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Major Goals:  We proposed that Raman scattering, a fundamental inelastic phonon-photon scattering process that 
is available in all materials, can be used to cool any transparent solid. This can be achieved through a specific 
engineering of the photonic density of states (DoS) of the system. Our theoretical analysis revealed the possibility 
of Raman cooling of various materials using telecom wavelength pump light. Our overall research goal was to 
demonstrate that the engineering of photonic DoS for anti-Stokes enhancement and Stokes suppression is 
practical in the case of Raman scattering.



Specific goals were --



1. Fabricate on-chip photonic microdevices for Raman cooling: We used aluminum nitride as a host material for 
these devices (e.g. resonators, photonic crystals) since we have a lot of experience with e-beam lithography and 
etching in the material, it can achieve very good optical transparency, and it has distinct LO and TO phonon modes 
that are Raman-active.



2. Demonstrate suppression of Stokes Raman scattering, and enhancement of anti-Stokes Raman scattering in a 
microfabricated sample.



3. Demonstrate cooling of a phonon mode: Once the above tasks are successfully achieved, we aimed to 
demonstrate cooling of a single optical phonon mode in aluminum nitride. The cooling will be quantified through the 
Raman sideband spectrum -- reduction of the integrated sideband amplitude and spectral broadening of the 
scattered light are both independent indications of cooling of the phonon modes.

Accomplishments:  Our theoretical and experimental work in this period focused on laser cooling through inelastic 
light scattering processes -- both with Brillouin and Raman scattering.



1. Study of laser cooling using Brillouin light scattering in waveguides --

We developed an analytical model for opto-acoustic cooling of phonons in linear waveguides through the Brillouin 
scattering interaction. We elucidated the regimes of phonon lifetime and group velocity where appreciable cooling 
may be possible, and the spectral characteristics of the phonon population. We published a journal paper in the 
New Journal of Physics. http://iopscience.iop.org/article/10.1088/1367- 2630/18/11/115004



2. Study of Raman laser cooling with anisotropic density of states --

We performed a theoretical study, showing for the first time how Raman scattering is modified by anisotropic 
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density of states. Using this tool, we performed full 3D anisotropic calculation of Raman scattering patterns and the 
corresponding Raman cooling efficiency. This work enables optimization studies on photonic design and material 
crystal orientation, to would maximize total Raman cooling efficiency. Results were published in Phys Rev A - 

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.97.043835



3. Experimental study on modification of Brillouin cooling by photonic density of states --

We performed an experimental study on how the photonic density of states in both energy and momentum space 
affects Brillouin cooling. This confirms that Raman scattering could be engineered by a similar approach. The 
results were published in Optics Express. https://www.osapublishing.org/oe/abstract.cfm?uri=oe-25-2-776



4. Experimental effort on Raman cooling --

We fabricated nanophotonic devices (waveguide-resonator coupled systems) in which the anti-Stokes optical 
density of states is engineered for maximum Raman cooling efficiency. We produced several generations of these 
devices but are yet to see the intended results as per the goals of this project. This work is experimentally 
challenging and still ongoing.
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Training Opportunities:  Nothing to Report

Results Dissemination:  Raman Cooling of Solids through Photonic Density of States Engineering

Optica, 2(10), pp.893-899, 2015.

Y.-C. Chen, G. Bahl



Brillouin Cooling in a Linear Waveguide

New Journal of Physics, 18, 115004, 2016.

Y.-C. Chen, S. Kim, G. Bahl



Role of optical density of states in two-mode optomechanical cooling

Optics Express, 25(2), pp.776-784, 2017.

S. Kim, G. Bahl



Optimization of anisotropic photonic density of states for Raman cooling

Phys. Rev. A 97, 043835, 2018.

Y.-C. Chen, I. Ghosh, A. Schleife, P.S. Carney, G. Bahl



Raman Cooling of Solids through Density of States Engineering

at Frontiers in Optics, San Jose, CA, Oct 2015.

Y.-C. Chen, G. Bahl



Raman cooling in silicon photonic crystals

at SPIE Photonics West (Optical and Electronic Cooling of Solids), San Francisco CA, Feb 2016.

Y.-C. Chen, G. Bahl



Brillouin and Raman cooling in resonant and non-resonant systems (invited paper)

at SPIE Photonics West (Optical and Electronic Cooling of Solids), San Francisco CA, Feb 2016.

Y.-C. Chen, G. Bahl



Optimization of anisotropic photonic density of states for Raman laser cooling

at SPIE Photonics West, San Francisco, Feb 2017.

Y.-C. Chen, I. Ghosh, G. Bahl
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Goal: Engineer photonic DoS to enable Raman cooling in solids
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• Challenge: Ratio of anti-Stokes intensity to Stokes 
intensity is always less than one. For silicon at 
room temperature this ratio is about 0.1.

Multiple Stokes modes can potentially be 
suppressed simultaneously by the 
photonic DoS
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• Solution: If we have a photonic density of states 
(DoS) that is engineered such that there is no 
available modes at the Stokes frequency, we can 
suppress the Stokes scattering.

n0 =
1

exp( ~!0
kBT )� 1

n0

n0 + 1
⇡ 0.1

/ n0Anti-Stokes/ n0 + 1Stokes



Journal papers and Conference presentations

3

Optimization of anisotropic photonic density of states for Raman cooling
Phys. Rev. A 97, 043835, 2018.
Y.-C. Chen, I. Ghosh, A. Schleife, P.S. Carney, G. Bahl

Brillouin Cooling in a Linear Waveguide
New Journal of Physics, 18, 115004, 2016.
Y.-C. Chen, S. Kim, G. Bahl

Raman Cooling of Solids through Photonic Density of States Engineering
Optica, 2(10), pp.893-899, 2015.
Y.-C. Chen, G. Bahl

Journal Publications
Original proposal on achieving
Raman cooling with photonic DoS 
engineering.

Theoretical study on the possibility 
of DoS engineering in linear 
waveguides

Study on the use of anisotropic 
photonic DoS for controlling Raman 
cooling.

Conferences

Optimization of anisotropic photonic density of states for Raman laser cooling
at SPIE Photonics West, San Francisco, Feb 2017.
Y.-C. Chen, I. Ghosh, G. Bahl

Raman cooling in silicon photonic crystals
at SPIE Photonics West (Optical and Electronic Cooling of Solids), San Francisco CA, Feb 2016.
Y.-C. Chen, G. Bahl

Brillouin and Raman cooling in resonant and non-resonant systems (invited paper)
at SPIE Photonics West (Optical and Electronic Cooling of Solids), San Francisco CA, Feb 2016.
Y.-C. Chen, G. Bahl

Raman Cooling of Solids through Density of States Engineering
at Frontiers in Optics, San Jose, CA, Oct 2015.
Y.-C. Chen, G. Bahl

Role of optical density of states in two-mode optomechanical cooling
Optics Express, 25(2), pp.776-784, 2017.
S. Kim, G. Bahl

Experimental study on the role of 
photonic DoS in Brillouin 
optomechanical cooling



Summary:
Raman cooling of solids through photonic density of states engineering
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We showed analytically that photonic density of states (DoS) 
engineering can address the two fundamental requirements for 
achieving spontaneous Raman cooling: suppressing the dominance of 
Stokes (heating) transitions and the enhancement of anti-Stokes 
(cooling) efficiency beyond the natural optical absorption of the 
material. 

We developed a general model for the DoS modification to 
spontaneous Raman scattering probabilities, and elucidated the 
necessary and minimum condition required for achieving net Raman 
cooling. With a suitably engineered DoS, we established the enticing 
possibility of the refrigeration of intrinsic silicon by annihilating 
phonons from all its Raman active modes simultaneously, through a 
single telecom wavelength pump. This result points to a highly flexible 
approach for the laser cooling of any transparent semiconductor, 
including indirect band gap semiconductors, far away from significant 
optical absorption, band-edge states, excitons, or atomic resonances.

Raman Cooling of Solids through Photonic Density of States 
Engineering
Optica, 2(10), pp.893-899, 2015.
Y.-C. Chen, G. Bahl



Summary:
Brillouin Cooling in a Linear Waveguide

5

In this work, we presented an analysis of the conditions under 
which Brillouin cooling of phonons of both low and high group 
velocities may be achieved in a linear waveguide. 

We  analyzed the three-wave mixing interaction between the 
optical and traveling acoustic modes that participate in forward 
Brillouin scattering, and revealed the key regimes of operation 
for the process. Our calculations indicated that measurable 
cooling may occur in a system having phonons with spatial loss 
rate that is of the same order as the spatial optical loss rate. If 
the Brillouin gain in such a waveguide reaches the order of 105 

m−1W−1, appreciable cooling of phonon modes may be 
observed with modest pump power of a few mW.
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Brillouin Cooling in a Linear Waveguide
New Journal of Physics, 18, 115004, 2016.
Y.-C. Chen, S. Kim, G. Bahl



Summary:
Role of optical density of states in two-mode optomechanical cooling
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Dynamical back-action cooling of phonons in 
optomechanical systems having one optical mode is 
well studied. Systems with two optical modes have 
the potential to reach significantly higher cooling 
rate through resonant enhancement of both pump 
and scattered light. Here we experimentally 
investigated the role of dual optical densities of 
states on Brillouin optomechanical cooling, and the 
deviation from theory caused by thermal locking to 
the pump laser. Using this, we demonstrated a room 
temperature system operating very close to the 
strong coupling regime, where saturation of cooling 
is anticipated.

Role of optical density of states in two-mode 
optomechanical cooling
Optics Express, 25(2), pp.776-784, 2017.
S. Kim, G. Bahl



Summary:
Optimization of anisotropic photonic density of states for Raman cooling
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We considered the influence of anisotropic photonic density 
of states on Raman scattering and derived expressions for 
cooling in photonically anisotropic systems. 

We demonstrated optimization of the Raman cooling figure 
of merit considering all possible orientations for the material 
crystal and two example photonic crystals. We found that 
the anisotropic description of the photonic density of states 
and the optimization process is necessary to obtain the best 
Raman cooling efficiency for systems having lower 
symmetry. This general result applies to a wide array of 
other laser cooling methods in the presence of anisotropy.

Optimization of anisotropic photonic density of states for 
Raman cooling
Phys. Rev. A 97, 043835, 2018.
Y.-C. Chen, I. Ghosh, A. Schleife, P.S. Carney, G. Bahl



Experimental results



Practical considerations for Raman cooling experiment
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General design considerations
• Raman scattering efficiency is low

• Need long interaction length
• Need large pump power

• Issues with photonic crystal approach
• Difficult to fabricate at large scale
• Require high finesse optical, which is not 

easy to achieve

• Benefits of ring resonators 
• Provide large interaction distance
• Easy to fabricate with a single litho step

Material considerations
• Material choice: AlN

• Very wide bandgap -> High transparency
• Relatively easy to fabricate wavguides and high-Q 

resonators
• Targeted phonon modes: (TE to TE scattering)

• Backward scattering: A1 (TO)
• Forward scattering: A1 (LO)

• Raman wavelengths (1550 pump, backscattering)
• Stokes: ~1710 nm
• Anti-Stokes: ~1410 nm

• Typical Raman linewidth ~ 20 cm-1

• FSR between modes required < 5 nm

Raman scattering in ring resonators

��FSR =
�2

2⇡rng

F =
��FSR

�
Qfinesse

free spectral range

interaction length

Q ⇠ 100, 000 � ⇠ 1, 550 nm

l ⇡ F ⇥ 2⇡r =
�

ng
Q

l ⇠ 0.1 m

--> Large interaction length in small structures



Achieving Stokes suppression with ring resonators
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Method 1: cutoff frequency of the ring resonator

Method 2: multi-mode ring resonator with different 
transverse orders

Example mode profile

Anti-Stokes

Pump

2nd TE mode

1st TE mode



Design and experimental setup
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1. Identify available modes around both 1410 nm 
and 1550 nm

2. Couple pump into modes in the 1410 nm 
range, observe scattered Stokes modes 
around 1550nm

3. Reverse the experiment, couple pump into one 
of the observed Stokes modes in the 1550 nm 
range, observe anti-Stokes scattering in the 
original 1410 nm mode

1410nm 1550nm
4 3 2 1

1410nm 1550nm

sample

microscope

v-groove

optical fibers

spectrometer

Lasers



Fabricated device components
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Microscope image Grating coupler Y-Branch

Waveguide
Waveguide

SEM image of the ridge waveguide SEM image of the ridge waveguide



Preliminary results: single mode resonators

13

1410nm 1410nm1550nm 1550nm

4 3 2 1

Transmission 2-4 Transmission 1-3

Not able to detect Stokes Raman when pumped at 1410 nm

Q~28,000 Q~5,000

Close to cutoff 
frequency

low Q

r=80 um, w=700 nm



Improved design: two-mode ring resonators

14

Goal: Improve chance of phase-matching
• 160 um radius, reduced free spectral range
• 2.2 um guide width, two transverse order modes
• Achieved higher Q modes, Q > 140,000
• Technical issue: Transmission between port 1-4 

was poor
• Not able to obtain Raman signal

1410 nm modes 1550 nm modes

1410nm 1410nm1550nm 1550nm

4 3 2 1

Q~140,000

Transmission 2-3 Transmission 1-4



Improved design: disk resonators

15

Goal: Brute-force observation of Raman scattering
• 160 um radius, reduced free spectral range
• Multiple transverse orders
• Stokes and anti-Stokes cannot be suppressed
• Higher Q modes, Q > 130,000
• Lower transmission between port 1-4
• Not able to obtain Raman signal

1410 nm modes 1550 nm modes

1410nm 1410nm1550nm 1550nm

4 3 2 1

Q~130,000



Potential reason for not observing Stokes Raman scattering

16

~10 dB loss each

~10 dB loss each

• Each component (grating couplers, Y-branches) introduces ~10 dB loss
• Improved grating couplers (larger taper angle) only provide ~ 20% more in transmission
• With EDFA the pump power in the coupling region is about ~100 uW
• Not enough pump power at the coupling region to generate observable Stokes 

scattering

Improved design

Increase 
taper angle



Edge coupled devices *to mitigate grating coupler loss
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> 5 mm

CAD design
Fabricated device

Waveguide edge Fiber-waveguide coupling at 1550 nm Alignment with HeNe laser



Setup for edge coupling
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fiber holder

fiber holder lensed fiber
sample

lensed fiber

Waveguides

• Edge coupling allows 100x more pump power in the waveguide than the grating-
coupler devices 

• With EDFA pump power at the waveguide-resonator coupling region can be > 10 mW
• Free spectral range of all the resonators < 5 nm, no Raman suppression should occur
• Not able to observe Stokes Raman scattering despite the increased power



Proposal for future effort -- Conversion to 780 nm

19

• The thickness of the AlN region in all our designs is 350 nm, which limits the wavelength of the 
allowed Raman-active phonons to 350 nm

• This may cause a change in Raman selection rules
• Pump power in the edge-coupler devices may still not be enough

• 780 nm pump laser will give at least 16 times greater Raman efficiency (24)
• Both TE and TM modes are supported at 780 nm, allowing more Raman-active modes to be 

observed: A1(LO), A1(TO), E1(LO), E1(TO)
• Since TE <-> TM scattering is allowed the change in selection rules in the waveguide should 

have less effect 

Potential reasons for still not observing Stokes Raman scattering 

Advantages of using a 780 nm pump

TE mode profile at 780 nm TM mode profile at 780 nm


