
ARL-TR-8828• SEP 2019

Quantifying Uncertainties in
Parameterizations of StrengthModels of Rolled
Homogeneous Armor: Part 3, Python-Based
Workflow
by JJ Ramsey

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorse-
ment or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

ARL-TR-8828• SEP 2019

Quantifying Uncertainties in
Parameterizations of StrengthModels of Rolled
Homogeneous Armor: Part 3, Python-Based
Workflow
by JJ Ramsey
Computational and Information Sciences Directorate, CCDC Army Research
Laboratory

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704‐0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704‐0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202‐
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a
currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD‐MM‐YYYY)

2. REPORT TYPE

3. DATES COVERED (From ‐ To)

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

18. NUMBER
 OF
 PAGES

	

19a. NAME OF RESPONSIBLE PERSON

a. REPORT

b. ABSTRACT

c. THIS PAGE

19b. TELEPHONE NUMBER (Include area code)

 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

September 2019 Technical Report

Quantifying Uncertainties in Parameterizations of Strength Models of Rolled
Homogeneous Armor: Part 3, Python-Based Workflow

JJ Ramsey

ARL-TR-8828

Approved for public release; distribution is unlimited.

October 2017-September 2019

US Army Combat Capabilities Development Command Army Research Laboratory
ATTN: FCDD-RLC-NB
Aberdeen Proving Ground, MD 21005-5066

This report describes a workflow, based on the Python language and the Bayesian software tools PyStan and PyMC3, that has
been used to obtain information on strength model parameters in rolled homogeneous armor that can be used in uncertainty
propagation analyses. This workflow is supplemented with an illustration of how an approximate interval predictor model can be
implemented using the Python software package SciPy. It is hoped that this workflow may serve as a source of example code for
other CCDC Army Research Laboratory researchers who wish to obtain results that facilitate uncertainty quantification.

uncertainty quantification, Bayesian analysis, Johnson-Cook, Zerilli-Armstrong, PyStan, PyMC3, interval predictor model

184

James J Ramsey

410-278-5614Unclassified Unclassified Unclassified UU

ii

Contents

List of Figures v

List of Tables vi

1. Introduction 1

2. Obtaining Software Tools 6

3. Working Directories 11

4. Data Files 11

5. Testing Models with Simulated Data 13
5.1 Functions for Testing Models 14
5.2 Making Simulated Data for Johnson-Cook Model 18
5.3 Testing Johnson-Cook Model with PyStan 25
5.4 Testing Johnson-Cook Model with PyMC3 28
5.5 Making Simulated Data for Zerilli-Armstrong (BCC) Model 32
5.6 Testing Zerilli-Armstrong (BCC) Model with PyStan 36
5.7 Testing Zerilli-Armstrong (BCC) Model with PyMC3 41

6. Fitting Strength Models to Experimental Data 45
6.1 Functions for Fitting Models 45
6.2 Preprocessing Experimental Data 51
6.3 Fitting Johnson-Cook Model to Experimental Data with PyStan 57
6.4 Fitting Johnson-Cook Model to Experimental Data with PyMC3 61
6.5 Fitting Zerilli-Armstrong (BCC) Model to Experimental Data with PyStan 65
6.6 Fitting Zerilli-Armstrong (BCC) Model to Experimental Data with PyMC3 69
6.7 Applying Approximate Interval Predictor Model Approach 74

7. Postprocessing of Model Fits 81
7.1 Plotting Priors with Posteriors 81
7.2 Plotting Posteriors for Different Values of βTQ and farea 85

iii

7.3 Plotting PPDs and PFPs with Experimental Data 89
7.4 Determining Correlation Matrices 95

8. Conclusions 100

9. References 101

Appendix A. Data Tables 106

Appendix B. Brief Introduction to Python 117

Appendix C. Python Code for Bayesian Analysis 141

Appendix D. Stan Specification Files 167

List of Symbols, Abbreviations, and Acronyms 173

Distribution List 175

iv

List of Figures
Fig. 1 Plots of flow stress σ vs. plastic strain εp for RHA from MIDAS, with

the plastic strain rate denoted as Ûεp and the initial sample temperature
Tinit ..2

Fig. 2 Main window of Anaconda Navigator, with the “Home” tab shown and
the “Environments” tab circled in a dashed red line.........................7

Fig. 3 Main window of Anaconda Navigator, with the “Environments” tab
shown and the “Create” button circled in a dashed red line................8

Fig. 4 Dialog window for creating environments with Anaconda Navigator,
with default settings..8

Fig. 5 Main window of Anaconda Navigator, with the “Environments” tab
showing a list of available software packages that are not installed. The
entry for the “Bayes” environment and the drop-down list with the entry
“Not installed” are both circled in a dashed red line.........................9

Fig. 6 Close-up of main window of Anaconda Navigator, with the
“Environments” tab showing a list of available software packages with
the string “pymc” in their names. The search box and package names
are circled in a dashed red line. ..9

Fig. 7 Main window of Anaconda Navigator, with the “Home” tab shown and
the “Environments” tab circled in a dashed red line. Applications for the
“Bayes” environment are shown... 10

Fig. 8 Plot of simulated data used to test the Johnson-Cook PyStan and
PyMC3 models ... 22

Fig. 9 Storage of data for stress-strain curves in the Stan vectors epsilon_p,
sigma, T, and curve_sizes .. 24

Fig. 10 Plot of simulated data used to test the Zerilli-Armstrong (BCC) PyStan
and PyMC3 models .. 35

Fig. 11 Temperatures as estimated in Python along stress-strain curves with the
initial temperatures and strain rates shown, given the values of βTQ and
farea in Table 1.. 54

Fig. 12 Histograms approximating the posterior marginal PDFs of
Johnson-Cook model parameters and nuisance parameters SDσ,1 and
SDσ,2. These are generated from samples of PyStan and PyMC3 runs
with βTQ = 0.9, farea = 0.75, and weakly informative priors. Priors are
superimposed over the histograms. ... 84

v

Fig. 13 Histograms approximating the posterior marginal PDFs of
Johnson-Cook model parameters and nuisance parameters SDσ,1 and
SDσ,2. These are generated from samples of PyStan MCMC runs with
the values of βTQ and farea in Table 1, and weakly informative priors.88

Fig. 14 Stress-strain data for initial sample temperatures of 298 K, along with
estimates of the mean and the 95% HDI for PPDs generated from
samples of PyStan MCMC runs for the Johnson-Cook model with
weakly informative priors. The 95% HDI for βTQ = 0.9 and
farea = 0.75 is plotted as a shaded region between the minimum and
maximum of the HDI. ... 96

Fig. 15 Stress-strain data for high initial sample temperatures along with
estimates of the mean and the 95% HDI for PPDs generated from
samples of PyStan MCMC runs for the Johnson-Cook model with
weakly informative priors. The 95% HDI for βTQ = 0.9 and
farea = 0.75 is plotted as a shaded region between the minimum and
maximum of the HDI. ... 97

Fig. 16 Stress-strain data for initial sample temperatures of 298 K, along with
estimates of the 95% HDI for PFPs of model predictions generated from
samples of PyStan MCMC runs for the Johnson-Cook model with
weakly informative priors. The 95% HDI for βTQ = 0.9 and
farea = 0.75 is plotted as a shaded region between the minimum and
maximum of the HDI. ... 98

Fig. 17 Stress-strain data for high initial sample temperatures along with
estimates of the 95% HDI for PFPs generated from samples of PyStan
MCMC runs for the Johnson-Cook model with weakly informative
priors. The 95% HDI for βTQ = 0.9 and farea = 0.75 is plotted as a
shaded region between the minimum and maximum of the HDI. 99

Fig. B-1 Example plots used to illustrate the plotting features of the Python
module Matplotlib.. 132

List of Tables
Table 1 Possible combinations of values of βTQ and farea used in temperature

estimation ..3

Table A-1 Specific heat of BCC iron versus temperature 107

Table A-2 Flow stress versus plastic strain of RHA for initial temperature 77 K
and plastic strain rate 0.001/s... 108

Table A-3 Flow stress versus plastic strain of RHA for initial temperature 77 K
and plastic strain rate 2500/s ... 109

vi

Table A-4 Flow stress versus plastic strain of RHA for initial temperature 298 K
and plastic strain rate 0.001/s... 110

Table A-5 Flow stress versus plastic strain of RHA for initial temperature 298 K
and plastic strain rate 0.1/s .. 111

Table A-6 Flow stress versus plastic strain of RHA for initial temperature 298 K
and plastic strain rate 3500/s ... 112

Table A-7 Flow stress versus plastic strain of RHA for initial temperature 298 K
and plastic strain rate 7000/s ... 113

Table A-8 Flow stress versus plastic strain of RHA for initial temperature 473 K
and plastic strain rate 3000/s ... 114

Table A-9 Flow stress versus plastic strain of RHA for initial temperature 673 K
and plastic strain rate 3000/s ... 115

Table A-10 Flow stress versus plastic strain of RHA for initial temperature 873 K
and plastic strain rate 3500/s ... 116

vii

1. Introduction
This report describes in detail a workflow for Bayesian analysis that uses the Python
language1 and two Bayesian software tools that work with that language, PyStan2

and PyMC3.3 There are two intended audiences for this report. One audience is
the set of readers who have read the companion report4 and wish to know further
details of how to implement the analyses discussed within it. The other audience
may not have read that report, but is still somewhat familiar with the broad strokes of
Bayesian analysis and is looking for examples on how to implement it on something
more than a “toy” example. For those in this second audience (as well as those in
the first who need their memories refreshed), a few things are noted.

First, strength models for rolled homogeneous armor (RHA) are fit to the stress-
strain data described in Appendix A, which come from the Material Implementa-
tion, Database, and Analysis Source (MIDAS). These data consist of nc subsets,
where subset ic (ic ∈ [1,Nic]) is associated with plastic strain rate Ûε ic

p and temper-
ature T ic

init , which is the initial temperature of an unstrained experimental sample.
Each subset corresponds to one of the stress-strain curves shown in Fig. 1.

Second, the temperature rise during high-strain-rate deformation is approximately
taken into account through the following equations:

T ic
j − T ic

j−1 ≈
βTQ

ρc(T ic
j−1)

∫ ε icp, j

ε ic
p, j−1

σdεp (1)

T ic
1 − T ic

init ≈
βTQ

ρc(T ic
init)

fareaσ
ic
1 ε

ic
p,1, farea ∈ [0.5,1] (2)

Here, T ic
j−1, ε ic

p,j , and σic
j are, respectively, the temperature, plastic strain, and flow

stress of data point j in subset ic; βTQ is the Taylor-Quinney coefficient; ρ is the den-
sity; and c(T) is the specific heat, which is a function of temperature T . The integral
in Eq. 1 is the area under the portion of stress-strain curve ic that is over the strain
interval [ε ic

p,j−1, ε
ic
p,j]. The density is taken to be 7840 kg/m3, following Benck.5 The

specific heat values for body-centered cubic (BCC) iron, in Appendix A, are as-
sumed to approximate the specific heat values of RHA. The parameter farea takes
into account that when ε ic

p,1 , 0, T ic
1 , T ic

init . While βTQ is often taken to be equal
to 0.9 for metals, there is a wide spread of values found in the literature, with βTQ

sometimes found to be as low as 0.4.6 Estimation of farea amounts to educated

1

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
p

250

500

750

1000

1250

1500

1750

2000

 (M
Pa

)

Tinit = 77 K, p = 0.001/s
Tinit = 77 K, p = 2500.0/s
Tinit = 298 K, p = 0.1/s
Tinit = 298 K, p = 0.001/s
Tinit = 298 K, p = 3500.0/s

Tinit = 298 K, p = 7000.0/s
Tinit = 473 K, p = 3000.0/s
Tinit = 673 K, p = 3000.0/s
Tinit = 873 K, p = 3500.0/s

Fig. 1 Plots of flow stress σ vs. plastic strain εp for RHA from MIDAS, with the plastic strain
rate denoted as Ûεp and the initial sample temperature Tinit

2

guesswork. Accordingly, temperatures are estimated for a few combinations of rea-
sonable estimates of βTQ and farea, shown in Table 1.

Table 1 Possible combinations of values of βTQ and farea used in temperature estimation

βTQ farea

0.9 0.75
0.9 0.55
0.6 0.55
0.9 0.95
0.6 0.95

Third, the strength models to be fit are the Johnson-Cook model7 and the Zerilli-
Armstrong model for BCC materials.8 These two models take the following forms,

σJC(εp, Ûεp,T∗; θJC) = (A + Bεn
p)[1 + C ln(Ûεp/ Ûεp0)][1 − (T∗)m] (3)

T∗ = (T − Troom)/(Tmelt − Troom) (4)

σZ A,BCC(εp, Ûεp,T ; θZ A,BCC) = C0 + C1 exp[(−C3 + C4 ln(Ûεp/ Ûεp0))T] + C5ε
n
p (5)

where σJC is the flow stress according to the Johnson-Cook model; σZ A,BCC is
the flow stress according to the Zerilli-Armstrong (BCC) model; εp is the plastic
strain; Ûεp is the plastic strain rate; Ûεp0 = 1/s; T is the temperature; Troom is the
room temperature; Tmelt is the melting temperature; A, B, n, C, and m are fitting
parameters of the Johnson-Cook model; θJC = (A,B,n,C,m); C0, C1, C3, C4, C5,
and n are fitting parameters of the Zerilli-Armstrong (BCC) model; and θZ A,BCC =

(C0,C1,C3,C4,C5,n). (There is no parameter C2; such a parameter belongs to the
face-centered cubic version of the Zerilli-Armstrong model.9)

Fourth, because the experimental data for low strain rates come from a different
measurement source than those for a high strain rate, the errors associated with
each of them are different. The errors from both are assumed to be normally dis-
tributed, but the standard deviation of the noise from the low-strain-rate source is
taken to be SDσ,1, while that from the high-strain-rate source is taken to be SDσ,2.
These two standard deviations are taken to be nuisance parameters whose values
are determined as part of Bayesian analysis.

Fifth, this report contains a workflow for sampling the posterior predictive distribu-

tion10 (PPD) and the pushed forward posterior11 (PFP), which can be used to check
how well a model’s predictions agree with the data. For the Bayesian models con-

3

sidered in this report, a sample from the PPD associated with experimental inputs
ε ic

p,j , Ûε
ic
p , and T ic

j , σic,pred
j (ε ic

p,j, Ûε
ic
p ,T

ic
j), may be obtained as follows:

σ
ic,pred
j (ε ic

p,j, Ûε
ic
p ,T

ic
j) ∼ normal(σmdl(ε

ic
p,j, Ûε

ic
p ,T

ic
j ; θmdl),SDσ,k)

{θmdl,SDσ,k} ∼ Dpost

(6)

Here, Dpost is the posterior distribution in Bayesian analysis, k = 1 for strain
rates of 1/s or less, and k = 2 otherwise. Subscript “mdl” stands in for “JC”
or “Z A,BCC.” This sampling statement implies that a sample from the PPD is
obtained by sampling θmdl and SDσ,k from the posterior distribution, substituting
that sample into the likelihood distribution (i.e., normal(σmdl(. . .),SDσ,k)) and then
sampling from that likelihood. A sample of the PFP of the Bayesian models con-
sidered in this report may be obtained as follows:

σ
ic,p f p
j (ε ic

p,j, Ûε
ic
p ,T

ic
j) ∼ σmdl(ε

ic
p,j, Ûε

ic
p ,T

ic
j ; θmdl), if θmdl ∼ Dpost (7)

This sampling statement implies that a sample from the PFP is obtained by sampling
θmdl from the posterior distribution and substituting that sample into the predictive
model σmdl(. . .).

Sixth, the Bayesian tools in this report implement Markov Chain Monte Carlo
(MCMC), which produces one or more chains of samples from the posterior distri-
bution in Bayesian analysis.10,12 The particular MCMC algorithm used is Hamilto-
nian Monte Carlo13 with the no-U-turn sampler (NUTS).14

Finally, an alternative approach, based on an interval predictor model (IPM),15,16 is
used to estimate the parameter uncertainty. An IPM is simply a function that returns
an interval as its output rather than a single value. For example, given a function to
predict the flow stress, σmdl(e,θmdl) (where e ≡ (εp, Ûεp,T)), and a set Θ, the interval
within which the flow stress is estimated to lie is [σmin(e;Θ), σmax(e;Θ)], where

σmin(e;Θ) = min
θmdl∈Θ

σmdl(e,θmdl) (8)

σmax(e;Θ) = max
θmdl∈Θ

σmdl(e,θmdl) (9)

The setΘ is chosen so as to keep the intervals from the IPM reasonably tight, given

4

known data points {eic
j , σ

ic
j }. For example, Θ may be chosen such that

Θ = arg min
Θ′

nc∑
ic=1

Nic∑
j=1

[
σmax(eic

j ;Θ′) − σmin(eic
j ;Θ′)

]
(10)

The minimization of Eq. 10 under the constraint

σmin(eic
j ;Θ) ≤ σic

j ≤ σmax(eic
j ;Θ),∀ic ∈ [1,nc], j ∈ [1,Nic] (11)

may not be tractable, especially if there is no analytical solution to Eqs. 8 and 9, thus
requiring a nested optimization (i.e., at each iteration to solve Eq. 10, optimization
routines would need to be used to estimate σmin and σmax for each data point).
However, one may obtain a more tractable problem by approximating σmdl(e,θmdl)

with a first-order Taylor expansion about a point estimate of θmdl , θ0, and taking Θ
to be a hyperrectangle with corners θ0 − ∆θmin and θ0 + ∆θmax . If gσmdl

(e) is the
gradient of σmdl(. . .) with respect to θmdl evaluated at e and θ0, and |gσmdl

(e)| is
the elementwise absolute value of gσmdl

(e), then Eqs. 8 and 9 can be approximated
as follows:

σmin(e;Θ) ≈ σmdl(e,θ0) −
1
2

(
gσmdl

(e) + |gσmdl
(e)|

)T
∆θmin

+
1
2

(
gσmdl

(e) − |gσmdl
(e)|

)T
∆θmax

(12)

σmax(e;Θ) ≈ σmdl(e,θ0) −
1
2

(
gσmdl

(e) − |gσmdl
(e)|

)T
∆θmin

+
1
2

(
gσmdl

(e) + |gσmdl
(e)|

)T
∆θmax

(13)

Here, a superscript T indicates the transpose. Given Eqs. 12 and 13 along with a
fixed θ0, Eq. 10 becomes

∆θmin,∆θmax = arg min
∆θ′min,∆θ

′
max

nc∑

ic=1

Nic∑
j=1
|gσmdl

(eic
j)|

T

(∆θ′min + ∆θ
′
max) (14)

Together, Eqs. 11–14 form a constrained minimization problem that can be solved
through linear programming.

Because this report is aimed primarily at those who have had little exposure to
Bayesian analysis, it is written mostly in a step-by-step tutorial style, with the

5

Python code needed for analysis shown explicitly. Readers unfamiliar with Python
may wish to view Appendix B. Excerpts and variables from program code, as well
as filenames, are written in a fixed-width font like this.

2. Obtaining Software Tools
There are a variety of ways to obtain PyStan and PyMC3,17,18 but here, instructions
are presented for how to obtain them via the freely available Anaconda distribu-
tion.19 (It is presumed here that any permissions needed to install software on one’s
computer have already been obtained, and that one can configure any anti-malware
tools on that computer so that they will not interfere with launching of MCMC
chains in parallel, an issue that has been a problem for some Stan users.20) First,
if the distribution has not been installed already (and on certain CCDC Army Re-
search Laboratory [ARL] workstations and computing clusters it may already be
installed), then one should follow the installation instructions for Anaconda avail-
able online.21 Since the details of these instructions depend on one’s computing
platform, they are not discussed here. Once the distribution is installed, one can use
the Anaconda Navigator GUI to install various software that one may need. When
one first starts Navigator,22 one sees a window that looks like the one in Fig. 2. One
can then click on the “Environments” tab (shown circled in a dashed red line), and
then one should see a window like the one in Fig. 3.

At this point, one can then create a so-called “environment”, which, loosely speak-
ing, may be described as a container of software that one can maintain without
it interfering with other software on one’s system. To create an environment, one
should first click on the “Create” button (shown circled in a dashed red line). This
should produce a dialog window that looks like the one in Fig. 4. By default, the
check box next to “Python” in the dialog window is already checked, so one should
only need to provide a name for the environment. In these instructions, the name of
this environment is “Bayes”.

Once the environment has been created, one can then install PyStan and/or PyMC3.
One first goes to the “Environments” tab, clicks on “Bayes”, and then selects “Not
installed” from the drop-down list over the list of software packages. The Ana-
conda Navigator window should then look like Fig. 5. From here, one can search
for packages and click the check boxes next to the package(s) one wishes to install.
For example, to install PyMC3, one can search for “pymc” and click the check box

6

Fig. 2 Main window of Anaconda Navigator, with the “Home” tab shown and the “Environ-
ments” tab circled in a dashed red line

next to “pymc3” (not just “pymc”!), which looks like Fig. 6. (Unfortunately, during
the writing of this report, a version of the PyMC3 package available from the Ana-
conda distribution, i.e., PyMC3 3.4.1, became broken.23 A workaround for this is
discussed later in this section.)

To finish installing, one clicks on the "Apply" button that appears at the lower right
corner of the Navigator window. This also installs any packages on which PyStan
and/or PyMC3 depend. To do the plotting and analysis in Python described in later
sections, the packages Pandas and Matplotlib should be installed as well, if they
have not already been installed as dependencies.

(If the available version of PyMC3 is still broken, one should still install it in or-
der to install its dependencies, but then one should immediately uninstall it. One
should then install PyMC3 from the Python Package Index [PyPI]. To do this, one
should go to the “Environments” tab shown in Fig. 3, click on the green triangle
next to “Bayes”, choose “Open in Terminal” from the resulting pop-up menu, type
pip install pymc3 in the resulting terminal, and press Enter. When using
Anaconda, though, installing from PyPI should be a last resort.)

If one clicks on the “Home” tab in Anaconda Navigator (the tab just above the

7

Fig. 3 Main window of Anaconda Navigator, with the “Environments” tab shown and the
“Create” button circled in a dashed red line

Fig. 4 Dialog window for creating environments with Anaconda Navigator, with default set-
tings

“Environments” tab) and chooses the item “Bayes” from the drop-down menu next
to the text “Applications on”, one can see a window like the one in Fig. 7. From
this window, one can launch Jupyter Notebook,24 where one can write and execute
Python code in an incremental, piecemeal fashion and intersperse the code with text
explaining one’s intended workflow. One can also install and then launch Spyder,25

an integrated development environment for Python.

For those who use the text editors Emacs or Vim, syntax highlighting for the Stan
language is available as well.26,27

8

Fig. 5 Main window of Anaconda Navigator, with the “Environments” tab showing a list of
available software packages that are not installed. The entry for the “Bayes” environment and
the drop-down list with the entry “Not installed” are both circled in a dashed red line.

Fig. 6 Close-up of main window of Anaconda Navigator, with the “Environments” tab showing
a list of available software packages with the string “pymc” in their names. The search box and
package names are circled in a dashed red line.

9

Fig. 7 Main window of Anaconda Navigator, with the “Home” tab shown and the “Environ-
ments” tab circled in a dashed red line. Applications for the “Bayes” environment are shown.

10

3. Working Directories
It is presumed that all code and data in the following analyses are in sub-
directories immediately below some user-chosen base directory. Subdirectory
stan_model_specs contains all Stan model specification files. Subdirectory
Python is the working directory from which all Python code is executed, and any
Python module files that are not part of a Python installation are in this directory as
well. The subdirectory MIDAS_data contains the stress-strain data from MIDAS
described in Appendix A, and the subdirectory Other_data contains other files
that can be processed with multiple programming languages.

4. Data Files
The original data from MIDAS have been stored in a set of comma-separated value
(CSV) files, with one file for a given strain rate and initial temperature. The data
from these files are shown in Appendix A. For each file, the first column is the
plastic strain (so no conversion from total strain to plastic strain is needed here), and
the second column is the true stress in megapascals. There are no column headings
in the CSV files. The naming convention for each file indicates the temperature and
strain rate for which the data have been determined. For example, in the filename
T298K_edot0.1_per_s.csv, “T298K” indicates that the initial temperature
is 298 K, and “edot0.1_per_s” indicates that the strain rate is 0.1/s.

The Other_data directory mentioned in Section 3 contains a CSV file named
Austin_Specific_Heat_BCC_Iron.csv that has the specific heat data as
a function of temperature for BCC iron. The first column is the absolute temperature
in kelvin, and the second column is the specific heat in J/(kg · K). The data from
this file are also in Appendix A.

Also in the Other_data directory are JavaScript Object Notation (JSON) files
used for the parameters for priors, as well as some other miscellaneous data. The
reason for putting these parameters into files is that they are used repeatedly in both
the process of fitting models and in later data analysis. The reason for using JSON
files in particular is that they are human-readable text files that can easily be read
into both R and Python sessions, and thus can be used not only in the workflow
discussed in this report but in the R workflow discussed in Ramsey.28

Next are the contents of the data file JC_priors.json, which pertains to the

11

weakly informative priors of the Johnson-Cook model discussed in Ramsey.4

{

"A_guess_mean" : 1000.0,

"A_guess_sd" : 333.333333333333,

"B_guess_mean" : 1000.0,

"B_guess_sd" : 333.333333333333,

"C_guess_mean" : 0.001,

"C_guess_sd" : 0.000333333333333333,

"m_guess_mean" : 1.0,

"m_guess_sd" : 0.333333333333333,

"n_alpha" : 1.1,

"n_beta" : 1.1,

"sd_sigma_guess_mean" : [100.0, 100.0],

"sd_sigma_guess_sd" : [33.3333333333333, 33.3333333333333]

}

Between the curly braces is a comma-separated list of key-value pairs, where the
keys are strings, the values are either numbers or lists of numbers in brackets, and
a colon is used to separate the keys and values. Here, the keys correspond to data
variables in the Stan specification file in Section D.1.

As discussed in Ramsey,4 a strongly informative prior may also be used for pa-
rameter A of the Johnson-Cook model. The mean and standard deviation of this
prior, based on experimental data from Benck,5 are stored in a JSON file named
JC_prior_A_Benck.json:

{

"A_guess_mean": 707.25,

"A_guess_sd": 10.63

}

There are also other quantities that are needed for the fit of the Johnson-Cook
model, and since these quantities are also used later, they are saved to a JSON
file, entitled JC_other_data.json:

{

"T_room" : 298.0,

"T_melt" : 1783.0,

"epsilon_p_dot_0" : 1.0

}

12

This file, of course, has the values of parameters Tmelt , Troom, and Ûεp0.

Parameters for the priors of the Zerilli-Armstrong (BCC) model are in the file
ZA_BCC_priors.json:

{

"C0_guess_mean" : 100.0,

"C0_guess_sd" : 33.3333333333333,

"C1_guess_mean" : 1000.0,

"C1_guess_sd" : 333.333333333333,

"C3_guess_mean" : 1e-3,

"C3_guess_sd" : 3.33333333333333e-04,

"C4_guess_mean" : 1e-05,

"C4_guess_sd" : 3.33333333333333e-06,

"C5_guess_mean" : 1000.0,

"C5_guess_sd" : 333.333333333333,

"n_alpha" : 1.1,

"n_beta" : 1.1,

"sd_sigma_guess_mean" : [100.0, 100.0],

"sd_sigma_guess_sd" : [33.3333333333333, 33.3333333333333]

}

The keys correspond to data variables in the Stan specification file in Section D.2.
The values associated with these keys make the priors of the Zerilli-Armstrong
(BCC) model weakly informative.

5. Testing Models with Simulated Data
A Bayesian model should be tested with simulated data, that is, data sampled from
the likelihood of the model given known model parameters and other model inputs,
which in this case are the strain, strain rate, and temperature. When one fits the
model back to these simulated data, the resulting point estimates for the model
parameters should be approximately the same as the parameter values that one used
to create the simulated data in the first place. If not, that means that the model should
be revised. Examples of this sort of testing are shown for both the Johnson-Cook
and Zerilli-Armstrong (BCC) models.

13

5.1 Functions for Testing Models
Some custom Python functions, whose sources are in the file bayes_stress_
strain_utils.py in Appendix C, have been used in the testing of models de-
scribed later on. These functions are as follows:

• simulate_data, which is used to help generate the kind of simulated data
described previously, while accounting for the temperature rise estimated in
Eq. 1;

• gen_lin_interp_func, which is used to generate a function that lin-
early interpolates tabular data (in particular, the specific heat data in Ap-
pendix A);

• plot_stress_strain_curves, which creates a plot of several stress-
strain curves and writes it to a file;

• print_stan_summary, which generates summary statistics and some di-
agnostics from the results of an MCMC run with PyStan;

• read_from_json_file, which reads a Python object from a (possibly
Gzip-compressed29) JSON file;

• read_from_pickle_file, which reads a Python object from a (possi-
bly Gzip-compressed29) Python pickle file; and

• save_to_pickle_file, which saves a Python object to a (possibly com-
pressed) Python pickle file. It ensures that any directories in the file path sup-
plied to it actually exist and creates them if they do not. If the file path ends
in “.gz”, then the resulting pickle file is Gzip-compressed.29

The details of these functions may be mainly of interest to readers who are look-
ing for example code to use as a reference. However, two of these functions are
discussed in more detail: simulate_data, whose contents pertain to the physics
and mathematics of the sample problem, and print_stan_summary, which ex-
ists largely as a workaround for limitations of the current release of PyStan at the
time of writing. Thus, these are discussed in more detail.

The function simulate_data has the following arguments:

14

• sigma_model_func, a function representing the strength model (e.g., σJC

or σZ A,BCC from Eqs. 3 and 5) that returns the flow stress and takes four argu-
ments: plastic strain, plastic strain rate, temperature, and some data structure
containing the model parameters (such as a Python dictionary)

• epsilon_p_max, the largest plastic strain for which stresses are calculated

• epsilon_p_dot, the plastic strain rate

• T_init, the initial temperature of the sample

• theta_model the model parameters of the strength model (e.g., θJC or
θZ A,BCC from Eqs. 3 and 5)

• beta_TQ, the Taylor-Quinney coefficient

• rho, the density of the sample

• specific_heat_func, a function that returns the specific heat for
a given temperature (which can and later on are generated using
gen_lin_interp_func)

• curve_size, the number of data points in the stress-strain curve

The following statement creates a 1-D NumPy array of length curve_size, epsilon_p,
that contains evenly spaced strain values from 0 to epsilon_p_max:

epsilon_p = np.linspace(0.0, epsilon_p_max, curve_size)

The next two statements create the 1-D NumPy arrays T and sigma, which are
to hold sequences of length curve_size that contain temperatures and stresses,
respectively. While the size of these arrays is set, their contents are uninitialized and
contain random garbage at this point.

T = np.empty(curve_size)

sigma = np.empty(curve_size)

After this come the parts of the function that generate simulated temperature and
stress data. There is a potential circularity here. In general, the temperature depends
upon the stress, but to calculate the stress from the strength model, one needs the
temperature. To work around this, the temperature in element i of T is estimated

15

using the stress in element i − 1 of sigma. To bootstrap this process, the first
elements of T and sigma are set using the initial temperature T_init:

T[0] = T_init

sigma[0] = sigma_model_func(

epsilon_p[0],

epsilon_p_dot,

T[0],

theta_model

)

At this point, the rest of the elements of T and sigma can be set as follows:

for i in range(1, curve_size):

Estimate of area under stress-strain curve from

epsilon_p[i-1] to epsilon_p[i-1].

area_under_curve = sigma[i-1]*(epsilon_p[i] - epsilon_p[i-1])

T_rise = beta_TQ*area_under_curve/(

rho*specific_heat_func(T[i-1]))

T[i] = T[i-1] + T_rise

sigma[i] = sigma_model_func(

epsilon_p[i],

epsilon_p_dot,

T[i],

theta_model

)

As the comment in the previous Python code indicates, area_under_curve is
an estimate of the area under the portion of the stress-strain curve that is over the
interval [epsilon_p[i - 1], epsilon_p[i]]. This corresponds to the inte-
gral in Eq. 1, with the integrand being approximated as a constant with the value
sigma[i - 1]. The temperature rise temp_rise also follows from Eq. 1.
Once the temperature rise is estimated, then it is straightforward to determine T[i]
and then sigma[i].

Finally, the function returns its values in a Python dictionary as follows:

return {"T" : T,

"epsilon_p": epsilon_p,

"sigma": sigma

}

The function print_stan_summary mainly exists to account for two issues

16

present in the release versions of PyStan available at the time of writing: a bug that
may cause PyStan to print spurious not-a-number (NaN) values in one of its diag-
nostics, and certain diagnostic checks being missing in PyStan but present in RStan.
Both of these issues have been fixed in the current development version of Py-
Stan.30,31 The function requires only one argument, fit, a PyStan StanFit4model
object that contains the results of an MCMC run.32 It then prints out a summary of
statistics of that run, such as the mean and standard deviation of model parameters,
as well as indicators of problems with the run.

The body of the function begins with a workaround for the aforementioned PyStan
bug.

try:

pystan.constants.EPSILON = float("-inf")

except:

If there is an exception, the constant is longer in

PyStan, so the workaround is not needed.

pass

The constant pystan.constants.EPSILON is used in an attempt to avoid
a divide-by-zero error. When a denominator used to calculate a diagnostic called
“Rhat” is less than this constant, it is presumed to be effectively zero, and
the diagnostic value is set to NaN. Unfortunately, this leads to small but still
valid denominator values to be spuriously treated as zero. To fix this problem,
pystan.constants.EPSILON is changed from its original value of 10−6 to
−∞. To be compatible with future versions of PyStan, in which the constant
pystan.constants.EPSILON is not available, the setting of this constant is
within a Python try/except control structure. If setting the constant fails, then
nothing happens.

The following code prints some diagnostics and a summary:

Check for divergent transitions

stan_utility.check_div(fit)

Check if transitions hit maximum treedepth

stan_utility.check_treedepth(

fit,

max_depth = int(fit.stan_args[0]["ctrl"]["sampling"]["max_treedepth"])

)

Check if BFMI is low

stan_utility.check_energy(fit)

17

Print summary statistics

print(fit)

The diagnostic functions are from the stan_utility module written by Betan-
court,33 a copy of which is in the Python directory mentioned in Section 3. The
meanings of these diagnostics are discussed by the Stan Development Team.34

5.2 Making Simulated Data for Johnson-Cook Model
Simulated stress-strain curves are to be created for several combinations of plastic
strain rate and initial sample temperature, such as those in the following Python
lists:

epsilon_p_dot = [0.001, 0.1, 3500.0, 7000.0, 3000.0, 3000.0]

T_init = [298.0, 298.0, 298.0, 298.0, 473.0, 673.0]

The values in these lists are taken from Meyer and Kleponis.35 They are in units of
s−1 and kelvin, respectively. To account for the temperature rise during deformation
of the sample, the sample density ρ and the specific heat as a function of temperature
c(T) are needed. Density ρ can be trivially represented by the Python variable rho:

rho = 7840.0 # kg/m^3

Representing the specific heat function in Python is less straightforward. As men-
tioned in Section 4, the specific heat data Appendix A has been collected into the
CSV file Austin_Specific_Heat_BCC_Iron.csv. This can be read into a
Python session as follows, using the Python module Pandas36:

import os

import pandas

c_data = pandas.read_table(

os.path.join(os.pardir, "Other_data",

"Austin_Specific_Heat_BCC_Iron.csv"),

sep = ",",

header = None

)

The contents of the CSV file are stored in a data frame named c_data. The argu-
ment “header = None” indicates that the first line of the CSV file should not be
treated as column headers. Because the simulated stress data are supposed to be in
megapascals, the specific heat values need to be in compatible units. Accordingly,
the second column of c_data, which contains these values, is modified as follows:

18

Conversion factor from MPa to Pa

MPa_to_Pa = 1e6

c_data.iloc[:,1] /= MPa_to_Pa

After this modification is done, a function that estimates the specific heat as a func-
tion of temperature can be generated as follows, using functionality from SciPy37:

from scipy.interpolate import interp1d

c_func = interp1d(c_data.iloc[:,0],

c_data.iloc[:,1],

fill_value = "extrapolate")

The function c_func linearly interpolates the specific heat data from
c_data. In the unlikely event that extrapolation from the data is
needed, the argument “fill_value = "extrapolate"” allows for
this. The function gen_lin_interp_func from the Python module
bayes_stress_strain_utils.py in Appendix C encapsulates most
of the previous steps used to obtain c_func and is used for obtaining such a
function in later parts of this report.

To create simulated data for the Johnson-Cook model, one needs a Python
function specifying this model. Here, the function jc from the module
file jc.py in Appendix C is used for this purpose. However, to use
this with the function simulate_data (also in Appendix C as part of
bayes_stress_strain_utils.py), which needs a function that not only
represents the strength model but has certain arguments in a certain order, a wrap-
per function needs to be used:

from jc import jc

import numpy as np

def sigma_model_func(epsilon_p,

epsilon_p_dot,

T,

theta_model):

log_epsilon_p_dot = np.log(

np.asarray(epsilon_p_dot)/theta_model["epsilon_p_dot_0"]

)

return jc(

epsilon_p,

log_epsilon_p_dot,

19

(np.asarray(T) - theta_model["T_room"])/

(theta_model["T_melt"] - theta_model["T_room"]),

theta_model["A"],

theta_model["B"],

theta_model["n"],

theta_model["C"],

theta_model["m"]

)

In the wrapper function, the NumPy function asarray is used to wrap the vari-
ables epsilon_p_dot and T so that they may be used in array arithmetic, and
np.log is a function for the natural logarithm, The model parameters needed by
sigma_model_func are shown:

theta_model = {

"A": 780.0, # MPa

"B": 780.0, # MPa

"n": 0.106,

"C": 0.004,

"m": 1.0,

"T_melt": 1783.0, # Kelvin

"T_room": 298.0, # Kelvin

"epsilon_p_dot_0": 1.0 # per s

}

The values of these parameters happen to be from Meyer and Kleponis,35 but in
principle, they could be set to any plausible values. At this point, nearly all the
information needed for simulate_data has been input to a Python session. The
maximum value for εp and values for SDσ,1 and SDσ,2 are set as follows:

epsilon_p_max = 0.2

sd_sigma = [1.0, 10.0]

Finally, the simulated data can be generated as follows. Here, beta_TQ, the Taylor-
Quinney coefficient, is set to zero for low strain rates to simulate the lack of a tem-
perature rise at those rates. Similarly, curr_sd_sigma is either SDσ,1 or SDσ,2,
depending on the strain rate. For the sake of reproducibility, the following code sets
the seed used by functions in the NumPy submodule random.

import bayes_stress_strain_utils as bssu

Initializing to empty lists

sigma = []

epsilon_p = []

T = []

min_curve_size = 40

20

max_curve_size = 50

np.random.seed(12345)

for i in range(len(epsilon_p_dot)):

if epsilon_p_dot[i] <= 1.0:

beta_TQ = 0.0

curr_sd_sigma = sd_sigma[0]

else:

beta_TQ = 0.9

curr_sd_sigma = sd_sigma[1]

Sets curve_size to a random integer between min_curve_size

and max_curve_size

curve_size = np.random.randint(min_curve_size,

max_curve_size + 1)

curr_data = bssu.simulate_data(

sigma_model_func,

epsilon_p_max,

epsilon_p_dot[i],

T_init[i],

theta_model,

beta_TQ,

rho,

c_func,

curve_size

)

sigma.append(curr_data["sigma"] +

curr_sd_sigma*np.random.randn(curve_size))

epsilon_p.append(curr_data["epsilon_p"])

T.append(curr_data["T"])

Here, sigma, epsilon_p, and T are lists of 1-D NumPy arrays, and sigma[i]
and epsilon_p[i] are the stresses and strains for stress-strain curve i. Fur-
thermore, T[i] is an array of temperatures, such that T[i][j] is the temper-
ature for data point j of stress-strain curve i. This code takes into account that if
σ ∼ normal(µσ,SDσ), thenσ = µσ+SDσenormal, where enormal ∼ normal(0,1). The
call to the function randn from the NumPy submodule random) provides an ar-
ray of length curve_size containing random values sampled from normal(0,1),
while µσ here is curr_data["sigma"] and SDσ here is curr_sd_sigma.

As a sanity check, one may plot the simulated data to a “.pdf” file (in the direc-
tory plot_files) with the function plot_stress_strain_curves (also
from the module file bayes_stress_strain_utils.py in Appendix C). An

21

example usage of this function is shown:

bssu.plot_stress_strain_curves(

os.path.join("plot_files", "jc_simulated_data.pdf"),

epsilon_p_dot,

T_init,

epsilon_p, sigma,

space_for_legend = 0.0

)

The resulting plot of the simulated data is in Fig. 8.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
p

600

700

800

900

1000

1100

1200

1300

1400

 (M
Pa

)

Tinit = 298.0 K, p = 0.001/s
Tinit = 298.0 K, p = 0.1/s
Tinit = 298.0 K, p = 3500.0/s

Tinit = 298.0 K, p = 7000.0/s
Tinit = 473.0 K, p = 3000.0/s
Tinit = 673.0 K, p = 3000.0/s

Fig. 8 Plot of simulated data used to test the Johnson-Cook PyStan and PyMC3 models

At this point, the simulated data can begin to be converted into forms more suitable
for PyStan and PyMC3 and then saved to Gzip-compresssed29 Python pickle files.
Both of these need variables pertaining to the priors (that is, A_guess_mean,
n_alpha, etc.) so these are set, using the JSON file JC_priors.json from

22

Section 4.

prior_params = bssu.read_from_json_file(

os.path.join(os.pardir, "Other_data", "JC_priors.json")

)

With PyStan, input for MCMC sampling needs to be a dictionary whose keys are
the variable names in the data block of a Stan specification file. Such a dictionary
is created and saved to a Python pickle file in the directory pkl_data_files as
shown:

dict_for_pystan = {

"num_curves": len(epsilon_p_dot),

"curve_sizes": [len(s) for s in sigma],

"epsilon_p_dot": epsilon_p_dot,

"epsilon_p": np.concatenate(epsilon_p),

"sigma": np.concatenate(sigma),

"T": np.concatenate(T),

"T_melt": theta_model["T_melt"],

"T_room": theta_model["T_room"],

"epsilon_p_dot_0": theta_model["epsilon_p_dot_0"]

}

dict_for_pystan.update(prior_params)

bssu.save_to_pickle_file(

dict_for_pystan,

os.path.join("pkl_data_files",

"jc_simulated_data_pystan.pkl.gz")

)

Here, np.concatenate is used to concatenate all the arrays in the list sigma
into one long 1-D array corresponding to the vector sigma in the specifica-
tion file jc.stan. The same goes for epsilon_p and T. The dictionary key
"curve_sizes" is associated with a list whose elements are the lengths of the
arrays in sigma. This is done to accord with how data storage for stresses, strains,
and temperatures is specified in the file jc.stan, as illustrated in Fig. 9, as a
workaround for Stan’s lack of support for ragged arrays.38 To save space, the pickle
files of the simulated data are Gzip-compressed.29

For PyMC3, the data to be saved are what are to be passed as arguments to
make_jc_model in the module jc_pymc3.py (in Appendix C). These argu-
ments are placed in a dictionary and saved as follows:

bssu.save_to_pickle_file({

"epsilon_p_dot": epsilon_p_dot,

23

...epsilon_p

Strains for
curve 1

Strains for
curve 2

...

Strains for
curve 3

Strains for curve
num_curves

...sigma

Stresses
for curve 1

Stresses
for curve 2

...

Stresses
for curve 3

Stresses for curve
num_curves

...T

Temperatures
for curve 1

Temperatures
for curve 2

...

Temperatures
for curve 3

Temperatures for
curve num_curves

...curve_sizes

Num. data pts.
in curve 1

Num. data pts.
in curve 2

Num. data pts.
in curve 3

Num. data pts.
in curve
num_curves

Fig. 9 Storage of data for stress-strain curves in the Stan vectors epsilon_p, sigma, T, and
curve_sizes

24

"epsilon_p": epsilon_p,

"sigma": sigma,

"T": T,

"T_melt": theta_model["T_melt"],

"T_room": theta_model["T_room"],

"epsilon_p_dot_0": theta_model["epsilon_p_dot_0"],

"prior_params": prior_params

},

os.path.join("pkl_data_files",

"jc_simulated_data_pymc3.pkl.gz")

)

5.3 Testing Johnson-Cook Model with PyStan
First, one should import the PyStan module (named pystan), if only to make sure
it is actually there. This may simply be done with the following line of code:

import pystan

At this point, a Stan specification file for the Johnson-Cook model should have
been written separately in a text editor. Here, the file is named jc.stan, and its
contents are shown in Appendix D. As discussed in Section 3, it is in the directory
stan_model_specs, which is a sibling to the directory Python, the working
directory where Python code is being executed. Accordingly, the path to the Stan
specification file jc.stan can be specified as follows:

import os

path_to_jc_stan_file = os.path.join(os.pardir,

"stan_model_specs",

"jc.stan")

The file jc.stan can be compiled into a StanModel object named jc_model:

jc_model = pystan.StanModel(path_to_jc_stan_file)

Even if the compilation has succeeded, there may still be warnings, especially from
the underlying C++ compiler that PyStan uses to create jc_model. Most warn-
ings, especially one about auto_ptr being deprecated, may be safely ignored, but
out of caution it is best to at least read them.

To save the StanModel object for future use, one can save it to a Python
pickle file. This file, named jc.pkl, is created and stored in the subdirec-
tory compiled_stan_models, using the function save_to_pickle_file
from the bayes_stress_strain_utils module used in Section 5.2:

25

import bayes_stress_strain_utils as bssu

bssu.save_to_pickle_file(jc_model,

os.path.join("compiled_stan_models",

"jc.pkl"))

One can use the read_from_pickle_file function, also from the
bayes_stress_strain_utils module, to bring the StanModel object
stored in jc.pkl into another Python session. However, a pickle file of a
StanModel object onlys work with Python sessions done on the same system
used to generate the file, or at least a system that is nearly identical.

At this point, the simulated data may be loaded into the Python session, and the
Johnson-Cook model may be loaded as well, if it has not been loaded already:

import bayes_stress_strain_utils as bssu

import os.path

my_data = bssu.read_from_pickle_file(

os.path.join("pkl_data_files", "jc_simulated_data_pystan.pkl.gz"))

jc_model = bssu.read_from_pickle_file(

os.path.join("compiled_stan_models", "jc.pkl"))

One then fits the model to the simulated data via the sampling method of a
StanModel object:

import time

start_time = time.perf_counter()

jc_fit = jc_model.sampling(data = my_data,

seed = 12345)

elapsed_time = time.perf_counter() - start_time

For the sake of reproducibility, the seed for random number generation is set via
the seed argument of the sampling method. Also, since the only way PyStan
prints elapsed time is via terminal output (which may not be visible in, for example,
a Jupyter notebook), the functionality of Python’s time module is used to estimate
the elapsed time in seconds. One should note that the elapsed time may be affected
by processes running in the background that do not relate to MCMC sampling.

The MCMC results have been captured in a Stanfit4Model object named
jc_fit. One may obtain summary statistics using the print_stan_summary
function from the bayes_stress_strain_utils module, as follows. The
elapsed time is printed as well:

26

bssu.print_stan_summary(jc_fit)

print('Elapsed time: {} s'.format(elapsed_time))

The output from the previous code is shown:

0.0 of 4000 iterations ended with a divergence (0.0%)

0 of 4000 iterations saturated the maximum tree depth of 10 (0.0%)

E-BFMI indicated no pathological behavior

Inference for Stan model: anon_model_5ba595b82fabba44dd5db1896f739604.

4 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

A 780.62 0.01 0.71 779.2 780.14 780.62 781.13 781.99 4000 1.0

B 779.91 0.01 0.83 778.27 779.36 779.9 780.48 781.51 4000 1.0

n 0.11 4.4e-6 2.7e-4 0.11 0.11 0.11 0.11 0.11 3726 1.0

C 4.0e-3 6.7e-7 3.0e-5 3.9e-3 4.0e-3 4.0e-3 4.0e-3 4.0e-3 1942 1.0

m 1.0 4.3e-5 2.4e-3 1.0 1.0 1.0 1.0 1.01 3230 1.0

sd_sigma[0] 0.98 1.8e-3 0.08 0.84 0.93 0.98 1.03 1.16 1892 1.0

sd_sigma[1] 9.74 0.01 0.52 8.8 9.36 9.7 10.08 10.84 2022 1.0

lp__ -602.9 0.05 1.95 -607.7 -603.9 -602.5 -601.5 -600.1 1680 1.0

Samples were drawn using NUTS at Wed Aug 1 10:45:37 2018.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

Elapsed time: 21.356467493984383 s

The summary begins with the results of checks on the results from the MCMC run,
all of which have passed.33,34

After these checks come a table of summary statistics. In this table, 0-based index-
ing is used, so sd_sigma[0] and sd_sigma[1] correspond to sd_sigma[1]
and sd_sigma[2] in the Stan specification file. (However, in the future, PyStan
will use 1-based indexing for the names of Stan variables.39) As one can see from
the table, the mean values of the parameters from the model fit are nearly the same
as the parameter values in theta_model that produced the simulated data. There
are also other things worth noting. First, by default, PyStan generates four chains,
each with 2000 samples total, the first 1000 of which are discarded as “warmup”
samples. This warmup is present because the first several samples in a chain may
be a poor representation of the posterior distribution. Second, there is an additional
“parameter” lp__, which is not really a parameter, but rather the natural logarithm
of the posterior probability density. Third, there are a couple diagnostics printed
in the table. One is the effective sample size (n_eff), which indicates how ef-

27

fectively the posterior has been sampled. The values of this diagnostic range from
about 1000 to 4000, which is reasonable. The other is the potential scale reduction
factor (Rhat), which indicates if the distribution from which the samples are taken
is close enough to the actual posterior distribution. Here, the diagnostics indicate
that the MCMC sampling went well.

5.4 Testing Johnson-Cook Model with PyMC3
Before testing the Bayesian model for the Johnson-Cook strength model, one
should check that the module that defines this model—namely, jc_pymc3.py,
shown in Appendix C—can even be imported. However, this should not be done
in a Jupyter notebook, but rather from a separate, fresh Python prompt that one
has not yet used for anything else. If one gets the error message, “To use MKL

2018 with Theano you MUST set MKL_THREADING_LAYER=GNU

in your environment,” then one should exit that Python session, and in a
different Python session (which may be a Jupyter notebook), one should run the
following commands to set the environment variable MKL_THREADING_LAYER:

import os

os.environ["MKL_THREADING_LAYER"] = "GNU"

Note that if one attempts to reload the jc_pymc3 module in the same
Python session that generated errors, one is likely to see error messages
such as “AttributeError: module ‘theano’ has no attribute

‘compile’”. However, if one has followed the previous instructions, the mod-
ule defining the Bayesian model should be successfully importable.

The simulated data may be read in using the read_from_pickle_file from
the module bayes_stress_strain_utils as follows. Since this module im-
ports pymc3 if it is available, the MKL_THREADING_LAYER must be set as de-
scribed before:

import os

os.environ["MKL_THREADING_LAYER"] = "GNU"

import bayes_stress_strain_utils as bssu

my_data = bssu.read_from_pickle_file(

os.path.join("pkl_data_files", "jc_simulated_data_pymc3.pkl.gz"))

At this point, one may actually instantiate the model using the simulated data as

28

follows:

import jc_pymc3

jc_model = jc_pymc3.make_jc_model(my_data["epsilon_p"],

my_data["sigma"],

my_data["epsilon_p_dot"],

my_data["T"],

my_data["T_melt"],

my_data["T_room"],

my_data["epsilon_p_dot_0"],

my_data["prior_params"])

One may now attempt to run MCMC sampling by using the function sample from
the pymc3 module on the model. In the following code, try and except, along
with the traceback module, are used to capture Python exceptions and direct the
resulting error messages from them to a file named jc_trace_errs.txt. (This
helps prevent exceptions from stopping the execution of cells in a Jupyter note-
book that occur after the exception.) The “with jc_model:” clause causes the
sample function to run MCMC with the object jc_model. For the sake of repro-
ducibility of the MCMC results, the seed for random number generation in MCMC
sampling has been set via the random_seed argument of the sample function.
The values for the arguments draws and tune in the pm.sample function are
set so that the number of samples used for warmup (or “tuning” as it is called in
PyMC3 documentation3) and final sampling in PyMC3 are the same as they are in
Stan, and the values for the arguments chains and cores are chosen so that the
number of chains generated in parallel is the same for both PyMC3 and Stan:

import pymc3 as pm

import traceback

try:

with jc_model:

jc_trace = pm.sample(draws = 1000, tune = 1000,

chains = 4, cores = 4,

random_seed = 12345)

except:

err_filename = "jc_trace_errs.txt"

print("Exception encountered: see file {}!".format(err_filename))

with open(err_filename, "w") as err_file:

traceback.print_exc(file=err_file)

The output from the PyMC3 run is shown:

INFO:pymc3:Auto-assigning NUTS sampler...

29

INFO:pymc3:Initializing NUTS using jitter+adapt_diag...

INFO:pymc3:Multiprocess sampling (4 chains in 4 jobs)

INFO:pymc3:NUTS: [sd_sigma, m, C, n, B, A]

Sampling 4 chains: 23%| | 1828/8000 [00:00<00:02, 2268.46draws/s]

Exception encountered: see file jc_trace_errs.txt!

In jc_trace_errs.txt, one may see the error message, “Mass matrix

contains zeros on the diagonal”. One way to solve this is to set initial
values for the model parameters when rerunning MCMC, as shown in the follow-
ing code. Here, the NumPy function asarray is used so that PyMC3 can do ar-
ray arithmetic on start_vals["sd_sigma_guess_mean"]. Also, any error
messages from exceptions are redirected to a new file, jc_trace_errs_2.txt:

import numpy as np

prior_params = my_data["prior_params"]

start_vals = {

'A': prior_params['A_guess_mean'],

'B': prior_params['B_guess_mean'],

'n': prior_params['n_alpha']/

(prior_params['n_alpha'] + prior_params['n_beta']),

'C': prior_params['C_guess_mean'],

'm': prior_params['m_guess_mean'],

'sd_sigma': np.asarray(prior_params['sd_sigma_guess_mean'])

}

try:

with jc_model:

jc_trace = pm.sample(draws = 1000, tune = 1000,

chains = 4, cores = 4,

random_seed = 12345,

start = start_vals)

except:

err_filename = "jc_trace_errs2.txt"

print("Exception encountered: see file {}!".format(err_filename))

with open(err_filename, "w") as err_file:

traceback.print_exc(file=err_file)

The output of the new MCMC run is as follows:

INFO:pymc3:Auto-assigning NUTS sampler...

INFO:pymc3:Initializing NUTS using jitter+adapt_diag...

INFO:pymc3:Multiprocess sampling (4 chains in 4 jobs)

INFO:pymc3:NUTS: [sd_sigma, m, C, n, B, A]

Sampling 4 chains: 100%| | 8000/8000 [00:33<00:00, 238.76draws/s]

30

/home/jjramsey/.conda/envs/Bayes/lib/python3.6/site-packages/mkl_fft/_numpy_fft.py:1044:

FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use

‘arr[tuple(seq)]‘ instead of ‘arr[seq]‘. In the future this will be interpreted as an

array index, ‘arr[np.array(seq)]‘, which will result either in an error or a different

result.

output = mkl_fft.rfftn_numpy(a, s, axes)

Results from the MCMC run are captured in the PyMC trace object jc_trace. A
table of summary statistics from this trace can be displayed as follows:

pm.summary(jc_trace)

The following are the summary statistics:

/home/jjramsey/.conda/envs/Bayes/lib/python3.6/site-packages/mkl_fft/_numpy_fft.py:1044:

FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use

‘arr[tuple(seq)]‘ instead of ‘arr[seq]‘. In the future this will be interpreted as an

array index, ‘arr[np.array(seq)]‘, which will result either in an error or a different

result.

output = mkl_fft.rfftn_numpy(a, s, axes)

mean sd mc_error hpd_2.5 hpd_97.5 \

A 780.636184 0.724189 1.477554e-02 779.121581 782.011182

B 779.915885 0.828828 1.755739e-02 778.276324 781.525927

n 0.106390 0.000267 4.985844e-06 0.105862 0.106903

C 0.003985 0.000030 4.943893e-07 0.003928 0.004046

m 1.001189 0.002390 3.804957e-05 0.996607 1.005857

sd_sigma__0 0.984831 0.076488 1.061820e-03 0.841532 1.136638

sd_sigma__1 9.709786 0.499880 7.697319e-03 8.809314 10.763712

n_eff Rhat

A 2486.828804 0.999695

B 2642.129683 0.999510

n 3235.550316 0.999814

C 3717.312155 0.999977

m 3902.032164 0.999889

sd_sigma__0 4266.818343 0.999773

sd_sigma__1 3987.109091 1.000199

As one can see, the mean values of the parameters from the model fit are nearly the
same as the parameter values in theta_model that produced the simulated data.
The quantities n_eff and Rhat are the same as in RStan and PyStan: the effective
sample size and the potential scale reduction factor. PyMC3 would have warned if
n_eff were too low. The diagnostic Rhat should be close to 1, and it is.

The performance here appears to be roughly that of a similar Stan model, with about
15 to 20 s for Stan and about 30 to 40 s for PyMC3.

31

5.5 Making Simulated Data for Zerilli-Armstrong (BCC) Model
As with the Johnson-Cook model, simulated stress-strain curves are to be created
for several combinations of plastic strain rate and initial sample temperature, such
as those in the following Python lists:

epsilon_p_dot = [2500.0, 0.001, 0.001, 0.1, 3500.0, 7000.0,

3000.0, 3000.0, 3500.0]

T_init = [77.0, 77.0, 298.0, 298.0, 298.0, 298.0,

473.0, 673.0, 873.0]

The values in these lists are taken from Gray et al.9 They are in units of 1/s and
Kelvin, respectively. As with the Johnson-Cook model, to account for the tempera-
ture rise during deformation of the sample, the sample density ρ and the specific
heat as a function of temperature c(T) are needed. Density ρ is again trivially
represented by the Python variable rho as follows. The specific heat function is
generated with the function gen_lin_interp_func from the Python module
bayes_stress_strain_utils in Appendix C.

import bayes_stress_strain_utils as bssu

import os

rho = 7840.0 # kg/m^3

Conversion factor from MPa to Pa

MPa_to_Pa = 1e6

c_func = bssu.gen_lin_interp_func(

os.path.join(os.pardir, "Other_data",

"Austin_Specific_Heat_BCC_Iron.csv"),

conv_func_y = lambda y: y/MPa_to_Pa,

sep = ",",

header = None

)

The function gen_lin_interp_func encapsulates most of the steps used to
obtain c_func in Section 5.2. To account for the simulated data being in units of
megapascals, the argument conv_func_y is used to divide the second column of
data in Austin_Specific_Heat_BCC_Iron.csv by the conversion factor
from megapascals to pascals, 106. The argument “sep = ","” accounts for the
specific heat data file being in CSV format, and the “header = None” argument
takes into account that the data file has no column headers. Both of these arguments
correspond to the arguments “sep = ","” and “header = None” in the call

32

to the pandas.read_table function in Section 5.2.*

To create simulated data for the Zerilli-Armstrong (BCC) model, one needs a
Python function specifying this model, and the function za_bcc from the mod-
ule file za_bcc.py in Appendix C is used for this purpose. As has been done
with the Johnson-Cook model, a wrapper function for za_bcc is used as the first
argument to the function simulate_data. This wrapper function is as follows:

from za_bcc import za_bcc

import numpy as np

def sigma_model_func(epsilon_p,

epsilon_p_dot,

T,

theta_model):

return za_bcc(

epsilon_p,

np.log(epsilon_p_dot),

T,

theta_model["C0"],

theta_model["C1"],

theta_model["C3"],

theta_model["C4"],

theta_model["C5"],

theta_model["n"]

)

The model parameters needed by sigma_model_func are the following:

theta_model = {

"C0": 50.0, # MPa

"C1": 1800.0, # MPa

"C3": 0.0015,

"C4": 0.000045,

"C5": 1200.0, # MPa

"n": 0.62

}

The values of these parameters happen to be from Gray et al.,9 but in principle, they
could be set to any plausible values. At this point, nearly all the information needed
for simulate_data has been input to a Python session. The maximum value for
εp and values for SDσ,1 and SDσ,2 are set as follows:

epsilon_p_max = 0.2

sd_sigma = [1.0, 10.0]

*The function gen_lin_interp_func actually passes “sep = ","” and “header =
None” to the pandas.read_table function.

33

Finally, the simulated data can be generated as follows. Again, beta_TQ, the
Taylor-Quinney coefficient, is set to zero for low strain rates to simulate the lack
of a temperature rise at those rates. Similarly, curr_sd_sigma is either SDσ,1

or SDσ,2, depending on the strain rate. Again, for the sake of reproducibility, the
following code sets the seed used by functions in the NumPy submodule random.

import bayes_stress_strain_utils as bssu

Initializing to empty lists

sigma = []

epsilon_p = []

T = []

min_curve_size = 40

max_curve_size = 50

np.random.seed(12345)

for i in range(len(epsilon_p_dot)):

if epsilon_p_dot[i] <= 1.0:

beta_TQ = 0.0

curr_sd_sigma = sd_sigma[0]

else:

beta_TQ = 0.9

curr_sd_sigma = sd_sigma[1]

Sets curve_size to a random integer between min_curve_size

and max_curve_size

curve_size = np.random.randint(min_curve_size,

max_curve_size + 1)

curr_data = bssu.simulate_data(

sigma_model_func,

epsilon_p_max,

epsilon_p_dot[i],

T_init[i],

theta_model,

beta_TQ,

rho,

c_func,

curve_size

)

sigma.append(curr_data["sigma"] +

curr_sd_sigma*np.random.randn(curve_size))

epsilon_p.append(curr_data["epsilon_p"])

T.append(curr_data["T"])

Again, the simulated data is plotted to a “.pdf” file as a sanity check (via the function

34

plot_stress_strain_curves). A plot of this simulated data is shown in
Fig. 10.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
p

250

500

750

1000

1250

1500

1750

2000

 (M
Pa

)

Tinit = 77.0 K, p = 2500.0/s
Tinit = 77.0 K, p = 0.001/s
Tinit = 298.0 K, p = 0.001/s
Tinit = 298.0 K, p = 0.1/s
Tinit = 298.0 K, p = 3500.0/s

Tinit = 298.0 K, p = 7000.0/s
Tinit = 473.0 K, p = 3000.0/s
Tinit = 673.0 K, p = 3000.0/s
Tinit = 873.0 K, p = 3500.0/s

Fig. 10 Plot of simulated data used to test the Zerilli-Armstrong (BCC) PyStan and PyMC3
models

At this point, the simulated data can begin to be converted into forms more
suitable for PyStan and PyMC3 and then saved to Gzip-compresssed29 Python
pickle files. Both of these need variables pertaining to the priors, that is,
C0_guess_mean, n_alpha, and so on, so these are set using the JSON file
ZA_BCC_priors.json from Section 4:

prior_params = bssu.read_from_json_file(

os.path.join(os.pardir, "Other_data", "ZA_BCC_priors.json")

)

As with the data for the Johnson-Cook model for PyStan, input for MCMC sam-

35

pling needs to be a dictionary whose keys are the variable names in the data block
of a Stan specification file, and this dictionary is saved to a Python pickle file. Again,
np.concatenate is used to put the strain, stress, and temperature data in the
form of the vectors specified by za_bcc.stan in Appendix D:

dict_for_pystan = {

"num_curves": len(epsilon_p_dot),

"curve_sizes": [len(s) for s in sigma],

"epsilon_p_dot": epsilon_p_dot,

"epsilon_p": np.concatenate(epsilon_p),

"sigma": np.concatenate(sigma),

"T": np.concatenate(T)

}

dict_for_pystan.update(prior_params)

bssu.save_to_pickle_file(

dict_for_pystan,

os.path.join("pkl_data_files",

"za_bcc_simulated_data_pystan.pkl.gz")

)

For PyMC3, the data to be saved are what are to be passed as arguments to
make_za_bcc_model in the module za_bcc_pymc3.py shown in Appendix
C. As with the data for the Johnson-Cook model for PyMC3, these arguments are
placed in a dictionary and saved as follows:

bssu.save_to_pickle_file({

"epsilon_p_dot": epsilon_p_dot,

"epsilon_p": epsilon_p,

"sigma": sigma,

"T": T,

"prior_params": prior_params

},

os.path.join("pkl_data_files",

"za_bcc_simulated_data_pymc3.pkl.gz")

)

5.6 Testing Zerilli-Armstrong (BCC) Model with PyStan
The process for compiling the Zerilli-Armstrong (BCC) model is nearly the same
as the corresponding one for the Johnson-Cook model. One imports the PyStan
module, compiles the appropriate Stan specification file (i.e., za_bcc.stan)
into a StanModel object, and then saves the resulting object to a Python
pickle file. As with the Johnson-Cook model, saving to the pickle is done
with the convenience function save_to_pickle_file from the module

36

bayes_stress_strain_utils.py:

import pystan

import bayes_stress_strain_utils as bssu

import os

za_bcc_model = pystan.StanModel(

os.path.join(os.pardir, "stan_model_specs",

"za_bcc.stan"))

bssu.save_to_pickle_file(za_bcc_model,

os.path.join("compiled_stan_models",

"za_bcc.pkl"))

Again, the Python pickle file for a StanModel object (here za_bcc.pkl) only
works with Python sessions done on the same system used to generate the pickle
file, or at least a system that is nearly identical.

To run MCMC, the simulated data may be loaded into the Python session, and the
Zerilli-Armstrong (BCC) model may be loaded as well, if it has not been loaded
already:

import bayes_stress_strain_utils as bssu

import os.path

my_data = bssu.read_from_pickle_file(

os.path.join("pkl_data_files",

"za_bcc_simulated_data_pystan.pkl.gz"))

za_bcc_model = bssu.read_from_pickle_file(

os.path.join("compiled_stan_models", "za_bcc.pkl"))

Again, one fits the model to the simulated data via the sampling method and
prints summary statistics from the fit. For the sake of reproducibility, the seed for
random number generation is again set via the seed argument of the sampling
method. As with the MCMC runs for the Johnson-Cook model, since the only way
PyStan prints elapsed time is via terminal output (which may not be visible in, for
example, a Jupyter notebook), the functionality of Python’s time module is used
to estimate the elapsed time in seconds:

import time

start_time = time.perf_counter()

za_bcc_fit = za_bcc_model.sampling(data = my_data,

seed = 12345)

elapsed_time = time.perf_counter() - start_time

37

bssu.print_stan_summary(za_bcc_fit)

print('Elapsed time: {} s'.format(elapsed_time))

The following are the warnings and summary statistics from the MCMC run:

/home/jjramsey/.conda/envs/Bayes/lib/python3.6/site-packages/pystan/misc.py:399:

FutureWarning: Conversion of the second argument of issubdtype from ‘float‘ to

‘np.floating‘ is deprecated. In future, it will be treated as ‘np.float64 ==

np.dtype(float).type‘.

elif np.issubdtype(np.asarray(v).dtype, float):

482.0 of 4000 iterations ended with a divergence (12.05%)

Try running with larger adapt_delta to remove the divergences

8 of 4000 iterations saturated the maximum tree depth of 10 (0.2%)

Run again with max_depth set to a larger value to avoid saturation

Chain 0: E-BFMI = 0.007345947086255753

E-BFMI below 0.2 indicates you may need to reparameterize your model

Inference for Stan model: anon_model_94ebba402ea6796923b7e03a53b54c34.

4 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

C0 33.57 14.56 20.59 0.23 7.71 41.37 48.58 59.56 2 3.0

C1 1353.9 552.71 781.65 0.31 801.51 1801.5 1808.3 1820.9 2 120.46

C3 1.61 1.97 2.78 1.5e-3 1.5e-3 1.5e-3 3.53 6.43 2 3.5e4

C4 0.19 0.23 0.33 4.4e-5 4.5e-5 4.5e-5 0.41 0.75 2 2.9e4

C5 900.95 367.54 519.78 0.79 537.62 1200.2 1201.8 1204.4 2 340.76

n 0.58 0.04 0.06 0.47 0.54 0.62 0.62 0.62 2 63.86

sd_sigma[0] 0.81 0.17 0.23 0.42 0.58 0.92 0.97 1.06 2 4.94

sd_sigma[1] 7.68 2.59 3.67 1.36 4.54 9.6 9.95 10.6 2 10.58

lp__ -1.4e70 1.8e70 3.1e70-8.8e70-1.7e70 -888.6 -886.9 -885.1 3 2.8

Samples were drawn using NUTS at Mon Aug 6 14:30:01 2018.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

Elapsed time: 104.2918440940557 s

Obviously, these results are poor. The mean values of most of the parameters are
nowhere near what they should be, and the potential scale reduction factor indicates
a lack of convergence to the correct posterior. The low effective sample size indi-
cates that the posterior has hardly been sampled, which suggests a bad starting point
for the sampling.

The fix for this is to initialize the sampling from some reasonable initial values. The
mean values of the priors are good enough for this:

38

init_values = {

"C0": my_data["C0_guess_mean"],

"C1": my_data["C1_guess_mean"],

"C3": my_data["C3_guess_mean"],

"C4": my_data["C4_guess_mean"],

"C5": my_data["C5_guess_mean"],

"n": my_data["n_alpha"]/(my_data["n_alpha"] + my_data["n_beta"])

}

However, if one looks at the reference documentation for PyStan,32 it says that the
initial values should be either a list of Python dictionaries, where each element in the
list is a dictionary of initial values for a chain, or a function that returns a dictionary
of initial values. Accordingly, the list of initial values passed to the sampling
method is as follows:

num_chains = 4

init_values_list = [init_values]*num_chains

The MCMC sampling can then proceed as shown. Here, the number of chains is
explicitly set to the length of init_values_list for the sake of consistency:

start_time = time.perf_counter()

za_bcc_fit = za_bcc_model.sampling(data = my_data,

seed = 12345,

init = init_values_list,

chains = len(init_values_list))

elapsed_time = time.perf_counter() - start_time

bssu.print_stan_summary(za_bcc_fit)

print('Elapsed time: {} s'.format(elapsed_time))

The following are the output and summary statistics from the new MCMC run:

/home/jjramsey/.conda/envs/Bayes/lib/python3.6/site-packages/pystan/misc.py:399:

FutureWarning: Conversion of the second argument of issubdtype from ‘float‘ to

‘np.floating‘ is deprecated. In future, it will be treated as ‘np.float64 ==

np.dtype(float).type‘.

elif np.issubdtype(np.asarray(v).dtype, float):

0.0 of 4000 iterations ended with a divergence (0.0%)

113 of 4000 iterations saturated the maximum tree depth of 10 (2.825%)

Run again with max_depth set to a larger value to avoid saturation

E-BFMI indicated no pathological behavior

Inference for Stan model: anon_model_94ebba402ea6796923b7e03a53b54c34.

4 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

39

C0 44.93 0.31 8.15 28.43 39.65 45.12 50.31 60.66 681 1.01

C1 1804.9 0.3 7.76 1790.0 1799.8 1804.7 1809.9 1820.5 683 1.01

C3 1.5e-3 3.7e-7 9.5e-6 1.5e-3 1.5e-3 1.5e-3 1.5e-3 1.5e-3 682 1.01

C4 4.5e-5 9.1e-9 2.8e-7 4.4e-5 4.5e-5 4.5e-5 4.5e-5 4.5e-5 985 1.01

C5 1201.0 0.04 1.91 1197.2 1199.7 1201.0 1202.3 1204.6 2698 1.0

n 0.62 2.5e-5 1.3e-3 0.62 0.62 0.62 0.62 0.62 2510 1.0

sd_sigma[0] 0.94 1.2e-3 0.06 0.84 0.9 0.94 0.98 1.07 2436 1.0

sd_sigma[1] 9.77 8.2e-3 0.43 8.99 9.47 9.74 10.04 10.64 2677 1.0

lp__ -888.0 0.06 2.04 -892.8 -889.1 -887.7 -886.5 -885.0 1211 1.0

Samples were drawn using NUTS at Mon Aug 6 14:31:42 2018.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

Elapsed time: 100.77757640404161 s

As one can see, the mean values of the parameters from the model fit are nearly
the same as the parameter values from theta_model that produced the simu-
lated data, and the effective sample sizes and potential scale reduction factors are
reasonable. However, there is a warning about the maximum treedepth and advice
on how fix the issue by increasing the parameter max_treedepth. This advice is
followed as shown:

start_time = time.perf_counter()

za_bcc_fit = za_bcc_model.sampling(data = my_data,

seed = 12345,

init = init_values_list,

control = {'max_treedepth': 15},

chains = len(init_values_list))

elapsed_time = time.perf_counter() - start_time

bssu.print_stan_summary(za_bcc_fit)

print('Elapsed time: {} s'.format(elapsed_time))

The following are the summary statistics from the MCMC run:

/home/jjramsey/.conda/envs/Bayes/lib/python3.6/site-packages/pystan/misc.py:399:

FutureWarning: Conversion of the second argument of issubdtype from ‘float‘ to

‘np.floating‘ is deprecated. In future, it will be treated as ‘np.float64 ==

np.dtype(float).type‘.

elif np.issubdtype(np.asarray(v).dtype, float):

0.0 of 4000 iterations ended with a divergence (0.0%)

0 of 4000 iterations saturated the maximum tree depth of 15 (0.0%)

E-BFMI indicated no pathological behavior

Inference for Stan model: anon_model_94ebba402ea6796923b7e03a53b54c34.

4 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=4000.

40

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

C0 44.8 0.26 8.37 28.3 39.17 44.73 50.42 61.49 1008 1.0

C1 1805.0 0.25 7.96 1789.2 1799.6 1805.0 1810.4 1820.7 1007 1.0

C3 1.5e-3 3.1e-7 9.8e-6 1.5e-3 1.5e-3 1.5e-3 1.5e-3 1.5e-3 1013 1.0

C4 4.5e-5 8.7e-9 2.9e-7 4.4e-5 4.5e-5 4.5e-5 4.5e-5 4.5e-5 1107 1.0

C5 1201.0 0.04 1.89 1197.3 1199.7 1201.0 1202.2 1204.7 2378 1.0

n 0.62 2.4e-5 1.2e-3 0.62 0.62 0.62 0.62 0.62 2684 1.0

sd_sigma[0] 0.94 1.3e-3 0.06 0.83 0.9 0.94 0.98 1.07 2306 1.0

sd_sigma[1] 9.8 0.01 0.42 8.99 9.5 9.79 10.07 10.65 1767 1.0

lp__ -888.0 0.05 2.0 -892.7 -889.1 -887.7 -886.5 -885.0 1364 1.0

Samples were drawn using NUTS at Mon Aug 6 14:33:33 2018.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

Elapsed time: 110.85108313290402 s

At this point, both the mean parameter values and the diagnostics are returning
reasonable results.

5.7 Testing Zerilli-Armstrong (BCC) Model with PyMC3
The simulated data may be read in using the read_from_pickle_file

function from the module bayes_stress_strain_utils, and the Zerilli-
Armstrong (BCC) model can then be instantiated from the data:

import os

This must be set before loading za_bcc_pymc3!

os.environ["MKL_THREADING_LAYER"] = "GNU"

import za_bcc_pymc3

import bayes_stress_strain_utils as bssu

my_data = bssu.read_from_pickle_file(

os.path.join("pkl_data_files",

"za_bcc_simulated_data_pymc3.pkl.gz"))

za_bcc_model = za_bcc_pymc3.make_za_bcc_model(my_data["epsilon_p"],

my_data["sigma"],

my_data["epsilon_p_dot"],

my_data["T"],

my_data["prior_params"])

One may now attempt to run MCMC sampling by using the PyMC3 function
sample with the model. Here, try and except are used as they are with the
Johnson-Cook PyMC3 model, as are the sample function arguments draws,

41

tune, chains, cores, and random_seed:

import pymc3 as pm

import traceback

try:

with za_bcc_model:

za_bcc_trace = pm.sample(draws = 1000, tune = 1000,

chains = 4, cores = 4,

random_seed = 12345)

except:

err_filename = "za_bcc_trace_errs.txt"

print("Exception encountered: see file {}!".format(err_filename))

with open(err_filename, "w") as err_file:

traceback.print_exc(file=err_file)

The following is the output from the MCMC run:

Auto-assigning NUTS sampler...

INFO:pymc3:Auto-assigning NUTS sampler...

Initializing NUTS using jitter+adapt_diag...

INFO:pymc3:Initializing NUTS using jitter+adapt_diag...

Multiprocess sampling (4 chains in 4 jobs)

INFO:pymc3:Multiprocess sampling (4 chains in 4 jobs)

NUTS: [sd_sigma, n, C5, C4, C3, C1, C0]

INFO:pymc3:NUTS: [sd_sigma, n, C5, C4, C3, C1, C0]

Sampling 4 chains: 0%| | 0/8000 [00:00<?, ?draws/s]

Exception encountered: see file za_bcc_trace_errs.txt!

In za_bcc_trace_errs.txt, one would likely see the error message,
“ValueError: Bad initial energy: inf. The model might

be misspecified.” One way to solve this is to set initial values for the
model parameters when rerunning MCMC, as shown in the following code. In
this code, np.asarray is used so that PyMC3 can do array arithmetic on
start_vals["sd_sigma_guess_mean"]. Also, any error messages are
redirected to za_bcc_trace_errs_2.txt:

import numpy as np

prior_params = my_data["prior_params"]

start_vals = {

'C0': prior_params['C0_guess_mean'],

'C1': prior_params['C1_guess_mean'],

'C3': prior_params['C3_guess_mean'],

42

'C4': prior_params['C4_guess_mean'],

'C5': prior_params['C5_guess_mean'],

'n': prior_params['n_alpha']/

(prior_params['n_alpha'] + prior_params['n_beta']),

'sd_sigma': np.asarray(prior_params['sd_sigma_guess_mean'])

}

try:

with za_bcc_model:

za_bcc_trace = pm.sample(draws = 1000, tune = 1000,

chains = 4, cores = 4,

random_seed = 12345,

start = start_vals)

except:

err_filename = "za_bcc_trace_errs2.txt"

print("Exception encountered: see file {}!".format(err_filename))

with open(err_filename, "w") as err_file:

traceback.print_exc(file=err_file)

The following is the output of the new MCMC run:

Auto-assigning NUTS sampler...

INFO:pymc3:Auto-assigning NUTS sampler...

Initializing NUTS using jitter+adapt_diag...

INFO:pymc3:Initializing NUTS using jitter+adapt_diag...

Multiprocess sampling (4 chains in 4 jobs)

INFO:pymc3:Multiprocess sampling (4 chains in 4 jobs)

NUTS: [sd_sigma, n, C5, C4, C3, C1, C0]

INFO:pymc3:NUTS: [sd_sigma, n, C5, C4, C3, C1, C0]

Sampling 4 chains: 100%| | 8000/8000 [04:41<00:00, 10.28draws/s]

/home/jjramsey/.conda/envs/Bayes/lib/python3.6/site-packages/mkl_fft/_numpy_fft.py:1044:

FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use

‘arr[tuple(seq)]‘ instead of ‘arr[seq]‘. In the future this will be interpreted as an

array index, ‘arr[np.array(seq)]‘, which will result either in an error or a different

result.

output = mkl_fft.rfftn_numpy(a, s, axes)

The acceptance probability does not match the target. It is 0.8838034197424812, but should

be close to 0.8. Try to increase the number of tuning steps.

WARNING:pymc3:The acceptance probability does not match the target. It is

0.8838034197424812, but should be close to 0.8. Try to increase the number of tuning

steps.

There were 55 divergences after tuning. Increase ‘target_accept‘ or reparameterize.

ERROR:pymc3:There were 55 divergences after tuning. Increase ‘target_accept‘ or

reparameterize.

The acceptance probability does not match the target. It is 0.8787013918835163, but should

be close to 0.8. Try to increase the number of tuning steps.

WARNING:pymc3:The acceptance probability does not match the target. It is

0.8787013918835163, but should be close to 0.8. Try to increase the number of tuning

steps.

There were 2 divergences after tuning. Increase ‘target_accept‘ or reparameterize.

ERROR:pymc3:There were 2 divergences after tuning. Increase ‘target_accept‘ or

reparameterize.

43

The number of effective samples is smaller than 25% for some parameters.

INFO:pymc3:The number of effective samples is smaller than 25% for some parameters.

There are warnings about divergences after tuneup, and per the advice in the warn-
ing, the NUTS parameter target_accept is increased to fix this issue:

try:

with za_bcc_model:

za_bcc_trace = pm.sample(draws = 1000, tune = 1000,

chains = 4, cores = 4,

random_seed = 12345,

nuts_kwargs = {"target_accept": 0.9},

start = start_vals)

except:

err_filename = "za_bcc_trace_errs3.txt"

print("Exception encountered: see file {}!".format(err_filename))

with open(err_filename, "w") as err_file:

traceback.print_exc(file=err_file)

The following is the output of this MCMC run:

Auto-assigning NUTS sampler...

INFO:pymc3:Auto-assigning NUTS sampler...

Initializing NUTS using jitter+adapt_diag...

INFO:pymc3:Initializing NUTS using jitter+adapt_diag...

Multiprocess sampling (4 chains in 4 jobs)

INFO:pymc3:Multiprocess sampling (4 chains in 4 jobs)

NUTS: [sd_sigma, n, C5, C4, C3, C1, C0]

INFO:pymc3:NUTS: [sd_sigma, n, C5, C4, C3, C1, C0]

Sampling 4 chains: 100%| | 8000/8000 [06:18<00:00, 4.68draws/s]

/home/jjramsey/.conda/envs/Bayes/lib/python3.6/site-packages/mkl_fft/_numpy_fft.py:1044:

FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use

‘arr[tuple(seq)]‘ instead of ‘arr[seq]‘. In the future this will be interpreted as an

array index, ‘arr[np.array(seq)]‘, which will result either in an error or a different

result.

output = mkl_fft.rfftn_numpy(a, s, axes)

At this point, there are no further warnings from PyMC3 itself, so summary statis-
tics for this latest MCMC run are printed:

pm.summary(za_bcc_trace)

The following are the printed summary statistics:

/home/jjramsey/.conda/envs/Bayes/lib/python3.6/site-packages/mkl_fft/_numpy_fft.py:1044:

FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use

‘arr[tuple(seq)]‘ instead of ‘arr[seq]‘. In the future this will be interpreted as an

44

array index, ‘arr[np.array(seq)]‘, which will result either in an error or a different

result.

output = mkl_fft.rfftn_numpy(a, s, axes)

mean sd mc_error hpd_2.5 \

C0 45.331548 8.336647e+00 2.349636e-01 28.798898

C1 1804.546350 7.939917e+00 2.245410e-01 1788.838173

C3 0.001495 9.745669e-06 2.742305e-07 0.001478

C4 0.000045 2.883439e-07 8.366848e-09 0.000044

C5 1201.006813 1.902154e+00 3.950585e-02 1197.282618

n 0.620302 1.248886e-03 2.625048e-05 0.617890

sd_sigma__0 0.945305 5.848015e-02 1.044262e-03 0.831415

sd_sigma__1 9.783543 4.347707e-01 7.976654e-03 8.979167

hpd_97.5 n_eff Rhat

C0 61.262020 1229.543702 0.999541

C1 1819.647527 1229.569541 0.999534

C3 0.001516 1248.887003 0.999543

C4 0.000045 1244.031659 0.999510

C5 1204.621064 2319.883038 1.000575

n 0.622796 2349.247640 1.000599

sd_sigma__0 1.055272 2939.571202 0.999745

sd_sigma__1 10.675993 2916.736998 0.999548

The diagnostics n_eff and Rhat diagnostics appear reasonable, and the mean
values of the parameters are also close to the parameter values in theta_model
used to generate the simulated data. As far as performance is concerned, an MCMC
run of the Zerilli-Armstrong (BCC) model with PyMC3 appears to be about three
to four times as long as a corresponding one with Stan, given the same simulated
data.

6. Fitting Strength Models to Experimental Data
6.1 Functions for Fitting Models
Some of the custom functions in Section 5.1 are also used in the process of fit-
ting models, in particular gen_lin_interp_func, print_stan_summary,
read_from_pickle_file, and save_to_pickle_file. In addition to
these, there are the following custom functions:

• save_stan_fit_to_csv, a function that saves the summary statistics
and MCMC samples from a StanFit4Model object to CSV files;

• save_pymc3_trace_to_csv, a function that saves the summary statis-
tics and MCMC samples from a PyMC3 trace to CSV files; and

45

• calc_temps, a function for estimating the temperatures at the points of a
stress-strain curve.

The first two functions involve details pertaining to the functionality of PyStan and
PyMC3, while the last one pertains more directly to the sample problem. Accord-
ingly, these functions are examined in more detail. The arguments to the function
save_stan_fit_to_csv are as follows:

• fit, a StanFit4Model object

• summary_csv_filename, the name of CSV file to which summary statis-
tics are written

• samples_csv_filename, the name of CSV file to which MCMC sam-
ples are written. If the file ends in “.gz”, it is Gzip-compressed.29

The first two statements in the body of this function simply ensure that any direc-
tories in the paths summary_csv_filename and samples_csv_filename
actually exist, and create them if they do not already exist:

_ensure_path_to_file_exists(summary_csv_filename)

_ensure_path_to_file_exists(samples_csv_filename)

The function used in these statements, _ensure_path_to_file_exists, is
an internal function defined in the module bayes_stress_strain_utils.
The details of it may be mainly of interest to readers who are looking for example
code to use as a reference.

The following Python statements write the summary statistics to a CSV file.

summary = fit.summary()

summary_df = pandas.DataFrame(summary["summary"],

index = summary["summary_rownames"],

columns = summary["summary_colnames"])

summary_df.to_csv(summary_csv_filename)

The first of these statements creates a dictionary named summary that contains
the summary statistics. The second Python statement takes these dictionary values
and creates from them a Pandas data frame named summary_df. The dictionary

46

value summary["summary"] is a 2-D NumPy array that contains the statis-
tics themselves. This array becomes the numerical contents of the data frame. The
value summary["summary_rownames"] contains labels for the rows of this
array, which correspond to the parameter names shown in the summary statistics
output from print(fit), such as A, B, and so on, for the Johnson-Cook model,
C0, C1, and so on, for the Zerilli-Armstrong (BCC) model, as well as nuisance
parameters sd_sigma[1] and sd_sigma[2] and the pseudoparameter lp__.
These row labels become the row labels of the data frame summary_df. The value
summary["summary_colnames"] contains labels for the columns of the ar-
ray of statistics, such as mean, se_mean, Rhat, and so on, which also appear
in the output from print(fit), and these labels become the column headers of
summary_df. Finally, the last Python statement prints the contents of the data
frame summary_df to a CSV file named summary_csv_filename.

The next part of the function indicates whether to compress the file used to save the
MCMC samples, since that file can potentially be quite large:

if samples_csv_filename.endswith(".gz"):

my_open = gzip.open

else:

my_open = open

Here, the variable my_open represents the function used to open a file (and create it
if it does not exist). If the filename samples_csv_filename ends in “.gz”, then
the variable is assigned to the function that opens Gzip-compressed files. Otherwise,
it is assigned to the function that opens regular files.

Finally, the MCMC samples are written to a file:

samples = fit.extract(permuted = False)

with my_open(samples_csv_filename, "wb") as f:

csv_header = ",".join(summary["summary_rownames"])

f.write("{}\n".format(csv_header).encode("utf-8"))

for chain_id in range(samples.shape[1]):

np.savetxt(f, samples[:, chain_id, :], delimiter = ",")

The first of these Python statements creates a 3-D NumPy array named samples,
due to the argument “permuted = False” of the extract method. The
first dimension of this array is the number of MCMC samples. The second di-

47

mension is the number of chains, and the third is the number of parameters,32

including the pseudoparameter lp__. Essentially, when chain_id is the in-
teger identifier of a chain, then samples[:, chain_id, :] is a 2-D ar-
ray where column i is a set of MCMC samples pertaining to the parame-
ter named summary["summary_rownames"][i]. Accordingly, the column
headers of the CSV file containing the samples (i.e., csv_header) are the
strings in the array summary["summary_rownames"]. For each possible
value of chain_id, the for loop below the with clause prints the contents
of samples[:, chain_id, :] to a CSV file via the savetxt function of
NumPy. Due to an implementation detail of this function, the CSV file named
samples_csv_filename has to be opened in binary mode,40 hence the argu-
ment "wb" of my_open and the use of the method encode to write the column
headers to the CSV file. In future versions of PyStan, writing samples to a CSV file
should become much simpler, since StanFit4Model objects will have a method
that writes MCMC samples to Pandas data frames,41 which can be readily written
to CSV files.36

The arguments to save_pymc3_trace_to_csv are much like those of
save_stan_fit_to_csv:

• trace, a PyMC3 trace object, which contains the results from a PyMC3
MCMC run

• summary_csv_filename, the name of CSV file to which summary statis-
tics are written

• samples_csv_filename, the name of CSV file to which MCMC sam-
ples are written. If the file ends in “.gz”, it is Gzip-compressed.29

As with save_stan_fit_to_csv, the first two statements in the
body of this function simply ensure that any directories in the paths
summary_csv_filename and samples_csv_filename actually ex-
ist, and create them if they do not already exist:

_ensure_path_to_file_exists(summary_csv_filename)

_ensure_path_to_file_exists(samples_csv_filename)

48

The function _ensure_path_to_file_exists is the same internal function
mentioned previously.

The next Python statement writes the summary statistics to the file named
summary_csv_filename:

pm.summary(trace).to_csv(summary_csv_filename)

Here, pm.summary(trace) is a Pandas data frame containing summary statis-
tics, which are then written to a CSV file via the to_csv method. The summary
function is from the PyMC3 module.

The next part of the function indicates whether to compress the file used to save the
MCMC samples, since that file can potentially be quite large.

if samples_csv_filename.endswith(".gz"):

compression = "gzip"

else:

compression = None

Finally, the samples are written to a file as follows:

df = pm.trace_to_dataframe(trace)

df.to_csv(samples_csv_filename,

compression = compression, index = False)

The PyMC3 function trace_to_dataframe is used to extract the MCMC sam-
ples to the data frame df, where each column of the data frame is the sequence
of MCMC samples for a particular model parameter. In the method to_csv,
the keyword argument compression = compression, where the variable
compression (on the right-hand side of the equals sign) has been defined to
be either "gzip" or None, indicates the type of compression to be applied to the
contents of the CSV file. The argument “index = False” indicates that there is
not to be an unnecessary additional column that numbers the rows in the CSV file.

The arguments to calc_temps are as follows:

• T_init, the initial temperature of the sample

• epsilon_p, the sequence of plastic strains in the stress-strain curve

• sigma, the sequence of stresses in the stress-strain curve

49

• f_area, the parameter farea from Eq. 2

• beta_TQ, the Taylor-Quinney coefficient

• rho, the density of the sample

• specific_heat_func, a function that returns the specific heat
for a given temperature (which can and later on is generated using
gen_lin_interp_func)

The first few lines of the body of this function are these:

curve_size = len(epsilon_p)

T = np.empty(curve_size)

T[0] = T_init + beta_TQ*f_area*sigma[0]*epsilon_p[0]/(

rho*specific_heat_func(T_init))

The first statement simply sets a descriptively named variable, curve_size, to
the length of the list or 1-D array epsilon_p, which is the length of the stress-
strain curve under consideration. The next statement initializes the 1-D array of
temperatures so that it has the correct length. The last statement corresponds to
Eq. 2, but with T ic

init (i.e., T_init) moved to the right-hand side. (No variable cor-
responding to index ic appears in calc_temps, since the value of ic is effectively
fixed by the choice of epsilon_p and sigma.)

The rest of the function body is as follows:

for i in range(1, curve_size):

Using trapezoid rule to estimate area under stress-strain

curve over interval [epsilon_p[i-1], epsilon_p[i]].

area_under_curve = 0.5*(sigma[i-1] + sigma[i])*(

epsilon_p[i] - epsilon_p[i-1])

T_rise = beta_TQ*area_under_curve/(

rho*specific_heat_func(T[i-1]))

T[i] = T[i-1] + T_rise

return T

The body of the for loop in the function body corresponds to Eq. 1. The first
statement estimates the integral in that equation (i.e., area_under_curve) via
the trapezoid rule of numerical integration.42 Once this integral is calculated, the

50

temperature rise T ic
j − T ic

j−1 (or T_rise) may be determined. The temperature of
the current data point T ic

j (or T[i]) is then the sum of the temperature rise and the
temperature of the previous data point T ic

j−1 (or T[i-1]).

The very last line of the function body, of course, returns the array of temperatures
from the function.

6.2 Preprocessing Experimental Data
Several of the data files from Section 4 are to be read into Python and then processed
into pickle files that are used in later analyses. First, the MIDAS data files are read
in as follows:

import pandas

import os

import numpy as np

T_init_str = ["77", "77", "298", "298", "298", "298",

"473", "673", "873"]

epsilon_p_dot_str = ["0.001", "2500", "0.001", "0.1", "3500", "7000",

"3000", "3000", "3500"]

epsilon_p = []

sigma = []

for i in range(len(T_init_str)):

csv_filename = "T{}K_edot{}_per_s.csv".format(

T_init_str[i],

epsilon_p_dot_str[i])

out_data = pandas.read_csv(

os.path.join(os.pardir, "MIDAS_data", csv_filename),

header = None

)

The first column of out_data is the strain.

epsilon_p.append(np.asarray(out_data.iloc[:,0]))

The second column of out_data is the stress.

sigma.append(np.asarray(out_data.iloc[:,1]))

This Python code is somewhat similar to the code used to generate simulated
data, in that initial temperatures and strain rates are specified, and lists of vec-
tors containing strains and stresses are built up. Of course, in place of the func-
tion simulate_data is the function pandas.read_csv, which reads exper-
imental data from a CSV file. The argument “header = None” in the call to
pandas.read_csv prevents the function from mistaking the first line of the

51

CSV file for column headers.

To calculate temperatures, the density ρ, specific heat c(T), Taylor-Quinney coeffi-
cient βTQ, and farea are needed. The first two of these are determined from known
data and can be specified as follows:

import bayes_stress_strain_utils as bssu

rho = 7840.0 # kg/m^3

Conversion factor from MPa to Pa

MPa_to_Pa = 1e6

c_func = bssu.gen_lin_interp_func(

os.path.join(os.pardir, "Other_data",

"Austin_Specific_Heat_BCC_Iron.csv"),

conv_func_y = lambda y: y/MPa_to_Pa,

sep = ",",

header = None

)

As pointed out in Section 1, the next two quantities are more uncertain, so temper-
ature calculations are done for a few combinations of reasonable estimates of βTQ

and farea (shown in Table 1):

T = {}

beta_TQ_f_area = [(0.9, 0.75),

(0.9, 0.55),

(0.6, 0.55),

(0.9, 0.95),

(0.6, 0.95)]

The function "float" is used here to convert strings to their

corresponding numerical values, i.e. "0.1" to 0.1.

epsilon_p_dot = [float(epdot) for epdot in epsilon_p_dot_str]

T_init = [float(Ti) for Ti in T_init_str]

for bTQ_fA in beta_TQ_f_area:

T[bTQ_fA] = []

for i in range(len(epsilon_p_dot)):

if epsilon_p_dot[i] > 1.0:

bTQ, fA = bTQ_fA

T[bTQ_fA].append(

bssu.calc_temps(T_init[i], epsilon_p[i], sigma[i],

fA, bTQ, rho, c_func))

else:

curve_size = len(sigma[i])

T[bTQ_fA].append(np.full(curve_size, T_init[i]))

52

The variable T here is a dictionary that uses the tuples (0.9, 0.75), (0.9,
0.55), and so on, as keys, where the first element of the tuple is a value of βTQ, and
the second is a value of farea. The value associated with each key is a list of arrays
of temperatures, with array i corresponding to a strain rate epsilon_p_dot[i]
and initial sample temperature T_init[i]. For high strain rates, these arrays
of temperatures are calculated by the function calc_temps that is in module
bayes_stress_strain_utils in Appendix C and discussed in Section 6.1.
For low strain rates, the stress-strain curves are taken to be isothermal, and the tem-
perature for all data points in the curve is the initial sample temperature.

Plots of the calculated temperatures are shown in Fig. 11. For reference, the code
for generating these plots is as follows:

import matplotlib.pyplot as plt

import itertools

markers = ["None", "o", "v", "^", "<", ">",

"1", "2", "3", "4", "8", "s", "p", "P",

"*", "h", "H", "+", "x", "X", "D", "d"]

linestyles = ["solid", "dashed", "dashdot", "dotted"]

for i in range(len(epsilon_p_dot)):

if epsilon_p_dot[i] > 1.0:

plt.figure(figsize = (3.5, 4.0))

marker_line_combo = itertools.product(markers, linestyles)

for bTQ_fA in beta_TQ_f_area:

marker, linestyle = next(marker_line_combo)

plt.plot(epsilon_p[i], T[bTQ_fA][i],

linestyle = linestyle,

marker = marker,

markersize = 3,

markevery = int(len(epsilon_p[i])/25) + 1,

label = "$\\beta_{{TQ}}$ = {}, $f_{{area}}$ = {}".format(*
bTQ_fA))

plt.xlabel("$\\epsilon_p$")

plt.ylabel("Temperature (K)")

plt.legend(loc = "upper left", labelspacing = 0.025)

ymin, ymax = plt.ylim()

ymax += 0.4*(ymax - ymin)

plt.ylim(ymax = ymax)

plt.tight_layout()

53

out_file = "temps_for_T_init{}K_edot{}_per_s.pdf".format(

T_init_str[i], epsilon_p_dot_str[i])

plt.savefig(os.path.join("plot_files", out_file))

0.025 0.050 0.075 0.100 0.125
p

100

120

140

160

180

200

220

Te
m

pe
ra

tu
re

 (K
)

TQ = 0.9, farea = 0.75
TQ = 0.9, farea = 0.55
TQ = 0.6, farea = 0.55
TQ = 0.9, farea = 0.95
TQ = 0.6, farea = 0.95

0.05 0.10 0.15
p

300

320

340

360

380

Te
m

pe
ra

tu
re

 (K
)

TQ = 0.9, farea = 0.75
TQ = 0.9, farea = 0.55
TQ = 0.6, farea = 0.55
TQ = 0.9, farea = 0.95
TQ = 0.6, farea = 0.95

0.05 0.10 0.15
p

300

320

340

360

380

Te
m

pe
ra

tu
re

 (K
)

TQ = 0.9, farea = 0.75
TQ = 0.9, farea = 0.55
TQ = 0.6, farea = 0.55
TQ = 0.9, farea = 0.95
TQ = 0.6, farea = 0.95

(a) 77 K, 2500/s (b) 298 K, 3500/s (c) 298 K, 7000/s

0.05 0.10 0.15
p

480

490

500

510

520

530

540

Te
m

pe
ra

tu
re

 (K
)

TQ = 0.9, farea = 0.75
TQ = 0.9, farea = 0.55
TQ = 0.6, farea = 0.55
TQ = 0.9, farea = 0.95
TQ = 0.6, farea = 0.95

0.05 0.10 0.15
p

680

690

700

710

720

Te
m

pe
ra

tu
re

 (K
)

TQ = 0.9, farea = 0.75
TQ = 0.9, farea = 0.55
TQ = 0.6, farea = 0.55
TQ = 0.9, farea = 0.95
TQ = 0.6, farea = 0.95

0.05 0.10 0.15
p

875

880

885

890

895

900

905

Te
m

pe
ra

tu
re

 (K
)

TQ = 0.9, farea = 0.75
TQ = 0.9, farea = 0.55
TQ = 0.6, farea = 0.55
TQ = 0.9, farea = 0.95
TQ = 0.6, farea = 0.95

(c) 473 K, 3000/s (d) 673 K, 3000/s (e) 873 K, 3500/s

Fig. 11 Temperatures as estimated in Python along stress-strain curves with the initial tem-
peratures and strain rates shown, given the values of βTQ and farea in Table 1

The Gzip-compressed29 Python pickle files to be used in fitting the Johnson-Cook
model are saved as shown. These files include both the MIDAS data and the param-
eters for the priors of the Johnson-Cook model, i.e. Aguess mean, and so on, that are
read in from JSON files:

JC_priors = bssu.read_from_json_file(

os.path.join(os.pardir, "Other_data", "JC_priors.json")

)

JC_other_data = bssu.read_from_json_file(

os.path.join(os.pardir, "Other_data", "JC_other_data.json")

)

T_room = JC_other_data["T_room"]

list_inds_JC = [i for i in range(len(T_init)) if T_init[i] >= T_room]

54

dict_for_pystan_JC = {

"num_curves": len(list_inds_JC),

"curve_sizes": [len(sigma[i]) for i in list_inds_JC],

"epsilon_p_dot": [epsilon_p_dot[i] for i in list_inds_JC],

"epsilon_p": np.concatenate([epsilon_p[i] for i in list_inds_JC]),

"sigma": np.concatenate([sigma[i] for i in list_inds_JC])

}

dict_for_pystan_JC.update(JC_priors)

dict_for_pystan_JC.update(JC_other_data)

bssu.save_to_pickle_file(dict_for_pystan_JC,

os.path.join("pkl_data_files",

"Main_data_for_JC_pystan.pkl.gz"))

dict_for_pymc3_JC = {

"epsilon_p_dot": [epsilon_p_dot[i] for i in list_inds_JC],

"epsilon_p": [epsilon_p[i] for i in list_inds_JC],

"sigma": [sigma[i] for i in list_inds_JC],

"prior_params": JC_priors

}

dict_for_pymc3_JC.update(JC_other_data)

bssu.save_to_pickle_file(dict_for_pymc3_JC,

os.path.join("pkl_data_files",

"Main_data_for_JC_pymc3.pkl.gz"))

for bTQ_fA in beta_TQ_f_area:

bTQ, fA = bTQ_fA

bssu.save_to_pickle_file(

[T[bTQ_fA][i] for i in list_inds_JC],

os.path.join("pkl_data_files",

"T_beta{}_farea{}_JC.pkl.gz".format(bTQ,fA)))

Despite appearances, the previous Python code is still fairly similar to the code
used to save the simulated data for testing the Johnson-Cook model, but there are
of course some significant differences:

• The use of list_inds_JC, which stores the value of each index i for
which T_init[i] is greater than or equal to T_room. These indices are
used to select the components of lists that correspond to initial temperatures
no less than Troom, since the Johnson-Cook model cannot be used for such
temperatures.

• Whereas the pickle files for the simulated data included the temperatures
for points along the stress-strain curve, here the calculated temperatures are
saved to separate pickle files. The reason for this is that different fits are

55

to be done for the different combinations of βTQ and farea in Table 1, so
each fit combines data from Main_data_for_JC_pystan.pkl.gz or
Main_data_for_JC_pymc3.pkl.gz and the pickle file that corresponds
to temperatures calculated for a particular combination of βTQ and farea.

Similarly, Gzip-compressed29 pickle files to be used in fitting the Zerilli-Armstrong
(BCC) model are saved as follows. Since the Zerilli-Armstrong model can accept
any absolute temperature, there is no need for a list analogous to list_inds_JC.

ZA_BCC_priors = bssu.read_from_json_file(

os.path.join(os.pardir, "Other_data", "ZA_BCC_priors.json")

)

dict_for_pystan_ZA_BCC = {

"num_curves": len(epsilon_p_dot),

"curve_sizes": [len(s) for s in sigma],

"epsilon_p_dot": epsilon_p_dot,

"epsilon_p": np.concatenate(epsilon_p),

"sigma": np.concatenate(sigma)

}

dict_for_pystan_ZA_BCC.update(ZA_BCC_priors)

bssu.save_to_pickle_file(dict_for_pystan_ZA_BCC,

os.path.join("pkl_data_files",

"Main_data_for_ZA_BCC_pystan.pkl.gz"))

bssu.save_to_pickle_file({

"epsilon_p_dot": epsilon_p_dot,

"epsilon_p": epsilon_p,

"sigma": sigma,

"prior_params": ZA_BCC_priors

},

os.path.join("pkl_data_files",

"Main_data_for_ZA_BCC_pymc3.pkl.gz"))

for bTQ_fA in beta_TQ_f_area:

bTQ, fA = bTQ_fA

bssu.save_to_pickle_file(

T[bTQ_fA],

os.path.join("pkl_data_files",

"T_beta{}_farea{}_ZA_BCC.pkl.gz".format(bTQ,fA)))

56

6.3 Fitting Johnson-Cook Model to Experimental Data with PyStan
After importing the modules os, numpy, and bayes_stress_strain_utils,
the needed data for the βTQ = 0.9 and farea = 0.75 case, along with the Johnson-
Cook PyStan model that has been saved to an pickle file in Section 5.3, are read
in as follows. The function np.concatenate is used to concatenate all the 1-D
arrays in the list of arrays stored in T_beta0.9_farea0.75_JC.pkl.gz.

import os

import numpy as np

import bayes_stress_strain_utils as bssu

my_data = bssu.read_from_pickle_file(

os.path.join("pkl_data_files", "Main_data_for_JC_pystan.pkl.gz"))

my_data["T"] = np.concatenate(bssu.read_from_pickle_file(

os.path.join("pkl_data_files","T_beta0.9_farea0.75_JC.pkl.gz")))

jc_model = bssu.read_from_pickle_file(os.path.join("compiled_stan_models",

"jc.pkl"))

At this point, MCMC is about to be attempted. For the sake of reproducibility,
the seed for random number generation is set. Again, the functionality of Python’s
time module is used to estimate the elapsed time in seconds.

import time

start_time = time.perf_counter()

jc_fit = jc_model.sampling(data = my_data, seed = 12345)

elapsed_time = time.perf_counter() - start_time

bssu.print_stan_summary(jc_fit)

print('Elapsed time: {} s'.format(elapsed_time))

The output from this, including both summary statistics and elapsed time, is as
follows:

/home/jjramsey/.conda/envs/Bayes/lib/python3.6/site-packages/pystan/misc.py:399:

FutureWarning: Conversion of the second argument of issubdtype from ‘float‘ to

‘np.floating‘ is deprecated. In future, it will be treated as ‘np.float64 ==

np.dtype(float).type‘.

elif np.issubdtype(np.asarray(v).dtype, float):

0.0 of 4000 iterations ended with a divergence (0.0%)

623 of 4000 iterations saturated the maximum tree depth of 10 (15.575%)

Run again with max_depth set to a larger value to avoid saturation

E-BFMI indicated no pathological behavior

Inference for Stan model: anon_model_5ba595b82fabba44dd5db1896f739604.

57

4 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

A 573.94 1.62 54.93 454.61 538.92 577.77 611.7 674.68 1148 1.0

B 985.07 1.54 52.35 890.03 948.63 981.15 1018.4 1100.0 1150 1.0

n 0.08 1.7e-4 5.8e-3 0.07 0.07 0.08 0.08 0.09 1193 1.0

C 4.5e-3 1.9e-6 7.9e-5 4.4e-3 4.5e-3 4.5e-3 4.6e-3 4.7e-3 1716 1.0

m 1.05 7.7e-5 3.6e-3 1.04 1.05 1.05 1.05 1.06 2179 1.0

sd_sigma[0] 9.38 8.0e-3 0.35 8.72 9.13 9.36 9.6 10.12 1951 1.0

sd_sigma[1] 32.58 0.01 0.67 31.32 32.14 32.57 33.02 33.95 2439 1.0

lp__ -6807 0.05 1.9 -6811 -6808 -6806 -6805 -6804 1443 1.0

Samples were drawn using NUTS at Fri May 18 09:23:00 2018.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

Elapsed time: 790.2527485881001 s

Here, the MCMC ran significantly longer than it did in the testing run in Section
5.3, about 10 to 13 min. The potential scale reduction factors (i.e., Rhat) look
reasonable, but there are warnings about tree depth, so the MCMC is to be run
again with max_treedepth set to a higher value.

start_time = time.perf_counter()

jc_fit = jc_model.sampling(data = my_data, seed = 12345,

control = {'max_treedepth': 15})

elapsed_time = time.perf_counter() - start_time

bssu.print_stan_summary(jc_fit)

print('Elapsed time: {} s'.format(elapsed_time))

The following is the output for this new MCMC run:

/home/jjramsey/.conda/envs/Bayes/lib/python3.6/site-packages/pystan/misc.py:399:

FutureWarning: Conversion of the second argument of issubdtype from ‘float‘ to

‘np.floating‘ is deprecated. In future, it will be treated as ‘np.float64 ==

np.dtype(float).type‘.

elif np.issubdtype(np.asarray(v).dtype, float):

0.0 of 4000 iterations ended with a divergence (0.0%)

0 of 4000 iterations saturated the maximum tree depth of 15 (0.0%)

E-BFMI indicated no pathological behavior

Inference for Stan model: anon_model_5ba595b82fabba44dd5db1896f739604.

4 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

A 574.95 1.82 52.91 463.43 541.17 578.0 610.74 673.86 843 1.0

58

B 984.02 1.73 50.48 890.31 949.61 980.97 1015.9 1091.0 848 1.0

n 0.08 1.9e-4 5.6e-3 0.07 0.07 0.08 0.08 0.09 898 1.0

C 4.5e-3 2.0e-6 8.0e-5 4.4e-3 4.5e-3 4.5e-3 4.6e-3 4.7e-3 1667 1.0

m 1.05 8.0e-5 3.6e-3 1.04 1.05 1.05 1.05 1.06 2058 1.0

sd_sigma[0] 9.36 7.9e-3 0.35 8.68 9.12 9.36 9.6 10.08 2026 1.0

sd_sigma[1] 32.59 0.01 0.69 31.26 32.13 32.59 33.05 33.97 2279 1.0

lp__ -6807 0.05 1.93 -6811 -6808 -6806 -6805 -6804 1274 1.0

Samples were drawn using NUTS at Fri May 18 09:45:20 2018.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

Elapsed time: 1032.850906773936 s

This output shows no further warnings, and both the effective sample sizes and
potential scale reduction factors still look reasonable. However, the mean value
of A, which is supposed to approximate the yield stress,7 appears slightly low for
RHA. Nonetheless, the samples and summary from the MCMC run are saved for fu-
ture examination, using the function save_stan_fit_to_csv from the Python
module bayes_stress_strain_utils in Appendix C. To save disk space,
the samples are saved to a Gzip-compressed29 CSV file:

bssu.save_stan_fit_to_csv(

jc_fit,

os.path.join("summaries",

"jc_MIDAS_pystan_summary_weak_prior_bTQ09_fA075.csv"),

os.path.join("samples",

"jc_MIDAS_pystan_samples_weak_prior_bTQ09_fA075.csv.gz"))

The string “weak_prior” in the names of the CSV files indicates that these
MCMC results are obtained with weakly informative priors. The string “bTQ09”
indicates that βTQ is 0.9 (with “bTQ” referring to βTQ and “09” referring to 0.9),
while “fA075” indicates that farea (“fA”) is 0.75 (“075”).

At this point, an MCMC run is about to be run with the strongly informative prior
for A. If one starts from the same Python session that has been used for the MCMC
runs with the weak prior, then only a small change to the my_data variable is
needed:

new_RHA_priors = bssu.read_from_json_file(

os.path.join(os.pardir, "Other_data",

"JC_prior_A_Benck.json"))

my_data["A_guess_mean"] = new_RHA_priors["A_guess_mean"]

my_data["A_guess_sd"] = new_RHA_priors["A_guess_sd"]

59

MCMC is then run just as before, with the same seed and max_treedepth

values:

/home/jjramsey/.conda/envs/Bayes/lib/python3.6/site-packages/pystan/misc.py:399:

FutureWarning: Conversion of the second argument of issubdtype from ‘float‘ to

‘np.floating‘ is deprecated. In future, it will be treated as ‘np.float64 ==

np.dtype(float).type‘.

elif np.issubdtype(np.asarray(v).dtype, float):

0.0 of 4000 iterations ended with a divergence (0.0%)

0 of 4000 iterations saturated the maximum tree depth of 15 (0.0%)

E-BFMI indicated no pathological behavior

Inference for Stan model: anon_model_5ba595b82fabba44dd5db1896f739604.

4 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

A 700.53 0.29 10.29 680.02 693.63 700.61 707.66 720.5 1295 1.0

B 865.59 0.27 9.74 846.72 858.79 865.48 872.13 885.05 1345 1.0

n 0.09 4.7e-5 1.7e-3 0.09 0.09 0.09 0.09 0.1 1393 1.0

C 4.5e-3 1.7e-6 8.0e-5 4.4e-3 4.5e-3 4.5e-3 4.6e-3 4.7e-3 2316 1.0

m 1.05 7.0e-5 3.6e-3 1.04 1.04 1.05 1.05 1.05 2655 1.0

sd_sigma[0] 9.65 7.4e-3 0.35 9.01 9.41 9.65 9.88 10.38 2225 1.0

sd_sigma[1] 32.33 0.01 0.65 31.12 31.88 32.31 32.78 33.63 2659 1.0

lp__ -6810 0.05 1.84 -6814 -6811 -6809 -6808 -6807 1485 1.0

Samples were drawn using NUTS at Wed May 30 14:11:57 2018.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

Elapsed time: 398.3065286980709 s

In this output, both the effective sample sizes and potential scale reduction factors
still look reasonable, and at this point, the mean of parameter A looks reasonable
as well. The elapsed time is shorter as well. At this point, the results need to be
saved for further analysis. The samples and summary from MCMC may be saved
as follows:

bssu.save_stan_fit_to_csv(

jc_fit,

os.path.join("summaries",

"jc_MIDAS_pystan_summary_strong_prior_on_A_bTQ09_fA075.csv"),

os.path.join("samples",

"jc_MIDAS_pystan_samples_strong_prior_on_A_bTQ09_fA075.csv.gz"))

Here, the string “strong_prior_on_A” indicates that a strongly informative
prior is used for A.

60

Fits for the Johnson-Cook model have been done for the rest of the com-
binations of βTQ and farea in Table 1, for both strong and weak pri-
ors. Loading of the data for these fits proceeds much as before, with
T_beta0.9_farea0.75_JC.pkl.gz replaced with the file for a different
pair of βTQ and farea, such as T_beta0.6_farea0.95_JC.pkl.gz for βTQ =

0.6 and farea = 0.95. The means and standard deviations of the resulting fitted pa-
rameters are in Ramsey.4

6.4 Fitting Johnson-Cook Model to Experimental Data with PyMC3
The needed temperature data calculated with βTQ = 0.9 and farea = 0.75
are to be read in after importing the Python modules os, numpy, pymc3,
jc_pymc3, and bayes_stress_strain_utils, and then the Johnson-
Cook PyMC3 model is to be instantiated with that data, as follows. Again,
os.environ["MKL_THREADING_LAYER"] is set to the string "GNU" before

importing the pymc3 module or any module that loads pymc3:

import os

os.environ["MKL_THREADING_LAYER"] = "GNU"

import numpy as np

import pymc3 as pm

import jc_pymc3

import bayes_stress_strain_utils as bssu

my_data = bssu.read_from_pickle_file(

os.path.join("pkl_data_files", "Main_data_for_JC_pymc3.pkl.gz"))

my_data["T"] = bssu.read_from_pickle_file(

os.path.join("pkl_data_files","T_beta0.9_farea0.75_JC.pkl.gz"))

jc_model = jc_pymc3.make_jc_model(**my_data)

Since all the keys of the dictionary my_data are the names of the arguments to the
function make_jc_model, one can use **my_data as an argument to that func-
tion instead of specifying the arguments individually as has been done in Section
5.4.

At this point, MCMC is about to be attempted. For the sake of reproducibility, the
seed for random number generation is set. Because initial values are needed to get
the Johnson-Cook PyMC3 model to even finish an MCMC run on simulated data,
they are supplied here when running MCMC with real data. Again, the values for

61

the arguments draws and tune in the sample function of PyMC3 are set so that
the number of samples used for warmup (or tuning) and final sampling in PyMC3
are the same as they are with Stan, and the values for the arguments chains and
cores are chosen so that the number of chains generated in parallel is the same
for both PyMC3 and Stan:

import traceback

prior_params = my_data["prior_params"]

start_vals = {

'A': prior_params['A_guess_mean'],

'B': prior_params['B_guess_mean'],

'n': prior_params['n_alpha']/

(prior_params['n_alpha'] + prior_params['n_beta']),

'C': prior_params['C_guess_mean'],

'm': prior_params['m_guess_mean'],

'sd_sigma': np.asarray(prior_params['sd_sigma_guess_mean'])

}

try:

with jc_model:

jc_trace = pm.sample(draws = 1000, tune = 1000,

chains = 4, cores = 4,

random_seed = 12345,

start = start_vals)

print(pm.summary(jc_trace))

except:

err_filename = "jc_trace_fit_errs.txt"

print("Exception encountered: see file {}!".format(err_filename))

with open(err_filename, "w") as err_file:

traceback.print_exc(file=err_file)

The following is the output for this MCMC run:

Auto-assigning NUTS sampler...

INFO:pymc3:Auto-assigning NUTS sampler...

Initializing NUTS using jitter+adapt_diag...

INFO:pymc3:Initializing NUTS using jitter+adapt_diag...

Multiprocess sampling (4 chains in 4 jobs)

INFO:pymc3:Multiprocess sampling (4 chains in 4 jobs)

NUTS: [sd_sigma, m, C, n, B, A]

INFO:pymc3:NUTS: [sd_sigma, m, C, n, B, A]

Sampling 4 chains: 100%| | 8000/8000 [09:47<00:00, 3.65draws/s]

/home/jjramsey/.conda/envs/Bayes/lib/python3.6/site-packages/mkl_fft/_numpy_fft.py:1044:

FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use

‘arr[tuple(seq)]‘ instead of ‘arr[seq]‘. In the future this will be interpreted as an

array index, ‘arr[np.array(seq)]‘, which will result either in an error or a different

result.

62

output = mkl_fft.rfftn_numpy(a, s, axes)

mean sd mc_error hpd_2.5 hpd_97.5 \

A 574.837970 57.121351 1.675024 461.590354 681.499341

B 984.264375 54.502762 1.598589 882.271991 1092.301880

n 0.077246 0.005981 0.000172 0.065751 0.089080

C 0.004518 0.000078 0.000001 0.004365 0.004671

m 1.048044 0.003640 0.000071 1.040626 1.055227

sd_sigma__0 9.381372 0.359893 0.007247 8.694195 10.099319

sd_sigma__1 32.559318 0.654547 0.012048 31.324634 33.878966

n_eff Rhat

A 1064.317830 1.001727

B 1066.477129 1.001703

n 1131.223756 1.001803

C 2096.939128 1.000209

m 2184.229497 0.999901

sd_sigma__0 2039.472649 1.000540

sd_sigma__1 2525.710209 0.999642

In this output, the diagnostics n_eff and Rhat look reasonable. The sampling
time is also of the same order of magnitude as the MCMC sampling done for Py-
Stan in Section 6.3. As with the corresponding PyStan run, the value of A, which
is approximately the yield stress,7 appears slightly low for RHA. Nonetheless, the
samples and summary from the MCMC run are saved for future examination, using
the convenience function save_pymc3_trace_to_csv from the Python mod-
ule bayes_stress_strain_utils in Appendix C. To save disk space, the
samples are saved to a Gzip-compressed29 CSV file:

bssu.save_pymc3_trace_to_csv(

jc_trace,

os.path.join("summaries",

"jc_MIDAS_pymc3_summary_weak_prior_bTQ09_fA075.csv"),

os.path.join("samples",

"jc_MIDAS_pymc3_samples_weak_prior_bTQ09_fA075.csv.gz"))

If the directories summaries and samples do not yet exist, the function
save_pymc3_trace_to_csv creates them. The string “weak_prior” in the
names of the CSV files indicates that these MCMC results have been obtained
with weakly informative priors. The string “bTQ09” indicates that βTQ is 0.9 (with
“bTQ” referring to βTQ and “09” referring to 0.9), while “fA075” indicates that
farea (“fA”) is 0.75 (“075”).

At this point, an MCMC run is about to be run with the strongly informative prior
for A. If one starts from the same Python session used for the MCMC runs with

63

the weak prior, then only a small change to the my_data variable is needed. For
consistency with the new priors, the initial value for parameter A is changed as well:

new_RHA_priors = bssu.read_from_json_file(

os.path.join(os.pardir, "Other_data", "JC_prior_A_Benck.json"))

my_data["prior_params"]["A_guess_mean"] = new_RHA_priors["A_guess_mean"]

my_data["prior_params"]["A_guess_sd"] = new_RHA_priors["A_guess_sd"]

start_vals["A"] = new_RHA_priors["A_guess_mean"]

After instantiating the PyMC3 model with the new priors, MCMC is then run just
as before, and the output from this is as follows:

Auto-assigning NUTS sampler...

INFO:pymc3:Auto-assigning NUTS sampler...

Initializing NUTS using jitter+adapt_diag...

INFO:pymc3:Initializing NUTS using jitter+adapt_diag...

Multiprocess sampling (4 chains in 4 jobs)

INFO:pymc3:Multiprocess sampling (4 chains in 4 jobs)

NUTS: [sd_sigma, m, C, n, B, A]

INFO:pymc3:NUTS: [sd_sigma, m, C, n, B, A]

Sampling 4 chains: 100%| | 8000/8000 [02:02<00:00, 65.14draws/s]

/home/jjramsey/.conda/envs/Bayes/lib/python3.6/site-packages/mkl_fft/_numpy_fft.py:1044:

FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use

‘arr[tuple(seq)]‘ instead of ‘arr[seq]‘. In the future this will be interpreted as an

array index, ‘arr[np.array(seq)]‘, which will result either in an error or a different

result.

output = mkl_fft.rfftn_numpy(a, s, axes)

mean sd mc_error hpd_2.5 hpd_97.5 \

A 700.618008 10.111129 0.254464 680.685215 720.184043

B 865.515315 9.595868 0.242256 846.173374 883.677783

n 0.092820 0.001712 0.000039 0.089487 0.096181

C 0.004541 0.000078 0.000002 0.004387 0.004689

m 1.047172 0.003566 0.000078 1.040496 1.054614

sd_sigma__0 9.652956 0.352611 0.006741 8.982017 10.349625

sd_sigma__1 32.350212 0.646231 0.012064 31.091673 33.667343

n_eff Rhat

A 1398.137721 1.001999

B 1435.118621 1.001724

n 1535.714358 1.002184

C 1789.191987 1.000755

m 1809.571121 1.000885

sd_sigma__0 2456.495922 1.000672

sd_sigma__1 2742.718991 1.000073

In this output, both the effective sample sizes and potential scale reduction factors
still look reasonable, and at this point, the mean of parameter A looks reasonable

64

as well. The elapsed time is shorter as well. At this point, the results need to be
saved for further analysis. The samples and summary from MCMC may be saved
as follows:

bssu.save_pymc3_trace_to_csv(

jc_trace,

os.path.join("summaries",

"jc_MIDAS_pymc3_summary_strong_prior_on_A_bTQ09_fA075.csv"),

os.path.join("samples",

"jc_MIDAS_pymc3_samples_strong_prior_on_A_bTQ09_fA075.csv.gz"))

Here, the string “strong_prior_on_A” indicates that a strongly informative
prior is used for A.

Fits for the Johnson-Cook model have been done for the rest of the com-
binations of βTQ and farea in Table 1, for both strong and weak pri-
ors. Loading of the data for these fits proceeds much as before, with
T_beta0.9_farea0.75_JC.pkl.gz replaced with the file for a different
pair of βTQ and farea, such as T_beta0.6_farea0.95_JC.pkl.gz for βTQ =

0.6 and farea = 0.95. The means and standard deviations of the resulting fitted pa-
rameters are in Ramsey.4

6.5 Fitting Zerilli-Armstrong (BCC) Model to Experimental Data with
PyStan

Much as with the Johnson-Cook model, after importing the modules os, numpy,
and bayes_stress_strain_utils, the needed data for the βTQ = 0.9 and
farea = 0.75 case, along with the Zerilli-Armstrong (BCC) PyStan model that has
been saved to an pickle file in Section 5.6, are read in as follows:

import os

import numpy as np

import bayes_stress_strain_utils as bssu

my_data = bssu.read_from_pickle_file(

os.path.join("pkl_data_files", "Main_data_for_ZA_BCC_pystan.pkl.gz"))

Using np.concatenate to turn a list of 1-dimensional arrays into

one long 1-dimensional array

my_data["T"] = np.concatenate(bssu.read_from_pickle_file(

os.path.join("pkl_data_files","T_beta0.9_farea0.75_ZA_BCC.pkl.gz")))

za_bcc_model = bssu.read_from_pickle_file(os.path.join("compiled_stan_models",

"za_bcc.pkl"))

65

As the testing of the Zerilli-Armstrong model showed, initial values for the model
parameters are needed as well, and these are set to the means of the priors:

init_vals = {

"C0": my_data["C0_guess_mean"],

"C1": my_data["C1_guess_mean"],

"C3": my_data["C3_guess_mean"],

"C4": my_data["C4_guess_mean"],

"C5": my_data["C5_guess_mean"],

"n": my_data["n_alpha"]/(my_data["n_alpha"] + my_data["n_beta"])

}

The Zerilli-Armstrong PyStan model that has been saved to a pickle file is to be
loaded, and then MCMC is to be attempted. For the sake of reproducibility, the
seed for random number generation is set. Since the only way PyStan prints elapsed
time is via terminal output (which may not be visible in, for example, a Jupyter note-
book), the functionality of Python’s time module is used to estimate the elapsed
time in seconds. Also, this time, the initial values are set with a lambda expression
rather than a list of dictionaries.

import time

start_time = time.perf_counter()

za_bcc_fit = za_bcc_model.sampling(data = my_data,

init = (lambda : init_vals),

seed = 12345)

elapsed_time = time.perf_counter() - start_time

bssu.print_stan_summary(za_bcc_fit)

print('Elapsed time: {} s'.format(elapsed_time))

The output from the previous code is shown, and the diagnostics in this output are
reasonable:

/home/jjramsey/.conda/envs/Bayes/lib/python3.6/site-packages/pystan/misc.py:399:

FutureWarning: Conversion of the second argument of issubdtype from ‘float‘ to

‘np.floating‘ is deprecated. In future, it will be treated as ‘np.float64 ==

np.dtype(float).type‘.

elif np.issubdtype(np.asarray(v).dtype, float):

0.0 of 4000 iterations ended with a divergence (0.0%)

0 of 4000 iterations saturated the maximum tree depth of 10 (0.0%)

E-BFMI indicated no pathological behavior

Inference for Stan model: anon_model_94ebba402ea6796923b7e03a53b54c34.

4 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=4000.

66

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

C0 108.55 0.73 25.9 56.45 91.08 109.4 126.83 156.62 1273 1.0

C1 1529.4 0.18 8.6 1512.9 1523.5 1529.2 1535.1 1546.8 2173 1.0

C3 2.2e-3 7.4e-7 3.1e-5 2.1e-3 2.2e-3 2.2e-3 2.2e-3 2.2e-3 1721 1.0

C4 4.1e-5 1.6e-8 7.3e-7 4.0e-5 4.1e-5 4.1e-5 4.2e-5 4.3e-5 2182 1.0

C5 748.58 0.61 22.1 706.88 732.99 748.11 763.36 793.84 1308 1.0

n 0.16 2.6e-4 9.7e-3 0.14 0.15 0.16 0.16 0.18 1426 1.0

sd_sigma[0] 31.62 0.02 0.94 29.88 30.97 31.58 32.23 33.58 2914 1.0

sd_sigma[1] 47.47 0.02 0.84 45.85 46.9 47.45 48.02 49.17 3109 1.0

lp__ -9766 0.06 2.07 -9770 -9767 -9765 -9764 -9763 1392 1.0

Samples were drawn using NUTS at Mon May 21 12:55:39 2018.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

Elapsed time: 155.38615178316832 s

The samples and summary from the MCMC run are saved for future examination
via the same save_stan_fit_to_csv function used with the results of the
Johnson-Cook model:

bssu.save_stan_fit_to_csv(

za_bcc_fit,

os.path.join("summaries",

"za_bcc_MIDAS_pystan_summary_bTQ09_fA075.csv"),

os.path.join("samples",

"za_bcc_MIDAS_pystan_samples_bTQ09_fA075.csv.gz"))

In the previous fit for the Zerilli-Armstrong model, one may have observed that the
SDσ,1 is only slightly less than SDσ,2, whereas with the Johnson-Cook model, the
former is about three times less than the latter. To see if this is due to the Zerilli-
Armstrong model being fit to data not used in the fit for the Johnson-Cook model, a
new fit is done, using only the data used in the latter fit. If one starts from the same
Python session used for the previous fit, then an MCMC run with the new data can
be done as shown:

JC_main_data = bssu.read_from_pickle_file(

os.path.join("pkl_data_files", "Main_data_for_JC_pystan.pkl.gz"))

my_data["num_curves"] = JC_main_data["num_curves"]

my_data["curve_sizes"] = JC_main_data["curve_sizes"]

my_data["epsilon_p_dot"] = JC_main_data["epsilon_p_dot"]

my_data["epsilon_p"] = JC_main_data["epsilon_p"]

my_data["sigma"] = JC_main_data["sigma"]

my_data["T"] = np.concatenate(bssu.read_from_pickle_file(

os.path.join("pkl_data_files","T_beta0.9_farea0.75_JC.pkl.gz")))

67

start_time = time.perf_counter()

za_bcc_fit = za_bcc_model.sampling(data = my_data,

init = (lambda : init_vals),

seed = 12345)

elapsed_time = time.perf_counter() - start_time

bssu.print_stan_summary(za_bcc_fit)

print('Elapsed time: {} s'.format(elapsed_time))

The following are the results from the MCMC run:

/home/jjramsey/.conda/envs/Bayes/lib/python3.6/site-packages/pystan/misc.py:399:

FutureWarning: Conversion of the second argument of issubdtype from ‘float‘ to

‘np.floating‘ is deprecated. In future, it will be treated as ‘np.float64 ==

np.dtype(float).type‘.

elif np.issubdtype(np.asarray(v).dtype, float):

0.0 of 4000 iterations ended with a divergence (0.0%)

0 of 4000 iterations saturated the maximum tree depth of 10 (0.0%)

E-BFMI indicated no pathological behavior

Inference for Stan model: anon_model_94ebba402ea6796923b7e03a53b54c34.

4 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

C0 1.84 0.03 1.82 0.04 0.5 1.3 2.58 6.77 3272 1.0

C1 1535.4 0.31 12.28 1510.7 1527.1 1535.6 1543.7 1559.6 1525 1.0

C3 1.4e-3 6.1e-7 2.3e-5 1.4e-3 1.4e-3 1.4e-3 1.4e-3 1.4e-3 1406 1.0

C4 2.6e-5 1.2e-8 5.3e-7 2.5e-5 2.6e-5 2.6e-5 2.7e-5 2.8e-5 1957 1.0

C5 590.8 0.27 10.46 570.62 583.76 590.67 597.72 611.6 1472 1.0

n 0.18 2.0e-4 7.6e-3 0.16 0.17 0.18 0.18 0.19 1365 1.0

sd_sigma[0] 13.92 0.01 0.58 12.84 13.52 13.91 14.31 15.11 2278 1.0

sd_sigma[1] 43.25 0.02 0.9 41.48 42.63 43.24 43.86 45.07 2243 1.0

lp__ -7348 0.05 2.01 -7353 -7349 -7348 -7347 -7345 1465 1.0

Samples were drawn using NUTS at Tue May 22 10:49:54 2018.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

Elapsed time: 89.19370407611132 s

The relationship of SDσ,1 to SDσ,2 is now similar to what it is for the Johnson-Cook
model. The samples and summary from this MCMC run are also saved for future
examination as follows:

bssu.save_stan_fit_to_csv(

za_bcc_fit,

os.path.join("summaries",

"za_bcc_MIDAS_pystan_summary_JC_data_bTQ09_fA075.csv"),

68

os.path.join("samples",

"za_bcc_MIDAS_pystan_samples_JC_data_bTQ09_fA075.csv.gz"))

Fits for the Zerilli-Armstrong (BCC) model have been done for the rest of the com-
binations of βTQ and farea in Table 1, for both the case where all MIDAS data are
included and the case where only the MIDAS data used to fit the Johnson-Cook
model are included. The means and standard deviations of the resulting fitted pa-
rameters are in Ramsey.4

6.6 Fitting Zerilli-Armstrong (BCC) Model to Experimental Data with
PyMC3

Much as with the Johnson-Cook model, the needed data for the βTQ = 0.9 and
farea = 0.75 case are read in after importing the modules os, numpy, pymc3,
za_bcc_pymc3, and bayes_stress_strain_utils, and then the Zerilli-
Armstrong (BCC) PyMC3 model is instantiated with that data as follows. Again,
os.environ["MKL_THREADING_LAYER"] is set to the string "GNU" before

importing the pymc3 module or any module that loads pymc3:

import os

os.environ["MKL_THREADING_LAYER"] = "GNU"

import numpy as np

import pymc3 as pm

import za_bcc_pymc3

import bayes_stress_strain_utils as bssu

my_data = bssu.read_from_pickle_file(

os.path.join("pkl_data_files", "Main_data_for_ZA_BCC_pymc3.pkl.gz"))

my_data["T"] = bssu.read_from_pickle_file(

os.path.join("pkl_data_files","T_beta0.9_farea0.75_ZA_BCC.pkl.gz"))

za_bcc_model = za_bcc_pymc3.make_za_bcc_model(**my_data)

As the testing of the Zerilli-Armstrong PyMC3 model showed, initial values for the
model parameters are needed as well, and these are set to the means of the priors:

prior_params = my_data["prior_params"]

start_vals = {

"C0": prior_params["C0_guess_mean"],

"C1": prior_params["C1_guess_mean"],

"C3": prior_params["C3_guess_mean"],

"C4": prior_params["C4_guess_mean"],

69

"C5": prior_params["C5_guess_mean"],

"n": prior_params["n_alpha"]/

(prior_params["n_alpha"] + prior_params["n_beta"]),

"sd_sigma": prior_params['sd_sigma_guess_mean']

}

At this point, MCMC is about to be attempted. For the sake of reproducibility,
the seed for random number generation is set. Again, the values for the arguments
draws and tune in the sample function of PyMC3 are set so that the number of
samples used for warmup (or tuning) and final sampling in PyMC3 are the same as
they are in Stan, and the values for the arguments chains and cores are chosen
so that the number of chains generated in parallel is the same for both PyMC3 and
Stan:

import traceback

try:

with za_bcc_model:

za_bcc_trace = pm.sample(draws = 1000, tune = 1000,

chains = 4, cores = 4,

random_seed = 12345,

start = start_vals)

print(pm.summary(za_bcc_trace))

except:

err_filename = "za_bcc_trace_fit_errs.txt"

print("Exception encountered: see file {}!".format(err_filename))

with open(err_filename, "w") as err_file:

traceback.print_exc(file=err_file)

The output from this is as follows:

Auto-assigning NUTS sampler...

INFO:pymc3:Auto-assigning NUTS sampler...

Initializing NUTS using jitter+adapt_diag...

INFO:pymc3:Initializing NUTS using jitter+adapt_diag...

Multiprocess sampling (4 chains in 4 jobs)

INFO:pymc3:Multiprocess sampling (4 chains in 4 jobs)

NUTS: [sd_sigma, n, C5, C4, C3, C1, C0]

INFO:pymc3:NUTS: [sd_sigma, n, C5, C4, C3, C1, C0]

Sampling 4 chains: 100%| | 8000/8000 [02:43<00:00, 15.44draws/s]

/home/jjramsey/.conda/envs/Bayes/lib/python3.6/site-packages/mkl_fft/_numpy_fft.py:1044:

FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use

‘arr[tuple(seq)]‘ instead of ‘arr[seq]‘. In the future this will be interpreted as an

array index, ‘arr[np.array(seq)]‘, which will result either in an error or a different

result.

output = mkl_fft.rfftn_numpy(a, s, axes)

There was 1 divergence after tuning. Increase ‘target_accept‘ or reparameterize.

ERROR:pymc3:There was 1 divergence after tuning. Increase ‘target_accept‘ or

70

reparameterize.

There were 3 divergences after tuning. Increase ‘target_accept‘ or reparameterize.

ERROR:pymc3:There were 3 divergences after tuning. Increase ‘target_accept‘ or

reparameterize.

There were 23 divergences after tuning. Increase ‘target_accept‘ or reparameterize.

ERROR:pymc3:There were 23 divergences after tuning. Increase ‘target_accept‘ or

reparameterize.

mean sd mc_error hpd_2.5 \

C0 108.247409 2.619048e+01 6.798457e-01 59.346535

C1 1529.098273 8.649828e+00 1.997850e-01 1510.450806

C3 0.002191 3.045333e-05 7.229348e-07 0.002134

C4 0.000041 7.138980e-07 1.280137e-08 0.000040

C5 749.526065 2.223788e+01 5.661143e-01 706.786599

n 0.158223 9.669127e-03 2.454245e-04 0.140425

sd_sigma__0 31.626514 9.437332e-01 1.755603e-02 29.872822

sd_sigma__1 47.499352 8.430675e-01 1.489903e-02 45.740558

hpd_97.5 n_eff Rhat

C0 160.837920 1504.541261 0.999996

C1 1544.914149 1750.421236 1.000890

C3 0.002251 1660.081945 1.001599

C4 0.000042 2572.793796 1.000066

C5 792.024376 1474.481134 1.000598

n 0.177682 1541.147509 1.000632

sd_sigma__0 33.551697 2948.766445 1.000009

sd_sigma__1 49.079264 3151.816049 1.000650

There are warning about divergences, so MCMC is rerun with a larger
target_accept value:

try:

with za_bcc_model:

za_bcc_trace = pm.sample(draws = 1000, tune = 1000,

chains = 4, cores = 4,

random_seed = 12345,

nuts_kwargs = {"target_accept": 0.9},

start = start_vals)

print(pm.summary(za_bcc_trace))

except:

err_filename = "za_bcc_trace_fit_errs2.txt"

print("Exception encountered: see file {}!".format(err_filename))

with open(err_filename, "w") as err_file:

traceback.print_exc(file=err_file)

The output from this new MCMC run is shown. There are no more warnings from
PyMC3 in this output, and the n_eff and Rhat diagnostics look reasonable:

Auto-assigning NUTS sampler...

INFO:pymc3:Auto-assigning NUTS sampler...

71

Initializing NUTS using jitter+adapt_diag...

INFO:pymc3:Initializing NUTS using jitter+adapt_diag...

Multiprocess sampling (4 chains in 4 jobs)

INFO:pymc3:Multiprocess sampling (4 chains in 4 jobs)

NUTS: [sd_sigma, n, C5, C4, C3, C1, C0]

INFO:pymc3:NUTS: [sd_sigma, n, C5, C4, C3, C1, C0]

Sampling 4 chains: 100%| | 8000/8000 [03:20<00:00, 12.81draws/s]

/home/jjramsey/.conda/envs/Bayes/lib/python3.6/site-packages/mkl_fft/_numpy_fft.py:1044:

FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use

‘arr[tuple(seq)]‘ instead of ‘arr[seq]‘. In the future this will be interpreted as an

array index, ‘arr[np.array(seq)]‘, which will result either in an error or a different

result.

output = mkl_fft.rfftn_numpy(a, s, axes)

mean sd mc_error hpd_2.5 \

C0 107.537860 2.640884e+01 7.225838e-01 54.563983

C1 1529.125901 8.838833e+00 2.059382e-01 1511.795090

C3 0.002190 3.056559e-05 7.485135e-07 0.002129

C4 0.000041 7.173988e-07 1.463182e-08 0.000040

C5 749.893994 2.271279e+01 6.210657e-01 706.512010

n 0.157974 9.888586e-03 2.703643e-04 0.140280

sd_sigma__0 31.634860 9.521057e-01 1.917492e-02 29.737175

sd_sigma__1 47.489870 8.287531e-01 1.470518e-02 45.829694

hpd_97.5 n_eff Rhat

C0 157.094955 1118.360428 1.000544

C1 1546.164206 1815.062160 1.000414

C3 0.002249 1624.639811 1.000653

C4 0.000042 2163.037153 1.000013

C5 794.506894 1189.976219 0.999856

n 0.178607 1162.491848 0.999985

sd_sigma__0 33.463233 2874.527410 1.000352

sd_sigma__1 49.056928 3160.862301 1.000073

The samples and summary from the MCMC run are saved for future examination
as follows, via the same save_pymc3_trace_to_csv function used with the
results of the Johnson-Cook model:

bssu.save_pymc3_trace_to_csv(

za_bcc_trace,

os.path.join("summaries",

"za_bcc_MIDAS_pymc3_summary_bTQ09_fA075.csv"),

os.path.join("samples",

"za_bcc_MIDAS_pymc3_samples_bTQ09_fA075.csv.gz"))

In the previous fit for the Zerilli-Armstrong model, one may have observed that the
SDσ,1 is only slightly less than SDσ,2, whereas with the Johnson-Cook model, the
former is about three times less than the latter. To see if this is due to the Zerilli-
Armstrong model being fit to data not used in the fit for the Johnson-Cook model, a

72

new fit is done, using only the data used in the latter fit. If one starts from the same
Python session used for the previous fit, then an MCMC run with the new data can
be done as shown:

JC_main_data = bssu.read_from_pickle_file(

os.path.join("pkl_data_files", "Main_data_for_JC_pymc3.pkl.gz"))

my_data["epsilon_p_dot"] = JC_main_data["epsilon_p_dot"]

my_data["epsilon_p"] = JC_main_data["epsilon_p"]

my_data["sigma"] = JC_main_data["sigma"]

my_data["T"] = bssu.read_from_pickle_file(

os.path.join("pkl_data_files","T_beta0.9_farea0.75_JC.pkl.gz"))

za_bcc_model = za_bcc_pymc3.make_za_bcc_model(**my_data)

try:

with za_bcc_model:

za_bcc_trace = pm.sample(draws = 1000, tune = 1000,

chains = 4, cores = 4,

random_seed = 12345,

nuts_kwargs = {"target_accept": 0.9},

start = start_vals)

print(pm.summary(za_bcc_trace))

except:

err_filename = "za_bcc_trace_fit_errs_jc_data.txt"

print("Exception encountered: see file {}!".format(err_filename))

with open(err_filename, "w") as err_file:

traceback.print_exc(file=err_file)

The following is the output from the new MCMC run:

INFO:pymc3:Auto-assigning NUTS sampler...

INFO:pymc3:Initializing NUTS using jitter+adapt_diag...

INFO:pymc3:Multiprocess sampling (4 chains in 4 jobs)

INFO:pymc3:NUTS: [sd_sigma, n, C5, C4, C3, C1, C0]

Sampling 4 chains: 100%| | 8000/8000 [01:49<00:00, 72.92draws/s]

/home/jjramsey/.conda/envs/Bayes/lib/python3.6/site-packages/mkl_fft/_numpy_fft.py:1044:

FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use

‘arr[tuple(seq)]‘ instead of ‘arr[seq]‘. In the future this will be interpreted as an

array index, ‘arr[np.array(seq)]‘, which will result either in an error or a different

result.

output = mkl_fft.rfftn_numpy(a, s, axes)

mean sd mc_error hpd_2.5 \

C0 1.867899 1.805520e+00 3.223922e-02 0.000012

C1 1535.414584 1.229310e+01 3.285065e-01 1511.648589

C3 0.001400 2.280600e-05 6.124216e-07 0.001354

C4 0.000026 5.479599e-07 1.215039e-08 0.000025

C5 590.788279 1.055761e+01 2.886484e-01 569.309714

73

n 0.178332 7.510367e-03 2.083718e-04 0.164611

sd_sigma__0 13.912941 5.962634e-01 1.391148e-02 12.746006

sd_sigma__1 43.234743 8.806380e-01 1.996328e-02 41.328536

hpd_97.5 n_eff Rhat

C0 5.516702 3045.875454 1.001106

C1 1559.635019 1281.619064 1.001756

C3 0.001442 1233.985375 1.001176

C4 0.000028 1749.727779 1.000019

C5 610.784355 1204.080384 1.002086

n 0.193831 1170.080314 1.001970

sd_sigma__0 15.042074 1902.934484 1.000598

sd_sigma__1 44.866560 1913.277254 1.000542

The relationship of SDσ,1 to SDσ,2 is now similar to what it is for the Johnson-Cook
model. The samples and summary from this MCMC run are also saved as follows
for future examination:

bssu.save_pymc3_trace_to_csv(

za_bcc_trace,

os.path.join("summaries",

"za_bcc_MIDAS_pymc3_summary_JC_data_bTQ09_fA075.csv"),

os.path.join("samples",

"za_bcc_MIDAS_pymc3_samples_JC_data_bTQ09_fA075.csv.gz"))

Fits for the Zerilli-Armstrong (BCC) model have been done for the rest of the com-
binations of βTQ and farea in Table 1, for both the case where all MIDAS data are
included and the case where only the MIDAS data used to fit the Johnson-Cook
model are included. The means and standard deviations of the resulting fitted pa-
rameters are in Ramsey.4

6.7 Applying Approximate Interval Predictor Model Approach
To do the constrained optimization for the IPM to find parameter bounds for the
Johnson-Cook model, one needs to load not only the function specifying the flow
stress according to that model, but also its gradient, which here is specified via the
function jc_grad:

from jc import jc

import numpy as np

def jc_grad(epsilon_p, log_epsilon_p_dot, T_star,

A, B, n, C, m):

dJCdA = (-T_star**m + 1)*(C*log_epsilon_p_dot + 1.0)

dJCdB = (epsilon_p**n)*(-T_star**m + 1)*(C*log_epsilon_p_dot + 1.0)

74

dJCdn = np.where(epsilon_p == 0,

np.full(len(epsilon_p), 0.0),

B*(epsilon_p**n)*(-T_star**m + 1)*
(C*log_epsilon_p_dot + 1.0)*
np.log(epsilon_p))

dJCdC = log_epsilon_p_dot*(A + B*epsilon_p**n)*(-T_star**m + 1)

dJCdm = np.where(T_star == 0,

np.full(len(T_star), 0.0),

-T_star**m*(A + B*epsilon_p**n)*
(C*log_epsilon_p_dot + 1.0)*
np.log(T_star))

return np.vstack((dJCdA, dJCdB, dJCdn, dJCdC, dJCdm))

The derivatives in the function jc_grad are calculated with the aid of a symbolic
computation package (in this case, SymPy43). However, blindly using the derivative
expressions from a symbolic computation would be a problem, since the expres-
sions for the derivatives with respect to parameters n and m are undefined where
εp or T∗ are zero, because of the presence of the factors εn

p ln εp and (T∗)m lnT∗,
respectively, in those expressions. Mathematically, though, as εp → 0 and T∗ → 0,
these factors approach zero, and the numerical calculation of the derivatives reflects
that. Also, to allow the Python variables epsilon_p and T_star to be arrays,
np.where is used rather than a raw if statement.

At this point, one can load in the needed data, which in this case is data prepared
for PyMC3, as well as temperature data for βTQ = 0.9 and farea = 0.75:

import bayes_stress_strain_utils as bssu

import os

my_data = bssu.read_from_pickle_file(

os.path.join("pkl_data_files", "Main_data_for_JC_pymc3.pkl.gz"))

my_data["T"] = bssu.read_from_pickle_file(

os.path.join("pkl_data_files","T_beta0.9_farea0.75_JC.pkl.gz"))

epsilon_p = my_data["epsilon_p"]

epsilon_p_dot = my_data["epsilon_p_dot"]

log_ep_dot = np.log(np.asarray(epsilon_p_dot)/

my_data["epsilon_p_dot_0"])

T_room = my_data["T_room"]

T_melt_minus_T_room = my_data["T_melt"] - T_room

T_star = [(T - T_room)/T_melt_minus_T_room for T in my_data["T"]]

75

To make the constrained optimization more tractable, the flow stresses are converted
from units of megapascals to gigapascals:

MPa_to_GPa = 1e-3

sigma = [s*MPa_to_GPa for s in my_data["sigma"]]

For the sake of array calculations that are to be needed, data in the format shown in
Fig. 9, is easier to work with, so the data is converted to that form as follows:

ep_vec = np.concatenate(epsilon_p)

log_ep_dot_vec = np.concatenate(

[np.full(len(epsilon_p[i]), log_ep_dot[i])

for i in range(len(log_ep_dot))]

)

T_star_vec = np.concatenate(T_star)

sigma_vec = np.concatenate(sigma)

To estimate θ0 for the Johnson-Cook model, the mean of the MCMC samples from
the fit with a strong prior on A (again, for βTQ = 0.9 and farea = 0.75) is used:

import pandas

summary = pandas.read_csv(

os.path.join("summaries",

"jc_MIDAS_pymc3_summary_strong_prior_on_A_bTQ09_fA075.csv"),

index_col = 0

)

theta_0 = (summary.loc["A", "mean"]*MPa_to_GPa,

summary.loc["B", "mean"]*MPa_to_GPa,

summary.loc["n", "mean"],

summary.loc["C", "mean"],

summary.loc["m", "mean"])

At this point, one can begin to construct the inputs that will be needed for con-
strained minimization with the function linprog from the optimize submodule
of SciPy.37 These inputs consist of (1) a vector whose elements are the coefficients
of the elements of ∆θ′min and ∆θ′max in Eq. 14 and (2) an array/vector pair that to-
gether characterizes the inequalities in Eq. 11. To construct these inputs, first gσmdl

from Eq. 14 is evaluated for θ0 and the strains, strain rates, and temperatures from
my_data:

g_sigma_mdl = jc_grad(ep_vec, log_ep_dot_vec, T_star_vec, *theta_0)

The columns of the array g_sigma_mdl are gradient vectors, each evaluated at a

76

given strain, strain rate, and temperature. To find the aforementioned coefficients of
the elements of ∆θ′min and ∆θ′max , one needs the sum of the elementwise absolute
values of these vectors, which can be done as shown:

g_sigma_mdl_abs = np.fabs(g_sigma_mdl)

g_sigma_mdl_abs_sum = g_sigma_mdl_abs.sum(axis = 1)

The vector of coefficients, then is as follows:

coefficients = np.concatenate([g_sigma_mdl_abs_sum, g_sigma_mdl_abs_sum])

The first half of the vector coefficients is the coefficients for the elements
of ∆θ′min, while the second half is the coefficients for the elements of ∆θ′max . In
principle, since Eq. 14 is a function to be minimized, it can be multiplied by any
nonzero prefactor without affecting the minimization. In practice, however, dividing
it by the number of data points makes the numerical minimization more tractable.
Accordingly,

num_data_pts = len(ep_vec)

coefficients /= num_data_pts

The inequalities in Eq. 14 need to be rearranged to fit the form needed by the func-
tion linprog, that is, Au ≤ b. Here, u is a vector consisting of the elements of
∆θmin followed by the elements of ∆θmax , and A is a matrix whose rows are coef-
ficients of the elements of u. The operator ≤ is here taken to operate elementwise,
and b is another vector. To fit this format, Eq. 14 can be combined with Eqs. 12 and
13 and rearranged to obtain

−
1
2

(
gσmdl

(eic
j) + |gσmdl

(eic
j)|

)T
∆θmin

+
1
2

(
gσmdl

(eic
j) − |gσmdl

(eic
j)|

)T
∆θmax ≤ σ

ic
j − σmdl(eic

j ,θ0)

(15)

1
2

(
gσmdl

(eic
j) − |gσmdl

(eic
j)|

)T
∆θmin

−
1
2

(
gσmdl

(eic
j) + |gσmdl

(eic
j)|

)T
∆θmax ≤ −

(
σic

j − σmdl(eic
j ,θ0)

) (16)

Accordingly, then, the matrix A and vector b can be constructed in Python as fol-
lows:

A_mat = np.empty((2*num_data_pts, len(coefficients)))

b_vec = np.empty(2*num_data_pts)

77

g_gabs_half_sum = 0.5*(g_sigma_mdl + g_sigma_mdl_abs)

g_gabs_half_diff = 0.5*(g_sigma_mdl - g_sigma_mdl_abs)

half_num_coeffs = int(len(coefficients)/2)

sigma_minus_sigma_mdl = sigma_vec - jc(ep_vec,

log_ep_dot_vec,

T_star_vec,

*theta_0)

A_mat[:num_data_pts, :half_num_coeffs] = -g_gabs_half_sum.T

A_mat[:num_data_pts, half_num_coeffs:] = g_gabs_half_diff.T

b_vec[:num_data_pts] = sigma_minus_sigma_mdl

A_mat[num_data_pts:, :half_num_coeffs] = g_gabs_half_diff.T

A_mat[num_data_pts:, half_num_coeffs:] = -g_gabs_half_sum.T

b_vec[num_data_pts:] = -sigma_minus_sigma_mdl

At this point, the minimization can proceed. The default method used by linprog
for minimization does not work for this problem, so a more robust alternative
method, interior point, is used instead:

import scipy.optimize as so

result = so.linprog(coefficients, A_ub = A_mat, b_ub = b_vec,

method = "interior-point")

print("result.success = {}".format(result.success))

print("result.message = {}".format(result.message))

Delta_theta_min = result.x[:half_num_coeffs]

Delta_theta_max = result.x[half_num_coeffs:]

JC_param_lb = theta_0 - Delta_theta_min

JC_param_ub = theta_0 + Delta_theta_max

print("Est. spread for A: [{}, {}] (MPa)".format(JC_param_lb[0]/MPa_to_GPa,

JC_param_ub[0]/MPa_to_GPa))

print("Est. spread for B: [{}, {}] (MPa)".format(JC_param_lb[1]/MPa_to_GPa,

JC_param_ub[1]/MPa_to_GPa))

print("Est. spread for n: [{}, {}]".format(JC_param_lb[2], JC_param_ub[2]))

print("Est. spread for C: [{}, {}]".format(JC_param_lb[3], JC_param_ub[3]))

print("Est. spread for m: [{}, {}]".format(JC_param_lb[4], JC_param_ub[4]))

The output of the minimization is as follows:

result.success = True

result.message = Optimization terminated successfully.

Est. spread for A: [700.6180075481943, 700.6180075795291] (MPa)

Est. spread for B: [865.5153150776541, 865.5153153566544] (MPa)

Est. spread for n: [0.07201125850877127, 0.12337719049331143]

Est. spread for C: [0.004540558366680981, 0.007103479507105404]

Est. spread for m: [0.8742604532895236, 1.0512302974618548]

78

The resulting upper and lower bounds for the Johnson-Cook parameters (stored
in the vectors JC_param_lb and JC_param_ub, respectively) have been es-
timated using a Taylor approximation. To see if these bounds are reasonable, the
set Θ will be taken to be the hyperrectangle with the corners JC_param_lb and
JC_param_ub, and σmin and σmax will be estimated using Eqs. 8 and 9 (rather
than the approximations in Eqs. 12 and 13). One can then determine how much of
the flow stress data is actually bounded by σmin and σmax .

To do this, one first needs to create wrappers around the jc function that will work
as objective functions for the minimize function from the optimize submodule
of SciPy37:

def jc_for_min(ABnCm, ep, l_epdot, T_s):

return jc(ep, l_epdot, T_s,

ABnCm[0], ABnCm[1], ABnCm[2], ABnCm[3], ABnCm[4])

def jc_for_max(ABnCm, ep, l_epdot, T_s):

return -jc_for_min(ABnCm, ep, l_epdot, T_s)

Since a minimization routine is used to find σmax , jc_for_max is the negative
of the Johnson-Cook flow stress. (Maximizing an objective function is the same as
minimizing the negative of that function.)

One can then use the following for loop to generate estimates of σmin and σmax for
each set of strain, strain rate, and temperature inputs, check how much of the data
is within bounds, and then save the bounds to a Python pickle file (which is used to
generate the plots in Ramsey4 that show how much of the data are within bounds):

num_data_pts_in_bounds = 0

sigma_min = []

sigma_max = []

for i in range(len(epsilon_p_dot)):

sigma_min.append(np.empty(len(epsilon_p[i])))

sigma_max.append(np.empty(len(epsilon_p[i])))

for j in range(len(epsilon_p[i])):

result_min = so.minimize(jc_for_min,

theta_0,

args = (epsilon_p[i][j],

log_ep_dot[i],

T_star[i][j]),

bounds = so.Bounds(JC_param_lb,

JC_param_ub))

79

if not(result_min.success):

print("Cannot find sigma_min for data point ({},{})!".format(i,j))

result_max = so.minimize(jc_for_max,

theta_0,

args = (epsilon_p[i][j],

log_ep_dot[i],

T_star[i][j]),

bounds = so.Bounds(JC_param_lb,

JC_param_ub))

if not(result_max.success):

print("Cannot find sigma_max for data point ({},{})!".format(i,j))

sigma_min[i][j] = result_min.fun

sigma_max[i][j] = -result_max.fun

num_data_pts_in_bounds += \

int(sigma_min[i][j] <= sigma[i][j] <= sigma_max[i][j])

print("Fraction of data points in bounds = {}".format(num_data_pts_in_bounds/

num_data_pts))

bssu.save_to_pickle_file(

{"sigma_min": [s/MPa_to_GPa for s in sigma_min],

"sigma_max": [s/MPa_to_GPa for s in sigma_max]},

os.path.join(

"pkl_data_files",

"jc_MIDAS_pymc3_IPM_sigma_bounds_strong_prior_on_A_beta0.9_farea0.75.pkl.

gz"

)

)

The resulting text output is as follows:

Fraction of data points in bounds = 0.9994553376906318

Almost 100% of the data points are within the bounds.

Similar constrained optimizations to estimate bounds of parameters in the Johnson-
Cook have been done for the rest of the combinations of βTQ and farea in Table 1,
all for the case with a strong prior on A. Bounds have also been estimated for the
parameters of the Zerilli-Armstrong (BCC) model, for the case where only the MI-
DAS data used to fit the Johnson-Cook model are included. Results for these cases
are in Ramsey.4

80

7. Postprocessing of Model Fits
7.1 Plotting Priors with Posteriors
As a sanity check, one may compare the priors for the model parameters to their
corresponding posteriors. If a posterior largely resembles its corresponding prior,
this suggests that the posterior has been largely determined by the prior rather than
the likelihood, which is a problem if a prior is only weakly informative and little
more than an educated guess.

First, one needs to read in the samples of the posterior from an MCMC run, such
as samples in the CSV file from the MCMC run of the Johnson-Cook model
with βTQ = 0.9, farea = 0.75 and weakly informative priors. Here, the samples
from such runs using PyStan and PyMC3 are read in to the Pandas data frames
jc_samples_pystan and jc_samples_pymc3, respectively:

import pandas

import os

jc_samples_pystan = pandas.read_csv(

os.path.join("samples",

"jc_MIDAS_pystan_samples_weak_prior_bTQ09_fA075.csv.gz"))

jc_samples_pymc3 = pandas.read_csv(

os.path.join("samples",

"jc_MIDAS_pymc3_samples_weak_prior_bTQ09_fA075.csv.gz"))

The CSV files named have column headers corresponding to the names of model
parameters ("A", "B", etc.), so the values in the columns of these CSV files,
which contain the MCMC samples for those parameters, can be accessed as
jc_samples_pystan["A"], jc_samples_pymc3["B"], and so on. How-
ever, the sequence of samples for model parameter SDσ,1 (or sd_sigma[1] in the
Stan specification file) is either jc_samples_pystan["sd_sigma[0]"] or
jc_samples_pymc3["sd_sigma__0"], with 0-based indexing being used.

The Python code for calculating the prior PDFs is as follows:

import numpy as np

import bayes_stress_strain_utils as bssu

from scipy.stats import norm, beta

JC_priors = bssu.read_from_json_file(

os.path.join(os.pardir, "Other_data", "JC_priors.json")

)

81

prior_curves = {}

for pystan_param in jc_samples_pystan.columns:

if pystan_param == "n":

prior_x = np.linspace(0.0, 1.0, 100)

prior_curves[pystan_param] = {

"x": prior_x,

"y": beta.pdf(prior_x,

JC_priors["n_alpha"], JC_priors["n_beta"])

}

elif pystan_param != "lp__":

if pystan_param == "sd_sigma[0]":

guess_mean = JC_priors["sd_sigma_guess_mean"][0]

guess_sd = JC_priors["sd_sigma_guess_sd"][0]

pymc3_param = "sd_sigma__0"

elif pystan_param == "sd_sigma[1]":

guess_mean = JC_priors["sd_sigma_guess_mean"][1]

guess_sd = JC_priors["sd_sigma_guess_sd"][1]

pymc3_param = "sd_sigma__1"

else:

guess_mean = JC_priors["{}_guess_mean".format(pystan_param)]

guess_sd = JC_priors["{}_guess_sd".format(pystan_param)]

pymc3_param = pystan_param

prior_x_min = min([guess_mean - 3*guess_sd,

min(jc_samples_pystan[pystan_param]),

min(jc_samples_pymc3[pymc3_param])])

prior_x_max = max([guess_mean + 3*guess_sd,

max(jc_samples_pystan[pystan_param]),

max(jc_samples_pymc3[pymc3_param])])

prior_x = np.linspace(prior_x_min, prior_x_max, 100)

prior_curves[pystan_param] = {

"x": prior_x,

"y": norm.pdf(prior_x, guess_mean, guess_sd)

}

The pdf method of beta calculates the probability density for a beta distribution.
Its first argument is an array of values for which the probability density is calculated,
and the next two arguments are the α and β parameters of the distribution. The pdf
method of norm is similar, except it calculates the probability density for a normal
distribution, and its second and third arguments are the mean and standard deviation
of the distribution. The dictionary prior_curves is used to store the x- and y-
coordinates of points along the probability density curve for each parameter.

The following code plots the histograms for the marginal posterior PDFs of the
Johnson-Cook model parameters and nuisance parameters SDσ,1 and SDσ,2, along

82

with their corresponding priors, after setting up the labels for the x-axes. In this
code, the argument density = True is passed to the hist function so that
the counts in the histogram bins are normalized such that the area under the his-
togram is 1. (A normalized histogram is more readily compared with a PDF, since
the area under the whole PDF curve is also 1.) The argument bins = "auto"

is passed to hist so that the number of bins in the histogram is determined from
the samples, using an algorithm described by the NumPy developers.44 Also, since
the histograms of samples from PyStan and PyMC3 are to be overlapped, they are
plotted not as bar charts, but rather with lines that show the outlines of the bars, by
passing the argument histtype = "step" to the function hist. The resulting
plots are shown in Fig. 12.

import matplotlib.pyplot as plt

Setting default values for x-axis labels

x_labels = {pystan_param: pystan_param for

pystan_param in jc_samples_pystan.columns}

Modifying x-axis labels

for param in ["A", "B"]:

x_labels[param] += " (MPa)"

x_labels["sd_sigma[0]"] = "$SD_{\\sigma,1}$ (MPa)"

x_labels["sd_sigma[1]"] = "$SD_{\\sigma,2}$ (MPa)"

Plotting histograms with their associated priors

for pystan_param in jc_samples_pystan.columns:

if pystan_param != "lp__":

prior_x = prior_curves[pystan_param]["x"]

prior_y = prior_curves[pystan_param]["y"]

if pystan_param == "sd_sigma[0]":

pymc3_param = "sd_sigma__0"

elif pystan_param == "sd_sigma[1]":

pymc3_param = "sd_sigma__1"

else:

pymc3_param = pystan_param

plt.figure(figsize = (3,3.5))

plt.hist(jc_samples_pystan[pystan_param],

density = True,

histtype = "step", linestyle = "dashed",

bins = "auto",

label = "PyStan")

plt.hist(jc_samples_pymc3[pymc3_param],

density = True,

83

0 500 1000 1500 2000
A (MPa)

0

1

2

3

4

5

6

7

8

Pr
ob

ab
ilit

y
de

ns
ity

×10 3

Prior
PyStan
PyMC3

0 1000 2000
B (MPa)

0.000

0.002

0.004

0.006

0.008

Pr
ob

ab
ilit

y
de

ns
ity

Prior
PyStan
PyMC3

(a) (b)

0.00 0.25 0.50 0.75 1.00
n

0

10

20

30

40

50

60

70

80

Pr
ob

ab
ilit

y
de

ns
ity

Prior
PyStan
PyMC3

0 2 4
C ×10 3

0

1000

2000

3000

4000

5000

Pr
ob

ab
ilit

y
de

ns
ity

Prior
PyStan
PyMC3

0 1 2
m

0

20

40

60

80

100

120

Pr
ob

ab
ilit

y
de

ns
ity

Prior
PyStan
PyMC3

(c) (d) (e)

0 50 100 150 200
SD , 1 (MPa)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ob

ab
ilit

y
de

ns
ity

Prior
PyStan
PyMC3

0 50 100 150 200
SD , 2 (MPa)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ilit

y
de

ns
ity

Prior
PyStan
PyMC3

(f) (g)

Fig. 12 Histograms approximating the posterior marginal PDFs of Johnson-Cook model pa-
rameters and nuisance parameters SDσ,1 and SDσ,2. These are generated from samples of
PyStan and PyMC3 runs with βTQ = 0.9, farea = 0.75, and weakly informative priors. Priors
are superimposed over the histograms.

84

histtype = "step", linestyle = "dotted",

bins = "auto",

label = "PyMC3")

plt.plot(prior_x, prior_y, linestyle = "solid",

label = "Prior")

plt.xlabel(x_labels[pystan_param])

plt.ylabel("Probability density")

Use scientific notation for numbers outside the range

[1e-3, 1e4]

plt.ticklabel_format(axis='both', style='sci',

scilimits=(-3,4), useMathText = True)

plt.legend(loc = "best", labelspacing = 0.1)

plt.tight_layout()

out_pdf_name = \

"jc_prior_vs_marg_posterior_for_{}_weak_prior_bTQ09_fA075.pdf".format(

pymc3_param)

plt.savefig(os.path.join("plot_files", out_pdf_name))

plt.close("all")

Further histograms of the marginal posteriors of the Johnson-Cook model parame-
ters and nuisance parameters SDσ,1 and SDσ,2, as well their corresponding priors,
for the case of a strongly informative prior on A, are shown in Ramsey.4 Similar his-
tograms are also presented in Ramsey4 for the parameters of the Zerilli-Armstrong
(BCC) model (and associated nuisance parameters), for both the fit to all available
MIDAS data and the fit to the data used to fit the Johnson-Cook model.

7.2 Plotting Posteriors for Different Values of βTQ and farea

To crudely attempt to quantify the uncertainty due to variations in βTQ and farea,
the marginal posterior PDFs determined for the values of βTQ and farea in Table 1
are compared. First, MCMC samples associated with these values are read in as
follows. These samples are generated by PyStan and are for Johnson-Cook model
fits with weakly informative priors:

import pandas

import os.path

bTQ_fA_strs = [

("0.9", "0.75"), ("0.9", "0.55"), ("0.9", "0.95"),

("0.6", "0.55"), ("0.6", "0.95")

]

85

jc_samples = {}

for bTQ, fA in bTQ_fA_strs:

Removing the decimal points from bTQ and fA, i.e.

0.9 and 0.75 become 09 and 075

bTQ_no_decimal = bTQ.replace(".", "")

fA_no_decimal = fA.replace(".", "")

csv_file_name = \

"jc_MIDAS_pystan_samples_weak_prior_bTQ{}_fA{}.csv.gz".format(

bTQ_no_decimal, fA_no_decimal)

jc_samples[(bTQ,fA)] = pandas.read_csv(os.path.join(

"samples", csv_file_name))

Here, jc_samples is a dictionary of Pandas data frames, where each frame is
a set of MCMC samples associated with a pair of βTQ and farea values. Next,
histograms for each pair of βTQ and farea values are computed from the MCMC
samples:

import matplotlib.pyplot as plt

params = jc_samples[bTQ_fA_strs[0]].columns

Setting up x-axis labels

x_labels = {param: param for param in params}

for param in ["A", "B"]:

x_labels[param] += " (MPa)"

for i in range(2):

x_labels["sd_sigma[{}]".format(i)] = \

"$SD_{{\\sigma,{}}}$ (MPa)".format(i)

Setting up legend labels

legend_labels = {}

for bTQ, fA in bTQ_fA_strs:

legend_labels[(bTQ,fA)] = \

"$\\beta_{{TQ}}$ = {}, $f_{{area}} = {}$".format(bTQ,fA)

linestyles = ["solid", "dashed", "dashdot", "dotted"]

Plotting the actual superimposed histograms

for param in params:

if param != "lp__":

plt.figure(figsize = (3,3.5))

plt.hist(jc_samples[bTQ_fA_strs[0]][param],

density = True,

histtype = "bar",

bins = "auto",

86

label = legend_labels[bTQ_fA_strs[0]])

Adding histograms to plot

for i, bTQ_fA in enumerate(bTQ_fA_strs[1:]):

plt.hist(jc_samples[bTQ_fA][param],

density = True,

histtype = "step",

bins = "auto",

linestyle = linestyles[i],

label = legend_labels[bTQ_fA])

plt.xlabel(x_labels[param])

plt.ylabel("Probability density")

Use scientific notation for numbers outside the range

[1e-3, 1e4]

plt.ticklabel_format(axis='both', style='sci',

scilimits=(-3,4), useMathText = True)

ymin, ymax = plt.ylim()

ymax += 0.5*(ymax - ymin)

plt.ylim(ymax = ymax)

plt.legend(loc = "best", labelspacing = 0.05, fontsize = 9)

plt.tight_layout()

This turns "sd_sigma[0]" to "sd_sigma__0"

file_name_param = param.replace("[", "__").replace("]", "")

out_pdf_name = "jc_hists_for_{}_weak_prior_pystan.pdf".format(

file_name_param)

plt.savefig(os.path.join("plot_files", out_pdf_name))

plt.close("all")

Again, the argument density = True is passed to the hist function so that the
counts in the histogram bins are normalized such that the area under the histogram
is 1, and the argument bins = "auto" is passed to hist so that the number of
bins in the histogram is determined from the samples. Since these histograms are
to be overlapped, all but the ones for βTQ = 0.9 and farea = 0.75 are plotted not
as bar charts, but rather with lines that show the outlines of the bars, by passing the
argument histtype = "step" to the function hist. The resulting plots are
shown in Fig. 13.

Further histograms of the marginal posteriors of the Johnson-Cook model parame-
ters and nuisance parameters SDσ,1 and SDσ,2 for the case of a strongly informative
prior on A, are shown in Ramsey.4 Similar histograms are also presented in Ramsey4

87

400 600
A (MPa)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Pr
ob

ab
ilit

y
de

ns
ity

TQ = 0.9, farea = 0.75
TQ = 0.9, farea = 0.55
TQ = 0.9, farea = 0.95
TQ = 0.6, farea = 0.55
TQ = 0.6, farea = 0.95

1000 1200
B (MPa)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Pr
ob

ab
ilit

y
de

ns
ity

TQ = 0.9, farea = 0.75
TQ = 0.9, farea = 0.55
TQ = 0.9, farea = 0.95
TQ = 0.6, farea = 0.55
TQ = 0.6, farea = 0.95

(a) (b)

0.06 0.08 0.10
n

0

20

40

60

80

100

120

Pr
ob

ab
ilit

y
de

ns
ity

TQ = 0.9, farea = 0.75
TQ = 0.9, farea = 0.55
TQ = 0.9, farea = 0.95
TQ = 0.6, farea = 0.55
TQ = 0.6, farea = 0.95

4.00 4.25 4.50 4.75
C ×10 3

0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ilit

y
de

ns
ity

×104

TQ = 0.9, farea = 0.75
TQ = 0.9, farea = 0.55
TQ = 0.9, farea = 0.95
TQ = 0.6, farea = 0.55
TQ = 0.6, farea = 0.95

1.03 1.04 1.05 1.06
m

0

25

50

75

100

125

150

175

200

Pr
ob

ab
ilit

y
de

ns
ity

TQ = 0.9, farea = 0.75
TQ = 0.9, farea = 0.55
TQ = 0.9, farea = 0.95
TQ = 0.6, farea = 0.55
TQ = 0.6, farea = 0.95

(c) (d) (e)

8 9 10 11
SD , 0 (MPa)

0.0

0.5

1.0

1.5

2.0

Pr
ob

ab
ilit

y
de

ns
ity

TQ = 0.9, farea = 0.75
TQ = 0.9, farea = 0.55
TQ = 0.9, farea = 0.95
TQ = 0.6, farea = 0.55
TQ = 0.6, farea = 0.95

30 32 34
SD , 1 (MPa)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
de

ns
ity

TQ = 0.9, farea = 0.75
TQ = 0.9, farea = 0.55
TQ = 0.9, farea = 0.95
TQ = 0.6, farea = 0.55
TQ = 0.6, farea = 0.95

(f) (g)

Fig. 13 Histograms approximating the posterior marginal PDFs of Johnson-Cook model pa-
rameters and nuisance parameters SDσ,1 and SDσ,2. These are generated from samples of
PyStan MCMC runs with the values of βTQ and farea in Table 1, and weakly informative
priors.

88

for the parameters of the Zerilli-Armstrong (BCC) model (and associated nuisance
parameters), for both the fit to all available MIDAS data and the fit to the data used
to fit the Johnson-Cook model.

7.3 Plotting PPDs and PFPs with Experimental Data
To generate PPDs and PFPs for the Johnson-Cook model, one needs the sam-
ples from an MCMC fit of the model. Accordingly, samples from the Johnson-
Cook fits with weakly-informative priors are to be loaded, as they have been in
Section 7.2, into a dictionary of data frames named jc_samples, where each
frame is associated with a tuple such as ("0.9", "0.75"), which represents
a pair of βTQ and farea values. One also needs the data and model used with the
MCMC run that generated the samples. The data used to fit the Johnson-Cook
model have been stored in pickle files (as discussed in Section 6.2), and these
are loaded again, with bTQ_fA_strs defined as in Section 7.2. The stress-strain
data in Main_data_for_JC_pymc3.pkl.gz is in a more convenient format
than that in Main_data_for_JC_pystan.pkl.gz, since the strains for each
stress-strain curve are in their own separate arrays rather than concatenated together
in one long array, so it is used even with the MCMC samples from PyStan:

import bayes_stress_strain_utils as bssu

main_data = bssu.read_from_pickle_file(

os.path.join("pkl_data_files",

"Main_data_for_JC_pymc3.pkl.gz"))

temp_data = {}

for bTQ, fA in bTQ_fA_strs:

temp_data[(bTQ, fA)] = bssu.read_from_pickle_file(

os.path.join("pkl_data_files",

"T_beta{}_farea{}_JC.pkl.gz".format(bTQ,

fA)))

So that the procedure for generating PPDs and PFPs is nearly identical for
both the Johnson-Cook and Zerilli-Armstrong models, a wrapper function named
sigma_model_func is used, rather than directly using the jc and za_bcc

functions (from the modules jc and za_bcc, respectively). For the Johnson-Cook
model, this wrapper function is the same as the one used in Section 5.2. Since the
MCMC samples differ for different values of βTQ and farea, different values of the
theta_model used in sigma_model_func are needed for those values, so a
dictionary of the needed values is created. A dictionary of samples of SDσ,1 and

89

SDσ,2 is generated as well for those values of βTQ and farea:

theta_model_dict = {}

sd_sigma_dict = {}

for bTQ_fA in bTQ_fA_strs:

curr_samples = jc_samples[bTQ_fA]

theta_model_dict[bTQ_fA] = {

"A": curr_samples["A"],

"B": curr_samples["B"],

"n": curr_samples["n"],

"C": curr_samples["C"],

"m": curr_samples["m"],

"epsilon_p_dot_0": main_data["epsilon_p_dot_0"],

"T_room": main_data["T_room"],

"T_melt": main_data["T_melt"]

}

sd_sigma_dict[bTQ_fA] = [

curr_samples["sd_sigma[0]"],

curr_samples["sd_sigma[1]"]

]

At this point, one may proceed to generate samples of PPDs and PFPs with a loop
that partly resembles the main loop in the model block of Stan specification file for
the Johnson-Cook model, jc.stan.10 However, rather than store the samples from
all the PPDs and PFPs, which could use a significant amount of memory since there
are 4000 samples for each of the roughly 2000 data points that make up the stress-
strain curve data, select statistics from the PPDs and PFPs are kept instead. For
each PPD, these statistics are the mean and the bounds of the 95% highest density
interval (HDI), which is the interval such that 1) the probability that a value is in
this interval is 95% and 2) the values within this interval all have higher probability
densities than values outside of it.12 These statistics are computed and stored in the
dictionaries of arrays ppd_mean, ppd_hdi_min, and ppd_hdi_max, which
are defined in the following Python code. For each PFP, only the bounds of the 95%
HDI are computed. These bounds are in the dictionaries of arrays pfp_hdi_min
and pfp_hdi_max, which are also defined in the following Python code:

ppd_mean = {}

ppd_hdi_min = {}

ppd_hdi_max = {}

pfp_hdi_min = {}

pfp_hdi_max = {}

90

epsilon_p = main_data["epsilon_p"]

epsilon_p_dot = main_data["epsilon_p_dot"]

num_curves = len(epsilon_p_dot)

for bTQ_fA in bTQ_fA_strs:

T = temp_data[bTQ_fA]

theta_model = theta_model_dict[bTQ_fA]

sd_sigma = sd_sigma_dict[bTQ_fA]

ppd_mean[bTQ_fA] = []

ppd_hdi_min[bTQ_fA] = []

ppd_hdi_max[bTQ_fA] = []

pfp_hdi_min[bTQ_fA] = []

pfp_hdi_max[bTQ_fA] = []

for curve_ind in range(num_curves):

if epsilon_p_dot[curve_ind] <= 1.0:

curr_sd_sigma = sd_sigma[0]

else:

curr_sd_sigma = sd_sigma[1]

pts_per_curve = len(epsilon_p[curve_ind])

curr_ppd_mean = np.empty(pts_per_curve)

curr_ppd_hdi_min = np.empty(pts_per_curve)

curr_ppd_hdi_max = np.empty(pts_per_curve)

curr_pfp_hdi_min = np.empty(pts_per_curve)

curr_pfp_hdi_max = np.empty(pts_per_curve)

for i in range(pts_per_curve):

curr_pfp = \

sigma_model_func(epsilon_p[curve_ind][i],

epsilon_p_dot[curve_ind],

T[curve_ind][i],

theta_model)

curr_ppd = curr_pfp + \

np.random.randn(len(curr_pfp))*curr_sd_sigma

curr_ppd_mean[i] = np.mean(curr_ppd)

By default, the hdi function computes the bounds

of the 95% HDI.

curr_ppd_hdi_range = bssu.hdi(curr_ppd)

curr_ppd_hdi_min[i] = curr_ppd_hdi_range[0]

curr_ppd_hdi_max[i] = curr_ppd_hdi_range[1]

curr_pfp_hdi_range = bssu.hdi(curr_pfp)

curr_pfp_hdi_min[i] = curr_pfp_hdi_range[0]

curr_pfp_hdi_max[i] = curr_pfp_hdi_range[1]

91

ppd_mean[bTQ_fA].append(curr_ppd_mean)

ppd_hdi_min[bTQ_fA].append(curr_ppd_hdi_min)

ppd_hdi_max[bTQ_fA].append(curr_ppd_hdi_max)

pfp_hdi_min[bTQ_fA].append(curr_pfp_hdi_min)

pfp_hdi_max[bTQ_fA].append(curr_pfp_hdi_max)

The variable curr_ppd is a 1-D array of samples of the PPD associated
with the strain and temperature values epsilon_p[curve_ind][i] and
T[curve_ind][i]. Each element of curr_ppd corresponds to a value of
σ

ic,pred
j (ε ic

j , Ûε
ic
p ,T

ic
j) from Eq. 6, where ic and j are fixed for all of the elements

of curr_ppd. Element curr_ppd[q] is determined from the qth MCMC
sample of the model parameters. Each sample curr_ppd[q] of the PPD is
drawn from a normal distribution, hence the presence of the function randn,
which is used in the same way as it is used in Sections 5.2 and 5.5. Element
curr_pfp[q] is, of course, a sample of the PFP determined from the qth MCMC
sample of the model parameters. Given the previous code, ppd_mean[("0.9",
"0.75")][i][j] is an estimate of the mean of the PPD associated with
the strain rate epsilon_p_dot[i] and the strain and temperature values
epsilon_p[i][j] and T[i][j], provided that βTQ = 0.9 and farea =

0.75, while the expressions ppd_hdi_min[("0.9", "0.75")][i][j],
and ppd_hdi_max[("0.9", "0.75")][i] are estimates of the bounds of
the 95% HDI of that PPD. These bounds are calculated via the function hdi from
the bayes_stress_strain_utils module, the source of which is in Ap-
pendix C.

The code for plotting the means and 95% HDI bounds along with the experimental
data is as follows:

import matplotlib.pyplot as plt

T_init_str = ["298", "298", "298", "298", "473", "673", "873"]

sigma = main_data["sigma"]

Setting up line types and colors

line_types_mean_and_hdi = ["solid", "dashed", "dashdot", "dotted"]

For beta_TQ = 0.9, f_area = 0.75

color_hdi_only = "skyblue"

color_mean_only = "purple"

92

For other beta_TQ and f_area pairs

colors_mean_and_hdi = ["red", "brown", "green", "blue"]

For experimental data

color_data = "black"

Setting up legend labels

bTQ_fA_legend_strs = [

"$\\beta_{{TQ}}$ = {}, $f_{{area}}$ = {}".format(bTQ,fA)

for bTQ, fA in bTQ_fA_strs

]

legend_label_first_hdi = "95% HDI, {}".format(bTQ_fA_legend_strs[0])

legend_label_first_mean = "Mean, {}".format(bTQ_fA_legend_strs[0])

legend_labels_rest_of_bTQ_fA = [

"Mean & 95% HDI, {}".format(bTQ_fA_lgd_str)

for bTQ_fA_lgd_str in bTQ_fA_legend_strs[1:]

]

legend_label_data = "Exp. Data"

No extra space needed for the legend for low strain rates, only

for plots with high-strain-rate data

space_for_legend = [0.0]*2 + [0.5]*5

Plotting HDI of PPDs

for curve_ind in range(num_curves):

plt.figure(figsize = (4.375,4.25))

curr_epsilon_p = epsilon_p[curve_ind]

curr_sigma = sigma[curve_ind]

curr_hdi_min = {}

curr_hdi_max = {}

for bTQ_fA in bTQ_fA_strs:

curr_hdi_min[bTQ_fA] = ppd_hdi_min[bTQ_fA][curve_ind]

curr_hdi_max[bTQ_fA] = ppd_hdi_max[bTQ_fA][curve_ind]

Plot 95% HDI for beta_TQ = 0.9, f_area = 0.75 as shaded region

hdi_shade = plt.fill_between(curr_epsilon_p,

curr_hdi_min[bTQ_fA_strs[0]],

curr_hdi_max[bTQ_fA_strs[0]],

color = color_hdi_only)

Plot mean for beta_TQ = 0.9, f_area = 0.75 as lines

mean_line = plt.plot(curr_epsilon_p,

ppd_mean[bTQ_fA_strs[0]][curve_ind],

linestyle = "solid",

marker = "x", markersize = 5,

markevery = int(round(len(curr_epsilon_p)/25)),

color = color_mean_only)[0]

93

Plot mean and bounds of 95% HDI as lines

hdi_lines = []

for i, bTQ_fA in enumerate(bTQ_fA_strs[1:]):

hdi_line = plt.plot(curr_epsilon_p, curr_hdi_min[bTQ_fA],

linestyle = line_types_mean_and_hdi[i],

color = colors_mean_and_hdi[i])[0]

hdi_lines.append(hdi_line)

plt.plot(curr_epsilon_p, ppd_mean[bTQ_fA][curve_ind],

linestyle = line_types_mean_and_hdi[i],

color = colors_mean_and_hdi[i])

plt.plot(curr_epsilon_p, curr_hdi_max[bTQ_fA],

linestyle = line_types_mean_and_hdi[i],

color = colors_mean_and_hdi[i])

Plot experimental data

data_pts = plt.plot(curr_epsilon_p, curr_sigma,

linestyle = "None",

marker = ".", markersize = 2,

color = color_data)[0]

plt.title("{} K, {}/s".format(T_init_str[curve_ind],

epsilon_p_dot[curve_ind]))

plt.xlabel("$\\epsilon_p$")

plt.ylabel("$\\sigma$ (MPa)")

plt.legend([hdi_shade] + [mean_line] + hdi_lines + [data_pts],

[legend_label_first_hdi] + \

[legend_label_first_mean] + \

legend_labels_rest_of_bTQ_fA + \

[legend_label_data],

loc = "lower right",

labelspacing = 0.05,

fontsize = 9)

ymin, ymax = plt.ylim()

ymin -= space_for_legend[curve_ind]*(ymax - ymin)

plt.ylim(ymin = ymin)

plt.tight_layout()

out_pdf_name = \

"jc_hdi_edot{}_T{}_weak_prior_pystan.pdf".format(

epsilon_p_dot[curve_ind],

T_init_str[curve_ind])

plt.savefig(os.path.join("plot_files", out_pdf_name))

The resulting plots are shown in Figs. 14 and 15. Plots showing the 95% HDI
bounds of the PFPs are shown in Figs. 16 and 17. The code to generate these plots

94

is very similar to the code that plots the statistics of the PPDs, so it is not shown.

Estimates for the mean and bounds of the 95% HDIs of the PPDs and PFPs have
also been done for the Johnson-Cook model with a strong prior on A and for the
Zerilli-Armstrong (BCC) model fitted to all available MIDAS data and the fit to the
data used to fit the Johnson-Cook model. These are shown in Ramsey.4

7.4 Determining Correlation Matrices
In addition to statistics for the marginal PDFs of the model parameters, one may also
need information on how the PDFs of these parameters are correlated, especially
if one intends to use these PDFs as input to uncertainty propagation analyses. For
example, when the software Dakota is used for such analyses, it takes as input either
a correlation or rank correlation matrix, depending on the method of uncertainty
propagation used.45 Both of these are fairly simple to calculate for Pandas data
frames. For the Johnson-Cook model fit by PyStan with weakly informative priors,
βTQ = 0.9, and farea = 0.75, the correlation matrix may be evaluated as follows:

import pandas

import os.path

jc_samples = pandas.read_csv(

os.path.join("samples",

"jc_MIDAS_pystan_samples_weak_prior_bTQ09_fA075.csv.gz"))

corr_mat_jc = jc_samples.corr()

print(corr_mat_jc)

The method corr calculates the Pearson correlation coefficient for each pair of
columns in the data frame jc_samples and returns a square matrix where each
element is the correlation coefficient for each column pair. Since each column in
jc_samples (except for the column for lp__) is a sequence of MCMC sam-
ples for each model parameter, each entry in the matrix represents the correlation
between the random distributions of a pair of parameters.

The calculation of the Spearman rank correlation matrix is similarly trivial:

rcorr_mat_jc = jc_samples.corr(method = "spearman")

print(rcorr_mat_jc)

Again, the function corr is used. However, when the argument “method =

"spearman"” is used, for each element of a column in jc_samples, it as-

95

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
p

1000

1100

1200

1300

1400

 (M
Pa

)

298 K, 0.001/s

95% HDI, TQ = 0.9, farea = 0.75
Mean, TQ = 0.9, farea = 0.75
Mean & 95% HDI, TQ = 0.9, farea = 0.55
Mean & 95% HDI, TQ = 0.9, farea = 0.95
Mean & 95% HDI, TQ = 0.6, farea = 0.55
Mean & 95% HDI, TQ = 0.6, farea = 0.95
Exp. Data

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
p

1050

1100

1150

1200

1250

1300

1350

1400

1450

 (M
Pa

)

298 K, 0.1/s

95% HDI, TQ = 0.9, farea = 0.75
Mean, TQ = 0.9, farea = 0.75
Mean & 95% HDI, TQ = 0.9, farea = 0.55
Mean & 95% HDI, TQ = 0.9, farea = 0.95
Mean & 95% HDI, TQ = 0.6, farea = 0.55
Mean & 95% HDI, TQ = 0.6, farea = 0.95
Exp. Data

(a) (b)

0.025 0.050 0.075 0.100 0.125 0.150 0.175
p

1200

1250

1300

1350

1400

1450

1500

 (M
Pa

)

298 K, 3500.0/s

95% HDI, TQ = 0.9, farea = 0.75
Mean, TQ = 0.9, farea = 0.75
Mean & 95% HDI, TQ = 0.9, farea = 0.55
Mean & 95% HDI, TQ = 0.9, farea = 0.95
Mean & 95% HDI, TQ = 0.6, farea = 0.55
Mean & 95% HDI, TQ = 0.6, farea = 0.95
Exp. Data

0.050 0.075 0.100 0.125 0.150 0.175
p

1200

1250

1300

1350

1400

1450

1500

 (M
Pa

)

298 K, 7000.0/s

95% HDI, TQ = 0.9, farea = 0.75
Mean, TQ = 0.9, farea = 0.75
Mean & 95% HDI, TQ = 0.9, farea = 0.55
Mean & 95% HDI, TQ = 0.9, farea = 0.95
Mean & 95% HDI, TQ = 0.6, farea = 0.55
Mean & 95% HDI, TQ = 0.6, farea = 0.95
Exp. Data

(c) (d)

Fig. 14 Stress-strain data for initial sample temperatures of 298 K, along with estimates of
the mean and the 95% HDI for PPDs generated from samples of PyStan MCMC runs for
the Johnson-Cook model with weakly informative priors. The 95% HDI for βTQ = 0.9 and
farea = 0.75 is plotted as a shaded region between the minimum and maximum of the HDI.

96

0.025 0.050 0.075 0.100 0.125 0.150 0.175
p

1050

1100

1150

1200

1250

1300

1350

 (M
Pa

)

473 K, 3000.0/s

95% HDI, TQ = 0.9, farea = 0.75
Mean, TQ = 0.9, farea = 0.75
Mean & 95% HDI, TQ = 0.9, farea = 0.55
Mean & 95% HDI, TQ = 0.9, farea = 0.95
Mean & 95% HDI, TQ = 0.6, farea = 0.55
Mean & 95% HDI, TQ = 0.6, farea = 0.95
Exp. Data

0.025 0.050 0.075 0.100 0.125 0.150 0.175
p

850

900

950

1000

1050

1100

1150

 (M
Pa

)

673 K, 3000.0/s

95% HDI, TQ = 0.9, farea = 0.75
Mean, TQ = 0.9, farea = 0.75
Mean & 95% HDI, TQ = 0.9, farea = 0.55
Mean & 95% HDI, TQ = 0.9, farea = 0.95
Mean & 95% HDI, TQ = 0.6, farea = 0.55
Mean & 95% HDI, TQ = 0.6, farea = 0.95
Exp. Data

(a) (b)

0.025 0.050 0.075 0.100 0.125 0.150 0.175
p

600

650

700

750

800

850

900

950

 (M
Pa

)

873 K, 3500.0/s

95% HDI, TQ = 0.9, farea = 0.75
Mean, TQ = 0.9, farea = 0.75
Mean & 95% HDI, TQ = 0.9, farea = 0.55
Mean & 95% HDI, TQ = 0.9, farea = 0.95
Mean & 95% HDI, TQ = 0.6, farea = 0.55
Mean & 95% HDI, TQ = 0.6, farea = 0.95
Exp. Data

(c)

Fig. 15 Stress-strain data for high initial sample temperatures along with estimates of the mean
and the 95% HDI for PPDs generated from samples of PyStan MCMC runs for the Johnson-
Cook model with weakly informative priors. The 95% HDI for βTQ = 0.9 and farea = 0.75 is
plotted as a shaded region between the minimum and maximum of the HDI.

97

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
p

1000

1100

1200

1300

1400

 (M
Pa

)

298 K, 0.001/s

95% HDI, TQ = 0.9, farea = 0.75
95% HDI, TQ = 0.9, farea = 0.55
95% HDI, TQ = 0.9, farea = 0.95
95% HDI, TQ = 0.6, farea = 0.55
95% HDI, TQ = 0.6, farea = 0.95
Exp. Data

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
p

1100

1150

1200

1250

1300

1350

1400

 (M
Pa

)

298 K, 0.1/s

95% HDI, TQ = 0.9, farea = 0.75
95% HDI, TQ = 0.9, farea = 0.55
95% HDI, TQ = 0.9, farea = 0.95
95% HDI, TQ = 0.6, farea = 0.55
95% HDI, TQ = 0.6, farea = 0.95
Exp. Data

(a) (b)

0.025 0.050 0.075 0.100 0.125 0.150 0.175
p

1200

1250

1300

1350

1400

1450

 (M
Pa

)

298 K, 3500.0/s

95% HDI, TQ = 0.9, farea = 0.75
95% HDI, TQ = 0.9, farea = 0.55
95% HDI, TQ = 0.9, farea = 0.95
95% HDI, TQ = 0.6, farea = 0.55
95% HDI, TQ = 0.6, farea = 0.95
Exp. Data

0.050 0.075 0.100 0.125 0.150 0.175
p

1300

1325

1350

1375

1400

1425

1450

1475

1500

 (M
Pa

)

298 K, 7000.0/s

95% HDI, TQ = 0.9, farea = 0.75
95% HDI, TQ = 0.9, farea = 0.55
95% HDI, TQ = 0.9, farea = 0.95
95% HDI, TQ = 0.6, farea = 0.55
95% HDI, TQ = 0.6, farea = 0.95
Exp. Data

(c) (d)

Fig. 16 Stress-strain data for initial sample temperatures of 298 K, along with estimates of the
95% HDI for PFPs of model predictions generated from samples of PyStan MCMC runs for
the Johnson-Cook model with weakly informative priors. The 95% HDI for βTQ = 0.9 and
farea = 0.75 is plotted as a shaded region between the minimum and maximum of the HDI.

98

0.025 0.050 0.075 0.100 0.125 0.150 0.175
p

1125

1150

1175

1200

1225

1250

1275

1300

 (M
Pa

)

473 K, 3000.0/s

95% HDI, TQ = 0.9, farea = 0.75
95% HDI, TQ = 0.9, farea = 0.55
95% HDI, TQ = 0.9, farea = 0.95
95% HDI, TQ = 0.6, farea = 0.55
95% HDI, TQ = 0.6, farea = 0.95
Exp. Data

0.025 0.050 0.075 0.100 0.125 0.150 0.175
p

950

1000

1050

1100

1150

 (M
Pa

)

673 K, 3000.0/s

95% HDI, TQ = 0.9, farea = 0.75
95% HDI, TQ = 0.9, farea = 0.55
95% HDI, TQ = 0.9, farea = 0.95
95% HDI, TQ = 0.6, farea = 0.55
95% HDI, TQ = 0.6, farea = 0.95
Exp. Data

(a) (b)

0.025 0.050 0.075 0.100 0.125 0.150 0.175
p

650

700

750

800

850

900

 (M
Pa

)

873 K, 3500.0/s

95% HDI, TQ = 0.9, farea = 0.75
95% HDI, TQ = 0.9, farea = 0.55
95% HDI, TQ = 0.9, farea = 0.95
95% HDI, TQ = 0.6, farea = 0.55
95% HDI, TQ = 0.6, farea = 0.95
Exp. Data

(c)

Fig. 17 Stress-strain data for high initial sample temperatures along with estimates of the 95%
HDI for PFPs generated from samples of PyStan MCMC runs for the Johnson-Cook model
with weakly informative priors. The 95% HDI for βTQ = 0.9 and farea = 0.75 is plotted as a
shaded region between the minimum and maximum of the HDI.

99

signs a rank, such that the lowest rank, 1, is assigned to the smallest number in the
column, the rank of 2 to the next smallest number in the column, and so on. Each
column, then, is associated with a sequence of integer ranks. When the Spearman
rank correlation coefficient is applied to a pair of columns, it replaces each column
with its corresponding sequence of ranks, and then applies the Pearson correlation
coefficient to the sequences of ranks.46,47

Both the correlation matrix corr_mat_jc and the rank correlation matrix
rcorr_mat_jc may be saved to CSV files using their to_csv methods.

8. Conclusions
This report describes a workflow, based on PyStan, PyMC3, SciPy, and the Python
scripting language, that has been used to obtain information on strength model pa-
rameters in RHA that can be used in uncertainty propagation analyses. This work-
flow covers several issues:

• testing Bayesian models, which can uncover potential problems such as the
need to provide explicit initial values in some cases (e.g., the Zerilli-Armstrong
[BCC] model);

• approximating the temperature rise in the samples being deformed in stress-
strain experiments, noting how some of the assumptions in the approxima-
tions may affect the estimated marginal PDFs of the model parameters;

• keeping track of warning messages and other diagnostics from Bayesian soft-
ware tools, noting what to do to address them;

• estimating bounds on model parameters via an approximate IPM approach;

• generating samples of a PPD and plotting statistics of them in a way that can
be used to evaluate the fit of a strength model to experimental data; and

• accounting for correlations in the random distributions of model parameters,
especially in a form that can be used as input for software tools that do un-
certainty propagation, such as Dakota.45

It is hoped that this workflow may serve as a source of example code for other ARL
researchers who wish to obtain results that facilitate uncertainty quantification.

100

9. References

1. Python Software Foundation. Welcome to python.org. c2018 [accessed 2018
May]. https://www.python.org.

2. PyStan developers. PyStan: The Python interface to Stan. c2018 [ac-
cessed 2018 May]. http://pystan.readthedocs.io.

3. PyMC Development Team. PyMC3 documentation. c2018 [accessed 2018
Mar]. http://docs.pymc.io/.

4. Ramsey JJ. Quantifying uncertainties in parameterizations of strength mod-
els of rolled homogeneous armor: part 1, overview. Aberdeen Proving Ground
(MD): Army Research Laboratory (US); 2019 Sep. Report No.: ARL-TR-8826.

5. Benck RF. Quasi-static tensile stress strain curves: II, rolled homogeneous ar-
mor. Aberdeen Proving Ground (MD): Ballistic Research Laboratories (US);
1976 Nov. Report No.: 2703.

6. Rittel D, Zhang LH, Osovski S. The dependence of the Taylor-Quinney coef-
ficient on the dynamic loading mode. Journal of the Mechanics and Physics of
Solids. 2017;107:96–114.

7. Johnson GR, Cook WH. A constitutive model and data for metals subjected to
large strains, high strain rates and high temperatures. In: Seventh international
symposium on ballistics: Proceedings; 1983 Apr; The Hague (Netherlands).
American Defense Preparedness Association; 1983. p. 541–547.

8. Zerilli FJ, Armstrong RW. Dislocation-mechanics-based constitutive re-
lations for material dynamics calculations. Journal of Applied Physics.
1987;61(5):1816–1825.

9. Gray GT III, Chen SR, Wright W, Lopez MF. Constitutive equations for an-
nealed metals under compression at high strain rates and high temperatures.
Los Alamos (NM): Los Alamos National Laboratory; 1994 Jan. Report No.:
LA-12669-MS.

10. Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB. Bayesian
data analysis. 3rd ed. Boca Raton (FL): CRC Press; 2013.

101

https://www.python.org
http://pystan.readthedocs.io
http://docs.pymc.io/

11. Chowdhary K, Najm HN. Data free inference with processed data products.
Statistics and Computing. 2016;26(1):149–169.

12. Kruschke JK. Doing Bayesian data analysis: a tutorial with R, JAGS, and Stan.
2nd ed. Waltham (MA): Academic Press; 2015.

13. Betancourt M. A conceptual introduction to Hamiltonian Monte Carlo. c2017
[accessed 2018 Mar]. https://arxiv.org/abs/1701.02434.

14. Hoffman MD, Gelman A. The no-U-turn sampler: adaptively setting path
lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research.
2014;15(1).

15. Crespo LG, Kenny SP, Giesy DP. Calibration of predictor models using multi-
ple validation experiments. In: 17th AIAA Non-Deterministic Approaches Con-
ference; (AIAA SciTech Forum; no. AIAA 2015-0659) American Institute of
Aeronautics and Astronautics; 2015.

16. Crespo LG, Kenny SP, Giesy DP. Interval predictor models with a linear pa-
rameter dependency. Journal of Verification, Validation and Uncertainty Quan-
tification. 2016;1(2):021007.

17. PyStan developers. PyStan: detailed installation instructions. c2018 [ac-
cessed 2018 Mar]. http://pystan.readthedocs.io/en/latest/
installation_beginner.html.

18. Salvatier J, Wiecki TV, Fonnesbeck C. Getting started with PyMC3. c2018 [ac-
cessed 2018 Mar]. http://docs.pymc.io/notebooks/getting_

started.

19. Anaconda, Inc. Anaconda. c2018 [accessed 2018 Mar]. https://

anaconda.com.

20. Goodrich B. R session aborted. c2019 May [accessed 2019 Sep]. https:
//discourse.mc-stan.org/t/r-session-aborted/6655/12.

21. Anaconda, Inc. Anaconda installation. c2018 [accessed 2018 Mar]. https:
//docs.anaconda.com/anaconda/install/.

102

https://arxiv.org/abs/1701.02434
http://pystan.readthedocs.io/en/latest/installation_beginner.html
http://pystan.readthedocs.io/en/latest/installation_beginner.html
http://docs.pymc.io/notebooks/getting_started
http://docs.pymc.io/notebooks/getting_started
https://anaconda.com
https://anaconda.com
https://discourse.mc-stan.org/t/r-session-aborted/6655/12
https://discourse.mc-stan.org/t/r-session-aborted/6655/12
https://docs.anaconda.com/anaconda/install/
https://docs.anaconda.com/anaconda/install/

22. Anaconda, Inc. Getting started with Navigator. c2018 [accessed 2018
Mar]. https://docs.anaconda.com/anaconda/navigator/

getting-started.

23. oorc06. Can’t pickle cvm objects #3068. c2018 [accessed 2018Aug]. https:
//github.com/pymc-devs/pymc3/issues/3068.

24. Project Jupyter. Project Jupyter. c2018 [accessed 2018 Mar]. http://
jupyter.org/.

25. Spyder developers. The scientific Python development environment. c2018
[accessed 2018 Mar]. https://spyder-ide.github.io/.

26. Stan Development Team. Emacs support for Stan. c2017 [accessed 2018 Mar].
https://github.com/stan-dev/stan-mode.

27. Lerch M. mc-stan.vim. c2015 [accessed 2018 Mar]. https://github.
com/mdlerch/mc-stan.vim.

28. Ramsey JJ. Quantifying uncertainties in parameterizations of strength models
of rolled homogeneous armor: part 2, R-based workflow. Aberdeen Proving
Ground (MD): Army Research Laboratory (US); 2019 Sep. Report No.: ARL-
TR-8827.

29. Free Software Foundation. GNU gzip. c2018 [accessed 2018 May]. https:
//www.gnu.org/software/gzip/.

30. Ramsey JJ. split_potential_scale_reduction can yield spurious nan values
#441. c2018 [accessed 2018 Mar]. https://github.com/stan-dev/
pystan/issues/441.

31. Ramsey JJ. Issue #427: Integrate Betancourt’s stan_utility functions into Py-
Stan #433. c2018 [accessed 2018Mar]. https://github.com/stan-
dev/pystan/pull/433.

32. PyStan developers. PyStan: the Python interface to Stan, API. c2018 [ac-
cessed 2018 Mar]. http://pystan.readthedocs.io/en/latest/
api.html.

103

https://docs.anaconda.com/anaconda/navigator/getting-started
https://docs.anaconda.com/anaconda/navigator/getting-started
https://github.com/pymc-devs/pymc3/issues/3068
https://github.com/pymc-devs/pymc3/issues/3068
http://jupyter.org/
http://jupyter.org/
https://spyder-ide.github.io/
https://github.com/stan-dev/stan-mode
https://github.com/mdlerch/mc-stan.vim
https://github.com/mdlerch/mc-stan.vim
https://www.gnu.org/software/gzip/
https://www.gnu.org/software/gzip/
https://github.com/stan-dev/pystan/issues/441
https://github.com/stan-dev/pystan/issues/441
https://github.com/stan-dev/pystan/pull/433
https://github.com/stan-dev/pystan/pull/433
http://pystan.readthedocs.io/en/latest/api.html
http://pystan.readthedocs.io/en/latest/api.html

33. Betancourt M. Robust PyStan workflow. c2017 [accessed 2018
Mar]. http://mc-stan.org/users/documentation/case-

studies.html#robust-pystan-workflow.

34. Stan Development Team. Brief guide to stan’s warnings. c2018 [accessed 2018
May]. http://mc-stan.org/misc/warnings.html.

35. Hubert W. Meyer J, Kleponis DS. An analysis of parameters for the Johnson-
Cook strength model for 2-in-thick rolled homogeneous armor. Aberdeen Prov-
ing Ground (MD): Army Research Laboratory (US); 2001 June. Report No.:
ARL-TR-2528.

36. Pandas developers. pandas: powerful Python data analysis toolkit. c2017
[accessed 2018 May]. http://pandas.pydata.org/pandas-docs/
stable/index.html.

37. SciPy developers. SciPy. c2018 [accessed 2018 May]. http://www.

scipy.org/.

38. Stan Development Team. Stan modeling language user’s guide and reference
manual. 2017 Dec.

39. Hartikainen A. 1-based indexing #431. c2018 [accessed 2018 May]. https:
//github.com/stan-dev/pystan/pull/431.

40. Nelson A. np.savetxt raises an exception when passed a file handle that was
opened with ‘w’ #6356. c2015 [accessed 2018 June]. https://github.
com/numpy/numpy/issues/6356.

41. Brannigan L. Output samples to pandas dataframe #425. c2018 [accessed 2018
Mar]. https://github.com/stan-dev/pystan/pull/425.

42. Mathews JH, Fink KD. Numerical methods using Matlab. 4th ed. Upper Sad-
dle River (NJ): Pearson Prentice Hall; 2004.

43. SymPy development team. SymPy. c2018 [accessed 2019 Mar]. http://
www.sympy.org/.

44. NumPy developers. numpy.histogram: NumPy v1.14 manual. c2018
[accessed 2018 June]. https://docs.scipy.org/doc/numpy/

reference/generated/numpy.histogram.html.

104

http://mc-stan.org/users/documentation/case-studies.html#robust-pystan-workflow
http://mc-stan.org/users/documentation/case-studies.html#robust-pystan-workflow
http://mc-stan.org/misc/warnings.html
http://pandas.pydata.org/pandas-docs/stable/index.html
http://pandas.pydata.org/pandas-docs/stable/index.html
http://www.scipy.org/
http://www.scipy.org/
https://github.com/stan-dev/pystan/pull/431
https://github.com/stan-dev/pystan/pull/431
https://github.com/numpy/numpy/issues/6356
https://github.com/numpy/numpy/issues/6356
https://github.com/stan-dev/pystan/pull/425
http://www.sympy.org/
http://www.sympy.org/
https://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html

45. Adams BM et al. Dakota, a multilevel parallel object-oriented framework for
design optimization, parameter estimation, uncertainty quantification, and sen-
sitivity analysis: Version 6.8 reference manual. Albuquerque (NM): Sandia
National Laboratories; 2018 May.

46. Pandas developers. pandas.dataframe.corr. c2017 [accessed 2018
June]. http://pandas.pydata.org/pandas-docs/stable/

generated/pandas.DataFrame.corr.html.

47. Sprent P. Applied nonparametric statistical methods. New York (NY): Chap-
man and Hall; 1989.

105

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.corr.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.corr.html

Appendix A. Data Tables

106

These are tables of the data that have been used in Bayesian analyses of strength
models of rolled homogeneous armor (RHA). Table A-1 contains values for the
specific heat of body-centered cubic (BCC) iron—which is assumed to approximate
the specific heat of RHA—as a function of temperature. In this table, the specific
heat values are for constant volume, except for values for temperatures above 773
K, where only values for constant pressure are available. The specific heat values
are converted from molar heat capacity values from Austin1 using the molar mass
of iron taken from the CRC Handbook,2 55.845 g/mol. Tables A-2 through A-10
contain the stress-strain data for RHA that comes from the Material Implementa-
tion, Database, and Analysis Source (MIDAS).3 The original source for these data
is Gray et al.,4 who have obtained high-strain-rate data with a split Hopkinson pres-
sure bar and low-strain-rate data (where the plastic strain rate is no greater than 1/s)
with “either an Instron or an MTS testing system”. However, the original published
data are engineering stress and strain, while in the MIDAS database, it has been
corrected to true stress and true plastic strain.5

Table A-1 Specific heat of BCC iron versus temperature

Temp. Spec. heat Temp. Spec. heat Temp. Spec. heat Temp. Spec. heat Temp. Spec. heat
(K) (J/kg ·K) (K) (J/kg ·K) (K) (J/kg ·K) (K) (J/kg ·K) (K) (J/kg ·K)

20 4.123 200 382.356 323 454.329 573 565.287 1023 1154.566
30 11.246 225 400.349 333 457.328 623 583.281 1033 1341.245
40 27.515 250 419.092 343 459.577 673 602.773 1073 877.170
50 53.230 273.1 430.338 353 461.826 723 623.016 1123 812.694
75 134.949 283 436.336 363 464.825 773 647.756 1173 778.957

100 212.920 293 442.334 373 470.823 823 718.230
125 272.148 298 444.583 423 494.814 873 790.203
150 322.379 303 447.582 473 519.555 923 871.172
175 356.866 313 451.330 523 541.296 973 962.638

1Austin JB. Heat capacity of iron: a review. Industrial & Engineering Chemistry.
1932;24(11):1225–1235.

2Rumble J, editor. CRC handbook of chemistry and physics. 98th ed. Boca Raton (FL): CRC
Press; 2017.

3Lawrence Livermore National Laboratory. MIDAS: Material implementation,
database, and analysis source. c2018 [accessed 2018 Mar]. https://pls.llnl.

gov/people/divisions/physics-division/condensed-matter-science-

section/eos-and-materials-theory-group/projects/midas-material-

implementation-database-and-analysis-source.
4Gray GT III, Chen SR, Wright W, Lopez MF. Constitutive equations for annealed metals under

compression at high strain rates and high temperatures. Los Alamos (NM): Los Alamos National
Laboratory; 1994 Jan. Report No.: LA-12669-MS.

5Florando J. Lawrence Livermore National Laboratory, Livermore, CA. Personal communica-
tion, 2017.

107

https://pls.llnl.gov/people/divisions/physics-division/condensed-matter-science-section/eos-and-materials-theory-group/projects/midas-material-implementation-database-and-analysis-source
https://pls.llnl.gov/people/divisions/physics-division/condensed-matter-science-section/eos-and-materials-theory-group/projects/midas-material-implementation-database-and-analysis-source
https://pls.llnl.gov/people/divisions/physics-division/condensed-matter-science-section/eos-and-materials-theory-group/projects/midas-material-implementation-database-and-analysis-source
https://pls.llnl.gov/people/divisions/physics-division/condensed-matter-science-section/eos-and-materials-theory-group/projects/midas-material-implementation-database-and-analysis-source

Table A-2 Flow stress versus plastic strain of RHA for initial temperature 77 K and plastic
strain rate 0.001/s

Strain Stress Strain Stress Strain Stress Strain Stress Strain Stress
(MPa) (MPa) (MPa) (MPa) (MPa)

0.000062 1552.7 0.032648 1764.6 0.067995 1854.4 0.104813 1930 0.143498 1986.7
0.00022 1566.5 0.033594 1765 0.068757 1855.3 0.105444 1931.3 0.144944 1987.5
0.000535 1582.5 0.034303 1768 0.069571 1857.4 0.107179 1930.5 0.145548 1989.3
0.000903 1597.1 0.035066 1770.6 0.070412 1857.9 0.108177 1933.9 0.146337 1989.3
0.001376 1609.2 0.035828 1771.9 0.071385 1859.2 0.109045 1934.4 0.147125 1991
0.001875 1621.7 0.036563 1774.1 0.072199 1862.2 0.109912 1938.7 0.147835 1991.4
0.002453 1631.6 0.037483 1776.2 0.072856 1864.3 0.110779 1940.8 0.149359 1994.5
0.003294 1642.4 0.039034 1779.7 0.07375 1865.2 0.111699 1943 0.150568 1995.8
0.003872 1650.2 0.03977 1781 0.074486 1867.4 0.112881 1944.3 0.151093 1995.8
0.004712 1659.2 0.040427 1782.7 0.075248 1870 0.113565 1945.2 0.151882 1996.6
0.005475 1664 0.041136 1785.3 0.076036 1872.1 0.114669 1946 0.152749 1997.9
0.006184 1669.2 0.041872 1787 0.076956 1875.1 0.115378 1946.9 0.153643 2000.5
0.007209 1676.5 0.042818 1790.1 0.077928 1875.1 0.116456 1948.6 0.15451 2001
0.008076 1681.7 0.043659 1793.5 0.079295 1876.9 0.117402 1949.1 0.155666 2002.3
0.00897 1685.1 0.044605 1794.4 0.080057 1879.5 0.118505 1951.2 0.156428 2003.1
0.009889 1689.4 0.045315 1795.7 0.08074 1881.6 0.119268 1952.1 0.157296 2003.1
0.010835 1693.8 0.046445 1800 0.081529 1882.9 0.120266 1953.4 0.158373 2004
0.011808 1698.5 0.047338 1800.9 0.08237 1884.7 0.121081 1954.2 0.159477 2006.6
0.012675 1702.4 0.048048 1803 0.083316 1887.2 0.122237 1956.8 0.16087 2007.9
0.013437 1705.8 0.048941 1805.6 0.084446 1889.8 0.123341 1958.1 0.162 2010.5
0.014199 1709.7 0.049756 1807.3 0.085287 1891.6 0.124471 1958.6 0.162604 2010.5
0.014961 1713.6 0.050492 1808.6 0.086128 1893.7 0.12526 1960.3 0.163971 2010.5
0.01575 1715.3 0.051569 1810.4 0.0876 1897.2 0.126232 1961.6 0.164838 2011.3
0.01638 1716.2 0.052332 1812.5 0.088335 1898.9 0.127204 1962.5 0.165863 2012.2
0.017064 1717.9 0.053173 1816 0.08936 1900.2 0.128098 1963.8 0.167361 2013.9
0.017852 1722.3 0.05383 1817.7 0.090438 1902.8 0.129202 1965.5 0.168255 2013.5
0.019114 1725.3 0.054618 1820.7 0.090858 1903.7 0.130279 1967.2 0.169306 2015.2
0.020086 1727.4 0.055748 1825 0.091726 1905 0.13091 1968.9 0.170252 2016.5
0.020874 1730.5 0.056799 1825.9 0.092619 1905.8 0.131725 1971.1 0.171067 2018.3
0.021584 1733.5 0.057456 1826.8 0.093513 1906.7 0.132618 1972.4 0.171881 2020.4
0.022504 1736.5 0.05835 1828.5 0.094538 1908.4 0.133538 1974.6 0.172591 2020.4
0.023266 1739.5 0.059086 1831.1 0.095773 1911.9 0.134353 1974.6 0.173564 2020
0.024159 1741.7 0.060137 1833.2 0.097218 1914 0.135167 1975.9 0.174378 2020.9
0.024869 1743.8 0.061057 1835 0.097823 1914.9 0.136035 1975.9 0.175745 2022.2
0.026051 1747.7 0.06195 1836.7 0.098795 1917.9 0.136797 1978 0.176691 2022.2
0.027234 1750.3 0.062712 1838.9 0.09961 1920.1 0.138216 1980.6 0.177479 2023.9
0.027996 1752 0.063842 1841 0.100398 1924.4 0.139083 1981.9 0.178136 2024.3
0.028653 1755.1 0.064815 1844.9 0.101292 1924.8 0.13995 1982.8 0.178583 2024.3
0.029678 1757.2 0.065524 1847.9 0.102054 1925.7 0.140844 1983.2
0.030466 1759 0.066181 1849.7 0.102816 1926.1 0.141659 1984.9
0.031229 1762 0.067154 1852.2 0.103657 1926.6 0.142631 1985.8

108

Table A-3 Flow stress versus plastic strain of RHA for initial temperature 77 K and plastic
strain rate 2500/s

Strain Stress Strain Stress Strain Stress Strain Stress Strain Stress
(MPa) (MPa) (MPa) (MPa) (MPa)

0.019951 1791.9 0.042917 1817.4 0.065427 1787.8 0.088992 1780.1 0.116886 1739.6
0.020109 1794.6 0.043495 1816.8 0.065901 1789.4 0.089491 1778.7 0.117385 1738.7
0.02032 1797.1 0.043915 1816.8 0.066295 1789.4 0.090043 1777 0.117884 1737.8
0.020504 1801 0.044336 1816.9 0.066663 1790.8 0.090673 1775 0.118331 1737
0.020742 1805.7 0.044808 1813.9 0.066873 1791.2 0.091224 1774.4 0.118804 1737
0.021005 1809.9 0.045176 1812.8 0.067188 1790.2 0.091776 1772.6 0.119277 1736.9
0.021242 1813.7 0.045517 1810.5 0.067477 1788.1 0.092301 1769.7 0.119881 1737
0.021505 1817.4 0.045937 1808.5 0.068002 1785.1 0.092957 1768.1 0.120432 1734.1
0.021664 1820.1 0.046436 1806.3 0.06829 1783.8 0.093561 1767.4 0.12101 1731.9
0.021979 1823.8 0.046829 1801.9 0.068605 1782.4 0.094271 1768.1 0.121587 1730.9
0.022426 1824.6 0.047249 1797.4 0.069156 1778.5 0.09477 1769.2 0.122086 1729.2
0.022768 1824.8 0.047747 1792.4 0.069603 1777.3 0.095401 1769.2 0.122428 1728.2
0.023162 1826.6 0.048245 1788.5 0.070049 1774.9 0.0959 1771.1 0.123347 1727.4
0.02353 1826.4 0.048665 1784.9 0.070469 1774.9 0.096347 1772.6 0.123872 1726.4
0.024055 1827.1 0.049085 1780.8 0.070864 1775.8 0.097109 1773.6 0.124608 1725.5
0.024529 1828.3 0.049557 1777.1 0.071232 1776.8 0.097793 1773.9 0.125238 1726.3
0.024949 1828.4 0.050003 1773.8 0.071626 1778.9 0.098475 1772.3 0.125817 1727.2
0.025868 1827.9 0.050476 1772.1 0.0721 1782.1 0.099105 1768.8 0.126237 1728
0.026341 1828.7 0.051053 1769.8 0.072441 1783.1 0.099683 1767.3 0.126736 1728.6
0.026893 1827.7 0.051474 1769.1 0.072993 1785.7 0.100155 1764.9 0.127393 1727.5
0.027629 1828 0.051841 1769.6 0.073309 1788.7 0.100759 1763.1 0.127944 1726.1
0.028207 1827.7 0.052262 1769.3 0.073625 1791.4 0.101022 1762.2 0.128496 1722.9
0.028653 1827.3 0.052709 1771.8 0.073862 1792.5 0.101758 1762.4 0.129046 1718.8
0.029231 1827.1 0.053129 1773.5 0.074282 1793.4 0.102152 1763.3 0.129414 1715.9
0.02973 1826.6 0.053445 1774.9 0.074781 1794.1 0.102651 1764.7 0.129886 1711.3
0.030177 1825.7 0.053787 1777.2 0.075202 1794.5 0.103151 1765.4 0.130647 1707.3
0.030702 1823.9 0.054155 1780.2 0.075911 1794.4 0.103703 1768.3 0.131145 1703.4
0.031174 1821.4 0.05455 1784.4 0.076226 1793.4 0.104019 1770.5 0.131644 1701.4
0.031699 1819.5 0.054919 1788.3 0.077014 1792 0.104308 1771.5 0.132117 1701.3
0.032198 1818.2 0.055129 1789.9 0.077618 1790.5 0.104834 1774.8 0.132432 1700.4
0.032645 1818.6 0.055629 1793.9 0.078091 1790 0.105044 1775.6 0.1328 1699.7
0.03346 1819.2 0.056076 1797.6 0.078511 1789.2 0.105465 1778.4 0.133168 1699.9
0.033985 1822 0.056497 1800.9 0.079089 1788.2 0.105964 1779.8 0.133509 1699.6
0.034327 1824.3 0.056813 1803.2 0.079483 1787.9 0.10649 1780 0.133982 1700.3
0.034748 1827.3 0.057207 1806.2 0.079877 1787.1 0.107015 1778.3 0.134376 1701.2
0.035169 1829.8 0.057707 1808.9 0.080507 1785.6 0.107724 1775.8 0.134666 1701.8
0.035537 1831.6 0.058154 1809.7 0.081111 1784.5 0.108117 1773.2 0.13506 1702.2
0.035905 1833.5 0.058627 1808.9 0.081611 1784 0.108564 1771.2 0.1359 1701.5
0.036273 1834.9 0.059047 1807.7 0.082057 1783.9 0.109194 1767.3 0.136504 1697.8
0.036667 1833.7 0.059388 1806.2 0.082556 1783.4 0.109482 1764.9 0.137081 1692.7
0.037087 1832.5 0.059755 1803.5 0.08295 1783.5 0.109928 1760.2 0.137553 1687.3
0.03756 1830.8 0.06028 1800.5 0.083633 1783.1 0.110295 1756.4 0.137841 1681.6
0.038137 1827.2 0.060727 1798.5 0.084264 1782.7 0.110846 1751.9 0.138102 1675.8
0.03861 1824.6 0.061304 1794.1 0.084711 1783.5 0.111476 1748.1 0.138548 1669.8
0.039161 1822.3 0.06175 1791.3 0.08521 1783 0.112342 1746.2 0.139072 1662.8
0.039686 1818.9 0.062406 1787.6 0.085551 1783.5 0.112972 1743.5 0.139386 1658.2
0.040185 1817.9 0.063063 1786 0.086287 1784.2 0.11397 1741.7 0.139911 1652.8
0.040632 1817.5 0.06343 1786.2 0.086839 1783.2 0.114364 1741.4 0.140409 1648.5
0.041236 1818.1 0.063851 1787 0.087285 1783.2 0.115126 1741.2
0.041682 1816.8 0.064403 1786.4 0.087889 1782.1 0.115573 1740.4
0.042208 1816.3 0.065007 1786.9 0.088441 1781.1 0.116387 1739.7

109

Table A-4 Flow stress versus plastic strain of RHA for initial temperature 298 K and plastic
strain rate 0.001/s

Strain Stress Strain Stress Strain Stress Strain Stress Strain Stress
(MPa) (MPa) (MPa) (MPa) (MPa)

0.000028 1064.6 0.031693 1298.4 0.068066 1346 0.103861 1362.6 0.1416 1374.4
0.000291 1081 0.032377 1299.3 0.069038 1346 0.104307 1362.6 0.142573 1375.7
0.000527 1094.4 0.033612 1302.3 0.069774 1346.9 0.105017 1362.2 0.144018 1375.7
0.000816 1107.3 0.034321 1304.1 0.070379 1346.5 0.105621 1361.7 0.144649 1375.3
0.001105 1120.7 0.035084 1305.8 0.071062 1346.9 0.1062 1361.7 0.145542 1375.3
0.001525 1135.3 0.03603 1307.1 0.071955 1347.3 0.106936 1362.2 0.14641 1374.4
0.001946 1140.9 0.036713 1309.3 0.072639 1346.9 0.107592 1362.2 0.147172 1376.6
0.00276 1152.2 0.037317 1310.1 0.073401 1348.2 0.108696 1362.6 0.148039 1376.6
0.003338 1159.5 0.038027 1311.8 0.073953 1348.2 0.109406 1363 0.148959 1376.6
0.00389 1166.4 0.03871 1312.3 0.074715 1347.4 0.110299 1363.9 0.149984 1378.3
0.004415 1173.3 0.039472 1313.1 0.075477 1348.7 0.110983 1365.6 0.150799 1379.2
0.005072 1180.2 0.040208 1314.4 0.076265 1350.4 0.111587 1365.2 0.151377 1378.7
0.005729 1185.8 0.041207 1317.9 0.077606 1350.4 0.112323 1364.8 0.153032 1377.4
0.00636 1192.3 0.041864 1317.5 0.078421 1350.4 0.113033 1364.8 0.154189 1376.2
0.007148 1197.4 0.042784 1319.2 0.079104 1350 0.113663 1365.2 0.154846 1377
0.007858 1203.1 0.04352 1321.4 0.079629 1350.8 0.114452 1365.6 0.155582 1377.5
0.008462 1206.5 0.044203 1320.9 0.080418 1351.3 0.115661 1364.4 0.156554 1377.5
0.009014 1210.8 0.044755 1320.9 0.081233 1351.7 0.116791 1365.7 0.157264 1378.3
0.009592 1215.6 0.045543 1323.1 0.081679 1352.6 0.117658 1365.2 0.158236 1379.2
0.010197 1218.2 0.046594 1325.7 0.082415 1352.6 0.118447 1365.2 0.159103 1378.8
0.010749 1220.7 0.047173 1326.1 0.082993 1353.4 0.119288 1365.7 0.159734 1379.6
0.011353 1225.9 0.048014 1326.5 0.083598 1353 0.119997 1366.5 0.160654 1378.8
0.011957 1228.9 0.048986 1328.3 0.084202 1354.3 0.120733 1368.3 0.161732 1378.3
0.012641 1232 0.049879 1329.1 0.085122 1354.7 0.121653 1368.7 0.162625 1378.4
0.013376 1236.3 0.050747 1330.9 0.086095 1354.7 0.122573 1367 0.163335 1378.4
0.014664 1241 0.05164 1332.2 0.086699 1355.6 0.124255 1367.4 0.164255 1380.1
0.015426 1246.6 0.052297 1331.7 0.08754 1356 0.124938 1366.5 0.165201 1381.4
0.016346 1249.7 0.052954 1332.2 0.088145 1356.5 0.125937 1365.3 0.165936 1381.8
0.016977 1252.3 0.053717 1331.7 0.088959 1356.9 0.126489 1365.7 0.166593 1381.8
0.017581 1254.8 0.054531 1332.6 0.089721 1358.6 0.127119 1366.1 0.167303 1380.5
0.018317 1258.3 0.055293 1333 0.090352 1359.1 0.127855 1366.1 0.169169 1381
0.019158 1260.9 0.056187 1334.8 0.091167 1358.2 0.12867 1367.9 0.169958 1381
0.019841 1263.9 0.056713 1334.3 0.091666 1359.1 0.129038 1367.9 0.170825 1381.4
0.02063 1265.6 0.057527 1335.6 0.092849 1358.6 0.129406 1368.3 0.171587 1381
0.021365 1269.1 0.058684 1337.4 0.09348 1357.4 0.130352 1369.2 0.172375 1381.4
0.022338 1271.2 0.05963 1339.1 0.094531 1358.7 0.131035 1369.6 0.173348 1382.3
0.023179 1274.3 0.060392 1338.7 0.095319 1356.9 0.132165 1370.5 0.17453 1382.3
0.023941 1277.3 0.061233 1339.1 0.096187 1359.5 0.133138 1370.9 0.175582 1381.4
0.025018 1281.2 0.061916 1340 0.097317 1359.1 0.134793 1371.8 0.176607 1383.2
0.025938 1283.8 0.062442 1340 0.098552 1359.5 0.135687 1371.3 0.177421 1383.2
0.026726 1285.5 0.063178 1340.4 0.099656 1360 0.136922 1372.2 0.178262 1384
0.027567 1287.2 0.063913 1341.3 0.100628 1360 0.1375 1373.5 0.179182 1384.5
0.028697 1291.5 0.064754 1341.7 0.10097 1360 0.138446 1373.5 0.180023 1384.5
0.029696 1293.3 0.065517 1341.7 0.101732 1360.4 0.139314 1373.5
0.030511 1295.4 0.066226 1342.6 0.102468 1360.8 0.140155 1374.4
0.031089 1297.6 0.066857 1342.2 0.103177 1362.1 0.140786 1374.8

110

Table A-5 Flow stress versus plastic strain of RHA for initial temperature 298 K and plastic
strain rate 0.1/s

Strain Stress Strain Stress Strain Stress Strain Stress Strain Stress
(MPa) (MPa) (MPa) (MPa) (MPa)

0.000212 1068.9 0.028986 1310.9 0.067382 1363.7 0.104517 1381.6 0.14499 1398.1
0.000475 1087.9 0.029801 1310.9 0.06825 1364.1 0.105017 1382 0.145489 1397.7
0.000606 1099.5 0.030458 1312.7 0.069196 1365 0.106173 1383.7 0.146698 1397.7
0.000842 1116.4 0.031036 1315.3 0.070037 1366.3 0.106856 1383.7 0.147723 1398.1
0.000973 1133.2 0.031824 1316.6 0.07093 1368.5 0.107592 1383.7 0.148275 1398.6
0.001315 1149.1 0.032955 1319.2 0.071771 1368.5 0.108617 1384.2 0.148827 1399
0.001604 1159.9 0.033769 1320 0.072744 1369.3 0.109905 1384.6 0.149642 1400.3
0.001945 1171.6 0.034453 1320.9 0.073795 1370.2 0.111035 1385.5 0.150351 1398.6
0.002339 1178.9 0.035819 1324.3 0.074741 1370.2 0.111692 1384.2 0.151587 1399
0.002681 1185.4 0.036397 1324.3 0.07574 1371.1 0.112481 1385 0.152769 1398.1
0.003259 1193.1 0.036897 1326.1 0.076502 1372.4 0.113348 1385.9 0.153715 1398.1
0.0036 1195.7 0.038184 1330.4 0.077605 1373.7 0.114268 1386.8 0.154609 1399
0.004415 1206.5 0.039183 1333.4 0.078499 1373.2 0.115082 1387.2 0.155135 1399
0.005151 1211.2 0.039787 1333.8 0.079445 1373.7 0.116055 1388.1 0.155897 1399.5
0.005703 1216.8 0.040523 1335.1 0.080286 1373.3 0.116817 1387.6 0.156344 1400.3
0.006281 1221.2 0.0421 1336.9 0.08118 1374.1 0.117842 1388.5 0.157447 1399.9
0.006754 1224.6 0.043046 1337.7 0.082205 1375.8 0.118551 1387.2 0.158499 1401.2
0.007411 1230.2 0.043624 1339 0.083177 1374.6 0.119471 1387.2 0.158919 1400.8
0.00791 1234.1 0.044571 1340.3 0.084176 1374.6 0.120391 1386.4 0.159313 1400.3
0.008567 1238.4 0.04599 1341.2 0.085017 1375.4 0.121127 1385.5 0.160916 1400.3
0.009119 1243.2 0.046515 1340.8 0.0857 1376.3 0.121863 1387.2 0.16181 1401.2
0.009671 1246.2 0.047251 1342.5 0.086462 1376.3 0.122861 1386.8 0.162414 1401.6
0.010222 1250.1 0.047856 1342.5 0.087145 1376.7 0.124018 1386.4 0.163623 1402.9
0.011431 1254.8 0.048539 1344.7 0.087934 1376.7 0.124649 1388.5 0.164517 1402.5
0.012299 1257.8 0.049722 1345.5 0.088775 1377.2 0.125411 1388.5 0.165595 1402.5
0.012982 1261.3 0.050352 1346.8 0.089642 1376.7 0.126698 1390.7 0.166383 1402.9
0.013691 1263.4 0.051272 1349.4 0.090142 1377.2 0.127671 1389.8 0.167355 1403.4
0.014322 1265.6 0.051903 1349.4 0.091061 1378.5 0.128459 1390.7 0.168223 1404.2
0.01511 1266.9 0.052639 1351.1 0.091902 1379.3 0.129484 1391.6 0.169195 1403.8
0.01603 1270.8 0.053427 1350.7 0.092796 1378.5 0.130772 1391.6 0.169931 1403.8
0.016766 1273.8 0.054216 1352.9 0.093689 1378.9 0.131193 1391.6 0.17093 1403.8
0.017528 1277.7 0.055162 1352.4 0.094636 1378.5 0.132112 1392.4 0.172007 1404.3
0.018763 1282 0.056029 1355.5 0.095214 1378.9 0.132848 1392.9 0.172795 1405.1
0.019815 1285 0.056686 1356.8 0.095897 1378.5 0.134451 1393.8 0.173558 1404.3
0.020393 1286.8 0.057947 1357.6 0.096659 1378.9 0.135292 1393.3 0.174372 1404.7
0.021391 1287.6 0.058736 1359.4 0.097264 1380.2 0.136659 1395.1 0.175318 1405.1
0.022311 1291.9 0.059656 1359.4 0.098026 1380.2 0.13771 1394.2 0.175897 1405.6
0.023231 1296.3 0.060549 1360.2 0.099209 1382 0.13863 1394.6 0.17679 1406.4
0.023967 1298.8 0.061679 1359.8 0.100102 1379.4 0.13955 1395.1 0.177657 1406
0.024703 1298.9 0.062573 1360.7 0.100864 1380.2 0.140259 1395.5 0.178446 1406.4
0.025859 1302.3 0.063519 1359.8 0.101889 1381.1 0.141153 1395.9 0.179155 1406.9
0.026595 1304.5 0.064307 1362.8 0.102599 1382 0.142204 1397.2 0.179786 1406.9
0.027672 1306.2 0.065332 1363.7 0.103282 1381.1 0.142809 1396.8 0.180233 1408.2
0.028277 1310.1 0.066278 1362.8 0.103887 1380.7 0.144149 1397.7

111

Table A-6 Flow stress versus plastic strain of RHA for initial temperature 298 K and plastic
strain rate 3500/s

Strain Stress Strain Stress Strain Stress Strain Stress Strain Stress
(MPa) (MPa) (MPa) (MPa) (MPa)

0.028009 1290.9 0.057762 1379.4 0.093368 1429.5 0.123083 1441.7 0.158363 1430.6
0.02843 1295 0.058157 1380.5 0.09371 1429.8 0.123398 1442.7 0.158626 1433.9
0.028772 1298.3 0.05863 1381.4 0.094235 1431 0.123793 1444.4 0.158916 1437.9
0.029141 1302.1 0.059024 1382.1 0.094787 1432.6 0.124187 1445.8 0.1591 1439.5
0.02943 1305.9 0.059418 1383.6 0.095339 1434.1 0.125448 1444.6 0.159521 1443.7
0.029694 1309.3 0.059944 1386.1 0.096023 1436.3 0.125868 1445.9 0.159916 1446.8
0.030088 1310.4 0.060759 1389 0.096469 1436.4 0.127365 1442.9 0.160232 1448.5
0.030535 1311.5 0.061573 1389.1 0.097389 1438.6 0.127733 1441.6 0.160941 1451.2
0.031112 1309.5 0.062204 1389.4 0.098335 1438.7 0.128337 1439.2 0.161441 1452.3
0.03148 1307.7 0.063386 1390.1 0.098676 1437.8 0.129098 1436.2 0.161887 1451.2
0.0319 1307.2 0.063885 1389.8 0.099307 1437.3 0.129702 1435.3 0.162517 1448.1
0.03232 1306.6 0.064279 1390.5 0.099753 1435.1 0.130227 1433 0.163147 1444.2
0.032662 1306.1 0.064936 1390.4 0.100278 1432.7 0.130962 1430.8 0.163567 1440.7
0.033318 1306.9 0.06554 1390.7 0.100803 1429.2 0.131382 1429 0.164039 1436.3
0.033765 1306.7 0.066355 1390.8 0.101721 1420.8 0.131986 1427.4 0.164327 1432.5
0.034264 1308.2 0.067143 1391.3 0.10193 1418.6 0.132459 1426.3 0.164825 1428.9
0.034659 1308.9 0.067695 1390.9 0.10235 1414.8 0.133693 1421.5 0.165324 1425.6
0.035079 1310 0.068457 1391.4 0.102874 1409.4 0.134796 1422.5 0.165822 1422.3
0.035447 1311.2 0.069087 1391.7 0.10332 1404 0.135716 1425.3 0.166295 1421.9
0.035868 1312.3 0.069639 1392.5 0.103845 1399.8 0.136505 1428.3 0.16682 1420.8
0.036577 1313.8 0.070375 1393.9 0.104396 1398.6 0.136926 1430.7 0.167346 1419.7
0.037181 1313.4 0.0709 1395.2 0.105027 1401.2 0.137294 1434 0.168055 1419.4
0.037864 1313.7 0.071347 1396.1 0.1055 1402.8 0.137557 1436.2 0.16858 1420.1
0.038469 1314.6 0.072083 1397.5 0.105764 1406.7 0.138004 1439.3 0.168948 1420.3
0.039126 1315.8 0.07274 1398.6 0.106264 1413 0.138504 1443.1 0.1695 1420.9
0.039625 1315.9 0.07337 1398.9 0.10658 1416.9 0.138689 1444.7 0.17021 1422.1
0.04015 1316.4 0.074054 1400.3 0.106896 1421.8 0.138925 1447 0.170709 1423.2
0.040728 1316.9 0.074527 1400.4 0.107476 1430.7 0.139372 1449.8 0.171549 1422
0.041096 1318.5 0.075105 1402 0.107634 1432.8 0.139767 1451.4 0.171917 1422.5
0.0422 1321.6 0.075736 1403.9 0.107818 1435.7 0.140293 1454 0.172364 1421.9
0.04249 1323.7 0.076156 1404.1 0.108003 1438.9 0.14116 1457.2 0.172915 1418.9
0.042937 1325.5 0.076603 1405.4 0.108292 1442.4 0.142184 1453.8 0.173308 1416.1
0.043331 1328.3 0.077102 1407.1 0.108845 1447.4 0.142815 1452.9 0.173728 1413
0.043778 1331.4 0.077628 1408 0.109108 1450.9 0.143287 1449.2 0.174306 1410.7
0.044146 1333.4 0.078337 1408.9 0.109714 1456.6 0.14368 1447.5 0.174726 1409.7
0.044646 1335.2 0.078811 1410.7 0.110029 1459.6 0.1441 1443.5 0.175172 1409
0.045145 1337.8 0.079047 1411.9 0.110371 1460.6 0.144651 1439.7 0.175698 1411.2
0.045593 1341.4 0.079416 1415 0.111028 1462.7 0.145229 1437.7 0.175909 1412.3
0.046223 1343.8 0.079705 1417.4 0.111527 1460.8 0.145649 1435.9 0.176356 1415.3
0.046539 1346.3 0.080152 1420.7 0.11221 1459.4 0.146174 1433.7 0.17654 1418
0.046934 1349 0.080547 1422.9 0.112656 1455.6 0.146646 1431.8 0.176777 1420.5
0.047407 1351.2 0.080994 1424.7 0.113128 1450.7 0.147093 1431.6 0.177041 1427
0.047985 1354.2 0.081493 1427.5 0.113521 1446.2 0.148353 1429 0.177226 1431.8
0.048275 1357.1 0.081861 1429 0.114019 1439.3 0.149246 1426.2 0.177411 1435.9
0.048722 1359.7 0.082361 1430.7 0.114465 1435.2 0.150244 1425.1 0.177753 1441.6
0.049011 1361.8 0.082939 1432.2 0.114937 1430.6 0.150822 1423.5 0.178043 1445.5
0.04951 1362.3 0.083938 1433.9 0.115435 1425.6 0.151321 1421.6 0.178307 1449.5
0.050088 1362.8 0.084647 1433.3 0.115881 1421.5 0.152029 1419.9 0.178518 1452.8
0.05043 1365.2 0.085303 1432.3 0.116327 1417.4 0.152135 1420.1 0.178597 1454.8
0.050877 1366.2 0.085934 1432.6 0.117298 1412.5 0.153263 1414 0.178887 1459.1
0.051403 1369.6 0.086669 1430.7 0.118348 1412.1 0.153867 1411.6 0.179308 1465.7
0.052191 1369.7 0.087352 1430.5 0.118769 1413 0.154392 1410.5 0.179624 1468.5
0.052822 1370.4 0.087851 1430.5 0.119426 1415.6 0.154838 1408 0.180255 1470.4
0.053374 1372.1 0.088508 1429.2 0.119768 1418.1 0.155574 1408.8 0.180676 1472
0.053847 1372.7 0.089007 1428.8 0.120031 1419.7 0.155784 1409.6 0.18107 1472.1
0.054477 1372.6 0.090031 1428.1 0.120558 1424.7 0.15631 1411.4 0.1817 1469.7
0.054977 1373.5 0.090793 1427.8 0.121057 1427.4 0.156494 1412.6 0.182277 1466.3
0.055423 1374.5 0.09145 1427.6 0.121426 1430.3 0.157125 1415.8 0.182775 1460.5
0.055975 1375.8 0.091739 1428.4 0.121899 1433.4 0.157467 1418.6 0.183116 1456.8
0.056737 1376 0.092265 1428.8 0.122346 1436.6 0.157783 1421.8 0.183351 1448.8
0.057263 1377.3 0.092921 1428.6 0.122846 1440.5 0.157941 1423.8 0.183586 1443.4

112

Table A-7 Flow stress versus plastic strain of RHA for initial temperature 298 K and plastic
strain rate 7000/s

Strain Stress Strain Stress Strain Stress Strain Stress Strain Stress
(MPa) (MPa) (MPa) (MPa) (MPa)

0.03648 1359 0.058189 1417.2 0.08481 1462.9 0.116208 1484.7 0.154932 1485
0.036769 1360.7 0.058662 1417.8 0.08531 1465.7 0.116418 1485.5 0.155746 1483
0.037032 1364.1 0.058925 1416.6 0.085862 1468.5 0.117022 1485.7 0.156297 1479.6
0.037427 1366.5 0.059424 1416.2 0.086177 1470.4 0.117601 1486 0.157164 1477.6
0.037821 1369.3 0.059975 1415.4 0.086546 1472.6 0.118179 1487.8 0.157689 1477.5
0.038216 1372.5 0.060474 1414.7 0.087072 1476.6 0.119362 1491.8 0.158293 1477.7
0.03869 1377.2 0.061079 1414.2 0.087466 1479.1 0.119913 1491.3 0.159003 1477.4
0.039111 1380.4 0.061499 1413.2 0.087861 1480.9 0.120334 1491.8 0.159397 1477.1
0.039532 1383.9 0.061945 1412.6 0.088124 1482.9 0.120991 1492.4 0.159764 1477.7
0.039874 1387.2 0.062313 1412.4 0.088623 1484.9 0.121516 1493.1 0.16029 1479.1
0.040268 1390.4 0.063154 1411.6 0.089359 1488.5 0.121989 1493.5 0.160869 1481.5
0.040715 1393.9 0.06381 1412.7 0.0902 1490.4 0.122646 1494.4 0.161184 1482.2
0.041136 1396.6 0.064284 1414 0.090779 1491.9 0.123356 1494.5 0.16171 1483.9
0.0414 1400.4 0.065046 1415.8 0.091567 1492.7 0.124643 1494.4 0.162183 1485.4
0.041715 1404.1 0.06544 1417.2 0.091882 1491.8 0.125588 1492.6 0.162788 1487.8
0.042005 1407.4 0.065808 1419.5 0.092565 1491.5 0.126376 1492.9 0.163602 1489.2
0.042347 1411.1 0.06615 1420.7 0.093011 1489.3 0.126954 1492.4 0.164181 1490.5
0.042742 1413 0.066518 1421.7 0.093458 1487.8 0.127453 1491.3 0.164943 1491.2
0.043084 1415.4 0.066807 1422.5 0.093983 1485.8 0.128267 1490.4 0.166178 1493.7
0.043636 1420.4 0.067307 1425 0.094586 1483.7 0.128767 1490.8 0.166414 1492.2
0.044031 1424 0.068043 1428 0.095059 1482.6 0.129213 1489.7 0.167228 1491.3
0.044768 1432 0.068437 1429.9 0.095374 1480.2 0.129844 1489.9 0.16778 1489.8
0.045215 1434.6 0.0687 1431.1 0.095794 1477.5 0.13079 1490.7 0.168699 1490.2
0.045557 1437.9 0.069147 1432.9 0.096476 1474.9 0.13121 1491.6 0.169198 1488.3
0.045899 1440.3 0.069462 1434 0.097054 1472.1 0.13234 1493.3 0.169933 1486.1
0.046267 1441.4 0.069857 1435.9 0.097868 1468.5 0.133812 1494.8 0.170458 1484.2
0.046766 1443.9 0.070199 1437 0.098419 1466.9 0.1346 1494.7 0.171246 1480.4
0.047134 1444.2 0.070593 1438 0.098682 1466.1 0.135204 1493.4 0.171824 1479.6
0.047554 1443.2 0.071066 1439.3 0.09918 1463.4 0.135651 1494.3 0.172296 1477
0.048105 1439.9 0.071749 1440.7 0.099758 1462.5 0.136202 1493.8 0.172847 1474.4
0.048499 1437.2 0.072143 1440.9 0.100467 1462.2 0.136727 1493.4 0.173451 1471.3
0.048761 1432.7 0.072853 1441.9 0.100887 1462 0.137253 1493 0.174028 1468.6
0.049207 1428.3 0.073457 1441.4 0.101387 1460.9 0.137831 1493.6 0.174632 1466.9
0.049548 1424.5 0.074271 1440.2 0.101859 1461.3 0.139013 1493.6 0.175183 1464.7
0.049888 1420.3 0.074718 1439.5 0.102622 1462.1 0.139407 1493.8 0.175866 1464.4
0.050203 1416.6 0.075742 1438 0.103383 1461.8 0.140432 1493.4 0.176864 1462.1
0.050544 1412.4 0.076267 1437.2 0.104119 1463.8 0.141193 1492.2 0.177521 1461.9
0.050832 1408.2 0.076687 1436.6 0.104513 1464 0.141771 1490.6 0.177915 1460.9
0.051173 1403.6 0.077265 1436.2 0.105722 1465.7 0.142349 1490.4 0.178466 1459.4
0.051671 1398.8 0.078027 1435.8 0.10609 1465.9 0.142848 1491.5 0.178887 1459.1
0.052091 1397.4 0.078579 1435.4 0.106537 1466 0.143505 1490.5 0.179464 1458.6
0.052537 1395.9 0.078841 1435.4 0.107299 1466.4 0.144372 1489.6 0.180147 1457.2
0.053089 1394.3 0.079314 1435.1 0.107588 1466.7 0.145423 1490.6 0.18104 1453.4
0.053457 1394.6 0.079761 1436.5 0.108113 1467.5 0.146158 1490.6 0.181512 1450.8
0.053904 1396.4 0.080024 1437.3 0.108691 1468.6 0.146605 1490.3 0.182115 1446.3
0.054193 1398.9 0.080313 1437.7 0.1099 1471 0.147735 1491.5 0.182798 1442.8
0.054798 1401.3 0.080707 1438.7 0.1104 1473 0.148444 1492.3 0.183349 1439.5
0.055166 1404 0.080996 1440.3 0.111451 1474.9 0.149101 1493.2 0.183899 1433.6
0.055482 1406 0.081549 1444.6 0.112371 1475.8 0.149758 1492.2 0.184476 1428.8
0.055823 1408.4 0.082154 1446.5 0.11287 1477 0.150415 1492.3 0.184975 1424.8
0.056244 1410.2 0.082863 1449.9 0.113527 1477.5 0.151439 1492.6 0.185578 1420.3
0.056665 1411.7 0.083153 1451.8 0.114 1479.1 0.151912 1491.5
0.057059 1413.6 0.083495 1453.7 0.114526 1480.7 0.152779 1489.4
0.057453 1415 0.083968 1458.2 0.11513 1482.1 0.153619 1487.4
0.057795 1416.6 0.084494 1460.6 0.115525 1483 0.15417 1486.2

113

Table A-8 Flow stress versus plastic strain of RHA for initial temperature 473 K and plastic
strain rate 3000/s

Strain Stress Strain Stress Strain Stress Strain Stress Strain Stress
(MPa) (MPa) (MPa) (MPa) (MPa)

0.030984 1177.8 0.05687 1235.8 0.087142 1287 0.118271 1280.2 0.148874 1270.6
0.031406 1185.6 0.057501 1237.4 0.087667 1286.7 0.118928 1280.9 0.149452 1271.4
0.031722 1192 0.058105 1240.3 0.088193 1286.4 0.119769 1281.7 0.149873 1272.3
0.032065 1200.8 0.05871 1244.5 0.088718 1285.3 0.120347 1282.4 0.150503 1272.6
0.03246 1205.3 0.058974 1247 0.089243 1285 0.120846 1281.8 0.150871 1274
0.032829 1209 0.0595 1251.6 0.089742 1281.6 0.121424 1281.8 0.151581 1276
0.033407 1211.7 0.059895 1256 0.091055 1278.7 0.122028 1282.5 0.151897 1276.7
0.033986 1214.7 0.060421 1259 0.092158 1277.2 0.122501 1283.1 0.152265 1277.7
0.034328 1217.6 0.060841 1262.1 0.092579 1279 0.123132 1284.5 0.152843 1280.3
0.034774 1219.6 0.061367 1265.1 0.093472 1281.8 0.1235 1285.2 0.153737 1283.2
0.0353 1221.8 0.062392 1265.8 0.094051 1283.8 0.124315 1287.5 0.154736 1286
0.035852 1224.1 0.06276 1266.9 0.09476 1285.6 0.124788 1289.2 0.155708 1287.3
0.036509 1226.2 0.063102 1267.3 0.09497 1286.1 0.124867 1289.1 0.155997 1287.7
0.037088 1227.5 0.063889 1266.3 0.095707 1289.5 0.125366 1290.7 0.156444 1287.8
0.037744 1228.8 0.064625 1265.3 0.096259 1290.7 0.126206 1284.6 0.156785 1287.7
0.038165 1229.9 0.065097 1263.5 0.096653 1292.1 0.126888 1281.5 0.157573 1286.7
0.038717 1230.9 0.065754 1262.2 0.097047 1292.4 0.127492 1278.4 0.158203 1284.4
0.039479 1233.6 0.066279 1261.5 0.097546 1291 0.128043 1277.3 0.158833 1281.7
0.040031 1233.4 0.066647 1260.2 0.098203 1290.9 0.128831 1275.5 0.159463 1279.8
0.04053 1234.8 0.067251 1260.2 0.098597 1291.5 0.129356 1274.8 0.159988 1276.5
0.04103 1237.5 0.067671 1259.7 0.099306 1289.4 0.129645 1274.8 0.16046 1272.9
0.041529 1238.9 0.068302 1261.3 0.100172 1288.2 0.130355 1275.7 0.160854 1270.9
0.042081 1240.7 0.068722 1262.4 0.101196 1286.1 0.130749 1276 0.161457 1266.4
0.042686 1243.3 0.069143 1264.3 0.102405 1285.7 0.131143 1276.2 0.162034 1263.8
0.043264 1245 0.069643 1267.2 0.10293 1285.8 0.131458 1277.3 0.162612 1261.3
0.043764 1248.1 0.070563 1269.7 0.103298 1285.3 0.132247 1281.2 0.163085 1260.3
0.044316 1250.7 0.070799 1271 0.103902 1285.2 0.132589 1282.3 0.163767 1259.4
0.044999 1252.7 0.071641 1274.7 0.104375 1284.2 0.133062 1285.8 0.16424 1260.2
0.045525 1254.9 0.072114 1277.7 0.104821 1284 0.133404 1288 0.165134 1261.6
0.046103 1256.2 0.072482 1278.8 0.105373 1284.1 0.133851 1289.3 0.166081 1267.4
0.046734 1257.5 0.073113 1281.6 0.10582 1283.9 0.134456 1291.2 0.166712 1270.6
0.047076 1259.1 0.073586 1283.4 0.106266 1284.8 0.13527 1290.1 0.16758 1274.2
0.047523 1261.8 0.073928 1283.8 0.106897 1286.7 0.135953 1290.3 0.167921 1276
0.047943 1263.8 0.074821 1285.8 0.107187 1287.9 0.137004 1289.7 0.16829 1278.1
0.048364 1265.3 0.075767 1287 0.10766 1291.2 0.137686 1285.4 0.169131 1283.2
0.048837 1267.1 0.076686 1284.9 0.107923 1292.8 0.138421 1284 0.169446 1283.1
0.049284 1268.2 0.077737 1283.9 0.108528 1295.5 0.139209 1283 0.170103 1284.1
0.049809 1269.6 0.078341 1282.7 0.109867 1292.1 0.13976 1280.8 0.170629 1283.4
0.050283 1271.8 0.078787 1280.5 0.110261 1290.4 0.140469 1279.8 0.171548 1280.3
0.050598 1272.7 0.079575 1279.5 0.110812 1288.1 0.140942 1278.1 0.172545 1277.9
0.051071 1272.4 0.080284 1277.8 0.111337 1285.1 0.14152 1276.9 0.172992 1276.6
0.051622 1270.5 0.080993 1276.4 0.112072 1283 0.141888 1277.2 0.173516 1273
0.052147 1266.9 0.08165 1275.2 0.112518 1282 0.14257 1275.9 0.174199 1269.9
0.05275 1260.4 0.082044 1275.1 0.113227 1279.1 0.14328 1275.7 0.175354 1264.4
0.053301 1257.2 0.082858 1275.2 0.113936 1279.4 0.143726 1275.2 0.17601 1260.3
0.053878 1251.9 0.083515 1276.3 0.114436 1279.9 0.144304 1274 0.176901 1253.3
0.05435 1246.4 0.084172 1277.4 0.114882 1280.8 0.145013 1272.3 0.177478 1246.1
0.054795 1240.1 0.084671 1280 0.115539 1280.7 0.146116 1272.4 0.178002 1239.2
0.055215 1236.7 0.085592 1285.1 0.11588 1279.9 0.146878 1271.8 0.178657 1232.2
0.05574 1234.8 0.086433 1286.4 0.116695 1280.3 0.147535 1271.3 0.179181 1224
0.056344 1234.8 0.086853 1287 0.117457 1279.3 0.148139 1270.9

114

Table A-9 Flow stress versus plastic strain of RHA for initial temperature 673 K and plastic
strain rate 3000/s

Strain Stress Strain Stress Strain Stress Strain Stress Strain Stress
(MPa) (MPa) (MPa) (MPa) (MPa)

0.020894 1007.3 0.045945 1103.7 0.077839 1123.5 0.117924 1113.9 0.155884 1111.3
0.021262 1009.8 0.046575 1102.6 0.07868 1124.1 0.118791 1112.9 0.156435 1112.2
0.021499 1013 0.047126 1100.3 0.079547 1126.3 0.119579 1110.1 0.156961 1112.7
0.021736 1016.6 0.047625 1099.3 0.079757 1126 0.120261 1108.5 0.157512 1112.1
0.022052 1020.5 0.048124 1098.8 0.080755 1123.7 0.120944 1107 0.158064 1111.4
0.022395 1025.2 0.048571 1099.5 0.081596 1122.7 0.121496 1107.9 0.158616 1111.9
0.02271 1028.2 0.049176 1102.1 0.082541 1120.4 0.1221 1108.3 0.159535 1110.9
0.023078 1030.8 0.049754 1102.3 0.082961 1120.3 0.122915 1109.7 0.160506 1108.3
0.02342 1032.1 0.050463 1103.1 0.083355 1118.3 0.123572 1110.5 0.160717 1108.4
0.023788 1033 0.050963 1105.4 0.084012 1118.3 0.123888 1112.8 0.16119 1109.3
0.024234 1031.7 0.051752 1111.5 0.085824 1116.6 0.124282 1114.6 0.161716 1112.4
0.024812 1028.1 0.05212 1113.5 0.086849 1121 0.125097 1118.7 0.162137 1116.7
0.025258 1023.8 0.052619 1114.2 0.087427 1119.5 0.12557 1120.4 0.162953 1125
0.025808 1017.7 0.053145 1116.1 0.08811 1121.9 0.126517 1123.9 0.163295 1128.2
0.026333 1012.1 0.053618 1117.2 0.088925 1125.3 0.127016 1126 0.163716 1132.9
0.026857 1007.3 0.054038 1118.7 0.089293 1125.7 0.128014 1126.3 0.164163 1136.1
0.027461 1002.5 0.054853 1119.8 0.089635 1126.4 0.128881 1126.8 0.164873 1139.6
0.027933 1000.7 0.05551 1120.3 0.090134 1128.2 0.129564 1123 0.165713 1135.3
0.02838 1002.8 0.056166 1119.1 0.09087 1130.1 0.130115 1119.3 0.166369 1130.2
0.028748 1004.9 0.056797 1118 0.091475 1132.2 0.130771 1116.7 0.166815 1125.2
0.029116 1008.3 0.057506 1115.9 0.092132 1135.8 0.131453 1113.6 0.167313 1119.9
0.029485 1013.8 0.058136 1113.6 0.092894 1135.7 0.132136 1112.4 0.167574 1111.9
0.029933 1018.8 0.058713 1110.9 0.093997 1133.2 0.132582 1111.2 0.168229 1102.4
0.030117 1023.3 0.059107 1107.9 0.094968 1128.5 0.133108 1111.7 0.168648 1096.8
0.030328 1028.5 0.059657 1103.6 0.095466 1125.6 0.133712 1113.3 0.169146 1091.4
0.030592 1033.7 0.060104 1101.9 0.096149 1121.2 0.134212 1115.7 0.169828 1087.7
0.030829 1038.9 0.060944 1098.9 0.096778 1117 0.134554 1117.6 0.170484 1086.3
0.03104 1042 0.061363 1095.6 0.097618 1114.4 0.135027 1120.5 0.171089 1088.9
0.031356 1047.5 0.062046 1092.8 0.098301 1113.6 0.135816 1121.8 0.171563 1092.7
0.031724 1051.3 0.062781 1091.5 0.098958 1115.6 0.136525 1124.4 0.172168 1099.7
0.03204 1054.8 0.063333 1089.3 0.099589 1118.8 0.137314 1126.9 0.172617 1108.3
0.032382 1059 0.063779 1088.4 0.100326 1121.9 0.137865 1125.1 0.172775 1111.8
0.032724 1062 0.064173 1088.3 0.100826 1126.8 0.138574 1122.4 0.173355 1122
0.033093 1064.1 0.064856 1087.9 0.101326 1132.1 0.139545 1118.2 0.174119 1134.6
0.033644 1064.7 0.065408 1089.4 0.101852 1136.1 0.140227 1111.1 0.174383 1138.3
0.034275 1065.7 0.065671 1090.7 0.102561 1136.5 0.141171 1105.1 0.175146 1146.1
0.034853 1066.3 0.066302 1094 0.103192 1138.5 0.141828 1103.9 0.17533 1145.9
0.035405 1067.8 0.066538 1095 0.104085 1139 0.142458 1103.6 0.176144 1144.6
0.035904 1068.1 0.066801 1096.7 0.10482 1135.8 0.142879 1105 0.176878 1133.9
0.036482 1070.8 0.067327 1099.3 0.105608 1133.3 0.143668 1109 0.177244 1125.9
0.037139 1071.7 0.067774 1101.7 0.106106 1130.7 0.14422 1112.1 0.177558 1119.7
0.037691 1072.8 0.068142 1102.9 0.106788 1124.1 0.144957 1118.7 0.178108 1110.7
0.038033 1074.5 0.068484 1103.7 0.107418 1117.9 0.145352 1122.8 0.178553 1103.3
0.038533 1077.7 0.068825 1104.1 0.108205 1112.4 0.145799 1126 0.179156 1097.9
0.03898 1080.9 0.069903 1106.5 0.108861 1110.8 0.14643 1130.5 0.179733 1094
0.039401 1084.2 0.070848 1105.4 0.109491 1109.7 0.146956 1132.9 0.180206 1093.9
0.0399 1087 0.07203 1104.9 0.110148 1109.7 0.147612 1129.9 0.180758 1095.8
0.040216 1089.9 0.072556 1103.9 0.11091 1110.4 0.148584 1128.4 0.1811 1097.5
0.040742 1093.5 0.073107 1103.6 0.111436 1112.1 0.149266 1122.7 0.181495 1101.8
0.041163 1096.8 0.073449 1103.6 0.11183 1113.6 0.149764 1118.4 0.18189 1107.1
0.041504 1097.6 0.074079 1104.5 0.112698 1117.6 0.150367 1114 0.182232 1113.2
0.041846 1099.7 0.074657 1105.9 0.113276 1119.3 0.150945 1110.3 0.182522 1117.2
0.042293 1101.7 0.074999 1107.9 0.113959 1121.2 0.151863 1105.6 0.182917 1122.9
0.042661 1103 0.075394 1109.5 0.114406 1121.8 0.152414 1102.3 0.183154 1123.7
0.043161 1104.5 0.075815 1112.6 0.115036 1121.1 0.153124 1103 0.183521 1122.2
0.04366 1106 0.076682 1116.4 0.115798 1120.2 0.153912 1104.3 0.184125 1118.3
0.044212 1107 0.07684 1117 0.116244 1119.7 0.154228 1106.2 0.184623 1110.8
0.044816 1107.5 0.077313 1120.1 0.116822 1117.9 0.154911 1108 0.184937 1105.8
0.04542 1105.6 0.077497 1120.7 0.117531 1115.1 0.15541 1110.4

115

Table A-10 Flow stress versus plastic strain of RHA for initial temperature 873 K and plastic
strain rate 3500/s

Strain Stress Strain Stress Strain Stress Strain Stress Strain Stress
(MPa) (MPa) (MPa) (MPa) (MPa)

0.024813 728.8 0.048262 834.8 0.08079 880.2 0.116274 859.3 0.151119 925.7
0.025024 734.6 0.048892 833.8 0.081551 879.5 0.116852 861.1 0.151592 926.4
0.025314 737.7 0.049286 833.9 0.08205 876.3 0.117694 864.2 0.152643 928.7
0.025577 740.5 0.04989 833.8 0.082496 874.7 0.118299 869 0.153405 927.3
0.025761 744.6 0.050573 833.2 0.083179 870.9 0.118746 872.5 0.154376 926.3
0.026051 749 0.051151 831.4 0.084071 866.1 0.119325 876.2 0.155112 924.5
0.026341 753.8 0.051597 831 0.084938 865.7 0.120219 881.5 0.155978 922.6
0.026604 757.4 0.052595 830.2 0.085831 864.9 0.120587 885 0.156503 921.7
0.02692 760.5 0.053121 830.1 0.086566 866.2 0.121455 892.6 0.157291 920.5
0.02742 764.3 0.053594 830.1 0.087328 867.5 0.121876 895.3 0.157685 920.2
0.027709 768.3 0.05425 830.8 0.08788 868.2 0.122323 898.7 0.158499 917.9
0.027946 771.9 0.054828 830.7 0.088958 871.6 0.122876 904 0.159103 917.3
0.028262 775 0.055196 831.6 0.089693 873.3 0.123192 906.4 0.159734 917.5
0.028499 777.8 0.055853 832.3 0.09014 873.2 0.123902 913 0.160496 919.3
0.028893 780.8 0.056431 833.4 0.090692 874.7 0.124823 919 0.161021 918.8
0.029235 782.7 0.056852 834.7 0.09148 877.2 0.125664 919.7 0.161941 920.5
0.029577 782.8 0.057351 836.3 0.092085 879.8 0.126189 919.9 0.162545 920.3
0.030023 781.6 0.057693 836.8 0.0929 880.6 0.127003 916.9 0.163438 921.7
0.030443 779.1 0.058611 833.5 0.093425 882.1 0.127895 914.9 0.163911 922.3
0.030968 778.3 0.059294 831.7 0.094108 881.9 0.128762 912.5 0.164568 922.8
0.031651 775.6 0.059819 829.6 0.09466 882.9 0.129497 908.8 0.16533 923.2
0.032123 773.1 0.060213 828 0.095475 885.3 0.130442 906.7 0.16596 923.6
0.032543 771.1 0.061237 825.5 0.095895 885.7 0.131125 905.7 0.166512 923.1
0.033147 769.8 0.062234 823.4 0.096394 887.2 0.131597 905.3 0.167011 922.6
0.033541 769.5 0.062944 825.3 0.096946 888.3 0.132307 905 0.16772 922
0.033987 769.9 0.06368 827.9 0.097577 890.1 0.132727 906.1 0.168245 921.5
0.034461 773.7 0.063995 828.8 0.098312 888.2 0.133515 906.9 0.169033 920
0.034777 776.8 0.064548 833.2 0.098916 885.3 0.133909 906.1 0.169663 918.6
0.035119 780.7 0.064969 836.1 0.099598 882.3 0.134698 909.2 0.170189 918.5
0.035409 785.9 0.065416 840.2 0.100044 878.7 0.135434 910.4 0.170609 917.7
0.035751 792.3 0.06589 845.4 0.100621 875.5 0.135933 910.6 0.17116 917.9
0.036093 796.2 0.066442 850.2 0.101356 870.9 0.136432 912.4 0.172369 919.3
0.036383 799.7 0.066942 855.4 0.10196 867.2 0.137195 915.9 0.173341 918.4
0.036962 806.8 0.067152 856.5 0.102721 864.2 0.137799 916 0.173604 918.5
0.037225 809.9 0.067757 860 0.103482 861.5 0.138351 916.3 0.174418 918.8
0.03762 813.3 0.068335 860.6 0.104165 860.9 0.139402 920.5 0.175048 918.6
0.037909 816 0.06915 864.8 0.104875 864.2 0.139848 919 0.175652 917.6
0.038225 818.6 0.070359 868.9 0.1054 864.5 0.140321 918.9 0.17623 916
0.038488 821.3 0.071279 868.1 0.106005 868.6 0.141215 923.7 0.17686 915.8
0.038883 824.3 0.071725 867.3 0.106689 875.4 0.142108 920.2 0.177754 917.4
0.039303 826.4 0.072277 868 0.107058 877.8 0.142843 919.1 0.178253 918.1
0.03975 827.7 0.073144 868 0.107215 878 0.143394 917.8 0.179015 920.2
0.040276 828.5 0.073538 867.6 0.107847 882.9 0.144051 918 0.179646 922.2
0.040906 829.6 0.073984 868.4 0.108635 882.1 0.144813 918.7 0.180198 923.8
0.041642 830.2 0.074615 868.7 0.10937 880.7 0.145443 918.5 0.18075 925.8
0.04222 830.6 0.074851 869.3 0.109895 878.7 0.146153 918.2 0.181223 927.2
0.042798 831.3 0.075771 871.2 0.110787 876.3 0.146547 917.4 0.181985 929.3
0.04356 831.9 0.076244 872.4 0.11147 872.9 0.14744 917.7 0.182589 928
0.044269 832.9 0.076796 873.1 0.112336 867.9 0.147912 916.9 0.183352 930.1
0.045162 833 0.077532 874.8 0.11307 863.7 0.148649 919.5 0.184402 930.6
0.045793 833.7 0.078215 876.2 0.113701 862.8 0.149358 921.5
0.046265 832.8 0.079082 877.8 0.114252 860 0.149726 923
0.046659 833.7 0.079345 878.8 0.115066 858.1 0.149936 923.5
0.047343 834.4 0.079949 880.2 0.11588 857.7 0.150567 924.8

116

Appendix B. Brief Introduction to Python

117

Python is the name of a general-purpose scripting language designed to be highly
readable, as well as an interpreter of that language.1 When used with add-on mod-
ules such as NumPy,2 SciPy,3 Pandas,4 and Matplotlib,5 it can become a powerful
tool for scientific computing and data analysis. These add-on packages are readily
available through the Anaconda Python Distribution,6 the Python Package Index
(PyPI),7 and they may also be available through the package manager of a Linux
distribution. There are two main versions of the Python language, the legacy Python
2.x, which will cease being supported in 2020,8 and Python 3.x. This introduction
is meant to pertain to the latter, though most of what is discussed here applies to
both versions.

B.1 Basic Syntax
The basic arithmetic operators used in Python are typical of most scripting and pro-
gramming languages, so “+” and “-” are of course used for addition and subtrac-
tion, and “*” and “/” are used for multiplication and division. The exponentiation
operator is “**”. The default precedence of these arithmetic operations also fol-
lows the conventions typical in both mathematical notation and other programming
languages, that is, exponentiation is done before multiplication and division, which
are in turn done before addition and subtraction. Parentheses are used for grouping
operations together. Arithmetic operators are also used in some non-arithmetic con-
texts. For example, the “+” operator is also used to concatenate character strings,
and the “*” is used for repeating sequences, e.g., "a"*4 is "aaaa", where both
"a" and "aaaa" are strings.

Identifiers in Python, such as variables and function names, consist of a combination

1Python Software Foundation. Welcome to Python.org. c2018 [accessed 2018 May]. https:
//www.python.org/.

2NumPy developers. NumPy. c2018 [accessed 2018 Apr]. http://www.numpy.org/.
3SciPy developers. SciPy. c2018 [accessed 2018 May]. http://www.scipy.org/.
4Pandas developers. pandas: powerful Python data analysis toolkit. c2017 [accessed 2018 May].

http://pandas.pydata.org/pandas-docs/stable/index.html.
5Matplotlib development team. Matplotlib: Python plotting—Matplotlib 2.2.2 documentation.

c2018 [accessed 2018 May]. https://matplotlib.org/.
6Anaconda, Inc. Anaconda. c2018 [accessed 2018 Mar]. https://anaconda.com.
7Python Software Foundation. PyPI—the Python Package Index. c2018 [accessed 2018 May].

https://pypi.org/.
8Benjamin Peterson. PEP 373 — Python 2.7 Release Schedule. c2008 [accessed 2018 Jul].

https://www.python.org/dev/peps/pep-0373/#update

118

https://www.python.org/
https://www.python.org/
http://www.numpy.org/
http://www.scipy.org/
http://pandas.pydata.org/pandas-docs/stable/index.html
https://matplotlib.org/
https://anaconda.com
https://pypi.org/
https://www.python.org/dev/peps/pep-0373/#update

of letters, numbers, and underscores (“_”). Identifiers, though, cannot start with a
number, nor can they be certain keywords in Python, such as if, while, and so on.
While an identifier can start with an underscore, this is generally only done when
the identifier is used as some internal detail, such as functions or variables meant
only to be used within a Python module.

Numbers in Python are represented mostly straightforwardly, such that, for exam-
ple, 2.3 represents the real number 2.3, and 1 represents the integer 1. Scientific
notation is represented such that 1.23456e7means 1.23456×107. Complex num-
bers can be represented as well; the complex number 1.3+2.1i is expressed as 1.3
+ 2.1j. (The imaginary unit i is represented as 1j in Python, not as j. The latter
is just a variable name.) Internally, a Python interpreter represents real numbers ap-
proximately as so-called floating-point numbers,9 much as interpreters and compil-
ers of other languages do. This representation is distinct from a Python interpreter’s
internal representation of integer values. Among other things, this means that the
expressions 1 and 1.0 do not mean exactly the same thing in Python. The former
indicates an integer value, while the latter represents a floating-point number.

Other literal quantities in Python are character strings and Boolean values. Charac-
ter strings are delimited by either single or double quotes. For example, either 'a
string' or "a string" represents a string consisting of the characters “a”,
a space, “s”, “t”, “r”, “i”, “n”, and “g”. Multiline strings may be delimited by a
triplet of single or double quotes, that is, either “'''” or “"""”. Certain sequences
in strings that begin with a backslash (“\”) are interpreted specially. In particular,
"\n" indicates a newline, and "\\" indicates a literal backslash. Boolean values
are represented in Python by the keywords True and False.

Python has a few other special characters and character sequences. One of these
is the character “#”, which indicates the start of comment text. Everything from
this character to the end of the line is ignored by the Python interpreter. Another
is the operator “=”, which is used to assign values to variables. The following are
examples of assignment statements, with comments indicating what the assignment
statement is doing:

x = 1 # Assigning 1 to the variable x

9Goldberg D. What every computer scientist should know about floating-point arithmetic. ACM
Comput Surv. 1991;23(1):5–48.

119

y = 2e5 # Assigning 200000.0 to the variable y

z = 6.3e-2 # Assigning 0.063 to the variable z

In general, statements in Python are terminated at the end of a line, provided that

they are complete statements. For example,

a = x + y + z

is a complete statement on a single line that adds the variables x, y, and z together
and assigns the resulting sum to a, while

a = x + y +

is not complete and is treated as an error in Python. There are a couple solutions
to this. The first is to end the incomplete statement with a backslash. This indicates
to the Python interpreter that it should look to the next line to try to complete the
statement. Accordingly, the following Python code is correct:

a = x + y + \

z

However, if an incomplete statement includes a opening parenthesis, bracket, or
brace (i.e., “(”, “[”, or “{”), then Python attempts to complete the statement by
whatever is between the end of the current line and the corresponding closing paren-
thesis, bracket, or brace (i.e., “)”, “]”, or “}”). Accordingly, the following is es-
sentially equivalent to the previous example Python code:

a = (x + y +

z)

In this code, brackets or braces could not have been used because they have special
meanings in Python that are illustrated in Sections B.4 and B.5.

Assignment and arithmetic can be combined in Python. For example, in the follow-
ing code,

x += 2

the variable x is incremented by 2. If “-=” were used instead, x would be decre-
mented by 2, and “*=” and “/=” would multiply and divide x by 2, respectively.

Relational and logical operations are usually used with the control structures dis-
cussed in Section B.11. The relational operators “<”, “>”, “<=”, “>=”, “==”, and

120

“!=” mean what they do in most programming languages, so for example, the ex-
pression “x < y” tests if x is less than y, “x >= y” tests if x is greater than or
equal to y, “x == y” tests if x equals y, and “x != y” tests if x is not equal
to y. Negation is indicated by the keyword “not”, so that not True is False
and vice versa. Similarly, Boolean operations “and” and “or” are represented by
keywords as well, namely, and and or. The expression x and y is True only
if both x and y are True, and the expression x or y is False only if both x

and y are False. Both these operators short-circuit; if the first operand of the and
operator is False, the second operand is never evaluated, and if the first operand
of the or operator is True, the second operand is never evaluated.

B.2 Methods and Attributes
Like many languages, Python has functions, which take one or more arguments,
perform some sequence of operations with those arguments, and possibly return
values. For example, abs(x) is the absolute value of x. These could be considered
free functions, in the sense that they exist apart from any particular object. However,
there are also functions that are essentially part of an object and are invoked in a
special way that accounts for this. These may be described as member functions
but are more commonly called methods. Whereas a free function my_func may
be invoked as my_func(x, y, z), a method my_method bound to an object
x would be invoked as x.my_method(y,z). Different kinds of objects have
different methods associated with them.

For example, strings have several methods associated with them. The method
startswith returns a Boolean value that indicates if a string starts with a certain
string of characters. Example usages are shown:

f = "barbaz"

bar_start = f.startswith("bar") # bar_start is True

f_start = f.startswith("f") # f_start is False

Methods do not have to be applied to variables; for example, the method invocation
"barbaz".startswith("bar") is perfectly valid.

As another example, the method conjugate is associated with numbers and re-
turns the complex conjugate of a number. For example, (1 + 2j).conjugate()

returns 1 - 2j.

121

Objects can have attributes as well as methods. Loosely speaking, attributes may
be described as methods that not only take no arguments (like the conjugate
method mentioned previously) but also do not need parentheses to invoke them.
For example, if z is 3 + 5j, then z.real (not z.real()!) is the real part of
z, or 3, and z.imag (not z.imag()!) is the imaginary part of z, or 5.

B.3 Format Strings
Format strings are a kind of template. They contain pairs of braces (i.e., “{}”)
that can be substituted by other expressions. An example format string would be
"Re(z) = {}, Im(z) = {}". To use a format string, one uses the format
method, as shown in the following example code:

z = 2 + 3.2j

out_string = "Re(z) = {}, Im(z) = {}".format(z.real, z.imag)

print(out_string)

This prints out the string “Re(z) = 2.0, Im(z) = 3.2.” Doubled braces in
a format string, “{{” or “}}”, are replaced by “{” or “}”, respectively, by the
format method.

Typically, what a format string substitutes for “{}” is the string representation of
an object returned by the function str. In this case, str(z.real) is "2.0",
and str(z.imag) is "3.2". Of course, the string representation of a string is
the string itself. Objects other than numbers and strings have string representations
as well, though the usefulness of these representations may vary.

B.4 Lists and Tuples
Both lists and tuples are sequences of arbitrary objects. For example, a list may be
created and assigned to list_x as follows:

list_x = [42, "tuna", 1 + 3j, 2.0, 7]

Similarly, a tuple may be created and assigned to tuple_x as follows:

tuple_x = (42, "tuna", 1 + 3j, 2.0, 7)

Accessing the elements of tuples and lists also works the same way. Both use 0-
based indexing, so the first element of a list or tuple x is x[0], the second element
is x[1], and so on. So-called slices can also be used to access subsets of a list or tu-

122

ple. For example, list_x[1:4] and tuple_x[1:4] return the second through
the fourth elements of list_x and tuple_x, respectively, that is, "tuna", 1 +

3j, and 2.0. The slice 1:4 starts with the second element because the number
before the colon in the slice, 1, is the index of the second element (due to 0-based
indexing). The slice ends with the fourth element because the number after the colon
in the slice, 4, is the index of the fourth element plus 1 (i.e., 3 + 1).

Another similarity between lists and tuples is that the number of elements in both is
determined with the same function, len. The number of elements in a list or tuple
x is len(x).

There is a significant difference between lists and tuples, though; only the for-
mer is mutable. For example, one may change the first element of list_x to 54
with the statement list_x[0] = 54. However, attempting to execute the state-
ment tuple_x[0] = 54 leads to the error message, TypeError: ’tuple’

object does not support item assignment. One can also append to
a list (but not a tuple). For example, the following Python code appends two items
to a list y, which happens to initially be empty:

y = []

y.append("item 1")

y.append("item 2")

Once this code is executed, y becomes the list ["item 1", "item 2"].

Both lists and tuples can be unpacked. For example, if x is the list ["one",
"two"] or the tuple ("one", "two"), then the assignment statement

x1, x2 = x

leads to the variables x1 and x2 being set to the strings "one" and "two", re-
spectively.

B.5 Dictionaries
In Python, a dictionary is a set of key/value pairs. The following Python code shows
how a dictionary may be constructed:

month_str_to_num = {

"jan": 1, "feb": 2, "mar": 3, "apr": 4,

"may": 5, "jun": 6, "jul": 7, "aug": 8,

"sep": 9, "oct": 10, "nov": 11, "dec": 12

123

}

In this example, the keys are strings that stand for calendar months, and the value
associated with each string is the number corresponding to that month. Keys do not
have to be strings. Numbers and tuples of numbers can be keys as well. Not all
objects are suitable keys, though. For example, lists cannot be keys. However, the
values in a dictionary can be any sort of object.

Accessing elements of a dictionary is somewhat similar to accessing ele-
ments of a list or tuple. For example, in the previous example dictionary,
month_str_to_num["jun"] is 6. The number of key-value pairs in a dictio-
nary is determined via the same function len used to obtain the number of elements
in a list or tuple, so len(month_str_to_num) is 12.

Additional key/value pairs may be added to a dictionary after its initial creation. For
example, in the following code,

my_data = {}

my_data["var1"] = [1,2,3]

my_data["var2"] = [(3,2), (46,7), (2,5)]

initially my_data is an empty dictionary, and the dictionary entries
my_data["var1"] and my_data["var2"] are created when values are as-
signed to them. One can also use the updatemethod to add or modify a dictionary.
For example, the following code replaces the value associated with the key "var1"
with the number 55, and adds a new key/value pair, "var3"/"new value":

my_data.update({"var1": 55, "var3": "new value"})

The keys of a dictionary can be accessed via the keys method. For ex-
ample, list(my_data.keys()) returns the list ["var1", "var2",

"var3"]. Similarly, the key/value pairs in a dictionary can be accessed
by the items method, with list(my_data.items()) returning the
list of tuples [("var1", 55), ("var2", [(3, 2), (46, 7), (2,

5)]), ("var3", "new value")]. (The methods keys and items tech-
nically return so-called iterators, which are discussed more in Section B.11.
The function list converts the iterator to a list.) To determine if a key is already
in a dictionary, one can use the keyword operator in. For example, "var1" in

my_data returns True, whereas "var4" in my_data returns False.

124

B.6 Function Definition and Invocation
Python has several built-in functions, and users can define their own functions as
well. A somewhat contrived example of a function definition is shown:

from cmath import sqrt

def qd_formula(a, b = 0, c = 0):

"Solves the quadratic equation a*x**2 + b*x + c = 0"

sqrt_b2_minus_4ac = sqrt(b**2 - 4*a*c)

two_a = 2*a

return ((-b - sqrt_b2_minus_4ac)/two_a,

(-b + sqrt_b2_minus_4ac)/two_a)

All of the indented lines after the colon (“:”) on the line starting with def form the
body of a function named qd_formula, which implements the quadratic formula
x = (−b ±

√
b2 − 4ac)/2a. The very first line in the body is a string that docu-

ments what the function does. The sqrt function implements the square root. It
has been imported from the cmathmodule, which contains definitions of functions
that work with complex numbers, so sqrt(-1) returns 1j instead of producing
an error. (More on importing modules is discussed in Section B.7.) Finally, the
function returns a tuple containing the two solutions of the quadratic formula.

This function can be invoked several different ways. For example, it could be in-
voked simply as qd_formula(1,2,2), which returns the complex values −1±i.
It could also be invoked as qd_formula(a = 1, b = 2, c = 2) or even
qd_formula(b = 2, c = 2, a = 1), and the same result would be ob-
tained. These latter ways of invoking the function involve so-called keyword argu-

ments. One can even invoke the function as qd_formula(**my_args), where
my_args is the dictionary {"a": 1, "b": 2, "c": 2}. This function also
has default values for arguments b and c, so that arguments that are not explicitly
passed are assigned these values. For example, qd_formula(1,2) means the
same thing as qd_formula(1,2,0), and qd_formula(1, c = 2) means
the same thing as qd_formula(1,0, c = 2) or qd_formula(1,0,2).
While this example is contrived, the use of keyword and default arguments is not.
Many Python functions (such as those from the Matplotlib and Pandas modules)
have a large number of arguments, and to make that large number of arguments
manageable, most of these argument have default values. The few arguments that

125

need to be supplied explicitly are then usually supplied by keyword for the sake of
readability.

Small functions can also be defined via the lambda keyword. For example, in the
following contrived example,

add2 = lambda a, b: a + b

a function add2 is defined that adds two numbers. It works like an ordinary func-
tion, so add2(1,2) returns 3. Only a single expression is allowed after the colon
in a lambda expression. Also, in practice, a lambda expression, such as the one
on the right-hand side of the “=” operator in the above Python code, is usually not
assigned to a variable. Instead, it is often used as an argument to another function,
especially in cases where a simple one-off function are needed.

B.7 Importing Modules
Strictly speaking, very few functions are directly built-in to Python. Rather, most
functions belong to modules, either those that are part of Python’s standard library
or third-party modules such as NumPy. In Section B.6, there is a brief example
where a particular function sqrt is imported from the module cmath. Alterna-
tively, the whole module could have been imported with the following statement:

import cmath

If this were used instead of “from cmath import sqrt” in Section B.6, then
the definition of qd_formula would have had to use cmath.sqrt in place of
sqrt. In general, when a module is imported, in order to use the functions within
it, one must prefix their names with the name of the module and a period (“.”).

Modules may also contain submodules. For example, the os module of Python’s
standard library contains a submodule named path, which contains various func-
tions for manipulating file names. Accordingly, when the submodule is imported
with the following Python code,

import os.path

those functions have the “os.path.” prefix.

To reduce typing, modules can be given a short name via the as keyword of an
import statement. For example, it is common to import the NumPy module as

126

follows:

import numpy as np

Accordingly, functions from the NumPy module are then prefixed with “np.” in-
stead of using the “numpy.” prefix.

A module can be created by simply writing a Python file containing function def-
initions. For example, one may write a file named my_functions.py with the
following contents:

from cmath import sqrt

def qd_formula(a, b = 0, c = 0):

sqrt_b2_minus_4ac = sqrt(b**2 - 4*a*c)

two_a = 2*a

return ((-b - sqrt_b2_minus_4ac)/two_a,

(-b + sqrt_b2_minus_4ac)/two_a)

def add2(a,b):

return a + b

If a Python script is executed from the same directory as the file my_functions.py,
then it can import the module by having the following statement in it:

import my_functions

Then, the script can invoke the functions in the module by prefixing them with
“my_functions.”:

x1, x2 = my_functions.qd_formula(1,2,3)

y = my_functions.add2(x1, x2)

There are other ways to create modules, as well as ways of installing them so that
their contents do not need to be in the same working directory as a Python script,
but these are outside the scope of this introduction.

B.8 Cross-platform File Path Functions
Python runs on several platforms, including Windows, MacOS, and Linux. In gen-
eral, various platforms have different ways of specifying paths to files. For example,
on Windows, typically a path to a file is specified as path\to\file, while on
MacOS and Linux, it is specified as path/to/file. However, to ensure porta-
bility, it is best to specify the file path in Python as os.path.join("path",

127

"to", "file"). This constructs a path with backslashes on Windows and for-
ward slashes on MacOS and Linux.

To specify a parent directory in a cross-platform manner, one should use the variable
os.pardir. For example, if a script is in the directory path/to/script_dir
(or path\to\script_dir), and it needs to access the file path/to/my_data
(or path\to\my_data), then the file my_data is in the parent directory of
script_dir, and the script in script_dir can thus specify the file as follows:

my_data_file_name = os.path.join(os.pardir, "my_data")

Of course, to use both os.path.join and os.pardir, the module os must be
imported.

B.9 Third-Party Data Structures
These data structures come from modules that are add-ons to Python, rather than a
part of its standard library.

B.9.1 NumPy Arrays
In general, a NumPy array contains an n-dimensional grid of values, where the val-
ues in an array must all have the same type (e.g., integer, floating-point, complex).
If n = 2, then the array resembles a matrix. If n = 1, then the grid of values reduces
to a sequence of values, like a row or column vector. The following code creates a
2-D array that represents a 2 × 3 grid of floating-point values:

import numpy as np

A = np.asarray([[1.0, 2.0, 3.0],

[4.0, 5.0, 6.0]])

The function asarray can be used to construct an array. Since a 2-D array is being
constructed, the argument to asarray is a list of lists, where each element of the
list represents a row in the resulting array. To create a 1-D array, one simply passes
a list of values to asarray:

v = np.asarray([3.5, 7.8, 6.2, 1.5])

(There is also a function array in NumPy that can be used to construct arrays.
The advantage of using asarray instead of array is that if asarray is given
a NumPy array as an argument, it simply returns that argument without making a

128

copy of it, thus saving both time and memory.)

Accessing elements of a 1-D array is much like accessing elements of a list or tuple.
Indexing is still 0-based. The slice syntax may be used as well, so for example,
given the definition of v in the previous Python code, v[1:3] is the 1-D array
with elements 7.8 and 6.2. Accessing elements of an array is similar to accessing
elements of a vector. For example, given the previous definition of A, A[0,1] is
the element in its first row and second column (i.e., 2). The expression A[1,1:3]
indicates the second and third elements of the second row (i.e., 5 and 6). Also,
A[1,:] is the whole second row (i.e., 4, 5, and 6), and A[:,2] is the third column
(i.e., 3 and 6).

Arithmetic operators work elementwise on arrays. For example, if A1 and A2

both have dimensions n1 × n2 × n3, then A1*A2 is such that its elements are
A1[0,0,0]*A2[0,0,0], A1[0,0,1]*A2[0,0,1], and so on. Arithmetic
operations with scalars and arrays are defined as well. If b is a scalar, then A1**b
is such that its elements are A1[0,0,0]**b, A1[0,0,1]**b, and so on.
There are also functions in NumPy that operate elementwise on arrays. For ex-
ample, np.sqrt(A1) is such that its elements are

√
A1[0,0,0],

√
A1[0,0,1],

and so on. These functions also can also operate on lists and tuples that can
be converted to arrays; np.sqrt([1.0, 2.0]) is essentially equivalent to
np.sqrt(np.asarray([1.0, 2.0])).

NumPy arrays have various attributes. For example, the T attribute is the transpose
of an array, so A.T (where A is still defined as shown above) is the following 3 × 2
array:

1 4
2 5
3 6

Another attribute is shape, which is a tuple containing the dimensions of the array.
For example, A.shape is (2, 3).

B.9.2 Pandas Data Frames
The data frames defined by the Pandas module are table-like data structures. The
data in a given column of a data frame must be of the same type, but different
columns may have different types of data. Often, data frames are created by reading
in external data. For example, given a CSV file named my_data.csv with the

129

following contents,

AA,BB,Test

1.8, 2, 44.5

3.1, 2, 32.1

0.5, 1, 55.3

0.4, 6, 66.3

a data frame named df may be created as follows.

import pandas

df = pandas.read_table("my_data.csv", sep = ",")

Here, the argument “sep = ","” indicates that a comma should be taken as the
separator between two elements of a row. Equivalently, the data frame may be read
in the following way:

df = pandas.read_csv("my_data.csv")

Columns of data frames can be accessed via the name of the column. For example,
df["AA"] is a sequence with the components 1.8, 3.1, 0.5, and 0.4. (This sequence
is actually another data type from Pandas called a series, which behaves much like a
1-D NumPy array.) Data frames also have two attributes, iloc and loc, which can
be used to access the elements of a dataframe. The attribute iloc allows the ele-
ments to be accessed like elements of a 2-D array, so for example df.iloc[0,2]
returns the third element of the first row, or 44.5, and df.iloc[1:3,1] ac-
cesses the second and third rows of the second column, or the sequence of ele-
ments 2 and 1. The attribute loc accesses elements by the labels of a data frame.
For example, df.loc[:,"AA"] returns the column with the name "AA", while
df.loc[1:2,"BB"] returns the second and third rows of column "BB".

The shape attribute of a data frame is a tuple whose first element is the number of
rows in the data frame and whose second element is the number of columns in it.
For example, df.shape is (4,3).

B.10 Plotting with Matplotlib
The capabilities and limitations of the plotting functionality in Matplotlib may be
shown with some simple examples. Suppose, for instance, that one wishes to plot
the following NumPy arrays (where the NumPy module has been imported as np):

130

x is an array of 10 evenly spaced values from 1.0 to 5.0

x = np.linspace(start = 1.0, stop = 5.0, num = 10)

x_sq = x**2

This may be done simply with the following Python code:

import matplotlib.pyplot as plt

import os.path

plt.figure(figsize = (2.0,2.0))

plt.plot(x, x_sq)

plt.xlabel("x")

plt.ylabel("x^2")

plt.tight_layout()

plt.savefig(os.path.join("plot_files", "plot_example1.pdf"))

The function figure from the matplotlib.pyplot submodule is used here
to set the width and height of the figure to 2 inches. The plotting is done, of course,
with the plot function, which by default plots the curve shown in Fig. B-1a. The
functions xlabel and ylabel are used to set the labels of the x- and y-axes,
respectively. The argument of the latter is bracketed by dollar signs to indicate that
it should be treated as LATEX,10 which causes the character “ˆ” to be treated as an
indicator that “2” is a superscript. It also causes the “x” in the label to be shown
in italics. Because the figure size is small, the tight_layout function is needed
so that the axis labels appear in the plot. Finally, savefig is used to save the plot
to a file named plot_example1.pdf in the directory plot_files (assuming
that the directory already exists).

Suppose one wishes to plot the following variable as well:

two_x_sq = 2*x_sq

One might first attempt to plot the above variable and the previous ones on the same
graph as follows:

plt.figure(figsize = (2.0,2.0))

plt.plot(x, x_sq)

plt.plot(x, two_x_sq)

10LATEX project team. LATEX: a document preparation system. c2018 [accessed 2018 May].
https://www.latex-project.org/.

131

https://www.latex-project.org/

2.5 5.0
x

0

10

20

x2

2.5 5.0
x

0

20

40

x2 ,
2x

2

(a) (b)

2.5 5.0
x

0

20

40

y

x2

2x2

(c)

Fig. B-1 Example plots used to illustrate the plotting features of the Python module Matplotlib

132

plt.xlabel("x")

plt.ylabel("x^2, $2x^2$")

plt.tight_layout()

plt.savefig(os.path.join("plot_files", "plot_example2.pdf"))

Here, the plot function is used twice, first to plot x2 versus x and then to plot
2x2 versus x. Also, the label for the x-axis is bracketed in dollar signs so that it is
presented in italics, just as the label for the y-axis is.

The resulting plot, shown in Fig. B-1b, has a couple problems. First, it is not clear
which curve belongs to which variable. Second, the two curves are only distin-
guished by different line colors. For plots that may be later printed in black and
white (or for the color-blind), this can be a problem. To fix the first problem, a
legend is added. To fix the second problem, line styles are explicitly supplied:

plt.figure(figsize = (2.0,2.0))

plt.plot(x, x_sq, label = "x^2", linestyle = "solid")

plt.plot(x, two_x_sq, label = "$2x^2$", linestyle = "dashed")

plt.xlabel("x")

plt.ylabel("y")

plt.legend(loc = "upper left")

plt.tight_layout()

plt.savefig(os.path.join("plot_files", "plot_example3.pdf"))

The results of this code are shown in Fig. B-1c.

B.11 Control Structures
Control structures allow for more complicated logic to be used in Python scripts. A
few of these structures are shown in this section.

B.11.1 Branching: if, elif, else
The if/elif/else structure is as follows:

if condition:

Statements executed if condition is True

elif other_condition:

Statements executed if other_condition is True

else:

Statements executed if none of the conditions are true

Here, the comments substitute for statements that would be used in an if/elif/

133

else structure in practice. These comments are indented in same way that the
actual statements would need to be indented, since the Python interpreter uses the
indentation itself to determine which statements belong to the if, elif, and else
statement blocks. The variables condition and other_condition stand in
for expressions that may evaluate to either True or False, such as, for example,
x <= x_threshold. Both the elif and else blocks are optional. The key-
word elif is short for “else if”. Without it, the previous Python code would be
written as follows:

if condition:

Statements executed if condition is True

else:

if other_condition:

Statements executed if other_condition is True

else:

Statements executed if none of the conditions are true

B.11.2 Iteration: while and for
The while loop is as follows:

while condition:

Statements executed so long as

condition is True

Here, the comments substitute for statements that would be used in a practi-
cal while loop, and the variable condition stands in for an expression that
may evaluate to either True or False, such as err > threshold. Indented
statements below the while clause are iterated (i.e., repeatedly executed) until
condition becomes False, so these statements should include some statement
that would alter condition, or else the while loop iterates forever (or more re-
alistically, until someone kills or interrupts the Python session). A trivial example
of a terminating while loop (i.e., one that stops iterating eventually) is as follows:

x = 10

while x > 0:

x -= 1

Since the body of the while loop keeps decrementing x by 1, the loop condi-
tion x > 0 eventually becomes false. One may also force a while loop to stop
iterating after a fixed number of iterations as follows:

threshold = 1e-6

err = 2*threshold

134

i = 0

while err > threshold:

estimate_and_err = do_estimate(A,B,C)

err = estimate_and_err[1]

i += 1

if i > 1000:

break

The break statement causes the loop to terminate once i exceeds 1000, even if
the condition err > threshold has not yet been reached. This might be done,
for example, in case the (made up) function do_estimate does not successfully
reduce err as much as it should.

Alternatively, the logic of the previous while loop can be rewritten with a for
loop:

threshold = 1e-6

for i in range(1000):

estimate_and_err = do_estimate(A,B,C)

err = estimate_and_err[1]

if err <= threshold:

break

This loop is intended to execute the indented statements below the for clause for
a fixed number of iterations. Provided that err always exceeds threshold, this
particular loop iterates 1000 times. Of course, here the break statement can cause
the for loop to terminate before 1000 iterations have completed, provided that the
condition err <= threshold is reached. Also, at each iteration of the loop, the
loop variable i takes on a different value, 0 for the first iteration, 1 for the second,
and so on, until i reaches the value of 999. Since the value of i is not used in the
body of this particular loop, the change in its value does not appear to matter, but in
a loop such as this:

for i in range(len(v1)):

v2[i] = do_something(v1[i])

where the loop variable i is used to access successive values of v1 and v2, which
may be lists, tuples, or 1-D arrays.

The expression range(N) used in the previous for loops expresses the sequence

135

0, 1, 2, . . . , N − 1. The sequence generated by the range function does not have
to start at zero. The expression range(N_start, N) expresses the sequence
N_start, 1, 2, . . . , N − 1. To be more precise, the range function returns an
iterator, a generator that returns the next element of a sequence with each iteration of
a for loop. The iterator returned by range generates a monotonic, evenly spaced
sequence of integers without holding all the values of the sequence in memory at
once.

A for loop does not necessarily have to involve the range function. Rather, one
may iterate over any sequence or iterator, including lists, tuples, dictionaries, and
NumPy arrays. For example, the following Python code,

list_abD = ["a", "b", "D"]

for l_abD in list_abD:

print(l_abD)

simply prints out the elements of list_abD, that is, "a", "b", and "D", and the
following code,

dict_abD = {"a": 1, "b": 2, "D": 3}

for k, v in dict_abD.items():

print("Key = {}; Value = {}".format(k,v))

prints the key/value pairs of dict_abD. This example also shows the use of se-
quence unpacking in for loops. Essentially, it is equivalent to the following code,

dict_abD = {"a": 1, "b": 2, "D": 3}

for key_val_tuple in dict_abD.items():

k, v = key_val_tuple

print("Key = {}; Value = {}".format(k,v))

except that the intermediate variable key_val_tuple is not used.

One can also use the iterator enumerate to generate an index that accompanies
successive elements of a list, as shown in the following code:

list_abC = ["a", "b", "C"]

for i, l_abC in enumerate(list_abC):

print("Item {}: {}".format(i, l_abC))

This prints Item 0: a, Item 1: b, and Item 2: C.

136

B.11.3 Abbreviated for Loops: List and Dictionary Comprehensions
Certain kinds of for loops can be presented in abbreviated form. For example, the
for loop in the following Python code builds a new list, list_of_lengths,
where each element is the result of applying the function len to the corresponding
elements of a preexisting list, list_of_lists:

list_of_lists = [

[3,4,2,5],

[6,7,1],

[5],

[3,5],

[1,2,3,4,5,6],

[2]

]

list_of_lengths = []

for l in list_of_lists:

list_of_lengths.append(len(l))

This for loop can be expressed more concisely with what in Python is called a list

comprehension:

list_of_lengths = [len(l) for l in list_of_lists]

Here, list_of_lengths is [4, 3, 1, 2, 6, 1]. List comprehensions
can have a filter, as in the following example:

list_of_len_gt_1 = [len(l) for l in list_of_lists if len(l) > 1]

Here list_of_len_gt_1 is [4, 3, 2, 6], which is like list_of_lengths
except that all entries not satisfying condition len(l) > 1 are removed.

Dictionary comprehensions are much like list comprehensions. For example, the
for loop in the following Python code that generates a dictionary,

param_names = ["A", "B", "n", "C", "m"]

param_to_index = {}

for i, param in enumerate(param_names):

param_to_index[param] = i

can be expressed as follows:

param_to_index = {param: i for i, param in enumerate(param_names)}

Both the explicit for loop and the dictionary comprehension create dictionaries

137

that map a string (indicating a parameter name) to a numerical index.

B.11.4 Exception Handling: try and except
When the Python interpreter encounters an error, it often raises what is called an
exception, an object that contains information about an error, such as a message on
what the error is and the line number in the Python code that raises the exception.
Raising exceptions typically halts the execution of a Python script, which may not
be desirable. To handle the exceptions that may be raised, one can use try and
except statements. A simple example example usage is as follows:

try:

do_something_dodgy returns True if it works. It may return

False if it doesn't, or it may just go awry.

dodgy_flag = do_something_dodgy(A,B,C)

except:

print("WARNING: do_something_dodgy failed!")

dodgy_flag = False

Again, Python uses indentation to determine which statements are part of the try
block and which are part of the except block.

In the previous example, all possible exceptions are handled. However, in many
cases, one should handle very specific exceptions, such as in the following example
function definition:

def str_to_num(x):

"A non-robust converter of strings to real numbers"

try:

return int(x)

except ValueError:

return float(x)

This function first attempts to convert a string to an integer via the int function.
If this function raises a ValueError exception, indicating that it has been passed
a string argument that cannot be interpreted as an integer (e.g., "1.0"), then an
attempt is made to convert the string to a floating-point number via the float

function.

B.11.5 Context Management: The with Statement
The with statement has two forms, either

with my_expr:

138

Statements in "with" block

or

with my_expr as my_var:

Statements in "with" block

In the second form of the with statement, the Python expression my_expr is an
object that is assigned to the variable my_var. The statements in the with block,
which are the statements indented below the with clause, are executed in a context
that depends on the type of my_expr. To be more precise, the object my_expr
has two methods, __enter__ and __exit__, the first of which is invoked at the
start of the with block, and the second of which is invoked either after the end of
the with block or if an unhandled exception is encountered.

A common usage of the with statement is in opening files, such as in the following
example:

with open("out_file.txt", "w") as out_file:

out_file.write("Stuff and ")

out_file.write("More Stuff\n")

where the expression open("out_file.txt", "w") opens the file named
out_file.txt so that it can be written. The object representing this open file
is assigned to the variable out_file, which is used to write the string "Stuff
and More Stuff" to the file. Afterward, the file is closed. If the statements in
the with block somehow raise an exception, the file is still closed.

B.12 Saving Python Objects to Pickle Files
An object in Python, such as one of the data structures described in Sections B.4,
B.5, and B.9, can often be pickled, that is, serialized as a stream of bytes, which can
then be saved to what here is called a pickle file. This file can be used to read in the
object into another Python session. The following code shows an example of saving
an object:

import pickle

xyz = {"x": (3,4,2), "y": 3 + 2j, "z": "string_val"}

with open("xyz.pkl", "wb") as f:

pickle.dump(xyz, f)

139

The function dump from the pickle module (which is part of Python’s standard
library) writes the dictionary xyz to a file object f associated with the file named
xyz.pkl. The "wb" in the second argument to open is important; it means that
the file is opened for writing in binary mode, so that the contents of it are treated as
a stream of bytes rather than as text. The dump function does not work otherwise.

In another Python session, the dictionary can be read in with the load function
from the pickle module and printed as follows:

import pickle

with open("xyz.pkl", "rb") as f:

xyz_take_2 = pickle.load(f)

print(xyz_take_2["x"])

print(xyz_take_2["y"])

print(xyz_take_2["z"])

As can be seen from this example, when an object is read from a file and stored in
a variable, this variable need not have the same name as the variable that stored the
object in a previous session. Not all objects can be pickled. However, attempting to
pickle an unpicklable object raises a PicklingError exception.

The format of the byte stream to which pickled objects are serialized is controlled
by the optional argument, protocol, of the dump function. At the time of writing,
by default, the value of this optional argument is 3, indicating that the format used
is one that can be read by Python 3.x interpreters but not Python 2.x interpreters.
Setting protocol to a lower value uses an earlier, more backward-compatible for-
mat. Since the byte stream format is stable and not supposed to have undocumented
changes with new Python versions, it is possible, if not recommended, to use pickle
files for long-term storage.

140

Appendix C. Python Code for Bayesian Analysis

141

These are the contents of Python module files that have been used for Bayesian
analyses of strength models. Comments of the form #!{...} can be ignored,
since they are meant to be read by tools that extract source code fragments. Doc-
umentation of the parameters and return values of functions follows the guidelines
of the Numpydoc docstring guide.1

C.1 Module File bayes_stress_strain_utils.py
import numpy as np

import scipy

import pandas

import matplotlib.pyplot as plt

import itertools

import json

import pickle

import gzip

import os

import time

import warnings

try:

import pystan

_pystan_available = True

except:

_pystan_available = False

If PyStan is not installed, then there is no point in loading the

stan_utility module (and it will not be importable anyway). This

should not be an issue for those who do not plan to use PyStan.

if _pystan_available:

import stan_utility

try:

import pymc3 as pm

_pymc3_available = True

except:

_pymc3_available = False

Function internal to module

def _ensure_path_to_file_exists(file_name):

"""Ensures that path to a file exists, and if not creates it.

Parameters

file_name : str

File name

1Numpydoc maintainers. Numpydoc docstring guide. c2017 [accessed 2018 May]. https:
//numpydoc.readthedocs.io/en/latest/format.html

142

https://numpydoc.readthedocs.io/en/latest/format.html
https://numpydoc.readthedocs.io/en/latest/format.html

"""

Obtaining what will be the absolute path of the file

abs_path_name = os.path.abspath(file_name)

Obtaining the absolute path of the directory that will contain

the file. Absolute paths are used because relative paths may not

work with `os.path.dirname`, especially if `file_name` contains

no path separator (e.g. `\` in Windows and `/` in MacOS and

Unix).

abs_dir = os.path.dirname(abs_path_name)

Creating the directory that will contain the file, if that

directory does not yet exist. The `exist_ok = True` argument

allows `os.makedirs` to work even if some subdirectory

components of the path in `abs_dir` already exist.

os.makedirs(abs_dir, exist_ok = True)

def simulate_data(sigma_model_func,

epsilon_p_max,

epsilon_p_dot,

T_init,

theta_model,

beta_TQ,

rho,

specific_heat_func,

curve_size):

"""Create simulated data to test a flow stress model

This function creates data points for a stress-strain curve while

accounting for the temperature rise as the strain increases.

Parameters

sigma_model_func : callable

Function representing a strength model that returns the flow

stress and takes four arguments: plastic strain, plastic

strain rate, temperature, and some data structure containing

the model parameters (such as an Python dictionary)

epsilon_p_max : float

Largest plastic strain for which stresses will be calculated

epsilon_p_dot : float

Plastic strain rate

T_init : float

Initial temperature of the sample being deformed

theta_model

Model parameters of the strength model

beta_TQ : float

143

Taylor-Quinney coefficient

rho : float

Density of sample being deformed

specific_heat_func

Function that returns the specific heat for a given

temperature

curve_size : int

Number of data points in the stress-strain curve

Returns

dict

A dictionary with the following keys and their associated

values:

- "T", a vector of the temperatures for the data points in the

stress-strain curve

- "epsilon_p", the plastic strains for the data points in the

stress-strain curve

- "sigma", the stresses for the data points in the

stress-strain curve

"""

#!{sndepstart}

epsilon_p = np.linspace(0.0, epsilon_p_max, curve_size)

#!{sndepend}

#!{sndinitemptystart}

T = np.empty(curve_size)

sigma = np.empty(curve_size)

#!{sndinitemptyend}

#!{sndsetfirstelemstart}

T[0] = T_init

sigma[0] = sigma_model_func(

epsilon_p[0],

epsilon_p_dot,

T[0],

theta_model

)

#!{sndsetfirstelemend}

#!{sndsetotherelemsstart}

for i in range(1, curve_size):

Estimate of area under stress-strain curve from

epsilon_p[i-1] to epsilon_p[i-1].

area_under_curve = sigma[i-1]*(epsilon_p[i] - epsilon_p[i-1])

144

T_rise = beta_TQ*area_under_curve/(

rho*specific_heat_func(T[i-1]))

T[i] = T[i-1] + T_rise

sigma[i] = sigma_model_func(

epsilon_p[i],

epsilon_p_dot,

T[i],

theta_model

)

#!{sndsetotherelemsend}

#!{sndreturnstart}

return {"T" : T,

"epsilon_p": epsilon_p,

"sigma": sigma

}

#!{sndreturnend}

def plot_stress_strain_curves(output_file,

epsilon_p_dot,

T_init,

epsilon_p, sigma,

space_for_legend = 0.3,

marker_period = 1,

sigma_unit = "MPa",

epsilon_p_dot_time_unit = "s",

T_init_unit = "K",

epsilon_p_label = "ϵ_p",

sigma_label = "σ",

epsilon_p_dot_label = "$\dot{\epsilon}_p$",

T_init_label = "T_{init}"):

"""Plots stress-strain curves

Parameters

output_file : str

Name of the file containing the plots, which may have a file

extension `.pdf`, `.png`, `.eps`, `.ps`, or `.svg`.

epsilon_p_dot : array_like, shape(M,)

List or array of length M, where element `i` contains the

strain rate for curve `i`

T_init : array_like, shape(M,)

List or array of length M, where element `i` contains the

initial sample temperature for curve `i`

epsilon_p : list of 1-d array_like

Strain values for all curves, where `epsilon_p[0]` contains

strain values for the first curve, `epsilon_p[1]` contains

strain values for the second curve, etc.

145

sigma : list of 1-d array_like

Stress values for all curves, where `sigma[0]` contains stress

values for the first curve, `sigma[1]` contains stress values

for the second curve, etc.

space_for_legend : float, optional

Number between zero and one indicating the amount of space in

the plot at the bottom for the legend, such that, for example,

space_for_legend = 0.25 increases the vertical size of the

plot by 25%

marker_period : int, optional

Indicates what data points may be plotted. If the data points

are so densely spaced as to overlap with each other, then one

may wish to set `marker_period` to a value larger than 1 in

order to reduce the number of points shown.

sigma_unit : str

Units of stress, e.g., "MPa". Contents of string are anything

acceptable by matplotlib in a label, including LaTeX-like math

notation delimited by '$'.

epsilon_dot_time_unit : str

Units of time used in the strain rate, e.g., "s" or "sec"

for a strain per second. Contents of string are

anything acceptable by matplotlib in a label, including

LaTeX-like math notation delimited by '$'.

temperature_unit : str

Units of temperature, e.g., "K" for Kelvin. Contents of

string are anything acceptable by matplotlib in a label,

including LaTeX-like math notation delimited by '$'.

epsilon_label : str, optional

Label used for strain. Contents of string are anything

acceptable by matplotlib in a label, including LaTeX-like math

notation delimited by '$'.

sigma_label : str, optional

Label used for stress. Contents of string are anything

acceptable by matplotlib in a label, including LaTeX-like math

notation delimited by '$'.

epsilon_dot_label : str, optional

Label used for strain rate. Contents of string are anything

acceptable by matplotlib in a label, including LaTeX-like math

notation delimited by '$'.

T_init_label : str, optional

Label used for initial sample temperature. Contents of string

are anything acceptable by matplotlib in a label, including

LaTeX-like math notation delimited by '$'.

146

"""

The number of stress-strain curves, num_curves, should be the

same as the number of elements in epsilon_p_dot.

num_curves = len(epsilon_p_dot)

The markers that will be used to decorate points on the

stress-strain curve.

markers = ["None", "o", "v", "^", "<", ">",

"1", "2", "3", "4", "8", "s", "p", "P",

"*", "h", "H", "+", "x", "X", "D", "d"]

The styles of the lines that may be used in the plot.

linestyles = ["solid", "dashed", "dashdot", "dotted"]

This determines the combinations of markers and line styles that

will appear in the plots of successive curves. Here, the first

curve will have marker style "None" (i.e., no marker) and a

solid line, the next curve will also have marker style "None"

but a dashed line, the *fifth* curve will have marker style "o"

and a solid line, the *sixth* curve will also marker style "o"

and a dashed line, and so on.

marker_line_combo = itertools.product(markers, linestyles)

This creates a new empty plot figure that is 7 inches by 7

inches.

plt.figure(figsize=(7.0, 7.0))

This plots each of the stress-strain curves in turn

for curve_ind in range(num_curves):

This retrieves the next available marker and linestyle

marker, linestyle = next(marker_line_combo)

This plots an individual stress-strain curve. Note that

epsilon_p and sigma are lists of arrays, so that

epsilon_p[curve_ind] and sigma[curve_ind] are the strains

and stresses for the current stress-strain curve.

plt.plot(

epsilon_p[curve_ind],

sigma[curve_ind],

linestyle = linestyle,

marker = marker,

markersize = 3, # This reduces the size of the marker in

order to make the plot look nicer.

markevery = marker_period, # This causes a marker to be

printed every "marker_period"

along the stress-strain

curve. If there are so many

data points that the markers

would overlap if

marker_period = 1, then

147

marker_period can be set to a

higher value to reduce the

number of markers printed.

This is the label to be used in the legend for this

curve.

label="{} = {} {}, {} = {}/{}".format(

T_init_label,

T_init[curve_ind],

T_init_unit,

epsilon_p_dot_label,

epsilon_p_dot[curve_ind],

epsilon_p_dot_time_unit

)

)

Making room for the legend at the bottom of the plot

ymin, ymax = plt.ylim()

ymin -= space_for_legend*(ymax - ymin)

plt.ylim(ymin = ymin)

This adds labels to the x- and y- axes.

plt.xlabel(epsilon_p_label)

plt.ylabel("{} ({})".format(sigma_label, sigma_unit))

This adds a legend to the plot

plt.legend(

loc="lower right", # This is the position of the legend in the

plot.

ncol = (2 if num_curves > 4 else 1) # This says that if the

number of stress-strain

curves is greater than

4, two columns will be

used for the legend.

)

_ensure_path_to_file_exists(output_file)

This saves the plot to a file named "output_file".

plt.savefig(output_file)

def gen_lin_interp_func(tab_data_file,

x_col = 0,

y_col = 1,

conv_func_x = lambda x: x,

conv_func_y = lambda y: y,

**kwargs):

"""Generate a function that linearly interpolates tabular data

Parameters

tab_data_file

File with tabular data

148

x_col

Column of the tabular data that contains the x-values,

defaults to 0

y_col

Column of the tabular data that contains the y-values,

defaults to 1

conv_func_x

Function applied to all x-values in the tabular data, defaults

to the identity function

conv_func_y

Function applied to all y-values in the tabular data, defaults

to the identity function

**kwargs

Keyword arguments for the `pandas.read_table` function, which

is used to read the tabular data

Returns

A function that returns a linear interpolation of y-values given

an x-value

"""

xydata = pandas.read_table(tab_data_file, **kwargs)

return scipy.interpolate.interp1d(

conv_func_x(xydata.iloc[:, x_col]),

conv_func_y(xydata.iloc[:, y_col]),

fill_value = "extrapolate"

)

def read_from_json_file(json_file_name):

"""Reads an object from a possibly Gzip-compressed JSON file

Parameters

json_file_name : str

Name of JSON file. If the file ends in ".gz", it is assumed

to be Gzip-compressed.

Returns

The object stored in the JSON file

"""

Again, if the file ends in ".gz", it is expected to be

Gzip-compressed.

if json_file_name.endswith(".gz"):

my_open = gzip.open

else:

149

my_open = open

Reading from the JSON file

with my_open(json_file_name, "rt") as f:

obj = json.load(f)

return obj

def read_from_pickle_file(pkl_file_name):

"""Reads an object from a possibly Gzip-compressed pickle file

Parameters

pkl_file_name : str

Name of pickle file. If the file ends in ".gz", it is assumed

to be Gzip-compressed.

Returns

The object stored in the pickle file

"""

Again, if the file ends in ".gz", it is expected to be

Gzip-compressed.

if pkl_file_name.endswith(".gz"):

my_open = gzip.open

else:

my_open = open

Reading from the pickle file

with my_open(pkl_file_name, "rb") as f:

obj = pickle.load(f)

return obj

def save_to_pickle_file(obj, pkl_file_name):

"""Saves an object to a possibly Gzip-compressed pickle file

Parameters

obj

Any object that can be pickled

pkl_file_name : str

Name of pickle file. If the file ends in ".gz", it will be

Gzip-compressed.

"""

_ensure_path_to_file_exists(pkl_file_name)

Again, if the file ends in ".gz", it will be Gzip-compressed.

if pkl_file_name.endswith(".gz"):

my_open = gzip.open

else:

150

my_open = open

Writing the pickle file

with my_open(pkl_file_name, "wb") as f:

pickle.dump(obj, f)

if _pystan_available:

def print_stan_summary(fit):

"""Prints summary statistics along with diagnostics

This function mainly exists to account for two issues present

in the release versions of PyStan available at the time of

writing: a bug that may cause PyStan to print spurious NaN

values in one of its diagnostics, and certain diagnostic

checks being missing in PyStan but present in RStan. Both of

these issues have been fixed in what is, at the time of

writing, the current development version of PyStan.

Parameters

fit : StanFit4Model

Object containing results from a PyStan MCMC run

"""

Workaround for a PyStan bug

#!{psswkaroundstart}

try:

pystan.constants.EPSILON = float("-inf")

except:

If there is an exception, the constant is longer in

PyStan, so the workaround is not needed.

pass

#!{psswkaroundend}

The above constant, `pystan.constants.EPSILON`, is used in

PyStan as part of an attempt to avoid a divide-by-zero

error. When a denominator used to calculate a diagnostic called

`Rhat` is less than this constant, it is presumed to be

effectively zero, and the diagnostic value is set to

NaN. Unfortunately, this has led to small but still valid

denominator values to be spuriously treated as zero. To fix this

problem, `pystan.constants.EPSILON` is changed from its original

value of 0.000001 to negative infinity.

#!{psssumstart}

Check for divergent transitions

stan_utility.check_div(fit)

Check if transitions hit maximum treedepth

stan_utility.check_treedepth(

fit,

max_depth = int(fit.stan_args[0]["ctrl"]["sampling"]["max_treedepth"])

151

)

Check if BFMI is low

stan_utility.check_energy(fit)

Print summary statistics

print(fit)

#!{psssumend}

def save_stan_fit_to_csv(fit,

summary_csv_filename,

samples_csv_filename):

"""Save summary statistics and MCMC samples to CSV files

Parameters

fit : StanFit4Model object

Object containing results from a PyStan MCMC run

summary_csv_filename : str

Name of CSV file to which summary statistics will be written

samples_csv_filename : str

Name of CSV file to which MCMC samples will be written. If

the file ends in ".gz", it will be Gzip-compressed.

"""

#!{ssftcpathstart}

_ensure_path_to_file_exists(summary_csv_filename)

_ensure_path_to_file_exists(samples_csv_filename)

#!{ssftcpathend}

Writing the summary to a CSV file

#!{ssftcpathsumwritestart}

summary = fit.summary()

summary_df = pandas.DataFrame(summary["summary"],

index = summary["summary_rownames"],

columns = summary["summary_colnames"])

summary_df.to_csv(summary_csv_filename)

#!{ssftcpathsumwriteend}

Again, if the file for the MCMC samples ends in ".gz", it

will be Gzip-compressed.

#

#!{ssftcpathgzipstart}

if samples_csv_filename.endswith(".gz"):

my_open = gzip.open

else:

my_open = open

#!{ssftcpathgzipend}

152

When permuted = False, fit.extract() returns a

three-dimensional array. The size of the first dimension is

the number of iterations; the size of the second dimension

is the number of chains; the size of the third dimension is

the number of parameters, including the pseudoparameter

`lp__`. The samples from chain `chain_id` associated with

the parameter named `summary["summary_rownames"][i]` are in

`samples[:, chain_id, i]`.

#

#!{ssftcpathsampwritestart}

samples = fit.extract(permuted = False)

#!{ssftcpathsampwritemid1}

Writing the samples to a CSV file

Due to a quirk of NumPy's savetxt function, the CSV file has to be

opened in binary mode (the "b" in "wb"), not text mode, even though

the file is text. (See https://github.com/numpy/numpy/issues/6356.)

#

#!{ssftcpathsampwritemid2}

with my_open(samples_csv_filename, "wb") as f:

#!{ssftcpathsampwritemid3}

Since `summary["summary_rownames"]` contains the names

of the parameters in their proper order, it's used for

the column headers of the CSV file.

#

#!{ssftcpathsampwritemid4}

csv_header = ",".join(summary["summary_rownames"])

#!{ssftcpathsampwritemid5}

The "encode("utf-8")" bit is needed because the file

is opened in binary mode.

#

#!{ssftcpathsampwritemid6}

f.write("{}\n".format(csv_header).encode("utf-8"))

#!{ssftcpathsampwritemid7}

Since Python uses 0-based indexing, samples.shape[1] is the size

of the *second* dimension of "samples".

#

#!{ssftcpathsampwritemid8}

for chain_id in range(samples.shape[1]):

#!{ssftcpathsampwritemid9}

As mentioned above, the samples from chain

`chain_id` associated with the parameter named

`summary["summary_rownames"][i]` are in `samples[:,

chain_id, i]`. Accordingly, the 2-d array with the

samples from all the parameters (where the

parameters have the same order as in

153

`summary["summary_rownames"][i]`) is `samples[:,

chain_id, :]`. Since the first argument to

np.savetxt is a file object `f` instead of a string

representing a file *name*, np.savetxt appends to

any pre-existing contents of `f`.

#

#!{ssftcpathsampwritemid10}

np.savetxt(f, samples[:, chain_id, :], delimiter = ",")

#!{ssftcpathsampwriteend}

if _pymc3_available:

def save_pymc3_trace_to_csv(trace,

summary_csv_filename,

samples_csv_filename):

"""Save summary statistics and MCMC samples to CSV files

Parameters

trace : PyMC3 trace

Object containing results from a PyMC3 MCMC run

summary_csv_filename : str

Name of CSV file to which summary statistics will be written

samples_csv_filename : str

Name of CSV file to which MCMC samples will be written. If

the file ends in ".gz", it will be Gzip-compressed.

"""

#!{spttcpathstart}

_ensure_path_to_file_exists(summary_csv_filename)

_ensure_path_to_file_exists(samples_csv_filename)

#!{spttcpathend}

#!{spttcpathsumwritestart}

pm.summary(trace).to_csv(summary_csv_filename)

#!{spttcpathsumwriteend}

#!{spttcpathgzipstart}

if samples_csv_filename.endswith(".gz"):

compression = "gzip"

else:

compression = None

#!{spttcpathgzipend}

#!{spttcpathsampwritestart}

df = pm.trace_to_dataframe(trace)

df.to_csv(samples_csv_filename,

compression = compression, index = False)

#!{spttcpathsampwriteend}

def calc_temps(T_init, epsilon_p, sigma,

154

f_area, beta_TQ, rho, specific_heat_func):

"""Calculate the temperatures for the data points along a stress-strain curve

Parameters

T_init : float

Initial temperature

epsilon_p : array_like, shape(N,)

Sequence of plastic strains

sigma : array_like, shape(N,)

Sequence of stresses

f_area : float

A fraction such that f_area*sigma[0]*epsilon_p[0] is a

reasonable estimate of the area under the missing part of the

stress-strain curve over the interval [0, epsilon_p[0]].

Generally, f_area should be greater than 0.5, but if

epsilon_p[0] is zero, then f_area should be set to zero.

beta_TQ : float

Taylor-Quinney coefficient

rho : float

Density of sample being deformed to obtain stress-strain curve

specific_heat_func : callable

A function accepts a temperature and returns a specific heat

Returns

T : array_like, shape(N,)

Sequence of temperatures such that T[i] is the temperature for

data point (epsilon_p[i], sigma[i])

"""

#!{ctinitstart}

curve_size = len(epsilon_p)

T = np.empty(curve_size)

T[0] = T_init + beta_TQ*f_area*sigma[0]*epsilon_p[0]/(

rho*specific_heat_func(T_init))

#!{ctinitend}

#!{ctcalcstart}

for i in range(1, curve_size):

Using trapezoid rule to estimate area under stress-strain

curve over interval [epsilon_p[i-1], epsilon_p[i]].

area_under_curve = 0.5*(sigma[i-1] + sigma[i])*(

155

epsilon_p[i] - epsilon_p[i-1])

T_rise = beta_TQ*area_under_curve/(

rho*specific_heat_func(T[i-1]))

T[i] = T[i-1] + T_rise

return T

#!{ctcalcend}

def hdi(samples, cred_mass=0.95):

"""Functions for computing limits of HDI of unimodal PDFs

Adapted from the R function HDIofMCMC in the supplementary

material of *Doing Bayesian Data Analysis* by John K. Kruschke.

Parameters

samples : 1-d array_like

List or array of samples from an MCMC run

cred_mass : float, optional

Credibility mass for HDI

Returns

tuple

The tuple has two elements: the minimum and maximum values of

the HDI.

"""

sorted_samps = np.asarray(samples).flatten()

sorted_samps.sort()

This indicates the number of samples in a credible interval (or

"ci" for short).

num_samps_in_ci = int(np.ceil(cred_mass*sorted_samps.size))

This determines the number of possible credible intervals.

num_poss_ci = sorted_samps.size - num_samps_in_ci + 1

Initializing ci_width_min, which will be the width of the

shortest possible credible interval.

ci_width_min = float('inf')

Searching through all possible credible intervals to find the

one with the shortest width, which will be taken to be the HDI.

for i in range(num_poss_ci):

curr_ci_width = sorted_samps[i + num_samps_in_ci - 1] - sorted_samps[i]

if curr_ci_width < ci_width_min:

ci_width_min = curr_ci_width

156

ci_width_min_index = i

return (sorted_samps[ci_width_min_index],

sorted_samps[ci_width_min_index + num_samps_in_ci - 1])

C.2 Module File jc.py
def jc(epsilon_p, log_epsilon_p_dot, T_star,

A, B, n, C, m):

"""Flow stress according to the Johnson-Cook model

Parameters

epsilon_p

Strain

log_epsilon_p_dot

Natural logarithm of the normalized strain rate (i.e. strain

rate divided by the reference strain rate)

T_star

Normalized temperature, usually (T - T_room)/(T_melt - T_room),

where T_melt and T_room are the melting and room temperatures

A, B, n, C, m

The Johnson-Cook parameters

"""

return ((A + B*(epsilon_p**n))*
(1.0 + C*log_epsilon_p_dot)*(1 - T_star**m))

C.3 Module File jc_pymc3.py
from jc import jc

import numpy as np

import pymc3 as pm

def make_jc_model(epsilon_p, sigma,

epsilon_p_dot, T,

T_melt, T_room, epsilon_p_dot_0,

prior_params):

"""Create a PyMC3 model conforming to the Zerilli-Armstrong (BCC) model

Parameters

epsilon_p : list of 1-d NumPy array

Strain values for all curves, where `epsilon_p[0]` contains

strain values for the first curve, `epsilon_p[1]` contains

strain values for the second curve, etc.

sigma : list of 1-d NumPy array

157

Stress values for all curves, where `sigma[0]` contains stress

values for the first curve, `sigma[1]` contains stress values

for the second curve, etc.

epsilon_p_dot : 1-d array_like

List or array where element `i` contains the strain rate for

curve `i`

T : list of 1-d array_like

Temperature values for all curves, where `T[0]` contains

temperature values for the first curve, `T[1]` contains

temperature values for the second curve, etc.

T_melt : float

Melting temperature

T_room : float

Room temperature

epsilon_p_dot_0 : float

Reference strain rate, usually 1.0 per second.

prior_params : dict

Dictionary with the following keys: "A_guess_mean",

"B_guess_mean", "C_guess_mean", "m_guess_mean",

"sd_sigma_guess_mean", "A_guess_sd", "B_guess_sd",

"C_guess_sd", "m_guess_sd", "sd_sigma_guess_sd", "n_alpha",

and "n_beta". The values corresponding to

"sd_sigma_guess_mean" and "sd_sigma_guess_sd" are lists or 1-d

arrays with 2 elements, where both elements are positive

numbers. Values corresponding to other keys are positive

scalars.

Returns

A PyMC3 model

"""

PosNormal = pm.Bound(pm.Normal, lower = 0.0)

model = pm.Model()

num_curves = len(epsilon_p)

T_melt_minus_T_room = T_melt - T_room

log_epsilon_p_dot = np.log(np.asarray(epsilon_p_dot)/epsilon_p_dot_0)

with model:

Priors

A = PosNormal("A",

mu = prior_params["A_guess_mean"],

sd = prior_params["A_guess_sd"])

158

B = PosNormal("B",

mu = prior_params["B_guess_mean"],

sd = prior_params["B_guess_sd"])

n = pm.Beta("n",

alpha = prior_params["n_alpha"],

beta = prior_params["n_beta"])

C = PosNormal("C",

mu = prior_params["C_guess_mean"],

sd = prior_params["C_guess_sd"])

m = PosNormal("m",

mu = prior_params["m_guess_mean"],

sd = prior_params["m_guess_sd"])

sd_sigma = PosNormal("sd_sigma",

mu = np.asarray(prior_params["sd_sigma_guess_mean"]),

sd = np.asarray(prior_params["sd_sigma_guess_sd"]),

shape = 2)

for i in range(num_curves):

T_star = (T[i] - T_room)/T_melt_minus_T_room

pm.Normal("sigma_curve{}".format(i),

mu = jc(epsilon_p[i],

log_epsilon_p_dot[i], T_star,

A, B, n, C, m),

sd = (sd_sigma[0]

if (epsilon_p_dot[i] <= 1.0)

else sd_sigma[1]),

observed = sigma[i])

return model

C.4 Module File stan_utility.py
This module file has been written by Betancourt and used in his case study on robust
workflows with PyStan.2 To comply with the 3-Clause BSD License3 under which
it is distributed, the contents of the license have been added as comments at the top
of the original source file, which has not been otherwise altered.

Copyright 2017 Columbia University

#

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

2Betancourt M. Robust PyStan workflow. c2017 [accessed 2018 Mar]. http://mc-stan.
org/users/documentation/case-studies.html#robust-pystan-workflow.

3The 3-Clause BSD License. c1999 [accessed 2018 Jul]. https://opensource.org/
licenses/BSD-3-Clause.

159

http://mc-stan.org/users/documentation/case-studies.html#robust-pystan-workflow
http://mc-stan.org/users/documentation/case-studies.html#robust-pystan-workflow
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause

are met:

#

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

#

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

#

3. Neither the name of the copyright holder nor the names of its

contributors may be used to endorse or promote products derived from

this software without specific prior written permission.

#

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

import pystan

import pickle

import numpy

def check_div(fit):

"""Check transitions that ended with a divergence"""

sampler_params = fit.get_sampler_params(inc_warmup=False)

divergent = [x for y in sampler_params for x in y['divergent__']]

n = sum(divergent)

N = len(divergent)

print('{} of {} iterations ended with a divergence ({}%)'.format(n, N,

100 * n / N))

if n > 0:

print(' Try running with larger adapt_delta to remove the divergences')

def check_treedepth(fit, max_depth = 10):

"""Check transitions that ended prematurely due to maximum tree depth limit"""

sampler_params = fit.get_sampler_params(inc_warmup=False)

depths = [x for y in sampler_params for x in y['treedepth__']]

n = sum(1 for x in depths if x == max_depth)

N = len(depths)

print(('{} of {} iterations saturated the maximum tree depth of {}'

+ ' ({}%)').format(n, N, max_depth, 100 * n / N))

if n > 0:

print(' Run again with max_depth set to a larger value to avoid

saturation')

def check_energy(fit):

160

"""Checks the energy Bayesian fraction of missing information (E-BFMI)"""

sampler_params = fit.get_sampler_params(inc_warmup=False)

no_warning = True

for chain_num, s in enumerate(sampler_params):

energies = s['energy__']

numer = sum((energies[i] - energies[i - 1])**2 for i in range(1, len(

energies))) / len(energies)

denom = numpy.var(energies)

if numer / denom < 0.2:

print('Chain {}: E-BFMI = {}'.format(chain_num, numer / denom))

no_warning = False

if no_warning:

print('E-BFMI indicated no pathological behavior')

else:

print(' E-BFMI below 0.2 indicates you may need to reparameterize your

model')

def check_n_eff(fit):

"""Checks the effective sample size per iteration"""

fit_summary = fit.summary(probs=[0.5])

n_effs = [x[4] for x in fit_summary['summary']]

names = fit_summary['summary_rownames']

n_iter = len(fit.extract()['lp__'])

no_warning = True

for n_eff, name in zip(n_effs, names):

ratio = n_eff / n_iter

if (ratio < 0.001):

print('n_eff / iter for parameter {} is {}!'.format(name, ratio))

print('E-BFMI below 0.2 indicates you may need to reparameterize your

model')

no_warning = False

if no_warning:

print('n_eff / iter looks reasonable for all parameters')

else:

print(' n_eff / iter below 0.001 indicates that the effective sample size

has likely been overestimated')

def check_rhat(fit):

"""Checks the potential scale reduction factors"""

from math import isnan

from math import isinf

fit_summary = fit.summary(probs=[0.5])

rhats = [x[5] for x in fit_summary['summary']]

names = fit_summary['summary_rownames']

no_warning = True

for rhat, name in zip(rhats, names):

if (rhat > 1.1 or isnan(rhat) or isinf(rhat)):

print('Rhat for parameter {} is {}!'.format(name, rhat))

no_warning = False

if no_warning:

print('Rhat looks reasonable for all parameters')

161

else:

print(' Rhat above 1.1 indicates that the chains very likely have not

mixed')

def check_all_diagnostics(fit):

"""Checks all MCMC diagnostics"""

check_n_eff(fit)

check_rhat(fit)

check_div(fit)

check_treedepth(fit)

check_energy(fit)

def _by_chain(unpermuted_extraction):

num_chains = len(unpermuted_extraction[0])

result = [[] for _ in range(num_chains)]

for c in range(num_chains):

for i in range(len(unpermuted_extraction)):

result[c].append(unpermuted_extraction[i][c])

return numpy.array(result)

def _shaped_ordered_params(fit):

ef = fit.extract(permuted=False, inc_warmup=False) # flattened, unpermuted, by

(iteration, chain)

ef = _by_chain(ef)

ef = ef.reshape(-1, len(ef[0][0]))

ef = ef[:, 0:len(fit.flatnames)] # drop lp__

shaped = {}

idx = 0

for dim, param_name in zip(fit.par_dims, fit.extract().keys()):

length = int(numpy.prod(dim))

shaped[param_name] = ef[:,idx:idx + length]

shaped[param_name].reshape(*([-1] + dim))

idx += length

return shaped

def partition_div(fit):

""" Returns parameter arrays separated into divergent and non-divergent

transitions"""

sampler_params = fit.get_sampler_params(inc_warmup=False)

div = numpy.concatenate([x['divergent__'] for x in sampler_params]).astype('

int')

params = _shaped_ordered_params(fit)

nondiv_params = dict((key, params[key][div == 0]) for key in params)

div_params = dict((key, params[key][div == 1]) for key in params)

return nondiv_params, div_params

def compile_model(filename, model_name=None, **kwargs):

"""This will automatically cache models - great if you're just running a

script on the command line.

See http://pystan.readthedocs.io/en/latest/avoiding_recompilation.html"""

from hashlib import md5

with open(filename) as f:

162

model_code = f.read()

code_hash = md5(model_code.encode('ascii')).hexdigest()

if model_name is None:

cache_fn = 'cached-model-{}.pkl'.format(code_hash)

else:

cache_fn = 'cached-{}-{}.pkl'.format(model_name, code_hash)

try:

sm = pickle.load(open(cache_fn, 'rb'))

except:

sm = pystan.StanModel(model_code=model_code)

with open(cache_fn, 'wb') as f:

pickle.dump(sm, f)

else:

print("Using cached StanModel")

return sm

C.5 Module File za_bcc.py
import numpy

def za_bcc(epsilon_p, log_epsilon_p_dot, T,

C0, C1, C3, C4, C5, n, exp_func = numpy.exp):

"""Flow stress according to the Zerilli-Armstrong (BCC) model

Parameters

epsilon_p

Strain

log_epsilon_p_dot

Natural logarithm of the strain rate

T

Temperature

C0, C1, C3, C4, C5, n

The Zerilli-Armstrong (BCC) parameters. (Note that there is no

C2 parameter, since that is for the Zerilli-Armstrong FCC

model.)

exp_func : function, optional

Object representing the exponential function

"""

return (C0 + C1*exp_func((-C3 + C4*log_epsilon_p_dot)*T) +

C5*epsilon_p**n)

163

C.6 Module File za_bcc_pymc3.py
#!{importstart}

import numpy as np

import pymc3 as pm

from za_bcc import za_bcc

#!{importend}

def make_za_bcc_model(epsilon_p, sigma,

epsilon_p_dot, T,

prior_params):

"""Create a PyMC3 model conforming to the Zerilli-Armstrong (BCC) model

Parameters

epsilon_p : list of 1-d NumPy array

Strain values for all curves, where `epsilon_p[0]` contains

strain values for the first curve, `epsilon_p[1]` contains

strain values for the second curve, etc.

sigma : list of 1-d NumPy array

Stress values for all curves, where `sigma[0]` contains stress

values for the first curve, `sigma[1]` contains stress values

for the second curve, etc.

epsilon_p_dot : 1-d array_like

List or array where element `i` contains the strain rate for

curve `i`

T : list of 1-d array_like

Temperature values for all curves, where `T[0]` contains

temperature values for the first curve, `T[1]` contains

temperature values for the second curve, etc.

prior_params : dict

Dictionary with the following keys: "C0_guess_mean",

"C1_guess_mean", "C3_guess_mean", "C4_guess_mean",

"C5_guess_mean", "sd_sigma_guess_mean", "C0_guess_sd",

"C1_guess_sd", "C3_guess_sd", "C4_guess_sd", "C5_guess_sd",

"sd_sigma_guess_sd", "n_alpha", and "n_beta". The values

corresponding to "sd_sigma_guess_mean" and "sd_sigma_guess_sd"

are lists or 1-d arrays with 2 elements, where both elements

are positive numbers. Values corresponding to other keys are

positive scalars.

Returns

A PyMC3 model

"""

#!{boundnormstart}

PosNormal = pm.Bound(pm.Normal, lower = 0.0)

164

#!{boundnormend}

#!{miscvarsstart}

num_curves = len(epsilon_p)

log_epsilon_p_dot = np.log(epsilon_p_dot)

#!{miscvarsend}

#!{withmodelstart}

model = pm.Model()

with model:

#!{withmodelend}

#!{priorsstart}

C0 = PosNormal("C0",

mu = prior_params["C0_guess_mean"],

sd = prior_params["C0_guess_sd"])

C1 = PosNormal("C1",

mu = prior_params["C1_guess_mean"],

sd = prior_params["C1_guess_sd"])

C3 = PosNormal("C3",

mu = prior_params["C3_guess_mean"],

sd = prior_params["C3_guess_sd"])

C4 = PosNormal("C4",

mu = prior_params["C4_guess_mean"],

sd = prior_params["C4_guess_sd"])

C5 = PosNormal("C5",

mu = prior_params["C5_guess_mean"],

sd = prior_params["C5_guess_sd"])

n = pm.Beta("n",

alpha = prior_params["n_alpha"],

beta = prior_params["n_beta"])

sd_sigma = PosNormal("sd_sigma",

mu = np.asarray(prior_params["sd_sigma_guess_mean"]),

sd = np.asarray(prior_params["sd_sigma_guess_sd"]),

shape = 2)

#!{priorsend}

#!{likstart}

for i in range(num_curves):

pm.Normal("sigma_curve{}".format(i),

mu = za_bcc(epsilon_p[i],

log_epsilon_p_dot[i], T[i],

C0, C1, C3, C4, C5, n,

exp_func = pm.math.exp),

sd = (sd_sigma[0]

if (epsilon_p_dot[i] <= 1.0)

else sd_sigma[1]),

165

observed = sigma[i])

#!{likend}

#!{retstart}

return model

#!{retend}

166

Appendix D. Stan Specification Files

167

These are the Stan specification files that have been used for Bayesian analyses
of the Johnson-Cook1 and the Zerilli-Armstrong model for body-centered cubic
materials.2 Comments in these files of the form //!{...} can be ignored, since
they are meant to be read by tools that extract source code fragments.

D.1 Specification File jc.stan
//!{funcstart}

functions {

vector jc(vector epsilon_p, real log_epsilon_p_dot, vector T_star,

real A, real B, real n, real C, real m) {

int length_epsilon_p = num_elements(epsilon_p);

vector[length_epsilon_p] sigma;

real edot_factor = (1.0 + C*log_epsilon_p_dot);

// The exponentiation operator "^" doesn't vectorize, so I need a

// "for" loop here.

for (i in 1:length_epsilon_p) {

sigma[i] = (A + B*(epsilon_p[i])^n)*edot_factor*
(1.0 - (T_star[i])^m);

}

return sigma;

}

}

//!{funcend}

//!{datastart}

data {

int<lower=1> num_curves;

int<lower=0> curve_sizes[num_curves];

vector[num_curves] epsilon_p_dot;

vector[sum(curve_sizes)] epsilon_p;

vector[sum(curve_sizes)] sigma;

vector[sum(curve_sizes)] T;

real<lower=0.0> T_melt;

real<lower=0.0> T_room;

real<lower=0.0> epsilon_p_dot_0;

1Johnson GR, Cook WH. A constitutive model and data for metals subjected to large strains,
high strain rates and high temperatures. In: Seventh international symposium on ballistics: Proceed-
ings; 1983 Apr; The Hague (Netherlands). American Defense Preparedness Association; 1983. p.
541–547.

2Zerilli FJ, Armstrong RW. Dislocation-mechanics-based constitutive relations for material dy-
namics calculations. Journal of Applied Physics. 1987;61(5):1816–1825.

168

real<lower=0.0> A_guess_mean; real<lower=0.0> A_guess_sd;

real<lower=0.0> B_guess_mean; real<lower=0.0> B_guess_sd;

real<lower=0.0> C_guess_mean; real<lower=0.0> C_guess_sd;

real<lower=0.0> m_guess_mean; real<lower=0.0> m_guess_sd;

real<lower=0.0> n_alpha; real<lower=0.0> n_beta;

vector<lower=0.0>[2] sd_sigma_guess_mean;

vector<lower=0.0>[2] sd_sigma_guess_sd;

}

//!{dataend}

//!{transdatastart}

transformed data {

vector[num_curves] log_epsilon_p_dot = log(epsilon_p_dot/epsilon_p_dot_0);

vector[sum(curve_sizes)] T_star = (T - T_room)/(T_melt - T_room);

}

//!{transdataend}

//!{paramstart}

parameters {

real<lower=0.0> A;

real<lower=0.0> B;

real<lower=0.0, upper=1.0> n;

real<lower=0.0> C;

real<lower=0.0> m;

real<lower=0.0> sd_sigma[2];

}

//!{paramend}

//!{modelstart}

model {

A ~ normal(A_guess_mean, A_guess_sd)T[0.0,];

B ~ normal(B_guess_mean, B_guess_sd)T[0.0,];

n ~ beta(n_alpha, n_beta);

C ~ normal(C_guess_mean, C_guess_sd)T[0.0,];

m ~ normal(m_guess_mean, m_guess_sd)T[0.0,];

for (i in 1:2) {

sd_sigma[i] ~

normal(sd_sigma_guess_mean[i],

sd_sigma_guess_sd[i])T[0.0,];

}

{

int start_ind = 1;

for (curve_ind in 1:num_curves) {

int end_ind = start_ind + curve_sizes[curve_ind] - 1;

real curr_sd_sigma = (epsilon_p_dot[curve_ind] <= 1.0

? sd_sigma[1]

: sd_sigma[2]);

169

sigma[start_ind:end_ind] ~ normal(jc(epsilon_p[start_ind:end_ind],

log_epsilon_p_dot[curve_ind],

T_star[start_ind:end_ind],

A, B, n, C, m),

curr_sd_sigma);

start_ind = end_ind + 1;

}

}

}

//!{modelend}

D.2 Specification File za_bcc.stan
functions {

vector za_bcc(vector epsilon_p, real log_epsilon_p_dot, vector T,

real C0, real C1, real C3, real C4, real C5, real n) {

int length_epsilon_p = num_elements(epsilon_p);

vector[length_epsilon_p] sigma;

real C3_C4_fac = -C3 + C4*log_epsilon_p_dot;

// The exponentiation operator "^" doesn't vectorize, so I need a

// "for" loop here.

for (i in 1:length_epsilon_p) {

sigma[i] = C0 + C1*exp(C3_C4_fac*(T[i])) + C5*(epsilon_p[i])^n;

}

return sigma;

}

}

data {

int<lower=1> num_curves;

int<lower=0> curve_sizes[num_curves];

vector[num_curves] epsilon_p_dot;

vector[sum(curve_sizes)] epsilon_p;

vector[sum(curve_sizes)] sigma;

vector[sum(curve_sizes)] T;

real<lower=0.0> C0_guess_mean;

real<lower=0.0> C0_guess_sd;

real<lower=0.0> C1_guess_mean;

real<lower=0.0> C1_guess_sd;

real<lower=0.0> C3_guess_mean;

real<lower=0.0> C3_guess_sd;

170

real<lower=0.0> C4_guess_mean;

real<lower=0.0> C4_guess_sd;

real<lower=0.0> C5_guess_mean;

real<lower=0.0> C5_guess_sd;

real<lower=0.0> n_alpha;

real<lower=0.0> n_beta;

real<lower=0.0> sd_sigma_guess_mean[2];

real<lower=0.0> sd_sigma_guess_sd[2];

}

transformed data {

vector[num_curves] log_epsilon_p_dot = log(epsilon_p_dot);

}

parameters {

real<lower=0.0> C0;

real<lower=0.0> C1;

real<lower=0.0> C3;

real<lower=0.0> C4;

real<lower=0.0> C5;

real<lower=0.0, upper=1.0> n;

real<lower=0.0> sd_sigma[2];

}

model {

C0 ~ normal(C0_guess_mean, C0_guess_sd)T[0.0,];

C1 ~ normal(C1_guess_mean, C1_guess_sd)T[0.0,];

C3 ~ normal(C3_guess_mean, C3_guess_sd)T[0.0,];

C4 ~ normal(C4_guess_mean, C4_guess_sd)T[0.0,];

C5 ~ normal(C5_guess_mean, C5_guess_sd)T[0.0,];

n ~ beta(n_alpha, n_beta);

for (i in 1:2) {

sd_sigma[i] ~

normal(sd_sigma_guess_mean[i],

sd_sigma_guess_sd[i])T[0.0,];

}

{

int start_ind = 1;

for (curve_ind in 1:num_curves) {

int end_ind = start_ind + curve_sizes[curve_ind] - 1;

real curr_sd_sigma = (epsilon_p_dot[curve_ind] <= 1.0

? sd_sigma[1]

: sd_sigma[2]);

sigma[start_ind:end_ind] ~ normal(za_bcc(epsilon_p[start_ind:end_ind],

log_epsilon_p_dot[curve_ind],

171

T[start_ind:end_ind],

C0, C1, C3, C4, C5, n),

curr_sd_sigma);

start_ind = end_ind + 1;

}

}

}

172

List of Symbols, Abbreviations, and Acronyms
βTQ Taylor-Quinney coefficient

Ûεp plastic strain rate

Ûεp0 reference plastic strain rate, 1/s

εp plastic strain

ρ density

A fitting parameter of Johnson-Cook model that represents yield
strength at reference strain rate and room temperature

B fitting parameter of Johnson-Cook model that represents strain
hardening prefactor at reference strain rate and room temperature

C fitting parameter of Johnson-Cook model that represents strain
hardening effects due to strain rate

c(T) specific heat as function of temperature

Ci fitting parameter of Zerilli-Armstrong (BCC) model, where i ∈

{0,1,3,4,5}

m fitting parameter of Johnson-Cook model that represents thermal
softening exponent

n fitting parameter of Johnson-Cook and Zerilli-Armstrong models
that represents strain hardening exponent

T temperature

T∗ normalized temperature in Johnson-Cook model

Tmelt melting temperature

Troom room temperature

1-D one-dimensional

2-D two-dimensional

173

3-D three-dimensional

ARL CCDC Army Research Laboratory

BCC body-centered cubic

CSV comma-separated value

HDI highest density interval

IPM interval predictor model

JSON JavaScript Object Notation

MCMC Markov Chain Monte Carlo

MIDAS Material Implementation, Database, and Analysis Source

NaN not a number

NUTS no-U-turn sampler

PFP pushed forward posterior

PPD posterior predictive distribution

RHA rolled homogeneous armor

174

1
(PDF)

DEFENSE TECHNICAL
INFORMATION CTR
DTIC OCA

1
(PDF)

DIR CCDC ARL
FCDD RLD CL

TECH LIB

1
(PDF)

GOVT PRINTG OFC
A MALHOTRA

175

	List of Figures
	List of Tables
	Introduction
	Obtaining Software Tools
	Working Directories
	Data Files
	Testing Models with Simulated Data
	Functions for Testing Models
	Making Simulated Data for Johnson-Cook Model
	Testing Johnson-Cook Model with PyStan
	Testing Johnson-Cook Model with PyMC3
	Making Simulated Data for Zerilli-Armstrong (BCC) Model
	Testing Zerilli-Armstrong (BCC) Model with PyStan
	Testing Zerilli-Armstrong (BCC) Model with PyMC3

	Fitting Strength Models to Experimental Data
	Functions for Fitting Models
	Preprocessing Experimental Data
	Fitting Johnson-Cook Model to Experimental Data with PyStan
	Fitting Johnson-Cook Model to Experimental Data with PyMC3
	Fitting Zerilli-Armstrong (BCC) Model to Experimental Data with PyStan
	Fitting Zerilli-Armstrong (BCC) Model to Experimental Data with PyMC3
	Applying Approximate Interval Predictor Model Approach

	Postprocessing of Model Fits
	Plotting Priors with Posteriors
	Plotting Posteriors for Different Values of TQ and farea
	Plotting PPDs and PFPs with Experimental Data
	Determining Correlation Matrices

	Conclusions
	References
	Appendix A. Data Tables
	Appendix B. Brief Introduction to Python
	Appendix C. Python Code for Bayesian Analysis
	Appendix D. Stan Specification Files
	List of Symbols, Abbreviations, and Acronyms
	Distribution List

