
 
 
 
 

 ARL-TR-8835 ● OCT 2019 
  
 
 
 

 
 
 
Application of the Scale Decomposition 
Technique for Assessing Precipitation 
Forecasts of a High-Resolution Weather 
Research and Forecasting Advanced Research 
WRF (WRF-ARW) Ensemble for a Complex 
Mixed Precipitation Event near the 
Washington, DC, Area 
 
by John W Raby, Robert E Dumais, Huaqing Cai,  
Jeffrey A Smith, Leelinda P Dawson, and Brian P Reen 
 
 
 
 
 
 
Approved for public release; distribution is unlimited. 



 

 

NOTICES 
 

Disclaimers 
 

The findings in this report are not to be construed as an official Department of the 
Army position unless so designated by other authorized documents. 
 
Citation of manufacturer’s or trade names does not constitute an official 
endorsement or approval of the use thereof. 
 
Destroy this report when it is no longer needed. Do not return it to the originator. 



 

 

 
 
 

 ARL-TR-8835 ● OCT 2019 

 

 
 
Application of the Scale Decomposition Technique 
for Assessing Precipitation Forecasts of a High-
Resolution Weather Research and Forecasting 
Advanced Research WRF (WRF-ARW) Ensemble for 
a Complex Mixed Precipitation Event near the 
Washington, DC, Area 
 
John W Raby, Robert E Dumais, Huaqing Cai, Jeffrey A Smith,  
Leelinda P Dawson, and Brian P Reen 
Computational and Information Sciences Directorate, CCDC Army Research 
Laboratory 
 
 
 
 
 
 
 
 
 
 
 
 
Approved for public release; distribution is unlimited.



 

ii 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the 
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. 
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 

October 2019 
2. REPORT TYPE 

Technical Report 
3. DATES COVERED (From - To) 

1 October 2018–12 September 2019 
4. TITLE AND SUBTITLE 

Application of the Scale Decomposition Technique for Assessing Precipitation 
Forecasts of a High-Resolution Weather Research and Forecasting (WRF), 
Advanced Research WRF (WRF-ARW) Ensemble for a Complex Mixed 
Precipitation Event near the Washington, DC, Area 

5a. CONTRACT NUMBER 

 
5b. GRANT NUMBER 

 
5c. PROGRAM ELEMENT NUMBER 

 
6. AUTHOR(S) 

John W Raby, Robert E Dumais, Huaqing Cai, Jeffrey A Smith,  
Leelinda P Dawson, and Brian P Reen 

5d. PROJECT NUMBER 

 
5e. TASK NUMBER 

 
5f. WORK UNIT NUMBER 

 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

CCDC Army Research Laboratory 
ATTN: FCDD-RLC-EM 
White Sands Missile Range, NM 88002-5501 

8. PERFORMING ORGANIZATION REPORT NUMBER 

 
ARL-TR-8835 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

 
10. SPONSOR/MONITOR'S ACRONYM(S) 

 
11. SPONSOR/MONITOR'S REPORT NUMBER(S) 

 
12. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 
13. SUPPLEMENTARY NOTES 
ORCID IDs: Brian Reen, 0000-0002-2031-4731; Jeffrey Smith, 0000-0002-2920-749X 

14. ABSTRACT 

An ensemble of short-range weather forecasts was generated using the Advanced Research version of the Weather Research 
and Forecast model for a challenging winter precipitation forecast event near Washington, DC, on 9 February 2016. An 
assessment was conducted to quantify the uncertainty of the precipitation nowcasts produced by the 28-member ensemble. 
The assessment used a combination of tools to quantify uncertainty, which was the ensemble mean and observed accumulated 
precipitation, time series plots of forecast and observed accumulated precipitation, rank histograms, and 2-D observation 
ranks. These tools showed 1) uncertainty in the location of a maximum in accumulated precipitation, 2) the presence of 
inadequate spread in forecast precipitation relative to the spread in the observations, and 3) that there was spatial variation in 
the bias. The scale-decomposition technique was applied to better quantify the uncertainty by isolating the precipitation 
maximum and assessing the quality of the forecast structure in terms of the spatial scale of the error. The results showed that 
this technique provided an assessment of model skill as a function of precipitation threshold value and spatial scale. It enabled 
the separation of the larger errors, attributable to displacement, from the smaller errors attributable to smaller scale processes. 
15. SUBJECT TERMS 

scale decomposition, scale separation, thresholds, observations, model evaluation tools, wavelet transform 

16. SECURITY CLASSIFICATION OF: 
17. LIMITATION 
       OF  
       ABSTRACT 

UU 

18. NUMBER 
       OF  
       PAGES 

46 

19a. NAME OF RESPONSIBLE PERSON 

John W Raby 
a. REPORT 

Unclassified 
b. ABSTRACT 

Unclassified 
 

c. THIS PAGE 

Unclassified 
 

19b. TELEPHONE NUMBER (Include area code) 

(575) 678-2004 
 Standard Form 298 (Rev. 8/98) 

 Prescribed by ANSI Std. Z39.18 



 

iii 

Contents 

List of Figures iv 

List of Tables v 

Summary vi 

1. Introduction 1 

2. Preliminary Assessment Analysis and Results 3 

3. Application of the Scale-Decomposition Technique 21 

4. Conclusions and Summary 30 

5. References 32 

Appendix. Wavelet-Stat (W-S) Metrics 34 

List of Symbols, Abbreviations, and Acronyms 36 

Distribution List 38



 

iv 

List of Figures 

Fig. 1 WRE-N ensemble domains ................................................................... 2 

Fig. 2 WRE-N ensemble mean 6-h accumulated precipitation (millimeters) at 
1800 UTC from the 12-h forecast ......................................................... 6 

Fig. 3 Observed 6-h accumulated precipitation (millimeters) at 1800 UTC ... 7 

Fig. 4 GFS deterministic 6-h accumulated precipitation (millimeters) at 1800 
UTC from 12-h forecast ........................................................................ 8 

Fig. 5 WRE-N ensemble mean 6-h accumulated precipitation (millimeters) at 
1800 UTC from the 12-h forecast with location where time series data 
shown in the following plot were extracted .......................................... 9 

Fig. 6 Observed 6-h accumulated precipitation (millimeters) at 1800 UTC. 
Location marked shows where Fig. 7 time series data were extracted.
............................................................................................................. 10 

Fig. 7 Time series of accumulated precipitation (millimeters) from the 28 
WRE-N ensemble members and the observations for the period 1200 
to 1800 UTC for the location shown in Figs. 5 and 6 ......................... 11 

Fig. 8 Observed 6-h accumulated precipitation (millimeters) at 1800 UTC 
from the 12-h forecast with location marked where time series data in 
the following plot were extracted ....................................................... 12 

Fig. 9 WRE-N ensemble mean 6-h accumulated precipitation (millimeters) at 
1800 UTC with location marked where time series data in Fig. 10 were 
extracted .............................................................................................. 13 

Fig. 10 Time series of accumulated precipitation (millimeters) from the 28 
WRE-N ensemble members and the observations for the period 1200 
to 1800 UTC for the location shown in Figs. 8 and 9 ......................... 14 

Fig. 11 WRE-N ensemble mean 6-h accumulated precipitation (millimeters) at 
1800 UTC from the 12-h forecast with location marked where WRE-N 
time series data in the following plot were extracted ......................... 15 

Fig. 12 Observed 6-h accumulated precipitation (millimeters) at 1800 UTC 
with location marked where time series data in Fig. 13 were extracted
............................................................................................................. 16 

Fig. 13 Time series of accumulated precipitation (millimeters) from the 28 
WRE-N ensemble members for the location shown in Fig. 11 and the 
observations for the location shown in Fig. 12 both for the period 1200 
to 1800 UTC ....................................................................................... 17 

Fig. 14 Ensemble member 06 and observed 6-h accumulated precipitation 
(millimeters) at 1800 UTC .................................................................. 18 

Fig. 15 Uniform rank histogram example ....................................................... 19 

Fig. 16 Rank histogram for the WRE-N ensemble 6-hr accumulated 
precipitation forecast at 1800 UTC ..................................................... 19 



 

v 

Fig. 17 WRE-N 6-h accumulated precipitation observation ranks at 1800 UTC
............................................................................................................. 20 

Fig. 18 Graphic produced by W-S showing the 6-h precipitation (millimeters) 
from (left) member 06 and (right) observations, along with a 32 × 32 
grid square tile where a 2-D Haar wavelet filter was applied ............. 22 

Fig. 19 W-S output graphic of the binary difference field for threshold value 
≥3.0 mm .............................................................................................. 23 

Fig. 20 W-S output graphic of the first spatial scale (4 km) for threshold value 
≥3.0 mm .............................................................................................. 24 

Fig. 21 W-S output graphic of the second spatial scale (8 km) for threshold 
value ≥3.0 mm .................................................................................... 24 

Fig. 22 W-S output graphic of the third spatial scale (16 km) for threshold 
value ≥3.0 mm .................................................................................... 25 

Fig. 23 W-S output graphic of the fourth spatial scale (32 km) for threshold 
value ≥3.0 mm .................................................................................... 25 

Fig. 24 W-S output graphic of the fifth spatial scale (64 km) for threshold 
value ≥3.0 mm .................................................................................... 26 

Fig. 25 W-S output graphic of the sixth spatial scale (128 km) for threshold 
value ≥3.0 mm .................................................................................... 26 

Fig. 26 W-S output graphic of the fifth spatial scale (64 km) for threshold 
value ≥6.0 mm .................................................................................... 28 

Fig. 27 W-S output graphic of the fifth spatial scale (64 km) for threshold 
value ≥9.0 mm .................................................................................... 29 

 

List of Tables 

Table 1 Intensity Skill Scores for spatial scales 4 to 128 km and threshold 
values of ≥3.0, ≥6.0, and ≥9.0 mm ..................................................... 29 

 

  



 

vi 

Summary 

An ensemble of short-range weather forecasts were generated using the Advanced 
Research version of the Weather Research and Forecast model for a challenging 
winter precipitation forecast event near Washington, DC, on 9 February 2016. The 
ensemble members differed primarily in the source of initial and boundary 
conditions, the physics parameterizations, and other configuration options 
employed. A preliminary assessment was conducted to quantify the uncertainty of 
the accumulated precipitation short-lead-time nowcasts produced by the ensemble, 
which consisted of 28 members. The assessment used a combination of tools to 
quantify uncertainty in ensembles. These tools consisted of the ensemble mean and 
observed accumulated precipitation, time series plots (often referred to as spaghetti 
plots of forecast and observed accumulated precipitation), rank histograms, and  
2-D observation ranks. These revealed 1) uncertainty in the location of a maximum 
in accumulated precipitation, 2) the presence of inadequate spread in forecast 
precipitation relative to the spread in the observations, 3) positive and negative 
biases, and 4) spatial variation in the bias. Analysis of these results revealed the 
need for additional verification to further quantify the uncertainty arising from the 
spatial errors generated due to the displacement of the precipitation maximum. The 
scale-decomposition technique was applied to better quantify the uncertainty by 
isolating the precipitation maximum and assessing the quality of the forecast 
structure in terms of the spatial scale of the error. The results showed that this 
technique provided an assessment of model skill as a function of precipitation 
threshold value and spatial scale, and enabled the separation of the larger errors, 
attributable to displacement, from the smaller errors attributable to smaller-scale 
processes. 
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1. Introduction 

A 28-member Weather Running Estimate–Nowcast (WRE-N) ensemble was 
specifically configured to evaluate the value of high spatial and temporal 
resolutions when nowcasting weak-to-moderate winter systems. These systems 
were associated with challenging precipitation events in terms of amount, type, 
location, and onset for a limited area domain. Evaluation of precipitation forecasts 
entailed the assessment of several model performance aspects, such as the 
precipitation amount and type, surface temperature, ground temperature, boundary 
layer thickness, cloud amount, and ceiling height 1–2 days prior to the event. The 
chosen case study date had a winter system that presented these challenges over the 
Maryland–Virginia–Delaware (Delmarva) area on 9 February 2016. This study 
focused on one of the stated aspects, which was accumulated precipitation 
forecasting over very-short-range time periods.  

Dumais et al. (2018) describe in detail the mixed winter precipitation event and the 
challenges it presented for forecasters and planners in the days leading up to  
9 February 2016. The output from several Numerical Weather Prediction (NWP) 
models revealed a great variation of solutions indicative of the complexity of the 
mesoscale structure associated with this system. In general, there was a tendency 
to forecast snow north and northwest of the Washington, DC (DC), metro area, and 
rain to the south and over the Delmarva Peninsula. The snow forecasts ranged from 
heavier snow bands supporting accumulation in the north, to only slushy light 
accumulations in other areas. However, there was considerable disagreement in the 
model guidance depending on which model output was used for decision making. 
This high level of uncertainty in the days and hours preceding the event challenged 
emergency managers responsible for decisions regarding whether or not to mobilize 
resources for snow removal on and around the DC metro area. Challenges involved 
in predicting the impact for civilian concerns are not unlike those faced by military 
decision makers who are faced with the responsibility to plan and execute military 
operations using guidance from decision aids based on NWP model output. 

Dumais et al. (2018) designed an NWP modeling experiment that involved running 
several simulations for this winter situation case study as an ensemble. The NWP 
model used was a triple-nest implementation of the Advanced Research version of 
the Weather Research and Forecast model (WRF-ARW). This model was 
configured similarly to that tested as a prototype US Army Combat Capabilities 
Development Command Army Research Laboratory (ARL) WRE-N system 
(Dumais et al. 2013). The WRF is described in detail by Skamarock et al. (2008). 
WRF and WRE-N are used interchangeably throughout this report. The WRE-N 
was allowed to “spin-up” during a 6-h preforecast period, and then run in free 
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forecast mode for 12 h. The output from the initial 6 h of this free forecast period 
is the focus of this study. All model simulations were run from 2016 09 Feb, 0600 
Coordinated Universal Time (UTC) until 10 Feb, 0000 UTC, with model output 
provided in hourly forecast intervals. The center of the triple-nested domains was 
located near the DC metro area (Fig. 1). The outer domain encompassed much of 
the eastern United States and the Atlantic Ocean from Canada to the Gulf of 
Mexico, using a 9-km grid spacing. The next domain was focused on the mid-
Atlantic region from Ohio extending offshore east of Maryland, and from North 
Carolina to southern New York. This domain used a 3-km grid. The inner domain, 
centered over the Delmarva Peninsula, using a 1-km grid. 

 

Fig. 1 WRE-N ensemble domains 

The WRE-N can use the WRF 4-D data assimilation (FDDA) observation nudging 
option to incorporate regional and local direct weather observations when available 
(Dumais et al. 2013). In this ensemble, the use of FDDA varied among the 
simulations. Dumais et al. (2018) describe, in detail, the methodology used to 
produce the various members of the model ensemble. The concept was to combine 
the physics diversity, initial conditions/lateral boundary condition (IC/LBC) 
diversity, and the diversity in other model details. Diversity in IC/LBC was 
employed by using various external operational models for initializing and 
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providing time-dependent lateral boundary conditions for the outer nest. The 
external models used were either from the National Center for Environmental 
Prediction (NCEP) deterministic Global Forecast System (GFS) 0.5° cycle based 
at 0600 UTC 09 Feb, the NCEP Global Ensemble Forecast System (GEFS) 0.5° 
ensemble model cycle based at 0600 UTC 09 Feb, or the NCEP mesoscale North 
American Model deterministic model cycle based at 0600 UTC 09 Feb. 

The approach used for conducting the preliminary assessment to quantify the 
uncertainty of the forecast accumulated precipitation involved comparing forecast 
and observed accumulated precipitation. A tool was used to compute various 
statistics that quantify the overall character and structure of forecast accumulated 
precipitation for the ensemble (as a whole). Time series analysis was used to 
compare forecast accumulated precipitation from the individual ensemble members 
with each other and with the observations. Observation rank histograms were used 
to compare the ensemble and observed probability distribution of accumulated 
precipitation to see how well the ensemble represented the observations, and if there 
is bias. The 2-D observation rank graphics provided insight on the spatial variation 
of bias. The preliminary results gave a general sense of the uncertainty, but lacked 
specifics on the amount of uncertainty as a function of precipitation threshold value 
and spatial scale. To address this deficiency, a scale-decomposition technique was 
applied to one ensemble member, enabling the evaluation of its effectiveness in 
providing more-specific spatial verification information.  

2. Preliminary Assessment Analysis and Results 

Traditional grid-to-point methods can verify the skill of NWP in predicting 
continuous meteorological variables through the computation of such statistics as 
mean error and root-mean-square error, which characterize model accuracy over 
the entire domain. When these techniques are applied to high-resolution models, 
such as the WRE–N, the results can give misleading error estimates when compared 
with lower-resolution models, which often score better when using these 
techniques. The issue is the inability of the verification technique to evaluate the 
true skill of higher-resolution forecasts. High-resolution models replicate 
mesoscale atmospheric features in a way that is more representative of the actual 
phenomenon owing to their use of a reduced grid spacing over smaller domains, 
higher-resolution land-surface models, and better parameterization of subgrid 
physical processes.  

For this preliminary assessment, the initial approach was to characterize the 
uncertainty for the ensemble in terms of forecasting a particular feature of the 
accumulated precipitation that might capture errors resulting from the spatial 
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displacement of that feature. To conduct this type of assessment, an Ensemble-Stat 
(E-S) tool developed by the National Center for Atmospheric Research (NCAR) as 
part of a suite of tools used for model verification called the Model Evaluation 
Tools (METs) (NCAR 2016b) was used. E-S uses postprocessed model output and 
observations as input. For postprocessing, the forecasts from the model grids are 
first interpolated onto a destaggered grid (from WRF native-staggered C grid), 
while keeping the same horizontal grid spacing as the WRF native input grid. This 
is done using the NCAR Unified Post Processor (UPP; https://dtcenter.org/upp 
/users/docs/user_guide/V3/upp_users_guide.pdf). The UPP software also 
interpolates the WRF output onto pressure surfaces (from native sigma), computes 
all additional variables of interest from WRF basic prognostic variables, and 
generates additional diagnostic levels used by MET (Dumais et al. 2018).  

The observational data came from the NCEP hourly Stage IV Quantitative 
Precipitation Estimate national mosaic (4-km grid spacing) dataset (Nelson et al. 
2016). The forecast and observations data required preprocessing to generate 
accumulated precipitation in such a way as to focus on the winter event’s 
precipitation during the first 6 h of the free forecast, from 2016 09 Feb, 1200 UTC, 
to 09 Feb, 1800 UTC. This required the accumulated precipitation value be set to 
zero at 1200 UTC, then accumulated for each subsequent hour. To generate new 
sets of hourly forecast and observation files that contain these accumulations, the 
MET Pcp-Combine (P-C) tool was used. The next step involved the development 
of a new “verification” domain with the grid specifications to assure a match 
between the 1-km forecast grid over the inner domain and the 4-km observation 
grid over the continental United States (CONUS) domain. This process was 
accomplished iteratively using the MET Regrid_data_plane (R-D-P) tool, which 
performed an interpolation from the 1-km forecast grid to a “new” 4-km grid with 
the specifications set so that the new grid encompassed the same area as the 1-km 
grid. Normally, E-S can perform the regridding automatically, but for the 4-km 
observation grid over CONUS, E-S encountered an “out-of-memory” error due to 
the volume of data held in memory, even when running on the ARL High 
Performance Computer. After several iterations of the R-D-P tool, a good match 
was achieved that enabled E-S to run without error by directing the verification to 
the much smaller “new” grid, which significantly decreased the memory usage.  

E-S generated gridded Network Common Data Format (NetCDF) files of several 
ensemble forecast values such as mean, spread, or uncertainty, and minimum and 
maximum from the 28 members. Using the observations and forecast data, E-S 
generated observation rank histograms, spread/skill variance statistics, Probability 
Integral Transform histograms and gridded NetCDF files containing the spatial  
(2-D) distribution of the observation ranks. For this study, we used the E-S mean 
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ensemble field from the 12-h lead time forecast (i.e.; the 6-h free forecast) of  
6-h accumulated precipitation valid at 1800 UTC on 9 February 2016, the 
accumulated precipitation rank histogram valid at the same time, and the 2-D spatial 
distribution of observation ranks output. 

For comparison with the E-S output, equivalent graphics of observed accumulated 
precipitation at 1800 UTC were generated from the 6-h accumulated precipitation 
fields produced by the P-C tool. In addition, time series plots depicting the 
accumulated precipitation at significant locations for the time period 1200 UTC to 
1800 UTC for all ensemble members and from the observations were produced 
using the Unidata Integrated Data Viewer (IDV) visualization software. The IDV 
probe tool was used to extract the point values of accumulated precipitation at the 
desired locations and export as comma-separated value (CSV) files (UCAR 2018). 
R language for statistical computing was used to convert the CSV files into data 
structures that enabled generation of the time series plots (R Core Team 2019). 

To characterize the uncertainty, the 6-h accumulated precipitation maximum 
feature for 9 February 2016 at 1800 UTC, situated northwest of the DC metro area, 
was the focus for analysis. This feature in the ensemble mean (Fig. 2) was displaced 
northwest of the observed feature (Fig. 3). For comparison, the same feature in the 
GFS forecast (Fig. 4) was situated southeast of the observed feature.  
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Fig. 2 WRE-N ensemble mean 6-h accumulated precipitation (millimeters) at 1800 UTC 
from the 12-h forecast 

  

 

← 26.3 km →    
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Fig. 3 Observed 6-h accumulated precipitation (millimeters) at 1800 UTC 

  

 

← 26.3 km →    
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Fig. 4 GFS deterministic 6-h accumulated precipitation (millimeters) at 1800 UTC from 
12-h forecast 

To compare the forecasts of accumulated precipitation from all ensemble members 
with the observations in a meaningful way, 6 h of data were extracted from a 
location (Fig. 5) within the maximum precipitation feature in the ensemble mean.  

 

← 26.3 km →    
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Fig. 5 WRE-N ensemble mean 6-h accumulated precipitation (millimeters) at 1800 UTC 
from the 12-h forecast with location where time series data shown in the following plot were 
extracted 

For the observed accumulated precipitation time series, the equivalent data were 
extracted from the same geographic location, as shown in Fig. 6. This position was 
well outside the observed precipitation maximum feature located to the south.  

  

 

← 26.3 km →    ← 26.3 km →    
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Fig. 6 Observed 6-h accumulated precipitation (millimeters) at 1800 UTC. Location 
marked shows where Fig. 7 time series data were extracted. 

Both sets of time series data were plotted in the graphic shown in Fig. 7.  

 

← 26.3 km →    
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Fig. 7 Time series of accumulated precipitation (millimeters) from the 28 WRE-N 
ensemble members and the observations for the period 1200 to 1800 UTC for the location 
shown in Figs. 5 and 6 

The time series shows the uncertainty of the precipitation forecasts at each hour 
during the period. The uncertainty increases with lead time. The greatest 
uncertainty occurs at 1800 UTC, when the accumulated precipitation ranges 
between approximately 5 and 10 mm with the entire ensemble overpredicting the 
precipitation compared with the observation. The overprediction is a consequence 
of the displacement of the forecast maximum feature north and west of the 
corresponding observed feature. In addition to the displacement error, there are 
errors in the structure of the maximum feature, which are difficult to assess using 
this analysis type.  

The next time series focused on a geographic location inside the observed 
maximum feature shown in Fig. 8. The corresponding time series data from the 
ensemble was extracted from the same geographic location, shown in Fig. 9, but 
was well south of its corresponding maximum feature.  
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Fig. 8 Observed 6-h accumulated precipitation (millimeters) at 1800 UTC from the 12-h 
forecast with location marked where time series data in the following plot were extracted 
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Fig. 9 WRE-N ensemble mean 6-h accumulated precipitation (millimeters) at 1800 UTC 
with location marked where time series data in Fig. 10 were extracted 

The time series in Fig. 10 shows the uncertainty of the precipitation forecasts at 
each hour during the period. The uncertainty increases with lead time, with the 
greatest uncertainty occurring at 1800 UTC, when the accumulated precipitation 
ranges between approximately 1.5 and 6.5 mm, with the entire ensemble 
underpredicting the precipitation compared with the observation. The 
underprediction is a consequence of the displacement of the forecast maximum 
feature north and west of the corresponding observed feature. The performance of 
ensemble member 06 is noteworthy because its prediction is nearly perfect from 
1200 to 1500 UTC, and clearly superior to the other members, out to 1800 UTC. 
Further analysis of the performance of member 06 was accomplished and is 
reported in a later section of this report. 

 

← 26.3 km →    
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Fig. 10 Time series of accumulated precipitation (millimeters) from the 28 WRE-N 
ensemble members and the observations for the period 1200 to 1800 UTC for the location 
shown in Figs. 8 and 9 

While this approach revealed spatial variability in model bias and displacement 
errors, there was no information about the skill of the model in predicting the 
maximum feature itself. To shed some light on this aspect of performance, it was 
decided to conduct an analysis of time series data for geographic points that were 
located inside the maximum features of both the ensemble and the observations. 
This way, a comparison could be made of the model’s ability to predict its 
maximum feature in a manner that attempts to remove the contribution from the 
displacement error. 

Figure 11 shows the WRE-N ensemble mean 6-h accumulated precipitation 
(millimeters) at 1800 UTC with the location within the maximum forecast 
precipitation feature from which the time series data were extracted.  
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Fig. 11 WRE-N ensemble mean 6-h accumulated precipitation (millimeters) at 1800 UTC 
from the 12-h forecast with location marked where WRE-N time series data in the following 
plot were extracted 

Figure 12 shows the observed 6-h accumulated precipitation (millimeters) at  
1800 UTC with the location within the maximum precipitation feature from which 
the observed time series data were extracted. 

 

← 26.3 km →    
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Fig. 12 Observed 6-h accumulated precipitation (millimeters) at 1800 UTC with location 
marked where time series data in Fig. 13 were extracted 

The time series shown in Fig. 13 shows the uncertainty of the precipitation forecasts 
at each hour during the period. The uncertainty increases with lead time, with the 
greatest uncertainty occurring at 1800 UTC, when the accumulated precipitation 
ranges between approximately 5 and 10 mm, with most members underpredicting 
the precipitation compared with the observation. The bias magnitude was judged to 
be less than the previous time series analyses. A few of the members show an 
overprediction tendency, but again, of less magnitude. The closer agreement 
between the ensemble and the observations appears to be a consequence of the 
removal of the displacement error. It also shows that the ensemble’s handling of 
the maximum feature itself is reasonable. Without a more quantitative way to assess 
the ensemble skill, it is difficult to judge how well it performs using only this 
analysis. 

 

← 26.3 km →    

Location  
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Fig. 13 Time series of accumulated precipitation (millimeters) from the 28 WRE-N 
ensemble members for the location shown in Fig. 11 and the observations for the location 
shown in Fig. 12 both for the period 1200 to 1800 UTC 

The noteworthy performance of ensemble member 06, which used the GEFS 0.5° 
member 05 for initial and lateral boundary conditions, was compared with the other 
members revealed in the time series analysis (see Fig. 10). Figure 10 was based on 
where the point of interest was located to inside the observed maximum feature, 
which was considerably south and east of the corresponding feature in the ensemble 
mean forecast. Figure 14 shows the closeness on the placement of the maximum 
feature between the ensemble mean and the observations at 1800 UTC. Even the 
structure of the highest of the maximum precipitation appears quite similar. This 
particular case was subjected to further analysis using a spatial verification 
technique that provided a more quantitative assessment of the member 06 skill. The 
analysis and results will follow later in this report. 



 

18 

 

Fig. 14 Ensemble member 06 and observed 6-h accumulated precipitation (millimeters) at 
1800 UTC 

Continuing the analysis of the ensemble’s skill as a whole, a rank histogram, also 
known as a “Talagrand diagram”, was generated using MET E-S. Rank histograms 
check where the verifying observation usually falls with respect to the ensemble 
forecast data, which is arranged in increasing order at each grid point using bins. 
The number of bins is equal to the number of ensemble members, with the lowest 
bin representing the value from the ensemble member having the lowest value at a 
given observation point, and the highest bin representing the value from the 
ensemble member having the highest value at that observation point. The number 
in the lowest bin (bin 1) represents the number of observations that were lower than 
any of the ensemble members. In an ensemble with a uniform rank histogram, each 
member represents an equally likely scenario, so the observation value is equally 
likely to fall into any of the bins. In this case the histogram shows a flat appearance 
with all bins being of approximately equal height (Hamill 2001). The implication 
of a uniform rank histogram is that the spread of forecast accumulated precipitation 
from the ensemble replicates the range of accumulated precipitation values in the 
observations. Figure 15 shows an example of a uniform rank histogram. 
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Fig. 15 Uniform rank histogram example 

The rank histogram for the WRE-N ensemble shown in Fig. 16 was produced for 
the 12-h (6-h free forecast) forecast and shows the observation ranks for 6-h 
accumulated precipitation 

 

Fig. 16 Rank histogram for the WRE-N ensemble 6-hr accumulated precipitation forecast 
at 1800 UTC 
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The rank histogram shows a U-shape, which is indicative of an ensemble with 
insufficient spread. In this case, there are many 6-h accumulated precipitation 
observations that fall outside the extremes of the ensemble accumulated 
precipitation. This pattern can also happen when there are negative and positive 
biases present. (Hamill 2001). From the previous analysis of the time series at two 
different locations, the presence of negative and positive biases was confirmed and 
is the most probable cause of the U-shaped rank histogram. A particularly useful 
way to depict this spatial bias variation is to plot the observation ranks over the 
ensemble domain. Figure 17 shows a plot of observation ranks (1–29) for 6-h 
accumulated precipitation, with the locations where the time series data were 
extracted corresponding to the ensemble mean maximum feature and the 
observation maximum feature along with the rank histogram.  

 
Fig. 17 WRE-N 6-h accumulated precipitation observation ranks at 1800 UTC 

The color scale shows the observation ranks assigned so that the dark red color is 
for the highest ranks (near 29) corresponding to the far right end of the rank 
histogram, and the dark blue color is for the lowest ranks (near 1) corresponding to 
the far left end of the rank histogram. Thus the red areas indicate the presence of 
precipitation underforecasting and the dark blue areas indicate overforecasting. 
Note the lack of extensive areas with the colors between red and dark blue, which 
represent the middle ranks. This sparseness was caused by the lack of observations 
whose values fall in the central ranks, which is evident from the middle part of the 
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rank histogram. This “couplet” pattern of negative and positive bias juxtaposed in 
the domain is indicative of a significant displacement error in the location of the 
precipitation maximum feature and is corroborated by the results from the previous 
analysis of the ensemble mean and observed precipitation and the time series. 

3. Application of the Scale-Decomposition Technique 

To obtain more-quantitative evidence of the ensemble’s skill in predicting 
accumulated precipitation, a spatial method for verification was considered. Spatial 
verification approaches, in contrast to grid-to-point verification approaches, focus 
on features and coherent spatial structures that characterize meteorological fields. 
Since these approaches account for the intrinsic spatial correlation existing between 
nearby grid points, they do not suffer from double penalty errors that impact  
grid-to-point verification. Spatial verification approaches take into account the 
observation and forecast time–space uncertainties, and seek to provide feedback on 
the forecast error in physical terms. Within the spatial verification approaches, the 
Intensity-Scale technique belongs to the scale-decomposition (or scale-separation) 
verification approaches. The scale-decomposition approach enables users to 
perform the verification on different spatial scales. Weather features on different 
scales (e.g., frontal systems versus convective showers) are often driven by 
different physical processes. Verification on different spatial scales can therefore 
provide deeper insights into model performance. The spatial scale components are 
usually obtained by applying a single band spatial filter to the forecast and 
observation fields (e.g., Fourier decomposition, wavelets). The scale-
decomposition approaches measure error, bias, and skill of the forecast on each 
different scale component. The scale-decomposition approach provides feedback 
on the scale dependency of the error and skill and on the capability of the forecast 
for reproducing the observed scale structure (NCAR 2016b). 

The particular tool which was used to perform scale-decomposition verification 
was the MET Wavelet-Stat (W-S) tool. This tool uses the intensity-scale technique 
developed by Casati et al. (2004), the metrics of which appear in the Appendix. The 
Intensity-Scale technique evaluates the forecast skill as a function of the intensity 
or magnitude of the field values and of the spatial scale of the error. The scale 
components are decomposed by applying a 2-D Haar wavelet filter (Casati et al. 
2004). Note that wavelets, because of their locality, are suitable for representing 
discontinuous fields such as precipitation. The technique uses a categorical 
approach, which is a long-established and reliable approach, suitable for non-
normally distributed variables such as precipitation. The Intensity-Scale technique 
was specifically designed to handle the difficult characteristics of precipitation 
fields and for the verification of spatial precipitation forecasts (NCAR 2016b). 
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To evaluate the use of the Intensity-Scale method as a spatial technique for 
quantifying the skill of the WRE-N ensemble, the W-S tool was used to apply that 
method to the 6-h accumulated precipitation field from ensemble member 06 and 
the Stage IV precipitation observations. The W-S tool allows the user to adjust the 
position of the tile to focus the verification on a specific feature of interest. In this 
case, the feature was the precipitation maximum. Figure 18 shows the accumulated 
precipitation forecast from member 06 (left image) and the observed precipitation 
(right image) present in the inner domain. Also shown is a 32 × 32 grid square tile, 
outlined in red, where a 2-D Haar wavelet filter was applied for decomposition into 
orthogonal component images for the different scales. The tile was positioned to 
encompass both maxima. Note that member 06 spreads the maximum feature out 
over a larger area to the northwest and southeast of the observed feature, which 
leads to errors of a larger scale. These errors are discussed later.  

 

Fig. 18 Graphic produced by W-S showing the 6-h precipitation (millimeters) from (left) 
member 06 and (right) observations, along with a 32 × 32 grid square tile where a 2-D Haar 
wavelet filter was applied 

The scale-decomposition process of W-S involves application of the thresholds to 
the forecast and observed precipitation fields, which transforms them into binary 
fields by assigning a value of 1 where there is an event, and a value of 0 where there 
is no event. Figure 19 graphically shows the difference (forecast minus observation, 
or F–O) between the binary forecast field and the binary observations field at the 
original 4-km resolution. The particular threshold value for this graphic is ≥3.0 mm 
of 6-h accumulated precipitation. The value of the differences for the events are 
either +1, 0, or –1, which accounts for the lack of differences with lighter color 
shades leaving only the darkest red or blue shaded features in the domain. The value 
of the frequency bias (<1) indicates the prevalence of event underforecasting. The 
Intensity Skill Score (ISS) ranges from –infinity (no skill, if negative) to +1 (good 
skill, if positive). Note the large (red) area of overforecast precipitation near the 
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southeast corner of the domain and a smaller area of overforecast precipitation to 
the northwest and an area of underforecast (blue) precipitation along the western 
domain boundary. The two overforecast areas are an indication of a spatial 
displacement error. 

 

Fig. 19 W-S output graphic of the binary difference field for threshold value ≥3.0 mm 

W-S computes the same statistics for each decomposed scale. Figure 20 shows the 
first spatial scale component (Scale 1) of the binary field difference that was 
obtained by taking the difference (F–O) between the spatial scale components of 
the binary forecast and observation fields per Fig. 19. Because the wavelet 
transform is a linear operator, decomposing the binary difference field into spatial 
scale components is equal to taking the difference between spatial scale 
components of the forecast and observation fields (Casati 2010). The 
decomposition starts by computing the mean component function (MCF) of the 
accumulated precipitation field after spatial averaging over an 8- × 8-km subarea 
of the binary difference field. This is sometimes referred to as the “father” wavelet. 
The variation-around-the-mean-component function (VCF), sometimes called the 
“mother” wavelet, is also computed. The sum of the MCF and VCF produces the 
original binary difference field (Casati 2004). Scale 1 (Fig. 20) is the first VCF 
wavelet component with a corresponding resolution of 4 km. The magnitude of the 
VCF wavelet is thus ≤|1|, which accounts for the presence of the full range of blue 
and red color shades present in the difference field in the graphic. The value of the 
frequency bias (1.33) indicates the prevalence of event overforecasting, which is 
identical in value at all scales. The ISS indicates good skill at 4-km resolution. 
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Fig. 20 W-S output graphic of the first spatial scale (4 km) for threshold value ≥3.0 mm 

Figures 21–25 show the graphical representation of the accumulated precipitation 
error for the next five scales (2–6), which are 8, 16, 32, 64, and 128 km.  

 

Fig. 21 W-S output graphic of the second spatial scale (8 km) for threshold value ≥3.0 mm 
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Fig. 22 W-S output graphic of the third spatial scale (16 km) for threshold value ≥3.0 mm 

 

Fig. 23 W-S output graphic of the fourth spatial scale (32 km) for threshold value ≥3.0 mm 
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Fig. 24 W-S output graphic of the fifth spatial scale (64 km) for threshold value ≥3.0 mm 

 

Fig. 25 W-S output graphic of the sixth spatial scale (128 km) for threshold value ≥3.0 mm 

At each scale, the VCF wavelet captures the variation component of the 
accumulated precipitation binary difference field, and the MCF wavelet captures 
the mean component of the accumulated precipitation field after spatial averaging 
over a subarea of the binary difference field given by squaring the value of the 
scale. The magnitude of the VCF wavelet is thus ≤|1|, which accounts for the 
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presence of the full range of blue and red color shades present in the difference field 
in each graphic. The sum of the VCF and MCF wavelets produces the original 
binary difference field. The value of the frequency bias (1.33) indicates the 
prevalence of event overforecasting, which is identical in value at all scales. The 
ISS value for 8-, 16-, and 32-km scales shows good skill. At the 64-km scale there 
is a noteworthy change in the ISS from positive to negative despite the low 
threshold value and large scale, which goes against the expected trend (Fig. 24). 
This trend is most likely the result of the detection of the large error (64 km) due to 
the displacement of the forecast maximum accumulated precipitation feature to the 
northwest and southeast of the observed maximum. Figure 24 displays this pattern 
via the juxtapositioned squares in the lower part of the domain, which exhibit a 
sharp color contrast difference, with overforecasting in the right square and 
underforecasting in the left square. This is also evident in the images in Fig. 18 
when comparing the forecasted and observed precipitation maxima locations. 
Casati et al. (2004) noted a very similar occurrence of an isolated negative ISS 
value surrounded by positive values in their tabular results, which was attributed to 
displacement error. At the 128-km scale (Fig. 25), the ISS changes back to a 
positive value indicating good skill, though not at the level which might have been 
expected given the higher ISS values at Scales 1–4 before the reversal at Scale 5. 
This is probably due to the impact of the displacement error at this scale. 

A similar pattern is present in the results for Scales 1–6 at the next threshold value 
of ≥6.0 mm. The overforecast tendency is still present, but the magnitude is smaller 
due to the increase in threshold value. The displacement error at Scale 5 (64 km) is 
still evident, but the signal is not as strong as the lower threshold value of ≥3.0 mm. 
Figure 26 shows the spatial scale Component 5, which is the fifth VCF wavelet 
component with a corresponding resolution of 64 km. The ISS score at this 
threshold value and spatial scale would be expected to have been even more 
positive had this displacement error not been so dominant. 
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Fig. 26 W-S output graphic of the fifth spatial scale (64 km) for threshold value ≥6.0 mm 

The results for Scales 1–6 at the highest threshold value of ≥9.0 mm showed a more 
consistent trend of increasing ISS score with scale size. The value of the frequency 
bias increased over those present at the lower thresholds, indicating an increase in 
the overforecast tendency. The size of the precipitation features defined by the ≥9.0 
mm threshold, as shown in the binary difference field, are significantly smaller than 
those at the lower thresholds, which is expected at higher accumulated precipitation 
amounts. At the 64-km scale (Fig. 27), the high positive value of the ISS would 
suggest that the displacement error present at the lower threshold values, is not 
present at this higher threshold, thus indicating that there was no significant 
displacement of the forecast higher threshold precipitation features from the 
observed features. It is possible that there were no features with an area of 64 km2 
whose accumulated precipitation value met or exceeded the 9-mm threshold value. 
If this is the case, it would be difficult to rule out the possibility that there may have 
been significant displacement of features defined by this threshold, since they are 
not detectable at this scale. This situation needs further investigation to clarify if, 
and how much, displacement actually occurred.  
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Fig. 27 W-S output graphic of the fifth spatial scale (64 km) for threshold value ≥9.0 mm 

Table 1 shows the ISS scores for spatial scales 4–128 km for the three threshold 
values. The negative ISS value at ≥3.0 mm for the 64-km scale size is anomalous 
relative to positive scores at higher and lower scales, and for the same scale at the 
next higher threshold. There is a similarly anomalous depression of the ISS value 
at the same scale for the ≥6.0-mm threshold relative to the ISS values at the next 
lower and higher scales (32 and 128 km). The combination of the noted anomalous 
negative ISS and the depressed ISS values shows the presence of the displacement 
error at the 64-km scale size.  

Table 1 Intensity Skill Scores for spatial scales 4 to 128 km and threshold values of ≥3.0, 
≥6.0, and ≥9.0 mm 

Threshold 
(mm) 

Scale                                                                                  
(km) 

4 8 16 32 64 128 

≥3.0 0.43 0.29 0.55 0.56 –1.28 0.12 

≥6.0 –0.09 0.00 –0.28 0.30 0.18 0.97 

≥9.0 –1.04 –0.95 –0.53 0.45 0.94 0.96 

 

Summarizing the results from applying the scale-decomposition method of 
verification show that ensemble member 06 performed well at ≥3.0-mm for scales 
4–32 km, then poorly at the 64-km scale, with a only a modest recovery to a good 
score at 128 km. Increasing the threshold value to ≥6.0 mm showed poor scores for 
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scales 4–16 km, then improved scores for scales 32–128 km, though the score at  
64 km looks anomalously lower than would otherwise be expected given the good 
score at the next lower scale (32 km) and the excellent score at the next higher scale  
(128 km). At the highest threshold value, the scores at the smallest scales  
(4–16 km) were poor but increased significantly for scales 32–128 km. The 
anomalous negative score for the ≥3.0-mm threshold and 64-km scale and, to a 
lesser extent, the 128-km scale was most likely the result of the detection of the 
large error at both scales due to the displacement of the precipitation maximum 
feature. This displacement error may have similarly impacted the score at the  
≥6.0-mm threshold and 64-km scale, which was also anomalously lower than 
nearby scores at higher and lower scales. There is no evidence of the displacement 
error at the highest threshold value judging from the scores alone. Based on these 
results, member 06 showed good skill at all scales between 4 and 32 km at the 
lowest threshold (3.0 mm). This good performance was repeated at the next two 
threshold values (6 and 9 mm) but at larger scales of 32–128 km. There is an error 
in the placement of the precipitation maximum feature, which is manifest mainly 
in the score for the lowest threshold at the 64-km scale and to a limited extent in 
the score at the same scale at the threshold value of ≥6.0 mm. Further investigation 
is needed to clarify whether the displacement error at the highest threshold value 
was simply not detected for features with areas 64 km2 or larger due to the lack of 
such features with accumulated precipitation values that met or exceeded this 
threshold. 

4. Conclusions and Summary 

Uncertainty quantification of the WRE-N ensemble using 1) the mean ensemble 
and observed 6-h accumulated precipitation graphics, rank histogram, and 2-D 
observation ranks from MET E-S, and 2) time series of 6-h precipitation from key 
locations in the inner model domain provided a qualitative confirmation of the 
presence of uncertainty in the location of the precipitation maximum feature that 
was attributable to a spatial displacement error. These tools also confirmed that the 
spread in ensemble-accumulated precipitation was due to either underdispersion 
relative to the range of accumulated precipitation values from the observations or 
the presence of spatial variations in the model bias resultant from the displacement 
error. These results provide some insight into the ensemble performance as a whole 
but are not very quantitative. The application of the scale-decomposition technique 
to quantify the uncertainty of a single member of the ensemble provided 
significantly more details on the performance of that member, which was not 
achievable using results from E-S. The MET W-S tool uses the Intensity-Scale 
method and provides an assessment of model skill as a function of threshold values 
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and spatial scales by providing an ISS for each combination of threshold and scale. 
The tool enabled the separation of the larger displacement errors from the smaller 
scale errors attributable to smaller-scale processes. The separation was 
characterized by negative ISS and pointed out the strengths of the model forecast, 
where the ISS is positive. The tool enabled the determination of frequency bias at 
all thresholds, which showed a dominant tendency for overforecasting 6-h 
accumulated precipitation. Despite the displacement error at the 64- and 128-km 
scales, the model showed good skill at all scales between 4 and 32 km at the lowest 
threshold (3 mm). This good performance was repeated at the next two threshold 
values (6 and 9 mm). At larger scales, 32–28 km, there is some evidence impact 
due to the displacement error at 64 km and a possibility of the impact at the highest 
threshold that cannot be detected using these results. This would imply that for the 
higher thresholds, the model lacks some skill in predicting smaller-scale convection 
features with scales less than 16 km. These conclusions about model performance 
are only based on one case study and not intended as a final assessment. More case 
studies are needed to obtain conclusive assessment results.  

In summary, the results obtained through the use of the scale-decomposition 
technique look promising for quantifying the uncertainty of each ensemble member 
individually as a function of the spatial scale and the threshold value. The next step 
toward quantifying the ensemble uncertainty is to apply this technique to all 
members of the ensemble. Results from all members may allow the identification 
of specific model configurations to use in an ensemble that would enable the 
ensemble to better characterize the true uncertainty.  
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Appendix. Wavelet-Stat (W-S) Metrics 
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The following provides a brief overview of the metrics that appear in the Wavelet-
Stat (W-S) output graphics.*  

Frequency Bias is the ratio of the total number of forecasts of an event to the total 
number of observations. A value of 1.0 indicates a perfect forecast. A value of ˂1.0 
indicates the event was not forecasted frequently enough, while a value of ˃1.0 
indicates the event was forecasted too frequently. 

The Intensity Skill Score (ISS) evaluates the forecast skill as a function of the 
intensity or magnitude of the field variable and of the spatial scale of the error. 
Positive ISS skill score values are associated with a skillful forecast, whereas 
negative values are associated with no skill. 

Base Rate is the overall proportion of grid points with observed events, to total grid 
points in the domain. 

The Percent Mean Squared Error (%) is computed from the Mean Squared Error 
(MSE), which is the average of all the differences indicated by the pixels in the 
domain (Mittermaier 2006). The MSE for a perfect forecast is 0. Percent MSE is 
the percentage of the total MSE at a specific scale size and threshold. 

The Percent Forecast Energy Squared (%) (En2%), Percent Observation Energy 
Squared (%) (En2%), and their corresponding energy values (En2) are used for 
computing bias as a function of scale and threshold. The energy is computed by 
taking the average of the difference field grid-point squared values. 

 
 

  

                                                 
*National Center for Atmospheric Research (NCAR). Model evaluation tools (MET). ver. 5.2. 
Boulder (CO): NCAR; 2016b [accessed 2019 Aug 15]. https://dtcenter.org/community-code/model-
evaluation-tools-met. 
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List of Symbols, Abbreviations, and Acronyms 

2-D 2-dimensional 

4-D 4-dimensional 

ARL Army Research Laboratory  

ARW Advanced Research Weather Research and Forecasting 

CONUS continental United States 

CSV comma-separated value 

DC Washington, DC  

Delmarva peninsula occupied by Delaware and parts of Maryland and Virginia 

E-S Ensemble-Stat 

F–O forecast minus observation 

FDDA  4-D data assimilation 

GEFS Global Ensemble Forecast System 

GFS Global Forecast System 

IC/LBC initial conditions/lateral boundary condition 

IDV Integrated Data Viewer 

ISS Intensity Skill Score 

MCF mean component function 

MET Model Evaluation Tools 

MSE Mean Squared Error 

NCAR National Center for Atmospheric Research 

NCEP National Center for Environmental Prediction 

NetCDF Network Common Data Form 

NWP Numerical Weather Prediction 

P-C Pcp-Combine 

R a language and environment for statistical computing 

R-D-P Regrid_data_plane 
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UPP Unified Post Processor 

UTC Coordinated Universal Time 

VCF variation-around-the-mean-component function 

W-S Wavelet-Stat 

WRE–N Weather Running Estimate–Nowcast 

WRF Weather Research and Forecasting  

WRF–ARW Weather Research and Forecasting-Advanced Research WRF 
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