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DURIP: “W911NF1610196 Novel experiment to examine

failure and flow of Earth materials”:

Final Report

Dr. Douglas Jerolmack, University of Pennsylvania

1 Introduction

Much of the Earth’s surface is composed of granular material; soil, sand, pebbles and boulders.
Most of the time, the landscapes made from these materials appear to be static. Indeed, the
infrastructure we build — such as bridges, roads, homes and fortifications — relies on the
assumption of stability. When under the action of a flood, storm, earthquake or eruption the
granular landscape begins to flow, the results are often catastrophic. Witness landslides and
debris flows, which occur when apparently stable soil suddenly loses its rigidity and fluidizes
(Fig. 1). Although more difficult to observe, undersea observations reveal that similar mass
failures occur at the bottom of the ocean. Another spectacular example is the collapse of lava
domes on volcanoes, which produce gas-fluidized granular currents known as pyroclastic flows.
All of these Earth-material flows result from the loss of rigidity of a marginally-stable granular
solid, and their fluidity depends on inter-particle friction and the degree of mixing with the fluid
medium. Soil on hillsides is also known to “creep” at slopes well below the angle of repose (Fig.
1), and our recent experiments have shown that river sediment may also creep for fluid stresses
below the apparent onset of motion (Houssais et al., 2015a). Thus, even granular solids are not
solid.

Typically, the onset of failure is treated using a simple yield stress criterion, below which
the granular bed is immobile; this is, however, incompatible with the existence of sub-threshold
creep. Above that threshold, the various types of geophysical flows discussed above are often
modeled with some kind of shear-dependent effective viscosity (Iverson and Denlinger, 2001).
While much progress has been made, Earth-material flows are often studied in isolation from
each other by specialized communities with specific models — e.g., landslides, pyroclastic flows
and submarine gravity currents are distinct entities. More critically, models and experiments
focus on one state of flow, rather than transitions between states. For example, there is a
mature literature examining the controls on the velocity and concentration profiles of steady-
state turbidity currents (Felix and Peakall, 2006; Sequeiros et al., 2009; 2010; Talling et al., 2012)
— submarine density currents made of suspended sediment — however there are remarkably few
studies documenting how these currents are formed from a collapsing granular pile (You et al.,
2012).

2 Proposal Goals

We aimed to build a unique laboratory research flume, that will facilitate a new
approach to examining the failure and flow of Earth materials that spans disciplinary
boundaries. Disparate Earth-material flow experiments are conducted in different facilities by
different researchers, so we cannot directly compare and isolate the influence of variables such
as the ambient fluid. The constructed research flume allows examination of the failure and flow
of granular materials in air and underwater by using: (1) a pressurized chamber able to fluidize
granular material, and then release this material in a “dam break” type experiment to examine
runout and mixing; and (2) a coupled-camera laser system mounted on an automated, precision
cart that is capable of moving with the retreating front of a failing granular pile and measuring
fluid and particle motion simultaneously. The channel also recirculates water and sediment, to
examine more conventional river transport scenarios. Thus, the experiment allows us to study
a range of Earth-material flows that are usually treated separately: landslides and debris flows,
turbidity currents, pyroclastic flows, and river transport.
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Figure 1: Examples of Earth-material flows involving granular material. a) A slumping, slow-
moving landslide that is below the threshold for fluidization. b) A fast-moving fluidized landslide,
showing long runout with catastrophic consequences. c) A pyroclastic flow, in which particles
ranging from ash to boulder size are ejected from a volcano and mixed with hot gas, causing a
fluidized granular flow to move downslope. d) A submarine landslide, in which sediment on the
continental slope was fluidized to create a debris flow. Image credits for (a)-(d), respectively:
wallpaper222.com/explore/earthflow, www.weatherwizkids.com, Abel Cortes of the Colima Vol-
cano Observatory, and the Monterey Bay Aquarium Research Institute.
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I hypothesize that the rheology of Earth-material flows, and the transitions between flow
regimes, are controlled by two parameters; the dimensionless shear rate (I) and the particle
concentration (C). Further, I propose that the sudden fluidization of Earth materials represents
an unjamming transition, that is essentially controlled by granular friction. Our previous work
on fluid-granular flows presents a starting point for designing a specialized experimental setup
capable of examining a broad suite of Earth-material flows and their initiation. To succeed, one
should be able to control the factors that govern granular friction and pore pressure; namely,
initial granular packing fraction, fluid viscosity and density, particle diameter, confining pressure
and gravity force. In addition, the research apparatus should be flexible enough to support
more general research and teaching goals, including examining the fluid and sediment motions
associated with more conventional (but still not understood) river-type flows. This will also allow
side-by side comparison of the latter with Earth-material flows, to scrutinize the proposition that
all of these systems exhibit the same granular phase transitions. Accordingly, the experiment
must be capable of:

• accommodating a wide range of flow thickness and velocity, while minimizing material
usage;

• examining flows in air, and underwater;

• tuning the initial packing fraction and height of a granular pile;

• quickly releasing the granular pile to simulate a “dam break” scenario;

• imaging granular and fluid motions in the vicinity of a moving granular front;

• tracking grain and fluid motions of the flow produced by the collapsing granular pile;

• varying the channel slope; and

• having a recirculating mode for water and sediment.

More broadly, the goals and expected outcomes of this equipment proposal may be stated as
follows:

• construct a state-of-the-art and unique research facility, that will build capacity for DoD-
relevant research in the area of Earth-material flows and associated hazards;

• launch a new research direction in unjamming of granular materials under a wide range of
conditions, with cross-disciplinary collaborations;

• provide the first detailed observations of granular motion in a failing Earth flow;

• examine in particular the granular dynamics of breaching and turbidity current generation,
to test for similarity with steady-state fluid-sheared river flows;

• use the research flume as a vehicle for training students and postdocs in how to conduct
research at the interface of materials and disciplines;

• create a flexible apparatus, with a long life, to be used for general teaching in Earth Surface
Processes; and

• generate new research proposals — within and outside DoD — facilitated by the novel
apparatus developed here.
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Figure 2: The turbidity current apparatus. On the right, a schematic of the entire flume shows
an upstream fluidized reservoir of 0.5 m and a 9 m run-out channel for the turbidity current,
separated by a pneumatic door. The flume has a trolley along its top surface with a hanging
camera that can track a moving front. On the left is the actual flume in our lab, built in May
2017. The upstream reservoir sits on the blue jack, and the arm for the hanging camera can be
seen downstream.

3 Accomplishments

We have completed construction, calibration and testing of the new experimental Earth-material
failure and flow facility. We have demonstrated its ability to generate a range of relevant failure
and flow behaviors. I report some relevant progress below.

The purpose-built subaqueous flume allows us to prepare a pack of grains that fails as a gate
is opened, allowing flow down a long channel (Figure 2). To understand the role of granular
friction and pore pressure for the breaching front supply of the generated particulate “turbidity
current”, we have the following free parameters; many aspects of the granular media (including
its size distribution, mass and packing fraction) and the flume slope. The resultant flow dynamics
are measured with images taken during the experiment.

The flume was designed by Engineering Laboratory Design Inc. (ELD) to the specifications
of PI Douglas Jerolmack and postdoc Carlos Ortiz, and its construction was completed in Spring
2017. Matt Thomforde, an ELD engineer, and graduate student Andrew Gunn constructed the
flume at the University of Pennsylvania. Experiments for multiple different geophysical flows
can be performed using the flume, however we limit discussion here to the first tests conducted
to generate turbidity currents. The turbidity current is created in the body of the flume, which
consists of an upstream margin, a channel body (both made of clear 0.025 m thick acrylic) and
a downstream catch tank (made of opaque fiberglass). The upstream margin and the channel
body are 0.5 m and 9 m long, respectively. They are both 0.6 m tall and 0.05 m wide. The
narrow width of the flume (O(102) grain diameters) may interfere with the front dynamics (i.e.
the Janssen effect), however there are rigorous models accounting for this. The downstream
catch tank is large to maintain a sub-critical Froude number (Fr = U/Lg) of flow for as long as
possible during an experiment (flows inevitably impinge upon the geometry of the tank, reflect
back into the channel, and disturb the dynamics of the turbidity current).

The upstream margin and channel body are separated by a steel pneumatically operated door,
forced with a pressure drop of 100 Pa. In an experiment this door is opened starting failure.
Ideally this would happen instantaneously and not displace any material, however the confining
pressure on the door when the flume is filled with fluid (and maintaining a water-tight seal)
require a 0.025 m thickness and slow the opening time to O(10−1) s. Still, the reproducibility
of this mechanism is novel with respect to other turbidity current laboratory experiments.

An important parameter that regulates breaching dynamics is the volume packing fraction
φ of the granular material. Our experiment allows me to tune this parameter in the upstream
margin (done before the pneumatic door is opened) by recirculating water flow through the
granular material. Hydrostatic pressure on the grains is counteracted by this pressure-driven
flow of water upward through them, the resultant Darcian flow decreases φ by increasing the
Capillary number (Ca = µU/σ). This allows the packing fraction of the failing material to be a
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free independent parameter, within an approximate range of 0.1, limited by the highest achieved
under hydrostatic load and the lowest when fluidized channels form within the material. The
recirculating flow must diverge from a pipe of cross-sectional area O(10−4) m2 (required for the
pump) into a uniform flow under the upstream margin (surface area 0.025 m2), which I have
achieved by filling a cone that joins the two surfaces with dense foam, creating an intermediate
Darcian flow. Finally, for any imposed force field, the non-equilibrium packing fraction can be
modeled as ∂tφ = −φ/τr, where τr is a relaxation timescale. To ensure near-equilibrium between
the recirculating flow and the packing fraction, flow is maintained for at least O(10) · τr (around
20 minutes) before breaching.

Experiments on the breaching front are measured with 3 different imaging systems from the
side of the flume (preliminary results shown in Figure 3). Firstly, a far-field Nikon 5100 DSLR
with frame rate of 24 Hz takes stationary images of flow in the channel body. These images are
back-lit with an array of 72 W LED panels that provide a homogeneous light source, allowing
us to measure the bulk shape and strain rate of the current as it blocks the light between the
LED panels and the DSLR. Secondly, another far-field stationary 24 Hz DSLR takes images
from the side of the upstream margin as the breaching front recedes upstream from its initial
position. These images allow us to measure the bulk strain of the initial pack (notably the front
profile and speed). Thirdly, a non-stationary Ximea xiQ MQ013MG-ON camera takes near-field
images of the breaching front at 100 Hz. The Ximea is combined with an Opteka telescopic
lens, allowing a useful grain to pixel size ratio whilst mounted far away from the focal plane.
A Coherent Stingray 520 nm laser sends a sheet of light close and parallel to the channel wall,
illuminating both seed-particles in the water and granular material sent into suspension near
the breaching front. Secondly, another LED panel front-lights the upstream margin, allowing
Ximea observation of grain movement within the granular media before it is lost to the current
through the breaching front.

The resultant phase velocities from near-field and bulk deformation from far-field are deter-
mined from the images using tracking algorithms that are based principally on auto-correlation
and edge-detection. All the image data is stored in hard-drives with the experiment workstations,
and written to the laboratory Synology server.

A novel aspect of this project is that grain motions can be resolved at the breaching front
during an entire experiment. Usually this is not possible because the focal width of a camera
capable of resolving grain-scale motion is narrower than the total breach. The Ximea and
Stingray are both mounted to a trolley driven by an Oriental Motors stepper motor, allowing it to
move along rails on top of the flume at tunable speeds (maximally faster than the front breaches).
We are currently working to create a system in which during an experiment the trolley moves
with the breaching front; the displacement of the breaching front between recently captured
sequential images from the Ximea will be calculated on-the-fly with the Dell workstation, which
then passes a signal to the stepper motor updating the trolley speed to match the front’s.
This task is computationally demanding, however achievable with assistance from the robotics
contingent at the University of Pennsylvania and a purpose built Dell computer.

We are currently running a suite of experiments that provides information at points in a
space spanned by 2 independent parameters; median grain size d50 and initial packing fraction
φi. The d50 provides a characteristic measure of the distribution of grains in the solid-phase of
the turbidity current. Full particle size distributions of common experimental sand samples are
determined using our laboratory’s Beckman Coulter Laser Diffraction Particle Size Analyzer LS
13 320.

3.1 Expected Outcomes

This project is expected to produce novel experimental data on turbidity current breaching.
Significant progress has already been made; a challenging build of the flume has been completed,
and preliminary experiments have resulted in alterations of the set up and grains required for
turbidity current formation. Most importantly, we have shown that we can produce two distinct
modes of failure: “breaching” from highly compacted initial grains, and debris flow failure from
more dilated samples.
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Figure 3: Preliminary experiments of a breaching front in the flume (see Figure 2). (below)
A far-field view from a stationary DSLR camera of the upstream reservoir of a collapsing pack
(opaque region, back-lit), creating a flow to the right of the image. The red inset (above) shows a
near-field view from the Ximea camera mounted to the trolley, able to capture individual grains
in the pack (front-lit).
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4 Relevance to DoD

Landscape instability affects nearly every human on the planet in one way or another, and often
limits the lifetime of major infrastructure. From slow soil creep causing settling and breaking of
pipes, to collapsing river banks chewing away roads, to landslides burying entire communities,
to turbidity currents snapping undersea cables, Earth-material flows are ubiquitous agents of
destruction. The research facilitated by this equipment is relevant to many areas of DoD. As
stated above, however, this work most directly supports the mission of the Material Science
Division of the Army Research Office, in particular related to Earth Materials and Processes.
These efforts have satisfied the following objectives of the division:

• “...to discover the fundamental relationships that link...microstucture...with the resultant
material properties and behavior.” Our work on connecting grain-scale motion to rheology
and resultant flow relates to this.

• “...to advance the understanding of geological materials and processes, to establish op-
portunities from which to optimize the performance of future Army systems functioning
within them.” Understanding failure of Earth materials can be used to predict or manip-
ulate landscape stability.

• “Foundational research that integrates novel experimental work with the development of
new predictive materials theory...Furthermore, there is lasting interest in new ideas and
cross-disciplinary concepts in Material Science that may have future applications for the
Army.” The entire proposal is in this spirit.

4.1 Enhancements of current DoD-funded research and education

This flume created new research opportunities that built on a previous ARO-funded project,
and also led in part to the development of a new ARO-MURI proposal on Topic 14 - Control of
particulate flows.

4.2 New capabilities for DoD-related research and education

The developed experiment is developing into a nexus for collaborating researchers from EES,
Physics and Engineering. Nothing like it exists on campus, or indeed in the Philadelphia area.
Moreover, the facility includes several truly unique elements that make it stand out anywhere.
The thrust of research conducted with this facility will be the application of emerging frameworks
from soft-matter physics and materials science to understanding geologic materials and their
flow. Also, discoveries of Earth-material behaviors under new boundary conditions will likely
challenge existing theory, leading to new breakthroughs in materials science. The new facility is
already featured prominently in Jerolmack’s GEOL305 class, “Earth Surface Processes”, which is
taught each spring. Students are able to perform experiments and collect real data, in laboratory
exercises that confront theoretical concepts learned in class with messy reality.
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