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ABSTRACT 

 In this thesis, we investigate a specific type of machine learning (ML) algorithm, 

specifically a support vector machine (SVM) regressor, as the foundation behind a 

condition-based maintenance (CBM) program for the major components affecting a naval 

propulsion system (NPS). This program is designed to specifically monitor the 

degradation of the ship’s engines, the propeller, and the hull. Simulated data generated in 

previous work by modeling a combined diesel electric and gas NPS is applied to design 

the SVM and optimize its hyperparameter values—insensitivity, penalty parameter, and 

kernel spread. Our results show that an optimally tuned and trained SVM algorithm can 

make predictions with error rates below 0.5%. Results also show our SVM algorithm 

outperforms the SVM algorithm discussed in previous work. In this work, we established 

a good base for developing a CBM program for the U.S. Navy. 
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I. INTRODUCTION 

A. OBJECTIVE 

Operational requirements of U.S. Navy ships have steadily increased over the past 

fifteen years, while the Navy ranks have shrunk by 20 percent [1]. Budget cuts and 

sequestration have led the Navy to operate and maintain a leaner fleet on a smaller budget. 

Even with an increase in defense spending for fiscal year 2019, ship maintenance is an 

important factor in safety, operational readiness, and total system cost. One of the major 

systems is a ship’s propulsion system for which the engines, propellers, and hull state are 

important factors. Each of these major systems requires dedicated in-port periods or even 

dry dock availability, which incurs major costs and takes away from operational 

availability. In this thesis, we attempt to take advantage of modern data collection 

capability to develop a machine learning (ML) algorithm, specifically a support vector 

machine (SVM) regressor, to implement a condition-based maintenance (CBM) program 

for the major components affecting a naval propulsion system (NPS). Specifically, we 

target the degradation of the compressor and turbines of the main engines, the propeller, 

and the hull. The final objective is to produce an algorithm that can consider a multitude 

of sensor data to accurately determine when one of these major subsystems needs servicing.  

B. MOTIVATION 

The Navy has two CBM programs which both rely on a third concept, reliability-

centered maintenance (RCM). OPNAVINST 4790.16B, the Naval Instruction governing 

CBM, defines “condition-based maintenance” and “condition-based maintenance plus” 

[2]. Condition-based maintenance is defined in part as “a maintenance strategy derived 

from analysis, using DoD approved RCM principles. CBM includes maintenance processes 

and capabilities derived from real or near-real time assessments obtained from embedded 

sensors and external tests and measurements using either portable equipment or actual 

inspection” [2].  The second program is condition-based maintenance plus (CBM+) defined 

as “the application and integration of appropriate processes, technologies, and knowledge-

based capabilities to achieve the target availability, reliability, and operation and support 
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costs of DoD systems and components across their life cycle. At its core, CBM+ is 

maintenance performed based on evidence of need” [2]. RCM is defined as “a method for 

determining maintenance requirements based on the analysis of the likely functional 

failures of components, equipment, subsystems, or systems having a significant impact on 

safety, operations, and life cycle cost” [3]. In summary, RCM is the process that establishes 

the conditions in which a CBM or CBM+ program is built. The main difference between a 

CBM and a CBM+ program is that in CBM, the conditions are decided from current sensor 

readings, whereas CBM+ applies “technologies and knowledge-based capabilities” [2] 

such as emerging ML techniques. 

Currently, the General Electric (GE) LM2500 engine type is used for many of the 

U.S. Navy’s surface combatants to include all cruisers and destroyers as well as surface 

ships from many other foreign nations. The LM2500 engines undergo service at the Navy’s 

Fleet Readiness Center Southwest (FRCSW) based on a CBM program. Currently, the 

known decay state of the gas turbine (GT) engine is not actually known, and decisions to 

service engines are based on direct sensor readings of current running condition [4].  

Cipollini, Oneto, Coraddu, Murphy, and Anguita developed “a real-data validated 

complex numerical simulator” [5] of a navy frigate characterized by a combined diesel 

electric and gas (CODLAG) propulsion plant that was developed in MATLAB using the 

Simulink toolbox. This simulated model was run to generate a dataset [6] used to compare 

the performances of several ML techniques [7]. In this work, we design an SVM in 

MATLAB and apply it to this specific dataset [6]  to investigate whether a CBM+ program 

can be implemented.  

Due to the need for navy ships to be at a fully operational status, many maintenance 

programs are designed on a conservative schedule to minimize risk of a breakdown. 

Although GT engines are on a CBM program, the actual degradation state is not known 

before the engine is removed from the ship. The same can be said about the degradation 

states of the hull and propellers. Direct measurements of the state of degradation of these 

major subsystems are not possible; however, a lot of sensor data is available that makes 

this problem an excellent choice for ML. 
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C. THESIS CHAPTER BREAKDOWN 

We organize the rest of the thesis in the following manner. In Chapter II, we present 

the background on the dataset we use and some basic background on ML algorithms and 

SVMs. The procedure described in Chapter III includes the analysis of the dataset, the 

SVM algorithm training setup in MATLAB, and the procedure for obtaining the optimum 

hyperparameter settings. Results of the training optimization are presented in Chapter IV. 

Finally, our conclusions and recommendations for future work are presented in Chapter V. 
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II. BACKGROUND 

A. SHIP PROPULSION MODELS 

One of the greatest obstacles to developing a ML algorithm is gathering and 

classifying data with which to train the algorithm. Previous work [5] created a simulation 

to model the sensor inputs and degradation outputs of a GT engine, specifically a GE 

LM2500 engine on a naval frigate. Coraddu, Cipollini, Oneto, and Anguita then improved 

on that initial model to include additional  inputs affecting an NPS and added degradation 

outputs for the propeller and hull [7]. This improved simulation generated the dataset [6] 

which was used in [7] to test more sophisticated  ML algorithms. In this thesis, we use this 

specific dataset [6] to develop a regression SVM model.  

 

Figure 1. CODLAG NPS. Adapted from [7]. 
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The model used to generate [6] was developed in MATLAB Simulink and 

developed, tested, and verified over many years of research [5], [7]–[10]. This model is 

characterized by a combined diesel electric and gas (CODLAG) NPS and is illustrated in 

Figure 1 [5], [7]. The generated dataset is comprised of 589,223 observations with 25 

features and five decay-state coefficients for each observation. 

In this model, multiple components and subsystems of an NPS are simulated to 

model the performance decay of the GT, GT compressor (GTC), hull (HLL), and propeller 

(PRP). The GTC degradation was simulated by adjusting the airflow rate through the 

compressor and recorded as the degradation coefficient CkM  [5]. The degradation of the 

GT component represents the air flow rate through the engine and is recorded as the 

degradation coefficient TkM  [5]. The HLL experiences degradation due to corrosion and 

fouling of the hull and is recorded as the coefficient kH  [5]. The PRP degradation 

represents the roughness in the blade surface and is recorded by increasing the torque 

coefficient qkK  and reducing the thrust coefficient tkK  [5]. Since the two PRP coefficients 

are related linearly by 1 1,t qkK kK− = −  only tkK  is analyzed [5]. The decaying variables 

,tkK  ,kH  ,CkM  and TkM  vary in a range that is expected to be seen in a period of two 

years of operation [5]. The range of decay is at a “degree of precision sufficient to have a 

good granularity of representation” [5]. Each decay range is represented by 15 states, 

inclusive. These variables and their decay value ranges are listed in Table 1. 

Table 1. Output decay values. Adapted from: [5]. 

# Outputs Range 

1 Propeller Thrust decay state coefficient [ ]0.9,1.0tkK ∈   

2 Hull decay state coefficient [ ]1.0,1.2kH ∈   

3 GTC decay state coefficient [ ]0.95,1.0ckM ∈   

4 GT Turbine decay state coefficient [ ]0.975,1.0tkM ∈   
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The features of each observation are represented as sensor data from the ship and 

the NPS. All the sensor data present in this dataset is readily available for collection on the 

frigates on which the simulated model is based [5]. These features are listed in Table 2.  

Table 2. Dataset feature list. Source: [5]. 

# Feature name Units 
1 Lever (lp)  [#] 
2 Speed [knots] 
3 Gas Turbine shaft torque (GTT) [kN m] 
4 Gas Turbine Speed (GT rpm) [rpm] 
5 Controllable Pitch Propeller Thrust stbd (CPP T stbd) [N] 
6 Controllable Pitch Propeller Thrust port (CPP T port) [N] 
7 Shaft Torque port (Q port)  [kN] 
8 Shaft rpm port (rpm port) [rpm] 
9 Shaft Torque stbd (Q stdb) [kN] 
10 Shaft rpm stbd (rpm stbd)  [rpm] 
11 HP Turbine exit temperature (T48)  [C] 
12 Gas Generator speed (GG rpm)  [rpm] 
13 Fuel flow (mf)  [kg/s] 
14 ABB Tic control signal (ABB Tic)  [%] 
15 GT Compressor outlet air pressure (P2)  [bar] 
16 GT Compressor outlet air temperature (T2)  [C] 
17 External Pressure (Pext)  [bar] 
18 HP Turbine exit pressure (P48)  [bar] 
19 TCS tic control signal (TCS tic)  [%] 
20 Thrust coefficient stbd (Kt stbd)  [] 
21 Propeller rps stbd (rps prop stbd)  [rps] 
22 Thrust coefficient port (Kt port)  [] 
23 Propeller rps port (rps prop port)  [rps] 
24 Propeller Torque port (Q prop port)  [Nm] 
25 Propeller Torque stbd (Q prop stbd) [Nm] 

 

A diagram of the GT components is shown in Figure 2. The lever position (feature 

1) controls the ship’s speed (feature 2) and is the only user input into this system. TCS and 

ABB turbine injection control (TIC) (features 14 and 19), relate to fuel in that TIC “is the 

control signal (i.e., percent of fuel flow) for the propulsion engine” [7] (TCS and ABB not 
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defined in [5], [7]) and in turn have an effect on fuel flow (feature 13). In an LM2500 

engine, air first enters the GT at the compressor, where the air is pressurized (feature 15) 

and heats up (feature 16). Fuel is added to the compressed air (feature 13), and the 

combustion creates even higher pressure that flows through the high power (HP) turbine 

where pressure (feature 18) and temperature (feature 11) are recorded. The HP turbine 

powers (rotates) the gas generator shaft, measured as rotations per minute (RPM) (feature 

12). The gases leaving the HP turbine flow into the low power (LP) turbine where torque 

(feature 3) and speed (feature 4) are monitored. The LP turbine connects to the ship’s main 

reduction gear (MRG) where power is delivered to the two shafts.  

 

Figure 2. GT diagram. Adapted from [7]. 

The main shafts leaving the MRG run from the engine rooms to the stern of the ship 

where they connect to each controllable pitch propeller (CPP). Features 7 through 10 are 

measurements from the port and starboard main shafts. The port and starboard CPPs’ 
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thrust, torque, and rotations per second (RPS) are recorded in features 5, 6, 21, 23, 24, and 

25. Features 17, 20, and 22 are used in developing the ML model but are not clearly defined 

in reference [5].  

B. MACHINE LEARNING 

One of the earliest pioneers of ML is Arthur Samuel who, while working for IBM 

in 1959, developed a computer program that bested him in checkers. He defined ML as a 

“field of study that gives computers the ability to learn without being explicitly 

programmed” [11]. This old definition still applies, although a more recent and specific 

definition came from Dr. Tom Mitchell, the Machine Learning Department Head at 

Carnegie Mellon University, who in 2006 said, “To be more precise, we say that a machine 

learns with respect to a particular task T, performance metric P, and type of experience E, 

if the system reliably improves its performance P at task T, following experience E.” [12] 

Daniel Faggella, the founder of the website TechEmergence.com consulted several 

sources, including university researchers in the field, on the definition of ML; “Machine 

Learning is the science of getting computers to learn and act like humans do, and improve 

their learning over time in autonomous fashion, by feeding them data and information in 

the form of observations and real-world interactions” [13].  

ML can be broken down by the style of learning and the type of problem to solve. 

Two major ML styles are supervised and unsupervised learning; two common ML 

problems are regression and classification, both of which fall into the supervised learning 

style. In supervised learning, the ML “algorithm is given training data which contains the 

“correct answer” for each example” [11]. In this case, the ML algorithm learns from 

experiences where the data is already labeled for the task. For example, for a loan 

application scenario, the input may be an applicant’s credit history and the associated label 

whether the applicant qualifies for a loan or not. In unsupervised learning “The algorithm 

looks for structure in the training data, like finding which examples are similar to each 

other, and then groups them in clusters” [11]. In this case, the ML algorithm is fed the same 

data and multiple applicants’ credit histories but without any loan qualification data, and 

the algorithm attempts to group the individual histories based on the data. In this case, 



10 

further research may be needed to determine the validity of those groups because the ML 

algorithm does not provide that information. In the ML classification problem, “the answer 

to be learned is one of finitely many possible values” [11]. In our previous example, the 

“is qualified” or “is not qualified” for a home loan are two discrete answers. The second 

ML problem, regression, is “where the answer to be learned is a continuous value” [11]. 

Instead of the label being qualified or not qualified for a home loan, the label to each credit 

history would be their corresponding FICO credit score.  

The terms observations, features, labels, training, predictions, and performance are 

used consistently in this thesis. Observations relate to Mitchell’s definition as the 

experience E and, in the credit example, each individual credit history is one observation 

[12]. The known correct answers, or labels, are the factual data that correlate to each 

observation, the data showing FICO scores or status of the loan qualification. The task T 

is the ML algorithm training on the labeled data of each observation. This can range from 

hundreds to hundreds of thousands of observations. Prediction is the ML algorithm output 

from new data after it has gone through the training phase. The performance metric P is 

the error of the ML algorithm when tested with new data. The last term we use is features, 

which are the individual elements that make up one observation. In the credit example, 

features may include total available credit, outstanding debt, late payments, number of 

credit accounts, etc.   

The dataset [6] we use for this thesis has already been labeled with degradation 

coefficients. These responses were generated via a simulated model and are, therefore, 

finite; however, this is a regression problem because the responses represent a continuous 

range. Cipollini, Oneto, Coraddu, Murphy, and Anguita, in previous work [5], tested 

multiple supervised ML algorithms such as SVM, kernelized regularized least squares, 

shallow and deep neural networks, and others. SVMs are known for their ability with 

multivariate functions and being highly accurate as universal approximators [14]. These 

characteristics make them a good choice for modeling a complex, nonlinear, unknown 

process like that considered in this thesis [14]. The complexity and nonlinearity of this 

dataset and the need for accurate predictions are the reasons behind the SVM approach 

focus presented in this thesis. 
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C. SUPPORT VECTOR MACHINES 

SVMs belong to a class of supervised ML methods that nonlinearly transform the 

training data input into a higher dimensional feature space and create a mapping function 

that predicts the output of new data for either classification or regression problems [15], 

[16]. One of the main strengths of SVMs lies in their ability to map non-linearly separable 

input features into a higher dimensional space where transformed features become linearly 

separable [15]. One of the main advantages of the SVM is that transformed features are 

never explicitly computed. Instead, transformed features appear only as inner products in 

the optimization process using the kernel function K   defined as 

 ( ) ( ) ( ), T
i j i jK x x x x= Φ Φ
   

. (1) 

In (1), Φ  is the mapping function that transforms the input data ix


 into a different and 

often higher dimension. The variable jx


 is a vector that the kernel function compares with 

.ix


 Not having to conduct the mapping explicitly to conduct operations is known as the 

kernel trick [14]. A selection of popular kernels is provided in Table 3. 

Table 3. Common kernels. Adapted from: [14]. 

Kernel Functions Type of Classifier 

( ),
T

i j i jK x x x x=
   

  Linear, dot product 

( ) ( ), 1
dT

i j i jK x x x x = +  

   
  

Complete polynomial of degree d   

( ) ( )2 2, exp 2i j i jK x x x x σ= − −
   

  Gaussian 

( ) ( ), tanh
T

i j i jK x x x x b = +  

   
  Sigmoid 

 

With nonlinear data transformed into a feature space where transformed features 

are linear, we can work with linear methods for classification SVMs. In a classification 

scenario, SVMs create a decision boundary between separable data. This boundary is 

referred to as the hyperplane [14]. With any set of separable data, there are multiple 
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decision boundaries that can be created. The optimal boundary is the one with the largest 

margins between the two sets of data, as illustrated in Figure 3 [14]. In the plot on the left, 

the margins are narrow and future data is more likely to be misclassified. In the plot on the 

right, the margins are as wide as can be; it is observed that this is a more accurate 

representation of separating the data than the plot on the left. During training, the SVM 

will select the decision boundary with the widest margins [14]. 

 

Figure 3. Different SVM decision boundaries. Source [14]. 

Not all data is perfectly separable. The previous example is known as a hard margin 

classifier, where the decision boundary and the margins perfectly separate the two classes 

[14]. A soft margin classifier allows for some data outliers to fall within the margins or 

even cross the decisions boundary [14], as shown in Figure 4. The size of the soft margin 

is controlled by the penalty parameter C  [14]. Increasing C  leads to a smaller margin and 

fewer misclassifications of training data and vice versa [14]. The tradeoff is that the 

decision boundary tends to overfit the data and can lead to the SVM being unable to 

generalize new data well when a small margin is selected [14]. 

Regression SVMs (SVRs) use similar concepts of margin. SVRs, however, are 

designed to find a best fit for the data instead of best separation between data. The decision 

boundary hyperplane becomes a prediction function hyperplane for regression problems 

[14]. A new parameter, called the insensitivity ,ε  is introduced to control how accurately 
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the prediction hyperplane follows the data [14]. The insensitivity creates what is known as 

an ε -tube, i.e., a tube around the hyperplane in which data points are not penalized nor do 

they affect the shape of the hyperplane. The SVR also allows for outlier data outside the ε

-tube. The distance of this data from the edges of the ε -tube to a data point is the distance 

ξ  and is penalized by the penalty parameter C  [14]. Note that the same variable name C  

is used in both the classification and regression algorithms for differing uses. Further use 

of the penalty parameter C  in this thesis is in reference to the regression parameter unless 

specified otherwise. The variables ,ε  ,C  and σ  (for the Gaussian kernel) are the 

hyperparameters we modify to optimize the regression SVM model in this thesis. 

 

Figure 4. Soft margin SVM example. Adapted from [14]. 

The optimization process of an SVR that forms a final prediction hyperplane 

involves several complex steps. In this thesis, we do not modify the standard methods in 

which an SVR forms a prediction hyperplane and do not cover the details of that process. 

Specific details of the SVM and SVR processes can be found in [14] and [16].  

We express the dataset as 

 1 1 2 2{( , ), ( , ), , ( , )},m mD x y x y x y=
  

   (2) 



14 

where D  is the input data, ix


 is an n -dimensional real vector where ix


 represents a single 

observation, and n  represents each feature of that observation. The variable iy  represents 

the corresponding label, for a total of m  observations [6], [14], [16].  The dataset D  can 

be split into a training, validation, and testing data subsets such that 

{ }, ,train validate testD D D D∈ . In binary classification problems, the label values are usually 

either 1 and 0 or 1 and −1, while in regression problems, the label is defined in a continuous 

range [15].  

An example of a two-dimensional regression SVM is illustrated in Figure 5. The 

solid green line represents the hyperplane developed by the SVM, and the various boxes 

represent data points from the training dataset [14]. The purple outlined boxes are points 

within the ε -tube, the solid blue boxes are data points on the border of the tube; these form 

the free support vectors. The red solid boxes outside the tube, a distance measured as ,ξ  

form the bounded support vectors [14]. The free and bounded support vectors are used in 

forming the weight vector w


 which is used to shape the predicted hyperplane [14]. 
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Figure 5. An SVM hyperplane and its margins. Adapted from [14]. 
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III. PROCEDURE 

In this section we analyze the dataset and then plan out the procedure for selecting 

the optimum hyperparameters for our dataset. We then train the algorithm with final 

hyperparameters across a range of training set sizes. We hope to prove the ability of an 

SVR to accurately predict the decay states of the major components of an NPS. 

A. DATASET ANALYSIS 

The first step in creating an ML algorithm is data analysis. During this step, we 

familiarize ourselves with the data, look at correlations in the data, and identify redundant 

data. Because the lever position and speed create dramatic changes between the different 

features, this analysis is conducted at each lever position separately. 

During our analysis we identified some replication of data, specifically in the data 

that was represented in features that had both port and starboard representation. Of the 

duplicated data, the replications of the port side were removed and the data simplified to 

one feature: CPP thrust (features 5 and 6), shaft torque (features 7 and 9), shaft RPM 

(features 8 and 10), thrust coefficient (features 20 and 22), propeller RPS (features 21 and 

23), and propeller torque (features 24 and 25). The features lever position and speed are 

also directly linearly correlated. The speed and lever position are related by 3 .speed lp=  

For this reason, we removed the speed feature and only used the lever position in 

our training. As previously mentioned in Chapter II, the decay state coefficients for PRP 

thrust and PRP torque are linearly related by 1 1;t qkK kK− = −  thus, the PRP torque decay 

state coefficient was removed from the dataset. The final reduced dataset is represented in 

Table 3.  

That last step in data analysis is to normalize the data. This normalization step can 

be accomplished using MATLAB’s regression SVM training function; however, since the 

data is used in many training evolutions, we chose to do it separately. Normalization was 

conducted for each feature by removing its mean and dividing by its standard deviation. 
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Table 4. Reduced feature set used for training SVM. 

# Feature name Abbreviation  Units 
1 Lever position  (lp) [#] 
2 Fuel flow  (ff) [kg/s] 
3 ABB TIC signal  (abb_tic) [%] 
4 TCS TIC signal  (tcs_tic) [%] 
5 External pressure  (ext_p) [bar] 
6 GT compressor outlet air pressure  (gtc_p) [bar] 
7 GT compressor outlet air temperature  (gtc_temp) [C] 
8 HP turbine exit pressure  (hpt_p) [bar] 
9 HP turbine exit temperature  (hpt_temp) [C] 
10 Gas Generator torque  (gtc_t) [kN m] 
11 Gas Generator speed  (gg_rpm) [rpm] 
12 Power turbine speed  (pt_rpm) [rpm] 
13 Shaft rpm  (shaft_rpm) [rpm] 
14 Shaft Torque  (shaft_t) [kN] 
15 CPP RPM  (cpp_rpm) [rpm] 
16 CPP torque  (cpp_t) [Nm] 
17 CPP thrust  (cpp_T) [N] 
18 Thrust coefficient  (T_coef) [] 

B. TRAINING AND MODEL SELECTION 

MATLAB provides several functions for training various ML algorithms including 

regression SVMs. For training, we used the function fitrsvm to create a regression SVM 

model. This model was then used with the function predict to return predictions for a set 

of observations x


. MATLAB allows for various changes to the training process using 

name-value pair arguments. The following name-value pair arguments were used for 

adjusting the hyperparameters during the training process of the regression SVM: the 

penalty factor C  with “BoxConstraint”, the selection of the kernel with 

“KernelFunction”, and the insensitivity ε  with “Epsilon”. MATLAB’s Gaussian kernel 

is defined as ( ) ( )2
, expj k j kK x x x x= − −

   
 [17]. Note that MATLAB’s Gaussian kernel 

definition is different from that provided in Table 2; MATLAB’s kernel omits the factor 

of 22σ  which does not provide the ability to modify the kernel parameter. MATLAB does 
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allow the use of custom kernels to be programmed. Since σ  is a hyperparameter we 

optimize in this thesis, we programed our own Gaussian kernel defined as 

 ( ) ( )2 2, exp 2j k j kK x x x x σ= − −
   

  (3) 

that allows for the adjustment of σ . To enable the automatic adjustment of the parameter 

σ  in our custom kernel function, another MATLAB script was coded to open the file 

containing the kernel function and change the text on the line containing the sigma value. 

When developing a ML algorithm, a performance metric must be chosen to measure 

the algorithm’s performance. For regression problems, two metrics are commonly used to 

measure loss, the absolute loss and squared loss [7] defined, respectively, as 

 Absolute loss: ( )( )1 , ( )f x y f x y= −
 

   (4) 

and 

 Squared loss: ( )( ) ( )2

2 , ( ) .f x y f x y= −
 

   (5) 

In (4) and (5), y  is the labeled value of the data, and ( )f x


 is the predicted output. In [7], 

the authors chose to measure the loss by mean absolute percentage error (MAPE) defined 

as 

 
( )

1

100 m k k

k k

y f x
MAPE

m y=

−
= ∑



.  (6) 

In (6), m  is the number of observations predicted ,ky  and ( )kf x


 are the labeled and 

predicted values, respectively, corresponding to the thk  observation. We use the same 

performance metric so we can compare results with previous work [7]. 

1. Training and Validating 

In ML, it is common to split a dataset into subsets for training and validation. A 

trained model will naturally perform well when making predictions using the same data set 



20 

with which it was trained. Having a separate validation subset provides us with the ability 

to test the model on “new” data on which it was not trained, providing a more valuable 

performance metric. The validation subset is used to optimize the hyperparameters.  

When limited training data is available, it is common to split the data between 

training and validation with common ratios around 7/10 and 3/10, respectively. This type 

of validation is known as holdout validation [18], [19]. This dataset is large enough that 

we do not need to holdout observations for validation. To ensure a consistent and accurate 

performance metric, all validation steps were conducted with 1,000 observations, 

1000.validaten =  

The selection of data used to train each model can have dramatic influence in the 

performance of that model. If optimal data were selected by chance, the model could have 

abnormally good performance. The reverse could be true as well. For the performance of 

each model to be statistically significant, and in order to minimize the effect of 

abnormalities, we replicated each training and predicting session 30 times. Each of the 

training procedures was conducted with a different random permutation of the entire 

dataset before separating into the subsets for training and validating. 

2. Selecting Optimum Hyperparameters 

The SVR discussed in Chapter II has three hyperparameters that can be adjusted to 

modify the training process of a regression SVM. They are the penalty factor ,C  the 

insensitive ,ε  and the hyperparameter for the Gaussian kernel σ . Optimizing these 

hyperparameters is known as model selection.  

Tuning the hyperparameters requires training an SVR model at various values for 

each hyperparameter and analyzing the training and validation performance results. For 

this process, the training subset is kept constant throughout. The hyperparameter is varied 

across a range of acceptable values, and the performance, in this case the MAPE, is plotted 

for the training and validation subsets.  

A hypothetical example is shown in Figure 6. In this figure, the red curve tP  and 

the blue curve vP  are the performance of the training and validation subsets, respectively. 



21 

The region on the left, where tP  and vP  are larger and similar, is known as a high bias 

problem [19]. This behavior occurs when the model does not generalize well and is known 

as underfitting [19]. The region on the right, where ,t vP P<<  is known as a high variance 

problem [19]. This behavior occurs when the model fits the training data extremely well 

but does not generalize well to new data and is known as overfitting [19]. The optimal 

setting for a given hyperparameter is when both tP  and vP  are small and before vP  starts 

to diverge from tP . 

 

Figure 6. Bias and variance 

We optimize the hyperparameters for our model in two phases. In the first phase, 

we optimize each hyperparameter individually with the other two hyperparameters set at 

MATLAB’s default settings. We use the validation method described previously for each 
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hyperparameter with the training observations 1000.trainn =  Since MATLAB’s Gaussian 

kernel does not have the 22σ  factor, when varying ε  and ,C  we set 1 2σ =  as the 

default setting. The creation of the regression SVM model is based on all three 

interdependent hyperparameters. For this reason, in the second phase we vary all three 

hyperparameter and compare each model’s performance. After executing the second phase, 

we decided to further tighten the parameters and conducted an additional trial for increased 

resolution. The two trials of the second phase are labeled A and B, respectively. The initial 

hyperparameter optimization from the first phase provided us with an optimal range to train 

and validate on.  

Table 5. Hyperparameter values 

First Phase 
Parameter range 

ε   
6

410 , 0,1, , 29
n

n
− +

=    

σ   
3

410 , 0,1, , 25
n

n
− +

=   

C   
6

410 , 0,1, ,37
n

n
− +

=   

  
Second Phase (A) 

Parameter range 

ε  
4

210 , 0,1, ,7
n

n
− +

=   

σ  
2

210 , 0,1, ,7
n

n
− +

=   

C  
3

210 , 0,1, ,11
n

n
− +

=   

  
Second Phase (B) 

Parameter range 

ε  
4

410 , 0,1, ,7
n

n
− +

=   

σ  
1

810 , 0,1, ,13
n

n
− +

=   

C  
1

410 , 0,1, ,13
n

n
− +

=   
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3. Final Testing 

The final testing was conducted with the optimum hyperparameter values obtained 

after the validation phase. In order to compare performance metrics with [7], we used the 

same initial training subset sizes as considered in [5]. The sizes of the training subsets 

considered were  

 { }10,24,55,130,307,722,1700,4000 .trainn ∈  (7) 

All results were obtained by averaging 30 training and prediction sessions for our 

performance metric. We selected a test subset size 1000.testn =   
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IV. RESULTS AND ANALYSIS 

In this chapter, we explore the findings of our work. We first conducted 

independent hyperparameter training of ,ε  ,σ  and .C  Using results obtained in that phase, 

we selected a narrow range over which to vary all three each hyperparameters at the same 

time. Next, using the best hyperparameter values derived in phase 2, we trained the SVR 

algorithm across multiple training set sizes. Results show that different training set sizes 

lead to different hyperparameter values. We briefly discuss these findings at the end of this 

chapter. 

A. VALIDATION RESULTS 

The first phase involved selecting one hyperparameter and varying it while setting 

the other two hyperparameters to MATLAB’s default values. We then compared the 

performance of the generated algorithm on the dataset used for training and on a separate 

dataset used for validation to find the optimum value for the selected hyperparameter. 

Because the hyperparameters are interdependent, we selected a narrow range that was used 

later when varying all three hyperparameters. 

Training and validation performances obtained by varying the hyperparameter σ  

are presented in Figure 7. Results show the optimal value for σ  is around 0.3. In addition, 

results show that larger errors in both the training and validating datasets are obtained for 

values of σ  significantly above 0.3. For values of σ  significantly below 0.3, the training 

error reaches a minimum while the validation error increases, which signifies the algorithm 

is overfitting. For the second phase we initially use the range 210 10.σ− ≤ ≤  
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Figure 7. Validation for σ   

Training and validation performances obtained when varying the hyperparameter 

ε  are illustrated in Figure 8. In this figure, we see that 110ε −>  produces relatively larger 

error values. For 310ε −<  the error is near its minimum value. It is observed that further 

decreasing ε  does not create an overfitting situation and provides no additional 

improvement to the algorithm. For the second phase we initially use the range 
4 110 10 .ε− −≤ ≤  
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Figure 8. Validation for ε   

Training and validation performances obtained when varying the hyperparameter 

C  are illustrated in Figure 9. In this figure, it is shown that for 310C −<  the error is 

relatively high. As C  gets larger both the training and validation error values reduce in 

unison. Error values eventually reach a minimum for 210C > . For the second phase we 

initially use the range 2 210 10C− ≤ ≤ . 
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Figure 9. Validation for C 

In Figure 10, we see the performance results obtained by varying all three 

hyperparameters ,ε  ,σ  and C  for the HLL output. Small error values are shown in red, 

and large error values are shown in blue. Results illustrated in Figure 10 can be used to 

narrow the range of values for the hyperparameters to 1 210 10C− ≤ ≤ , 0.5 0.510 10σ− ≤ ≤ , and 
4 2.510 10ε− −≤ ≤ , effectively zooming in to the optimal range. The error performances 

obtained over these restricted ranges of hyperparameter values are shown in Figure 11. 

From Figures 8 and 9, we know that for ε  and C  the error converges to a minimum 

value. In Figure 7, we see that varying σ  creates an absolute minimum with increasing 

error as σ  moves away from that optimum value. 

We used a finer resolution by setting 
1

810 , 0,1, ,13
n

nσ
− +

= =   to identify its 

optimal value. These results are illustrated in Figure 12. From here, we can again “zoom 
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in” on a range to identify the optimum value for .σ  This process is repeated for all four 

output values PRP, HLL, GTC, and GT.  

 

Figure 10. MAPE when varying hyperparameters ε , σ , and .C  
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Figure 11. MAPE when varying hyperparameters ε , σ , and C  at a 
selected range. 

 

Figure 12. MAPE when varying hyperparameters of ε , σ , and C , with 
increase resolution. 
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The estimated optimum values for all the hyperparameters with respect to each 

output are listed in Table 6. Results show both PRP and HLL had the same optimal ,σ  

which seems logical as both parameters model similar effects on the NPS. The same 

behavior is observed for GTC and GT as they are also very similar in function. 

Table 6. Optimum hyperparameter values 

 PRP HLL GTC GT 
ε  410−   410−  410−  410−  
σ  1 1 2.3714 2.3714 
C  100 100 100 100 

 

As we analyzed ε  and C  for each output, the difference in error was negligible at 

the extreme values ε  and .C  For example, when we hold the other two hyperparameters 

constant and epsilon lies in the range 4 310 10 ,ε− −≤ ≤  the difference in error remains below 

0.1%. This result agrees with the information shown in Figures 8 and 9 where we see that 

the error reaches a minimum value and no longer decreases. The largest error spread was 

found when σ  varied between 110 10σ− ≤ ≤ , which is observed in Figure 10 and agrees 

with the shape of Figure 7.  

B. FINAL RESULTS 

Next, we trained the algorithm with varying training set sizes using the identified 

optimal hyperparameter values. These different training set sizes were selected to match 

the training set sizes considered in previous work [5] for accurate comparison. Note that in 

[5], they only reported their results up to training set of size 377. In Figure 13 we see the 

comparison of our optimized SVR algorithm along with the SVR and the deep neural 

network (DNN) algorithms from [5].  
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Figure 13. Performance compared to previous work. Adapted from [5]. 

Our optimized SVR algorithm quickly outperforms the SVR considered in previous 

work [5] and even matches the best algorithm they tested, the DNN algorithm. In Figure 

14, the mean of 30 training sessions is plotted with the standard deviation represented with 

margin bars. As illustrated in Figure 14, as training set size increases, the algorithm 

performs exceptionally well. As training set size exceeds 100, PRP error is less than 1% 

and HLL error is just over 1%. Both GTC and GT error are below 0.5% before this point 

and begin to converge to 0.1%. 
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Figure 14. Averaged performance with standard deviation vs. training set size. 

From Figure 14, we see that HLL is the output value most difficult to predict by the 

SVR algorithm followed by PRP. The SVR algorithm does a good job predicting both GTC 

and GT values with GT being slightly better. These results agree with the results in [5]. 

Such behavior is possibly due to the makeup of the dataset, as many of the features are 

related to the gas turbine condition. In contrast, there are few features that are related to the 

RPR and even fewer with the HLL. 

If we look back at Figure 13, we notice that the results from [5] are better than our 

results at the extremely small training set sizes of 10trainn =  and 24.trainn =  With the dataset 

exceeding 500,000 observations, we conducted our hyperparameter optimization with a 

training size 1000.trainn =  Additional simulation experimentation showed that different 

hyperparameter values can produce better performance at smaller training sets but do not 

always excel with larger training sets, as is illustrated in Figure 15. The red line represents 
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the performance of the SVR algorithm trained with hyperparameters that perform well at 

small training sets, and the blue line represents the performance of the SVR with 

hyperparameters listed in Table 6. In Figure 13, we see that our SVR results outperform 

those obtained in [5] at larger training size configurations. The procedure conducted in this 

thesis can be followed to improve performance for small training set sizes.  

 

Figure 15. Performance comparison of two SVR algorithms for small and 
large training set sizes. 
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V. CONCLUSIONS AND FUTURE WORK 

A. CONCLUSIONS 

Through an analytical approach and computer simulations, we have shown in this 

research that an SVR algorithm can make accurate predictions of decay state of major 

components of an NPS providing the ability to develop a CBM program. With larger 

training sets we have shown that these predictions can be incredibly accurate, with error 

rates below 0.5% on all components PRP, HLL, CTC, and GT. 

In this work, we analyzed the dataset [6] used in previous work [5] to train and test 

several different ML algorithms. The dataset had been developed from several years’ worth 

of efforts to create a “real-data validated simulator” of a frigate NPS characterized by a 

CODLAG propulsion plant [5]. Through our analysis, we found that the dataset represented 

expected values of sensor readings on a real ship. We found high levels of correlation where 

we expected there to be, e.g., increase in fuel leads to increase in temperature. We also 

found that there was some replicated data in that several features were represented with 

identical port and starboard values. Following data analysis, we trained our SVR algorithm 

with broad hyperparameter settings to get a general idea of the range that affected our 

prediction model performances. With those ranges established, we created a test setup that 

varied all three hyperparameters to identify the optimum setting for each decaying variable 

PRP, HLL, GTC, and GT. With the optimum values selected for each hyperparameter, we 

were able to match or exceed the performance recorded in [5]. Finally, we showed that an 

optimally tuned and trained SVR algorithm can make predictions with error rates less than 

0.5%. This evidence shows that an SVR algorithm is a viable option to implement a CBM+ 

program for the major components of an NPS provided appropriate data is available for its 

development. 

B. FUTURE WORK 

Though the initial research objective was met, there are still challenges and 

recommendations to be researched and implemented before these findings can be applied 

to ships in the U.S. Navy. First and foremost is that the dataset used in this thesis is modeled 
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on a CODLAG propulsion plant which the U.S. Navy does not use. Many of the U.S. 

Navy’s surface ships have a combined gas and gas (COGAG) propulsion plant as illustrated 

in Figure 16; thus, a different simulated model needs to be developed to reflect the 

conditions of the U.S. Navy or actual data needs to be obtained to make accurate 

predictions. Additionally, in a COGAG lineup, there could be variations in the port and 

starboard features (i.e., shaft rpm, shaft torque, etc.) which would make them relevant in 

this model. In [5] it is mentioned that the ship model uses CPP but the pitch angle is not a 

feature in the dataset. The U.S. Navy uses controllable reversable pitch (CRP) propellers 

which are similar but can reverse the direction of thrust for astern propulsion, and the pitch 

angle could still prove important. U.S. Navy ships also use GT engines for their electric 

generators. The Rolls-Royce AG9140 type is a GT engine used in many of the U.S. Navy’s 

surface vessels. An additional model and algorithm can be developed for these GT engines 

as well. 

 

Figure 16. A common U.S. Navy COGAG NPS. Adapted from [20]. 
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GT casualties are an infrequent issue but are possible. Another model can be created 

for anomaly detection to identify situations in which GTs are likely to experience a 

casualty. This investigation would likely have to be developed from a set of real data prior 

to actual GT casualties. Finally, future researchers can reach out to FRCSW, where all the 

engine overhauls are conducted on the GE LM2500 engine type, for real data they may 

have collected over the years. Access to such data would be useful in validating a new 

simulated model as well as be used for anomaly detection ML algorithms in the case of GT 

casualty prediction.  
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SUPPLEMENTAL. MATLAB SCRIPTS AND FUNCTIONS 

Included in this section is a list of all supplemental files that are available upon 

request. To obtain a copy of these files, contact the Dudley Knox Library located on the 

campus of the Naval Postgraduate School in Monterey, California. The scripts 

m_removeData.m and m_normalizeData.m removed the excess data and then normalized 

the data, respectively. The script m_loadData.m is used to load the saved data after it has 

been normalized for training purposes. The three procedure scripts follow the procedure 

described in Chapter III. The function f_gaussian1.m is the custom Gaussian kernel and 

f_editKernelFile.m is the function used to edit the kernel parameter. The function 

f_SVMR_train_Gaussian.m trains the SVR algorithm, f_SVMR_validate.m conducts the 

validation sessions, and f_SVMR_test.m conducts the final trainings and testing. 

• m_loadData.m 

• m_removeData.m 

• m_normalizeData.m 

• procedure_phaseOne.m 

• procedure_phaseTwo.m 

• procedure_finalTest.m 

• f_gaussian1.m 

• f_editKernelFile.m 

• f_SVMR_train_Gaussian.m 

• f_SVMR_validate.m 

• f_SVMR_test.m 
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