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Abstract

There is a great need to develop non-GPS based methods for positioning and

navigation in situations where GPS is not available. This research focuses on the de-

velopment of an Ultra-Wideband Orthogonal Frequency Division Multiplexed (UWB-

OFDM) radar as a navigation sensor in GPS-denied environments. A side-looking

vehicle-fixed UWB-OFDM radar is mounted to a ground or aerial vehicle continu-

ously collecting data. A set of signal processing algorithms and methods are devel-

oped which use the raw radar data to aide in calculating the vehicle position and

velocity via a simultaneous localization and mapping (SLAM) approach. The radar

processing algorithms detect strong, persistent, and stationary reflectors embedded

in the environment and extract range/Doppler measurements to them. If the radar is

the only sensor available, the measurements are used to directly compute the vehicle

position via an extended Kalman filter (EKF) or Levenberg-Marquardt solver. If an

existing navigation platform is available, the measurements are combined with the

other sensors in an EKF. The developed algorithms are tested via both a series of

airborne simulations and a ground-based experiment. The airborne simulations are

performed with simulated commercial-grade, tactical-grade, and navigation-grade INS

systems available. The experiment is performed with an indoor mobile platform con-

taining an HG1700 tactical-grade INS and an X-band 500MHz UWB-OFDM radar.

For all configurations, the computed navigation solution performance is analyzed with

the following sensor availability: radar-only, INS-only, and combined radar/INS. In

both simulation and experimental scenarios, the integrated INS/UWB-OFDM system

shows significant improvements over an INS-only navigation solution. The radar-only

system performs well assuming high availability of reflectors to track, with decreased

performance when reflector-less environments are encountered.
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Radar Based Navigation in Unknown Terrain

I. Introduction

The problem of providing a robust, reliable navigation solution to aerial and

ground vehicles is of great interest. The safety and success of commercial transporta-

tion systems, remotely operated vehicles, guided projectiles, maritime operations, and

many other applications relies on real-time knowledge of the vehicle’s position, veloc-

ity, and orientation. The development of navigation sensors to provide these real-time

estimates is the focus of a large field of research.

Rudimentary navigation has been performed since the beginning of recorded

history. One of the earliest known navigation methods is celestial navigation, whereby

careful observations of the stars gives the observer information about their position.

By positioning fixed stars with a sextant and using a chronometer to estimate the time

of day early sailors could calculate their latitude and longitude [1]. Alternatively, when

sailors were near land they could use knowledge of known landmarks on the shore to

estimate their position. If neither of these sources of absolute position information

were available they could still estimate their location by carefully recording their

heading and speed, which told them how far they had moved and in what direction.

By continuing to record their movement over time they could create a track of their

travels since their last absolute position update, a process known as dead-reckoning

navigation.

While there are many dead-reckoning measurement devices (chip logs, airspeed

indicators, etc.), modern navigation solutions typically rely on inertial navigation

systems (INS). INSs use a combination of accelerometers and gyroscopes to estimate

the linear and angular accelerations of the navigation platform, which can be used to

calculate the change in position of a platform or vehicle much like heading and speed.

Gyro-based navigation was initially explored in the early 1900s [2], with increasing

1



interest due to the development of the V1 and V2 guided rockets during World War

II [1]. However, like all dead-reckoning approaches, INS-based navigation only works

well over short periods of time; the utilization of relative position information results

in position drift, a type of error which builds up over time and eventually causes the

navigation solution to be useless.

The launch of the first Global Positioning System (GPS) satellite in 1978 [3]

provided a highly available source of absolute position information, allowing vehicles

to calculate accurate non-drifting navigation solutions continuously. Unfortunately,

the long distances between terrestrial vehicles and the GPS satellites combined with

power constraints on the satellites leaves GPS vulnerable to both intentional and

unintentional jamming [4]. GPS also cannot be used in indoor or underground envi-

ronments, where the satellite signals are too weak to be received. When GPS is denied

or unavailable, the vehicle must find other means of improving the INS’s position drift.

One approach is to integrate INS with other sensors, resulting in a combined

sensor navigation platform. A number of alternative sensors have been used for navi-

gation, including cameras [5,6], AM radio [7], sonar [8], television [9], GSM [10], and

LIDAR [11]. Each of these sensors has advantages as well as phenomena which limit

their operation. For example, optical sensors are easily obstructed by cloud cover or

smoke. The addition of alternative sensors allows the navigation platform to operate

under more diverse environmental conditions. Each additional sensor also provides a

source of independent information about the vehicles’ navigation solution, resulting

in a lower error bound. Thus the combination of a wide variety of sensors results in

a better and more robust navigation solution.

1.1 Radar-based navigation

This dissertation proposes the use of radar as a navigation sensor. Radars

are a form of echo-location technology originally developed during World War II to

detect and locate objects. Radars operate by transmitting radio signals anywhere

between 2MHz and 300GHz [12] and recording returns of the signal from reflecting
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objects. The information gathered about a remote object includes its range from

the radar, its radial velocity, its angular direction with respect to the radar, and its

size and shape. There are many modern applications of radar, including air traffic

control, surveillance, and military operations; one application of particular interest is

the development of imaging radar. Imaging radars, also known as synthetic aperture

radars (SAR), use a series of transmissions to construct high resolution images of an

environment [12].

In theory, the ability to use radars to generate images of a scene allows usage of

a radar as a navigation sensor on-board an integrated navigation sensor array. One

simple integration method would be to use SAR to construct imagery and then utilize

existing image-based navigation approaches [13]. However, this approach has several

issues:

1. The construction of SAR imagery in real-time is computationally expensive,

often being performed on parallelized clusters of computers. This prohibits

direct SAR image-based navigation on platforms which have limited resources,

such as small unmanned aerial vehicles (UAVs) or unmanned ground vehicles

(UGVs).

2. Since high-precision navigation is desired, an ultra-wideband (UWB) radar is

desired, because wide bandwidth signals have higher range resolution. UWB

data processing requires even more computation to process than narrow-band

signals, increasing the need to develop high speed processing algorithms. [14,15]

3. The phenomenology encountered by optical sensors is different from those oper-

ating in radar bandwidths. For example, cloud cover will obscure land features

from a camera mounted on a UAV, but a low-frequency radar will penetrate the

cloud cover and the earth’s surface [15].

4. The features which can be utilized by SAR will have very different characteristics

than those of a camera, and necessitate a different approach to feature detection,

extraction, tracking, and positioning. A radar collects down-range and Doppler
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data from targets, whereas a camera is an angular sensor which (inherently) has

no knowledge of the depth of a scene.

The use of radar as an integrated navigation sensor will require first overcoming

these obstacles by developing a radar signal processing approach capable of real-time

SAR feature extracting and tracking.

1.2 Problem Statement

The problem considered is that of navigating a UAV/UGV through terrain/build-

ings under the following conditions:

• The terrain/building is unknown, such that no a priori map of the environment

is available.

• GPS is not available, either due to insufficient signal strength or intentional/un-

intentional jamming. The potential presence of a jamming source necessitates

the use of RF waveforms with resilience to interference.

• Reflectors are available in the environment which are strong, persistent (over

short durations of time), stationary, and isolated from each other.

• The radar clutter is reasonably modeled using statistical clutter models [12].

• An INS and a UWB SAR system are available on the vehicle.

The goal of this research is to use a UWB SAR sensor and an INS as an inte-

grated navigation platform. As the vehicle moves through its environment, it com-

bines information obtained from the UWB radar and INS to compute the navigation

solution (position, orientation, velocity) of the vehicle.

1.3 Research Contributions

The problem of integrating data collected from an imaging radar into a naviga-

tion solution requires careful consideration of the requirements of a navigation sensor
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and the use of computationally inexpensive approximations to optimal processing

methods. The primary research contributions of this dissertation are as follows:

1. The development of a set of SAR data processing algorithms enabling the real-

time extraction of SAR observations for the purpose of navigation.

2. The development of a navigation filter capable of using the information con-

tained in the SAR observations to correct INS errors.

3. The development of an experimental UGV system prototype which contains

both an INS and an experimental jamming-resistant UWB radar system. The

radar waveform transmitted is an orthogonal frequency division multiplexed

(OFDM) symbol, which allows for resilience to jamming [16].

4. Experimental validation of the algorithms/navigation filter using the system

prototype.

1.4 Dissertation Outline

The remainder of this dissertation is organized as follows. Section II provides

a mathematical background for general navigation methods, radar processing tech-

niques, and inertial systems. Section III describes the novel data processing/estima-

tion algorithms for integrating SAR data into an INS navigation solution, as well as

the developed experimental system prototype. Section IV presents simulated results

for UAV-based navigation. Section V provides experimental results for UGV-based

navigation using the experimental system prototype. Finally, Section VI details the

conclusions of the study and potential future work.
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II. Mathematical Background

In this chapter, we review previously developed concepts and techniques which aid

and inform our algorithm and model design in the next chapter.

2.1 Conventions

2.1.1 Notation. The following notational conventions are used in this dis-

sertation:

• A hat (̂·) indicates an estimated quantity.

• A single dot ˙(·) and double dots (̈·) on top of a symbol indicate a first-order and

second-order derivative with respect to time.

• A ∂ is used to represent the derivative of a quantity with respect to another

quantity, e.g. ∂2y(x)
∂2f(x)

• When indexing into a vector/matrix, [·] brackets are used. For example, [ak]l is

the lth row of the vector ak.

• A δ represents the error of a quantity (i.e. δ(·) is the error of (·)).

• The reference frame of a quantity (if given) is denoted by a superscript. For

example, (·)b represents the parenthesized quantity in the b frame.

• Bold lower case variables are row or column vectors.

• Bold upper case variables are matrices.

2.1.2 Reference Frames. Geometric vector quantities must be expressed

with respect to a frame of reference. A frame of reference consists of two things: an

origin point and an ordered basis of orthogonal unit-length vectors. For an arbitrary

3-dimensional frame f , we will denote the basis vectors xf , yf , and zf . In this section

we will outline some common reference frames, as detailed in [1, 13].

In general, an inertial frame is defined as a non-rotating frame without non-

gravitational acceleration acting upon it. The earth-centered inertial (ECI) frame i
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is defined by an origin at the center of mass of the earth and the xi,yi,zi vectors

pointing towards observable stars. The assumption is that the relative motion of the

stars with respect to the earth has a negligible effect on the basis set when using the

frame to position local objects. Thus the i frame does not rotate with respect to the

earth, sun, or solar system, but instead instead maintains reference with the galaxy.

With this in mind, it may not be a truely “inertial” frame, as the motion of the fixed

stars will cause the ECI frame to have an extremely small rotation.

The earth-centered earth-fixed (ECEF) frame e is defined by an origin at the

center of mass of the earth and the xe,ye,ze vectors pointing towards the Greenwich

meridian, the equatorial plane at 90 degrees east longitude, and the north pole respec-

tively. This frame’s basis vectors are aligned with fixed points on the earth, and thus

it is a rotating frame. However, it has the advantage that objects on the surface of the

earth (or otherwise synchronized with the earth’s rotation, such as geosynchronous

orbits) do not change position in the ECEF frame.

The local level tangential navigation frame n′ is defined by an origin at the

center of mass of the navigation vehicle and xn
′
,yn

′
,zn

′
vectors pointing North, East,

and down (towards the earth’s center of gravity) respectively (NED). This frame does

not change with the rotation of the vehicle, but its origin is continually changing with

respect to the earth and the ECEF frame. This frame is convenient when quantities

are easily expressed in relation to the vehicle position, such as ranges to targets.

The fixed local level navigation frame n is defined by an origin at the initial

navigation vehicle’s position and xn,yn,zn vectors pointing North, East, and down

respectively. The n frame differs from the n′ frame in that the origin does not track

the vehicle position over time. This frame is useful for modeling navigation problems

where the earth’s surface can be approximated as flat, such as indoor environments.

The body frame b is defined by an origin fixed to the vehicle and xb,yb,zb vectors

pointing out the nose, right wing, and bottom of the vehicle respectively. This frame

is similar to the n′ frame except that it rotates with the vehicle. It is useful when
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measurements or other quantities are only known with respect to the body of the

vehicle, such as a strapdown inertial device.

2.2 Asymptotic Complexity

Estimation error is not the only metric of optimality applicable to estimators.

In many contexts, the speed at which the algorithm calculates its estimate is also

important. To analyze this problem, we must introduce metrics which measure the

computational burden of the algorithms generating estimates.

Computational burden is a particularly difficult optimality criteria to quantify.

Modern superscalar processors feature instruction level parallelism, out of order in-

struction execution, data pipelining, multi-layer caching structions, data dependency

elimination, and many more optimizations. The existence of such complex compu-

tation engines makes simple algorithm metrics such as counting the number of float-

ing point adds and multiplies virtually useless, as the number of floating operations

per second will vary from algorithm to algorithm [17]. In order to optimize real-

world algorithms, brute-force approaches which try all available execution strategies

are needed, such as the FFTW implementation of the fast Fourier transform (FFT)

in [17]. The results of such optimization will vary wildly depending on the specific

processor architecture and platform on which the algorithm is run.

One alternative metric for computational burden is to consider how an algorithm

will scale as data inputs get larger. Because computer speed is ever increasing, this

approach allows the future applicability of the algorithm. Donald Knuth popularized

the “Big-O” notation [18] for this metric, which is defined here. Let n be the size of

the input data to an algorithm, f(n) be the number of operations performed by the

algorithm for an input of size n, and g(n) be a function describing the “order” of the

algorithm. Then the notation

f(n) = O(g(n)) (1)
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implies that f(n) is bounded above by the function g(n) as n gets large. Formally,

we say there exists positive integers n0, C such that

|f(n)| ≤ C|g(n)|,∀n > n0 (2)

Similarly, the notation

f(n) = Ω(g(n)) (3)

implies that the function f(n) is bounded below by the function g(n) as n gets large.

Formally, we say there exists positive integers n0, C such that

|f(n)| ≥ C|g(n)|,∀n > n0 (4)

Finally, the notation

f(n) = Θ(g(n)) (5)

implies that the function f is bounded above and below by the function g as n gets

large, and is thus both O(g(n)) and Ω(g(n)). This metric can be used to classify

algorithms according to their asymptotic complexity. For example, Fourier transform

implementation which is Θ(n2) will run much slower than an implementation which

is Θ(n log n) for large n. Indeed, the ability to run in Θ(n log n) time is the distin-

guishing factor that separates the FFT from other discrete Fourier transform (DFT)

implementations.

2.3 Geometric Dilution of Precision

When using ranges between a set of sensors and a target to estimate the target’s

position, it is important to consider the orientation of the sensors with respect to the

target. If the ranges contain errors, then the geometry of the sensor configuration will
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result in geometric dilution of precision (GDOP). Fig. 1 illustrates this phenomenon.

In A), the two small filled circles are sensors which have each collected a range to

the target from themselves. Assuming the ranges to be error-less, we can state that

the target must lie somewhere along a circle with radius equal to the range, as shown

by the circular lines. Since the target must lie on both of the lines, there is only one

possible target location: the intersection of the two lines. There is another intersection

between the lines (not shown), but we can ignore this possibility if we know the target

lies to the right of the sensors. In B) we consider the same scenario but let the ranges

have errors. The target is no longer known to lie on the lines, but instead in an area

plus or minus a small distance from the lines. Similarly the target does not have to

lie at the intersection point, but instead could be anywhere in the green shaded area.

In C), we consider the same scenario as B) but with bad geometry (both sensors give

us ranges along the same axis). We see that the green shaded area where the target

could reside is much larger. Thus the geometry in B) is superior to that in C) if we

want to know the position of the target in both the x and y axes.

When we consider multiple sensors and/or multiple ranges collected over time,

the GDOP becomes harder to visualize. However, in general having sensors geomet-

rically diverse (i.e., distributed and not clumped) yields higher accuracy estimates.

2.4 Estimation

2.4.1 Introduction. The goal of estimation is to predict the value of one or

more hidden quantities given a set of observations which contain information about

them. There are two primary models used in estimation: classical estimation, where

the hidden quantities are assumed to be deterministic but unknown, and Bayesian

estimation, where the hidden quantities are assumed to be random. In both models,

one must first decide on an optimality criterion which defines what an “optimal”

estimator is. The second step is to derive an estimator that is optimal with respect to

the chosen criterion. In this section, some common classical and Bayesian estimators

and metrics of optimality are discussed.
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Figure 1: Illustration of GDOP for range-based localization, taken from Wikimedia
Commons (attribution: Colin O’Flynn). A) two sensors receiving ranges to a target,
with one solution. B) same as A but showing errors on ranges, yielding an area of
possible solutions. C) same as B but with poor geometric distribution of sensors,
yielding a larger area of possible solution (higher error).

2.4.2 Classical Estimation. Classic estimation calculates an estimate of a

hidden deterministic set of quantities given a set of observations. Let x be a vector

of unknown quantities (possibly of size 1) we wish to estimate and z be a set of

observations which contains information about x. Then we want to come up with an

estimator x̂(z) such that x̂(z) ≈ x. x̂ is technically a function mapping a random

variable (the observations) to a random variable (the estimator). That is,

x̂ : (Ω→ R)→ (Ω→ R) (6)

where Ω is the sample space. Note that in practical use, the estimator is applied

to a realization of the observations (our sensor output) to produce a realization of
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the estimator. For brevity, we will omit the function notation from now on and refer

simply to x̂ when we talk about the estimator. Thus you can think of x̂ as “an

estimate of the quantity x which uses the observations”. This estimate is in fact a

RV, and so it has moments such as mean and variance.

There are many metrics for evaluating the performance of an estimator x̂. One

popular optimality criterion is to find an estimator which is unbiased (i.e. E[x̂] = x)

and has minimal variance (i.e., V ar(x̂) < V ar(x̂′) for all other possible estimators

x̂′). Such an estimator is called the minimum variance unbiased (MVU) estimator.

MVU estimators are, in general, difficult to find. However, they do exist for particular

problems, such as the linear estimation problem considered in the next section.

2.4.3 Linear MVU Estimator. Consider the problem of estimating x given

that the observations z are related to x via

z = Hx + w (7)

where H is a matrix and w is a vector of random variables acting as a noise source

for the observations. If the noise sources in w are assumed to be Gaussian with zero

mean and covariance matrix σ2I, then the MVU estimator for x is [19]

x̂ = (HTH)−1HTz (8)

The covariance of the estimate x̂ is

E[(x̂− µx̂)(x̂− µx̂)T ]] = σ2(HTH)−1 (9)

This result relies on the system being linear and the noise sources being uncorre-

lated Gaussian with equal noise strength. While the MVU may be derivable for other

scenarios on a case-by-case basis, no generalized form exists for an MVU estimator.
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2.4.4 Alternative Metrics and Sub-optimal Estimators. MVU estimators do

not exist or are unsolvable for many problems of interest. For these problems we must

either use sub-optimal estimators or use a different optimality criterion.

One sub-optimal MVU estimator which is easy to find and can be applied to

many problems is the maximum likelihood estimator (MLE). Although no optimality

can be claimed for the MLE, it can be proven that the MLE converges to the MVU

estimator as the number of observations goes to infinity (i.e. the dimensionality of

z→∞) [19]. Thus the MLE is considered approximately optimal (in the MVU sense),

especially if the number of observations is large.

One popular alternative optimality condition is least squares error (LSE). Unlike

MVU or MLE approaches, LSE estimators do not consider the probabilistic proper-

ties of the observations, and thus can make no claims about optimality or variance.

Instead, only the deterministic model of how the observations relate to the unknown

quantities is used. LSE estimators attempt to estimate the hidden quantities such

that the observations predicted by the estimate (the prediction is made by passing the

estimate through the model) closely match the actual received observations. Formally,

we wish to find an x̂ such that the summation

N∑
i=1

([h(x̂)]i − [z]i)
2 (10)

is minimized. N is the length of z, zi is the ith element of z, [h(x̂)]i is the ith element

of h(x̂), and h is a deterministic function which relates the unknown quantity x to

the observation z.

2.4.5 Linear Least Squares. If we constrain the function h from the last

section to be linear

z = Hx (11)
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then the LSE criterion is to find a x̂ such that we minimize the quantity

(z−Hx̂)T (z−Hx̂) (12)

The estimator which minimizes this quantity is given by [19]

x̂ = (HTH)−1HTz (13)

Note that this is in fact the same result as the MVU estimator for additive Gaus-

sian noise sources. If we made the same assumptions about the noise sources here, the

LSE estimator is in fact the optimal MVU estimator. This result demonstrates that,

although LSE is not generally optimal in any sense, it tends to yield estimators which

are reasonable. If the noise sources were in fact not zero-mean additive Gaussian,

then we cannot make any guarantees about the optimality of the LSE estimate; as a

rule of thumb, we can say the results it produces tend to be sensible, and apply to

a wide range of problems for which the MVU estimator is not available, such as the

non-linear problems considered in the next section.

2.4.6 Non-linear Least Squares. Non-linear problems where

z = h(x) (14)

are in general not able to be estimated by the MVU method. In this case, we can use

a non-linear form of the LSE estimator. In particular, we will try to find an estimate

x̂ such that

(z− h(x̂))T (z− h(x̂)) (15)
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Although no optimality can be claimed, we expect a reasonable estimate of

the unknown quantities, since the produced estimate combined with the observation

model will closely predict the observations we collected.

There are many approaches to non-linear LSE minimization. Two standard

approaches are the Gauss-Newton (GN) method and the gradient descent method.

GN starts with an intial guess and then uses a Taylor series expansion to approximate

the non-linear function. The minimum of the approximated function is then found

via standard root-finding methods. This process is repeated iteratively until GN

converges to a stable point [19]. Gradient descent also starts with an initial guess,

and steps in the direction of the steepest downward descent (i.e., the gradient of the

function at the current location). The gradient descent method keeps stepping in the

direction of the gradient vector until it reaches a stable point.

Both of these methods have trade-offs. Gradient descent is highly susceptible

to finding local minimums, and GN is more susceptible to convergence issues. The

widely used Levenberg-Marquardt algorithm (LMA) is an alternative non-linear least

squares estimator which combines GN and gradient descent [19]. LMA has a tunable

parameter λ which allows it to act as GN (slow convergence) or gradient descent (fast

convergence), or anywhere in-between. LMA allows the user to tune the convergence

rate to best suit a particular problem and is a generalization of both GN and gradient

descent.

It should be noted that none of these methods can guarantee to find the point

which minimizes the LSE. All methods are susceptible to finding local minimums and

convergence issues. Even if they could guarantee to find the LSE point, as previously

discussed the LSE estimator is not guaranteed to be optimal. Thus non-linear least

squares estimates must be considered to be potentially incorrect with no guarantees.

The particular problem must be studied and tested to see if non-linear least squares

is a suitable approximation.
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2.4.7 Bayesian Estimation. Bayesian estimators make the assumption that

the probability distribution of the quantity to be estimated is known. This is in

contrast to classical estimation, where the quantity is deterministic but unknown.

This allows us to compute the probability distributions of estimators. Let R be a

random variable, and R̂ be the estimate produced by our estimation algorithm. One

popular metric is the quantity

Me = E[(R̂−R)2] (16)

where E is the expected value operator. This metric is called the mean squared error

(MSE). An estimator which minimizes this error is called the minimum MSE (MMSE)

estimator. In general, the MMSE estimator is difficult to find, but it can be found in

certain contexts, such as linear problems.

2.4.8 Bayesian Estimation of Linear Dynamic Systems. A linear dynamic

system assumes that each state is a linear function of the previous state with additive

Gaussian noise:

xk+1 = Φkxk + wk (17)

where xk is the state vector at time k, Φk is the a matrix called the discrete-time

dynamics matrix, and wk is a vector of jointly-Gaussian random variables at time k

with covariance matrix Qk. Note that this model implies that each state is only a

function of the previous state, making it a Markov process. We further assume that

the observations we have of this system are linearly related to the states:

zk = Hkxk + vk (18)

where Hk is a matrix relating the observations to the states at time k, and vk is

a vector of jointly-Gaussian random variables at time k with covariance matrix Rk.
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We wish to calculate estimates {x̂k, x̂k+1, . . .} of the state matrix over time given the

observations.

The solution to this problem is called the Kalman filter (KF). The KF assumes

we have an initial estimate of the state at some time k, and then iteratively calculates

the state estimate from that time forward. The first step is to calculate the uninformed

estimate of the state at time k + 1 (i.e. we haven’t used the information from the

observation at k + 1 to inform the filter yet). Then we have [20]

x̂−k+1 = E[Φkxk + wk] = Φkx̂k (19)

This step is relatively straightforward as we simply use the dynamics equation

to propagate our estimate forward. Because our noise sources are zero mean they

do not affect our mean estimate. We then inform the estimate at k + 1 with the

observations we’ve gathered:

x̂+
k+1 = x̂−k+1 + Kk+1(zk+1 −Hkx̂

−
k+1) (20)

That is, our informed estimate is equal to our uninformed estimate plus the

difference between our measurements and the measurements predicted by our unin-

formed estimate. This difference is known as the residual of the measurements. The

K matrix is the Kalman gain, which scales the influence of the residual such that the

KF is the optimal MMSE estimator. The gain is given by [20]

Kk = P−k HT
k (HkP

−
k HT

k + Rk)
−1 (21)

where Rk is the covariance of the measurements

Rk = E[zkz
T
k ] (22)
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and P−k is the covariance matrix of the state estimate x̂−k+1 given by

P−k+1 = ΦkP
+
k ΦT

k + Qk (23)

where Qk is the covariance of the measurements

Qk = E[xkx
T
k ] (24)

and

P+
k = (I−KkHk)P

−
k (25)

These equations can be used iteratively to estimate the state of the system over

time. As measurements come in, the state estimate (and its associated covariance)

is propagated to the correct time and then updated with the observations. If no

observations are made at that time, then x̂+
k+1 = x̂−k+1. This process can proceed

indefinitely.

2.4.9 Non-linear Bayesian MMSE Estimator. The extended KF (EKF) is

an extension to the KF to allow it to apply to non-linear problems. The EKF ap-

proximates the non-linear system as a linear system in order to apply the standard

Kalman gain. This approximation is done by taking a first-order Taylor series ex-

pansion on the non-linear equations in the system. Depending on the source of the

non-linearity, this may be either the measurement model or the dynamics model. If

the measurement model is defined by a matrix H in the KF, the EKF would define a

matrix H which is the Jacobian of the non-linear observation function h. Similarly,

a non-linear dynamics model F would be replaced by the Jacobian of the non-linear

dynamics function f . Note that in calculating the residual, the non-linear function h

is still used in lieu of the Jacobian, since it is not necessary to be linear and the usage

of the true observation function is more accurate.
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The EKF model is only optimal in the MMSE sense if the errors introduced

by linearization errors are zero. In practice, the linearization error can be significant,

especially for highly non-linear systems and when initial state estimates are inaccu-

rate. Additionally, the larger the state error grows in an EKF, the more significant

the linearization errors are [20]. This is due to the linearization only being valid in

the neighborhood of the truth, as the function is really non-linear. Thus linearization

error must be considered when applying the EKF to a real problem. Although no

guarantees can be made about the optimality of an EKF with non-zero linearization

errors, in practice the solution is very close to the optimal solution for small errors.

2.4.10 Particle Filter. The particle filter (PF) is a brute-force attempt to

provide a better estimator than the EKF for non-linear recursive Bayesian problems.

A PF initializes a large number of weighted particles which “sample” the pdf of a

state at a given time. The particles represent a discrete approximation to the pdf, and

thus allow highly non-Gaussian and arbitrary distributions of the state estimate. The

particles are propagated through the non-linear dynamics by individually passing each

particle through the dynamics function. There are many methods of updating particle

weights when an observation is available. The most common approach is to lower

the weights of the particles which are unlikely given the observation realization and

the observation model. Since every state and probability is represented as a discrete

approximation, the PF allows highly non-linear models and highly non-Gaussian noise

distributions. The drawback to the PF is the sheer computational burden required to

minimize the discrete approximation error. This computational burdern makes PFs

undesireable for applications unless the problem has shown itself to be too non-linear

or non-Gaussian for the EKF to produce reasonable results.

2.5 Detection

Detection is the problem of deciding whether or not an object is present given

a set of observations (i.e., noisy data). There are two possible types of error: the first
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type is known as a “false alarm”, which is when we decide that the object is present

when in reality it isn’t. The second type is known as a “missed detection”, which

is when we decide the object is not present but in reality it is. There are thus two

optimality criterion for detectors. The first is the detector’s probability of false alarm

PFA, which is the probability that the detector will decide the object is present given

that it is not present. The second is the probability of missed detection PMD. It is also

common to discuss the complementary probability for PMD, namely the probability

of detection PD defined as

PD = 1− PMD (26)

Minimizing one type of error is easy—for example, we could always decide the

object is present, in which case our PMD is zero. In general, the task of choosing a

detector is to find one which minimizes both errors simultaneously. The importance

of minimizing one type of error over the other will depend greatly on the particular

problem.

2.5.1 Neyman-Pearson Detector. The Neyman-Pearson (NP) detector min-

imizes PMD for a desired PFA. Thus when using NP detectors it is crucial to know

what an acceptable PFA is for the problem considered. Let x be the set of observa-

tions collected, O be the event that the object is present, O′ be the event that the

object is not present, and the notation Pr(A;B) read as “the probability of receiving

data set A given that B is true” . Then the NP detector decides the object is present

if

Pr(x;O)

Pr(x;O′)
> T (27)

where T is a threshold found by integrating the denominator [19]. The NP detector

maximizes the PD for a chosen PFA as long as the threshold is chosen correctly. Note

that the ratio in (27) is also called the likelihood ratio (LR), as it is the likelihood of
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getting the received data given O over the same quantity given O′. The NP detector

is therefore also referred to as the likelihood ratio test (LRT).

2.5.2 Matched Filter. Consider the problem where the received data is a

known signal with additive white Gaussian noise (AWGN):

x = s + w (28)

where s is a known deterministic signal and w is a vector of white Gaussian noise.

The NP detector for this problem decides the signal is present if [19]

N−1∑
n=0

xnsn > T (29)

where T depends on the desired PFA. This summation is known as the matched filter

(MF), which is widely used in signal processing. This is the NP detector only for

signals in white noise; however, many real-world noise sources can be approximated

as band-limited AWGN. The MF is also popular due to the availability of a fast

implementation via the FFT:

N−1∑
n=0

xnsn = [IFFT{FFT{x}cFFT{s}}]0 (30)

where ()c refers to the element-wise complex conjugate and []0 is the 0th element

of the resulting vector. The other elements of the right-hand side are the matched

filter summations for varying time-lags. Thus the FFT implementation allows the

fast computation (Θ(n log n)) of the MF for arbitrary time lags, which is useful when

x may contain s with an unknown time-delay.
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2.6 Radar Imaging and Navigation

2.6.1 Introduction. Radars have been used to generate imagery as early

as the 1950s [21]. The original idea of generating images from sequential radar data

collections came from the study of microscopes [22], which outlined wavefront re-

construction theory. The first known implementation of an imaging radar was by a

Goodyear Aircraft Corp. engineer [14]. The lack of high-speed computers initially

required the use of analog approximation, via the Fresnel approximation [23]. In the

1970’s, a digital form of this approximation was developed [21], as well as a new dig-

ital processing method called polar format processing [24]. While this development

was occuring in the radar community, a simultaneous development was occuring in

the field of medical imaging [25]. The development of computerized axial tomography

(CAT), which revolutionized medical diagnostics, was developed in the 1970s based

on the same principles as SAR wavefront reconstruction. In particular, CAT imagery

is generated by transmitting an X-ray beam through an object to be imaged repeat-

edly, while rotating the X-ray transmitter in a circle around the object. The resulting

set of data is then processed to form a digital image of the object. This setup is

identical to spotlight SAR where an aerial vehicle (AV) is flown in a circle around an

imaging plane and data is collected periodically. The only difference between the two

techniques is the usage of X-ray vs. radio waves [14].

Modern SAR imaging study has developed a wide range of new digital processing

techniques, but each technique is still fundamentally based on the principles developed

in the 1970s. The rest of this section will discuss two digital construction algorithms

which are popular today; namely, backprojection and polar format processing [21].

2.6.2 Polar Format Algorithm. The critical theory which allows SAR im-

agery to be constructed is the projection-slice theorem [26]. This theorem states that

“the one-dimensional Fourier transform of a projection function pθ(u) is equal to the

two-dimensional Fourier transform G(X, Y ) of the image to be reconstructed when

the two dimensional Fourier transform is evaluated along a line in the Fourier plane

22



which lies at the same angle θ measured from the X axis” [14]. That is, let g(·, ·) be a

2D reflectivity map and pθ(·) be a projection function running through the 2D space

at angle θ, such that pθ(ζ) samples the 2D reflectivity map at the polar coordinates

with angle θ and magnitude ζ. Then the projection-slice theorem states that

G(U cos θ, U sin θ) = Pθ(U) (31)

where U is a dummy variable and G,P are the Fourier transforms of g and p respec-

tively. We see then that collecting a set of time-domain samples along lines at different

angles pθ1 , pθ2 , . . . and taking the Fourier transform of each collection will allow us to

populate the space G via the projection-slice theorem. The inverse Fourier transform

of G is g, the reflectivity map we desire. Thus this process will allow us to construct

a reflectivity map (i.e. image) of a 2D scene. The basic methodology is:

1. Circle a target, collect linear samples

2. Compute the Fourier transform of each data collection, and then use the projection-

slice theorem to map these onto the 2D Fourier transform of the 2D reflectivity

map of the target.

3. Compute the inverse Fourier transform of the resulting data set, which yields

the 2D reflectivity map.

One issue in the above description is that it doesn’t consider discrete systems.

In a realistic system, we will only be able to collect samples of the projection function

p. The DFT will then only contain samples of P . If the image to be constructed

is also digital, then G will be discrete. The issue then is that the discrete samples

of P will not be located at the same points as the discrete samples of G, and we

cannot then directly use the projection-slice theorem. Fig. 2 from [14] illustrates this

mismatch between G and P . The collected samples are located at the circular points,

and the reconstructed image samples are at the grid intersections. The solution is

to interpolate the polar samples to estimate the grid intersections, allowing image
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Figure 2: Polar format mismatch between collected data and the reconstructed
image. (Taken directly from [14])

formulation to proceed as normal. This approach is to image formulation is called the

polar format algorithm, as the primary difficulty is in mapping the polar data onto a

rectangular grid. Note that the principles described here also extend to 3D scenarios

such as navigation by simply formulating the 3D version of the theorem [14].

2.6.3 Backprojection. Backprojection is also based on the projection-slice

theorem and is theoretically equivalent to polar format processing. It uses the convo-
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lution property of the Fourier transform to rewrite the projection-slice theorem into

the time domain. The resulting construction method is [14]

g(ζ1, ζ2) =
1

4π2

∫ π/2

−π/2
[pθ ∗ h](ζ1 cos θ + ζ2 sin θ)dθ (32)

where ∗ is the convolution operator and h is a filtering kernel which is a function of the

geometry. This method yields the same results theoretically as the polar format algo-

rithm, but may yield better results practically due to avoiding the frequency domain

interpolation issues previously discussed. Instead, the calculation of the convolution

pθ ∗ h becomes the critical factor in the accuracy of the produced image. This may

be difficult, as p is sampled and only available at discrete θ points, which results in

the use of approximations to form the image.

2.6.4 Radar Image-based Navigation. Radar based navigation sensors have

been actively developed in the form of terrain aided navigation systems (TANS) [27–

30]. In these studies, the presence of digital terrain elevation data (DTED) is assumed.

The data collected from the radar is correlated to DTED maps which were collected

a priori. This necessarily precludes navigating over unknown terrain, as no DTED

will be available.

To navigate in unknown terrain, it is necessary to extract features from the

radar image and position them while simultaneously estimating the vehicle position.

This technique is called simultaneous localization and mapping (SLAM). SLAM has

been extensively studied in image-aided navigation [13], however only cursory work

has been done exploring the use of radar using such an approach [31].

2.6.5 Radar Doppler-Aided Navigation. There has been previous interest

in using on-board range-Doppler radars for dead-reckoning navigation [32–34]. These

systems use a method called Doppler-aiding, where reflections from an assumed sur-

face or object are processed to estimate the Doppler frequency of the reflection. This
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Doppler can then be used as a velocity update in the navigation filter, aiding and

correcting the velocity state of the navigation solution.

Although this approach will reduce the error of a stand-alone INS navigation

solution, it does not provide nearly as much information to the filter as a tracked target

state-based SLAM approach, such as the one developed in Chapter III. Suppose

we have an AV with an onboard INS and radar system. A Doppler-aiding system

will measure the Doppler to the ground or one or more of the radar features in the

environment. This Doppler estimate—containing errors—will be used to estimate the

velocity of the AV, which will be given to the navigation filter as a noisy measurement.

Thus the filter has access to a noisy velocity measurement (from the radar) and a noise

acceleration measurement (from the INS). Since both of these measurements must be

integrated to obtain position information, the position estimate generated by the EKF

will have drift due to the errors in the measurements. In addition, Doppler aiding

only measures velocity in the direction of plane travel (i.e., 1-dimension), and cannot

be used to correct or estimate AV bearing or flight path.

In contrast, the approach developed in Chapter III measures ranges to positioned

(via SLAM) reflectors. If enough reflectors are available with good geometry (low

GDOP), a full 3-D position solution is possible using a similar solution to that of

GPS. The SLAM solution can estimate the location of the AV in any direction that

it has observability in. Thus the solution accuracy in 3-D depends on the GDOP

induced by the environment and reflector locations. In combination with an INS,

the calculated navigation solution will be much higher than that of a Doppler-aiding

solution.

In addition, even if bad geometry or limited reflector availability is encountered,

the SLAM-based solution will not drift as much as an INS. To observe this, we consider

a hypothetical scenario where the AV flies in a circle around a terrain with at least

one always visible feature. The Doppler-aiding configuration will drift as a function of

its Doppler estimate error, as stated before. The SLAM approach would continually
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observe a range from at least one reflector, constraining the possible AV location to

within sight (detection range) of that target. Thus as long as the AV flew in sight

of that reflector, the AV solution error would be constrained (i.e., not drift away).

Although this scenario is not realistic, it highlights the increased information provided

by the SLAM approach. The drift in a SLAM feature-tracking approach will increase

linearly as a function of the time a particular feature is in view (feature detection

range), and the error in ranges are not integrated to form a position solution (as is

the case for INS and Doppler-aiding).

2.6.6 Clutter Models. One of the primary sources of interference for imaging

radars is the existence of unwanted nuisance scatterers called clutter. Clutter models

are used to describe background noise generated from scatterers which are not targeted

by the radar. What constitutes clutter depends widely on the specific application. For

example, a radar attempting to detect low flying vehicles will consider all stationary

objects on the surface as clutter; whereas an imaging radar attempting to generate

a picture of the surface of the Earth will consider low flying vehicles clutter. In our

case, we wish to extract the location of strong stationary persistent scatterers from

a target scene. Thus things like foliage, grass, tree canopies, and moving objects are

considered clutter. Our ability to navigate will be based on our ability to distinguish

useful targets for navigation from background noise.

There are many studies done on airborne clutter in particular environments

such as forest canopies [35–37] and sea/water bodies [38]. The standard approach in

unknown terrain is to use a statistical clutter model, such as chi-squared or log-normal

clutter distributions [39–41]. In [40] we see that UWB clutter at low grazing angles is

well approximated by independent log-normal noise on each receiver channel. Since

our airborne simulations in Chapter IV are at high grazing angles, the long tails of

log-normal statistical clutter models aren’t necessary. We therefore use independent

Gaussian noise sources on each receiver channel.
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2.7 Orthogonal Frequency Division Multiplexing

2.7.1 Introduction. Frequency division multiplexing (FDM) is a technique

that allows the transmission of multiple sub-signals inside a single signal by encoding

them in different frequency bands. FDM is extremely common in every day life—for

example, the radio in your car actually receives one signal containing many radio

station signals transmitted at different frequencies. When you turn the dial to a

specific station, you are specifying which frequency range (sub-signal) you wish to

receive. FDM requires each transmitted signal to be non-overlapping. For example,

suppose you have two audio signals you want to transmit, and each requires 100 kHz

of bandwidth. You might decide to transmit the first audio signal in the frequency

band 0 − 100 kHz. Then the next audio signal would have to be transmitted at

100− 200 kHz, as it cannot overlap with the first signal.

One issue with this scheme is that it is very difficult to immediately cut a signal

off at a particular frequency, as with our example above which required exactly 100

kHz of spectrum. Typically, a signal will slowly decrease energy at its high and low

frequencies. A packing scheme such as our audio signal above will cause the signals to

interfere, as both signals bleed into each other’s reserved frequency bands. A solution

to this problem is to allow guard bands to exist between transmitted signals. In our

audio signal example we could encode the first signal at 0−100 kHz and the second at

150− 250 kHz, leaving a 50 kHz space between the sub-signals to reduce interference.

This scheme “wastes” bandwidth, as the guard band is essentially unused.

A more optimal solution is to keep the channels closely packed and encode the

sub-signals such that the energy they bleed into adjacent channels will not affect the

recovery of information. This can be done by carefully construction each sub-signal to

be orthogonal to all other sub-signals, a scheme known as orthogonal FDM (OFDM).

Fig. 3 illustrates an example OFDM waveform spectrum. The red, blue, and green

lines represent the energy of channels encoded at 5, 6, and 6.2 kHz respectively. We

see that each channel bleeds energy into every other channel. However, at the exact
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channel center, the energy contributed by every other channel is zero. For example, at

6 kHz, both the green and blue lines are zero. Thus the amplitude/phase of the 6 kHz

sub-signal can be recovered without interference from adjacent signals. This allows

for each sub-signal to be amplitude modulated (AM) and phase modulated (PM), and

data encoded to be recovered via measuring the AM and PM of each sub-signal.

OFDM approaches the optimal data transmission rate given by the Shannon-

Hartley theorem, and thus is widely used in communications. However, it also has

advantages for radar. One advantage is the arbitrary encoding of the spectrum as seen

in Fig. 3 and 4. OFDM also has implementation issues with high peak-to-average

power ratio (PAPR) requirements and signal processing requirements for tracking

and detection due to the necessity of pulse compression. In particular, high-powered

amplifiers have a fixed voltage swing which makes it difficult to transmit large power

spikes without scaling the transmitted waveform down and thus transmitting at lower

power. However, modern amplifiers, OFDM encoding methods, and high speed com-

putational capabilities are removing the limitations typically encountered in OFDM

systems.

2.7.2 Signal Model. The reference signal to be transmitted at each point pk

is an UWB-OFDM pulse defined by

sr(t) = <e

{
Nc−1∑
k=0

ξk exp[j2πt(f0 + k∆f)]

}
(33)

Each exponential in the summation corresponds to a particular OFDM channel.

Nc is the number of channels transmitted, f0 is the fundamental frequency, ∆f is the

channel spacing, and ξk is the complex-valued modulation for channel k. Typically

the OFDM waveform is transmitted as a time-limited pulse. In order for channel

orthogonality to hold, the window length must be a multiple of the period of each

channel. Assuming the fundamental frequency is zero (i.e., the OFDM symbol is

constructed at baseband), the OFDM waveform is then
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Figure 3: Example OFDM waveform and spectrum packing.

sru(t) = sr(t)

(
U(t)− U

(
t− 1

∆f

))
(34)

where U(·) is the unit step function. Let the discrete OFDM pulse with sampling

frequency fs be denoted

Sref (k) = sru

(
k

1

fs

)
, k = 0, 1, . . . ,

2Dav

c
fs (35)

where Dav is the maximum distance to be illuminated by the transmitted beam. Fig.

4 illustrates a transmitted 128ns OFDM symbol with random sub-carrier modulation

(64 sub-carriers). The green dots represent the discrete sub-carriers in the continuous

complex-valued spectrum (represented here as phase/magnitude). Since the modula-
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Figure 4: Example transmitted OFDM symbol with random modulation.

tion is random, we see the discrete points have a random distribution, whereas the

continuous spectrum between the discrete points is highly correlated. Fig. 5 shows

another OFDM symbol which is modulated with an example communications signal.

The first half of the sub-carriers are modulated with zero phase and zero magnitude

except for the 2nd, 3rd, 5th and 9th sub-carrier which have positive magnitude. The

second half of the sub-carriers are modulated with positive magnitude and one of

four possible phases, dictated by the data stream being encoded. The encoding of a

symbol with four possible phases to represent two bits of data is called 4-Quadrature

Amplitude Modulation (4-QAM). Thus each of the sub-carriers in the second half of

the symbol’s spectrum are encoded as 4-QAM.
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Figure 5: Example transmitted OFDM symbol with preset modulation on the first
half of the sub-carriers and 4-QAM on the second half.

2.7.3 Ultra-Wideband. OFDM itself does not necessitate a bandwidth

usage—OFDM symbols can be narrow-band or wide-band. However, a fundamental

property of radars is that the range resolution (i.e., the minimum distance between

two targets that we could still resolve them as distinct and separate from each other)

is a function of the bandwidth of the system [14]. Specifically, the range resolution

∆dmin is given by

∆dmin =
cp

2Be

(36)
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where cp is the propagation speed (nominally the speed of light) and Be is the effective

bandwidth of the waveform. For OFDM the effective bandwidth is calculated via

Be = Nc∆f (37)

We see that the range resolution is therefore directly dependent on the band-

width used by the full OFDM symbol. For precision navigation, ultra-wideband

OFDM symbols are highly desired due to this property.

2.8 Coherent Demodulation

One issue in the design of a radar system is the need for coherent modulation.

Suppose we have an arbitrary baseband signal I(t) we want to transmit. We first

modulate the signal to the carrier frequency

sT (t) = I(t) cos(ωct+ ΦLO,T ) (38)

where ΦLO,T is the phase of the local oscillator at transmission. The received signal

is then

sR(t) = sT (t− td) = I(t− td) cos(ωc(t− td) + ΦLO,T ) (39)

At baseband we have

sRB(t) = sR(t) cos(ωct+ ΦLO,R) (40)

where ΦLO,R is the phase of the local oscillator when received. Using the half angle

trig identity and rewriting we have

sRB(t) =
1

2
I(t− td)[HFC + cos(ΦLO,T − ωctd − ΦLO,R)] (41)
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where HFC is a high frequency component which will be filtered out by a low pass

filter, yielding:

sRB−LPF (t) =
1

2
I(t− td) cos(ΦLO,T − ωctd − ΦLO,R) (42)

If we allow the oscillator phases to be incoherent (i.e., randomly wander), then

there is the possibility that a target return will not be detected at baseband, since

the term cos(ΦLO,T − ωctd − ΦLO,R) will attenuate the power of the received signal.

In communications, we could simply use a phase lock loop (PLL) to set

ΦLO,R = ΦLO,T − td (43)

However, in radar, this is infeasible, since we may be tracking multiple targets at once

resulting in a set of td values. We would need a set of local oscillators and PLLs, one

for each target. A more practical solution is to use an I/Q receiver to detect the signal

with an arbitrary phase difference. We therefore downconvert twice, generating an

in-phase and quadrature-phase baseband signal:

sRB−I(t) = sR(t) cos(ωct+ ΦLO,R) (44)

sRB−Q(t) = sR(t) sin(ωct+ ΦLO,R) (45)

Using trigonometric identities and applying a low-pass filter we have

sI−LPF (t) = <e{I(t− td) exp(j(ΦLO,T − ωctd − ΦLO,R))} (46)

sI−LPF (t) = =m{I(t− td) exp(j(ΦLO,T − ωctd − ΦLO,R))} (47)

Adding the two returns, we now have a complex exponential which is ampli-

tude modulated by our received signal, regardless of the phase difference between
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the transmit LO and receive LO. Thus an I/Q demodulator is required to perform

coherent down conversion of radar returns.
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III. Algorithm Design and Mathematical Model

This chapter describes the algorithms and mathematical models which have been

developed and used in order to study radar-based navigation in airborne, indoor,

simulated, and experimental contexts.

3.1 Radar Waveform

There are many waveforms used for radar. Chirps are used due to their easy

processing properties; continuous wave transmissions are used for precision Doppler

estimation; RF pulses are used due to their easy hardware implementation and un-

ambiguous range measurements [15]. One recent waveform of interest is the Ultra

Wideband (UWB) orthogonal frequency division multiplexed (OFDM) pulse. As seen

in Chapter II. UWB-OFDM has many properties which make it suitable for precision

navigation, including jamming resistance, high range resolution, and potential for use

as a low probability of intercept (LPI) device.

We have previously studied the UWB-OFDM waveform for radar extensively

[42–44]. In addition, we have access to a UWB-OFDM experimental prototype system

that will be described in Section 5.1.1, allowing for experimental validation of the

algorithms designed. We therefore chose UWB-OFDM as the waveform transmitted

for all simulation and experimental results in this study. Please see Section 2.7.2 for

details of the signal model and notation.

3.2 Aerial Vehicle Model

The primary purpose of navigation is to discover the AV position using infor-

mation collected from our sensor array. For a direct-state EKF implementation, we

need to make assumptions about the dynamics (i.e. the range of possible motion we

might realistically expect to encounter) of the AV. This is useful for tuning the filter

dynamics to match the specifics of the chosen AV (rocket, plane, etc.). This section

describes the AV related notation and the dynamics model used.

The position of the AV at time t is denoted
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p(t) =


px(t)

py(t)

pz(t)

 (48)

The AV collects INS/radar data at a fixed time interval ∆tp with the first

transmission at time t = 0. Thus the pulses are transmitted at positions

pk = p(k∆tp), k = 0, 1, . . . (49)

The transmitted beam is side-looking and directed downward towards the ter-

rain as illustrated in Fig. 6, assuming the AV has an initial heading due south:

ṗ(0)

|ṗ(0)|
= x (50)

The AV dynamics are modeled using a first-order Gauss-Markov (FOGM) ac-

celeration model [20, 45]. A FOGM process is a stationary Gaussian process defined

by its autocorrelation function. Let σ2
p̈ be the process variance and τp̈ be the time

constant for the AV acceleration (equal for all axes). Then the autocorrelation of the

AV acceleration along the x,y and z axes is given by

Rp̈x(ζ) = Rp̈y(ζ) = Rp̈z(ζ) = σ2
p̈e
−τp̈|ζ| (51)

The continuous-time AV acceleration dynamics equation is [45]:

d

dt
p̈(t) = −τp̈p̈(t) + wp̈(t) (52)

where wp̈(·) is a column vector of three zero mean i.i.d. white Gaussian noise processes

defined by
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E[(wp̈(t))(wp̈(t+ ζ))T ] = IQp̈δ(ζ) (53)

and δ(·) is the Dirac delta function. The noise strength Qp̈ is chosen to yield the

desired auto-correlation function in (51). From [45] we have

Qp̈ =

(
2

τp̈

)
σ2
p̈ (54)

In order to calculate the AV positions at transmission times k∆tp, the continuous

dynamics model in (52) must be discretized into a difference equation. We follow the

formulation in [45] for our discretization process. The state transition matrix is

Φp̈(t1 − t2) = Φp̈(∆tp) = e−τp̈∆tp (55)

Letting t1 − t2 = ∆tp, the discrete time acceleration dynamics equation is

p̈k+1 = p̈ke
−τp̈∆tp + wp̈d(k∆tp), k = 0, 1, . . . (56)

where wp̈d(·) is the equivalent discrete time noise process to wä(·). wp̈d(·) is a zero

mean white Gaussian process defined by

E[wp̈d(tk)wp̈d(tk)
T ] =

∫ tk+∆tp

tk

Φ(tk − ζ)Qp̈ΦT (tk − ζ) dζ (57)

This integral is evaluated numerically via the Van Loan method described in [20]

to generate noise realizations. The noise realizations can then be used with (56) to

generate sample AV locations during simulations.

The FOGM acceleration model defined here allows the AV to fly freely, while

still constraining its trajectory to realistic flight dynamics. In particular, an AV should

avoid discontinuities in acceleration. The time constant τä must be tuned to match

the expected flight dynamics. For example, during aerial maneuvers acceleration may
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Figure 6: Illustration of the AV side-looking stripmap SAR configuration.

be completely uncorrelated within fractions of a second, whereas during level flight

it may remain correlated for several hours. For the simulations in this dissertation,

a time constant τä = 3 seconds is used. In (56) we see that the possible acceleration

values are defined by the noise strength of wp̈d, which is related to σ2
ä via (57) and

(54). Therefore we must choose the process noise σ2
ä proportional to the maximum

acceleration expected during flight.

3.3 Environment Model

During simulations, we will need to model the environment and reflector char-

acteristics. This section describes the environment and reflector models used.

The modeling of interaction between the environment and the signal is easiest

when performed in the frequency domain. We will consider a single OFDM channel

reflecting off a single reflector in this section, as each channel in sru(·) is a single

modulated sinusoid with constant frequency.
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Let sch(·) be a single channel of the form presented in (33). Let ξch and fch

be the modulation and frequency of the chosen channel. The single channel OFDM

signal is transmitted via the radar, travels through the environment, reflects off the

target (possibly more than one), travels back to the radar, and finally is received by

the radar. Fig. 7 gives an overview of the environment effects on the signal. The

channel is first upconverted to the transmit frequency:

stx(t) = sch(t) sin(2πfct) (58)

where fc is the carrier frequency. The transmitted signal is then scaled to the trans-

mitting power rP and the antenna gain rG. During propagation the signal attenuates

as the inverse square of the distance and has a time delay proportional to the distance

from the AV to the reflector. The signal incident on the reflector is:

sinc(t) =
rP rG

4πd(p(Tt), r)2
stx

(
t− d(p(Tt), r)

c

)
(59)

where d(·, ·) is the distance between two points, r is the position of the reflector,

and Tt is the time of pulse transmission. Note the absence of an explicit Doppler

term, even though the AV and reflector have non-zero relative velocity. This is due

to the Doppler being approximated as zero over the time interval of a single pulse,

i.e. we assume no significant acceleration is experienced during collection. For a fixed

Doppler over the time interval of a single pulse transmission, the reference signal used

in the matched filter during signal detection and tracking can have matching Doppler

added to it. Therefore the Doppler shift for a single pulse will not affect the results

of the matched filter other than to add computational burden, and so the Doppler

term is omitted here. The Doppler frequency is still estimated for use in initializing

the navigation filter; however, it is collected on a pulse-to-pulse basis by examining

the complex phase of the I/Q demodulator output in (63). This approach is standard

practice in pulse-Doppler radar processing [12].
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Figure 7: Environment model for channel loss and reflector backscatter.

The incident signal is then reflected off the scatterer as a function of the scatter-

ing characteristics of the reflecting surface. The reflectors are modeled as Lorenz-Mie

spherical scatterers with Swerling [46] radar cross section (RCS) noise. The Mie scat-

tering model generates a frequency dependent RCS of the scatterer, which will be

different for each channel. This model allows us to account for frequency depen-

dent attenuation of the received signal, which is significant for UWB. The Swerling

RCS noise allows us to model random variation in RCS as a function of the angle of

incidence. Swerling type I scattering was used, giving a density function

fχ(ζ) =
1

σM
exp

(
− ζ

σM

)
(60)

where σM is the average RCS provided by the Mie scattering model. In our simu-

lations, σM is calculated using an iterative numerical approximation, with a sphere

radius of 0.5m. The reflected signal is then

sreturn(t) = sinc(t)χ (61)

where χ is a random variable with the distribution given by (60). The returned signal

at the radar experiences an additional inverse square power loss, time delay, and a

scale factor accounting for the receiver antenna affective aperture. Equivalent thermal
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noise is also added to the received signal to model the effects of ambient and receiver

noise. Assuming one reflector is present, the received signal is then

srx(t) =
rA

4πd(p(Tt), r)2
sret

(
t− d(p(Tt), r)

c

)
+ wth(t)

(62)

where wth(t) is an additive white Gaussian noise (AWGN) process with strength σ2
th

and rA is the receiver effective aperture.

The d(p(Tt), r) terms in (59) and (62) introduce an unknown phase modulation

in the received signal srx(·). This unknown phase shift can be estimated through the

use of an I/Q demodulator. This is explained in more detail in the next section. The

received baseband signal is

srxB(t) = srx(t) sin(2πfct− φc)

+ jsrx(t) cos(2πfct− φc)
(63)

where φc is the unknown phase drift of the oscillator between the time of up-conversion

and down-conversion (nominally zero).

Eqn. (63) is the received signal for a single channel reflecting off a single reflec-

tor. The actual received baseband signal is the sum of all received channels over all

targets in the illumination beam:

srxS(t) =
∑

targets

∑
channels

srxB(t) (64)

where srxB is the return of the form shown in (63) for that particular channel and

target.

The discrete received baseband signal with sampling frequency fs is
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SrxS(k) = srxS

(
k

1

fs

)
, k = 0, 1, . . . ,

2Dav

c
fs (65)

3.4 Radar Processing Algorithms

Due to the computational burden involved in conventional SAR data process-

ing, we process the data on a per-collection basis using conventional radar tracking

methodology. As each pulse is transmitted, the collected return samples are processed

immediately, and the contained information is integrated directly into the navigation

filter. This approach allows real-time navigation updates, and significantly reduces

the computational burdern by only requiring 1D processing.

Even with this approach the amount of data may be too large for some appli-

cations, such as unmanned AVs (UAVs) and other embedded devices. We therefore

present both deterministic and randomized algorithm implementations, where the

randomized algorithm only processes selected parts of the data to improve speed.

3.4.1 Feature Extraction. Let Srx(k, l) be the lth sample collected at the

position pk. The matched filter (MF) of the kth collection is then

mk = IFFT(FFT(|Srx(k, ·)|)∗FFT(|Sref (·)|)) (66)

where (·)∗ denotes the complex conjugate. In practice the reference pulse used in

(66) will be oversampled to allow for sub-sample alignment; however, the sampling

frequencies of both signals are set to fs in this dissertation for clarity.

Fig. 8 shows the ideal matched filter response of an OFDM pulse with Nc = 256,

fs = 1GHz, ∆f = 3.906MHz, and random normally distributed channel modulations.

Fig. 9 shows the output of (66) for three reflectors with the noise strength of wth(·)

set to generate an SNR of 0dB. The ovals correspond to the peaks generated from

the three reflectors. We see that the effects of the environment model combined with

the sidelobes of the autocorrelation cause ambiguity in the location of targets and
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may result in false alarms. This necessitates the use of adaptive thresholding which

is normalized to the noise level. This is performed by thresholding the SNR of the

MF, instead of the MF directly. We calculate the MF SNR as

SNRMF (k) =
P (max mk)− P (mk) + P (maxmk)

Ns

P (mk)− P (maxmk)
Ns

(67)

where Ns is the number of samples and P (·) is the average power of the samples. Fig.

10-13 illustrate the calculated MF SNR for different strengths of wth(·). We see that

choosing a threshold for the SNRMF is invariant to noise if a constant false alarm

rate (CFAR) is desired. This is due to the noise strength normalization term P (mk)

in the denominator of (67). Note that the MF SNR is not true signal SNR, as it

is calculated via (67) as the ratio of the peak power to the average power of a MF

output. This quantity has a baseline of 9dB even when no signal is present. If the

MF SNR is above the chosen threshold, the peak at arg max mk is removed from mk

and (67) is calculated again. This process is repeated iteratively until the MF SNR

chosen is below the threshold. This iterative process allows the detection of multiple

targets in a single OFDM data collection.

Table 1 shows the calculated probability of false alarm and missed detection

per sample collected using the MF SNR approach versus a simple threshold on the

MF peak. The simple threshold method was tuned to operate at a SNR of 14dB,

and the red entries denote a critical failure region. For navigation, missed detections

are not of critical importance, as 3-6 tracked reflectors are sufficient. However, Pfa

is extremely important, as bad measurements introduced into the EKF with low

associated covariance matrices may corrupt the entire navigation solution, causing

growing linearization errors. Therefore, the CFAR achieved by the MF SNR approach

is desired for navigation.

3.4.2 Feature Tracking. The feature extraction algorithm produces a set

of observations zk collected at position pk. In this section, we first define a data
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Table 1: Probability of Missed Detection and False Alarm For Simple Thresholding
and MF SNR Thresholding

MF SNR MF Pfa MF Pmd Simple Pfa Simple Pmd

9 < 1% > 99% > 99% < 1%

10 < 1% 45% 32% < 1%

13 < 1% 3% 2% < 1%

18 < 1% < 1% < 1% < 1%

Figure 8: Matched filter output of an OFDM pulse reflecting off a perfect reflector
at a range of 140 meters.

association method using a global nearest neighbor (GNN) approach, and then use

the association to implement an M/N detector. Both methods are widely used in

conventional radar processing [47,48].

3.4.2.1 GNN Data Association. Let tk be the set of previously tracked

targets at position xk, initially empty. Once calculated, the position estiamtes of the
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Figure 9: Matched filter output of an OFDM pulse reflecting off 3 reflectors modeled
as Mie scatterers with Swerling noise.

targets in tk are stored as part of the EKF state. Our goal is to pair observations

in zk to a subset of the tracks in tk. Let Np be the maximum number of pairings

possible and C(ζ,Γ) be the cost function for pairing track ζ with observation Γ. Then

we need to find a set of tracks

Tk = {Tk(1), Tk(2), . . . , Tk(Np)} ⊆ tk (68)

and a mapping

gk : Tk → zk (69)
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Figure 10: MF SNR histogram for target and no target scenarios with true MF
SNR of 18dB.

such that our choices of gk(·) and Tk are optimal in the sense of minimizing the direct

sum cost function:

C ′(Tk, gk) =

Np∑
i=1

C(Tk(i), gk(Tk(i))) (70)

Using the EKF computed covariance of previous tracks, we can use the Maha-

lanobis distance as the pairing cost function. For a diagonal covariance matrix, this

would be

C(Tk(i), gk(i)) =
(d̃(Tk(i))− d̃′(gk(i)))2

σ2
Tk

(71)
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Figure 11: MF SNR histogram for target and no target scenarios with true MF
SNR of 13dB.

where d̃(·) and d̃′(·) are the estimated range between the AV and the track and

observation respectively. For observations, this range is calculated directly from the

MF SNR peak location. For tracks, this is calculated via the Euclidean distance

between the track position and the best available estimate of the AV position. This

calculation can be done by evaluating the function d̂(·) from Section 3.8. Let Tr be

the time the observation was received. Then

d̃(ζ) = d̂(mt(ζ), Tr) (72)

where mt(·) is a mapping from a track to the estimated track position inside the

filter. For confirmed tracks (described in the next section), there is a one to one

correspondence between the tracks in tk and the EKF states T1(Tr),T2(Tr), . . ., as
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Figure 12: MF SNR histogram for target and no target scenarios with true MF
SNR of 10dB.

described in Section 3.7.1. For unconfirmed tracks, the track position estimate is

stored in a separate state vector, which is recorded until the unconfirmed track’s

deletion.

Note that the algorithm as described above would have the undesired conse-

quence of every track receiving an observation if enough are available, due to Np

being fixed. In practice, gating of pairings allowed in (69) is necessary to prevent

pairings significantly distant in terms of (71).

3.4.2.2 M/N Detector. The set of unpaired tracks at position k is

denoted

T ′k = tk − Tk (73)
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Figure 13: MF SNR histogram for target and no target scenarios with true MF
SNR of 9dB.

The set of unpaired observations at position k is denoted

z′k = zk − {gk(Tk(i))}, ∀Tk(i) ∈ Tk (74)

The set of tracks available at position k is given by

tk+1 = tk + tk,add − tk,remove (75)

where tk,add is the set of new reflectors to track and tk,remove is the set of reflector

tracks to delete at time k. A reflector is deleted at time position k if it has appeared

in T ′k M out of the last N positions, where the parameters M,N are tunable to achieve

a desired CFAR. All unconfirmed observations z′k are added to the next set of tracks:
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tk,add = z′k (76)

These tracks are added in order to make them available to the association al-

gorithm. However, they are marked as being unconfirmed tracks and not added to

the set of EKF tracks. If the data association algorithm pairs new observations to an

unconfirmed track in M out of N sequential collections, the track is confirmed and

initialized into the EKF solution, as described in Section 3.9. Unconfirmed tracks are

subject to deletion via (75) just as confirmed tracks are.

3.4.3 Stochastic Extensions. The deterministic algorithms discussed in this

section require 1D spectral processing of each data collection. We found the compu-

tational requirements for this processing to be feasible for real-time simulation on a

desktop PC with GPU parallelization. However, in certain scenarios such as embed-

ded platforms with limited computational resources, the computational burden may

need to be further reduced. In this case, a subset of the raw radar data may be used

to provide real-time navigation updates.

The matched filter in (66) requires O(n log n) computation for a data collection

of n samples. If the processing platform is unable to compute the MF within the

pulse repetition interval (PRI), then the MF can instead be computed every Nskip

data collections. Initial detection can occur during any data collection when the

reflector is illuminated by the beam. Once detected, the path of the reflector can be

tracked backwards in time using the tracking method detailed next.

The tracking of targets also relies on the MF output. However, given the esti-

mated position of a track we can perform a local search in the expected range bins for

an observation which can be associated with the track. This modification allows us to

forgo the FFT-based MF described in (66), and instead perform a direct computation

of the needed bins:
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m′k(l) =

2Davfs/c∑
i=0

|Srx(k, 0)||Sref (l)| (77)

where |Srx(k, 0)| is zero padded as necessary. This method has an asymptotic com-

plexity of O(n) for a single point computation, and only outperforms the FFT based

computation when the number of points to be evaluated is less than log n. Fig. 14

illustrates this process. The MF outputs calculated are lightly shaded. We see that

a full correlation is performed in order to find a peak (this occurs ever Nskip collec-

tions). From this point on, a local search is performed in the local area around the

predicted target location. In this way, the vast majority of the data points can remain

uncalculated (the white rectangular areas), which reduces the computational burden.

This method is ideal for usage in this study, as the navigation problem only requires a

sparse set of reflectors in order to achieve a position solution. The stochastic methods

described here are therefore used for all simulations in this study.

3.5 INS Error Model

Strapdown INS systems are composed of two primary sensors types, accelerom-

eters and gyros. The accelerometers produce a measurement of specific force, which

is a measurement of the forces acting upon the INS computed in the accelerating

frame b′. There are many sophisticated INS models which have been developed to

accurately model certain types and implementations of INS [1,49,50].

In order for the methods developed here to be applicable to a wide range of

applications, a simple model based on the model given in [13] is used. The gyroscope

and accelerometer both have an additive noise source and a bias. The gyroscope and

accelerometer biases are modelled as FOGM processes which are i.i.d. with respect

to all axes. Let the gyroscope bias time constant and noise strength be denoted τa

and σa respectively. Let the accelerometer bias time constant and noise strength be

τb and σb respectively. The gyroscope and accelerometer noise sources are modelled

as a random walk. Let the gyroscope and accelerometer random walk noise strength
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Figure 14: Stochastic exploration of large SAR data sets.

be denoted σarw and σbrw respectively. Table 2 shows the actual parameters used for

simulations later in this dissertation, for each INS grade simulated.

Table 2: Parameters used in simulation for different INS Grades. All INS Grades
use a time constant of τa=τb=3600 seconds.

σa σb σarw σbrw
INS Grade (rad/s) (m/s2) (rad/s1/2) (m/s3/2)

Commercial (Cloudcap Crista) 8.7e-3 1.96e-1 6.5e-4 4.3e-3
Tactical (HG1700) 4.8e-6 9.8e-3 8.7e-5 9.5e-3

Nagivation (HG 9900 - H764G) 7.2e-9 2.45e-4 5.8e-7 2.3e-4
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3.6 Direct-State Navigation Filter Dynamics Model

In this section we pose the problem of navigation with a stand-alone radar

system in such a way that we can apply the EKF equations of 2.4.9. We assume

tracked radar reflectors with associated range/Doppler observations are available (as

described in Section 3.4) to be used as measurements.

3.6.1 State Model. This navigation filter uses a direct-state model where

we directly model the quantities we are interested in knowing as states, along with

auxiliary states necessary for the determination of the desired quantities. The state

vector a contains the AV position p, velocity ṗ, and acceleration p̈, each in three

dimensions. We are have states for each radar target T1,T2, · · · , each of which is a

tracked and confirmed target from the radar processing algorithms.

a(t) =



p(t)

ṗ(t)

p̈(t)

T1(t)

T2(t)
...


(78)

3.6.2 Dynamics Model. Our system dynamics are given by

ȧ(t) = Fa(t) + wa(t) (79)

Our dynamics matrix F attempts to capture the relationship between the states as

well as how they propagate over time. Using our knowledge of the physics we can

compute the nominal ȧ:
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ȧ(t) =
∂a(t)

∂t
=

∂

∂t



p(t)

ṗ(t)

p̈(t)

T1(t)

T2(t)
...


=



∂
∂t

p(t)

∂
∂t

ṗ(t)

∂
∂t

p̈(t)

∂
∂t

T1(t)

∂
∂t

T2(t)
...


=



ṗ(t)

p̈(t)
...
p(t)

∂
∂t

T1(t)

∂
∂t

T2(t)
...


(80)

Expanding Eq. (79) we have



ṗ(t)

p̈(t)
...
p(t)

∂
∂t

T1(t)

∂
∂t

T2(t)
...


= F



p(t)

ṗ(t)

p̈(t)

T1(t)

T2(t)
...


+ wa(t) (81)

From this representation we can determine the terms in F. For example, obvi-

ously ṗ(t) = ṗ(t), we can set the corresponding terms (F14,F25,F26) to 1. Since we

assume the target positions are constant (i.e. stationary targets), we can set all the

terms corresponding to them to zero. Thus we have

F =



0 I 0 0 · · · 0

0 0 I 0 · · · 0

0 0 −1/TaI 0 · · · 0

0 0 0 0 · · · 0
...

...
...

...
. . . 0

0 0 0 0 0 0


(82)

where I is a 3×3 identity matrix and 0 is a 3×3 matrix of zeros. The −1/Ta is present

in order to constrain the wander of the vehicle acceleration. In general, terrestrial
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vehicles cannot have acceleration wander off to infinity. Thus this term continually

draws the acceleration back towards zero. Combined with the appropriate noise term

in wa(t), this approach is called a first-order Gauss-Markov acceleration (FOGMA)

model, and is commonly used to allow dynamic acceleration constrained to realistic

motion dynamics [20, 45]. In particular, we want

wa(t) =



0

0

σFOGMA(t)

0
...

0


(83)

where σFOGMA defines the strength of the FOGM acceleration noise.

In order to estimate the states via an EKF, we need a discrete time dynamics

model (see Section 2.4.9). Thus we want to find an equivalent discrete time dynamics

model such that

ak = Φak−1 (84)

where ak = a(tk) for k ∈ 1, 2, . . ..The state transition matrix Φ can be calculated

from F [20]:

Φ(∆t) = eF∆t (85)

where ∆t is the propagation time, which is set equal to ∆tp in this dissertation.

Let

Qa(t) = E[wa(t)wa(t)T ] (86)
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then we can transform wa into a discrete-time random process by calculating

Qad(k) =

∫ ∆t

0

Φ(ζ)Qa(k∆tp)Φ
T (ζ)dζ (87)

Our discrete-time dynamics model is then

ak = a(k−1)Φ(∆tp) + wad(k) (88)

where E[wadw
T
ad] = Qad.

3.7 Error-State Navigation Filter Dynamics Model

In this section we pose the problem of navigation with a combined INS/radar

system in such a way that we can apply the EKF equations of Section 2.4.9. We

assume tracked radar reflectors with associated range/Doppler observations are avail-

able (as described in Section 3.4) to be used as measurements.

In contrast to Section 3.6, we propose here to model the AV position via error-

states instead of direct-states (i.e. instead of having states to keep track of the AV’s

position, we have states to keep track of the error in the INS’s estimate of the AV’s

position). This approach is useful as it greatly simplifies the dynamics modeling

problem. In Section 3.6, we assumed the vehicle dynamics were a FOGM process.

In most realistic scenarios a better model than this could be used. As an example,

consider an AV in a coordinated turn with control inputs indicating the pilot intends

such a maneuver. In this case, we could use both knowledge of the control inputs (via

an extra term in (79) and the typical error in that particular maneuver to inform our

dynamics model.

However, this approach is quite complicated; not only must we know about the

varying characteristics of our platform (plane types, car types, etc.), but we must also

actively attempt to understand the maneuver and operation mode the vehicle is in and

provide integration with control systems being used. The error-state model requires
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none of this: we simply ignore the vehicle position and focus on estimating the INS

error, which is primarily a function of the particular INS chosen. Although the effects

of the vehicle maneuvering can have an impact on the INS error (INSs exhibit different

error for different operating conditions), these affects are typically second-order [1].

Thus the INS error state model is used in this section for INS integrated navigation.

3.7.1 State Model. This navigation filter uses an INS error state model.

Thus the state vector a contains the INS position error δp, velocity error δṗ, tilt

error ψ, accelerometer bias δba and gyroscope bias δbb, each of which are in three

dimensions. The state vector also contains estimates of tracked and confirmed target

positions T1,T2, · · · in three dimensions. The state vector is then

a(t) =



δp(t)

δṗ(t)

ψψψ(t)

δba(t)

δbb(t)

T1(t)

T2(t)
...



(89)

The position Tk(l∆tp) directly maps to the tracked targets in tk used in the

tracking algorithm, such that Tk(l∆tp) is the position of the kth target in tl.

The tilt errors are assumed to be small angle errors in attitude, defined by [13]

Ĉn
b = [I− (ψ×)]Cn

b (90)

where Ĉn
b is the INS-estimated direction cosine matrix from the body to the navigation

frame, Cn
b is the true value of the same quantity, and ψ× is the skew-symmetric form

of ψ [13].
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3.7.2 Dynamics Model. Our system dynamics are given by

ȧ(t) = Fa(t) + wa(t) (91)

where F is the continuous-time dynamics and wa is a column vector of noise inputs.

F can be written as

F =

FINS 0

0 Fradar

 (92)

where FINS is a 15x15 matrix and Fradar is a 3Nttx3Ntt matrix, and Ntt is the number

of tracked targets at the current time. Since the reflectors are modeled as stationary,

we have

Fradar = 0 (93)

From [13] we can write

FINS =



0 I 0 0 0

Cn
eGCe

n −2Cn
eΩ

n
ieC

e
n (fn×) Cn

b 0

0 0 −(Cn
eω

e
ie)× 0 −Cn

b

0 0 0 − 1
τa

I 0

0 0 0 0 − 1
τb

I


(94)

Each term is a 3x3 matrix: ωeie is the angular rate vector between the i and e frames

expressed in the e frame, Ωe
ie is the skew symmetric form of ωeie, C

(·)
(·) is the direction

cosine matrix from the bottom frame to the top frame, and fn is the specific force

represented in the n frame. (·)× is the skew-symmetric form of the quantity.

We also need to describe the noise sources in (91). Let
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wa =

wINS

wradar

 (95)

Then wradar = 0 and wINS is [13]

wINS =



0

Cn
bwa

−Cn
bwb

wabias

wbbias


(96)

where wa, wb, wabias , and wbbias are the gyro random walk, accelerometer random

walk, gyro bias, and accelerometer bias random processes respectively. These pro-

cesses are described in Section 3.5.

3.7.3 Discretization. The rest of the process of converting this system into

a discrete form usable with an EKF is described in Section 3.6.

3.8 Measurement Model

The measurements used as updates to the EKF are radar-only. The radar

measurements are ranges between the position of the AV and the radar targets.

The measurement model is of the form

zk = h(ak) + wz (97)

where h(·) is given by

h(ak) =


d(T1, k)

d(T2, k)
...

 (98)
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The notation d(Tζ , k) denotes the distance between target Tζ and the AV at

time tk. Finding this distance depends on the type of filter implementation. For

the direct-state approach, the AV position and the target position are both states

in the EKF state vector and are readily available. For the error-state approach, the

AV position is not directly stored in the EKF state vector a. Instead, we must use

some information from the state vector combined with external information to fully

describe the measurement model:

d(Tζ , k) =
√

(Tζ(tk)− [p̂(tk) + δp(tk)])T (Tζ(tk)− [p̂(tk) + δp(tk)]) (99)

where p̂(t) is the INS estimate of the AV at time t. The bracketed term is the true

position:

p(t) = p̂(t) + δp(t) (100)

The δp and T terms are all contained in the state vector but the p̂ terms are

not, as they must be pulled from an independently calculated INS solution. Thus as

previously mentioned the h function must use information from an external source,

and is not solely a function of the state vector as it is in the direct-state EKF imple-

mentation.

In order to use an EKF we must also calculate the Jacobian of h as it is a

non-linear function. Thus we have

H(ak) =


γk,1,1 γk,1,2 . . . γk,1,Ntt

γk,2,1 γk,2,2 . . . γk,2,Ntt

...
...

. . .
...

γk,No,1 γk,No,2 · · · γk,No,Ntt

 (101)
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where γk,l,m is the derivative of h(ak)’s lth row with respect to the mth state. That

is,

γk,l,m =
∂[h(ak)]l
∂[ak]m

(102)

Note that because the h function is not solely a function of the state for the

error-state model, the Jacobian of h is also dependent on the INS solution. Thus for

code implementations of an EKF using this model the EKF will be coupled with the

INS solution, as it must extract INS position estimates in order to compute the H

matrix. For the results in this study, the Jacobian was evaluated numerically and

linearized about the most current estimated INS position solution and state vector.

From experimental data collected in [42], the radar processing method used in

this dissertation generated ranges with a standard deviation of 10 meters. Thus the

noise strength of wz is set as

σwz = 100 (103)

3.9 Filter Implementation

The described dynamics/measurement model in this section is now fully de-

scribed and ready to be estimated. The dynamics model is linear and the measure-

ment model is non-linear, necessitating the use of a non-linear filter. In Chapter IV

we will estimate this system with an EKF for various configurations.

There is one standing issue with the implementation of an EKF that is not yet

addressed. Each state in the EKF must be initialized with approximately correct

values in order for the linearization error due to the Jacobian to be minimized. The

initial INS errors are set to be zero with complete certainty at the beginning of the

simulation. However, as tracks are confirmed new states must be added and initialized

into the EKF state vector, a process which continuously happens as the simulation

continues.
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Suppose a new track is confirmed at position pk, and the state vector ak has

Ntt targets being tracked in the EKF. The new track will have M past observations

associated with it, which were used by the M/N detector to confirm it. For notational

simplicity we will assume the M observations all were collected in the last M propa-

gations. We thus need to perform the initialization at k −M , and then re-propagate

up to the current time k.

Then the augmented state vector will be

a′k−M =
[
ak−M Tnew

]
(104)

where a′k is a 1xNtt+3 vector. Since the new states will initially have no information,

we use the inverse covariance form of the EKF during initialization. The augmented

information matrix is then

[P′a]−1(k −M) =

[Pa]−1(k −M) 0

0 0

 (105)

where

P′a(k) = E[ak−MaTk−M ] (106)

The 3x3 0 matrices in (105) indicate that we have no information initially of the

new target. We now perform an update with the first of the M observations. Using

the inverse covariance form, we have [45]

ã′k−M = anomk−M −
[
JTR−1J + [P′a]−1(k −M)

]
JTR−1[h(anomk−M)− znew] (107)

where J is the Jacobian of h, R = E[wzwz
T ], and znew is the observation associated

with the new track at k −M . anom(·) is the nominal state estimate, which is initially
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set to the estimated target position using Doppler measurements. After calculating

ã′ via (107), the result is used as the nominal and (107) is recomputed again. This

process is repeated iteratively until the calculated nominal converges. This estimate

is optimal in the minimum mean squared error (MMSE) sense, as long as the initial

Doppler estimate of the target position is accurate enough to minimize linearization

error. The covariance matrix associated with the updated state is [45]

P̃′a(k −M) = [JTR−1J + [P′a]−1(k −M)]−1 (108)

The state ã′k−M and state uncertainty P̃′a(k−M) now replaces the original state

calculated by the regular EKF at k −M . The EKF is then propagated forward as

it was before, with the exception that the other M − 1 observations associated with

the newly added target are now included as updates at the times they were observed.

When the filter updates to time k, the old filter is replaced with the repropagated one

and the navigation filter continues as normal.

3.10 Non-Bayesian Navigation Filter

Although state-based Bayesian methods are the typical approach to estimation

of dynamic navigation problems with quasi-Gaussian measurement errors, an alter-

native approach is to use classic estimation methods such as LMA. The disadvantage

of using the classical approach on a non-linear system is the lack of guarantees of

optimality (see Chapter 2.4 for more explanation). However, classical methods tend

to perform well in practice, and it is instructive to consider them as an alternative to

typical navigation filters.

Our problem can be described by a set of non-linear equations. Namely, one

equation for each range to each target at each time of data collection, i.e.
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

√
(p(t1)−T1(t1))T (p(t1)−T1(t1)) = d(T1, t1)√
(p(t2)−T1(t2))T (p(t2)−T1(t2)) = d(T1, t2)√
(p(t3)−T1(t3))T (p(t3)−T1(t3)) = d(T1, t3)

...√
(p(t1)−T2(t1))T (p(t1)−T2(t1)) = d(T2, t1)√
(p(t2)−T2(t2))T (p(t2)−T2(t2)) = d(T2, t2)√
(p(t3)−T2(t3))T (p(t3)−T2(t1)) = d(T2, t3)

...



(109)

where again d(T1, t1) denotes the distance between T1 and the vehicle at time t1. For a

realistic problem, we will not have all of the ranges listed above (i.e. d(T1, t1), d(T1, t2),

. . . , d(T2, t1), d(T2, t2), . . .) available from our sensors; this would require us to ob-

serve all targets at all times. As targets go by, we will see some ranges to a target while

the vehicle is near that target. Thus we will only have a subset of these equations

available for navigation.

We then want find a solution for the unknowns in these equations. If we assume

the targets are non-moving:

Tk(tm) = Tk(tn),∀k,m, n (110)

then our unknowns are the set of target positions T1(0),T2(0), . . . and the vehicle

position at each time epoch p(t0),p(t1), . . .. The right-hand side of each equation is

known, as it is the range measurement from the sensor. The problem of navigation is

thus equivalent to solving this system of non-linear equations, which can be performed

via LMA or another solver.
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IV. Simulation Results

In this chapter, we provide simulated performance results for the methods discussed

in the previous chapter in airborne scenarios. For indoor navigation results, see the

experimental results in Section 5.1. We begin by analyzing the performance of the

radar processing algorithms on simulated data. We then compute navigation solutions

for various geometric configurations, estimation methods, and sensor availability.

4.1 Radar Signal Processing Results

The simulations in this section use the parameters defined in Table 3. Fig.

15 shows an example MF output for three reflectors positioned at (0,0,0), (100,100,-

10), and (300,300,-10) with an SNR of 10dB, φc = 0, and ∆tp = 1/ṗ(0). We see

that the features are easily detected and tracked at this SNR. In addition, large

parts of the space of MF data contains no information, which is the motivation for

using stochastic extensions in the previous section. With three reflectors present,

the stochastic tracking algorithm can evaluate a local search space around the paths

in Fig. 15 and perform much better computationally than a full FFT-based MF

implementation. Fig. 16 shows the same scenario with an SNR of −10dB and φc =

0.01rads. The modulation and thermal noise makes it difficult to detect peaks during

any single detection. However, the M/N detector with M = 30 and N = 100 can still

operate under these conditions (MF SNR of 10dB).

Fig. 17 shows the EKF calculated positions of a set of 10 reflectors randomly

distributed 1km east of the AV. The simulation used an SNR of -10dB, φc = 0.01rads,

Nskip = 10, and ∆tp = 10m. We see that 5 reflectors are tracked and have received

good position estimates. Fig. 18 shows the same setup but with 50 reflectors. We

see that the the error in the x direction grows as a function of the reflector distance

from the AV initial flight path, which is the expected result from examination of

the measurement model Jacobian. The large quantity of missed reflectors is due to

Nskip = 10 and local search space tracking. However, the the number of tracked

scatterers is still sufficient for navigation, as seen in the next section.
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Table 3: Simulation Parameters
2Davfs/c 100, 000

UWB pulse width (1/∆f) 128ns

OFDM channel configuration (ηk) ∼iid N(0, 1)

Mie scattering sphere radius 0.5m

INS Grade Commercial

Fast-time sample rate (1/∆t = fs) 1 GHz

SNR 0 dB

Number of collection points (Nav) 25

Kalman propagation time (∆t) 1 s

Initial position of AV (0,0,0) m

Initial velocity of AV (200,0,0) m

Initial acceleration of AV (0,0,0) m

4.2 Classical Estimation

In this section we use the classic estimation approach described in Section 3.10

to navigate via the LMA solver discussed in Section 2.4.6. For simplicity, point targets

(i.e., perfect reflections) are assumed for the radar targets in lieu of the development in

Section 3.4. The AV model and scenario described in Sections 3.2 and 3.3 respectively

are used, with the exception that the AV and targets are constrained to a 2D plane

and the AV moves along a fixed axis (the X axis). Fig. 19 shows the overall approach

used. An initial LMA is given the truth to initialize the positions of the AV and initial

targets (we may assume this is provided from another source at startup). As the AV

moves forward, LMA is used to solve the system of non-linear equations as seen in

Section 3.10 to find the new AV position. LMA is then used to update the estimates

of the positions of the reflectors. This process repeats iteratively, going back and forth

between estimating the AV location and the targets’ locations, using the ranges from

the radar processing algorithm (STM) when available.

Note that this approach does not use information about the vehicle dynamics in

any form, and thus it is not claimed to be an optimal estimation method compared to

67



Figure 15: Example set of MF outputs for 3 reflectors located at (0,0,0), (100,100,-
10), and (300,300,-10), with SNR=10 dB

a more complex EKF-based approach. However, the LMA-based approach is simple,

able to adapt to a wider set of problems, and is instructional in understanding the

error sources inherent in UWB-OFDM range-based navigation.

4.2.1 LMA Error Analysis. LMA is used to calculate the positions of the

reflectors and the AV platform. LMA errors are critical contributors of the solution

errors. We shall analyze the LMA error for an example scenario: The AV flies to the

points (0m, 0m), (10m, 0m), . . . , (0m, 100m), and a single reflector is placed in view of

the radar.

We first examine the LMA computed scatter position error for a single reflector

in white noise with strength σw. Fig. 20 and 21 show a histogram of the calculated

reflector location over 4,000 trials for σw = 1m and σw = 20m respectively when the
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Figure 16: Example set of MF outputs for 3 reflectors located at (0,0,0), (100,100,-
10), and (300,300,-10), with SNR=0 dB

reflector is located at the point (100m, 200m). We see that with zero-mean AWGN, an

increase to the noise variance causes the mean position calculated to drop and mean

error to become non-zero. This is due to the non-linearity of the system of equations,

which causes LMA to be a a biased estimator. Since the mean error is not zero for

high σw, we expect our positions solution error mean to be non-zero for high σw.

Fig. 22 shows the mean and standard deviation of a target as a function of

σw which was allowed to vary from 0 to 50. We see the non-linear downward mean

position solution trend and the more negative skew as σw increases. The standard

deviation of the solution also increases as σw increases, as expected. For σw = 50m,

the standard deviation is about 60m.
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Figure 17: Reflector positions with 10 reflectors available. The X’s are missed
reflectors, the hollow triangles are the true locations of tracked reflectors, and the
solid triangles are the EKF computed estimates of the tracked reflectors.

The LMA error is also dependent on the reflector position. Let σw = 1m. Fig.

23 and 24 show a sweep of the target’s X coordinate and the calculated values of

a target’s X and Y coordinates respectively. We see that as the true target’s X

coordinate is more distant from the AVs X coordinate, the calculated error of the

target’s Y coordinate grows. By contrast, the change does not affect the error in

the calculated target’s X coordinate. Note that in Fig. 24 the actual position is

subtracted from the calculated position. This is to remove the linear trend due to the

swept variable. This is the expected result, and is the result of GDOP as explained

in Section 2.3.

Next, we examine the impact of the reflector Y coordinate on its position esti-

mation. Let the target’s X coordinate be 50m. Fig. 25 and 26 show the calculated
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Figure 18: Reflector positions with 50 reflectors available. The X’s are missed
reflectors, the hollow triangles are the true locations of tracked reflectors, and the
solid triangles are the EKF computed estimates of the tracked reflectors. The lines
show the which true targets generated the EKF computed estimates.

reflector y and x coordinates as functions of the target’s true Y coordinate respectively.

Note in Fig. 25, the computed reflector X coordinate standard deviation increases

almost linearly as the reflectors Y coordinate value increases, while Fig. 26 indicates

that the reflectors Y coordinates error remains steady as the reflector y coordinate

increases.

4.2.2 Navigation Solution Error Analysis. The full AV platform navigation

solution was simulated using the iterative approach outlined in Fig. 19. The AV

travels to each location in (0m, 0m), (10m, 0m), . . . , (0m, 1km), the targets are in a

line 200m from the AV and spaced 10m apart from each other. Fig. 27 and 28 show

the mean and standard deviations of the AV positions for this configuration. As
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Figure 19: Flowchart of iterative algorithm to track AV using classical estimation.

expected from our analysis of LMA, the higher σw causes the mean position to shift

upwards linearly. The standard deviation is also a function of the noise, but even

with σw = 20, the solution standard deviation was within 20m after 1km of flight.

Fig. 29 and 30 are generated using the same configuration as that of Fig. 27 and

28 except the targets are separated by 20m. The reflectors are sparser in this scenario

which causes a higher standard deviation at each noise level. As the noise increases

the standard deviation is affected more, with more than 30m of error when σw = 20.

In addition, the mean error is magnified, with the σw = 20 case at 1km having a mean

position of 1086m, or an 86m bias. Clearly, the mean error is a function of both σw

and the number of reflectors available.

Finally, we consider the case where the reflectors are located farther away. Let

the targets be in a line 700m away from the AV and still spaced 20m apart. Fig. 31

and 32 show the mean and standard deviation for this configuration. For high noise,

the standard deviation grows to 70m when σw = 10. This is due to the distance of

the reflectors limiting the number of available ranges per reflector, as the reflection

strength follows the inverse square law. Increasing the number of reflectors decreases

this error, as it did with the reflectors at 200m.
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Figure 20: Histogram of calculated position of reflector at 200m with σw = 1.

4.3 EKF with Only Radar Available

This section contains simulated navigation results using the direct-state models

developed in Section 3.6, the radar model developed in Section 3.4, and the AV model

and scenario described in Sections 3.2 and 3.3 respectively.

The initial position, velocity, and acceleration of the AV is assumed to be known

with complete certainty, with the matrix values for these 9 quantities set to zero

initially. The reflector locations are initialized using Doppler and range to get a

crude estimate of each locations. The method described in Section 3.9 is used to

initialize newly discovered stationary persistent radar reflectors. The P matrix values

for the target locations are set to 2500 m2, so that the EKF does not trust the crude

measurement and converge to the wrong location during initial linearization. However

73



Figure 21: Histogram of calculated position of reflector at 200m with σw = 20.
Distribution displays a negative skew.

the initial crude estimate is still critical, as it affects the linearization point in the

Jacobian computation and can cause divergence in the EKF solution if it is a bad

estimate.

The parameters listed in Table 3 were used for all simulations in this section.

These were chosen to mimic those of the experimental radar prototype system. The

geometry considered is a set of reflectors arrayed in a line parallel to the initial direc-

tion of travel of the AV. Table 4 details the different configurations of the lines and

the associated name of each configuration.

4.3.1 Single Trial Simulations. In order to illustrate the performance of the

filter, a single trial was performed in the LVNDG configuration.
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Figure 22: Calculated position of reflector at 200m with varying σw, averaged over
500,000 trials. We see a negative bias in the calculated solution as the noise level
increases.

Table 4: Line configurations considered. ∆x is the distance between each scatterer.
∆y is the distance of the line of scatterers from the AV.

Configuration Name ∆x ∆y Nr

LF (line far) ∆x=800 m ∆y=1500 m 50

LFD (line far dense) ∆x=300 m ∆y=1500 m 50

LND (line near dense) ∆x=300 m ∆y=800 m 50

LVND (line very near dense) ∆x=300 m ∆y=300 m 50

LVNDG (LVND w/ gap) ∆x=300 m ∆y=300 m 50

Fig. 33 shows the X and Y axis position estimate and true value. Fig. 34

shows the AV position error between the estimate and truth. We observe less than

5m of position error in both directions although the AV has traveled 3.5km in the X
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Figure 23: Calculated reflector y-coordinate as a function of its x-coordinate. We
see the mean of the estimate is not a function of the reflector’s x-coordinate; the
variance is however, showing very fast growth.

direction and 1.2km in the Y direction due to the FOGM acceleration in this trial.

The initial velocity in the Y direction is 0m, which means that the 800m travelled in

the positive Y direction is completely random but is still tracked by the Kalman filter

with high accuracy.

Fig. 35 and 36 show the velocity and acceleration states for X and Y respectively.

The error between the truth and the Kalman output is shown in each. We can observe

that the error generally falls within the bounds of the P-value. This validates the P

value, as it is the standard deviation of the observed states. In this configuration,

the velocity error is within 10 m/s, indicating a reasonable error which is expected

for our measurement noise model and process noise. We see that the filter is able to
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Figure 24: Calculated reflector X coordinate error as a function of its true X co-
ordinate. The Y axis is the difference between the calculated position and the true
position.

track the FOGM random acceleration of the plane well with this scatterer availability.

The Kalman output tracks the true acceleration with a slight delay, most likely due to

the double integration between position (which the ranges contain information about)

and acceleration (which is being estimated). We see that in LF configuration the P

value has a standard deviation of 10 m/s2 in both directions. This indicates that the

short term error in the state model is low for both axes.

4.3.2 Ensemble Statistics. Each of the configurations listed in Table 4 was

simulated with 1,000,000 trials. Fig. 37 shows the standard deviations calculated for

each of these configurations for both the X and Y axes. We immediately notice that

77



Figure 25: Calculated reflector X coordinate as a function of its Y coordinate.

the variation between the configurations in the X axis is very small, with less than

0.5m separation. Since each configuration is a set of reflectors in a long line parallel

to the X axis, there is always good observability in the X direction. Thus for the

rest of this section we will focus our analysis on the Y axis. Note that by inverting

the line to be parallel to the Y axis, the reverse results will be computed, with good

observability along the Y axis and little observability along the X axis.

The LF configuration maintains a standard deviation of less than 10 meters for

the entire 21 second duration. This configuration represents a good geometry, with

visible reflectors far away in both the cross and down ranges. The LFD configuration is
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Figure 26: Calculated reflector Y coordinate error as a function of its true Y co-
ordinate. The Y axis is the difference between the calculated position and the true
position.

the same as LF except with reflector density increased. We see the expected decrease

in Y axis error, from 7m to 4m.

The last three configurations all diverge eventually in their estimate of the po-

sition. All three of these configurations are either Near or Very Near, denoting that

the line of reflectors is close to the beginning track of the plane (the X axis). This

illustrates that if the only observable reflectors are too near to the AV, there is not

enough information to estimate the AVs Y coordinate well, and bad estimates are

made. These bad estimates are then used to calculate the Jacobian which in turn

causes divergence in the position solution. Since this linearization error is invisible to
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Figure 27: Tracking AV position as it travels 1km with reflectors every 10m, at a
distance of 200m from the AV. Mean is shown over 1 million trials.

the EKF, the P value remains small. This results in the filter trusting bad (high error)

information more than it should, and will cause a diverging position estimate that

may be worse than simply not including the radar measurements themselves. Usage

of the processing method described in this dissertation is only feasible if such bad ge-

ometries are detected and the filter recalibrated to take into account these anomalies.

We note that the two Very Near configurations diverge quicker than the Near config-

uration, implying this relationship is a function of the distance of the reflectors to the

AV track. The LVNDG configuration contains a gap in the line of reflectors which is

encountered by the SAR processor at around 5 seconds. We note the Kalman filter

takes into account the loss of information, as the P value for the Y axis for LVNDG

rises to 35m. After the gap has passed, the EKF detects the good geometry returning,

and the P value lowers again. However, the linearization error during the gap period
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Figure 28: Tracking AV position as it travels 1000m with reflectors every 10m, at
a distance of 200m from the AV. Standard deviation is shown over 1 million trials.

causes divergence in the position solution, and the error diverges quicker than the

LVND configuration.

Fig. 38 shows the mean values for each configuration. We see that they are

all zero mean error as expected, except for the two Very Near configurations. The

means of LVNDG and LVND are negative, which is an artifact of linearizing about

an erroneous position.

4.4 EKF with Radar and INS Available

This section contains simulated navigation results using the error-state models

developed in Section 3.7, the INS and radar models developed in Sections 3.4 and

3.5 respectively, and the AV model and scenario described in Sections 3.2 and 3.3

respectively. The simulations in this section use the INS parameters from Table 2,

the radar parameters from Table 3, and the navigation parameters from Table 5. The
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Figure 29: Tracking AV position as it travels 1km with reflectors every 20m, at a
distance of 200m from the AV. Standard deviation shown over 1 million trials.

Mie reflectors are arranged in two staggered lines parallel to the direction of flight.

The lines are located 300m and 600m from the initial flight path and have 300m

spacing inbetween each reflector.

4.4.1 Single Trial and Multiple Trace Results. In order to illustrate the

performance of the filter, a single trial was performed using a tactical grade INS.

Fig. 39 shows the error in the error-state estimates with and without measurements

turned on for a tactical-grade INS. The measurements are turned off by forcing the

Kalman gain to zero, showing the actual error states without UWB-OFDM SAR

aiding. We see that for a tactical-grade INS, the UWB-OFDM aiding greatly improves

the position estimate. The errors for the case with SAR aiding are less than 3m with

a tactical grade inertial, whereas they diverge to greater than 1000m for the no-
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Figure 30: Tracking AV position as it travels 1km with reflectors every 20m, at a
distance of 200m from the AV. Mean is shown over 1 million trials.

measurements trial. Fig. 40 repeats the simulation in Fig. 39 30 times and show

the results for each realization. We see that the single-run results shown in Figure

39 are not outliers, and that the trials are on the same order as the filter-computed

computed from the P matrix.

4.4.2 Ensemble Statistics. The ensemble statistics in this section are calcu-

lated by running 1 million trials. Fig. 42 shows the ensemble statistics for a tactical

grade INS with and without radar measurements. The results here mirror what we

saw in the single trial simulations, with the radar measurements significantly decreas-

ing the error. For the x-axis, we see 1200m of error for the no-measurements case

and around 1.2m of error with measurements after 600 seconds. For the y-axis and
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Figure 31: Tracking AV position as it travels 1km with reflectors every 20m, at a
distance of 700m. Standard deviation is shown over 1 million trials.

z-axis, we see that the decrease in error is not as extreme, with 8m of error and 100m

of error for the y and z axes respectively when using SAR aiding.

In order to gauge the effects of INS grade on the results, commercial and naviga-

tion grade INS were simulated. Fig. 41 shows the ensemble statistics for a commercial

grade INS with and without radar measurements. We see decreased performance of

the stand-alone INS when using a cheaper commercial grade package compared to

tactical grade. However, with radar measurements the performance is only slightly

worse than the tactical grade with measurements. The x-axis error after 600 seconds

is 1.2m and 5m and the y-axis error is 8m and 20m for aided tactical and commercial

grades respectively. Thus the radar aiding is extremely beneficial for lower quality

commercial and tactical INS devices.
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Figure 32: Tracking AV position as it travels 1km with reflectors every 20m, at a
distance of 700m. Mean is shown over 1 million trials.

Fig. 43 shows the ensemble statistics for a navigation grade INS with and

without radar measurements. We see the baseline error of a stand-alone navigation

grade INS after 600 seconds is around 1-20m depending on the axis. Since the baseline

error is so small, we expect a navigation grade INS to not benefit greatly from SAR

aiding, which is seen here.

Tables 6 and 7 summarize the results from Figures 41-43. Note that we omit

the z-axis, as the results in the z-axis may be inaccurate due to our use of an idealized

gravity model. We see that the reduction in error when using SAR aiding is more

significant for low-grade INS devices. However, even with a navigation-grade INS, the

error reduction is two orders of magnitude.
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Figure 33: Absolute position estimate and truth. (top) X-axis (bottom) Y-axis.

Figure 34: Position state error and expected P value. (top) X-axis (bottom) Y-axis.
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Figure 35: Velocity state error and expected P value. (top) X-axis (bottom) Y-axis.

Figure 36: Acceleration state error over time and expected P value. (top) X-axis
(bottom) Y-axis.
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Figure 37: Standard deviation over 1 million trials for each configuration.

Figure 38: Mean over 1 million trials for each configuration.
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Table 5: Simulation Parameters for Navigation Filter

EKF Propagation Time 1s

Initial Position (0,0,0) m

Initial Velocity (200,0,0) m/s

Initial Acceleration (0,0,0) m/s2

Table 6: Summary of X-axis error for each configuration after 600 seconds of flight.

Measurements No Measurements

Commercial Grade 4m 600km
Tactical Grade 1.2m 1700km

Navigation Grade 0.5m 15m

Table 7: Summary of Y-axis error for each configuration after 600 seconds of flight.

Measurements No Measurements

Commercial Grade 15m 600km
Tactical Grade 10m 1700km

Navigation Grade 4m 15m

Figure 39: Difference between true inertial error and Kalman estimate of inertial
error for tactical-grade INS with and without radar measurements. A single trial is
plotted for each axis.
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Figure 40: Difference between true inertial error and Kalman estimate of inertial
error for tactical-grade INS with and without radar measurements. 30 trials are
plotted for each axis.

Figure 41: Ensemble mean and standard deviation versus filter computed standard
deviation for commercial grade INS with and without radar measurements.
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Figure 42: Ensemble mean and standard deviation versus filter computed standard
deviation for tactical grade INS with and without radar measurements.

Figure 43: Ensemble mean and standard deviation versus filter computed standard
deviation for navigation grade INS with and without radar measurements.
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V. Experimental Results

In this chapter, we provide experimental performance results for the methods dis-

cussed in Chapter III. The experimental results were collected using an experimental

UGV UWB-OFDM system prototype. We consider the navigation performance of

the mobile system for different geometries and reflector availability.

5.1 Experimental System

This section details the software and hardware we developed in order to perform

experimental validation of the navigation algorithms developed previously.

5.1.1 Radar System. A hardware prototype was constructed in conjunction

with other researchers at Miami University [42]. The system prototype is designed as

a multi-purpose device capable of communications and radar imaging, as well as other

utility roles such as acting as the role of an integrated navigation sensor considered

in this study. The original system design is shown in Fig. 44 and the device itself

is pictured in Fig. 45. Fig. 46 shows an example of a backprojected SAR image.

Fig. 47 shows the bit error rate (BER) at a 5m distance when the device is used as

communications device.

In order to facilitate usage of the system in a navigation context several im-

provements were made to the system. The original receiver board was replaced by a

Tektronix TDS3201D board as it:

• Decreased the timing jitter in the trigger assembly to less than 200ps. This fine

Tx/Rx synchronization allows us to perform true absolute ranging to targets,

critical for real-time autonomous navigation. The previous board exhibited

50ns of timing jitter, which allows only for relative ranging between targets in

the same coherent processing interval (CPI).

• Allowed for a 5 GS/s sampling rate. This enhancement allows for precise ranging

of isolated targets.
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Figure 44: Block diagram of experimental UWB-OFDM radar system.

• Enabled GPS-synchronized timing on data collections. This change facilitates

integration with the INS, which time stamps its collected data via GPS time

periods.

In addition, a 2-channel I/Q demodulator was used in order to allow video signal

capture at baseband. This allows for continuous tracking of targets at any range, as

opposed to signal-channel systems which will have dead-ranges where no return energy

is detected (see Coherent Demodulation section in the background section for more

details).

5.1.2 Navigation Platform. The radar system from the previous section was

designed to be used in stationary indoor environments. It was therefore modified to

fit on a mobile cart along with an ATX computer, Honeywell HG1700 INS, SpanSE

front-end system, and supporting electronics. The combined navigation system is

pictured in Fig. 48.

5.1.3 Real-Time Processing Software. A software suite was developed in

order to implement the algorithms from Chapter III in real-time. All results in this

chapter used this software. The real-time radar data processing (including detection

and ranging) was performed using a massively parallel implementation on a GPU.
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Figure 45: Picture of components in experimental system.

Figure 46: SAR image captured with experimental system via backprojection.
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Figure 47: BER of experimental system transmitting at a theoretical data rate of
57Mb/s.

Data collection from each device was synchronized via a multi-threaded monitor pro-

gram written in Qt. Table 8 illustrates the capabilities of the software suite.

Table 8: Real-time processing software characteristics.
Radar maximum CPI length 80µs

Radar data detect/track throughput 20× 106 samples/sec
INS data rate 60 Hz

Synchronous sensor data collection jitter < 10 ms
Real-time display and sensor failure detection Radar, INS, camera sensors
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Figure 48: Picture of mobile platform including an ATX computer, INS, UWB-
OFDM radar system, and analog front-ends for both sensors.

5.2 Hallway Results

The experimental system was tested in an indoor hallway with metallic reflectors

placed within the environment. Examples of the reflectors used are given in Fig. 49

and 50. Fig. 51 shows an overview of the data processing methods used to generate

the results in this section. The INS data is processed in the fixed local-level frame

to generate an unaided position estimate of the UGV. The radar data was processed
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using the methods developed in Section 3.4 and summarized here in Fig. 52. The

resulting INS solution and radar tracks/ranges are processed in a navigation filter.

The navigation filter used is the error-state model EKF developed in Section 3.7.

5.2.1 Radar Data Processing Results. Fig. 53 shows a set of radar data

collections for a single stationary corner reflector target at a distance of 1m. We see

that we have near perfect time synchronization and very little noise present, as the

returns are nearly identical over time. Fig. 54 shows a single slow-time bin of Fig.

53 after pulse compression. We see a greater than 16 dB SNR gain at the range bin

of the reflector. Using sub-sample interpolation and alignment, the calculated range

of the target from Fig. 54 is 0.995m, showing less than 1cm of error. Performing this

experiment multiple times yielded a consistent ranging error of less than 6 cm. Thus

with the new receiver board our ranging precision is on the order of 6 cm. Fig. 55

shows the entire data set from Fig. 53 after pulse compression.

Fig. 56 shows the I-channel only pulse compressed data for a moving corner

reflector target. The target is initially stationary. It moves 0.5m towards the radar,

then it is stopped again. We observe the clear decreasing range from 10-20ns as the

target is moving. The target fades in and out of the data set during the time it

is moving. This is due to us looking at a single channel. The temporary absence

of returns is handled by our M/N detector, which allows reflectors to not appear in

every data collection and still be tracked. Thus radar target tracking is still feasible

with a single-channel system UWB-OFDM system.

Fig. 57 shows the calculated ranges from the target tracking algorithm for the

data set in Fig. 56. We see that sufficient ranges are still available to detect and

estimate motion. Fig. 58 shows the phase history of a single corner reflector in a

hallway with the radar moving along the hallway wall. We can clearly see the wall

feature at 54ns, and the reflector forming a parabolic path at 50ns. From this data

set we see that wall guiding would be possible for an indoor environment. However,

in this dissertation only point target tracking is used.
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Figure 49: Rectangular reflectors used in experimental results.

5.2.2 SAR Navigation Results. The left side of Fig. 60 shows the geometry

used for the navigation experiment. The radar is moved through a hallway with 6

reflectors scattered in front of it. (The reflector positions are not initially known, but

are calculated as part of the SLAM algorithm). At each turn, the radar is rotated

clockwise (from above), so that the antennas are in view of the reflectors. Fig. 59

shows an extract from the data collected in this configuration. The wall feature is

visible at 59 ns (Fast Time), and two reflectors are present at 15s and 50s (Slow

Time). The reflector at 15s is closer to the wall than the one at 50s, and thus is easily

to see.

Fig. 60 shows the computed position of the radar platform for the experimental

setup on the left of Fig. 60. We see that with radar aiding we have a significant

increase in the accuracy of the position solution. The INS-only solution begins drifting

before the platform begins moving. The INS-radar aided solution does not show drift,

as the radar has multiple reflectors visible while in initial stationary position which

tells the EKF that it is not moving. The stand-alone INS solution has an overall

southward bias. The INS also drifts eastward over time, which is corrected by the
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Figure 50: Cylindrical reflectors used in experimental results.

radar aiding. The final error of the radar-aided solution is 0.3m north and .2m east,

compared to the stand-alone INS solution with errors of 3m south and 4m east. Also,

due to the nature of INS which involves double integrating acceleration measurements

to obtain position, the stand-alone INS solution will typically have increasing error

over the short term. In contrast, the radar-aided solution tends to grow as a linear

function of distance traveled.
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Figure 51: Overview of the navigation system implemented.
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Figure 52: Overview of radar signal processing method.
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Figure 53: SAR phase history magnitude (observing a single stationary corner
reflector).
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Figure 54: Fast-time collection after pulse compression (observing a single station-
ary corner reflector).
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Figure 55: Phase history after pulse compression (observing a single stationary
corner reflector).
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Figure 56: Phase history after pulse compression (observing a single corner reflector
moving towards the radar).

Figure 57: Single track extracted range history for data set in Fig. 6.
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Figure 58: Phase history after pulse compression for moving radar in hallway with
single stationary corner reflector.

Figure 59: Phase history after pulse compression. Short sample taken from SAR
navigation data set.
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Figure 60: SAR data set computed navigation solutions, shown with and without
radar aiding along with true trajectory.
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VI. Conclusion

This dissertation presents a novel sensor to allow for always-present, jamming-resistant,

active navigation in unknown environments. This chapter presents the conclusions

of the study and future potential research in the area of UWB-OFDM and general

radar-based navigation. The conclusions of this study support the claimed research

contributions stated in Section 1.3.

6.0.3 Conclusions. The goal of this research is to improve the performance

of an INS-based navigation platform when other absolute sources of information such

as GPS are not available. This is done by augmenting an INS with a UWB-OFDM

radar, and using the combined system as an integrated navigation platform. The

primary conclusion of this work is the experimental demonstration of the viability of

a developed set of algorithms to process the data into a navigation solution. This was

done in three processing stages with tight integration: process the INS measurements,

process the radar measurements, and then combine the two data sources in an EKF.

In order to implement the SAR data processing stage, a set of algorithms were

developed. These algorithms process the raw SAR data by detecting and tracking

reflectors embedded within the environment. Range and Doppler measurements asso-

ciated with the tracked reflectors are recorded for use in the EKF. The INS measure-

ments were processed via a simple fixed local-level mechanization implementation.

The mechanization integrates the raw INS measurements (accounting for effects such

as the earth rate) into a position/velocity/orientation solution. Lastly, several EKFs

were implemented which use the INS solution and/or the measurements to the tracked

SAR reflectors to compute an optimal estimate of the AV, depending on sensor avail-

ability.

The combined navigation algorithms for the three processing stages were then

tested with a variety of airborne simulation and indoor experimental setups. In sim-

ulation, we saw an order of magnitude improvement of the navigation solution error

when comparing the standalone INS solution and the combined radar/INS solution.
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For example, with a tactical grade INS the standalone solution showed an error stan-

dard deviation of 2km in the direction of flight after 10 minutes, whereas the integrated

solution showed a standard deviation of 2m. For a navigation grade INS, the error

went from 20m to sub-meter error. These results show theoretical viability of the

system as an airborne navigation sensor.

In addition to the simulation results, we desired to experimentally validate the

combined INS/UWB-OFDM navigation filter. In order to achieve this goal, an UWB-

OFDM system prototype was first constructed and tuned for use as a navigation sen-

sor. An existing INS platform was then used to generate a navigation solution. In

order to process the large SAR data set from the radar, a software suite was devel-

oped which controls the hardware systems and implements the previously developed

navigation algorithms. The developed software suite runs in real-time on the experi-

mental navigation platform. This demonstrates not only that high data throughput

UWB radar navigation is possible, but that it is feasible for real-time navigation with

existing hardware. The resulting INS/UWB-OFDM navigation solution using exper-

imental data shows a large improvement over the INS-only solution. The large drift

seen in INS-only navigation platforms is greatly reduced by the radar when it has

constant access to strong persistent stationary reflectors that do not leave its field of

view. For example, when the vehicle was driven down a hallway making a U-shaped

turn the INS solution drifted off to greater than 20m of error within a minute, whereas

the integrated solution showed less than 0.5m of error. The difference in error grows

as a function of time, as the UWB-OFDM showed no drift when the same reflectors

were in sight. These results show the large improvement in position solution when

using the integrated filter.

As is expected, this solution only performs well when radar has constantly

tracked targets. When limited scatterer availability occurs or when the radar must

continually track new scatterers, the radar solution will drift like any dead-reckoning

system. However, this drift will be in a different direction than that of the INS drift,

resulting in a lowered error in the overall navigation solution. Thus the combined
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platform will still perform better than a stand-alone INS system, as the drift will be

minimized by the addition of the radar.

In summary, this research develops a navigation method using an combined IN-

S/radar system and experimentally validates its use as a navigation sensor. The

method shows significant improvement over a stand-alone INS and demonstrates

navigation-grade solution errors while using relatively low-cost sensors.

6.0.4 Future Work. There are many areas of further study, including:

• Sensor fusion with additional sensors and more comprehensive sensor platforms,

such as image, lidar, or sonar sensors. Since radar is inherently a range-based

sensor there is a large opportunity to combine it with an angle-based sensor

such as a camera, exploiting the diversity of the different sensors to minimize

the navigation error.

• The simulation studies in Chapter IV demonstrate the potential for use in air-

borne scenarios. The application of these techniques on an airborne SAR system

would potentially allow for aerial vehicles to have improved navigation without

reliance on GPS or terrain maps.

• The radar signal processing algorithms in this dissertation were computed in

a GPU. There is a huge potential for massive parallelization techniques to be

applied to this problem, greatly enhancing the tracked radar targets.

• If a fast enough parallelization were developed and implemented, full SAR image

construction (instead of partial, as used here) in real-time would be feasible.

The techniques here could be extended and used in conjunction with image-

aided navigation research to use raw UWB SAR data as an image-based sensor.

This would allow for UWB SAR to be used as both an angle and range-based

sensor, opening a huge field of potential research.

• OFDM is capable of being used in adaptive anti-jamming scenarios. One prob-

lem of interest is the evaluation of UWB-OFDM navigation in hostile envi-
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ronments where an intelligent agent actively seeks to interrupt or corrupt the

navigation solution.

• Since OFDM is employed in many commonly available communications proto-

cols, there is the potential for using an active OFDM communications system

already present on a vehicle as a dual-use communications/navigation sensor.

Such a system would transmit information in the OFDM symbols while simul-

taneously using the multi-path fading as a radar echo response, mapping the

environment and performing navigation.
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