
REPORT DOCUMENTATION PAGE 
Form Approved 

0MB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data 
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other 
aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters SeNices, Directorate for Information 
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any oth r 
provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid 0MB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1, REPORT DATE (DD-MM-YYYY) , 2. REPORT TYPE 3. DATES COVERED (From - To) 

09/17/2019 Final Technical Report 06-01-2016 to 05-30-2019 

4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER 

Data Assimilation and Parameter Estimation for Parametric Partial 
Differential Equations Sb. GRANT NUMBER 

N00014-16-1-2706 

Sc. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

Ronald Devore 1000004430 

Se. TASK NUMBER 

Sf. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 

Texas A&M University REPORT NUMBER 

400 Harvey Mitche ll Pkwy S. Suite 300 
Colle ge Station, Texas 77845 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) 

Sponsored Research Services 
400 Harvey Mitche ll Pkwy S. Suite 300 11. SPONSOR/MONITOR'S REPORT 
College Station, Texas 77845 NUMBERfSl 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

Annroved for nublic Release· Distribution Unlimited 
13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
Parametric partial differential equations (pdes) are used to model complex physical and biological systems and arise in optimal control 
and design. Their solution varies with the parameters in a complex way, especially when there are a large number of parameters. This 
project studied novel ways to understand the effect of changing parameters by using a technique called model reduction which isolates 
the important parameters. Various methods for model reduction were studied and evaluated for performance This included 
representation by high dimensional polynomials and interpolation of certain judiciously chosen parameter snapshots. A new class of 
algorithms for model reduction based on nonlinear approximation were introduced and evaluated for performance. 
The project also studied the best way to incorporate data observations of the solution to improve efficiency. Certain algorithms for data 
assimilation were proven to be optimal. Several new methods were introduced to speed up computation. These included extracting 
random snapshots and employing various approaches to optimization. The project also studied the problem of how well the parameters 
can be determined when as observation of the state is given. Sufficient conditions on the coefficients of the pde were proved to ensure 
that the parameters are uniquely determined by the state. This was then employed to build algorithms for parameter estimation with 
certified error bounds. 

15. SUBJECT TERMS 

Parametric partial differentail equations, complex physical/biological systems, optimal computational algorithms 

16. SECURITY CLASSIFICATION OF; 

Unclassified 
17. LIMITATION OF 

a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT 

None 

18. NUMBER 
OF 
PAGES 

19a. NAME OF RESPONSIBLE PERSON 

(979) 845-3261 

19b. TELEPHONE NUMBER (Include area code) 

Standard Form 298 (Rev. 8/98) 
Prescribed by ANSI Std. 239.18 



INSTRUCTIONS FOR COMPLETING SF 298 

1. REPORT DATE. Full publication date, including 
day, month, if available. Must cite at least the year 
and be Year 2000 compliant, e.g. 30-06-1998; 
xx-06-1998; xx-xx-1998. 

2. REPORT TYPE. State the type of report, such as 
final, technical, interim, memorandum, master's 
thesis, progress, quarterly, research, special, group 
study, etc. 

3. DATE COVERED. Indicate the time during 
which the work was performed and the report was 
written, e.g., Jun 1997 - Jun 1998; 1-10 Jun 1996; 
May - Nov 1998; Nov 1998. 

4. TITLE. Enter title and subtitle with volume 
number and part number, if applicable. On classified 
documents, enter the title classification in 
parentheses. 

5a. CONTRACT NUMBER. Enter all contract 
numbers as they appear in the report, e.g. 
F33315-86-C-5169. 

5b. GRANT NUMBER. Enter all grant numbers as 
they appear in the report. e.g. AFOSR-82-1234. 

5c. PROGRAM ELEMENT NUMBER. Enter all 
program element numbers as they appear in the 
report, e.g. 61101A. 

Se. TASK NUMBER. Enter all task numbers as they 
appear in the report, e.g. 05; RF0330201; T4112. 

Sf. WORK UNIT NUMBER. Enter all work unit 
numbers as they appear in the report, e.g. 001; 
AFAPL30480105. 

6. AUTHOR(S). Enter name(s) of person(s) 
responsible for writing the report, performing the 
research, or credited with the content of the report. 
The form of entry is the last name, first name, middle 
initial, and additional qualifiers separated by commas, 
e.g. Smith, Richard, J, Jr. 

7. PERFORMING ORGANIZATION NAME(S) AND 
ADDRESS(ES). Self-explanatory. 

8. PERFORMING ORGANIZATION REPORT NUMBER. 
Enter all unique alphanumeric report numbers assigned 
by the performing organization, e.g. BRL-1234; 
AFWL-TR-85-4017-Vol-21-PT-2. 

9. SPONSORING/MONITORING AGENCY NAME(S) 
AND ADDRESS(ES). Enter the name and address of 
the organization(s) financially responsible for and 
monitoring the work. 

10. SPONSOR/MONITOR'S ACRONYM(S). Enter, if 
available, e.g. BRL, ARDEC, NADC. 

11. SPONSOR/MONITOR'S REPORT NUMBER(S). 
Enter report number as assigned by the sponsoring/ 
monitoring agency, if available, e.g. BRL-TR-829; -215. 

12. DISTRIBUTION/AVAILABILITY STATEMENT. 
Use agency-mandated availability statements to indicate 
the public availability or distribution limitations of the 
report. If additional limitations/ restrictions or special 
markings are indicated, follow agency authorization 
procedures, e.g. RD/FRO, PROPIN, 
ITAR, etc. Include copyright information. 

13. SUPPLEMENTARY NOTES. Enter information 
not included elsewhere such as: prepared in cooperation 
with; translation of; report supersedes; old edition 
number, etc. 

14. ABSTRACT. A brief (approximately 200 words) 
factual summary of the most significant information. 

15. SUBJECT TERMS. Key words or phrases 
identifying major concepts in the report. 

16. SECURITY CLASSIFICATION. Enter security 
classification in accordance with security classification 
regulations, e.g. U, C, S, etc. If th is form contains 
classified information, stamp classification level on the 
top and bottom of this page. 

17. LIMITATION OF ABSTRACT. This block must be 
completed to assign a distribution limitation to the 
abstract. Enter UU (Unclassified Unlimited) or SAR 
(Same as Report). An entry in this block is necessary if 
the abstract is to be limited. 

Standard Form 298 Back (Rev. 8/98) 



Final Report: N00014-16-l-2706 

Data Assin1ilation and Paran1eter Estin1ation for Para1netric 
Partial Differential Equations 

PI: Ronald DeVore 

September 17, 2019 

This project studied numerical algorithms for solving partial differential equations (PDEs) which 
depend on many variables or parameters. Such PDEs arise in several important areas of applied 
mathematics including the modeling of complex physical and biological systems as well as in optimal 
design in engineering. In describing the accomplishments of this proposal, we let u(y) = u(y, x) be 
the solution to the PDE where y is the vector of parameters taken from a parameter domain Y and 
x is the physical variable taken frorn a domain D. vVe denote by V the energy space associated 
with the PDE. The solution u(y) is in V for ally and is to be computed with respect to the norm 
of V. In most situations V is a Hilbert space such as HJ (D) in the case of elliptic problems. 

The project had three main goals as described in the next three sections of this report. 

1 Build fast forward solvers through methods of model reduction. 

Given a parameter query y , the solver should efficiently compute an accurate approximation to 
u(y) on line. Such forward solvers are used to simulate the process and are also used in optimal 
control and design. They are built off-line ut ilizing model reduction based on the smoothness of the 
mapping y -+ u(y) . T he paper 1 gave a state of the art survey of model reduction and numerical 
methods for parametric PDEs. The main theme of that paper was to show that the solution map 
for elliptic (and certain more general) parametric PDEs has analytic and anisotropic properties 
sufficient to guarantee efficient model reduction. 

The model reduction is typically built by finding a low dimensional linear space Xn in V such 
that clist(u(y), X 11) s; E. for all parameters y E Y where c is a user prescribed accuracy. The space 
Xn is typica.Jly built in one of two ways. The first is through a sparse polynomial P(y) taking values 
in V which approximates u(y) to accuracy c in the norm of V. ThfJ:P~2:ft° the coefficients of P 
then provide the linear space X 11 • vVe have given in our earlier work , eorems that prove the 
existence of such polynomials with quantitative estimates on how large n has to be to satisfy the 
prescribed error accuracy c . In 6, we extend this theory to include the log normal assumption on 
diffusion coefficients that are often used in stochastic settings. In 13, we improve on the guarantees 
for rates of convergence (approximation error versus the size of n) by exploiting connections with 
results in number theory, in particular additive and multiplicative partitioning of integers. 
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A second construction of reduced models is through greedy algorithms which adaptively select 
snapsl ~8o !ftt), j = l, ... , n, whose span provides the space Xn. vVe have given in our earlier 
work ( , 1e most rigorous and for reaching results for model reduction via greedy algorithms 
and in particular we show that these algorithms are near optimal for selecting a space Xn. The 
intimate connections between greedy algorithms and foundational quantities such as widths and 
entropy is fully described in 5. In 2, we prove a general principal that widths are almost preserved 
under analytic maps. This fact has been exploited to prove optimality of greedy algorithms in 
many other settings. 

The implementation of the greedy algorithm is clone off-line and is expensive since it requires 
the computation of a fine net in the parameter domain Y. The size of the net typically grows 
exponentially with the dimension n of the reduced space. This makes its off-line implementation 
impossible when n is large. To circumvent this difficulty, we have studied two new approaches. 

The first approach was to replace the discretization of Y by a random selection of points rather 
t han a deterministic one. vVe have shown in 11 that such random selections can reduce the off-line 
discretization from exponential in n to polynomial in n . However, the performance guarantees 
are now with high probability rather than certainty. Nevertheless, the numerical evidence is over
whelming that this leads to tremendous speed up of off-line constructions. In a related work 12, 
we give an algorithm for finding best reduced model affine spaces through convex optimization. 

The second approach to off-line speed up has been to investigate whether nonlinear methods 
can be used in model reduction. The main theme of our work was to investigate the advantages of 
replacing the linear space Xn by a low dimensional manifold Mn for the approximation of u(y). vVe 
have approached this problem along two tracks. The first was to examine how to approximate u(y) 
locally by very low dirnension polynomials. That is, we want to approximate u by a polynomial not 
on all of Y but only on a local hypercube - in this way we can keep the degree of the polynomial 
small. The analysis for this approximation is given in 14, where it gives a bound on the number 
of hyperrectangles needed in a partition when the number of terms m < < n of the local reduced 
space is specified along with the desired error tolerance c . 

2 Data Assimilation 

In some settings, one is not given a pa.ra.meter and asked to compute the solution u but rather one 
observes data about u for an unknown parameter and one wishes to fully recover u . This type of 
state estimation occurs for example when taking core samples for fluid simulation through porous 
media. In such settings, one wants to merge the information that u is a solution to the parametric 
PDE (but with unknown parameters) together with the observed data in order to approximate 
·u. Such problems are loosely r~led to as data assimilation . In 4, we show that a certain least 
squares procedure proposed in itsfts essentially optimal for recovery of u from the measmements 
and that the optimal performance can be exactly computed. vVe have extended these results for 
data assimilation from Hilbert spaces to general Banach spaces in 7 with the solution manifold 
of the parametric PDE replaced by a general compact set K. vVe provide in that paper, optimal 
algorithms for data assimilation and a priori determination of the performance of these optimal 
algorithms. 

In some cases, one is not interested in a full approximation to the target function u but rather 
only in evaluating a quantity of interest Q('u). Typically, Q is a linear functional such as a weighted 
average of u. vVe have studied this problem in 9 where we establish optimal algorithms for evalua-
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tion Q(tt) and establish performance bounds for these algorithms. vVe note that these algorithms 
exhibit a reduction in computational cost by having only to compute Q(u) rather than give a full 
approximation to u and then evaluate Q(1i). 

3 Parameter estimation 

Another important problem occurs when one observes the solution to the parametric PDE and 
wishes to determine the parameters associated to this solution This is a classical inverse problem 
that occurs in various contexts. The first challenge is to determine whether the state u uniquely 
determines the parameter. For elliptic parametric PDEs in one physical variable, we prove this 
is the case whenever the right side of the PDE does not change sign. In higher physical space 
dimension d, we have not settled this inverse problem but we have given in 8 state of the art results 
under additional assumptions on the smoothness of the state in the form of a very weak Besov 
regularity assumption. 

vVe are currently investigating how one can combine our algorithms for data assimilation with 
the inverse parameter estimation results to obtain parameter estimates when only data about the 
state is known, i.e., when we do not have full knowledge of the state. vVe have pursued two directions 
which we have not yet reported on since we are still evaluating their numerical implementation. 
The first method is a divide and conquer method based on discretizing the parameter domain in 
pursuit of quantifying which parameters may give rise to the data. vVhile these discretizations are 
in common use they are expensive when the number of parameters is large. vVe are able to restrict 
the search by using our inverse theorems on parameter estimation. A second approach is to view 
the parameter search as a constrained optimization problem applied to the residual. The celebrated 
Ne8terov algorithm gives some certified convergence rates for such constrained optimization using 
gradient descent. The guaranteed convergence rates are slow but we are investigating whether they 
can be improved in the particular context of parameter estimation by exploit ing properties of the 
quadratic minimization that are particular to the para.metric PDE setting. 

4 Related topics 

Finally, we ment ion some topics that we have investigated that are related to the three major goals 
delineated above. In 10, we provide greedy strategies for convex optimization in high dimensions 
and give certifiable bounds on their convergence rate. Such optimization occurs in many contexts, 
for example in parameter estimation, and more generally in learning problems such as deep learning. 
In 3, we provide a simplified proof of the fact that the Restricted Isometry Property is sufficient to 
guarantee that Orthogonal Matching Pursuit algorithms for dictionary approximation perform as 
well as best n-term approximation. 

Regarding deep learning, there is currently much interest in determining if these methods can 
have a major impact in the field of numerical PDEs a nd in particular in para.metric PD Es. However , 
there is a lack of analytical results on the performance of deep neural networks. In 15, we investigate 
whether deep networks provide a new method of approximation which out performs more traditional 
methods of approximation such as finite elements, wavelet and Fourier methods. vVe show large 
classes of functions that are not captured by traditional approximation but well captured by deep 
neural networks. vVe also show, however, that some of the success of deep networks is due to 
its instability in selecting the parameters of the network. As such, we are led to understand 
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what limitations are imposed on approximation rates when one requires stability of the numerical 
algorithms. In particular, this is an issue in understanding the performance of Stochastic Gradient 
Descent (SGD) which is the common optimization scheme used in deep learning applications. 
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