochastic blockmodels term, capture community structure
through nodal mixed-membership π and the community
interaction block matrix B, and Iij , the Erdős-Rényi indi-
cator for turning edges “on” and “off”. The entire N × N
frequency matrix Λ can be expressed in matrix form:

Λ = (λλT) ◦ (ΠTBΠ) ◦ I (3)

where ◦ denotes the Hadamard product (element-wise
product). The Chung-Lu term λλT allows some nodes to
be much more active than the others. The frequency of in-
teraction between i and j is proportional to the activity level
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Fig. 1. Plate diagram of the full generative process of the HMMB, with K
communities, N nodes (individuals), and L lifestyles. The blue squares
indicate the model parameter and prior hyperparameters that are pre-
specified in a simulation. White circles are the latent model parameters
drawn from the prior distributuions. The red circle is the resulting network
drawn from the Poisson distribution according to the edge rates. The
dotted circles indicate the nodal parameters used to draw each edge.
The solid boxes specify the number of copies drawn for each parameter.

of both nodes. This well-known model is parameterized
by λ, a vector of N components and a hyperparameter α
for how quickly the prior Power-Law distribution for each
λi drops off: p0(λi) ∝ λαi . Empirical evidence from real-
world networks show that α is typically between−3 and−2
[26]. The mixed-membership stochastic blockmodels term,
ΠTBΠ, captures the overlapping community structure.
Π = (π1,π2, ...,πN ) is a K × N matrix representing each
node’s mixed-membership to the K communities. Each πi
sums to one. The model parameter B is a K × K block
matrix where each element bmn is the strength of interaction
between community m to n. Consequently, πT

i Bπj , cap-
tures the total strength of interaction from node i to node
j based on their mixed-memberships. Lastly, the sparsity
indicator matrix I acts as “on” and “off” switches for
each edge drawn from Bernoulli prior distribution with
hyperparameter s, the overall sparsity.:

Iij
iid∼ Bern(s) (4)

The mixed-memberships of each node are drawn from
prior distributions that represent the lifestyles of the indi-
viduals. L lifestyles are defined, each with K pseudocounts
indicating the lifestyle’s tendency to participate in each
community membership, represented by hyperparameter
X , a K × L mixed-membership pseudocount matrix. The
lifestyle indicator vector for each node i, li, is drawn from
the Multinom(1,φ) prior distribution where hyperparam-
eter φ is a simplex vector of L components indicating
the probability of belonging to each lifestyle. Finally, the
mixed-membership for each node i, πi is drawn from the
Dirichlet(Xli) prior distribution where Xli is the mem-
bership pseudocounts of the lifestyle i belongs to. This
generative procedure for the mixed-membership is useful
for simulating network data, but in real-world data sets,
information on the lifestyles is typically unavailable. Fig-
ure 1 presents a plate diagram [27] laying out the generation
process under HMMB.

Interactions between nodes in real-world networks often

increase or decrease due to changes both at the individual
and the network level. The HMMB does not explicitly model
such dynamics. However, existing works have included
dynamics for the components of the HMMB (e.g. dynamic
mixed-membership blockmodels [28]), which point to ways
that HMMB may be extended with dynamics in future work.

2.2 Parameter Identifiability

The HMMB is a composite of three identifiable network
models; inference will be performed on one identifiable
model at a time conditional on the parameters from the
other two. This is detailed in Section 3.1. The Erdős-Rényi
model has only the sparsity parameter s, and each edge
switch Iij is inferred independently; therefore, it is iden-
tifiable [29]. The Chung-Lu node degree parameter λ is
shown to be identifiable by Perry and Wolfe [30]. The mixed-
membership blockmodels are known to be identifiable, but
belong to the general class of mixture models known to
have symmetric multi-modal likelihood [31]. This multi-
modality may present challenges in finding the true mode;
however, this issue is mitigated by inference strategies such
as targeted initialization and multiple starting points [25],
[32], [33].

Joint model identifiability of the HMMB is not guaran-
teed by identifiability of its individual component models.
Considering the joint model of Equation (3), identifiability
issue arises when there exists a set of invariant parameter
mappings across the three component model terms that
result in the same Λ, and therefore the same likelihood.
Specifically, potential invariant mappings across the Chung-
Lu and the blockmodels terms, (λλT) ◦ (ΠTBΠ), must be
examined. The Erdős-Rényi term I is a binary matrix of
edge switches; therefore, invariant mappings on this term
do not exist.

First, consider a positive scalar mapping on the Chung-
Lu parameter, λ 7→ wλ. The positive scalar multiplier w
cannot be absorbed by the mixed-membership matrix Π
because of its simplex constraint: 1TΠ = 1T, where 1 is
a vector of ones. However, it can be easily absorbed by
the block matrix with mapping, B 7→ w−2B. For special
cases where there exists a subset of communities K that
do not overlap in nodal memberships with the rest of the
communities, equivalent invariant mappings exist on the
subspace: λVK 7→ wλVK and BK K 7→ w−2BK K , where
VK is the set of nodes with memberships inside K .

More generally, consider any linear transform mapping
on the Chung-Lu parameter, λ 7→ Wλ, where W =
(w1,w2, ...,wN ) is an N × N invertible matrix and each
wi a vector of N elements. Each ijth term in the Chung-Lu
term (λλT) becomes (wT

i λ)(w
T
j λ), a quadratic function of

the original λ with all cross terms wimwjnλmλn. Invariance
requires:(

N∑
m=1

wimλm

)(
N∑
n=1

wjnλn

)
= λiλj for all i, j, λi, λj

(5)
The only linear transformation that meets this requirement
is a scalar product of the identity matrix, W = wI , return-
ing back to the scalar case addressed above. Having con-
sidered all potential invariant mappings across the HMMB
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component model terms, the HMMB identifiability can be
summarized in the following theorem:

Theorem 1 (Identifiability of Hybrid Mixed-Membership
Blockmodels). The hybrid mixed-membership blockmodels are
identifiable except for the arbitrary scalar multiplierw between the
Chung-Lu parameters λ and the block matrix B in the invariant
mappings

λ 7→ wλ

B 7→ 1

w2
B (6)

that result in the same network interaction rates Λ and likelihood
on the network data. For special cases where there exists a subset
of communities K that do not overlap in nodal memberships with
the rest of the communities:

λVK 7→ wλVK

BK K 7→
1

w2
BK K (7)

where VK is the set of nodes with memberships inside K .

The identifiability issues above are mitigated in the
proposed inference procedure in Section 3.1, with specific
strategies including the profile likelihoods, targeted pa-
rameter initializations, and multiple independent inference
chains. Using the proposed inference procedure, identifiabil-
ity is demonstrated empirically in Section 3.3 on networks
of convenient sizes (hundreds of nodes). As the network in-
creases in size, the number of parameters effectively grows
at a rate of O(N logN) as the number of communities each
node is in grows at a sub-linear rate of O(logN) and is
eventually capped at a constant. The number of observed
interactions grows typically at a rate of O(N logN) for real-
istic networks, to catch up with the number of parameters.
Therefore, identifiability scales well with increasing network
size.

3 INFERENCE AND PERFORMANCE BOUND WITH
HMMB
Inferring the parameters under HMMB on an observed
network provides valuable information that are not typi-
cally observable. For example, the mixed-memberships offer
insights on the community structure and reveal members of
each community. As an example, Section 4.1 demonstrates
the application of community detection using the mixed-
membership estimates. Individual activity levels, λ, and the
strength of interactions between and within communities,
B, also provide useful information. In applications involv-
ing social influence, node activity levels and community
interaction are central to the analysis of the amount and
structure of the influence [34]. Lastly, inferring the model
parameters enables prediction of future interaction and gen-
eration of network data with similar characteristics.

This section describes the Bayesian joint inference pro-
cedure through iterative updates. Targeted initializations of
the parameters are designed to improve identifiability. A
fully Bayesian procedure is proposed, with an alternative
maximum posterior update for some of the parameters for
faster convergence at a cost on accuracy. With a special inter-
est in the community membership, this section characterizes

Fig. 2. Gibbs sampling procedure for iterative updates on the parame-
ters one at a time, conditional on the other parameters. There are K
communities and N nodes in the network.

the information content of network data and the theoretical
performance bound on the mixed-membership estimates.
Lastly, the proposed estimation procedures are evaluated
and compared across a range of reasonable model parameter
settings, demonstrating empirically the parameter identifia-
bility of the HMMB.

3.1 Bayesian Parameter Estimation Procedure
Parameter estimation in HMMB is performed through
Bayesian methods [35] using iterative Monte Carlo updates.
Given the observed network data, A, the goal is to obtain
the posterior distribution on the parameters of interest,
namely the mixed-memberships, Π, the activity level (node
degree), λ, of each node, and the community interaction
structure, B. The posterior distributions capture both the
likely values and the uncertainty of the estimates, which is
a key advantage of the Bayesian methods. In applications
where decisions are made based on the inferred parameters,
quantifying the uncertainty of the estimates is especially
desirable. The edge switches, I , may not be of particular
interest but still takes part in the posterior distribution. The
joint posterior distribution is proportional to the likelihood
times the prior (note that we choose the likelihood function
notation conditional on data to put an emphasis on the
parameters as the argument):

p(Π,λ,B, I|A) ∝ L(Π,λ,B, I|A) p0(Π,λ,B, I) (8)

with the joint likelihood function, according to Equation (1),
(2), and (4):

L(Π,λ,B, I|A)

=
∏
i,j∈I1

[Poisson(aij ;λij) s]
∏
i,j∈I0

[
δaij0 (1− s)

]
∝ exp

( ∑
i,j∈I1

[aij log(λij)− Tλij ]
) ∏
i,j∈I0

δaij0

s|I1|(1− s)|I0| (9)

where I1 is the set of “on” edges, I0 the set of “off” edges,
and the indices i, j over them under the products refer to
each of the edges in the set. The δaij0 term makes sure
that only edges with no observed interaction can be “off”.
The joint posterior distribution is difficult and inefficient to
sample directly. Therefore, the parameters will be iteratively
updated one at a time, conditional on the other parameters.
This is commonly known as Gibbs sampling for multivariate
distributions [35]. Figure 2 shows each step of the Gibbs
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update for HMMB. Two flavors of the Gibbs updates are
developed. The first is purely based upon Markov Chain
Monte Carlo (MCMC) by sampling from the conditional
posterior distribution in each step. The second is a hybrid
of sampling and maximizing the conditional posterior dis-
tribution, commonly known as the Monte Carlo Expectation
Maximization (MCEM) [36], [37]. The MCMC approach has
the theoretical property of converging to the joint posterior
distribution, while the MCEM approach sacrifices this prop-
erty for faster convergence with the greedy maximization
steps. For both flavors, each parameter update step and
the governing likelihood function, prior probability, and
posterior probability are described in detail in Section 3.1.2
and 3.1.3. A performance comparison between the MCMC
and MCEM procedures is given later in Section 3.3 with
discussion of results in Table 1.

The number of communities (K) remains fixed under
each Gibbs run. As the true number of communities is
typically unknown with real-world networks, a generous
number is chosen to ensure the model has enough capac-
ity to capture the community structure. Inference may be
performed using a number of reasonable values for K .
Allowing the number of communities to change during the
inference will require proposal steps to jump back and forth
between models with different parameter spaces. While
allowing inference to find the optimal number of blocks is
an attractive feature, designing the effective proposals for it
is a non-trivial task and an interesting direction for future
work.

Due to the potential identifiability challenges with multi-
modal likelihood of mixture models discussed in Section 2.2,
several independent Monte Carlo chains are run to max-
imize the chance for finding the true mode. At the end
of the run, the chain that finishes with the highest joint
posterior probability is selected. This “best” chain has found
the highest mode on the complex posterior probability
surface, and therefore returns the best representation of the
posterior distribution. More details on Bayesian inference
with independent chains can be found in Bayesian Data
Analysis by Gelman et al. [35].

The computational complexity of the proposed inference
procedure is O(N logN), according to the following run-
time analysis. The bottleneck of the proposed procedure
lies in the evaluation of the likelihood functions in Equa-
tion (11), (15), and (18) (to appear in Section 3.1.2). Evaluat-
ing these likelihood functions in Gibbs iteration, every edge
with the switch Iij turned “on” requires a matrix product
in the mixed-membership blockmodels term, πT

i Bπj . Al-
though the number of communities grow with the size of
the network, the number of communities each node takes
membership in should not. In other words, in real-world
networks, the number of communities each node partici-
pates in is limited by that individual’s capacity so should
not grow unbounded with network size. As the size of the
network grows, the mixed-membership vectors πi becomes
increasingly sparse, making the cost of evaluating πT

i Bπj
capped at some constant value. So the overall computational
complexity scales with the number of “on” edges, which is
N logN in real-world networks. Finally, inference with the
mixed-membership model has been proven to be scalable
and performed on large networks by Gopalan and Blei

[38] through variational inference. Scaling up the HMMB
inference to large networks as future work will likely in-
volve similar approximate inference, and efficient proposal
steps similar to Peixoto’s work with the degree-corrected
stochastic blockmodels [39].

3.1.1 Parameter Initialization

To mitigate the potential challenge in identifiability dis-
cussed in Section 2.2 and shown in Figure 3, each indepen-
dent inference chain is initialized to values likely closer to
the true mode to increase its chance for converging to it.
These initialization steps are described in detail here.

Good initial values of the mixed-membership estimate,
Π0, can be obtained by a fast segmentation algorithm on the
network (e.g. spectral clustering by [10]). After the segmen-
tation, nodes belonging to the same cluster are initialized
to be members of the same community. This way, nodes
with strong interactions will likely be initialized to the same
communities. The edge switches are simply initialized to
“on” for each edge with observed interaction, and “off” for
all other edges. This initialization, I0, is also the maximum
posterior estimate. A good initialization of the node degree
parameter λ0 is to simply set it to values proportional to
the average weight of the observed in and out edges of each
node:

λ0i ∝
∑
j aij +

∑
j aji∑

j I
0
ij +

∑
j I

0
ji

(10)

This initialization is also the unbiased estimator for the
Chung-Lu model with desirable asymptotic properties [40].
The proportionality expression here accommodates an ar-
bitrary relative scaling between λ and B which will be
explained shortly. Because within-community interactions
are typically stronger than the between-community interac-
tions, the block matrix B0 is initialized to roughly diagonal
with small values in the off-diagonal entries.

As mentioned in Section 2.2, there exists one param-
eter redundancy in the shared relative scale between the
block matrix, B and the node degree parameters λ. This
issue can be mitigated by fixing the diagonal entries of
the block matrix B to a precomputed value during the
Gibbs sampling. It is equivalent to taking a profile slice of
the likelihood functions at these fixed values. A reasonable
precomputed value is the maximum posterior estimate from
the gradient ascent described by Equation (24) in Section
3.1.3 with uniform λ, after a preliminary run of the Gibbs
sampling with a diagonal block matrix. This precomputed
value represents the model’s best fit on the network using
the within-community interactions (i.e. the diagonal of B).

If prior knowledge (e.g. the memberships on a few nodes
may be known or observed) or a reasonable estimate on
some of the parameters is available, one can apply the
profile likelihood approach by fixing them to the prior
value. An alternative to the profile likelihood approach is
to introduce informative priors on these parameters instead
of fixing them to a value.

Finally, the overall inference procedure is summarized in
Figure 3.
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Require: Network data in adjacency matrix A
for each independent inference chain do

initialize Π0 using labels from spectral clustering
initialize λ0 proportional to the observed node degrees
initialize B0 to a roughly diagonal matrix
initialize I0 to be “on” only for edges with interactions
repeat {Gibbs sampling updates}

for i = 1 to N do
update λt+1

i conditional on λt
+

(-i),Π
t,Bt, It

end for
for m,n = 1 to K do

update bt+1mn conditional on Bt+

(-mn),λ
t+1,Πt,It

end for
for i = 1 to N do

update πt+1i conditional on Πt+

(-i),B
t+1,λt+1,It

end for
for i, j = 1 to N do

update It+1
ij conditional on Πt+1,Bt+1,λt+1

end for
fix diagonal of B after some updates
store Πt+1,Bt+1,λt+1, It+1 if t+ 1 > burn-in

until convergence or maximum iteration reached
end for
return Posterior samples on Π,λ,B, from the chain with
the highest posterior probability

Fig. 3. HMMB Bayesian inference procedure using Gibbs sampling

3.1.2 Bayesian Sampling Updates (MCMC)

After the parameters are initialized properly, the main
computation through iterative updates begins, as shown
in Figure 2 and 3. This section presents the fully Bayesian
approach using the MCMC sampling. Because most of the
posterior densities in the updates do not have closed-form
distributions, the Metropolis-Hasting algorithm is used
to accept or reject the proposal based on the posterior
ratio between the current sample and the proposal. When
the proposal distribution is not symmetric, a Hasting
correction ratio is added to maintain the detailed balanced
condition. As mentioned previously in Section 3.1.1, a few
parameters may be fixed. All other parameters will be
updated iteratively as described below:

Update λt+1
i conditional on λt

+

(-i),Π
t,Bt, It: The notation

(-i) is for vectors with element i removed. For the node
degree update on each node i conditional on the other
parameters, the governing conditional likelihood function,
based on Equation (1) and (2), is:

L(λi|λ(-i),Π,B, I,A) =

exp

( ∑
j∈Iij=1

[
aij log(λiλj)− λiλj T πT

i Bπj
]
+

∑
j∈Iji=1

[
aji log(λiλj)− λiλj T πT

j Bπi
])

(11)

where the index j under the sums refer to all the nodes with
“on” edges from node i (Iij = 1) or to node i (Iji = 1). And

the posterior distribution is:

p
(
λi|λ(-i),Π,B, I,A

)
∝
L
(
λi|λ(-i),Π,B, I,A

)
p0(λi) (12)

Real-world networks often follow Power-Law degree distri-
bution [2], which gives a natural prior for λi:

p0(λi) ∝ λαi (13)

Typically, the exponent α is between −3 and −2 in real-
world networks [26], so one may simply fix α to a rea-
sonable value or update it as another step in the MCMC
with a symmetric Normal proposal distribution, αt

+ ∼
Normal

(
αt, σ2

α

)
, and posterior, p(α|λ) ∝

∏
i∈1:N λ

−α
i .

For updates on λi, a symmetric Normal proposal distri-
bution is used, λt

+

i ∼ Normal
(
λti, σ

2
λ

)
. The variance σ2

λ of
the Normal proposal controls the step size of the proposal
from the current sample. The acceptance probability, aλ, of
the proposed update is:

aλ =

min

p
(
λt

+

i |λ(-i),Π,B, I,A
)

p
(
λti|λ(-i),Π,B, I,A

) , 1
 , if λt

+

i > ελ

0, otherwise
(14)

No Hasting correction ratio is needed because the proposal
distribution is symmetric. Note that the new proposal is
automatically rejected if it is below the minimal value
ελ typically set close to zero because nodes cannot have
negative degrees. So with probability αλ, the proposed
sample will be accepted (i.e. λt+1

i = λt
+

i ), otherwise, the
current sample will be kept (i.e. λt+1

i = λti ).

Update bt+1
mn conditional on Bt+

(-mn),λ
t+1,Πt, It: For

updating the block matrix one element, bmn, at a time
conditional on the other parameters, the governing
conditional likelihood function is:

L
(
bmn|B(-mn),λ,Π, I,A

)
=

exp

( ∑
i,j∈I1

[
aij log(π

T
i B
∗πj)− λiλj T πT

i B
∗πj

])
(15)

where B∗ consists of the element being updated, bmn and
the other elements B(-mn). The posterior distribution is:

p
(
bmn|B(-mn),λ,Π, I,A

)
∝

L
(
bmn|B(-mn),λ,Π, I,A

)
p0(bmn) (16)

Typically, a flat prior is used for bmn. However, given prior
knowledge on the structure of the block matrix, one may
add an informative prior accordingly (e.g. prior with mass
at zero on off-diagonal elements for sparse B). Similar to
the node degrees parameter update, a symmetric Normal
proposal distribution is used, bt

+

mn ∼ Normal (btmn, σB).
With a non-negative constraint, the acceptance probability,
ab, of the proposed update is:

ab=

min

p
(
bt

+

mn|B(-mn),λ,Π, I,A
)

p
(
btmn|B(-mn),λ,Π, I,A

) , 1
 , if bt

+

mn≥0

0, otherwise
(17)
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Update πt+1
i conditional on Πt+

(-i),B
t+1,λt+1, It: For the

mixed-membership updates on each node i, the governing
conditional likelihood function, similar to the likelihood for
the block matrix is:

L(πi|Π(-i),B,λ, I,A) =

exp

( ∑
j∈Iij=1

[
aij log(π

T
i Bπj)− λiλj T πT

i Bπj
]
+

∑
j∈Iji=1

[
aji log(π

T
j Bπi)− λiλj T πT

j Bπi
])

(18)

And the posterior distribution is:

p
(
πi|Π(-i),B,λ,I,A

)
∝
L
(
πi|Π(-i),B,λ,I,A

)
p0(πi) (19)

Without additional information on the different lifestyles of
the population, as is typically the case, one can simply use a
flat prior p0(πi) ∝ 1. Because the space for πi is a simplex,
a logistic-Normal proposal function is used, inspired by
the work from [41]. Let πti denote the current sample on
the mixed-membership of i, the proposed update, πt

+

i is
governed by:

πt
+

i ∼ logistic
(

Normal
(
logit(πti),Σπ

))
(20)

where the magnitude of a typically diagonal Σπ controls
the step size of the proposal from the current sample. The
acceptance probability, aπ , of the proposed update is:

aπ=min

(
p(πt

+

i |Π(-i),B,λ, I,A)Q(πti ;π
t+

i )

p(πti |Π(-i),B,λ, I,A)Q(πt
+

i ;πti)
,1

)
(21)

where Q(πti ;π
t+

i ) is the logistic-Normal density function
with mean πt

+

i and covariance Σπ evaluated at πti . The
Hasting correction ratio Q(πti ;π

t+

i )/Q(πt
+

i ;πti) is needed
because the logistic-Normal proposal is not symmetric.

Update It+1
ij conditional on Πt+1,Bt+1,λt+1: Lastly,

updating the edge switches, Iij , is fairly straight forward
because each switch is conditionally independent of each
other. For edges with observed interactions (i.e. aij > 0), Iij
must be 1. For edges with zero observed interactions (i.e.
aij = 0), the governing posterior distribution is:

p (Iij = 1|B,λ,Π,A)

=
p (Iij = 1|B,λ,Π, aij = 0) p0(Iij = 1)

p(aij=0, Iij=1|B,λ,Π) + p(aij=0, Iij=0|B,λ,Π)

=
exp(−λijT )s

exp(−λijT )s+ (1− s)
(22)

where λij is calculated using Equation (2) on the current
parameter samples. Updating It+1

ij can simply be done by a
Bernoulli draw, It+1

ij ∼ Bern(
exp(−λij×T )s

exp(−λij×T )s+(1−s) ). The spar-
sity parameter, s, can be set to a reasonable value or updated
as another step in the MCMC with a closed-form posterior,
st+1 ∼ Beta(

∑
i,j∈1:N Iij +1, N2 −

∑
i,j∈1:N Iij +1). When

the network is large, it may become infeasible to update Iij
for every edge such that aij = 0. A practical implementation

is to simply turn all such Iij off which is equivalent to
fixing I at the maximum posterior estimate. Alternatively,
one may selectively update such Iij only on edges likely
with low frequency λij .

3.1.3 Maximum Posterior Updates (MCEM)
An alternative to the MCMC procedure is to maximize
the posterior probability when updating some of the
parameters. This is commonly known as the Monte Carlo
Expectation Maximization (MCEM) [36], [37]. The MCEM
may converge faster due to its greedy nature, but does not
capture the full posterior distribution and is more prone
to being trapped in local modes. Because this paper takes
a special interest in estimating the posterior distribution
of the mixed-memberships, the MCEM developed here
maximizes the posteriors on the node degree and block
matrix parameters. Maximization is done through gradient
ascent. A performance comparison between the MCMC
and MCEM procedures is given later in Section 3.3 with
discussion of results in Table 1.

Alternative update for λt+1
i conditional on

λt
+

(-i),Π
t,Bt, It: Maximizing the posterior on the node

degree parameters, shown in Equation (12), is done by the
following gradient ascent:

λt+1
i =λti + γtλ

 ∑
j∈Iij=1

(
aij
λti
− λtj T πT

i Bπj

)
+

∑
j∈Iji=1

(
aji
λti
− λti T πT

j Bπi

)
− α

λti

 (23)

where γtλ is the step size, and the gradient is the derivative
of the log posterior evaluated at λti. A sensible update
strategy is the batch mode where all of the λi take one
gradient ascent step together at a time. This is not only
more efficient to compute, but also makes sense for a more
balanced climb in the space spanned by λ.

Alternative update for bt+1
mn conditional on

Bt+

(-mn),λ
t+1,Πt, It: Similarly, the posterior on the block

matrix parameters, shown in Equation (16), is maximized
by:

bt+1
mn = btmn+γ

t
B

∑
i,j∈I1

[(
aij

πT
i B

tπj
− λiλj T

)
πimπjn

]
(24)

where γtB is the step size, and the gradient is the derivative
of the log posterior evaluated at btmn. The batch update is
again a sensible strategy where all of the bmn are updated
together one step at a time.

3.2 Fisher Information and Performance Bound on
Mixed-Membership Estimate

With a focus on estimating the mixed-memberships for its
application in community detection (see Section 4), this
section derives a theoretical membership estimation per-
formance bound through Fisher information analysis. This
result reveals what makes certain network data more in-
formative than the others. It also provides the best case
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estimation performance. Such knowledge can help guide
researchers in collecting enough and the most informative
data, to achieve the desired accuracy and precision on the
membership estimate.

The results presented here consist of the Fisher informa-
tion matrix, Cramér-Rao bound, and the asymptotic poste-
rior distribution of the mixed-membership estimate πi for
each node i, conditional on the other parameters. This is
a best case scenario because in practice the estimates on
the other parameters have uncertainty and possibly bias as
well. Fisher information analysis of the data on the mixed-
membership begins with the log of the likelihood function
in Eqaution (18). Because πi stays inside a (K − 1) simplex,
the redundant dimension is removed through the following
reparameterization:

πi =

[
πi,1 πi,2 ... πi,K−1 1−

K∑
k=1

πik

]
(25)

where the K-th component is entirely determined by the
others. The Fisher information matrix on the reparameter-
ized πi is (K − 1) × (K − 1) in size, and each of the mn-
th element is the negative expected curvature of the log
likelihood function:

I(πi)mn

= −EA

[
∂2`(πi|Π(-i),B,λ, I,A)

∂πi,m∂πi,n

]

=T

( ∑
j∈Iij=1

λiλj(Bm•πj−BK•πj)(Bn•πj−BK•πj)

πT
i Bπj

+

∑
j∈Iji=1

λiλj(π
T
j B•m−πT

j B•K)(π
T
j B•n−πT

j B•K)

πT
j Bπi

)
(26)

where m,n ∈ 1, 2, ..., (K − 1) and Bm• denotes the m-th
row of matrix B. While the precise information content on
each membership estimate is captured by the entire Fisher
information matrix, each of them-th diagonal element of the
Fisher information matrix, I(πi)mm, gives an interpretable
first order indication on the information content of the data
on node i’s membership to community m:

I(πi)mm = T

( ∑
j∈Iij=1

λiλj (Bm•πj −BK•πj)
2

πT
i Bπj

+

∑
j∈Iji=1

λiλj(π
T
j B•m − πT

j B•K)2

πT
j Bπi

)
(27)

Agreeing with intuition, this quantity shows that informa-
tion content is proportional to the amount of time, T , during
which data is collected. It also accumulates over all the in-
coming and outgoing edges to i. The information content of
each such edge is proportional to the node degrees product
λiλj (the Chung-Lu term), and is maximized when either
most of the interactions between i and j can be explained
through community m or none of such interactions can be
explained through community m (i.e. making the squared
difference term large), normalized by the total interaction
strength based on community memberships. This result

reveals the kind of edges that contributes the most to the
information content towards estimating each community
membership of a given node.

The Fisher information matrix leads to the asymptotic
posterior distribution of the mixed-membership πi of each
node i, through the Bernstein-von Mises Theorem [42] under
mild regularity conditions:

Theorem 2 (Asymptotic Posterior Distribution of
Mixed-Membership). Let A be a network generated by
the hybrid mixed-membership blockmodels. The conditional
posterior distribution of node i’s mixed-membership πi converges
asymptotically, with increasing network data, in distribution to
Normal with mean at the true value and covariance equal to the
inverse of the Fisher information matrix derived in Equation (26):

πi |Π(-i),λ, I,B,A
D−→ Normal

(
πi,I(πi)−1

)
(28)

The inverse of the Fisher information matrix, I(πi)−1, is
also commonly known as the Cramér-Rao lower bound,
which gives the minimal covariance of the maximum likeli-
hood estimate. The Bernstein-von Mises Theorem provides
a Bayesian interpretation of the Cramér-Rao lower bound in
Theorem 2. As a best case analysis by conditioning on the
other parameters, this bound becomes tight asymptotically
as the parameter estimates converge toward their true val-
ues with an increasing amount of data. This result is useful
for characterizing the best case performance in inferring
the mixed-membership parameters given the amount of
network data available. Practically, this informs researchers
on how much data to collect in order to meet the desired
estimation performance.

3.3 Parameter Estimation Performance Characteriza-
tion

This section characterizes the performance of the estima-
tion procedure described above, on networks simulated
over a range of reasonable and realistic values on the key
model parameters. Overall, the proposed procedure with
targeted parameter initialization performs well by cover-
ing the true values with posterior intervals of width close
to the theoretical Cramér-Rao bound, across a reasonable
range of parameter settings. This demonstrates empirically
the parameter identifiability of the HMMB. In challenging
settings where the community structure is no longer distinct
due to strong between-community interactions or highly
mixed memberships, the procedure’s performance drops off
gracefully and remains adequate, highlighting the strength
of inference with HMMB for networks with overlapping
communities.

The estimation procedure is evaluated across the four
main network features as they are varied by sweep-
ing through the corresponding model parameters, as de-
scribed in Section 2 and Figure 1: (1) strength of between-
community interactions governed by the block matrix B,
(2) level of mixed-memberships by the mixed-membership
pseudocount matrix X , (3) number of high-degree nodes
by the Power-Law exponent α, and (4) network density
by the sparsity parameter s. Figure 4 provides visualiza-
tion of 256-node network samples over a time span of
100 units with four communities across these features. A
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TABLE 1
Truth coverage* of the 90% posterior interval and the interval width in parentheses

Estimation strategy

Network
setting

Parameter
of interest

MCMC with full
init strategy

MCMC with
parameter init
without fixing

block diag

MCMC with no
init strategy

MCEM with full
init strategy

Baseline
network

Π 83.0% (0.089) 69.4% (0.098) 57.7% (0.171) 82.3% (0.082)

λ 85.9% (0.046) 92.4% (0.095) 51.5% (0.148) –

B 70.7% (0.049) 67.0% (0.026) 62.3% (0.007) –

Strong
between-

community
interactions

Π 78.4% (0.102) 71.0% (0.112) 61.1% (0.148) 74.8% (0.095)

λ 84.0% (0.043) 91.5% (0.095) 42.7% (0.118) –

B 74.0% (0.066) 66.7% (0.056) 64.7% (0.013) –

*Truth coverage is measured as the percentage of the instances where the posterior interval covers the true value.

node’s color is determined by its memberships to the first
three communities which fill the Red-Green-Blue channels.
Membership to the fourth community makes a node darker
as it does not contribute to the three color channels. Larger
nodes are those with higher degrees. Figure 4a shows the
baseline setting with a small fraction of high-degree nodes
(Power-Law exponent α = −2.9), medium network density
(s = 20%), and moderate levels of between-community
interaction and mixed-memberships:

B =

2.3 0.07 0 0
0.3 2 0 0
0 0 2.5 0.4
0 0.3 0 3

 (29)

X =

 5 0.1 0.1 1
0.1 5 1 0.1
0.1 0.1 2 0.5
0.1 1 0.3 3

 (30)

Each node adopts one of the four lifestyles (the rows in X)
with equal probability, φ = [ 0.25 0.25 0.25 0.25 ]. The baseline
case has overlapping communities but each of the four com-
munities still has its distinct cluster. Figure 4b shows a net-
work sample with strong between-community interactions,
generated with the baseline setting but multiplying the off-
diagonal entries of the block matrixB by 3. Distinct clusters
are no longer visible for each community. Figure 4c shows a
network sample with a high level of mixed-memberships
seen in the mixed-colors of most nodes, by keeping the
baseline setting but multiplying the off-diagonal entries of
the pseudocount matrix X by 3. Again, distinct clusters are
not visible. Figure 4d shows a network sample with the
baseline setting but lowering the network density s to 5
percent. For brevity, a visualization with more high-degree
nodes is skipped here, because it looks just like the baseline
case with more high-degree nodes.

A typical output of the Bayesian estimation procedure
is an interval that covers p percent of the posterior distribu-
tion. A desirable posterior interval captures the true value of
the parameter p percent of the time in the narrowest interval

possible. Therefore, performance can be summarized by the
frequency of truth coverage and the interval width [35]. For
each network setting, the results are averaged over inference
on 25 simulated networks. The parameter estimates of inter-
est are the mixed-memberships Π, the node degrees λ, and
the block matrix B. For brevity, results are reported as the
average over all the nodes and communities. As discussed
in Section 3.1.1, there exists a arbitrary scaling between the
block matrix and the node degree parameters, which is dealt
with by rescaling them to match the truth before evaluation.
Because the block matrix diagonal is scaled according to the
truth, it is not included in the evaluation.

Table 1 shows a comparison between variants of the pro-
posed estimation procedure, on networks with the baseline
setting (see Figure 4a) and the more challenging setting with
strong between-community interactions (see Figure 4b). The
variants include the MCMC procedure described in Sec-
tion 3.1.2 with no initialization strategy, partial initializa-
tion strategy (without fixing the block matrix diagonal),
and full initialization strategy as described in Section 3.1.1.
The MCEM procedure described in Section 3.1.3 with full
initialization is also included as a comparison.

The first three columns of results in Table 1 show that
the full initialization strategy described in Section 3.1.1
improves the estimation performance, evident in the bet-
ter truth coverage and generally narrower interval. The
targeted parameter initialization started the MCMC in a
more feasible region of the large parameter space, increas-
ing the likelihood of converging upon the true posterior
mode. Fixing the block matrix diagonal to a precomputed
value effectively addressed the identifiability issue from the
arbitrary scale between the block matrix diagonal and the
node degrees. The coverage for λ under partial initialization
strategy is a few percentage points better than that under
full initialization, but at the big cost of doubling the interval
width. Without fixing the block matrix diagonal, the MCMC
visits a wide range of values for λ due to the arbitrary scale,
resulting in a wide posterior interval that more likely covers
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(a) (b)

(c) (d)

Fig. 4. Networks layouts with (a) baseline settings, (b) strong between-
community interactions, (c) highly mixed memberships, and (d) sparse
edges. A node’s color is determined by its memberships to the first three
communities which fill the Red-Green-Blue channels. Membership to the
fourth community makes a node darker as it does not contribute to the
three color channels. Larger nodes are those with higher degrees.

the truth. This does not indicate better performance for λ
under partial initialization.

Comparing the first and the last columns in the result
shows that the MCEM procedure performs roughly on par
with the MCMC procedure, with slightly lower coverage
and narrower intervals. This is not surprising due to the
more greedy nature of the MCEM in maximizing the pos-
terior when updating λ and B. As a result, MCEM does
not render posterior distributions on λ and B, so the result
on those parameters is left blank. Under both the baseline
and the strong between-community interactions settings,
the MCEM procedure found the posterior mode in slightly
fewer iterations than MCMC. In this simulation, there is not
enough gain in convergence speed for MCEM to justify sac-
rificing the the nice property of capturing the full posterior
distribution.

As the MCMC procedure with full initialization strat-
egy provides the best performance, it will be the focus
of evaluation for the rest of this section. The first column
of Table 1 shows that the 90% posterior interval slightly
under-covers the true Π and λ by a few percentage points
in the baseline setting. This is caused by fixing the block
matrix diagonal to pre-computed values with some errors.
This is a small price to pay for mitigating the arbitrary
scale between the block matrix and λ. Coverage on B
is worse but reasonable, again, due to the error on the
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Fig. 5. Estimation performance as the strength of between-community
interactions varies, in terms of (a) truth coverage and (b) width of the
90% posterior interval.

fixed diagonal. In the more challenging setting under strong
between-community interactions, the coverages on Π and λ
drop slightly but are reasonable. This highlights the strength
of modeling and inference under HMMB for highly overlap-
ping communities with no distinct clusters (see Figure 4b).
Moreover, the mixed-membership estimates nearly achieve
the precision of the theoretical Cramér-Rao lower bound
derived in Section 3.2, indicating the estimation procedure
has good statistical efficiency. In practice, this bound may
not be reached by any unbiased estimator, because it is
derived conditional on all other parameters (see Theorem
2) as a best-case analysis.

Having established the good baseline performance of the
MCMC procedure with full initialization, we now evaluate
its performance as the four main features of the HMMB
are varied from the baseline setting. Figure 5 shows the
estimation performance as the scale of the block matrix off-
diagonal entries varies from 0.25 to 5. This scale corresponds
to the strength of between-community interactions, with a
scale of 1 being the baseline setting in Table 1 and Figure 4a,
and a scale of 3 being the challenging setting in Table 1 and
Figure 4b. As the scale increases, the communities overlap
more and more and eventually lose any structure of dis-
tinct clusters, making it difficult to estimate the community
memberships as the posterior distribution becomes flatter
and increasingly multi-modal. The estimation performance
drops off gracefully as seen in Figure 5a, with reasonable
truth coverage even with very strong between-community
interactions. This highlights the strength of modeling and
inference under HMMB for highly overlapping communi-
ties. The posterior interval widths for Π andB also increase
gracefully as shown in Figure 5b. The node degree interval
becomes narrower due to more total interactions overall.
The mixed-membership interval width stays slightly above
the Cramér-Rao lower bound as expected but falls below
the bound when the scale is at 4. This is likely due to biased
mixed-membership estimates and the bias-variance trade-
off [43]. The Cramér-Rao lower bound rises with stronger
between-community interactions, pointing to a decrease in
the Fisher information content of the interactions because
they can be explained through multiple communities. This
matches the intuitions from the theoretical result in Equa-
tion (26).

The estimation performance over varying levels of
mixed-memberships by scaling the off-diagonal entries of
the pseudocount matrix (X) is very similar to those in
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Fig. 6. Estimation performance as the number of high-degree nodes
varies, in terms of (a) truth coverage and (b) width of the 90% posterior
interval.
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Fig. 7. Estimation performance as the network density varies, in terms
of (a) truth coverage and (b) width of the 90% posterior interval.

Figure 5, as the community overlap increases. The figures
and discussion are ommitted for brevity. Figure 6 shows
the estimation performance over varying numbers of high-
degree nodes as the negative Power-Law exponent (α) goes
from −3 to −2, the range of values observed in real-world
networks [26]. Less negative exponent leads to more high-
degree nodes. Truth coverage remains steady and the poste-
rior interval widths decrease gradually. Again, the mixed-
membership interval width tracks the Cramér-Rao lower
bound nicely, indicating statistical efficiency. The decreasing
Cramér-Rao lower bound matches the theoretical result in
Equation (26) which indicates that an increase of high-
degree nodes leads to higher Fisher information content.

Figure 7 shows the estimation performance as the
network density (the sparsity parameter s) varies from
0.05 to 0.3. A visualization of a sparse network with
s = 0.05 is shown in Figure 4d. Truth coverage is steady
and the posterior interval widths decrease with increasing
network density. Higher density increases the total num-
ber of interacting edges and Fisher information content as
shown in Equation (26). Accordingly, variance decreases for
all parameter estimates and the mixed-membership inter-
val width gets closer to the decreasing Cramér-Rao lower
bound.

Overall, the proposed MCMC procedure with full initial-
ization strategy is robust across the ranges of realistic net-
work settings. For gathering statistics on performance in a
timely fashion, the networks evaluated in this paper are kept
at hundreds of nodes. At the baseline parameter setting, we
have verified that the inference procedure performs just as
well on larger networks with thousands of nodes and six
communities. However, each run takes hours on a regular
desktop in the current unoptimized Matlab implementation.

Scaling up to larger networks is a direction for future work.

4 COMMUNITY DETECTION APPLICATION AND RE-
SULTS

A natural application for the HMMB is community de-
tection, using the mixed-membership estimate from Sec-
tion 3.1. Community detection has garnered much interest
especially in the last ten years, both in terms of algorithm
development and real-world applications. The discovery of
communities and their members gives insight to network
formation and identifies individuals of interest for targeted
campaigns (e.g. public health interventions, promotional
programs, advertisement, etc.). For a brief survey of the
existing work, please see Section 1.1.

This section demonstrates HMMB’s utility in community
detection and compares its results against the closely related
degree-corrected stochastic blockmodels (DCSB) with over-
lapping groups [8] and other approaches that exploits net-
work modularity, including the well-known spectral clus-
tering [10], modularity maximization [11], [44], and random
walks on graph [12], [45], [46]. Specifically, this demon-
stration is on the problem of cued community detection.
Results on simulated and real data over a range of realistic
settings show that HMMB significantly outperforms the
other methods in the presence of overlapping communities.

4.1 Cued Community Detection Approaches for Com-
parison

The objective of cued community detection is to identify
all the members (i.e. nodes) belonging to a community of
interest, given prior knowledge on a number of its members
(i.e. cue nodes). Typically, only a very small number of cue
nodes are given. The nodes belonging to the community of
interest are the foreground nodes and the rest, background
nodes. Here, under the mixed-membership setting, the fore-
ground nodes are defined as those with membership to
the community of interest exceeding a significant threshold
(50%).

HMMB-based community detection uses the mixed-
membership estimate in Section 3.1. The targeted commu-
nities are determined as those which the cue nodes are
estimated to have a high level of membership in. Detection
is declared on the other nodes if a significant percentage
(i.e. above detection threshold) of its estimated membership
posterior on any of the targeted communities exceeds the
level that defines the foreground community.

Similarly, inference using the degree-corrected stochastic
blockmodels (DCSB) with overlapping groups [8] produces
mixed-membership estimate and is used in the same way to
produce cued community detection results in this section.
This approach is the closest to the HMMB in spirit and in
terms of model complexity, accounting for node degree vari-
ation and community overlap. However, it differs from the
HMMB by allowing for multiple community memberships
instead of mixed-memberships, and it does not account for
sparsity explicitly.

Another intuitive method to accomplish this task is to
simply propagate the “threat” from the cue nodes along the
edges of the network and declare detection on nodes based
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(a) (b) (c)

Fig. 8. Networks with increasing levels of community overlap at (a) 0.25, (b) 1, and (c) 2, from higher between-community interactions and mixed-
memberships. A nodes color is determined by its memberships to the first three communities which fill the Red-Green-Blue channels. Membership
to the fourth community makes a node darker as it does not contribute to the three color channels. Larger nodes are those with higher degrees.
The foreground community to be detected is the fourth community.

on the “threat” propagated to them [12]. This works very
much like a heat diffusion process on the network through
the edges, where the cue nodes are the “sources” of the
heat. This type of method can be formally defined through
random walks on graph.

The popular modularity maximization [11], [44] and
spectral clustering [10] methods for community detection
produce hard partition of the network, instead of soft mem-
bership scores like the methods above. So for each detection
run, they result in a single probability of detection (PD)
and false alarm (PFA) point, instead of the whole receiver
operating characteristic (ROC) curve. Detections are simply
declared on all the nodes in the same partition as the cue
nodes.

Performance of the HMMB will be compared against
these four approaches that cover a wide spectrum of ex-
isting approaches in community detection. Compared to
the HMMB and the DCSB with overlapping groups, threat
propagation, modularity maximization, and spectral clus-
tering have much lower computational complexity.

4.2 Detection Results on Simulated Network Data

The section begins with evaluation on simulated networks,
with increasing levels of community overlap, a known chal-
lenge to the existing community detection algorithms [6]
on real-world networks. As the level of community overlap
increases, the community structure loses its distinct clusters
and the individual communities are harder to tease apart,
making community detection more difficult. Under HMMB,
the level of community overlap can be adjusted through
the strength of the between-community interactions and
the level of mixed-membership, as shown in Section 3.3.
Evaluation is done on networks with low, moderate, and
high level of community overlap, with examples shown
in Figure 8. The moderate community overlap setting here
corresponds to the baseline in Section 3.3. Performance is
evaluated with 1, 3, and 5 cue nodes, for a range of realistic
settings. The mixed-membership of the nodes (i.e. the node
colors in Figure 8) is not known.
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Fig. 9. Detection results on the simulated networks for the HMMB and
the four baseline approaches: threat propagation [12], DCSB with over-
lapping groups [8], modularity maximization [44], and spectral clustering
[10]. For clarity and parsimony, the median performance of all the runs
is reported.

Figure 9 is a 3-by-3 matrix of receiver operating charac-
teristic (ROC) curves and points that summarize detection
results at each community overlap level and number of
cue nodes. For each setting, 25 independent draws of the
network with 256 nodes and 30 independent random draws
of the cue nodes for each network provide 750 instances
of detection performance. For clarity and parsimony, the
median performance of all the runs is plotted in the figure.
For approaches that report soft membership scores, a ROC is
computed by varying the detection threshold on the nodes.
The objective is to detect nodes (i.e. foreground commu-
nity) that have at least 50% of its true mixed-membership
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under the community of interest, colored black in Figure
8. Cue nodes are not included in the evaluation. In real-
world applications, the true number of communities is not
typically known. To make sure that the HMMB and spectral
clustering have enough capacity to express the community
structure, it is practical to have a generous number of
communities to fit the data. The detection runs here use
a higher number of communities (K = 6) than the truth
(K = 4). Peixoto’s inference using the DCSB with overlap-
ping groups determines the optimal number of communi-
ties by minimizing entropy under that model. Modularity
maximization using the Louvain method also determines
the optimal number of communities. Threat propagation
performs random walks on graphs from the cue nodes and
does not model the number of communities.

The first column of the ROC matrix shows that under a
low level of community overlap, all five approaches perform
almost perfectly. However, with a moderate level of com-
munity overlap (second column), modularity maximization,
spectral clustering, and threat propagation perform much
worse. This is not surprising because these approaches de-
pend on the strength of the within-community interactions
over the between-community interactions (i.e. modularity),
which diminishes as the community overlap increases. Both
the DCSB with overlapping groups and the HMMB ap-
proach handles community overlap better by accounting for
it during estimation, and is able to identify the foreground
nodes through the mixed-membership estimate. The HMMB
outperforms the DCSB with overlapping groups due to
its explicit modeling for network sparsity and unevenly-
mixed memberships. The third column of the ROC matrix
shows that the HMMB performs reasonably even under a
high level of community overlap. Having more cue nodes
improves the performance of threat propagation as random
walks from more cue nodes reach more target nodes be-
fore the threats are spilled over to the background nodes.
Overall, Figure 9 highlights the strength of HMMB for com-
munity detection, especially in the presence of overlapping
communities.

4.3 Detection Results on DBLP Co-Authorship Network
Data

This section evaluates the community detection perfor-
mance on a real-world network that represents the co-
authorship between researchers in the machine learning,
computer vision, and signal processing field, shown in
Figure 10. The nodes represent authors and the edges co-
authorship between them.

This network is constructed from the DBLP bibliography
database [47] using papers published from 1983 to 2014 in
a signal processing conference (ICASSP), computer vision
conferences (ICCV and CVPR), and machine learning con-
ferences (ICML, NIPS, and KDD). The mixed-membership
is each author’s fraction of publications in the three types
of conferences. For data richness and network connectivity,
the authors included are the top 314 most prolific authors in
these conferences. Figure 10 shows a significant amount of
community overlap. The mixed-memberships of the nodes
are not known a priori so the detection algorithm is only
given the network in Figure 10 without the node color. It

Fig. 10. A DBLP co-authorship network where the communities are the
type of conference the publications took place. Nodes are colored by
their community mixed-membership in each of the three conference
types, filling the Red-Green-Blue channels. Node size indicates the
number of co-authorships.
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Fig. 11. Detection results on the DBLP co-authorship network in Fig-
ure 10, for the HMMB and the four baseline approaches: threat prop-
agation [12], DCSB with overlapping groups [8], modularity maximiza-
tion [44], and spectral clustering [10].. For clarity and parsimony, the
median performance of all the runs is reported.

is reasonable to fit this network to the HMMB and spectral
clustering with four communities (K = 4) because there
are 4 visible clusters in the uncolored layout: two sparse
clusters at the top and to the right, and two dense clusters
on the bottom left. The DCSB with overlapping groups and
the modularity maximization approaches infer the optimal
number of communities, and threat propagation does not
model the number of communities.

Figure 11 summarizes the detection result using a 2-by-3
ROC matrix for having 1 and 3 cue nodes on each of the
3 conference fields being the community of interest. For
each of the 6 setups, 1000 detection runs are produced
from independent draws of the cue nodes. For clarity and
parsimony, the median performance of all the runs is plotted
in the figure.

HMMB outperforms the other approaches in all 6 setups
except when detecting the signal processing community
with only one cue node. Because the signal processing com-
munity appears to consist of two sub-clusters, the HMMB
splits the signal processing community between two differ-
ent community labels when fitting with four communities
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(K = 4). When only one cue node is available, only the
nodes that are in the same sub-cluster as the cue node is
detected before many false alarms occur. Having more cue
nodes mitigates this problem because of the higher chance
that at least one cue node falls in each of the sub-clusters,
as seen in the ROC for 3 cue nodes on the signal processing
community. If the true number of communities is known
a priori (K = 3), the HMMB ROC improve to the 3-cue-
node curves seen in Figure 11, regardless of the number of
cue nodes. The DCSB with overlapping group has the best
performance on the signal processing community with one
cue node. This is due to its ability to correctly identify the
optimal number of communities to be 3, the true number
of communities, avoiding splitting up the signal processing
community. However, its performance overall suffers from
not being able to reliably estimate the mixed-memberships
under this level of community overlap. Neither spectral
clustering nor modularity maximization perform well at this
level of community overlap. However, modularity maxi-
mization is able to detect some of the target nodes with few
false alarms, by correctly identifying some tightly connected
clusters within each of the three communities. Threat prop-
agation offers a reasonable compromise with much lower
computational requirement, for not explicitly modeling the
community memberships, and its performances improves
with more cue nodes.

The results here demonstrate HMMB’s advantage over
simpler models and methods that depend on modularity,
in real-world networks with overlapping communities. The
advantage of the HMMB approach here is not as domi-
nant as the result on simulated networks, likely due to
model mis-specification. In practice, the success of HMMB
for community detection on real-world networks will vary
depending on how well the model describes the underlying
network data.

5 CONCLUSION

This paper presents the hybrid mixed-membership block-
models (HMMB), that incorporates key characteristics of the
real-world networks: community-based interactions with
mixed-membership, node degree variation, and sparsity.
Bayesian inference procedures are developed and shown to
estimate the model parameters well on simulated networks
over a range of realistic settings. These parameter estimates
give insight to the formation of the network and reveal in-
formation on each individual that is useful in real-world ap-
plications. One such application is community detection. In
the presence of community overlap, the HMMB approach is
shown in realistic settings to significantly outperform exist-
ing models and common community detection approaches
which depend on much stronger within-community than
between-community interactions (i.e. modularity), due to
its ability to model and account for the mixed-memberships
and between-community interactions. Future work includes
applying and adapting the HMMB model and inference pro-
cedure to additional real-world problems, proposing a col-
lection and sampling strategy to maximize the information
content on the key parameters of interest, adding dynamics
to some of the model parameters, deriving a criterion and
inference procedure to converge with an optimal number

of communities, and optimizing and adapting the inference
procedure for large networks.
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[1] P. Erdős and A. Rényi, “On the evolution of random graphs,”
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