

EMBEDDING VERIFICATION AWARENESS IN SELF-REPAIRING
SYSTEMS

THE UNIVERSITY OF TULSA

OCTOBER 2019

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2019-191

 UNITED STATES AIR FORCE  ROME, NY 13441  AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other
than Government procurement does not in any way obligate the U.S. Government. The fact that the
Government formulated or supplied the drawings, specifications, or other data does not license the holder
or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any
patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nations. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2019-191 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

 / S / / S /
WILMAR SIFRE BRIAN ROMANO
Work Unit Manager Acting Technical Advisor
 Computing & Communications Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its publication
does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information
if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

OCTOBER 2019
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

OCT 2016 – APR 2019
4. TITLE AND SUBTITLE

EMBEDDING VERIFICATION AWARENESS IN SELF-REPAIRING
SYSTEMS

5a. CONTRACT NUMBER
N/A

5b. GRANT NUMBER
FA8750-16-1-0248

5c. PROGRAM ELEMENT NUMBER
62788F

6. AUTHOR(S)

Rose Gamble

5d. PROJECT NUMBER
T2RS

5e. TASK NUMBER
EV

5f. WORK UNIT NUMBER
AS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
The University of Tulsa
800 South Tucker Drive
Tulsa, OK 74104

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2019-191
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research
deemed exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec
08 and AFRL/CA policy clarification memorandum dated 16 Jan 09
13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report details our approach to develop technology that investigates the re-verification potential of critical properties
affected by the self-repair plan of an adaptive system within an automated framework that also measures the risk of
violated properties should the self-repair take place. From this investigation, we 1) devised a framework that makes
component-based systems both architecture and verification aware and enables a dynamic re-verification status
assessment in response to a self-repair plan 2) designed a risk assessment mechanism that alerts where a system could
enter into a potentially risky state if the self-repair plan causes the violation of a critical requirement, and 3) tested the
application of the Genprog self-repair program within the framework. The framework has been embedded into and
evaluated using two in-house case studies and a testbed developed to mimic wearable operation and communication.
15. SUBJECT TERMS

Self-repair, verification workflow, risk assessment

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
WILMAR SIFRE

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

132

i

Table of Contents
1 Summary .. 1
2 Introduction ... 1

3 Methods, Assumptions, and Procedures .. 3

3.1 Perspective and Objectives ... 3

3.2 General Approach: Embedding Compliance Awareness in Adaptive Systems.................. 4
3.2.1 MMTS Test Case with Checkpoint Experimentation ... 6

 Initial Extraction of Verification Concerns .. 8

 Embedding Verification Concerns as Checkpoints for MMTS 11

 Analyzing Adaptations to the MMTS .. 13

3.2.2 SIMS Test Case with Checkpoint Experimentation ... 16
 Embedding Verification Concerns as Checkpoints for SIMS 18

 Analyzing Adaptions to the SIMS ... 19

3.2.3 Building in Risk Assessment .. 20
 Specifying the Verification Workflow as a Colored Petri Net 21

 Constructing the Colored Petri Net .. 21

 Initial Utility Function for Risk Assessment and Plan Comparison 24

 Risk Analysis using the MMTS Case Study .. 26

 Potential Adaptations ... 29

 Examining Adaptation Plan Risks ... 29

 Computed Results .. 30

3.2.4 Employing KIV and Working toward Security Certification Awareness 31
 Transforming Security Controls ... 32

 Examining the Audit Security Controls ... 35

 Potential Adaptations ... 36

 Working with KIV ... 38

 Identifying the Verification Concerns and Verification Workflow 41

 Identifying the Verification Concerns and Verification Workflow 47

 Comparing Adaptation Risk ... 48

3.2.5 Deploying the Framework .. 49

 The Wearable Security Testbed ... 49

 Embedding Verification on Wearables .. 50

ii

3.2.6 Designing and Evolving Security Assurance Cases within the Framework 64

 Representing Security Controls as Assurance Cases 64

 Case Study using Smart Inventory Management System (SIMS) 66

 Adapting Assurance Cases ... 68

3.2.7 Evaluating Security Assurance Case Adaptations .. 73

 Returning to Security Assurance Cases ... 73

 Reusing the Smart Inventory Management System (SIMS) Case Study 75

 Creating Security Assurance Case for AU-5(1) in the New Template 76

 Adapting Assurance Cases ... 76

 Goal Satisficing Level Determination using Achievement Weights 80

 Adaptation Results ... 83

 Adaptation Evaluation .. 84

 Discussion .. 85

3.2.8 Examining the Framework in an Alternate Testbed with Different Formalisms.... 85

 Adaptive Coordination to Complete Mission Goals 85

 Case Study using Cozmo testbed ... 86

 Multi-agent Coordination using Self-Integration ... 88

3.2.9 Assurance Case for Control System ... 90

 Adapting the Assurance Case ... 91

 Evaluation .. 93

 Integration of Self-Adaptive Testbeds ... 96

 Existing Testbeds ... 96

 Difficulties with Testbed Integration ... 99

3.2.10 Evaluating the Use of GenProg within the Framework .. 99

 Revisiting the Multi-Mode Traveler System.. 99

 Transitioning MMTS for GenProg... 100

 Preparing Additional Files needed for GenProg .. 103

 Running GenProg on MMTS ... 104

 The Shift to Darjeeling ... 105

3.2.11 Experimentation with Darjeeling and Genprog .. 107
 Examining Repair ... 109

 Issues with Automatic Code Repair ... 112

iii

4 Results and Discussion .. 113

4.1 Rainbow .. 113

4.2 ActiveFORMS .. 114
4.3 Comparison with our Approach .. 115

5 Conclusion ... 119

6 Future Work ... 119

References ... 120
List of Acronyms .. 123

iv

List of Figures
Figure 1: Metadata based Verification and Certification Framework .. 4
Figure 2: MMTS architecture Diagram .. 8
Figure 3: MMTS Code with Logging of Verification Concerns as Checkpoints 12
Figure 4: Visualization of a successful, non-adaptive execution of MMTS 13
Figure 5: ProM Visualization of the Verification Workflow for Plan A1 14
Figure 6: Adaptation A1 implementation Code for MMTS ... 14
Figure 7: ProM Visualization of the Verification Workflow for Plan A2 15
Figure 8: Adaptation A2 implementation Code for MMTS ... 15
Figure 9: Architecture for the Smart Inventory Management System 17
Figure 10: Sample checkpoints within SIMS case study code ... 18
Figure 11: ProM visualization of 100 paths through SIMS with embedded checkpoints 19
Figure 12: ProM visualization of checkpoint logs for Plan-2 ... 20
Figure 13: Generic VFlow represented as a CPN ... 22
Figure 14: Pseudo Code of an example transition .. 24
Figure 15. VFlow for R1 with the change set from adaptation A1 .. 28
Figure 16: AU-12 Control Statement with Enhancement (1) ... 33
Figure 17: Control Statements for AU-2a, AU-2d, and AU-3 .. 33
Figure 18: SIMS Architecture ... 35
Figure 19: Process Control Flow for Audit .. 38
Figure 20: VC and VFlow Identification Process ... 38
Figure 21: KIV Tree Showing Guided Invariant Proof Process ... 40
Figure 22: VFlow for Safety Property R5 and Adaptation A2 ... 42
Figure 23: KIV Tree with Progress Property Proof Process ... 46
Figure 24: VFlow for R4.2 and Adaptation A2 .. 48
Figure 25: Pseudocode for the heart rate variability monitor ... 51
Figure 26: Proof outline for heart rate variability monitor ... 52
Figure 27: Process flow for the HRVM .. 54
Figure 28: The Colored Petri Net for the HRVM running on the wearable 55
Figure 29: Pseudocode for the hearable .. 56
Figure 30: Proof outline of hearable requirements ... 57
Figure 31: Pseudocode for the insulin pump .. 60
Figure 32: Proof outline of the insulin pump requirements .. 61
Figure 33: SC-8 Security Control Statement with Enhancement SC-8(1) 65
Figure 34: GSN Template for a Security Assurance Case .. 66
Figure 35: Security Assurance Case for SC-8 .. 67
Figure 36: Expanded GSN Module for transmitInformation .. 68
Figure 37: Adaptation change in context node by ChangeVal Operation 70
Figure 38: Adaptation change in transmitInformation by Support Operation 72
Figure 39: Adaptation change in checkChannel by Substitute Operation 72
Figure 40: Security Controls AU-4, AU-5, and AU-5(1) ... 74
Figure 41: AU-5(1) Assessment Guidelines ... 75

v

Figure 42: SIMS Audit Component Processes ... 75
Figure 43: Security Assurance Case for AU-5(1) ... 77
Figure 44: Expanded checkCapacity Module ... 78
Figure 45: AU-5(1) with Adaptation A1 .. 78
Figure 46: AU-5(1) with Adaptation A2 .. 79
Figure 47: AU-5(1) with Adaptation A3 .. 80
Figure 48: Sample Security Control Network .. 81
Figure 49: checkCapacity Checkpoints .. 84
Figure 50: Cozmo testbed architecture ... 87
Figure 51: Instance of a local mission assurance case .. 90
Figure 52: Applying adaptation A1 to the assurance case .. 92
Figure 53: Adaptation A2 applied to the original assurance case ... 93
Figure 54: Cozmo testing setup .. 94
Figure 55: Architecture for integrating testbeds ... 97
Figure 56: Control Flow of MMTS .. 100
Figure 57: Example of CheckEnemy Code in the Java Version of MMTS 101
Figure 58: Example of CheckEnemy Code in the C Version of MMTS 101
Figure 59: MMTS Setting the Priority Path.. 102
Figure 60: Priority Path Code vs Random Movement .. 103
Figure 61: Makefile Commands to Run Test Case Collecting Second Target 104
Figure 62: Example Test Case Collecting the Second Target .. 104
Figure 63: Example Repair from Darjeeling that Removes Enemy Checking 106
Figure 64: Example Repair from Darjeeling that Sets the Target to Collected 107
Figure 65: Removal of Enemy Check ... 110
Figure 66: Set First Target to Collected .. 110
Figure 67: Remove y_Coordinate ... 111

vi

List of Tables
Table 1: MMTS Requirements and their LTL representation .. 7
Table 2: Checkpoint conditions derived from lemmas ... 11
Table 3: SIMS Requirements and their LTL representation ... 17
Table 4. Impact multiplier for the VFlow place if a change occurs ... 27
Table 5. Verification concern impacts from the VFlow perspective for R1 28
Table 6. Verification concern impacts from the VFlow perspective for R2 29
Table 7. Results from probability scaling approach ... 30
Table 8. Results from odds scaling approach ... 31
Table 9: Tailored Values for the Targeted Security Controls ... 36
Table 10: Targeted Functions for Audit Control Certification of Mechanism Existence 37
Table 11: R5 VC Conditions for Change Impact ... 42
Table 12: R4.2 VC Conditions for Change Impact .. 47
Table 13: Verification concern condition table for Requirement HRVM1 52
Table 14: Verification concern condition table for Requirement HRVM2 53
Table 15: Calculation results for HRVM .. 55
Table 16: Verification concern condition table for hearables requirement Hear1 57
Table 17: Verification concern condition table for hearables requirement Hear2 58
Table 18: Verification concern condition table for hearables requirement Hear3 58
Table 19: Calculation results for the hearables ... 59
Table 20: Verification concern condition table for IP1 .. 62
Table 21: Verification concern condition table for IP2 .. 62
Table 22: Verification concern condition table for IP3 .. 62
Table 23: Calculation results for the insulin pump ... 63
Table 24: Sample Impact Table .. 82
Table 25: awg in AU-5 Community ... 83
Table 26: Satisficing Levels ... 84
Table 27: Performance Evaluation Results ... 85
Table 28: Results of Cozmo tests ... 95
Table 29: Percent Failure when Running PRISM Verification MMTS requirements 115
Table 30: Average CPU Load Running PRISM Verification of MMTS Model 116
Table 31: Percent Failure when Running Verifyta on Abstracted Model 116
Table 32: Average CPU Load/Time Running Verifyta on Abstracted Model 117
Table 33: Failure Rate of Verifyta on Non-Abstracted Model ... 117
Table 34: Average CPU Load/Time Running Verifyta on Non-Abstracted Model 118
Table 35: Average CPU Load/Time Running VFlow Model for MMTS 118
Table 36: Risk assessment Using VFlow model of MMTS ... 118

Approved for Public Release; Distribution Unlimited.
1

1 Summary
Performing dynamic compliance guaranteeing processes, such as verification and security

certification of functional and security requirements at run time on an adaptive system is
exceedingly complex and stretches current formal model-checking capabilities. We use the generic
term adaptive system for a system that satisfies any self-* property, such as self-repair or self-
protection. We advocate for technology that abstracts key properties from compliance
guaranteeing processes performed prior to system deployment, embeds the properties within the
adaptive system, and assesses these properties against planned adaptations or repairs at run time.
The results of the assessment determine the potential for repeating a compliance guaranteeing
process post adaptation and ascertain the resulting risks to the system if the adaptation is performed
given a compliance guaranteeing process may be compromised.

The goal of the project is to develop this technology within a framework to determine the
potential for reusing compliance guaranteeing processes of critical requirements that may be
affected by the adaptive plan (i.e. code repair, functional change, security change) of a self-
adaptive system. The framework will translate the reuse potential into a risk measurement that,
should the adaptive plan be deployed, it will violate one or more requirements. The risk will be
calculated without performing full re-verification or re-certification. We use the term compliance
aware to represent the dual goals to achieve verification awareness – the embedded key properties
needed for verification of critical functional requirements – and certification awareness the
embedded key properties needed for certification of critical security requirements in the form of
security controls (NIST, 2013). Thus, the overall research objective is to devise a framework that
makes an adaptive system both architecture and compliance aware and enables a run-time risk
assessment of an adaptive plan. The techniques developed that underpin the framework can be
used to better inform adaptive system design to improve resiliency.

2 Introduction
Resilience requires automatically adapting to a situation that impedes a mission. An adaptive

software system can monitor itself, analyze a failure occurrence, and recover by altering its state,
logic, or architecture. Such autonomous systems rely on continuous monitoring of the system and
environment, analyzing performance anomalies, planning the most viable adaptation strategy
given the context and available resources, and executing the adaptation on the deployed system.
Substantial research exists in self-adaptive systems at all levels, e.g., architectural reconfiguration,
interface alterations, and changes to embedded systems, but it focuses primarily on performing a
functional or architectural change without disruption (Cheng, 2009), (Lemos, 2013). Once altered,
the same requirements compliance guaranteeing processes that were imposed on the originally
deployed system should be similarly imposed on the adapted system. Research in self-verification
during and subsequent to system adaptation is severely lacking, especially for distributed systems,
service-oriented architectures, and embedded systems (Calinescu, 2012), (Tamura, 2013).
Software verification and validation, along with security certification, are difficult and tedious
processes, demanding well-defined requirements, clear evaluation strategies, and automated
methods that should not require more code than the functionality being assessed (Zuo, 2011). This
project defines a framework for technology to determine if an adaptation can inhibit the reuse of

Approved for Public Release; Distribution Unlimited.
2

the original compliance guaranteeing processes used for verification or certification, where
verification refers to a formal methods process and certification is specific to guaranteeing
compliance with security controls such as those in the NIST SP800-53 (NIST, 2013). It extracts
critical properties and the flow of assessment or examination from those processes to determine
how the adaptation will affect them (Jahan, 2017). The more devastating the effect, the lower the
likelihood that a compliance guaranteeing process can be reused. The lower the likelihood of
process reuse, the higher the likelihood of compliance violation because rarely can an alternate
compliance guaranteeing process be used for a requirement (Marshall, 2018).

There are multiple research issues to be addressed to construct and deploy this technology. One
major research issue is to define a strategy to determine if a requirement can be re-guaranteed
through verification or certification of the adapted system at the time the adaptation plan is
designed and selected. The challenge is to go beyond identifying the critical properties and
determining the system’s level of compliance through verification or certification to capturing and
modeling the compliance guaranteeing process by which verification or certification was initially
performed. Formal processes of verification and certification are far too costly in resources to
deploy at run time. Though model-checking introduces a level of abstraction into the compliance
guaranteeing process, it too is limited in what can be expressed and assessed (Sharifloo, 2015),
(Calinescu, 2012), (Cordy, 2013), (Weyns, 2012). To address this research issue, we advocate for
modeling the verification and certification processes (i.e. compliance guaranteeing processes) in a
way that can be embedded into the system to make it compliance aware. With this awareness,
technology can be developed to assess how it was guaranteed to be compliant with how an
adaptation affects the reuse of the compliance guaranteeing process. This report demonstrates an
initial framework that embodies this technology.

Another research issue is that metrics need to be defined that associate a risk level with the
determination of how an adaptive plan inhibits the reuse of the compliance guaranteeing process.
In addition, once a risk factor is calculated, it is essential to understand how that risk propagates
throughout the system requirements. This project aligns risk assessment with re-verification and
re-certification status assessment. With the framework, the risk metrics are directly tied to the
criticality of the affected properties and the extent to which those effects impact reuse of one or
more compliance guaranteeing processes.

A third research issue is how to encode compliance awareness and risk assessment into the
dynamic adaptive plan analysis at runtime (Abie, 2012), (Almeida, 2011), (Camara, 2013),
(Cheng, 2009). The framework developed defines modeling abstractions that express internal
processing and external interaction performance parameters and their dependencies. It embeds an
executable Colored Petri Net (CPN) (Jensen, 2009), (Jensen, 2015) for each critical requirement
that represents the architecture of the compliance guaranteeing process and the properties used for
verification and certification. The output of each CPN is aggregated to calculate the risk of an
adaptation plan against alternative plans. Overall, the modeling and assessment mechanisms
developed for this project will inform the capturing of relevant meta-data at design time to lead to
better compliance awareness representations and manipulations in resilient systems.

Approved for Public Release; Distribution Unlimited.
3

3 Methods, Assumptions, and Procedures

3.1 Perspective and Objectives

Not all system requirements can be formally verified, validated, or certified. But many critical
properties, especially those that are relevant across the system landscape, would benefit from
formal approaches applied to the safety and security of the system, given the environments in
which it operates. Autonomous systems must continually comply with certain properties and
maintain behavior guarantees. When these systems adapt to a situation, the resulting change should
fall within the boundaries of the existing property and behavior guarantees or provide notification
as to the extent and risk of the failure as part of compliance awareness (Cotroneo, 2014).

Our perspective is that the compliance guaranteeing process for a critical requirement, such as
an invariant (safety property) or behavior expectation over time (liveness property), should be
represented in some form to an adaptive system as part of its compliance awareness, which
includes architecture awareness and situational awareness. That is, we should be able to capture
and model the meta-data that represents the variables, state changes, and communications among
systems, components, and internal processes that are needed to guarantee a requirement. Because
initially we focused on formal verification of requirements (and later addressed security
certification), we call the resulting model a verification workflow or VFlow. If an adaptation alters
any of the meta-data, then it has the potential to invalidate the verification or certification process,
signaling a potential issue with the reuse of the same process within the repaired system. As stated
in Section 2, assessing process reuse provides a computationally efficient and effective method of
predetermining the potential level of requirements violation within the system at run time. Even
if the adaptation is not performed because of the potential for violation, substantive knowledge can
be retained to inform the heuristics that help plan the next adaptation.

The main objectives of the project are as follows.
• Develop technology that investigates the reuse of compliance guaranteeing processes.
• Define utility functions that express the risk of inhibiting the reuse of compliance

guaranteeing processes due to changing properties on which the processes rely.
• Devise a framework for run-time compliance awareness.
• Derive, model and embed VFlows for computationally efficient assessment of formal

verification process reuse.
• Design security assurance cases (SACs) as representative of certification processes for

compliance with security controls.
• Devise case studies to evaluate the framework for assessing verification and

certification process reuse during run-time adaptation.
• Evaluate the use of GenProg/Darjeeling within the framework,

The approach uses a combination of techniques to embed compliance awareness into the case
studies and compute the overall risk of an adaptation plan with respect to functional and security
requirements. For functional requirements, techniques include manual proof and the use of the
KIV theorem prover (Ernst, 2015) to find verification concerns that are paramount to the proof

Approved for Public Release; Distribution Unlimited.
4

process, a Colored Petri Net [(Jensen, 2009), (Jensen, 2015) representation for the VFlow that
assesses the potential violations to reusing a compliance guaranteeing process, and an analysis
technique to compare adaptations to determine the least risky. For security requirements, manual
proof and the KIV theorem prover are shown to be valid techniques. Additional techniques for
security certification employ representations of security controls from the NIST SP800-53 (NIST,
2013) as SACs. Achievement weights are deployed at assurance case goals to provide a level of
confidence in the claims of compliance with a security control given the effect of an adaptation.
Satisficing scores are calculated across a network of related security controls as detailed within the
NIST SP800-53 to provide a risk assessment across all requirements when an adaptation is
planned. Adaptation operators are defined for SACs to inform the risk assessment.

Four cases studies are defined and used to demonstrate the techniques. The Multi-modal
Traveler System (MMTS) is a basic program of a traveler moving within a grid to conserve fuel
and avoid enemies. The Smart Inventory Management Systems (SIMS) represents a component-
based system that must comply with security controls. The wearable security experimentation
testbed (Walter, 2018a) provides a platform to exercise the use of the CPNs. The Cozmo
experimentation testbed provides a platform to exercise the use of the SACs.

The assumption is that investigating a means for the dynamic assessment of resilient systems
when adapted at run time will inform design practices for adaptive systems. In addition, such
technology should reduce the resources needed for re-verification and re-certification by providing
automated strategies that distinguish the components and properties directly and indirectly affected
by an adaptation from those whose compliance is more likely to remain intact.

3.2 General Approach: Embedding Compliance Awareness in Adaptive
Systems

We develop a run-time, metadata-driven verification and certification framework within which
adaptation plans or patches can be compared to determine the least risky choice at runtime shown
in Figure 1. This framework fits within the four phases of the traditional MAPE loop: Monitor,
Analyze, Plan and Execute (Kephart, 2003).

Figure 1: Metadata based Verification and Certification Framework

Approved for Public Release; Distribution Unlimited.
5

We perform formal proof process and certification of system’s requirement compliance for
original deployed code of the system and develop argumentation that system maintains a justified
confidence level to comply with specified requirements and goals. We construct the structure of
argumentation of system’s compliance as a form of assurance case by linking the claims of
system’s intended behavioral goals and evidences of system’s compliance with goals as a part of
certification. This formal verification and certification process extracts metadata which contain
information about potential state variables, their association with system’s functions, methods, and
components, their condition and impact on original verification and certification process. We
model the metadata extracted from verification process of each functional requirement as
verification workflow and certification process as assurance cases and deployed them a part of
knowledge of MAPE-K loop. The benefit of this approach is having precise knowledge about
system and proof process provides assurance about correct behavior of system.

In the monitor phase, the framework allows for examination of states of local and global
variables extracted from metadata of formal verification and certification process and events of
interest based on situational awareness. Potential problems that can occur due to the events are
determined, along with their importance to the system operation, within the analyze phase.

The planning phase is where our effort is mainly concentrated. In this phase, the planner
eventually chooses adaptation plan to resolve the problem and creates expected change set for
plan. But adaptation may add/delete/modify system’s functionality which inhibit to reuse the
original verification process and have negative impact on confidence level of certification process.
Our approach determines the risk to reuse the original requirement compliance verification process
due to adaption changes and recalculate the confidence level of assurance case at runtime. The risk
is represented using probability estimates to violate requirement from which we compute the
expected utility of each adaptive plan. Probability estimates are calculated based on state variables
and their conditions elevated from the original proof process, along with their impact on the proofs
and knowledge supplied by the MAPE-K planner. We introduce a utility function that uses
probability estimate to perform risk assessment. We employ rule-based adaptation operation to
evolve assurance cases with the changes provided by MAPE-K planner and determine impact on
state variables calculated from their conditions elevated from the original certification process.
These impacts are accumulated and passed through higher level goals. We introduce two metrics:
achievement weights and satisficing levels to realize the condition of goals within assurance cases
and calculate the confidence level of system’s compliance with certification process.

After determining the least risky plan by assessing risk and confidence level, we deploy the
modification planned in planning step to system and evolve assurance cases to reflect the changes
on model in execution step.

The following sections detail several investigations performed during the contract period to
provide a broad understanding of compliance awareness and run-time adaptation risk assessment
using the various case studies and platforms. Each investigation works with a set of dedicated
requirements and potential adaptations that may be different from those used in another section for
the same case study or platform. These differences are due to the focus of the research, approach,
implementation, and expected outcome for that investigation. We use the terms self-adaptive
system and adaptive system interchangeably, along with adaptation and self-adaptation. Because

Approved for Public Release; Distribution Unlimited.
6

we were originally focused on verification of functional requirements, verification awareness
appears instead of the more generic term of compliance awareness. Similarly, certification
awareness is introduced when examining security controls as a part of the larger effort.

3.2.1 MMTS Test Case with Checkpoint Experimentation

Self-adaptive systems must comply with requirements even after adaptation. Compliance to
system requirements after adaptation can be assured by performing re-verification process against
employed system code. Re-verification requires human intervention which is not feasible for
autonomous system and dynamic compliance assessment is very resources intensive. On the other
hand, if the adaptation does not impact state variables associated with system requirement,
performing dynamic compliance assessment is not necessary. We abstract original verification
process and extract metadata representing how the variables, state changes, and communications
among systems, components, and internal processes are assessed to establish the compliance status
of a requirement. From these metadata, we identify potential state variables associated with system
requirement. Identified state variables are organized according to verification process and embed
them into system code as checkpoints to realize the state of verification process for each
requirement. But adaptation changes functionality, and it has potentiality to effect on state
variables associated with original verification process, which subsequently arises deviation to the
original verification process. If deviations to the verification process are detected, the adaptation
can be considered to have a higher risk of violating critical requirements. We simulate adaptation
plan and collect checkpoint logs. If adaptation affects requirements, simulation arises flags even if
the issues do not immediately cause a requirement violation. Thus, failure to complete a path
through the checkpoints indicates that the verification process may not be reusable.

Our first case study is Multi-Mode Traveler System (MMTS) where a “traveler” moves on a
grid with enemies statically placed in random positions. Traveler have to move by avoiding
enemies and maintain a fuel threshold range. The traveler’s fuel level along with the minimum and
maximum fuel levels are set initially and maintained the range. But a move may keep fuel same as
prior or increase or decrease a unit from the traveler’s reserves depending on which next move is
chosen. That is, the traveler’s fuel is not associated with its current position, but how it has traveled
on the grid. We select three MMTS requirements for verification shown in Table 1. Let 𝑝𝑝 = (𝑥𝑥, 𝑦𝑦)
be the traveler’s position.

Approved for Public Release; Distribution Unlimited.
7

Table 1: MMTS Requirements and their LTL representation

 Statement LTL Expression Type
MR1 The fuel level must

satisfy the defined
threshold

□(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) Invariant

MR2 The traveler must not
enter an enemy
position

□(𝑝𝑝 ∉ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) Invariant

MR3 If the traveler can
move, it must move □(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑝𝑝) ⟹ ◇[∃𝑞𝑞 ∶ 𝑞𝑞 ≠ 𝑝𝑝 ∶ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑞𝑞)] Progress

The component-based system architecture including self-adaptive MAPE-K loop as related to

the verification of MMTS’s three requirements is shown in Table 1. In Figure 2 the MAPE-K loop
components are shown as purple ellipse and three system components are shown as light blue
boxes. Checkpoints associated with components related with verification process are included
within the components and shown as dark blue boxes. The fuel threshold invariant, MR1, and
avoiding enemy position invariant, MR2 is checked with respect to traveler’s current position
using checkpoint C1.A and C1.B at component getCurrentStatus. Requirement, MR1 implies that
fuel level cannot go below minimum fuel and cannot exceed maximum fuel level. MR1 is an
invariant property (□) for MMTS and checked against current fuel level of the traveler.
Requirement, MR2 implies that traveler is never in a position where there is an enemy, and it’s
also an invariant property for MMTS. If 𝑝𝑝 is current position of the traveler on the grid and
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is the set of positions indicating placement of enemies on the grid, then 𝑝𝑝 cannot be
an element of 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.

If MR1 and MR2 are satisfied, traveler computes available valid moves that traveler can make
from current position, and generates set of 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣. This computation is part of progress
property, MR3 which implies that if the traveler can move to a new position, then eventually (◇)
the traveler moves to a new (distinct) position. The computation considers the current state so that
current position, 𝑝𝑝 is not element of 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣, intersection of 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 and
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is null and all the element of validPositions satisfy the fuel constraints. Being
validPositions nonempty indicates that travel can move and is checked at C1.C. If traveler can
move, a next position is chosen randomly from 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 set in getNextPosition.
Checkpoint C2.A checks whether next position is chosen or not. Adjusted fuel level for the chosen
position will be checked at C3.A again before changing position in setPosition.

Approved for Public Release; Distribution Unlimited.
8

Figure 2: MMTS architecture Diagram

 Initial Extraction of Verification Concerns

While verifying the requirements against the system’s code, we followed the following method
and documented the process to identify verification concerns.

Given that a requirement may be expressed as a safety or progress property, we focus on
manual techniques to prove them given an implementation. One type of safety property is an
invariant. To prove that properties A and B are invariant, as written in Linear Temporal Logic
(LTL) (Lichtenstein, 1985) below

□ (A ∧ B)

It must be the case that the properties expressed by A and B hold in all reachable states. That
can be restated in terms of Hoare triples to express proofs and the potential for proof reuse
(Damiani, 2011) and read as “for all statements s in program F, A and B must be preserved by the
execution of s.”

[∀s ∈ F | {A ∧ B } s { A ∧ B }]

This immediately makes A and B verification concerns. Sometimes, other state variables may
affect A or B, either by being embedded into a condition that may cause them to be false or by
having a side effect that can impact their state. Assume that during the verification process, it is
determined that

C ⇒ A

Then the state of C may impact the state of A. Thus, C becomes a verification concern.

Progress property proofs can follow a similar verification process use for safety property
proofs, except that progress crosses states and, therefore, dependencies exist between verification
concerns and must be captured. For example, the progress property below written in LTL, means
that “if D becomes true in some state, then in the next state D will be changed to D ∧ K.”

□ (D ⇒ ○ (D ∧ K))

Approved for Public Release; Distribution Unlimited.
9

This property can be stated in terms of Hoare triples, such as

[∀s ∈ F | { D } s { (D ∧ K) }]

which clarifies that in a state when D holds, the next state will have D and K both true, since all
statements must ensure this is the case.

With progress properties, the verification concerns still reflect the initial conditions expressed
in the Hoare triples, making both D and K verification concerns. Other properties may need to hold
to ensure that none of the statements that can execute inhibit K from being true in the next state.
Often time functions are assumed to be atomic, meaning they cannot be interrupted. Thus, a
statement in F may be a function G. When proving a property, it may be necessary to examine the
functions that G comprises resulting in an examination of intermediate (internal) state changes.
For example, assume that G = (f ° g) and the following statements for f and g can be proven.

[∀t ∈ f | { D } t { (J) }]

[∀w ∈ g | { J } w { (D ∧ K) }]

Since the next complete state change occurs after G, the progress property is not violated. But if

an adaptive plan did not abide by the atomicity assumptions, then the intermediate state transition
could be problematic. Therefore, these properties, such as J above, are also captured as verification
concerns.

In the MMTS case study, we have manually proven the requirements against Java code and
extracted the verification concerns from those proofs. To verify a goal Hoare triple, we analyze
the code to identify subgoal lemmas, usually in the form of additional Hoare triples that imply the
goal. The fact that the identified lemmas imply the Hoare triple is dependent on the analyzed code
rather than being tautological, so we reify it as an additional lemma. We generate three types of
lemmas. The first two are Hoare triples and implications from which we extract verification
concerns. The third lemma type states that a given method is a pure function and does not generate
verification concerns. Since Hoare triple lemmas specify Boolean preconditions and
postconditions, they formulate the verification concerns. For implication lemmas, extraction of
verification concerns is less straightforward. We identify them based on the argument used to
verify an implication lemma.

We assume the correctness of certain methods that are not part of the main controlling function.
These methods are typically “getter” and “setter” functions, such as traveler.getFuel or
traveler.setMaxFuel, which function as expected. We also assume the correctness of standard Java
library methods. With these assumptions, our verification process focuses on defining subgoals
involving methods that are part of the main controller.

Even with these assumptions, we found that similar verification concerns can emerge from the
proof lemmas, leading to the creation of an excessive number of checkpoints. Our objective is to
maintain a high level of abstraction and reduce overhead. Therefore, we filter the lemmas to obtain
a smaller subset of verification concerns from which checkpoints are generated. Our current
approach identifies a domain of influence for each method in the main controller, consisting of the
set of state variables the method may modify. We assume this becomes part of the documentation
associated with the verification process. We filter out any Hoare triple lemmas for which the
postcondition does not contain state variables in the method’s domain of influence. For example, if

Approved for Public Release; Distribution Unlimited.
10

computeResult does not have numFailures in its domain of influence, we would not generate any
verification concerns from the Hoare triple.

{numFailures = 0} computeResult() {numFailures = 0}
One disadvantage is that proof violations may go unnoticed if an adaptation modifies a method

to affect state variables outside its domain of influence. This scenario will be addressed by future
work.

As requirement MR3 relies on requirement MR1 and MR2 as subgoals, so proof process of
MR3 contains proofs of MR1 and MR2. Here, we provide proof discussion only for MR3. We
specified MR3 as a form of following Hoare triple.

L1: ∀𝑥𝑥, 𝑦𝑦 ∶ {𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥, 𝑦𝑦)} 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, …) {𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥, 𝑦𝑦)}

 where, 𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥, 𝑦𝑦) ≜ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ≠ ∅ ∧ 𝑝𝑝 = (𝑥𝑥, 𝑦𝑦)

 and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥, 𝑦𝑦) ≜ 𝑝𝑝 ≠ (𝑥𝑥, 𝑦𝑦)

L1 means that, whenever 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 is nonempty, the traveler eventually move to new
position and update will be set at setPosition. To satisfy the Hoare triple, 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑠𝑠 ≠ ∅,
and 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 must not equal (𝑥𝑥, 𝑦𝑦) at that point need to be satisfied, which relies on following
subgoal lemmas.

L2: {𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ} 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, …) {𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ},
where 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ ≜ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

 L3: {safePos} update(state, …) {safePos}
where safePos ≜ p ∉ enemyPos

 L4: CheckEnemy returns false if the traveler is not in an enemy position
 {safePos} CheckEnemy(state, …) {retVal = false}
 L5: computeValidPositions is pure.
 L6: CheckEnemy does not modify the position

 ∀q : {p = q} CheckEnemy(state, …) {p = q}
 L7: computeValidPositions never returns the current position

 ∀q : {p = q} computeValidPositions(state) {q ∉ retVal}
 L8: generateRandomNextMove returns one of the positions passed to it

 ∀s : {s ≠ ∅} generateRandomNextMove(s) {retVal ∈ s}

 L9: (L2 ∧ L3 ∧ … ∧ L8) ⇒ L1

Verification process of three requirements of MMTS generates verification concerns which

needs to be checked by analyzing checkpoint logs to realize adaptation impact on reusing
verification process. Verification concerns associated with two invariant requirements of MMTS,
MR1 and MR2 are fuel, minFuel, maxFuel, position, and enemyPos. But verification concerns
associated with MR3 are validPositions, newPos along with the above-mentioned verification
concerns. The proof lemmas that generate verification concerns and associated conditions set as
checkpoints are shown in Table 2.

Approved for Public Release; Distribution Unlimited.
11

Table 2: Checkpoint conditions derived from lemmas

Lemma Checkpoint conditions
L1 validPositions ≠ ∅; p ≠ (x, y)
L2 minFuel ≤ fuel ≤ maxFuel
L3 p ∉ enemyPos
L4 p ∉ enemyPos; enemyCheckPassed = true
L7 p ∉ validPositions
L8 validPositions ≠ ∅; newPos ∈ validPositions

L9 fuelCheckPassed = true;
enemyCheckPassed = true; canMove = true

 Embedding Verification Concerns as Checkpoints for MMTS

To realize adaptation plan’s potentiality to invalidate original verification process, we generate
a restricted Petri Net for each requirement using ProM by embedding checkpoints into the code that
relate to

• Identified verification concerns
• Their use in the code that affected the requirement proof, which may require

multiple checkpoints for the same verification concern
• Progress property dependencies among verification concerns.

We organize identified verification concerns according to the verification process and embed

associated checkpoints within underlying code as a part of verification workflow. Figure 3 shows a
checkpoint for fuel consistency associated with MR1 at line 34-38 and checkpoint for current
position is not at enemy position associated with MR2 at line 39-40. Other checkpoints are also
inserted within the code and this insertion of checkpoints has no interference on the original
functionality of MMTS. Flag has been raised if violation has been detected. We also include a log
generation method which collects the logs of checkpoints, assuming that logging has not interfered
with system operation and also adaptation doesn’t cause stop logging. Analysis of the checkpoint
for the simulation of adaptation plan will pinpoint where potential deviations to the original
verification process may occur because of the adaptation. If deviations to the verification process
are detected, the adaptation can be considered to have a higher risk of violating critical
requirements.

Approved for Public Release; Distribution Unlimited.
12

Figure 3: MMTS Code with Logging of Verification Concerns as Checkpoints

Approved for Public Release; Distribution Unlimited.
13

Figure 4 shows the ProM visualization of a successful, non-adaptive execution of MMTS with
100 moves. Figure 4 shows that for given 100 moves, there are 100 paths that proceed through all
the checkpoints and has no deviation from verification workflow which indicates the requirements
are not violated.

Figure 4: Visualization of a successful, non-adaptive execution of MMTS

 Analyzing Adaptations to the MMTS

We simulate two adaptation plans that could occur if the Monitor observes fuel level and “fuel line
anomaly” has been detected at Analyze process.

A1. Reduce the maximum fuel value so that the traveler maintains a lower overall fuel
value.

A2. Force the traveler to stop for a number of “moves” for repair.

Figure 5 shows the ProM visualization of Adaptation A1, where a flag has been raised at 1st
Check Fuel checkpoint. Investigation on this flag issue indicates that the current fuel level exceed
to the maxFuel value as maxFuel is reduced by half of its prior value shown in Figure 6 (line 96).

Approved for Public Release; Distribution Unlimited.
14

Therefore, when the maxFuel value was decreased the verification processes for MR1 and MR3
were impacted because the precondition for the fuel consistency is not satisfied.

Figure 5: ProM Visualization of the Verification Workflow for Plan A1

Figure 6: Adaptation A1 implementation Code for MMTS

Figure 7 is ProM visualization for adaptation plan A2. Adaptation A2 allows traveler to stop
for 5 moves to repair by forcefully making 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 set empty shown in line 96 in Figure
8. Figure 7 shows that 5 paths during the 100 iterations found valid positions to be empty. Those
5 paths were the repair paths and the verification process for MR3, as well as for MR1 and MR2,
was not impacted because according to MR3, the traveler is only required to move if
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 is non-empty.

Approved for Public Release; Distribution Unlimited.
15

Figure 7: ProM Visualization of the Verification Workflow for Plan A2

Figure 8: Adaptation A2 implementation Code for MMTS

Approved for Public Release; Distribution Unlimited.
16

3.2.2 SIMS Test Case with Checkpoint Experimentation

Our next case study is Smart Inventory Management System (SIMS) which tracks inventory’s
stock condition using a pressure sensor and adjusts a pressure threshold depending on the inventory
movement. SIMS architecture, implemented as multiple threads in Java. SIMS has three
components with local MAPE-K control loops: Measure reads the pressure sensor and sends data
to Process, Process adjusts the threshold calculated from those readings and sends new threshold
value to Measure, and Audit stores audit records from Measure and Process for security
certification. The Measure and Process components has capability to support Audit and
accountability policy as security requirement. This capability includes sensing auditable events,
generating audit records, and sending audit records on a channel to be received by the Audit
component and appropriately placed in the audit trail.

The SIMS case study will serve multiple purposes. First, it will provide a mechanism to test
the efficacy of the methodologies crafted for the first case study. Second, it will allow us to explore
security certification issues. Finally, in its final form, it will be a distributed service-oriented
architecture that broadens the scope of the systems we are analyzing. Currently, it is fully simulated
in Java so that we can work with the findings from the 1st case study, MMTS. During this
simulation, we refined the architecture and processes, which are shown in Figure 9. The simulation
of the distributed system includes:

• A MAPE loop component that examines the information stored in the audit trail, as

well as other information, to signify if an event of interest has occurred that requires
an adaptive plan to be assessed. Adaptation can be imposed on any of the components

• A connection service that checks that the network connection is active and not
compromised

• A measurement service that reads the state of a pressure sensor measuring the amount
of inventory

• A cloud service that examine the sensor data over time, forecasts the best inventory
weight, and changes the threshold values so that the sensor reports adhere to the
forecast

• An audit component that house an audit trail of data collected from the system
components.

Approved for Public Release; Distribution Unlimited.
17

Figure 9: Architecture for the Smart Inventory Management System

The base level requirements for SIMS appear in Table 3, where they are associated with their
formal LTL expression. In this case, we introduce two versions of the same requirement, SR2a
and SR2b, where SR2a is much more restrictive than SR2b. The reason for examining these two
versions is to show how flexibility in the requirements may allow for safe adaptations that can be
re-verified, whereas more restrictive requirements result in a higher risk.

Table 3: SIMS Requirements and their LTL representation

 Statement LTL Expression Type
SR1 Sensor signals high

unless the pressure is
below a predefined
threshold

□(signal = 1 ⇔ (pressure ≥ threshold)) Invariant

SR2a Sensor status is
appended to the cloud
status on the next step
after the
measurement when
the network
connection is good

□(connection = true ∧ threshold = t
 ∧ pressure = p ∧ cloudDB = c
 ⇒ (○cloudDB = c ˄ (t,p))

Progress

SR2b Sensor eventually
sends its status to the
cloud when the
connection is good

□(connection = true ∧ threshold = t
 ∧ pressure = p
 ⇒ (◇(t,p) ∈ cloudDB)

Progress

We have implemented a simulation of the hardware/software aspects of the SIMS system in
Java and proven that the code meets the requirements in Table 3. While verifying the requirements
against the SIMS Java code, we followed the similar methods used for the MMTS case study.
While doing so, we documented the process to identify verification concerns. From the verification

Approved for Public Release; Distribution Unlimited.
18

process for SR1, the verification concerns that emerged were signal (is it measurable), pressure
and threshold. Since signal subsumes the state of pressure and threshold (i.e., if it is measurable,
the values can be ascertained), we retain signal as the only verification concern for SR1. For the
proof of requirement SR2a and SR2b, the verification concerns identified were signal, pressure,
threshold, cloud availability, and connection status.

 Embedding Verification Concerns as Checkpoints for SIMS

Figure 10 shows a checkpoint for the first of four signal checks at lines 14-19. This code can be
inserted without any interference on the original functionality of SIMS.

Figure 10: Sample checkpoints within SIMS case study code

Figure 11 shows a static image of the executed base code with the embedded checkpoints for
SIMS after ProM analyzed the log files for 100 paths based on the verification process for SR2a
and SR2b which were similar enough to combine into a single process. In addition, the verification
concerns for SR2a and SR2b subsume those of SR1, so SR1’s checkpoints are used as well.
Normally, ProM shows each path using a token that flows through the places indicated by blue
ellipses. Each place represents a verification concern that produced an embedded checkpoint. In
Figure 11, 85 paths have the signal with the pressure meeting the threshold (Signal Check 2) and
15 paths have the signal with the pressure below the expected threshold (Signal Check 3) likely
due to changes by the cloud feedback. Signal Check 1, as seen in Figure 10, ensures that at the
start of the measuring the sensor is functioning properly (from requirement R1), while Signal
Check 4 determines that at the end of the measurement, the sensor is still functioning properly.
These two checks are necessary to ensure the invariant is not violated during the entire process.
Also in Figure 11 are the dedicated checkpoints for the cloud database contents for SR2a and
SR2b. The difference between the two requirements is that SR2a requires the sensor output to be
appended to the cloud database on the next step (as denoted by ○) after the measurement is taken
and provided the network connection is good. But SR2b requires only that eventually (as denoted
by ◇) the measurement appears in the cloud database given a good network connection.

Approved for Public Release; Distribution Unlimited.
19

Figure 11: ProM visualization of 100 paths through SIMS with embedded checkpoints

 Analyzing Adaptions to the SIMS

We have configured four adaptive plans for the SIMS case study given a sensor problem or a
network problem. These self-adaptations will allow initial investigation into comparison
approaches and risk assessment. They are:

• Plan-1: Replace the sensor, when the primary sensor is not sending signals
• Plan-2: Store data into local database when the connection is lost and then send to

cloud once connection is re-established
• Plan-3: Ignore sensor data and always send low signal
• Plan-4: Throw away data and don't store it any database.

Given the embedded checkpoints, we deploy a simulation of the plans with SIMS to see the

logged results. Currently, ProM provides a visual comparison of the how the checkpoints were
reached if 100 measurements were attempted. Figure 12 illustrates the checkpoint logs when Plan-
2 is executed. We use this plan because it also shows the differences between requirement R2a and
R2b.

Approved for Public Release; Distribution Unlimited.
20

Figure 12: ProM visualization of checkpoint logs for Plan-2

When Plan-2 is execution, Figure 12 shows that SR2a’s verification process may be inhibited

because the associated cloud check fails. The failure does not occur because the adaptive plan
forces the sensor output to be stored locally when the network connection is bad. Rather the failure
occurs because when the network connection is restored (i.e. good), the local database is pushed
to the cloud. But the requirement say that the cloud must be its previous state plus the latest
measurement. However, its previous state does not include the local database. Thus, requirement
SR2a is restrictive in its statement such that its verification process uses the “before” state of the
cloud database to verify the “after” state of the cloud database when the most recent measurement
is added.

Figure 12 also shows that SR2b’s verification process is unaffected by Plan-2. This is because
the verification process only examines the cloud database after the connection is deemed good to
find that the latest sensor measurement is available. So, when the local database is pushed to the
cloud, as long as it contains the latest measurement, the verification process is not affected. This
process, along with the embedded checkpoints, suggest that requirements that have some
flexibility and less details within their verification process can withstand adaptation better then
restrictively stated requirements that may have the same semantics.

3.2.3 Building in Risk Assessment

In this section, we extend the lessons learned in the embedded checkpoint work to designing
the overall framework so that it can incorporate adaptation plan risk assessment with respect to
verification and certification constraints provided at design time. The extension includes (1) the
introduction of the verification workflow specified as a Colored Petri Net, (2) the expression of an
initial utility function for risk assessment and plan comparison, and (3) an example of risk analysis
using the MMTS case study and additional adaptive plans.

Approved for Public Release; Distribution Unlimited.
21

 Specifying the Verification Workflow as a Colored Petri Net

Each verified requirement has a related verification workflow or VFlow that models the
verification process using the following information:

• Verification concerns as derived from the verification process.
• Components or processes in the system architecture where the verification concerns

were of interest, which may involve multiple components and processes.
• Conditions related to the impact or prominence of verification concerns in the

verification process. These conditions describe change types or ranges that fall in one
of three sets related to expected impact: devastating, worrisome, or unconcerned.

The system architecture, as part of the VFlow construction, underlies the verification process

and self-adaptive system. Components are generally examined independently for compliance and,
then, as part of the larger system architecture through their interfaces. Within the components are
the state variables, functions, and dependencies that the verification process must also examine, in
the form of lemma proofs. Thus, the VFlow should represent the proper granularity of the
architecture description that best fits the verification process perspective and flow.

 Constructing the Colored Petri Net

A Petri Net is a bipartite graph that makes available mathematical analyses and decision
processes to a wide range of applications by allowing the expression of system functionalities and
architectures. Colored Petri Nets (CPNs) introduce additional functionality through distinguishing
features among tokens traversing the network and complex processing by the transitions that
dictate token paths. Their flexibility in modeling architectures and component processing, along
with the availability of automated tools to simulate them, make them an appropriate representation
for VFlows used to assess the risk of an adaptive plan.

The current representation of a VFlow models the major components important to the
verification processes as places in the CPN. A generic VFlow is shown in Figure 13. Tokens
traverse the places using transitions. In a CPN, transitions can perform complex processing based
on embedded, immutable data structures.

Approved for Public Release; Distribution Unlimited.
22

Figure 13: Generic VFlow represented as a CPN

There are three token colors used for the initial VFlow expression in a CPN. Pink tokens hold
the adaptive plan’s change set. The planning portion of the MAPE-K loop formulates and
configures potential plans to be risk-assessed. The assumption is that the change sets embody
information related to (1) what parameters are changed, (2) how, in general, they are changed, (3)
what major components are affected, and (4) what the planner believes the impact of that change
to be overall. The change impact can be determined by the planner based on accumulated
knowledge through techniques such as reasoning over the success or failure history of changes,
machine learning outcomes based on adaptive plans shared across related information systems,
and partial plan simulations. Details on the calculation of the change impact will be discussed as
part of the risk utility function. The structure of the pink token appears below where each element
of the change set has a unique ID, the verification concern affected (VC), the type of effect to the
verification concern (condition), and its planner-calculated change impact (𝑝̂𝑝).

tpink = ((ID1, VC1, condition1, 𝑝̂𝑝1), …, (IDn, VCn, conditionn, 𝑝̂𝑝n))

The blue token traverses the CPN looking for verification concerns in the verification process

that may be affected by the change set. These are called conflicts. This token holds the outcomes
of multiple affected verification concerns as well as change sets represented by pink tokens. Thus,
checks against verification concerns can be performed at all places in the CPN, regardless of where
the pink token designates the change will occur. As seen in the construct below, the blue token
tracks the places traversed (visited) so that it ensures that every verification concern in the change
set is examined at every place. The tracking also determines when the blue token’s cycle is
complete and it can be absorbed to terminate the CPN.

tblue = (visited, vcMatches, vcConflicts, dependencies, conflictCount, tokenCount)

The set vcMatches in the blue token accumulates the conflicts found as a set of tuples of the

form (IDconflict, vcInfo, conflictPlace, 𝑝̂𝑝). IDconflict is a unique identifier of the conflict based

Approved for Public Release; Distribution Unlimited.
23

on the blue token’s conflictCount. This identifier is used for the alert and may be repeated across
alerts if more than one place is affected. vcInfo holds a record of the verification concern affected
and the impact determined by the transition based on the change set’s condition for that verification
concern. Thus, vcInfo embodies the VFlow’s impact indicator which may be different from the
change set’s impact indicator, 𝑝̂𝑝. The conflictPlace is where the conflict was found. Each conflict
in vcMatches will be at a unique place because a verification concern can only appear once at a
place. If any change to a verification concern can strongly impact the risk of reusing the
verification process for the requirement, it will be reflected in the impact indicator in vcInfo.

The set vcConflicts in the blue token holds the pink token’s information for comparison with
information at each place in the VFlow as the blue token traverses the CPN. Given that progress
properties embody dependencies among state variables. These relationships are captured in the
blue token’s dependencies set, which allows the blue token to manage the dependencies by
enforcing a check on the impact of a verification concern at a place before or after a conflict was
already found with its dependent verification concern. The conflictCount generates the unique ID
for each pink token information, while the tokenCount generates a unique ID per red token.

Red tokens are output by transitions to represent alerts. These alerts indicate potential conflicts
between the adaptation’s change set and the requirement’s original verification process. The
structure of a red token is as follows.

tred = (ID, IDconflict, vcInfo, 𝑝̂𝑝, conflictPlace, placeStatus)

The red token ID and IDconflict are assigned by the blue token prior to the red token being

sent to the end state. The red token must hold all of the factors needed for the risk assessment of
the adaptive plan for that VFlow. The set vcInfo contains tuples of the form (VC, vcImpact), so
that the transitions’ impact factor based on the pink token’s change set condition is recorded. The
pink token’s p ̂ value is also maintained in the red token along with the place where the conflict
occurred and the weight of that place’s importance to the verification process.

An example transition appears as pseudo code below. This is one of 18 transition rules used in
a VFlow based on our modeling of verification processes for safety and progress properties.
Transitions always require a blue token and a pink token as input. In this example, the blue token,
B, has not visited the input place to the transition. The transition, T, does not have a verification
concern (VC) that conflicts with what the blue token has accumulated in B.vcConflicts. The
transition does have a conflict with a VC in the pink token P’s change set. We have successfully
encoded these rules and tokens into the CPN and can now automate their generation along with
the risk factors discussed next.

Approved for Public Release; Distribution Unlimited.
24

Figure 14: Pseudo Code of an example transition

 Initial Utility Function for Risk Assessment and Plan Comparison

For each requirement 𝑟𝑟 and adaptation plan 𝑎𝑎, the VFlow outputs a set of red tokens 𝑇𝑇(𝑟𝑟, 𝑎𝑎)
representing alerts. Once the red tokens are generated, the system calculates a metric that can be
used to compare the risks of adaptation plans based on the token information. To obtain a workable
formula, we assume that each red token, independently of all other tokens, has the potential to
represent an actual violation of verification process reuse. That is, the adaptive plan has altered
something that was relied on by the original proof of the requirement. We also assume that
verification process reuse is violated if and only if there is at least one red token representing an
actual impact. We assume that a group of red tokens cannot represent the violation in combination,
without doing so individually. For each red token 𝑡𝑡, let 𝑆𝑆(𝑡𝑡) be an indicator variable with value 0
if 𝑡𝑡 represents an actual violation and 1 otherwise. For each requirement 𝑟𝑟 and adaptation plan 𝑎𝑎,
let 𝐼𝐼(𝑟𝑟, 𝑎𝑎) be an indicator with value 0 if 𝑎𝑎 violates the reuse of 𝑟𝑟’s proof and 1 otherwise. Although
the values of 𝑆𝑆(𝑡𝑡) and 𝐼𝐼(𝑟𝑟, 𝑎𝑎) would typically be deterministic, we assume they are infeasible to

Transition Conditions:
 T.place_name is not in B.visited
 No VC in T.vcInfo appears in B.vcConflicts
 A VC in P conflicts with a VC in T.vcInfo
Transition Actions:
 FORALL VC in T.vcInfo that appear in P
 Increase B.count and B.IDconflict

Create a red token, R, with B.count as its ID,
 B.IDconflict as its IDconflict, and other
 information held by P and T
 Update B.vcMatches to include IDconflict and
 the appropriate information held by T
 for all matching VCs
 Add the appropriate change information
 from P to B.vcConflicts using
 B.count for IDconflict
 FORALL VC in P that are not in T.vcInfo
 Increase B.count and B. IDconflict
 Add the appropriate change information from P
 to B.vcConflicts using B.count for

IDconflict
 Add T.placeName to B.visited
 Send B to output place
 Send P to its place of origin
 Send all red tokens to end place

Approved for Public Release; Distribution Unlimited.
25

compute, and therefore model 𝑆𝑆(𝑡𝑡) and 𝐼𝐼(𝑟𝑟, 𝑎𝑎) as random variables. Our assumptions given above
translate to the following statements. For each requirement 𝑟𝑟 and plan 𝑎𝑎,

𝐼𝐼(𝑟𝑟, 𝑎𝑎) = 0 ⇔ �∃ 𝑡𝑡 ∈ 𝑇𝑇(𝑟𝑟, 𝑎𝑎)�(𝑆𝑆(𝑡𝑡) = 0)

For each requirement 𝑟𝑟 and plan 𝑎𝑎, the random variables in the set are mutually independent.

� {𝑆𝑆(𝑡𝑡)}
𝑡𝑡∈𝑇𝑇(𝑟𝑟,𝑎𝑎)

From these statements, we deduce that the probability that plan 𝑎𝑎 does not violate the reuse of
requirement 𝑟𝑟’s proof is

𝑃𝑃(𝐼𝐼(𝑟𝑟, 𝑎𝑎) = 1) = � 𝑃𝑃(𝑆𝑆(𝑡𝑡) = 1)
𝑡𝑡∈𝑇𝑇(𝑟𝑟,𝑎𝑎)

.

To compare adaptation plans, we define the requirement utility of plan 𝑎𝑎 to be the weighted

sum

𝑈𝑈(𝑎𝑎) = � 𝑤𝑤(𝑟𝑟)𝐼𝐼(𝑟𝑟, 𝑎𝑎)
𝑟𝑟∈𝑅𝑅

where 𝑅𝑅 is the set of requirements and 𝑤𝑤(𝑟𝑟) is a stakeholder-supplied utility weight for the need
to maintain system compliance with requirement 𝑟𝑟. The expected requirement utility is then as
follows.

𝐸𝐸[𝑈𝑈(𝑎𝑎)] = � �𝑤𝑤(𝑟𝑟) � 𝑃𝑃(𝑆𝑆(𝑡𝑡) = 1)
𝑡𝑡∈𝑇𝑇(𝑟𝑟,𝑎𝑎)

�
𝑟𝑟∈𝑅𝑅

If the expected requirement utility can be computed, it can be used as a metric to distinguish

riskier plans from less risky plans. However, this goal requires an estimate 𝑝𝑝(𝑡𝑡) ≈ 𝑃𝑃(𝑆𝑆(𝑡𝑡) = 1)
for each token 𝑡𝑡. Each red token contains such an estimate 𝑝̂𝑝(𝑡𝑡), based on whatever knowledge the
planner may have to compute it. Since 𝑝̂𝑝(𝑡𝑡) is presumed to have been computed without
consideration of the characteristics of the original verification process, we wish to adjust it based
on proof-related information to get the final estimate 𝑝𝑝(𝑡𝑡).

Our approach to computing 𝑝𝑝(𝑡𝑡) is based on the idea that verification concerns and
architectural places can have differing levels of prominence or impact in a verification process.
We assume that red tokens generated from a high-impact place or verification concern are more
likely to represent actual reuse violations than those coming from low-impact places or concerns.
A red token 𝑡𝑡 contains impact multipliers 𝑀𝑀𝑃𝑃𝑃𝑃(𝑡𝑡) and 𝑀𝑀𝑉𝑉𝑉𝑉(𝑡𝑡), representing the impact of the

Approved for Public Release; Distribution Unlimited.
26

architecture place and verification concern (respectively) from which the token was generated.
Lower multipliers represent higher impact/risk. We apply these multipliers to 𝑝̂𝑝(𝑡𝑡) to get 𝑝𝑝(𝑡𝑡),
resulting in an estimate that takes into account the proof characteristics.

We considered two possible ways to apply the multipliers: scaling the probability and scaling
the odds. The latter allows for the possibility of multipliers greater than 1, which would indicate
that the estimate given by the planner should be increased rather than decreased. One of the
outcomes of this study is a comparison of the two approaches based on how well they estimate the
relative risk of adaptations.

With probability scaling, we have

𝑝𝑝(𝑡𝑡) = 𝑀𝑀𝑃𝑃𝑃𝑃(𝑡𝑡)𝑀𝑀𝑉𝑉𝑉𝑉(𝑡𝑡)𝑝̂𝑝(𝑡𝑡).

With odds scaling, we have

 𝑝𝑝(𝑡𝑡) = 𝑜𝑜(𝑡𝑡)

1+𝑜𝑜(𝑡𝑡)
, where 𝑜𝑜(𝑡𝑡) = 𝑀𝑀𝑃𝑃𝑃𝑃(𝑡𝑡)𝑀𝑀𝑉𝑉𝑉𝑉(𝑡𝑡)𝑝𝑝�(𝑡𝑡)

1−𝑝𝑝�(𝑡𝑡) .

(If 𝑝̂𝑝(𝑡𝑡) = 1, this formula is undefined, and we instead use 𝑝𝑝(𝑡𝑡) = 1.)

 Risk Analysis using the MMTS Case Study

To evaluate our risk comparison methodology, we apply it the MMTS case study described in
Section 3.2.1. The case study involves a system on which we impose multiple self-adaptive plans.
As the system is quite simple, we can manually reason about and compare the risks of each
adaptation. Our goal is to determine whether the more mechanistic utility comparison metric
described in Section 3.2.4 can come to conclusions similar to those which we have derived
manually, given the original verification processes.

The MMTS consists of a traveler that moves in a grid while attempting to avoid stationary
enemies distributed randomly on the grid. At each step, the traveler attempts to choose a new
position and move to it. Based on the direction of the move, the traveler’s fuel level may increase,
decrease, or stay the same when it reaches the next position. The traveler is given an upper and
lower limit on its fuel value, and must keep the fuel within that threshold. More complex variants
of the system employ mission planning and enemy avoidance.

The MMTS base code provides an update process that chooses and sets the new position and
fuel value. We identified three high-level architectural components that comprise the update
process. The first is getCurrentStatus (gCS), which reads and validates the state at the start of the
update. The second is getNextPosition (gNP), which determines the set of valid moves and
randomly chooses a move from that set. The third is setPosition (sP), which moves the traveler to
the chosen position and updates its fuel level. These three components form the architectural places
in the VFlow for the two of the MMTS requirements, R1 and R2, stated in LTL below.

R1: □ (minFuel ≤ fuel ≤ maxFuel)

Approved for Public Release; Distribution Unlimited.
27

R2: □ ((canMove ∧ position = p) ⇒ ○notAt(p))

For R1, the fuel level must stay within the threshold at all times. For R2, if the traveler can
move at a given time step, then it must move. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is defined as validPositions ≠ ∅, where
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 is computed according to the current traveler state to exclude positions containing
enemies and moves that would lead to a fuel threshold violation. A random move from the
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 set is chosen in each update. If the set is empty, the traveler stays in its current
position. 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑝𝑝) is defined as 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≠ 𝑝𝑝, given p represents the current position. In the
prior report, this requirement is listed as R3, because R2 was to ensure that the traveler was not in
an enemy position. Since the original R2 was a safety property, its risk factors were similar to R1
relating to the fuel threshold. But R3 (here R2) is a progress property, which increases the
complexity of the verification process and the dependency expressions for the verification
concerns. Hence, we temporarily removed the original R2 and replaced it with the progress
property R3 for the experimentation with our utility function. In addition, for the MMTS case
study, we assume the stakeholder-supplied utility weights of the requirements are 𝑤𝑤(R1) = 0.75
and 𝑤𝑤(R2) = 1.

We have verified that the MMTS code (without adaptation) satisfies these requirements and
derived the verification concerns. As an outcome of the verification process, we extract impact
multipliers for use in the risk comparison calculations. These multipliers are based on the
prominence of different verification concerns and architectural places in requirements’ proofs, as
well as the conditions required by the proofs.

Table 4 shows the place impact multiplier for each of the 3 architectural places in MMTS for
each requirement (R1-safety, R2-progress). In this case study, we manually assigned values of 0.2
(high impact), 0.5 (medium impact), or 0.9 (low impact) based on our perception of the importance
of each place in each proof. These values and others described in this section are shown in the
example VFlow for R1 in Figure 15.

Table 4. Impact multiplier for the VFlow place if a change occurs

 gCS gNP sP
R1 0.9 0.5 0.2
R2 0.5 0.5 0.2

Approved for Public Release; Distribution Unlimited.
28

Figure 15. VFlow for R1 with the change set from adaptation A1

As discussed previously, the impact multiplier for a verification concern can depend on the type

of change made. Verification concern impacts are categorized as devastating, worrisome, or
unconcerned, and the corresponding impact multiplier values are 0.2, 0.5, and 0.9, respectively.
Table 5 and Table 6 show the rules that we used for categorizing the relevant verification concerns’
impacts for R1 and R2, respectively. The categorization is based on the type and/or magnitude of
the change, which is supplied by the planner.

Table 5. Verification concern impacts from the VFlow perspective for R1

R1 devastating worrisome unconcerned

fuel
Change greater than or equal to

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, positive or
negative.

Change greater than or equal to
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

2
, positive or

negative.

Change less than
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

2
, positive or

negative

minFuel Change greater than or equal to
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, positive.

Change greater than or equal to
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

2
, positive.

Negative change or change
less than 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

2
.

maxFuel Change greater than or equal to
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, negative.

Change greater than or equal to
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

2
, negative.

Positive change or change less
than 𝑚𝑚𝑎𝑎𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

2
.

Approved for Public Release; Distribution Unlimited.
29

Table 6. Verification concern impacts from the VFlow perspective for R2

R2 devastating worrisome unconcerned

fuel Set to 0. Large change, positive or negative. Small change, positive or
negative.

minFuel Set to maxFuel. Increased to a value less than
maxFuel. Set to 0.

maxFuel Set to 0. Decreased to a value greater than
minFuel. Increased.

validPosition Changed to a nonempty set with no
change in nextMove.

Changed to a nonempty set with a
change in nextMove. Set to ∅.

nextMove Set to null with no change in
validPosition.

Set to null with a change in
validPosition.

Set to null with
validPositionchanged to ∅.

position Changed with nextMove set to null. Maintained with nextMove set to
null.

Maintained when
validPositionis empty.

 Potential Adaptations

In our example scenario, the MMTS is initialized with the traveler at position (0,0) with a fuel
value of 80, a lower fuel threshold minFuel = 0, and an upper fuel threshold maxFuel = 160. The
system is simulated for 25 time steps, at which point an engine failure occurs, triggering the
adaptation process. The planner configures possible adaptation plans and constructs their change
sets to assess the risk of impacting proof reuse for requirements R1 and R2. To compare more
plans and perform deeper risk analysis, we increased the number of potential adaptive plans from
2 to 4. The original and new adaptive plans are described below.

A1: maxFuel is divided by 2 within gCS. (original)
A2: maxFuel is reduced by 40, and minFuel is increased by 40 within gCS. (new)
A3: The next move for the traveler is not chosen for 5 time steps within gNP, even if

validPositions is nonempty (to simulate a stop for repair). (new)
A4: validPositions is changed to the empty set for 5 time steps (to simulate a stop for repair) in

gNP. (original)

 Examining Adaptation Plan Risks

By manual analysis and simulation, we have identified the potential risks of each plan with
respect to the requirements. A1 is risky for R1, as it leads to a violation if the current fuel value is
greater than 80. When R1 fails, it also causes a failure in R2, because the traveler stops moving if
it detects a violation of the fuel threshold. Therefore, A1 is also risky for R2. A2 can also pose a
threat to R1 and R2 if the current fuel value is below 40 or above 120, but that is not possible given
the function for calculating the fuel by the 25th time step when the adaptation occurs. Therefore,
A2 has very little risk if performed early in the traveler movement.

A3 and A4 both disallow movement for 5 moves, which poses no threat to R1. A3 is very risky
for R2, and in fact will always cause a violation if the set of valid moves is nonempty at the time

Approved for Public Release; Distribution Unlimited.
30

of the adaptation. A4 is superficially similar to A3, but it actually is not risky for R2, because R2
only requires movement when the set 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 is nonempty.

Based on our analysis, A3 should be considered risky for R2, while A1 should be considered
risky for R1 and R2. A2 might be considered marginally risky for R1 and R2, because it could fail
under some circumstances, although those circumstances are not possible in our simulation. A4
poses no risk for either of the requirements.

It remains to be shown how the planner generates the initial success probability estimate 𝑝̂𝑝 for
each plan’s pink token(s). In this case study, we assume the planner knows that reducing the set of
valid moves is less risky, so it uses 𝑝̂𝑝 = 0.99 for all of A4’s pink tokens. We assume the planner
has been able to determine that changing the logic in getNextPosition (gNP) has some risk to both
requirements, so it uses 𝑝̂𝑝 = 0.5 for A3’s pink tokens.

For A1 and A2, we assumed that the planner might run predictive simulations involving
perturbations of minFuel or maxFuel, to estimate the sensitivity of the system to such changes. We
performed 200-step simulations in which either minFuel or maxFuel was perturbed at the 100th
step, with 1000 runs of the simulation for each perturbation size and requirement. The simulations
produced a success rate of 0.532 for R1 when maxFuel was reduced by 80, meaning 53.2% of the
1000 simulations found no violation of R1. The corresponding success rate for R2 was 0.505.
Therefore, we set 𝑝̂𝑝 = 0.532 for A1’s pink token in R1’s VFlow, and 𝑝̂𝑝 = 0.505 for the pink token
in R2’s VFlow.

In all simulations where minFuel was increased by 40 or maxFuel was decreased by 40, no
proof violations were detected. Assuming the planner would be cautious enough not to indicate a
guaranteed success based on a simulation, we set 𝑝̂𝑝 = 0.99 for all of A2’s pink tokens.

 Computed Results

Table 7 and Table 8 show the success probabilities computed from the set of red tokens for each
requirement/plan pair, along with the expected utility based on the probabilities and the
requirements’ utility weights. Table 7 provides the results for the probability scaling approach.
Table 8 shows the odds scaling results.

Table 7. Results from probability scaling approach

Results Using Probability Scaling
 R1 Success Prob. R2 Success Prob. Expected Utility

A1 0.0127 0.00708 0.0166
A2 0.0204 0.00630 0.0216
A3 1 0.0500 0.800
A4 1 0.446 1.20

Approved for Public Release; Distribution Unlimited.
31

Table 8. Results from odds scaling approach

Results Using Odds Scaling
 R1 Success Probability R2 Success Probability Expected Utility

A1 0.0345 0.0226 0.0485
A2 0.875 0.858 1.51
A3 1 0.0909 0.841
A4 1 0.978 1.73

The risk values calculated using odds scaling match fairly well with what we would expect

based on our manual reasoning. For R1, A3 and A4 were found to have no risk, A2 was found to
have low risk (high success probability), and A1 was found to have high risk. For R2, A1 and A3
were found to have high risk, while A2 and A4 had low risk. However, there are some
discrepancies from what we would expect. For example, the success probability computed for R2
was higher for A3 than for A1, even though A3 nearly always causes a failure for R2 while A1
causes failures less frequently. The same issue occurs when probability scaling is used. An
additional problem occurs with probability scaling in that A2 is found to have the lowest success
probability for R2, even though it is one of the safer adaptations for that requirement.

3.2.4 Employing KIV and Working toward Security Certification Awareness

In this section, we detail efforts (1) investigating the formal expression and classification of
security controls used for certifying federal information systems, (2) using the SIMS case study to
show the impact of adaptation on security certification and (3) develop a theoretical methodology
and heuristic guidelines for the use of the KIV theorem prover (Ernst, 2015) to identify verification
concerns, the impact of their change on the risk of inhibiting the verification process, and the
modeling of the verification workflow for adaptation plan comparison and risk assessment.

To scope our examination of the impact of self-adaptive plans on security certification, we start
with three main assumptions.

• The planning process as part of the MAPE-K (Monitor, Analyze, Plan, Execute with

Knowledge) can produce adaptive plans that may not have been evaluated prior to system
deployment,

• A static analysis tool can be available that disallows any configured plans that do not follow
predefined rules, such as naming conventions, and

• If an adaptive plan interferes with or alters a verification concern extracted from the proof
process, there is an increased risk that the same proof strategy to show security control
compliance cannot be reused, providing the basis for the risk assessment of the plan.

The first assumption allows the planner to go beyond prefabricated plans or plans that must

satisfy predefined adaptive constraints. The planner can use any knowledge of predefined plans,
attempted but not deployed plans, and meta-data from successfully deployed plans. The second
assumption allows for constraints to be applied to the plan configuration. With this assumption,
we can introduce constraints on deleting processes that explicitly serve as security control
mechanisms as part of an adaptive plan configuration.

Approved for Public Release; Distribution Unlimited.
32

The third assumption forms the foundation of the approach. Because each requirement
verification or certification process is documented, the pattern of control flow and how states are
examined provide meta-data about the process: verification concerns (VCs) and verification
workflow (VFlows). VCs and VFlows become part of the planning process within the MAPE-K
control loop as verification and certification awareness. If an adaptive plan alters a VC in a risky
manner at a risky place in the workflow, the original verification/certification process may be
voided and not be reusable. The greater the risk, the higher the probability that a new proof process
would be needed, thus increasing the probability of a requirement violation by the adaptive plan.

 Transforming Security Controls

Because security controls express functional and non-functional requirements, certification
processes involve determining the existence of certain functionality in the system, as well as the
correctness of the functionality. In this report, we focus on security control AU-12(1), which
appears in Figure 16, as taken directly from the NIST SP 800-53 (NIST, 2013). AU-12 is
designated all baselines (i.e. low, moderate, and high impact systems). This means that all
information systems adhering to the security controls must consider AU-12. Enhancement 1 is part
of the baseline of controls for high impact systems. A high impact information system means that
there is a high degree of concern, such as monetary, reputation, or life-threatening, should one of
confidentiality, integrity, or availability be violated with respect to the data stored and in transit.

Figure 16 shows that AU-12 references additional audit controls, namely AU-2a, AU-2d, and
AU-3. These control statements appear in Figure 17 as taken directly from the NIST SP800-53
(NIST, 2013). Security certification examines the requirements of AU-12, followed by the
requirements for its first enhancement and assessing these against the system. The NIST SP800-
53a (NIST, 2014) guidelines state that examination can be done on the “procedures addressing
audit record generation” because of the reference to AU-2a and “list of auditable events” because
of the reference to AU-2d and AU-3. When enhancement (1) is included, the examination
guidelines extend to “system-wide audit trail”.

Approved for Public Release; Distribution Unlimited.
33

Figure 16: AU-12 Control Statement with Enhancement (1)

Figure 17: Control Statements for AU-2a, AU-2d, and AU-3

Formally expressing the security control statements manifests their separation of non-functional
from functional requirements. Below we restate them as R1-R5 using formal notation and the
ontological relationships expressed in (Hale, 2017). In LTL, the square is “invariant” and the
diamond is “eventually”.

AU-12 AUDIT GENERATION
Control: The information system:

a. Provides audit record generation capability for the auditable events defined
in AU-2 a. at [Assignment: organization-defined information system
components];
b. Allows [Assignment: organization-defined personnel or roles] to select
which auditable events are to be audited by specific components of the
information system; and
c. Generates audit records for the events defined in AU-2 d. with the content
defined in AU-3.

Control Enhancements:
(1) AUDIT GENERATION | SYSTEM-WIDE / TIME-CORRELATED
AUDIT TRAIL

The information system compiles audit records from [Assignment:
organization-defined information system components] into a system-wide
(logical or physical) audit trail that is time-correlated to within
[Assignment: organization-defined level of tolerance for the relationship
between time stamps of individual records in the audit trail].

AU-2 AUDIT EVENTS
Control: The organization:

a. Determines that the information system is capable of auditing the following
events: [Assignment: organization-defined auditable events];

…
d. Determines that the following events are to be audited within the information
system: [Assignment: organization-defined audited events (the subset of the
auditable events defined in AU-2 a.) along with the frequency of (or situation
requiring) auditing for each identified event].

AU-3 CONTENT OF AUDIT RECORDS
Control: The information system generates audit records containing information

that establishes what type of event occurred, when the event occurred, where the event
occurred, the source of the event, the outcome of the event, and the identity of any
individuals or subjects associated with the event.

Approved for Public Release; Distribution Unlimited.
34

R1: (non-functional) For each component (C) in the information system (IS) identified to have
auditable events, there exists a function to perform auditing for predefined auditable events
(AU-12a, AU-2a). Below, we call the function generateAuditRecord.

(∀𝐶𝐶 ∈ 𝐼𝐼𝑆𝑆: ∃𝐶𝐶. 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔)

R2: (functional) For each predefined auditable event, an audit record satisfying the minimal
contents is generated when an auditable event occurs (AU-12c, AU-2d, AU-3)

□(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑒𝑒) ⟹◇(𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒)))
where 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 contains tuples of the form (𝑣𝑣, 𝑡𝑡, 𝑤𝑤, 𝑐𝑐, 𝑜𝑜, 𝑖𝑖𝑖𝑖), with 𝑣𝑣 the event

type; 𝑡𝑡 the event time; 𝑤𝑤 where event occurred; 𝑐𝑐 the event source; 𝑜𝑜 the event outcome, and
𝑖𝑖𝑖𝑖 the event identity.

R3: (non-functional) There exists a system-wide, virtual or physical component, which we will

call 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, that collects auditable events (AU-12(1)) from designated components.
(∃𝐶𝐶 ∈ 𝐼𝐼𝐼𝐼 ∶ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∈ 𝐶𝐶)

R4: (functional) All audit records are sent to the audit trail (AU-12(1))

□(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑒𝑒) ⇒◇(𝑒𝑒 ∈ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎))

R5: (functional) The audit trail time-correlates the audit records (AU-12(1))

□(∀ 𝑖𝑖, 𝑗𝑗 ∈ [0, ‖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎‖) ∩ ℤ ∶
𝑖𝑖 < 𝑗𝑗 ⇒ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[𝑖𝑖]. 𝑡𝑡 ≤ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[𝑗𝑗]. 𝑡𝑡)

R6: (functional) Time correlation is checked against a defined level of tolerance (AU-12(1))

□(∀ 𝑖𝑖 ∈ [0, ‖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎‖ − 1) ∩ ℤ :
 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[𝑖𝑖 + 1]. 𝑡𝑡 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[𝑖𝑖]. 𝑡𝑡 > 𝜀𝜀 ⇒
 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[𝑖𝑖]. 𝑡𝑡, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[𝑖𝑖 + 1]. 𝑡𝑡))

R1 requires that the mechanism exists in identified components to capture predefined auditable

events. R3 requires the existence of an audit trail. The requirements R2 and R4-R6 must be
certified by testing or formal verification.

Approved for Public Release; Distribution Unlimited.
35

Figure 18: SIMS Architecture

Figure 18 shows a different SIMS architecture than originally designed in Figure 9, because the

connectivity process was unnecessary when the simulation of the system was implemented as
multiple threads in Java. SIMS tracks inventory’s stock condition using a pressure sensor and
adjusts pressure the threshold depending on the inventory movement. Thus, for this experiment,
SIMS has three components with local MAPE-K control loops: Measure reads the pressure sensor,
Process adjusts the threshold, and Audit houses audit records from Measure and Process for
security certification.

 Examining the Audit Security Controls

Within Figure 16 and Figure 17 there is text of the form [Assignment: …]. This text provides
the organization with the flexibility to tailor the security controls with more explicit values or
expressions so that they are relevant to the system of interest. Once tailoring is performed, the
resulting values cannot be changed without re-certification, and thus, form safety properties.

Table 9 shows the tailored values chosen to satisfy AU-12(1), AU-2a, AU-2b, and AU-3 for the
SIMS case study. Once tailoring is completed, certification can begin. For the targeted audit
security controls in Section 3.2.4.1, the first part of the process is to determine if the required
mechanisms exist to satisfy R1 and R3. For R1, Table 9 indicates that Measure and Process are
responsible for record generation (row 1) and produce audit records from the auditable events of
signal updates in Measure and threshold value changes in Process (row 5).

To ensure the existence requirements (R1 and R3) are maintained in an adaptive plan, a mapping
of the security control to the component process is provided to the planning process in the MAPE-
K control loop. If an adaptive plan is configured that deletes the process, then the violation of the
requirement is clear and can be provided as an alert to the human analyst that recertification will
need to be performed for that mechanism.

Approved for Public Release; Distribution Unlimited.
36

We focus the requirements proof and self-adaptation assessment on the Audit component. Its
process control flow is depicted in Figure 19. The main update loop consists of checkCongestion
(logs the amount of buffer capacity being used), dequeueAuditRecord (removes an audit record
from the queue), findInsertionPoint (uses a binary search to determine where the audit record’s
timestamp fits), checkTimeTolerance (logs when the time difference is not within the prescribed
tolerance), and storeAuditRecord (stores the audit record at the determined insertion point of the
audit trail).

Table 9: Tailored Values for the Targeted Security Controls

Targeted control Organization-defined Assignment

AU-12a information system components (for audit record
generation capability) Measure, Process

AU-12b personnel or roles Human analyst

AU-12(1) information system components (from which
audit records will be compiled) Measure, Process

AU-12(1) level of tolerance for the relationship between
time stamps of individual records in the audit trail 10 seconds

AU-2a auditable events
signal updates,
threshold value
changes

AU-2d audited events with frequency of (or situation
requiring) auditing for each defined event at every occurrence

 Potential Adaptations

During deployment of the SIMS, the planning process configures the following potential plans
for risk assessment, none of which violate the existence criteria for R1 and R3.

A1: Allow Audit to periodically drop messages.
A2: Add dequeued records to the end of the audit trail (instead of performing binary search)

until a predefined number of records have been added.
A3: Increase the performance of the sorting technique by providing a rolling lower

timestamp and sorting only records less than it.

We will return to these adaptations and their impact on the verification of the audit security

controls in Section 3.2.4.7.
To compare adaptations configured by the planner, we assess their risk of inhibiting the reuse

of the original verification process of the security control requirements. In this section, we outline
the methodology of extracting the verification concerns (VCs) and the verification workflows
(VFlows) using the KIV theorem prover. We focus on proving the safety property R5 and the
progress property R4 from Section 3.2.4.1. Figure 20 outlines the process to identify the VCs and

Approved for Public Release; Distribution Unlimited.
37

VFlow associated with a proof. With the Java code restated in KIV’s language, KIV can prove
LTL expressions. We define a set of lemmas that provide guidance to the KIV proof so that the
proof process is made more explicit and the meta-information needed to identify VCs and VFlows
per requirement is available.

Table 10: Targeted Functions for Audit Control Certification of Mechanism Existence

Control

Requirement
Mapping

Mechanism

Certification
Process

Targeted Function(s)

AU-12a R1

Provide audit
record
generation
capability

Examine
Measure for
capability Measure.generateAuditRecord
Examine
Process for
capability

Process.generateAuditRecord

AU-12(1) R3

Provide audit
record
compilation
(physical)

Examine Audit
for capability

Audit.findInsertionPoint
Audit.checkTimeTolerance
Audit.storeAuditRecord

AU-2a R1
Provide
auditable event
recognition

Examine
Measure for
capability
specific to
updating signal

Measure.updateSignal

Examine
Process for
capability
specific to
computing
threshold

Process.updateThresholds

Approved for Public Release; Distribution Unlimited.
38

Figure 19: Process Control Flow for Audit

 Working with KIV

Each LTL state transition has two phases in KIV: the program modifies the state and the
environment modifies the state. Let 𝑋𝑋 be a state variable. 𝑋𝑋′ denotes the value after program
modification. 𝑋𝑋′′ denotes the value after program and environment modification, which is the
value in the next state. It must be explicit about what the environment cannot change, otherwise
KIV assumes the environment can change any state variable. For Audit, we assume the
environment does not modify any state variables other than the input message queue.

Hoare triples (Hoare, 1985) are an intuitive way to prove program properties and extract VCs.
However, they make no guarantees about the states in between their pre- and postconditions. Thus,
they are not suitable for proofs where intermediate states must satisfy a property. To allow KIV to
use Hoare triples when proving a property for a single component, we augment them with
intermediate state and termination guarantees. Our temporal contract proposition (TCP) is similar
to KIV’s rely-guarantee statements for threads but can be used to decompose the different
procedure calls in an individual program thread.

Figure 20: VC and VFlow Identification Process

Approved for Public Release; Distribution Unlimited.
39

A TCP is stated as 𝑡𝑡𝑡𝑡𝑡𝑡(𝑃𝑃𝑃𝑃𝑃𝑃, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝑀𝑀𝑀𝑀𝑀𝑀, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃), which means that when Code is executed under

condition Pre, it eventually terminates with condition Post, and all intermediate states satisfy
condition Mid. In KIV, we state a TCP with the template:

Pre, [: Vin, Vinout| Code(Vin; Vinout); [PL RestProg]]
⊦
Mid until (Post ∧ RestProg)

where Vin, Vinout are any input/output program parameters. [PL RestProg] represents the program
(if any) that executes after Code. Mid until (Post ∧ RestProg) means (Post ∧ RestProg) holds in
the present or some future state, and Mid holds in every state before that, starting at the present
state.

3.2.4.4.1 Verification of Safety Property R5

In KIV, invariants to be proven are often represented as

¬(𝑁𝑁′′ = 𝑁𝑁 − 1 𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮 ¬𝑝𝑝)

to mean “there does not exist a natural number variable 𝑁𝑁 that decreases until 𝑝𝑝 is false.” Typically,
for KIV to prove an invariant it symbolically executes a full iteration of the main loop, considering
all program branches and proving p at every step. Then it applies induction to complete the proof.

Instead of focusing on symbolic execution directly, our methodology uses TCPs when possible
to skip over parts of the code until a main loop iteration has been completed. Symbolic execution
is used directly to prove the TCPs, but not to apply them. In accordance with the KIV TCP template
described in Section 3.2.4.4, applying 𝑡𝑡𝑡𝑡𝑡𝑡(𝑃𝑃𝑃𝑃𝑃𝑃, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝑀𝑀𝑀𝑀𝑀𝑀, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) to a proof goal where Pre and
[: Vin, Vinout| Code(Vin; Vinout); [PL RestProg]] are known to be true allows KIV to deduce Mid
until (Post ∧ RestProg). Note that we must instantiate RestProg with a specific program formula
when applying a TCP, but not when proving one. To actually skip over Code we need to derive a
new proof goal where the program formula is RestProg. We apply the following lemma, called
lemma-invariant, after applying the TCP:

N = n,
□(AfterI ∧ InvProp ∧ N ≤ n ⇒ ¬(N = N’’ + 1 until ¬InvProp)),
□(MidI ⇒ InvProp),
MidI until (InvProp ∧ AfterI)
 ⊦
¬(N = N’’ + 1 until ¬InvProp)
We apply lemma-invariant using the substitution AfterI = Post ∧ RestProg and MidI = Mid.

InvProp is substituted with the invariant property to be proven (i.e., to prove □ p, we use InvProp

Approved for Public Release; Distribution Unlimited.
40

= p). Given that Post contains InvProp, the fact Mid until (Post ∧ RestProg) derived from the TCP
implies MidI until (InvProp ∧ AfterI). N = n can always be established for some n.

Since KIV knows that MidI until (InvProp ∧ AfterI) and N = n hold when lemma-invariant is
applied, two new proof goals result, matching the second and third formulas in lemma-invariant.
Using KIV’s execute always rule, we can remove the always from these proof goals. Therefore,
the new proof goals that we reach are:

AfterI ∧ InvProp ∧ N ≤ n ⇒ ¬ (N = N’’ + 1 until ¬ InvProp),
MidI ⇒ InvProp

Figure 21 shows a fragment of a KIV proof tree in which a TCP has been applied, followed by

an application of lemma-invariant. In this case, KIV was able to automatically close the proof goal
MidI ⇒ InvProp, resulting in only one new proof goal.

To roughly match our Java simulation’s architecture for the SIMS case study, our KIV code
assigns four (compound) state variables to each component: internal state, external state visible to
the environment, and input and output message queues. Since the Audit component uses only one
input queue and does not send messages, we abstract the KIV Audit state in this discussion to three
variables: Int for the internal state, Ext for the external state, and InQ representing Audit’s single
input message queue. For brevity in our discussion, we define some abbreviations:

e ≡ □ (Int’’ = Int’ ∧ Ext’’ = Ext’ ∧ ∃ Msgs :InQ’’ = InQ’ + Msgs)
s ≡ sorted(Ext.auditTrail, compareRecords)

t ≡ Int.auditRecord = nullOpt ∨ Int.insertionPoint < 0 ∨
 (Int.insertionPoint ≤ # Ext.auditTrail ∧

Figure 21: KIV Tree Showing Guided Invariant Proof Process

Approved for Public Release; Distribution Unlimited.
41

 sorted(Ext.auditTrail.insert (Int.insertionPoint, Int.record.getOpt),
 compareRecords))

where e is an environmental assumption saying that the only possible environmental state
modification is to add a list of new messages to the back of InQ. s arises from our modeling of
Java comparators, which are used in the Java code. compareRecords is a comparator constant that
compares audit records based on time stamp. Sorted is a predicate indicating that a list is sorted
according to a comparator.

In our proof of R5, we first show that □s implies R5, making □s an intermediate invariant to
be proven. t is an intermediate condition needed in some of our TCPs. Intuitively, t means that
there is no audit record being passed to the process in the control flow (see Figure 19) or no
insertion point has been selected or inserting the audit record at the insertion point preserves the
sorting. The use of nullOpt and getOpt in this formula arise from our modeling of optional sorts,
which can have null values.

The resulting TCPs constructed to prove □s are as follows:

tcp(e ∧ s, checkCongestion(; Int, Ext, InQ), s, s)
tcp(e ∧ s , dequeueAuditRecord(; Int, Ext, InQ), s, s)
tcp(e ∧ s , findInsertionPoint(; Int, Ext, InQ), s, s ∧ t)
tcp(e ∧ s ∧ t, checkTimeTolerance(; Int, Ext, InQ), s, s ∧ t)
tcp(e ∧ s ∧ t, storeAuditRecord(; Int, Ext, InQ), s, s)

After applying these TCPs in order and following each TCP application with lemma-invariant,

we reach a proof goal where the program formula is:

[: Int, Ext, InQ | while true do update(; Int, Ext, InQ)]

This is the same program formula we had when we started the induction, because we have
completed an iteration of the main loop. KIV also knows that N has decreased, because it decreased
once in the evaluation of the loop condition and we preserved that fact by the inclusion of N ≤ n
in the new proof goals (using lemma-invariant). Since N has decreased without a violation of s,
and we have reached the original program formula, we can have KIV apply the induction to
complete the proof of □s.

 Identifying the Verification Concerns and Verification Workflow

Verification concerns (VCs) are state variables with values that are relevant to the proof. VCs
are identified by verification conditions (see Figure 20) that are examined within the instantiated
lemma-invariants associated with the TCPs used to guide the KIV proof. For example, the
conditions

Approved for Public Release; Distribution Unlimited.
42

auditRecord = nullOpt
insertionPoint ≤ #auditTrail

are a subset of conditions needed to prove R5 within the processes findInsertionPoint,
checkTimeTolerance, and storeAuditRecord. The conditions rely on auditRecord,
insertionPoint, and auditTrail, identifying them a VCs for R5, as well as the processes where the
conditions are checked, which will be used in the construction of the Colored Petri Net (CPN) that
describe the associated verification workflow.

Once the VCs are identified, the conditions used for the proof indicate the range of potential
changes to the variables that may increase risk. While it is plausible that finding the VCs could be
automated given the resulting KIV proof, the flexibility with which the VCs can be changed by
self-adaptation is still a manual procedure. Table 11 shows how a human analyst might classify
the impact of certain changes to a VC given the conditions used in the proof of R5. We separate
them into fuzzy sets of Devastating, Worrisome, and Unconcerned.

Table 11: R5 VC Conditions for Change Impact

R5 Devastating Worrisome Unconcerned

auditRecord Alter time stamp
Set to null

Alter contents

insertionPoint
Continuous set to #auditTrail
Set to > #auditTrail
Eliminate sorting

Alter sorting
performance

auditTrail Remove records Reorder records

Removing auditRecord from auditTrail causes record loss, making both changes potentially

devastating to maintaining R5. Setting insertionPoint to null and eliminating sorting is
problematic, but decreasing the performance of the sorting algorithm may not cause problems. A
change in the condition table that is part of an adaptation will be reflected in the risk impact factor,
MVC, for the targeted VC.

Figure 22: VFlow for Safety Property R5 and Adaptation A2

Approved for Public Release; Distribution Unlimited.
43

In Figure 20, the process control flow and the verification conditions that result from the KIV

proof contribute to the definition of the verification workflow (VFlow) per requirement. We rely
on prior work for the construction of a CPN as the VFlow representation as reported in the previous
quarter. The objective of the VFlow is to inform the planning process of the comparative risk
values associated with potential adaptation on the proof reuse for that requirement.

To calculate the overall utility of a plan, the CPN representing a VFlow mimics the process
control flow with the processes as transitions. Three tokens are used: blue (for traversal through
the VFlow), pink (representing the change) and red (representing the risk impact factors computed
by the transitions).

Figure 22 represents the VFlow crafted by the meta-data taken from the proof of R5. Three
processes, findInsertionPoint, checkTimeTolerance, and storeAuditRecord, are represented as
transitions. Because the processes are equally involved in the proof, a change to them has equal
impact on proof reuse. This will be reflected in the process impact multiplier, MPL. For adaptation
A2, the pink token indicates that the change will occur within findInsertionPoint. The planning
process assigns values representing its assessment of the plan quality, which is the risk impact
multiplier 𝑝̂𝑝. The blue token carries the information presented by the pink token to each transition
for assessment.

Red tokens are produced when a VC has an impact value above 0. They carry the accumulated
impact values, MVC, MPL, and 𝑝̂𝑝 to the end state. Multiple red tokens can be produced if multiple
VCs are affected and if multiple processes contribute to the potential risk. For R5, adaptation A2
causes three red tokens to be generated, one from each transition, meaning that a VC at the
transition was impacted. This VC is insertionPoint for each red token because A2 invokes the
condition “Continuous set to #auditTrail” which is devastating. We will discuss how the impact
values are used in Section 3.2.4.7.

3.2.4.5.1 Verification of the Progress Property R4

For Audit, we decompose R4 into two progress properties.

R4.1: □(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑣𝑣) ⇒◇(𝑣𝑣 ∈ 𝐼𝐼𝐼𝐼𝐼𝐼))
R4.2: □((𝑣𝑣 ∈ 𝐼𝐼𝐼𝐼𝐼𝐼) ⇒◇(𝑣𝑣 ∈ Ext. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎))

In this section, we outline the methodology used to guide KIV to prove R4.2. We use e and s as

defined in Section 3.2.4.4.1, along with the following abbreviations:

e1 ≡ □(messageVar ∈ InQ ∧ InQ′=InQ ⇒ messageVar ∈ InQ′′)
s1 ≡ messageVar ∈ InQ ⇒ messageVar ∈ InQ′′
s2 ≡ Int.auditRecord ≠nullOpt ∧

 Int.auditRecord.getOpt = messageVar.auditRecord

where e1 states that when the program does not modify InQ, a message in the queue will be
preserved in the queue in the next state; this is easily proven from e.

Approved for Public Release; Distribution Unlimited.
44

We rely on the proof of R5 for □s since our code relies on the fact that the audit trail is sorted
to avoid generating an out-of-bounds insertion index, which would cause the program to crash.
We make an additional assumption that we are only interested in messages containing audit
records. This condition is stated as isRecordMessage(messageVar).

In KIV, the progress property goal for R4.2 is stated as

□(𝑞𝑞 ⇒◇𝑝𝑝), where
𝑞𝑞 ≡ messageVar ∈ InQ ∧ isRecordMessage(messageVar)
𝑝𝑝 ≡ messageVar.auditRecord ∈ Ext.auditTrail

We refer to q as the progress precondition under which some form of progress is required to

eventually occur. We refer to p as the progress postcondition that ensures the progress required by
q happens. When proving a progress property, it is helpful to decompose the proof across the
process control flow so that, similar to the invariant proof, we can prove lemmas on smaller code
blocks. Since the requirement has the form □(𝑞𝑞 ⇒◇𝑝𝑝), which includes a temporal formula inside
the always, we require lemmas that are somewhat more complex than lemma-invariant.

Let the term q-preserving describe parts of the program in which the progress precondition
cannot change from true to false. A key observation driving our methodology is that, due to the
nature of the LTL eventually operator, we can use TCPs to “skip” over q-preserving code, only
proving 𝑞𝑞 ⇒◇𝑝𝑝 at the end of each skip and when non-q-preserving code is encountered.

As in the invariant example, we can prove and apply a TCP 𝑡𝑡𝑡𝑡𝑡𝑡(𝑃𝑃𝑃𝑃𝑃𝑃, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝑀𝑀𝑀𝑀𝑀𝑀, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) to allow
KIV to deduce Mid until (Post ∧ RestProg), then use that fact in an additional lemma. The lemma
used to skip past q-preserving code is lemma-progress:

N = n,
□(AfterP ∧ N ≤ n ⇒

 ¬(N = N'' + 1 until (PreProgress ∧ ¬◇PostProgress))),

□(AfterP ∧ PreProgress ⇒ ◇ PostProgress),

□(MidP ∧ PreProgress ⇒ ● PreProgress),
MidP until AfterP
⊦
¬(N = N'' + 1 until (PreProgress ∧ ¬◇PostProgress))

where the ● operator is a weak next indicating that PreProgress holds in the next state if there is a
next state. This lemma is applied using the substitution AfterP = Post ∧ RestProg, MidP = Mid,
PreProgress = q, PostProgress = p. It is used in a similar manner to lemma-invariant, but the proof
goals generated are different. Again, using KIV’s execute always rule, applying this lemma after
a TCP results in the following new proof goals:

Approved for Public Release; Distribution Unlimited.
45

Post ∧ RestProg ∧ N ≤ n ⇒ ¬ (N = N'' + 1 until (q ∧ ¬ ◇ p))

Post ∧ RestProg ∧ q ⇒ ◇ p
Mid ∧ q ⇒ ● q

Code that is not q-preserving creates a disjunction in the proof goal, because it may either (1)

not actually change q from true to false, or (2) establish or preserve some other condition, 𝑟𝑟, that
ensures ◇𝑝𝑝. To represent this case, we define a split temporal contract proposition (STCP) as

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑃𝑃𝑃𝑃𝑃𝑃, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝑀𝑀𝑀𝑀𝑀𝑀, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1, 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡2)

meaning when Code is executed under condition Pre, either (1) it eventually terminates with
condition Post1, and all intermediate states satisfy condition Mid, or (2) it eventually terminates
with condition Post2, with intermediate states not necessarily satisfying Mid. Typically, Code
represents a non-q-preserving program part, and Post2 represents the intermediate condition 𝑟𝑟. We
represent a STCP in KIV using the following template.

Pre, [: Vin, Vinout| Code(Vin; Vinout); [PL RestProg]]
⊦
(Mid until (Post1 ∧ RestProg)) ∨ ◇(Post2 ∧ RestProg)

The first case of the disjunction can be handled using lemma-progress. The second case requires

a new temporal logic lemma, called lemma-progress-split:

N = n,
□(AfterPS ∧ N ≤ n ⇒

 ¬(N = N'' + 1 until (PreProgress ∧ ¬◇PostProgress))),

□(AfterPS ⇒ ◇PostProgress),

◇AfterPS
⊦
¬(N = N'' + 1 until (PreProgress ∧ ¬◇PostProgress))

After applying a STCP, we apply lemma-progress-split with the substitution AfterPS = Post2 ∧

RestProg, PreProgress = q, PostProgress = p. We get two new proof goals:

Post2 ∧ RestProg ∧ N ≤ n ⇒ ¬(N = N'' + 1 until (q ∧ ¬◇p))

Approved for Public Release; Distribution Unlimited.
46

Post2 ∧ RestProg ⇒ ◇p

Figure 23: KIV Tree with Progress Property Proof Process

Figure 23 shows a fragment of a KIV proof tree (Ernst, 2015) where a STCP has been applied

followed by an application of lemma-progress in one branch and lemma-progress-split in the other
branch.

By applying TCPs and STCPs along with lemma-progress and lemma-progress-split, we
eventually skip to the end of the program’s main loop and can apply induction as with an invariant
proof. At that point, the remaining proof goals have the form u ⇒ ◇p for some formula u. These
goals may also use TCPs in their proofs, but as they do not require induction, lemma-invariant,
lemma-progress, and lemma-progress-split are typically not required. For brevity, we list here only
the TCPs and STCPs used with lemma-progress and lemma-progress-split to reach the end of the
main loop, though the other TCPs do produce VCs:

tcp(e ∧ e1 ∧ □s, checkCongestion(; Int, Ext, InQ), s1, true)

stcp(e ∧ e1 ∧ □s, dequeueAuditRecord(; Int, Ext, InQ), s1, true, s2)

tcp(e ∧ e1 ∧ □s, findInsertionPoint(; Int, Ext, InQ);
 checkTimeTolerance(; Int, Ext, InQ);
 storeAuditRecord(; Int, Ext, InQ),s1, true)

Approved for Public Release; Distribution Unlimited.
47

 Identifying the Verification Concerns and Verification Workflow

The precondition of R4.2 identifies that the program is in a state in which messageVar,
containing a non-null auditRecord, appears in InQ, identifying these three state variables
immediately as VCs. They are also included as postconditions, since messageVar must eventually
be removed from InQ, while auditRecord must eventually be placed in auditTrail. Thus,
auditTrail is a VC. In addition, the proof relied on the invariant established conditions making
insertionPoint also a VC. It is also noted that all processes have conditions in the proof that
contain one or more of the identified VCs.

Table 12 denotes the potential impacts of certain changes to the identified VCs from Section
3.2.4.5.1 for R4.2. It can be seen that the same changes in Table 11 are viewed as impacting this
requirement differently. For example, sorting changes are of less concern because the requirement
focuses on ensuring the audit records are stored in the audit trail.

Table 12: R4.2 VC Conditions for Change Impact

R4.2 Devastating Worrisome Unconcerned
messageVar Modify auditRecord

InQ Alter queuing of
auditRecord Reorder queue

auditRecord Alter contents;
 Set to null Alter time stamp

insertionPoint

Set to > #auditTrail

Eliminate sorting;
Alter sorting
performance;
Continuous set to
#auditTrail

auditTrail Remove records Reorder records

While the process control flow is the same for the CPN created for R4.2’s VFlow, the internal

computation performed at the transitions to determine which VCs match and the impact estimate
of that match can introduce different risk values.

The VFlow representing the meta-data from the proof process for R4.2 involves all five
processes in the SIMS case study, which will be equally impacted by changes affecting their VCs.
Figure 24 shows the CPN representing R4.2’s VFlow. Notice that the pink token is associated with
findInsertionPoint as it was in Figure 22. The same VC, insertionPoint, is affected, but the affect
is less (unconcerned) than for R5.

Approved for Public Release; Distribution Unlimited.
48

 Comparing Adaptation Risk

We use a previously derived utility function to compare adaptation plans A1-A3 according to
the assessed risk they pose to inhibiting the reuse of the verification processes for R4 and R5. The
success probability of an adaptation plan a with respect to a requirement r is estimated as
∏ 𝑝𝑝(𝑡𝑡)𝑡𝑡∈𝑇𝑇(𝑟𝑟,𝑎𝑎) , where 𝑇𝑇(𝑟𝑟, 𝑎𝑎) is the set of red tokens generated from 𝑟𝑟’s VFlow for adaptation plan
a and 𝑝𝑝(𝑡𝑡) is an estimate of the probability that token 𝑡𝑡 does not represent an actual violation of a
verification process. We consider probability scaling, where

𝑝𝑝(𝑡𝑡) = 𝑀𝑀𝑃𝑃𝑃𝑃(𝑡𝑡)𝑀𝑀𝑉𝑉𝑉𝑉(𝑡𝑡)𝑝̂𝑝(𝑡𝑡)
with 𝑀𝑀𝑃𝑃𝑃𝑃(𝑡𝑡) a risk factor associated with changing a process, 𝑀𝑀𝑉𝑉𝑉𝑉(𝑡𝑡) a risk factor associated with
the VC and a verification condition, and 𝑝̂𝑝(𝑡𝑡) the quality that the planning process associates with
the adaptation plan. These values all appear in each red token 𝑡𝑡. The expected utility of an
adaptation plan is

𝐸𝐸[𝑈𝑈(𝑎𝑎)] = � �𝑤𝑤(𝑟𝑟) � 𝑝𝑝(𝑡𝑡)
𝑡𝑡∈𝑇𝑇(𝑟𝑟,𝑎𝑎)

�
𝑟𝑟∈𝑅𝑅

where 𝑤𝑤(𝑟𝑟) is the impact weight applied to a requirement 𝑟𝑟.

Figure 24: VFlow for R4.2 and Adaptation A2

Comparing the potential risk of adaptation on the reuse of the proof process means providing
values for the impact factors for 𝑝𝑝(𝑡𝑡). Starting with MVC, we assign VC conditions that match the
plan and are devastating (0.2 impact factor), worrisome (0.5 impact factor), and unconcerned (0.9
impact factor), where a higher impact factor has less impact. The lowest impact factor is chosen if
more than one condition matches. If there is no match, the MVC = 1.

For adaptation A1, auditRecord’s devastating condition “Set to null” is matched for R4.2 (Table
12, MVC = 0.2), but is only worrisome for R5 (Table 11, MVC = 0.5), since time-correlating the
auditTrail is unaffected, but dropping is problematic overall. For adaptation A2, insertionPoint’s
devastating condition “Continuous set to #auditTrail” is matched for R5 with MVC = 0.2. For R4.2,
this same condition is rated at unconcerned so its MVC = 0.9. For Adaptation A3, the match is with
insertionPoint’s unconcerned condition “Alter sorting performance”, making MVC = 0.9 for both

Approved for Public Release; Distribution Unlimited.
49

R4.2 and R5. Since the impact on the processes is the same, MPL = 0.5. The AU-12 requirements
are representative of the baseline security control and valued similarly. Therefore, we set w(r) = 1
for all requirements r. The planning process rates the quality of the plan. For A1: 𝑝̂𝑝 = 0.25, A2: 𝑝̂𝑝 =
0.6, A3: 𝑝̂𝑝 = 0.75.

Using the VFlows associated with requirements R4.2 and R5, the expected utility of A1-A3 is
calculated as follows from the resulting red tokens:

𝐸𝐸[𝑈𝑈(𝐴𝐴1)] = (0.25 ∗ 0.2 ∗ 0.5)3 + (0.25 ∗ 0.2 ∗ 0.5)3 = 2.60 × 10−4
𝐸𝐸[𝑈𝑈(𝐴𝐴2)] = (0.6 ∗ 0.9 ∗ 0.5)3 + (0.6 ∗ 0.9 ∗ 0.5)3 = 1.99 × 10−2
𝐸𝐸[𝑈𝑈(𝐴𝐴3)] = (0.75 ∗ 0.9 ∗ 0.5)3 + (0.75 ∗ 0.9 ∗ 0.5)3 = 7.69 × 10−2

Thus, adaptation plan A3 has the highest utility and is the least risky because of its plan to
increase the performance of the sorting technique by providing a rolling lower timestamp and
sorting only records less than the timestamp. As expected, A1’s plan to allow Audit to periodically
drop messages is the riskiest.

3.2.5 Deploying the Framework

 The Wearable Security Testbed

In order to embed formal verification on a physical device, an existing self-adaptive device is
needed. We used an in-house wearable security testbed that relies on Raspberry Pi 3 Model Bs to
simulate both the wearables and base stations. The testbed communicates between devices using
Bluetooth, a common communication protocol that has been shown to be vulnerable to attacks
(Walter, 2018b). The testbed allows developers and researchers to program directly on the device,
with direct control of the Bluetooth communication. We input the Raspberry Pis with a MAPE-
K (monitor, analyze, plan, execute, knowledge) loop for monitoring the data communication,
analyzing the packets being sent, planning an adaptation method, and executing the optimal
adaptation option. Each adaptation is designed to prevent an attacker from performing an attack.
We start with providing to the planner 2 potential adaptations should a vulnerability be detected
by wearable or base station.

• Send empty data packets, preventing an attacker from eavesdropping on data

communication or beginning a Man-in-the-Middle attack. Because the base station
remains connected, it is possible for the wearable to override this adaptation, allowing
an attacker to gain data through eavesdropping.

• Disconnect and await reconnection, preventing an attacker from eavesdropping but
potentially allowing a Man-in-the-Middle attack. Because the devices are
disconnected, there is a risk of a loss of data if the base station and wearable do not
reconnect.

The testbed uses an in-house developed self-awareness process, called fostering, to handle data

communication that was also pushed to the control of the MAPE-K loop. Fostering allows a

Approved for Public Release; Distribution Unlimited.
50

wearable that has become disconnected from its base station to learn of potentially insecure
environments by temporarily (for only a few packets) connecting to other devices in the area also
running the self-awareness application. These devices exchange no more than 2 data packets
containing the current security state of the area before disconnecting. The existence of fostering
gives rise to 2 additional adaptation options, for a total of 4 potential adaptive plans that are
accessible by the planner.

A1. Send empty data packets and disallow fostering
A2. Disconnect and disallow fostering
A3. Send empty data packets and allow fostering
A4. Disconnect and allow fostering

 Embedding Verification on Wearables

To prototype the algorithm for the CPN that expresses our verification contract with each
requirement in the wearable devices, we use the wearable testbed to simulate three self-adaptive
wearables.

• Heart Rate Variability Monitor (HRVM), which uses captured heart rate data over a

known period of time to determine the amount of stress a user is under
• Hearables, wearables which are designed to be worn in the ear, streaming audio data

from and accelerometer data to a base station
• Insulin Pump, a medical grade wearable that tracks a user’s blood glucose level and

receives instructions about when to administer insulin from a base station

3.2.5.2.1 Heart Rate Variability Monitor

To formally define the HRVM, we created pseudocode describing the general operation of the
wearable (Figure 25). From this pseudocode, we extract critical functional requirements of the
wearable.

HRVM1. The buffer does not overflow, leading to a loss of heart rate data
HRVM2. Data is not lost when the wearable has determined the wearer is in a stressed

state

To show these requirements are never violated, we formally prove them using the pseudocode.

Figure 26 shows the proof outline.

Approved for Public Release; Distribution Unlimited.
51

Figure 25: Pseudocode for the heart rate variability monitor

i  0
N  length(buffer)
L  length(buffer)
while (true)
do
 i++ //S1
 hr_rate_info  read(port1)
 buffer[i]  hr_rate_info
 connected_device_sync_request  read(port2)
 stressed  computeStressLevel(buffer)
 if (connected_device in list_of_valid_devices)
 then
 if (connected_device_sync_request) or (i mod N == 0 and connected) //S2 and S3
 then
 send(buffer)
 i  0
 buffer_change  false
 N  L
 else
 if (connected and streaming) //S4
 then
 send(hr_rate_info)
 i  0
 buffer_change  false
 else
 buffer_change  true //S5
 if (stressed and i == N) //S6
 then
 increaseBufferSize()
 buffer_change  true

Approved for Public Release; Distribution Unlimited.
52

Figure 26: Proof outline for heart rate variability monitor

From the proofs we extract VCs and formulate the VConds, as in Tables Table 13 and Table 14
for each requirement. For requirement HRVM1, the VCs are the state variables i (representing the
place in the buffer which data is read in to), N (the size of the buffer), connected_device (the device
that the HRVM is connected to), and send (the ability of the HRVM to send data to its base station).
Requirement HRVM2 has 6 VCs. The first 4 are the same VCs as requirement 1. The final 2 are
read (the ability of the HRVM to read data from the base station and from its own sensors) and
stressed (the value representing the stressed state of the user.

The VConds for Devastating, Worrisome, and Unconcerned are in Table 13 for requirement
HRVM1 and Table 14 for requirement HRVM2. Recall from the last report that changes which
are in the Unconcerned set have a very small chance of affecting the original proof reuse, while
changes in the Devastating set have a very large chance of affecting the proof reuse.

Table 13: Verification concern condition table for Requirement HRVM1

Mvc
HVRM1 Devastating (0.2) Worrisome (0.5) Unconcerned (0.9)

I
Remove i  0, set i > N, increase i by
more than 1 per state change, perform

i  0 in a different location

Set i < 0, decrease i by more than
1 per state change

N Reduce N, reset N where is it not
currently performed Increase N above L Increase N where is it not

currently performed
connected Inhibit connection Disconnect without altering N

Send Inhibit send while connected, Expect
send while disconnected Sending null data (empty

packets)

Proof Sketch for HRVM1
S1: i increases only if i < N (Read)
S2-S4: connected, i is set to 0 after send and buffer length is reset (Reset)
S5: not connected, i is set to 0 (Rewrite)
S6: not connected, N is increased (Increase)
Therefore, i is always at most N.

Proof Sketch for HRVM2
Assume R1: Inv (i ≤ N)
S1: next hr_rate_info is always added to the buffer and is not lost (Read)
S2 – S4: connected leads-to buffer send (so data in buffer is not lost) and reset to add next hr_info

into available spot (Reset)
S5: data is lost, but stressed is not determined (Rewrite)
S6: not connected and stressed leads-to buffer length increase to add next hr_info (so data in buffer

is not lost) (Increase)
Therefore, when a read is performed in a stressed state, the read is eventually stored in the buffer.

Approved for Public Release; Distribution Unlimited.
53

Table 14: Verification concern condition table for Requirement HRVM2

Mvc

HVRM2 Devastating (0.2) Worrisome (0.5) Unconcerned (0.9)
I Any change to i

N Reducing N when disconnected Increase N above L Increase N where is it not
currently performed

connected Inhibit connection Disconnect without altering N

Read Inhibiting read Adding more reads without buffer
and send accommodations

stressed Adding or removing stress from a
guard

Send Inhibit send while connected, Expect
send while disconnected Sending null data (empty

packets)

From the expected utility function shown in Equation 1, w(r) to be the weight of the
requirement. These weights are assigned by the developer based on the flexibility of the
requirement to the overall function of the wearable. Lower values mean the requirement is rigid in
its acceptance of change. Thus, the lower the value the more likely inhibiting proof reuse occurs,
which is represented by any alteration to the verification contract, affecting the risk of the
adaptation. For the HRVM, we assign a higher weight to requirement HRVM1. Requirement
HRVM1, not allowing the buffer to overflow, allows for some flexibility in how all stress data is
stored. In the case of a full buffer, overwriting old data will still allow stress data to be collected
and stored, thus fulfilling the primary purpose of the HRVM, though it does mean that individual
heart rate data will be lost, leading to a more rigid requirement HRVM2. The weights are listed
below.

• w(HVRM1) = 0.75
• w(HVRM2) = 0.35

The pseudocode in Figure 25 provides a description of the process flow diagramed in Figure

27, which is translated into the VFlow used by the Colored Petri Net (CPN) algorithm and
implemented within the simulated HRVM wearable on the testbed. We assign impact factors to
each process in the flow, to represent the risk of a change to that process as it affects proof reuse.
For the HRVM, we assign a value of MPL=0.5 to all processes, indicating a moderate impact for
both requirements.

Approved for Public Release; Distribution Unlimited.
54

Figure 27: Process flow for the HRVM

Because the plans are defined the same for each wearable and are statically placed in the
planner, their impact value, (p̂), is provided based on the security and social situational awareness
each plan provides. These weights are:

• p̂(A1) = 0.55
• p̂(A2) = 0.6
• p̂(A3) = 0.65
• p̂(A4) = 0.75

With all these values determined, the planner is capable of calculating the expected utility of

the adaptations. Equation 1 shows the expected utility function and Table 15 shows the results of
calculating the expected utility of the adaptations. For the HRVM, the least risky adaptation is A1,
sending empty data packets without allowing fostering. This status is because it changes the fewest
VCs, only affecting the send by sending empty packets in both requirements HRVM1 and
HRVM2. Adaptation A3, send empty packets with fostering, is not chosen because, when fostered,
the send must be prohibited. This status is because connecting to another device while fostering
requires the HRVM to not send data even though it is connected, resulting in a devastating value
for MVC.

 𝑬𝑬[𝑼𝑼(𝒂𝒂)] = ∑ �𝒘𝒘(𝒓𝒓) ∏ 𝑷𝑷(𝑺𝑺(𝒕𝒕) = 𝟏𝟏)𝒕𝒕∈𝑻𝑻(𝒓𝒓,𝒂𝒂) �𝒓𝒓∈𝑹𝑹 (1)

Equation 1: Equation used to determine the expected utility of the adaptation

Approved for Public Release; Distribution Unlimited.
55

Table 15: Calculation results for HRVM

An example of the VFlow as represented by the CPN, which runs directly on the HRVM, can

be seen in Figure 28. Note that the CPN is the same for each of the 4 adaptations. The pink tokens
contain information about the VCs and VConds, the blue tokens contain information about the
adaptation examination through the VFlow, and the red tokens are the alert values used by the
planner to determine the expected utility of the adaptation.

Figure 28: The Colored Petri Net for the HRVM running on the wearable

a r Mvc Mpl p ̂ P(S(t)=1) w(r) w(r) * P(S(t=1)) E[U(a)]
R1 0.9 0.5 0.55 0.2475 0.75 0.185625
R2 0.9 0.5 0.55 0.2475 0.35 0.086625
R1 0.5 0.5 0.6 0.15 0.75 0.1125
R2 0.5 0.5 0.6 0.15 0.35 0.0525
R1 0.9 0.5 0.65 0.2925 0.75 0.219375
R2 0.2 0.5 0.65 0.065 0.35 0.02275
R1 0.5 0.5 0.75 0.1875 0.75 0.140625
R2 0.2 0.5 0.75 0.075 0.35 0.02625

0.166875

A1 0.27225

A2 0.165

A3 0.242125

A4

Approved for Public Release; Distribution Unlimited.
56

3.2.5.2.2 Hearables

To formally define the hearables, we created pseudocode describing the general operation of
the wearable (Figure 29). From this pseudocode, we extract critical functional requirements of the
wearable.

Hear1. Music may be streamed from any connection
Hear2. The buffer may only be sent on an authorized connection
Hear3. Accelerometer data is always collected and temporarily stored

To show these requirements are never violated, we formally prove them using the pseudocode.

Figure 30 shows the proof outline.

Figure 29: Pseudocode for the hearable

i  0
N  length(buffer)
buffer_change  false
while (true)
do
 i++
 accelerometer_info  read(port1)
 buffer[i]  accelerometer_info
 if (any_connection)
 then
 playMusic(read(port2))
 else
 if (auth_connection and i > 0 and buffer_change)
 then
 send(buffer[1..i])
 i  0
 buffer_change  true
 else
 if (i == N and buffer_change)
 then
 i  0
 buffer_change  true
 else
 buffer_change  false

Approved for Public Release; Distribution Unlimited.
57

Figure 30: Proof outline of hearable requirements

From the proofs, we extract VCs and craft VConds as shown in Table 16-Table 18 for each
requirement. For requirement Hear1, the verification concerns are any_connection (used to
determine if there is a connection of any type), playMusic (used to play music to the wearer), and
read (used to read the music from the base station or the accelerometer data). Requirement Hear2’s
VCs are i (representing the place in the buffer which data is read into), send (the function to send
accelerometer data to the base station), read (used to read music from the base station or the
accelerometer data), and auth_connection (used to determine if the connection is an authorized
connection). For requirement Hear3, the VCs are i, buffer_change (used to recognize that the
buffer has been changed in some way), send, and read.

Table 16: Verification concern condition table for hearables requirement Hear1

Mvc

Hear1 Devastating (0.2) Worrisome (0.5) Unconcerned (0.9)

Any_connection Set to 0 when connected Set to 1 when not
connected

playMusic Inhibiting playMusic

Read Inhibiting read Read blocks due to no incoming
data

Proof Sketch for Hear1
S1: not affected (Read)
S2: Music is read and played if there is any connection (Play)
S3 & S4 not affected (Adjust)
Therefore, when there is a connection, music is played

Proof Sketch for Hear 2
S1: accelerometer is read and added to the buffer
S2: not affected
S3: Buffer is sent, up to i, only when connected to an authorized connection
S4: If no connection and buffer is full, overwrite the buffer
Therefore, the buffer is only sent when connected to an authorized connection

Proof Sketch for Hear 3
S1: accelerometer data is read and input into the buffer
S2: not affected
S3: Buffer is sent to base station, i is set to 0 to reset the buffer, and buffer_change is set

to true
S4: Buffer is full and cannot be sent, i is set to 0 to reset the buffer, and buffer_change is

set to true
Therefore, accelerometer data will always be collected and stored

Approved for Public Release; Distribution Unlimited.
58

Table 17: Verification concern condition table for hearables requirement Hear2

Mvc

Hear2 Devastating (0.2) Worrisome (0.5) Unconcerned (0.9)
i i > N i not reset when needed i=0

Send Inhibit send while connected to
authorized device Expect send while disconnected Send null data

Read Inhibit read

Auth_connection Set to 1 when not connected to
authorized device

Set to 0 when connected to
authorized device

Set to 0 when not
connected to authorized

device

Table 18: Verification concern condition table for hearables requirement Hear3

Mvc
Hear3 Devastating (0.2) Worrisome (0.5) Unconcerned (0.9)

i i>N i not reset when needed i=0

Buffer_change Set to false when change has been
made Set to true when no change made

Send Inhibit send while connected to
authorized device Expect send while disconnected Send null data

Read Inhibit read

For w(r), we assign a lower weight (more rigidity) to requirement Hear1, since playing music

is the primary purpose of the hearables. Requirement Hear3 has more flexibility for change but is
more rigid than requirement Hear2 as accelerometer data always being collected is important for
hands-free control of the hearables and the music playing features. It is not a problem if the buffer
is not sent on an authorized connection, as overflowing the buffer does not cause a problem for the
hearables. The weights are listed below.

• w(Hear1) = 0.35
• w(Hear2) = 0.75
• w(Hear3) = 0.5

For the hearables, the process flow is very similar to the HRVM flow shown in Figure 27.

However, there is the addition of a ‘Play’ process after the ‘Adjust’ process to account for the need
to play music. We assign a value of MPL=0.5 for ‘Initialize’ and ‘Adjust’, indicating a moderate
impact for the requirements, and a value of MPL=0.3 for ‘Play,’ indicating a major restriction on
changes to that process.

We use the same values for p̂ as in the HRVM for the static adaptations. These retained values
force the wearable to use its verification awareness directly on determining the least risky plan,
illustrating the differences that verification awareness makes. Table 19 shows the results of
calculating the expected utility of the adaptations. For the hearables, the least risky adaptation is
A4, disconnecting and fostering. This status is because, for the sending empty packets adaptations,
remaining connected requires the inhibiting of the read for Hear2 and Hear3, as any connection

Approved for Public Release; Distribution Unlimited.
59

with the hearables base station will result in the reading of music data from the base station to be
inhibited to maintain the empty packet solution.

Table 19: Calculation results for the hearables

3.2.5.2.3 Insulin Pump

To formally define the insulin pump wearable, we created pseudocode describing the general
operation of the wearable (Figure 31). From this pseudocode, we extract critical functional
requirements of the wearable.

IP1. The buffer may never be full when blood sugar level is high
IP2. The insulin pump only connects to authorized base stations
IP3. Insulin is administered when blood sugar levels are too high

To show these requirements are never violated, we formally prove them using the pseudocode.

Figure 32 shows the proof outline.

a r Mvc Mpl p ̂ P(S(t)=1) w(r) w(r) * P(S(t=1)) E[U(a)]
R1 0.5 0.5 0.55 0.1375 0.35 0.048125
R2 0.2 0.5 0.55 0.055 0.75 0.04125
R3 0.2 0.5 0.55 0.055 0.5 0.0275
R1 1 0.5 0.6 0.3 0.35 0.105
R2 0.9 0.5 0.6 0.27 0.75 0.2025
R3 0.9 0.5 0.6 0.27 0.5 0.135
R1 0.5 0.5 0.65 0.1625 0.35 0.056875
R2 0.2 0.5 0.65 0.065 0.75 0.04875
R3 0.2 0.5 0.65 0.065 0.5 0.0325
R1 0.9 0.5 0.75 0.3375 0.35 0.118125
R2 0.9 0.5 0.75 0.3375 0.75 0.253125
R3 0.9 0.5 0.75 0.3375 0.5 0.16875

A4 0.54

A1 0.116875

A2 0.4425

A3 0.138125

Approved for Public Release; Distribution Unlimited.
60

Figure 31: Pseudocode for the insulin pump

i  0
N  length(buffer)
L  N
D  max_blood_sugar_allowed
while (true)
do
 i++
 blood_sugar_info  read(port1)
 administer_insulin  read(port2)
 buffer[i]  computeBloodSugar(blood_sugar_info)
 if (connected and auth_connection and i < N)
 then
 send(buffer[1..i])
 i  0
 N  L
 else
 if (i == N and bloodSugarLevel(buffer) ≤ D)
 then
 i  0
 N  L
 else
 if (i == N)
 then
 N  increase(N)
 if (bloodSugarLevel(buffer) ≥ D or administer_insulin)
 then
 administerInsulin()

Approved for Public Release; Distribution Unlimited.
61

Figure 32: Proof outline of the insulin pump requirements

From these proofs, we extract the VCs and craft the VConds associated with each requirement
and shown in Table 20-Table 22. For requirement IP1, the VCs are i (representing the place in the
buffer which data is read into), N (the size of the buffer), connected (representing if the insulin
pump is connected to a base station), and send (the function to send information to the base station).
Requirement IP2’s verification concerns are auth_connection (used to determine if a connection
is an authorized connection) and connected. For requirement IP3, the verification concerns are
read (used to read both the current blood sugar levels and data streamed from the base station),
administer_insulin (used to administer insulin directly to the wearer), bloodSugarLevel (a
calculation which determines the blood sugar level of the wearer), and D (the maximum safe blood
sugar level for the wearer).

Proof sketch for IP1:
S1: i increases only if i < N (read)
S2: i is set to zero after send and buffer length is reset (reset)
S3: i is set to zero and buffer length is reset (rewrite)
S4: not connected, N is increased (increase)
S5: no change to buffer (Administer)
Therefore, i is always at most N

Proof sketch for IP 2:
S1: no change
S2: send is only called if connected to an authorized device
S3-S5: not applicable for authorized connections
Therefore, i will only connect to authorized base stations

Proof sketch for IP 3:
S1: Reads if it needs to administer insulin from the base station
S2-S4: no change to insulin
S5: Insulin is administered if base station is connected the pump to administer or

 if blood sugar level is too high
Therefore, insulin is administered when blood sugar level is too high

Approved for Public Release; Distribution Unlimited.
62

Table 20: Verification concern condition table for IP1

Mvc

IP1 Devastating (0.2) Worrisome (0.5) Unconcerned (0.9)
i Remove i := 0, set i > N, increase i

by more than 1 per state change, set i
to 0 where it is not currently

performed

Set i < 0, decrease i by more than
1 per state change

N Reduce N, reset N to L where is it
not currently performed

Increase N above L Increase N where is it not
currently performed

connected Inhibit connection Disconnect without altering N
send Inhibit send while connected, Expect

send while disconnected
 Sending null data (empty

packets)

Table 21: Verification concern condition table for IP2

Mvc

IP2 Devastating (0.2) Worrisome (0.5) Unconcerned (0.9)

Connected Set to true when connected to non-
authorized device

Set to false when connected to
an authorized device

Auth_connection Set to true when connected to non-
authorized device

Set to false when connected to
authorized device

Table 22: Verification concern condition table for IP3

Mvc

IP3 Devastating (0.2) Worrisome (0.5) Unconcerned (0.9)
Read Inhibit read Read null data

Administer_insulin Set to false when instructed to
administer

Set to true when not told to
administer

Unable to set
administer_insulin

bloodSugarLevel Prevent processing
D Value of D raised Value of D lowered

For w(r) we assign a lower weight to requirement IP3, since administering insulin is the primary

purpose of the insulin pump. Requirements IP1 and IP2 are given the same weights. Both the buffer
never being full in a high blood sugar state and the sending of the buffer to only authorized devices
are equally important for the insulin pump. The weights are listed below.

• w(IP1) = 0.75
• w(IP2) = 0.75
• w(IP3) = 0.5

The pseudocode for the insulin pump is very similar to the flow for the HRVM shown in Figure

27. However, there is an addition of a ‘Administer’ process after the ‘Adjust’ process to account
for the additional need to provide insulin if the wearer is in a dangerous state. We assign impact

Approved for Public Release; Distribution Unlimited.
63

factors to each process as follows: MPL=0.5 for ‘Initialize’ and ‘Adjust’, indicating a moderate
impact for the requirements, and MPL=0.1 for ‘Administer,’ indicating a major impact for the
requirement.

We use the same values for p̂ as in the HRVM, as the adaptations remain static from the
perspective of the planner. Table 23 shows the results of calculating the expected utility of the
adaptations. For the insulin pump, the least risky adaptation is A2, disconnecting without fostering.
The insulin pump is capable of providing insulin in an emergency without input from its base
station. Neither adaptation A3 nor adaptation A4 are chosen because fostering will cause
connected to become true when connected to an unauthorized device to foster. In this case, both
adaptation A1 and A2 are equally risky, so A2 is chosen based primarily on its higher p̂ value.

Table 23: Calculation results for the insulin pump

The implementation exercise reported this quarter allowed us to assess both efficacy and
performance of the algorithm. We knew that none of the CPN tools available would provide what
we needed because of their lack of APIs. However, we needed the algorithm to respond rapidly
with the risk assessment results, which was achieved. The use of static plans was a first step in
making the direct change to the code. Additional infrastructure will need to be embedded into the
component to accommodate dynamic changes at runtime from the coding standpoint. We believe
the algorithm for risk assessment will remain viable.

a r Mvc Mpl p ̂ P(S(t)=1) w(r) w(r) * P(S(t=1)) E[U(a)]
R1 0.9 0.5 0.55 0.2475 0.75 0.185625
R2 1 0.5 0.55 0.275 0.75 0.20625
R3 0.5 0.5 0.55 0.1375 0.5 0.06875
R1 0.5 0.5 0.6 0.15 0.75 0.1125
R2 1 0.5 0.6 0.3 0.75 0.225
R3 0.9 0.5 0.6 0.27 0.5 0.135
R1 0.9 0.5 0.65 0.2925 0.75 0.219375
R2 0.2 0.5 0.65 0.065 0.75 0.04875
R3 0.9 0.5 0.65 0.2925 0.5 0.14625
R1 0.5 0.5 0.75 0.1875 0.75 0.140625
R2 0.2 0.5 0.75 0.075 0.75 0.05625
R3 0.9 0.5 0.75 0.3375 0.5 0.16875

0.460625A1

A2 0.4725

A3 0.414375

A4 0.365625

Approved for Public Release; Distribution Unlimited.
64

3.2.6 Designing and Evolving Security Assurance Cases within the
Framework

 Representing Security Controls as Assurance Cases

The NIST SP800-53(NIST, 2013) has become the de facto standard for security compliance
best practices to protect information confidentiality, integrity, and availability. The document
details 18 security control families that house security requirements with which companies
working with the US government must demonstrate compliance. A self-adaptive information
system complying with designated security controls means (1) compliance must be guaranteed at
an expected confidence level, (2) mechanisms deployed to enable security controls should not be
deleted as part of an adaptation, and (3) the system should have awareness of its security controls,
mechanisms enabling their effectiveness, and dependencies between controls to reduce conflict
and change propagation effects.

Figure 33 shows the SC-8 Transmission Confidentiality and Integrity security control. The
“SC” stands for the control family “System and Communications Protection”. Figure 33 includes,
as an example, one of the four control enhancements to SC-8. In SC-8, the information system
must have a functional mechanism to perform the selected protections (e.g. confidentiality and/or
integrity). Omitted from Figure 33 are the supplemental guidance statements that provide an
overview of the control and enhancement.

Other aspects of the security control statement that are relevant for system security awareness
are the Selection/Assignment blocks and Related controls. The appearance of
[Selection/Assignment: …] in a control statement provides the organization with the opportunity
to explicitly tailor the controls across the entire organization, certain segments of the organization,
or specific information systems. Related controls list external controls with which there exists an
interdependency, though it may depend on the instantiated values imposed by tailoring.

The challenge to providing security awareness to a self-adaptive system is three-fold: (1) the
security control must be expressed in a way that separates, yet captures the statement information,
(2) how compliance is guaranteed in the system should be made explicit but at different abstraction
levels, and (3) change must be introduced into the representation in such a way that its effect is
understood and assessable. To address the security awareness challenge, we rely on assurance case
concepts. Because the NIST SP800-53 controls generally follow the statement structure in Figure
33, we define a security assurance case template, shown in Figure 34, using Goal Structuring
Notation (GSN) that expresses the pattern of the security control while allowing for compliance
guarantees to be represented as claim or goal arguments. A security assurance case can instantiate
the template by providing the values of the parameters indicated by curly braces.

Approved for Public Release; Distribution Unlimited.
65

Figure 33: SC-8 Security Control Statement with Enhancement SC-8(1)

In Figure 34, Goals are represented as rectangles. The security control is the main assurance
case Goal, which can have 0 or more enhancements that depend on it shown by the SupportedBy
link (filled arrow). It is dependent on 0 or more related controls. Context nodes (ovals) attached to
goals through the InContextOf link (hollow arrow) provide environment and state information.
The main Goal can have 0 or more tailoring Context nodes to express selection and/or assignment.
In GSN, the argument that supports the claim extends from an assessment Strategy (parallelogram)
that may contain subgoals on which the argument depends. These subgoals may be defined in
lower level Modules (folder shape), such as process-specific operational goals related to an
assessment method. For security controls, assessment methods can include examination, model
checking, requirements verification, and testing. The assessments provide the evidence needed for
the Solution (circle). We introduce an additional Context node as a numeric measure [0..1] of how
flexible the satisfaction of the goal is to the full certification effort, which may be based on its
singular importance or its interdependencies that could negatively impact certification through the
propagation of compliance violation. A triangle associated with a GSN node means the node is
abstract or uninstantiated. The joined triangles mean the node is both undeveloped and
uninstantiated. The impact baseline allocation is provided. The “provides” attribute holds the
provision set of state variables and conditions that are part of the mechanisms needed for
compliance with the security control. This set flows through a SupportedBy link that is augmented
with a diamond to indicate the security control source for the provision set. In Figure 34, provision
sets flow to the main control from related controls and enhancements. The achievement weight,
𝑎𝑎𝑤𝑤, is assigned to all goals. It holds the current value calculated at the goal for assessing the
satisficing level of the main goal as discussed in Section 3.2.7.5.

SC-8: TRANSMISSION CONFIDENTIALITY AND INTEGRITY
Control: The information system protects the [Selection (one or more): confidentiality; integrity]

of transmitted information.
Related controls: AC-17, PE-4.

Control Enhancements:

(1) TRANSMISSION CONFIDENTIALITY AND INTEGRITY | CRYPTOGRAPHIC OR
ALTERNATE PHYSICAL PROTECTION

The information system implements cryptographic mechanisms to [Selection (one or more):
prevent unauthorized disclosure of information; detect changes to information] during transmission
unless otherwise protected by [Assignment: organization-defined alternative physical safeguards].

Approved for Public Release; Distribution Unlimited.
66

Figure 34: GSN Template for a Security Assurance Case

 Case Study using Smart Inventory Management System (SIMS)

To demonstrate our security assurance case adaptation approach, we use our Smart Inventory
Management System (SIMS) discussed in Section 3.2.2. We impose the SC-8 security control
from Section 3.2.6.1 in which an information protection mechanism has been implemented at
Measure and Process for secure transmission.

Suppose that during execution, the SIMS Audit MAPE-K loop monitor detects that an incoming
transmission channel is malfunctioning. Analysis determines a correction is needed, triggering the
planner to generate potential adaptations, such as:

A1: Disable confidentiality service protecting channel. There may be a conflict between
the integrity and confidentiality protection services requiring correction. The
organization places a higher priority on integrity.

A2: Store data locally and transmit data in a batch when channel is restored. Shutting down
the channel temporarily would not compromise protection.

A3: Activate and perform transmission through another channel. Activate redundant
channels with their own protection services according to priority use, to allow deeper
analysis of the original channel malfunction.

 Figure 35 instantiates the security assurance case template (Figure 34) for SC-8 given the SIMS
behavior expectations. The enhancement SC-8(1) is a GSN Away Goal dependent on SC-8’s
compliance guarantee. SC-8 depends on related controls AC-17 and PE-4, also notated as Away
Goals. The Selection tailoring appears in Context nodes C1 and C2, showing that both
confidentiality and integrity should be protected in transmission. SC-8 has a moderate flexibility
value (0.60 in Context node C3). Since it appears in the related controls of many other controls, a

Approved for Public Release; Distribution Unlimited.
67

change could impact the overall security certification. The argument Strategy (S1) to satisfy SC-8
relies on a module (M1) for the argumentation of the transmission process.

Figure 35: Security Assurance Case for SC-8

Figure 36 shows the expanded module M1’s contents for the transmitInformation process. The
top-level goal of the module is that transmitInformation has a satisfactory impact on the assessment
process, requiring guarantees with three operational goals that check the protection services
(OpGoal G-1), check the channel used (OpGoal G-2), and ensure that the transmission is
performed without interruption (OpGoal G-3).

Approved for Public Release; Distribution Unlimited.
68

Figure 36: Expanded GSN Module for transmitInformation

 Adapting Assurance Cases

Given that functional adaptations can affect security control compliance, adaptations configured
by the MAPE-K loop should be reflected in related security assurance cases so that confidence and
risk levels of the adaptations can be assessed. We assume that the planner can represent the
parameters of the adaptation as a set of tuples, ChangeSet, formulated around state variables
affected by the change and understood by an Adaptation Operator Manager (AOM) within the
planner that oversees the security assurance cases. The AOM currently considers two high-level
types of adaptations: (1) those that make a direct change to the state variables within the code, and
(2) those that indirectly alter behavior of the state variables by modifying the code. For type (2), it
considers two subcategories: (i) those that introduce new functionality that may include new state
variables in support of the system’s goals, and (ii) those that replace functionality with new
functionality relying only on existing state variables. To accommodate the AOM, the ChangeSet
includes state (contextual) and process changes, evidence for ensuring functional accuracy, and a
rationale for the adaptation, as follows:

ChangeSet =
 {(stateVar, newState, changeCond, evidence, rationale)1,…,
 (stateVar, newState, changeCond, evidence, rationale)N}

Approved for Public Release; Distribution Unlimited.
69

where stateVar is an existing variable to be changed to newState, changeCond constrains stateVar
in the adapted system, evidence is the available argument support for the change, and rationale
describes the anomaly detected.

The planner’s expression of the internal constraints of changeCond may introduce a newly
created state variable, newVar, that impacts the existing stateVar, or a new function, newFunc,
that is part of the adaptation. Both newVar and newFunc can be null, but newVar cannot be
introduced without newFunc. Using changeCond, the AOM assigns one of three operators,
ChangeVal, Support, or Substitute. ChangeVal and Substitute both apply only to existing state
variables. ChangeVal is directed toward a tailored state variable found in Context nodes, while
Substitute is directed toward state variables that are not part of tailoring but are targeted by the
new functionality designated in the ChangeSet. Support works with a new state variable that is
part of the new functionality introduced by ChangeSet. The AOM crafts the operators to adapt
affected security assurance cases using the following rules.

Rule 1:
IF newVar = null & newFunc = null

THEN ChangeVal(stateVar, newState, evidence, rationale)

Rule 2:
IF newVar ≠ null & newFunc ≠ null

THEN Support(stateVar, newVar, newFunc, evidence, rationale)
Rule 3:
IF newVar = null & newFunc ≠ null

THEN Substitute(stateVar, newState, newFunc, evidence, rationale)

Given Rule 1, when both newVar and newFunc are null in changeCond, it indicates a direct
change to a state variable. Thus, the targeted stateVar will be forced to change state to newState as
part of the adaptation, yielding

ChangeVal(stateVar, newState, evidence, rationale)

ChangeVal is applied to a Context node within any security assurance case that holds the

assignment of the affected state variable. The operation does not cause a change to the structure of
the security assurance case as it only impacts an existing context node. The Context node change
could affect the satisfaction of the goal and any security control that depends on that goal
satisfaction. The adaptation A1 in Section 3.2.6.2 involves disabling confidentiality protection for
data transmission on the main channel. For A1, the planner configures ChangeSetA1 as

ChangeSetA1 = {(cProtect, false, (null, null), null, “channel malfunction”)}

Since newVar = null and newFunc = null within the changeCond of ChangeSetA1, the AOM

triggers the following ChangeVal operator using Rule 1

ChangeValA1(cProtect, false, null, “channel malfunction”)

Approved for Public Release; Distribution Unlimited.
70

The operation modifies the context node in the security assurance case for SC-8 (and possibly

others), because the assurance case houses the assigned value for cProtect. The change is shown in
C1 of Figure 37.

Figure 37: Adaptation change in context node by ChangeVal Operation

An adaptation can maintain a state variable but introduce new functionality to use it in a different
way. This scenario is reflected within changeCond in the ChangeSet by introducing new variables
and functions that work with an existing state variable. We restrict changeCond to have at most one
new state variable introduced as part of the new functionality. In this adaptation scenario, the AOM
activates the Support operator using Rule 2.

Support(stateVar, newVar, newFunc, evidence, rationale)

The Support operation changes the security assurance case structure by incorporating a new
argument subtree containing a goal node that describes the new supporting functionality as
introduced by the adaptation. The adaptation A2 in Section 3.2.6.2 introduces functionality to
locally store and enable batch transmission of data, while maintaining the state of streamInfo to
satisfy the OpGoal: G-3 subgoal of Module: M1 within the SC-8 security assurance case (see Figure
38). The planner configures ChangeSetA2 to express the changes

ChangeSetA2 =

{(streamInfo, null, (localStorage, store(streamInfo, localStorage)),
storageLog, “channel malfunction”),

 (streamInfo, null, (batchTransmission, enable(batchTransmission)),
checkBatchTransmission , “channel malfunction”)}

Within ChangeSetA2 there are two tuples that express a change that needs state variable
streamInfo without directly changing its state. Given the changeCond information, the AOM
identifies the need for two Support operations that introduce two new state variables (localStorage
and batchTransmission) and their new functions (store and enable). The operations are:

SupportA2.1(streamInfo, localStorage, store(streamInfo, localStorage),

 storageLog, “channel malfunction”)
SupportA2.2(streamInfo, batchTransmission, enable(batchTransmission),

 checkBatchTransmission, “channel malfunction”)

Approved for Public Release; Distribution Unlimited.
71

The change to the security assurance case for SC-8 is shown in Figure 38. OpGoal G-3 now has
two new subtrees to form the new arguments representing the adaptive functionality. Goal G-
3(Sub1) represents the functionality for storing the data locally (SupportA2.1) and Goal G-3(Sub2)
represents the functionality for transmitting the batch data (SupportA2.2). These two subgoals are
supported by Solution evidence provided by the planner (storageLog and
checkBatchTransmission). Given their satisfaction, the OpGoal G-3 is still considered to perform
transmission without interruption. The overall security certification would be affected if the new
subgoals caused a failure in satisfying a higher-level goal.

Recall that a mechanism that is deployed to guarantee the effectiveness of a security control
cannot be removed entirely without violating that guarantee. The current assumption is that the
planner configures adaptations that retain these mechanisms. Thus, when functionality must be
replaced, the planner can only change lower level processes to minimize security assurance case
failure. For these cases, the AOM uses the Substitute operator as seen in Rule 3 to produce the
following.

Substitute(stateVar, newState, newFunc, evidence, rationale)

The operation replaces the goal associated with stateVar with an alternative goal describing the
new functionality. Adaptation A3 assumes that each channel has a priority field. It introduces the
priorityReplace(channel, newChannel) function that embeds a priority field comparison and
replaces the existing malfunctioning channel with another channel that is available in the system.
The planner configures the following ChangeSetA3:

ChangeSetA3 = {(channel, newChannel, (null, priorityReplace(channel, newChannel)),

 checkChannel, “channel malfunction”)}

Using ChangeSetA3 the AOM identifies the change as a Substitute operation because it does not
introduce a new state variable but only introduces a new function to replace the current channel
with a new channel at the correct priority level, which occurs only within a Goal node. The
Substitute operation is configured as

SubstituteA3(channel, newChannel, priorityReplace(channel, newChannel),

 checkChannel, “channel malfunction”)

Approved for Public Release; Distribution Unlimited.
72

Figure 38: Adaptation change in transmitInformation by Support Operation

As shown in Figure 39, the adaptation updates the OpGoal: G-2 in Module: M1 of SC-8 to reflect
that the current channel now relies on a priority. The Solution node remains the same.

Figure 39: Adaptation change in checkChannel by Substitute Operation

One challenge in adapting the security assurance cases is that security controls have
interdependencies, as shown in the presented template. Thus, we will be investigating how to create
operators that propagate the adaptation to all dependent controls. To automate the instantiation and
adaptation, we will examine how best to implement the security assurance cases, such as using
XML, and implement the AOM into the MAPE-K control loop to directly adapt the assurance case
as the code is adapted.

Approved for Public Release; Distribution Unlimited.
73

3.2.7 Evaluating Security Assurance Case Adaptations

 Returning to Security Assurance Cases

For the security assurance cases, we continue to use the NIST SP800-53 security controls. We
return to the use of audit controls, AU-4, AU-5, and AU-5(1) as shown in Figure 40. A security
control associates a title with each identifier. AU-4 refers to the 4th control within the Audit family
of controls. The actor is either the information system or the organization. The control statement
follows the actor designation. It may be a single statement, like AU-4, or separated into distinct
parts, like AU-5(a) and AU-5(b). The statement can contain a mix of functional and non-functional
requirements. Tailoring, a major part of security control certification, is performed when the
organization instantiates what is required by the [Assignment: …] for the information system under
consideration.

The related controls infer a dependency relationship among the controls. For AU-5, they are
AU-4 and SI-12. There are other controls that tag AU-5 as a related control, such as AU-4, with
different dependencies. The relationships may be tightly coupled, where AU-5 relies on the audit
storage capacity determined in AU-4, or loosely coupled, where AU-4 provides AU-5 with a
parameter it obtains from its related control AU-11. These inter-dependencies can be used to assess
the impact of a self-adaptation on not just a single security control, but on the network of security
controls. AU-5(1) is a control enhancement, which provides additional specification decisions and
constraints. The related controls can be inherited from the main control or the enhancement can
have its own related controls that are not shared with the main control. Controls are assigned to a
baseline set related to the impact on the confidentiality, integrity, or availability of the system if a
breach occurs. For example, AU-5 appears in the baseline set for moderate impact, while AU-5(1)
appears in the baseline set for high impact systems.

Approved for Public Release; Distribution Unlimited.
74

Figure 40: Security Controls AU-4, AU-5, and AU-5(1)

The NIST SP800-53A (NIST, 2014) companion to the 800-53 (NIST, 2013), provides

assessment guidelines for each security control. Figure 41 shows the guidelines for AU-5(1).
Notice that it dissects the security control statement into evaluative portions, providing distinct
labels for each portion. We use both the security control and its guidelines to create and instantiate
a security assurance case for a specific information system using GSN.

Approved for Public Release; Distribution Unlimited.
75

Figure 41: AU-5(1) Assessment Guidelines

 Reusing the Smart Inventory Management System (SIMS) Case Study

We demonstrate security assurance case expression, evolution, and satisficing evaluation on a
sample Smart Inventory Management System (SIMS) mentioned in Section 3.2.2. The process
flow for SIMS appears in Figure 42. Process flow understanding is needed because it is possible
to formally express the low-level functionality that is part of a security control and directly prove
the implementation complies with it as we have shown in a prior report. A formal proof can be
part of the argument needed within a security assurance case as described in the next section.

Figure 42: SIMS Audit Component Processes

Approved for Public Release; Distribution Unlimited.
76

The MAPE-K loop in each SIMS’s component monitors for anomalies in the system and
activates the planner to generate an adaptation. The checkCongestion process in Figure 42 provides
the monitor with information about the input queue. Imagine that the monitor has received a certain
pattern of information from checkCongestion that causes it to invoke the analyze phase. Here it is
determined that the input queue is filling too rapidly for Audit, but that Measure and Process are
not the problems. The planner configures three potential adaptations.

A1: Increase the capacity ratio limit, delaying the generation of an audit trail capacity alert.
A2: Introduce a new storage buffer and alter Audit to offload older records in its audit trail to

the new buffer.
A3: Change Audit to overwrite old records and disable capacity alert within the same audit trail.

We return to these adaptations after introducing the assurance cases for the security controls.

 Creating Security Assurance Case for AU-5(1) in the New Template

Given that 800-53 security controls have a similar structure as in Figure 40, we extend a GSN
template for security assurance cases to allow for dependency and achievement weight expressions
as shown in Figure 34. The 800-53A directs the expansion of the assurance case into subgoals,
context elements, and strategies for each control. Evidence can be formulated by multiple means,
such as testing, model checking, and proof. We express the template in XML, based on CertWare
(CertWare, 2007) but without the use of its display facilities to allow for more coding flexibility.

Figure 43 instantiates the security assurance case template for AU-5(1) using 800-53A labels.
The subgoal Req1 is a functional requirement represented by an invariant expressed in Linear
Temporal Logic, as “it is always the case that the audit trail size is less than the capacity ratio limit
associated with the record storage capacity or an alert occurs.” The context nodes in the
instantiation have the tailoring for capRatioLimit and the various alert parameters segregated in
Figure 41. AU-5 holds the capacity value in its provision set for AU-5(1) that it acquires from its
dependency on AU-4. AU-5(1) assigns the value of capAlert which it provides to AU-5. The
modules M1-M6 are the operational goals related to the process flow for SIMS in Figure 42.

 Adapting Assurance Cases

To illustrate performing and evaluating an adaptation on a security assurance case, we expand
Module M5 in Figure 43 to show the argument of maintaining a satisfactory impact on the
checkCapacity process. Figure 44 shows the expanded module for M5, which has the argument
over the proof process of our system. The proof process is modeled as operational goals to maintain
the invariant subgoal from Figure 44.

We assume the MAPE-K loop planner can describe the needed changes to the XML that
represents the security assurance case and construct the adapted assurance cases for A1 through
A3 as described in Section 3.2.7.2.

Approved for Public Release; Distribution Unlimited.
77

Figure 43: Security Assurance Case for AU-5(1)

Adaptation A1 directly affects the assurance case for AU-5(1) by changing the capRatioLimit
tailored value in the context node Context: AU-5(1)[3] of Figure 43. Figure 45 reflects the change
to the adapted Context: AU-5(1)[3] node, where the tailored value increases from 75% to 90%. It
also includes the XML for that context node where the adaptation increases capRatioLimit as
shown on line 31. The impact to the achievement weight is shown on line 34.

Approved for Public Release; Distribution Unlimited.
78

Figure 44: Expanded checkCapacity Module

Figure 45: AU-5(1) with Adaptation A1

Adaptation A2 introduces a new buffer into the Audit component, but AU-5(1)’s assurance case
has no solution node to satisfy the new subgoal. Because there exist security controls that refer to
offloading audit records to alternate storage, we assume the planner can reuse the evidence that
such logging is sufficient to comply with operation goal G-6.

Figure 46 reflects the adapted operational goal G-6 from Figure 44 for adaptation A2. This
adaptation introduces a new branch for G-6 to be satisfied with an argument using an external
buffer to store older records in the audit trail through G-6(Sub1), G-6(S1), G-6(EVD1). The XML
produced by the planner reflects the argument additions. Line 31 shows a reduced achievement
weight to 0.5, reflecting the potential for a negative impact on the goal. The goal for the new
supporting argument is added at line 34.

Approved for Public Release; Distribution Unlimited.
79

Figure 46: AU-5(1) with Adaptation A2

Figure 47 shows the affected operational goals G-4 and G-6 from Figure 44 due to adaptation
A3. The adaptation affects G-6 and G-4 by substituting their functions with overwriting older
records and disabling the capacity alert, respectively, to satisfy module M5’s goal. The XML lines
31and 35 indicate the reduced achievement weights to 0.2 that impact the goal specified in line 12.

Approved for Public Release; Distribution Unlimited.
80

 Goal Satisficing Level Determination using Achievement Weights

Maintaining the security control in the self-adaptive system is a non-functional requirement.
We represent each main security control as a softgoal and use the subgoals and operational goals
from its security assurance case to create direct edges that form a Softgoal Interdependency Graph
(SIG) (Mylopoulos, 1992). The SIG results in a tree with only AND relationships. We adapt the
Soft Goal using Weight (SGW) approach (Kobayashi, 2016), to determine the satisficing level of
the assurance case. A modified vulnerability metric calculation (Wei, 2018) provides the
achievement weight of each softgoal. Satisficing calculations can indicate the impact of an
adaptation on the security assurance case, including propagation of required state values from other
security controls. The remainder of the section defines the formulas used and their adaptations.
We show how the achievement weights and satisficing levels are calculated for adaptations A1-
A3 and the level of satisficing that results from each.

Figure 47: AU-5(1) with Adaptation A3

Using the SGW approach, we define a softgoal interdependency graph, SIGA, for the security
assurance case, A, as a tree of goals with the main security goal, 𝑚𝑚𝐴𝐴, as the root. SIGA = (GA,
DA) where

Approved for Public Release; Distribution Unlimited.
81

• GA = {𝑚𝑚𝐴𝐴} ∪ OA
• OA = set of subgoals and operational goals for A that support the main security control, 𝑚𝑚𝐴𝐴

(root)
• For all goals 𝑔𝑔 ∈ GA, 𝑎𝑎𝑤𝑤(𝑔𝑔) is the achievement weight calculated for that goal.
• DA = the set of edges (p, c), representing dependencies among the parent (p) and child (c)

goals in SIGA.

Figure 48: Sample Security Control Network

The related security controls introduce inter-dependencies that form a network of security
controls. As assurance cases, they only have knowledge of the controls on which they depend.
However, from the MAPE-K loop perspective, the inter-dependencies can be traversed as an
adaptation is evaluated. A partial dependency graph appears in Figure 48. The links specify the
provision sets passed from source (diamond) to target control. This expression facilitates the
propagation impact evaluation of an adaptation.

Approved for Public Release; Distribution Unlimited.
82

The security control network (SCN) = (M, DM), where

• M = {⋃ 𝑚𝑚SIG }, the set of all SIG root goals
• DM = set of weighted, directed edges with provision sets representing dependencies among

security controls (Figure 48).

The community structure advocated by vulnerability metric calculation provides for a higher
degree of influence across the edges. In our representation, a security control and its enhancements
form a natural community, as represented by the green box surrounding AU-5 and AU-5(1) in
Figure 48. To calculate 𝑎𝑎𝑤𝑤(𝑔𝑔) for 𝑔𝑔 ∈ GA, we measure the vulnerabilities of the community
structure in the SCN. The achievement weight is inversely related to a community’s vulnerability.

Achievement weight is then defined for a SIGA as

 𝑎𝑎𝑤𝑤(𝑔𝑔) = 𝐼𝐼(𝑔𝑔), for leaf nodes, 𝑔𝑔 ∈ OA
 = 𝑎𝑎𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣�𝑎𝑎𝑤𝑤(𝑐𝑐)�, for all 𝑐𝑐 ∈ 𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑔𝑔) for non-leaf nodes, 𝑔𝑔 ∈ GA

where 𝐼𝐼(𝑔𝑔) is the impact factor defined on the state variables supporting the operational goals at
the SIG leaves. Currently, 𝐼𝐼(𝑔𝑔) must be determined by the certifiers prior to deployment given
potential changes to state variables and the organization’s risk policy.

Table 24 provides sample values for 𝐼𝐼(𝑔𝑔) related to the state variables affects by adaptations
A1-A3. A lower value has more negative impact on achievement weights. In a community, the
control enhancements (e.g. AU-5(1)) propagate their achievement weights to their community
parent (e.g. AU-5) as one of its edges.

Table 24: Sample Impact Table

𝐼𝐼(𝑔𝑔) capRatioLimit capacity auditTrail insertionPoint
1 = 75 % = 100 Store record ≤ #records
0.9 > 100

0.5 < 75% < 100 Offload older
record

> #records

0.2 > 75% Overwrite
older record

0 ≤ 0% or
≥ 100%

≤ 0 Drop record < 0

Determining the satisficing level of a main control softgoal, such as AU-5, relies on the SCN.

A partial SCN is shown in Figure 48. The satisficing level, 𝑆𝑆𝑆𝑆(𝑚𝑚), of main goal 𝑚𝑚 is the average
of achievement weights that include 𝑎𝑎𝑤𝑤(𝑚𝑚) and the 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑚𝑚) as defined by the direction

Approved for Public Release; Distribution Unlimited.
83

that the provision sets are passed. For example, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(AU-4) = {AU-2, AU-5, AU-6, AU-7,
AU-11, SI-4} from Figure 40, with a subset shown in Figure 48. Thus,

 𝑆𝑆𝑆𝑆(𝑚𝑚) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑤𝑤(𝑚𝑚) + ∑ 𝑎𝑎𝑤𝑤(𝑔𝑔)𝑔𝑔 ∈ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑚𝑚))

A control enhancement, 𝑒𝑒, that has a neighbor outside of its community can potentially have
𝑆𝑆𝐿𝐿(𝑒𝑒) ≠ 𝑎𝑎𝑤𝑤(𝑒𝑒). In this case, 𝑆𝑆𝐿𝐿(𝑒𝑒) has priority. When security controls are mutually related with
the same provision, the algorithm cannot double count the impact. To resolve this issue, our
satisficing algorithm preserves the last calculated achievement weight, 𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑔𝑔), and uses that
achievement weight as the neighbor’s achievement weight to stabilize the network-based
calculation. We assume that when deployed, the SIMS security controls have an achievement
weight of 1. We show how adaptations A1-A3 directly lower certain achievement weights and
propagate the impact through the SCN.

 Adaptation Results

Table 25 shows the achievement weight changes for AU-5’s partial community after applying
adaptations A1-A3 to the security assurance case for AU-5(1). Though we focused on Module M5,
other modules are also affected by the adaptations and are reflected in Table 25.

Table 25: 𝒂𝒂𝒘𝒘(𝒈𝒈) in AU-5 Community

Goal Base A1 A2 A3
Opp-G1 1 0.2 1 1
Opp-G2 1 1 1 1
Opp-G3 1 1 1 1
Opp-G4 1 1 1 0.2
Opp-G5 1 1 0.5 1
Opp-G6 1 1 0.5 0.2
M1 1 1 1 1
M2 1 1 0.5 0.2
M3 1 1 0.5 0.6
M4 1 1 1 1
M5 1 0.867 0.833 0.733
M6 1 0.867 0.833 0.733
G1 1 0.956 0.778 0.711
AU-5(1) 1 0.956 0.778 0.711
AU-5 1 0.956 0.778 0.711

Table 26 shows the satisficing level computed for each main security control at the base
(deployed) level and after applying adaptations A1-A3. Note that 𝑆𝑆𝐿𝐿(AU-5(1)) = 𝑎𝑎𝑤𝑤(AU-5(1))
because the A1-A3 are internal to that security control. AU-5 is affected by A1-A3 because of its
relationship with AU-5(1). The effects of A1 and A2 only propagate to AU-5 since the adapted
provisions remain in the community. Adaptation A3 impacts AU-5 and AU-4 because capAlert is
in the propagated provision set (Figure 48).

Approved for Public Release; Distribution Unlimited.
84

Table 26: Satisficing Levels

 Base A1 A2 A3
AU-2 1 1 1 1
AU-4 1 1 1 0.928
AU-5 1 0.985 0.926 0.903

AU-5(1) 1 0.956 0.778 0.711
AU-11 1 1 1 1
SI-12 1 1 1 1

 Adaptation Evaluation

To evaluate the alignment of the adaptive system behavior with the satisficing level
determination in Section 3.2.7.6, we deploy A1-A3 in the SIMS application. We embed
checkpoints as probes in the checkCapacity module (M5 in Figure 43 and Figure 44) and log the
effects on the audit trail. Figure 49 shows how the checkpoints are placed to determine if (i) a
record is generated (CK1), (ii) the capRatioLimit is maintained (CK2), (iii) the audit trail capacity
is maintained with capability to store a record within the auditTrail (CK3), (iv) the alert is properly
performed by capAlert (CK4), (v) the proper insertionPoint can be found to store the next record
while maintaining the existing auditTrail contents (CK5), and (vi) the record is stored in auditTrail
(CK6).

We ran tests with sufficient audit trail capacity and insufficient audit trail capacity. With
sufficient capacity, adaptation A1 performs better than A2 and A3. Allowing more records to flow
into the audit trail is a local change that impacts only a single state variable and does not propagate
outside the community. Thus, A1 is not heavily relied on by the assurance case argument or proof
for all audit functionality. A2 and A3 impact several operational goals that are needed for the
overall argument or proof. Table 27 shows the results with insufficient capacity in which the audit
trail can hold only 50 records. Column 1 represents the base deployment (B), followed by the
adaptations when the number of records needed is 75 and 100. A1 does poorly with insufficient
records. A2 performs the best but requires addition buffer storage. A3 performs worse than A1
overall. A3 fails at CK4 by disabling capAlert and fails at CK5 when overwrite functionality
violates the requirement that the insertion point maintains the records in the audit trail.

Figure 49: checkCapacity Checkpoints

Approved for Public Release; Distribution Unlimited.
85

Table 27: Performance Evaluation Results

 #Rec CK1 CK2 CK3 CK4 CK5 CK6
B 75 75 37 50 75 50 50
B 100 100 37 50 100 50 50
A1 75 75 43 50 75 50 50
A1 100 100 43 50 100 50 50
A2 75 75 74 50 75 75 75
A2 100 100 99 50 100 100 100
A3 75 75 74 50 37 37 75
A3 100 100 99 50 37 37 100

 Discussion

We focused on the AU-5 control, which is the same control that we formally specified and
proved correct using the KIV theorem prover in Section 3.2.4. We also represented this control
within our verification process model and provided a risk assessment calculation for comparative
adaptive plans. The use of security assurance cases for the same control provides a complementary
specification that introduces the calculation of a satisficing level of a security control for a potential
self-adaptation based on its internal changes and from propagated satisficing levels in the network.
In addition, we implement the security assurance cases using XML to perform the adaptations and
measurements at runtime, as demonstrated using a sample application with three adaptations and
embedded checkpoints. We show the alignment of the adaptation failure rates with the calculated
satisficing levels. Using system domain knowledge, experts can introduce satisficing level
thresholds to identify acceptable adaptations.

Scalability is a potential limitation of both the formal and the assurance case approaches given
the size of the security control network of related controls for a large-scale system. The embedded
verification process model along with the XML representation can streamline the automated
assessment process when an adaptation is considered. Though codifying the security assurance
cases in XML is potentially burdensome during design, once codified, achievement weight and
satisficing level determination could be optimized. Formal verification offline and during design
time can provide the evidence needed for the adaptive security assurance case.

3.2.8 Examining the Framework in an Alternate Testbed with Different
Formalisms

 Adaptive Coordination to Complete Mission Goals

Coordinating distributed systems, such as autonomous systems, is a complex problem in which
each system develops an individual, local plan that is refined while synchronizing with other
systems to make use cooperative opportunities for improved completion of mission objectives and
avoid potential conflicts. The coordination objective is to achieve the global mission goal while
using resources effectively even as the environment changes. To model the specifications of the

Approved for Public Release; Distribution Unlimited.
86

local and global missions, we use the Partial-Order, Causal-Link (POCL) plans for multi-agent
systems (Cox, 2005). POCL plans describe each individual agent’s plan to reach its local goal.
Moreover, the union of local POCL plans represents the overall multi-agent system, or unit, plan.
Any detected violations of the multi-agent POCL plan would be used as adaptation triggers such
that agents can self-integrate into each other’s local goals to accomplish a global mission.

In order to ensure adaptations to the local goal do not conflict with the global goal, there needs
to be a method in place to both detect when a change is required and validate that mission
constraints can be maintained by any potential changes. One way to do this is with assurance cases
(Rushby, 2015). Assurance cases organize the necessary evidence and arguments to show that a
system complies with a critical requirement. Assurance cases provide the descriptive medium that
can regulate adaptive changes to requirements for an agent to maintain resilience in achieving its
goals (Jahan, 2018) will discuss in Section 3.2.8.3.

 Case Study using Cozmo testbed

To examine self-adaptation for local integration that ensures global goal completion, we create
a platform for multiple physical agents to coordinate to complete a global mission with minimal
intercommunication. Our platform uses the Anki Cozmo robot as an agent (Cozmo, 2018). Access
to Cozmo’s SDK allows for custom programs to be created. The architecture of our testbed is
depicted in Figure 50. We use Raspberry Pis as base stations running our code, using Bluetooth to
communicate with each other. Bluetooth has good throughput to communicate current mission
goals, such as which cubes have been collected, consistently transmits messages for devices that
are near each other, and does not require internet connectivity for testing. Each Raspberry Pi is
tethered to an Android device running the Cozmo app. This tethering is the only way to access the
Cozmo SDK. The Android device connects to Cozmo through wi-fi and performs the required
image processing for Cozmo to recognize objects and to know its world location. Each Cozmo
hosts its own wi-fi server, allowing only a single connection from a device running the Cozmo
app. Each Raspberry Pi contains the mission for its connected Cozmo to complete. For our case
study, we use the existing Cozmo cubes as objects to collect as the unit’s mission to complete.

Each Cozmo contains a camera, IR sensor, and knowledge of its location and distances to objects
it can recognize. It can recognize faces, its charging station, and the cubes that come with the
Cozmo. We can create simple local tasks for it to complete, including specifying the distinct cubes
it is assigned to collect. Cozmo first searches for its assigned cubes to collect. After finding an
assigned cube, it will attempt to collect it, followed by all the cubes it can as part of the unit’s
global goals.

Approved for Public Release; Distribution Unlimited.
87

Figure 50: Cozmo testbed architecture

For the case study, we have two Cozmos assigned to collect all cubes as quickly as possible.
The cube assignment could be segregated across the two Cozmos or overlap. Each Cozmo is told
to complete the task independently in as little time as possible. They are in contact with each other
Cozmo to ensure all cubes are collected. In the naive approach, each Cozmo will search for and
collect the cubes they are assigned. However, to improve this method, each Cozmo will be capable
of adapting, through their connected Raspberry Pis, their own cube-collection order and the cubes
they collect based on their position. Each Cozmo first examines its surroundings to detect cubes
in its vicinity and reports to the other Cozmo the cubes it can see. If it is able to see the cubes it is
assigned to collect, and these cubes are close to it, it will adjust the order of cubes it can collect by
collecting the closest cube, returning it to its “home base,” and then collecting the next cube in the
order. Cozmo can reorder its collection method based on distance.

However, if Cozmo can only see cubes it is not assigned to collect, it can use the knowledge it
obtained and stored through communicating with the other Cozmo to update its list of cubes to
including newly assigned ones. Thus, a Cozmo can self-integrate into the second Cozmo’s mission
to ensure a rapid completion with minimal resources. For our case study, we will embed the code
for each Cozmo to examine, assess, and perform one of two adaptations to its policy:

A1. Broadcast current task allocation to other Cozmos before deciding to pick up cubes
A2. Broadcast information about completed and current goals after detecting or picking up a

cube

Approved for Public Release; Distribution Unlimited.
88

 Multi-agent Coordination using Self-Integration

The multi-agent system we target enables multiple agents to work together to achieve a global
mission goal by accomplishing their individual goals independently. However, these agents must
coordinate their local goals to avoid potential conflicts with another agent’s local goals and take
advantage of cooperative opportunities to complete the global goal. Each agent has its own plan
to accomplish its local goal and the union of agents’ plans represents the multi-agent (global) plan.
By combining agents’ plans in one global plan, the agents can detect any conflict between their
plans and coordinate to avoid such conflicts. Conflicts may include redundant goals or missing
requirements for specific goals. In order to detect any violation or flaw of the plan specifications,
agents are supposed to exchange the important information about their current and intended goals.
By detecting flaws, they can locally decide to adapt by self-integrating into each other’s local plan
(i.e. assign themselves to another agent’s local goal or to a step of its plan) to achieve the overall
mission goal. They must still satisfy their local goal, but it may be altered to allow for resiliency.

We model each agent’s plan to accomplish its goal using POCL. As stated in (Cox, 2005), a
multi-agent POCL plan is a tuple 𝑃𝑃 = (𝐴𝐴, 𝑂𝑂, 𝑆𝑆, ≺𝑇𝑇 , ≺𝐶𝐶 , #, =, 𝑋𝑋) where:

• A is the set of agents
• O is a set of plan operators (such as explore, detect, pick-up etc.)
• S is a set of plan steps (instantiated operator enhanced with temporal and spatial details).
• ≺𝑇𝑇 is the temporal partial order on S, where e ∈≺𝑇𝑇 is a tuple 〈𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗 〉 with 𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗 ∈ S (ordering

constraints).
• ≺𝐶𝐶 is the causal partial order where e ∈≺𝐶𝐶 is a tuple 〈𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗 ,c〉 with 𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗 ∈ S and𝑐𝑐 ∈ ∑

where ∑is a predefined set of temporal and spatial conditions.
• (O,S,≺𝑇𝑇,≺𝐶𝐶) represents a POCL plan for an individual agent.
• X is a set of tuples of form 〈𝑠𝑠, 𝑎𝑎〉, representing that the agent a∈A is assigned to executing

step s.
• = is the symmetric concurrency relation over the steps in S.
• # is a symmetric non-concurrency relation (ordering) over the steps in S.

The relation 〈𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗 〉 ∈ # can be defined using the ordering constraints: 〈𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗 〉 ∈≺T or

〈𝑠𝑠𝑗𝑗 , 𝑠𝑠𝑖𝑖 〉 ∈≺T that indicates that 𝑠𝑠𝑖𝑖 and 𝑠𝑠𝑗𝑗 should be done in a specific temporal order. The relation
〈𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗 〉 ∈ = means that 𝑠𝑠𝑖𝑖 and 𝑠𝑠𝑗𝑗 are required to be executed at the same time. For example, if two
Cozmos are required to carry the same cube together then they both need to be timely synchronized
in their cube picking steps.

Given the POCL definition of a multi-agent plan, we specify the temporal and causal partial
order flaws of the agent plan and use them as adaptation triggers. For the agent’s local plan, a plan
flaw is either a causal link threat flaw or an open condition flaw as defined in (Cox, 2005).

A causal-link threat flaw in a single agent POCL plan exists when there is some step 𝑠𝑠𝑘𝑘 and
some causal link e ∈≺C of the form

〈𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗 , 𝑐𝑐〉, 𝑠𝑠. 𝑡𝑡. 𝑛𝑛𝑛𝑛𝑛𝑛(𝑐𝑐) ∈ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑠𝑠𝑘𝑘), 〈𝑠𝑠𝑘𝑘, 𝑠𝑠𝑖𝑖〉 ∉ ≺𝑇𝑇 𝑎𝑎𝑎𝑎𝑎𝑎 〈𝑠𝑠𝑗𝑗 , 𝑠𝑠𝑘𝑘〉 ∉ ≺𝑇𝑇.

Example 1: Using the Cozmo Testbed Architecture, assume Cozmo A is the agent that has the

following causal link in its plan:

Approved for Public Release; Distribution Unlimited.
89

〈𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗 , 𝑐𝑐〉 = 〈findCube(type1), pickup(type1), cube1_at_p〉

However, Cozmo A needs to announce to all other Cozmos that it has detected the cube before

deciding to pick it up. This requirement would be specified as follows:

〈𝑠𝑠𝑖𝑖, 𝑠𝑠𝑘𝑘, 𝑐𝑐〉 = 〈findCube(type1), communicate(Cozmo), cube1_at_p〉

〈𝑠𝑠𝑘𝑘, 𝑠𝑠𝑗𝑗 , 𝑐𝑐〉 = 〈communicate(Cozmo), accomplishTask(type1),

 sufficient_knowledge〉

Here, Cozmo A has to communicate with other Cozmos to accumulate sufficient knowledge

before making the decision either to pick the cube or ignore it (represented by accomplishTask).
Assume another agent Cozmo B (hereafter we use Cozmo instead of agent) announced that it is
closer to position p than Cozmo A and it is going to pick up cube 1. The current local goal for
Cozmo A conflicts with Cozmo B. This conflict would trigger adaptation opportunity for Cozmo
A to reassign itself to another goal by finding another cube.

An open precondition flaw exists when there is some step 𝑠𝑠𝑗𝑗 with precondition c but there is

no causal link 〈𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑗𝑗 , 𝑐𝑐〉 ∈≺C.
Example 2: Building on the previous example, assume Cozmo A receives a message from

Cozmo B with the location of cube 2 in position q. It then reassigns itself to pick up this cube via
step 𝑠𝑠𝑗𝑗 which represents “pick up cube from position q”. However, the causal link constraint for
picking up the cube is (moveTocube, pickup, distance < collecting_range). To achieve the goal of
picking up cube2, according to the given specification, Cozmo A needs to introduce a new step 𝑠𝑠𝑖𝑖
to move itself close enough to the cube to grab it. This process is a self-integration of Cozmo A to
accomplish the global goal of collecting as many cubes as possible by assigning itself to a new
local goal.

〈𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗 , 𝑐𝑐〉 = 〈moveTocube (type2), pickup(type2), distance (A,q) < collecting_range 〉

A parallel step threat flaw exists in a multi-agent plan when there are steps belonging to

different agents 𝑠𝑠𝑗𝑗 and 𝑠𝑠𝑖𝑖 where post(𝑠𝑠𝑖𝑖) is inconsistent with post(𝑠𝑠𝑗𝑗), 〈𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗〉 ∉≺T, 〈𝑠𝑠𝑗𝑗 , 𝑠𝑠𝑖𝑖〉 ∉≺T,
and 〈𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗〉 ∉ #.

Example 3: This flaw occurs when two Cozmos see the same cube and go to pick it up. Here,
the postcondition of both Cozmos would be “holding the cube”, which is not physically possible
for two Cozmos to do simultaneously. The adaptation here would be to change the goal for one of
the Cozmos according to certain rules. The rules would be used to set priorities for Cozmos,
including distance to the cube, battery life, and the ability to pick up other types of cubes. For
instance, one Cozmo might be only allowed to pick up one cube, the detected one, but the other
Cozmo is more flexible and can collect all cubes.

Approved for Public Release; Distribution Unlimited.
90

3.2.9 Assurance Case for Control System

The multi-agent plan coordination problem can benefit from self-integration that coordinates the
goals of the local control system with those of the global control system increasing the confidence
level of mission success. We use GSN to define assurance cases that specify a global mission goal
for the group of agents and a local mission goal for each agent. The assurance case argument is used
to validate the temporal and spatial constraints of the mission, which could be violated at any point
of time due to the adaptation of the agent. We apply resilience-based operations to the assurance
case to allow the integration of the local goals of the agents to make the global goal consistent. In
this way, both the temporal and spatial constraints of the mission can be continued to be validated.
In this section, we illustrate the use of assurance cases to provide confidence that the local control
system complies with its mission requirements.

Figure 51: Instance of a local mission assurance case

We configure an instance of a local mission assurance case for the individual Cozmo agents

using GSN notation as shown in Figure 51. The main goal is collecting cubes, which requires the
satisfaction of two external goals (called “away goals” in GSN): Announcement and Global
Control. The Announcement goal dictates which set of cubes are assigned for detection and
collection. The Global Control goal provides the rationale regarding the local control system’s
action and choice of cube.

For assurance cases, the argument for a goal involves a strategy that includes sub-goals and
solutions for collecting evidence to satisfy the argument. The argument of a local goal uses the

Approved for Public Release; Distribution Unlimited.
91

POCL plan for that local mission. Because the POCL plan must maintain temporal and causal
partial order constraints to avoid the conflicts for global mission, we reflect that as a subgoal in
the assurance case in Figure 51. We have identified that the base approach of performing the local
mission is to detect a cube and pick that cube. So, the causal link for base plan of local mission is

〈𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗 , 𝑐𝑐〉 = 〈findCube(type1), pickup (type1), cube1_at_p〉.

We use Fuzzy Branching Temporal Logic (FBTL) to express the causal link constraints to

facilitate uncertainty handling and improve the tolerance level of the system while removing
inconsistencies among the plans for the global mission. We identify the flexibility point for the
constraints and represent them using FBTL semantics:

Ax<pickup(cube) detect(cube)
The context nodes connected through the GSN InContextOf link (hollow arrow in Figure 51)

with the goal node holds the assigned context value for the goal. In Figure 51, the context node
attached to the main goal assigns the Cozmo (agent) a location and status and cube location
information for which the POCL plan will execute. The POCL plan involves an operation to
accomplish the goal and argumentation over how the satisfaction of that operation is represented
through the modules.

 Adapting the Assurance Case

When an adaptation occurs and changes the system functionality, we need to incorporate the
changed functionality into the assurance case to maintain consistency with the expectation that the
constraints are satisfied. This incorporation demands relaxing the original ordering constraint (Ax)
based on domain knowledge, which improves the tolerance level of POCL flaws.

In Section 3.2.6.3, we discuss three adaptation operators for assurance cases: (i) ChangeVal that
changing the value in a Context node, (ii) Support that adds new functionality for existing state
variables, causing new arguments to be added to existing subgoals, and (iii) Substitute that alters
existing functionality and can introduce new state variables.

To support dynamically relax some constraints of the agent for coordinating with other agents,
we introduce a RelaxConstraints operator by involving the RELAX process from (Whittle, 2010).
This operator affects the constraint maintenance goals in the assurance case in Figure 51. During
the RELAX process, the operator monitors the POCL plan and environment to define the
relationship between the environment attributes and the plan’s constraints. To complement the
new RelaxConstraints operators and avoid the inconsistency of the causal order constraint in the
POCL plan, we introduce an Augmentation operator to adjust the system’s functionality by adding
intermediate steps and/or local state variables to accomplish them, while retaining the critical
functionality from a global perspective. In the remainder of the section, we discuss Adaptations
A1 and A2 with respect to the evolution needed by the assurance case using the RelaxConstraints
and Augmentation operators.

If Adaptation A1 occurs, it activates communication among the Cosmos about current task
allocation, which nullifies the cube detection process. This changes the status of the Cozmo agent
to inactive for the detection step, as reflected in context node of cube detection goal shown in
Figure 52. The POCL flaws in Example 1 in Section 3.2.8.3, trigger this adaptation. The causal

Approved for Public Release; Distribution Unlimited.
92

link constraints for the POCL plan needs to relax the base causal link ordering. By monitoring the
environment and POCL plan, RelaxConstraints determines the flexible point based on domain
knowledge to relax the constraint that states “Cosmo shall communicate before proceeding to
either detect or pick up for as many cubes as possible.”

Ax<(AGF(∆(pickedUpCubes)∈S)) communicate(Cozmo)
The “as many cubes as possible” clause is introduced for flexibility while handling the

uncertainty and the number of cubes picked up, which is expressed as “∆(pickedUpCubes)” to
define the relaxed, uncertainty factors as an element of fuzzy set S. The AGF quantifier expresses
a temporal “eventually true” expression with the uncertainty factor. Since the rationale for
applying A1 is to improve resource utilization, a new justification node is connected to the altered
goal. This adaptation includes new steps in causal links as shown in Example 1. The dependency
on new steps introduces a new subgoal “Communication Activation goal” that is placed within the
assurance case through the use of the Augmentation operator (Figure 52).

Figure 52: Applying adaptation A1 to the assurance case

Adaptation A2 also involves new intermediate broadcasting steps for causal link order in the
POCL plan. The POCL plan flaws in Examples 2 and 3 in Section 3.2.8.3 trigger this adaptation.
The adaptation introduces a new operational goal for both detecting and picking up the cube. The
new goal reflects the additional functionality needed for Cozmo to broadcast its accomplishment
of detecting or picking up the cube as shown in Figure 53. From this broadcasting, other agents

Approved for Public Release; Distribution Unlimited.
93

can self-integrate to aid in the task completion. The rationale behind this adaptation is same as
adaptation A1 that is, improving resource utilization. The RelaxConstraints operator is activated
because the POCL plan needs to relax the base causal link ordering by including intermediate
steps.

 AX>(AGF(∆(detectedCubes)∈S) ∨ AGF(∆(pickedUpCubes)∈S)) broadcast(taskAccomplishment)

The relaxed constraints state that “Cozmo shall broadcast its accomplishment after detecting or
picking up for as many cubes as possible.” The adaptation demands the use of the Augmentation
operator for detection and pick up functionality by including a broadcast function.

Figure 53: Adaptation A2 applied to the original assurance case

 Evaluation

We evaluate our method first by looking at how long it takes for Cozmo to collect all three
cubes by itself, which yields a baseline for the maximum time expected to complete the mission.
We assume Cozmo goes after the cubes in distance order with the closest cube first. Once collected,
Cozmo returns to its original starting point, turns around, and deposits the cube behind it. Once all
cubes are deposited, Cozmo returns to its starting location and completes its mission. Using
POCL, we represent this plan as follows:

P = 〈findCube(type1), pick_up(type1), cube1_at_p〉,
 〈findCube(type2), pick_up(type2), cube2_at_p〉,
 〈 findCube(type3), pick_up(type3), cube3 _at_p〉

Approved for Public Release; Distribution Unlimited.
94

Notice that this plan does not ensure Cozmo collects cubes based on distance. Instead, Cozmo
decides the ordering at runtime based on the distance from Cozmo to each cube. We look only at
the time it takes to collect all cubes. The examination setup appears in Figure 54.

With the baseline established (column 2 in Table 28), we introduce a second Cozmo with the
same collecting mission. We examine two different methods of coordination in this case. The first,
the naïve method, allows both Cozmos to collect all cubes. Thus, their local goal is the same as
the global goal, but the requirements for collection must be maintained. Each Cozmo uses the
Bluetooth communication between the Raspberry Pis to send the cubes they have collected and
deposited at their starting position. As a naïve method, it is possible that two Cozmo may attempt
to collect the same cube, wasting resources. Each Cozmo uses the same POCL mission as the
initial single-Cozmo approach.

Figure 54: Cozmo testing setup

To implement our coordination method using self-integration, with the global goal of collecting

all cubes and a local goal of collecting specific cubes. The Cozmos use adaptation A2 to broadcast
their completed missions to each other. We only use A2 for our experimentation because this
adaptation is most likely to cause self-integration between Cozmos, as Cozmos must adapt to a
changing mission based on what the other Cozmo has done. We assign each Cozmo to collect cube
2 of Figure 54. Cozmo A is assigned cube 1’s collection and Cozmo B is assigned cube 3’s
collection. In this setup, the cubes they are assigned to collect are far away from their starting
position. Each Cozmo communicates the distances from their current positions to their cubes, and,
if the Cozmo cannot find its cube from its initial search, informs the other Cozmo that it cannot
find all of its assigned cubes. For self-integration, if one Cozmo cannot see an assigned cube and
the other can, the Cozmo that can see the cube will adjust its mission to allow the collection of that
cube. If a cube it is not assigned to collect is significantly closer than a cube it is assigned to collect,
Cozmo will assign itself to collect the nearby cube. Each Cozmo assumes that, while it is collecting
the nearest cube, the other Cozmo will also adapt to collect any cube it is missing to complete the
global goal. The POCL representation for each Cozmo plan is listed below:

Approved for Public Release; Distribution Unlimited.
95

Both Cozmos:
P = 〈findCube(type1), communicate(Cozmo), cube1_at_p〉,
 〈findCube(type2), communicate(Cozmo), cube2_at_p〉,
 〈findCube(type3), communicate(Cozmo), cube3_at_p〉

After communicating, Cozmo A will recognize that it is closest to cube2 and cube3 while

Cozmo B will recognize that it is closer to cube1 than Cozmo A. They adapt their final plans, such
that Cozmo B will choose to pick up cube1, while Cozmo A chooses to pick up cubes 2 and 3.
Their new POCL plans are shown below:

Cozmo A:
P = 〈communicate(CozmoB), accomplishTask(type2), sufficient_knowledge〉,
 〈pick_up(type2), cube2_at_p〉,
 〈communicate(CozmoB), accomplishTask(type3), sufficient_knowledge〉,
 〈pick_up(type3), cube3 _at_p〉

Cozmo B:
P = 〈communicate(CozmoA), accomplishTask(type2), sufficient_knowledge〉,
 〈pick_up(type1),cube1_at_p〉

Table 28: Results of Cozmo tests

We run each test 5 times and show the average in Table 28. For the single Cozmo approach,

the average was 141.89 seconds as our baseline to improve on. For the naïve coordination
approach, the average was 81.75 seconds, a notable improvement of slightly over 60 seconds.
However, there were some problems observed between the two Cozmos in this approach, as
occasionally they would attempt to go after the same cube. Usually, one Cozmo would arrive first,
collect the cube, and leave before the other Cozmo could arrive. The second Cozmo would
continue to attempt to collect the already collected cube rather than focus on another cube, as the
alert that a cube was collected does not come until after the cube had been deposited, wasting some
time.

For the self-integrating approach, where each Cozmo was in more constant communication
about its current mission and could make adaptive decisions on its mission, the average was 84.03
seconds. Surprisingly, this is worse than the naïve approach, though with coordination Cozmo
completed the mission in the fastest single time (Run 5). This difference can be attributed to Run
3, where the two Cozmo took 104.11 seconds to collect all cubes. We observed this time was due

Si
ng

le
 C

oz
m

o

N
aï

ve
 A

pp
ro

ac
h

Co
or

di
na

tio
n

Run1 140.73 87.45 79.04
Run2 153.37 84.79 87.30
Run3 131.98 76.88 104.11
Run4 141.95 81.45 79.18
Run5 141.41 78.19 70.55
Average 141.89 81.75 84.03

Approved for Public Release; Distribution Unlimited.
96

to the method Cozmo uses to perform predefined actions. Cozmo is designed to be perceived as a
virtual pet, requiring a personality. To simulate a personality in a robot, the developers have
multiple methods of performing each action. In most cases, Cozmo will move toward the cube in
a straight-forward manner, line up with the cube, and move forward to pick it up. However, in
reviewing Run 3, Cozmo chose to slowly move forward as if to pounce on the cube, before
suddenly turning and picking up the cube. This behavior took approximately 20 seconds more and
accounts for the additional time.

 Integration of Self-Adaptive Testbeds

Testbeds are common when researching problems that require a large number of functionally
similar but programmatically different parts (Siboni, 2016) or are too large or expensive to own a
full version of the testable system though the individual parts are reasonably priced (Bellman,
2014). Testbeds are often designed to simulate a real environment as accurately as possible.
However, corners may be cut to focus functionality so that the testbed can be used to exploit the
specific problem that is being researched. Thus, while capable of advancing knowledge through
direct experimentation, testbeds have limited usefulness outside of their problem domain.

At the same time, in real world operations there are interconnected systems that cannot be easily
simulated using a single testbed. To address this challenge, multiple, smaller testbeds capable of
examining specific problems could be linked together and collaboratively solve problems through
inter-testbed connectivity. Additionally, by linking testbeds together, it becomes possible to
improve the abilities of a single testbed without major modifications to the testbed architecture.

A unique problem arises when examining testbeds capable of self-adaptation. It is possible that
a self-adaptive system will choose to adapt such that any other system relying on its operation will
violate system requirements (Bellman, 2018), even if the adapting system maintains its individual
requirements through the adaptation. This scenario is especially true when attempting to integrate
multiple special-purpose or domain-specific testbeds, as each is capable of adaptation that has been
verified for its specific use cases and runtime operations, but that may inadvertently affect the
runtime stability of the linked system.

We have examined the difficulties of linking two existing, distinct testbeds. We outline use
cases in which each testbed incorporates or is influenced by information from the other testbed to
examine new problems. Though each testbed is capable of verifying its critical requirements and
mechanisms for performing self-adaptation, they rely on different components, are implemented
differently, employ distinct verification, and have unique approaches to data communication. We
discuss the potential process of testbed cooperation based on their distinct factors.

 Existing Testbeds

Previously, we created two testbeds to examine self-adaptive and verification capabilities for
different systems. The first testbed uses Raspberry Pi 3s to simulate near-future wearables,
allowing the wearables to intercommunicate with Bluetooth and self-adapt their communication
to potential security vulnerabilities (Walter, 2018a) as discussed in Section 3.2.5.1. Our second
testbed focuses on mission collaboration between autonomous Cozmo robots discussed in Section
3.2.8.2.

Approved for Public Release; Distribution Unlimited.
97

3.2.9.4.1 Integrating the Testbeds

Figure 55 shows the proposed architecture of a system with multiple intercommunicating, but
distinct testbeds. On the left are the self-adaptive, coordinating Cozmos, focused on completing
their local and the global missions. They would interact with the wearable testbed on the right
through a Bluetooth link between base stations, similar to their normal communication with each
other. The direct communication between testbeds through Bluetooth requires each testbed to parse
data is it not designed to accept and has become a hindrance in integration. To solve this, we shift
the testbeds to rely on the cloud to capture relevant testbed data for sharing, provide AI and
machine learning techniques to discover potential adaptations and rationale for their use to
influence the testbeds toward self-improvement, which may even impose additional requirements
that are subject to verification and validation. Currently, each testbed makes use of the cloud in
different ways. The wearable testbed would rely on cloud-based machine learning to discover
insecure environments, prompting adaptation. The Cozmo testbed would use the cloud to primarily
store information about the current mission and facilitate coordination, including potential
adaptation needs. Testbed integration requires a cloud that both stores information and makes use
of cloud-based AI and machine learning algorithms to understand the unique adaptation needs for
both testbeds.

Figure 55: Architecture for integrating testbeds

If an adaptation in one testbed translates to the need for adaptation in the other, cloud services
can intervene to prevent an infinite adaptation loop, testbed deadlock by forcing change at the
wrong time periods, or other testbed from moving into a state that violates its requirements.

We describe three potential use cases that would benefit from integrating the two testbeds. The
first is the scenario where an adaptation to a Cozmo’s local mission is needed to complete the
global mission. However, in order to complete the local mission, additional sensor data is needed
from other nearby sensors. In this case, the adaptation plan will be shared between the Cozmo
testbed and the wearable testbed along with a request for sensor information through the cloud.
The base station of the wearables will respond with information about the available and active

Approved for Public Release; Distribution Unlimited.
98

sensors. If a needed sensor is available and active, the Cozmo testbed will be able to request the
specific sensor information it needs and the data will be shared. The cloud will use cloud-based
AI algorithms to determine the appropriate sensor information from the wearables, providing the
format the wearables use for data communication to the Cozmo testbed and, if needed, translating
this information to the Cozmo testbed in a format it can utilize.

An obvious example of this use case is using the Cozmo to simulate a search and rescue robot,
searching for survivors in a disaster situation. The Cozmo can connect to a nearby base station,
indicating that there may be a survivor in the area. When connected, it adapts to complete the
global mission of finding survivors rather than continuing its local mission of searching a
prescribed area. It then requests sensor information from the base station. The base station may be
connected to wearables that include heartrate or other health information. The base station can be
expected to have GPS data. This data is useful for the Cozmo’s current adapted mission, so it
requests heartrate and GPS data though the cloud. The heartrate information can be used to get a
general sense of the health of the survivor and the GPS data can be used to pinpoint the location
of the survivor for rescue. The machine learning algorithms running on the cloud can be trained to
prioritize users whose health data shows the user needs immediate medical attention or those
whose data shows increased health risk. While this would not result in ignoring survivors, it would
allow survivors to be rescued in priority order, potentially resulting in a larger number saved.

A second use case is where the testbeds can be jointly used to assess adaptations produced by
the cloud that can improve the communication between devices. The wearable testbed already
includes adaptation options that result in adjusting the communication between wearables and their
base stations. Thus, it is reasonable that an adaptation on the wearable testbed could influence the
cloud-based decisions to change something about the internal or external communication with the
Cozmo testbed. The two primary adaptations of the wearable testbed on Bluetooth adaptation are
sending empty packets (to prevent eavesdropping on sensitive data) and disconnecting and
awaiting a secure reconnection. In both of these cases, communication with the Cozmo testbed
would be interrupted in some way. In the first case, the Cozmo testbed would remain connected,
but would be unable to receive any data from the wearables, as only empty packets would be sent.
In the second, the testbeds would disconnect and reconnection would only occur once the wearable
testbed requests reconnection. These communication changes may force a new adaptation to the
Cozmo as to how it can be interrupted when communication and data transfer are reestablished.

In both of these cases, the adaptation plan will be sent from the wearable testbed to the Cozmo
testbed to inform the Cozmo testbed of the expected change to the communication. Once the
Cozmo testbed is aware of the adaptation, it will not attempt to request data from the wearables,
potentially limiting the available adaptations for the Cozmo but ensuring integrity of the wearable
adaptations. In the case of disconnection, the Cozmo testbed will not attempt to force a
reconnection and will not accept a reconnection request from any device other than the wearable
testbed that caused the disconnection. However, as these adaptations only apply to the Bluetooth
communication, it is still possible to gain information from the cloud, though this information will
only allow old data, not up-to-the-minute information as is possible with the Bluetooth connection.

The third use case for testbed integration occurs when an adaptation is required by one testbed
based on the expectation of an adaptation in the other testbed. For example, a Cozmo may be

Approved for Public Release; Distribution Unlimited.
99

simulating an autonomous vehicle, using the wearable testbed to simulate pedestrians and other
vehicles in a simulated VANET. In this case, the Cozmo may detect the potential for a collision
with another vehicle, requiring it to adapt to the potential issue. This adaptation needs to be
transmitted to all other autonomous vehicles in the area. It may be beneficial to transmit this
information to pedestrians so they can react, if possible. In this case, the Cozmo will send its plan
to the wearable testbed before adapting. The wearable testbed must then adapt its operation to alert
pedestrians to the issue and adjust the sensor information to react to the new Cozmo plan. In this
case, a cloud service may be used to alert those not in the area, such as emergency personnel, if
there is potential danger with the adaptation, providing a faster response time to a wreck.

 Difficulties with Testbed Integration

There are a number of challenges to integrating multiple testbeds. The largest issue is ensuring
there is an existing and consistent protocol for the request and transfer of data between the testbeds.
There have been middleware systems proposed (Burzlaf, 2019) to help solve this issue but, at
present, there is no universal solution. It is especially problematic for Bluetooth communication,
as it requires the protocol to be run and interpreted locally. Currently, the best option is to ensure
that the receiver requests only specific data that it knows the other testbed has. It makes integrating
additional testbeds difficult, as each new testbed requires all previous testbeds to be updated to
accept the data of the new testbed.

An additional issue is the need for a method to communicate adaptation plans that can be parsed
and examined by other testbeds. For example, with the current systems a message must be sent to
inform all testbeds about an adaptation to ensure that the adaptation does not negatively affect the
other testbed. However, this sharing requires all testbeds to have methods of handling all possible
adaptations of all other testbeds. An intermediate system must be designed to allow a testbed to
have an understanding of the more global effects of the adaptation. One assumption is that a cloud
service could serve as the intermediary, providing an understanding of the possible adaptations
each testbed can perform and the impacts both locally and propagated through the interconnection.

3.2.10 Evaluating the Use of GenProg within the Framework

 Revisiting the Multi-Mode Traveler System

In order to use GenProg (Goues, 2011) with our case studies, we adapted the Multi-Mode
Traveler System (MMTS) to be repairable by GenProg. We chose MMTS because it has clearly
defined requirements, has been proven to always maintain its requirements under normal
operation, and has adaptations already created that were tested to show they could potentially cause
it to fail to maintain its requirements.

The basic workflow for MMTS (as detailed in Figure 2) is shown in Figure 56. There are three
main components that are executed during every update loop, each with subcomponents that have
been proven to maintain the requirements. The first component, getCurrentStatus, checks the
current position of the traveler to verify that the traveler is not already in a position that violates
one of the three requirements. If the current status of the traveler does break one of these

Approved for Public Release; Distribution Unlimited.
100

requirements, it will not continue forward. If the current status satisfies both safety requirements,
it moves to getNextPosition. In getNextPosition, the traveler gets information about the eight
possible moves it has. It determines if the move would cause it to violate one of the safety
requirements. It could violate the requirement either by gaining or losing fuel to push it outside
the threshold or by attempting to move into a space occupied by an enemy. If there are no moves
available, it returns to getCurrentStatus, as the traveler is unable to move without violating a safety
requirement. Given the way requirement 3 is stated, if the traveler cannot move, whatever action
it takes will not violate the requirement. If it can move, it shifts to setPosition, where the traveler
is moved to a position that has been previously shown to not be in violation of the safety
requirements.

Figure 56: Control Flow of MMTS

 Transitioning MMTS for GenProg

In order to use GenProg to repair MMTS, we must first convert MMTS from Java, the language
it was originally written in, to C, the language the public version of GenProg is capable of
repairing. This process was non-trivial even though the sample program is not very complex. We
manually had to ensure that the C code (and use of its libraries) maintains the same architecture
and functionality as the Java code, which was proven to meet the three requirements using the KIV
theorem prover.

Figure 57 shows the CheckEnemy function in Java. Figure 58 shows the same function in C.
Note the Java function is simpler, as Java includes the contains() function for checking the location
of an enemy compared to the current position. The Java CheckEnemy code also includes a separate
class/object containing the traveler’s position information (both the currPos variable and the

Approved for Public Release; Distribution Unlimited.
101

enemyPos variables). In contrast, the C version of CheckEnemy uses arrays to represent the enemy
positions and checks against x and y values represented as ints. The CheckEnemy function is run
both during getCurrentStatus (Figure 56) to check if an enemy is currently at the same spot as the
traveler, and in getNextPosition (Figure 56) to check if an enemy is in the position that the traveler
may move to). The C version is longer, primarily because of the lack of built in contains() methods.
Without contains(), the program must manually check if the location being examined contains an
enemy by comparing all possible positions with the location of each enemy. If the enemy is in the
position being checked based on the _x and _y coordinates, the C program returns a 1, equivalent
to true in Java. Otherwise, the C program returns a 0, showing that there is no enemy in the checked
location.

Figure 57: Example of CheckEnemy Code in the Java Version of MMTS

Figure 58: Example of CheckEnemy Code in the C Version of MMTS

To work with GenProg, a bug must be forcibly introduced into the MMTS code for GenProg to
repair. The bug should cause the traveler to violate a requirement. Instead of forcing a violation of

Approved for Public Release; Distribution Unlimited.
102

one of the three functional requirements directly, we introduced a mission requirement that could
be violated through the normal operation of the functionally correct code. Our new requirement is
that the traveler must travel to four specific spots on the grid to pick up designated “targets”. This
could potentially be violated if enemies are placed on the grid that prevent the traveler from
reaching the targets. By introducing the new requirement, we had to ensure that there were no
random or non-deterministic actions that the traveler could take that would cause a violation of
this new requirement that GenProg could not fix. To provide additional consistency for GenProg,
we introduced a priority path into the code for the traveler so that it collects all targets. Should a
position on the priority path not be a viable move given functional requirements 1 and 3, the
traveler will move randomly outside of the priority path to comply with requirement 2.

An example of the code setting the priority path is shown in Figure 59. Essentially, the priority
path is represented as a large switch statement based on the current move number. This new code
provides GenProg with more code to use for repair of a bug and allows GenProg to adjust the
priority path by only changing one or two of the switch cases. An example of the code that allows
the traveler to choose the priority path when possible but still choose randomly when it is not
possible to move along the priority path is shown in Figure 60. Note that, if the priority path
position has already been shown to be invalid, it will skip the code for returning to the priority
position. When it skips, it randomly searches all available options for a valid move on the grid.
Once a move is found, it returns the index of the move, allowing the traveler to move.

Figure 59: MMTS Setting the Priority Path

Approved for Public Release; Distribution Unlimited.
103

Figure 60: Priority Path Code vs Random Movement

 Preparing Additional Files needed for GenProg

With MMTS converted to C and the ability to insert a bug into the system, we began the final
preparations of MMTS for GenProg’s self-repair method. This preparation required creating test
cases testing that validate the code will never go below the minimum fuel value, will never go
above the maximum fuel value, and is able to collect all the targets. GenProg will run these tests
to discover any differences that occur between the passing and failing test cases in an attempt to
optimize the possible repair locations, weighting the paths unique to the failing test cases higher
than the paths common between passing and failing test cases. Thus, GenProg will first attempt to
make modifications only to parts of the code that are run when failing the test cases initially, though
it will branch out if a repair has not been found.

For GenProg to execute the code and test cases, the preparation of a Makefile is needed that is
capable of compiling the project, running the test cases, and outputting the test case results to a
file for GenProg to examine. This Makefile is different from a standard Makefile that only
compiles the code properly for eventual execution. We created this Makefile based on existing
examples of GenProg Makefiles, ensuring the method of collecting the output from the test cases
was identical to previous working versions. It also required minor modifications to the test cases,
forcing them to print to the command line that they had failed without actually failing in a standard
C test case manner. An example of the Makefile for one of the test cases is found in Figure 61. It

Approved for Public Release; Distribution Unlimited.
104

shows that, when the command “make collectSecondTarget.log” is run, the machine will first
compile the test case. Once compiled, it will run the test case with all of the output sent to the file
“collectSecondTarget.log”. This file is then re-written to the console, which GenProg can access
to verify that the system has passed or failed.

Figure 61: Makefile Commands to Run Test Case Collecting Second Target

An example test case is depicted in Figure 62. This test case checks if the traveler can collect
the second target once it has collected the first target. Note that, even when it fails, it still returns
0 rather than returning 1 to alert to an error or failure. There are similar test cases for each of the
other targets that can be collected, as well as test cases checking to ensure the minimum and
maximum fuel is never exceeded.

Figure 62: Example Test Case Collecting the Second Target

 Running GenProg on MMTS

Having modified the test cases and created a working Makefile, we set enemies up directly in
the path of the traveler. This configuration causes two of the test cases, collectFirstTarget and
collectAllTargets, to fail. Because the test cases related to collecting the second, third, and fourth
targets do not have an enemy directly in their path, they all still pass, though a change to the code
may cause them to begin to fail. We created a configuration document for use with GenProg that
contains the specific test cases that pass and that fail, as well as basic information about the

Approved for Public Release; Distribution Unlimited.
105

compilation and location of the Makefiles associated with MMTS. We then attempted to run
GenProg to repair the failure to collect all targets bug in MMTS.

Once all of the setup of MMTS had been completed, we downloaded the existing GenProg
virtual machines, with a working version of GenProg, to repair MMTS. Unfortunately, running
GenProg on MMTS was impossible due to a major issue. Specifically, GenProg was unable to
come up with a weighted list of different lines used between the failed and successful test cases.
Initially, we attempted to minimize the C code by adjusting the location of the targets, thus
decreasing the number of lines to create the priority path, but this did not solve the issue. We then
moved to a fresh install of GenProg, taken from the official GenProg Github account. This install
did not fix the issue, leaving the default GenProg only capable of brute-force attempts at repair,
which all failed. To get GenProg working as expected, we contacted GenProg developers’ team
for advice on getting around the error. The team was unable to get GenProg working with our
code. They suggested getting MMTS set up to use Darjeeling, an updated version of the GenProg
code repair project that is language independent, which created the list of locations differently, and
proposed that it would fix the issue.

 The Shift to Darjeeling

Darjeeling uses BugZoo to keep track of the associated passing and failing test cases, as well
as the lines that are run in each. The information from BugZoo is used by Darjeeling to create a
weighted path of possible repair locations, resolving the issue we had with GenProg. Additionally,
Darjeeling contains the initial GenProg repair options, allowing us to run a slightly updated
GenProg repair directly on MMTS. Running Darjeeling, we came up with over 500 candidate
repairs. However, most of the repairs violate MMTS constraints. Two such repairs can be seen in
Figures Figure 63 and Figure 64. Figure 63 is the first repair Darjeeling found. The repair is made
to the CheckEnemy() function, shown originally in Figure 58. The issue here is that, rather than
changing the priority path, Darjeeling removes the code to check if an enemy is in a given position
(see the “-” preceding the code at lines 7-23 in Figure 63). This deletion causes the enemy blocking
the priority path to be ignored, allowing the traveler to collect all targets. Darjeeling also adds a
single line (see the “+” preceding the code at line 24) setting the priority path of one of the
directions to zero. This addition does nothing functionally but is a byproduct of the genetic
algorithm’s attempt to repair the code. This solution would not be accepted as valid, as it breaks
requirement 2 of MMTS.

Approved for Public Release; Distribution Unlimited.
106

Figure 63: Example Repair from Darjeeling that Removes Enemy Checking

Figure 64 shows a second potential patch crafted by Darjeeling. Specifically, it shows a

pointless change (adding at line 8 a second “validPosition_Y[7] = -100000”) to the code that sets
a valid position to an invalid position. Then, in the code for setting the priority path, it sets the
targetsCollected value for the first target to true (line 17). This solution does not actually collect
the target, as needed. Rather, Darjeeling evolves a solution that satisfies the requirement
(collecting all targets) without actually needing to collect all targets. Because the randomization
of MMTS results in the other targets getting collected based on the location after the random
movement, this solution works, though it does break our new requirement because the traveler
does not travel to the location required to collect the target.

Approved for Public Release; Distribution Unlimited.
107

Figure 64: Example Repair from Darjeeling that Sets the Target to Collected

3.2.11 Experimentation with Darjeeling and Genprog

One important thing to note with our implementation of Darjeeling is the difficulty of getting
Darjeeling working with our code. While, in theory, Darjeeling/Genprog should be incredibly
simple to get running, we have had repeated problems getting it running with our code. We began
working with Genprog specifically, as it is a command line tool designed for use with the C
language and seemed to be the simpler option. Using the existing bugs that Genprog can fix as a
template, we built our MMTS C code from the ground up to be used by Genprog while still
following the requirements of MMTS. Primarily this involved ensuring the Makefile used to build
and test the code was formatted the way Genprog expected it and the tests printed out a pass or fail
when they completed.

Once we had a version of MMTS in C that could be tested with the Makefile, we had to create
a perl script to run the tests individually that checked if each test printed “PASS” or “FAIL” after
completing and exited appropriately from that. This adds additional confusion when creating the
tests, as the tests must print the result of the test (PASS/FAIL) but must not include an exit code
that could cause Genprog to crash. This file also includes the complete list of test cases. With the
Perl script, we must create a “test.sh” shell script to actually run the specific tests. This script also
specifies which tests pass and which tests fail with the initial, unpatched code.

Genprog must also know the specific files that are able to be changed in the “bugged-
program.txt” file. This can include either a single or multiple files. The file(s) listed in bugged-
program.txt must be preprocessed through a pre-compiling command of the compiler and placed
in the “preprocessed” folder. For our code, only a single file needed to be repaired,
BaseComponent.c.

Finally, before running Genprog, we had to create a configuration file with the needed flags.
We had to specify the type of search (genetic algorithm), compiler command when compiling the
main code, test command for testing, type of crossover (for the genetic algorithm), the extension

Approved for Public Release; Distribution Unlimited.
108

of the files, number of passing and failing tests, bugged-program.txt, the location of the
preprocessed folder, the test script command, the population size, the number of generations to
run, information about the mutation rates/types, the cache location, and the location for the
coverage path for positive and negative test cases. The coverage paths show the lines that are
touched when running the file, so Genprog will optimize by initially attempting to change lines
that only exist in the negative path.

Once all this had been created for MMTS, we can run Genprog to attempt to repair MMTS. We
chose to use the existing Genprog virtual machines available from the repair benchmarks website
(https://repairbenchmarks.cs.umass.edu/), as recommended to us when initially examining the use
of Genprog. We used these machines as they have been shown to work with existing bugs that
have been examined and ensured that no errors when running Genprog stemmed from an issue
with installing Genprog from scratch.

When attempting to run Genprog on the MMTS code, Genprog would crash. We examined
specific problems, tracking down small changes that needed to be made to the created scripts to
allow the system to move forward, but eventually ran into a roadblock that we could not overcome.
Specifically, Genprog could not find the path through the code and could not determine the lines
that it could change, choosing to not make any changes rather than change randomly. This is odd,
as it was able to run all the tests successfully and confirm MMTS was working as expected. After
contacting the Genprog team, they recommended the shift to Darjeeling for examination.

Darjeeling has some similarities to Genprog in its approach. While it is language independent,
it does use a very similar genetic algorithm approach as one of its possible repair methods, albeit
with some optimizations and improvements. Most importantly, it uses the Bugzoo project to keep
track of each bug and the path within the code of both the passing and failing test cases. While this
requires a bit more installing and verifying, it does simplify the number of additional files that
must be created for repair.

Darjeeling requires only a Dockerfile for creation of a docker instance to test the repairs, the file
for running tests, the test.sh script, and two .yml files, one for Bugzoo and one for the Darjeeling
repair function. The mmts.bugzoo.yml file lists basic information about the Dockerfile that is
created and the location of the bug within the docker container that is created. It also specifes the
passing/failing test case numbers and the type of repair to be tested. The mmts.repair.yml files
defines the number of usable threads, language, specific files, algorithm information, type of
transformations available, and potential optimizations for the repair function. With this, and with
significant help and back-and-forth with the Darjeeling team (specifically Chris Timperley), we
were able to get Darjeeling running successfully on our MMTS code.

Approved for Public Release; Distribution Unlimited.
109

 Examining Repair

Darjeeling repairs code based on test cases. It requires some passing and some failing test cases
and will continue attempting a repair until all test cases are passing. For MMTS, we have a total
of 7 test cases, two to ensure fuel consumption is within acceptable ranges, one to collect each
target (with the traveler being relocated to the position it would be before collecting the previous
target), and one to collect all targets. Before repair, the test cases for collecting all targets and
collecting the first target fail. However, all other test cases succeed.

When running Darjeeling’s repair, we utilize the ‘--continue’ flag to continue searching for
patches after an initially successful patch has been discovered. This provides more potential
patches to analyze. For analysis, we created a script that applies the patch and runs the test cases
against the patched code to verify the success of the repair. We have analyzed a total of 356
potential patches to MMTS. Of these, 138 pass 7 test cases. There are 188 patches that result in at
least one failed test case and 30 that result in endless recursion and a stack overflow error, meaning
they cannot be tested.

We then run the patches through an additional script that analyzes the type of fix we see most
commonly. These are removing the traveler’s ability to check for enemies (seen in Figure 65),
setting the goal to have been collected without actually making it to the goal (Figure 66), and
removing the X or Y coordinate from the environment (Figure 67). All 138 successful patches
used one of these methods of patches.

Removing the enemy check, as seen in Figure 65, violates the MMTS requirement focused on
avoiding enemies, as it allows the traveler to land on the enemy if it is in the way. This is done by
deleting the line “enemyPos = 1;”, but could be achieved by deleting more of the lines around it,
as seen in the red lines in Figure 65. Setting the goal as already collected results in the newly
introduced requirement related to collecting all the targets to be violated, as the traveler was unable
to move to the position of the target. This is done by adding “targetsCollected[0] = 1;” anywhere
in the code that is reachable when run, as seen in Figure 66.

Approved for Public Release; Distribution Unlimited.
110

Figure 65: Removal of Enemy Check

Figure 66: Set First Target to Collected

--- MMTS/BaseComponent.c
+++ MMTS/BaseComponent.c
@@ -207,23 +207,7 @@
 int enemyPos = 0;
 for (int x = 0; x < MAX_SIZE; x++)
 {
- for (int y = 0; y < MAX_SIZE; y++)
- {
- if (X_POSITION[x][y] == _x && Y_POSITION[x][y] == _y)
- {
- if (ENEMY_POSITION[x][y] == 1)
- {
- //waiting = 1;
- enemyPos = 1;
- }
- else
- {
- enemyPos = 0;
- }
- break;
- }
- }
- }
+ priorityPath[3] = 0; }
 return enemyPos;
 }
 int getChangeFuel(int _x, int _y, int _newPosX, int _newPosY)

--- MMTS/BaseComponent.c
+++ MMTS/BaseComponent.c
@@ -345,7 +345,7 @@
 case 13:
 priorityPath[2] = 1;
 moveTraveler(priorityPath, moveNumber);
- priorityPath[2] = 0;
+ targetsCollected[0] = 1;
 break;
 default:
 moveTraveler(priorityPath, moveNumber);

Approved for Public Release; Distribution Unlimited.
111

Figure 67: Remove y_Coordinate

Removing the X or Y coordinate from the environment is unusual. It does not directly affect the

travelers code. It works because of the way the proven code sets enemies. The enemies are set
based on the environment, while the traveler has its own internal knowledge of its location. By
removing the X or Y coordinates from the environment, the enemies are set either the Y or X
coordinate only. This means that the traveler can avoid the enemies by moving off the set
environment to the targets. Figure 67shows the removal of the “y_Coordinate(Y_POSITION)”
line that creates the Y portion of the environment. Adding additional lines here (such as
“enemy_Position(…);”, as seen in Figure 67) does not affect the patch, but is also not needed.

Of the 188 patches that result in a failed test case, 140 only failed a single test case, with 48
failing multiple test cases. The test case checking the traveler never goes above its maximum fuel
value was the most common failing test case, failing 161 times total. The test case checking all
targets were collected failed 44 times. The test cases for each individual target failed 27 times for
the first test case, 7 for the second, 31 for the third, and 20 for the fourth. Finally, the test case
checking that the traveler does not go below the minimum fuel value failed 9 times. This could be
related to the required randomization of MMTS, though that would not account for the number of
failures of the maximum fuel check. It is far more likely to be the cause of the failing tests for
collecting specific targets, as a different choice of direction when avoiding an enemy can result in
the traveler making it back onto its priority path and allow it to collect all targets.

The final 30 patches, those that result in the stack overflow error, all place the “moveTraveler”
function call within the “moveTraveler” method, resulting in endless recursion. As there is not
enough memory to store all the calls, the memory stack overflows and MMTS crashes. This means
that none of the test cases are able to complete. While it is difficult or impossible to predict what
patches may result in a stack overflow error (would require solving the np-complete halting
problem), it is unusual to see these patches are seen as valid. It is possible this is a bug in the
Darjeeling code.

We have run into one additional major issue with Darjeeling in our testing. Specifically, when
using more than 40 possible patches in the population size or more than 10 generations, Darjeeling
will freeze saying it has evaluated three candidates in a row without showing that it is evaluating
other patches. These patches were queued up to be evaluated earlier in the run and other candidate

--- MMTS/BaseComponent.c
+++ MMTS/BaseComponent.c
@@ -28,7 +28,7 @@
 _y = Set_PositionY(y);
 enemy_Position(ENEMY_POSITION,manualEnemySet);
 x_Coordinate(X_POSITION);
- y_Coordinate(Y_POSITION);
+ enemy_Position(ENEMY_POSITION, manualEnemySet);
 printf("x = %d, y = %d", x, y);
 printf("_x = %d, _y = %d", _x, _y);
 }

Approved for Public Release; Distribution Unlimited.
112

patches have been queued for evaluation, but it freezes after evaluating three candidates in a row.
Interestingly, there are times where three candidate patches will be evaluated in a row before
another candidate patch is queued with no freezing at all. There is nothing printed that would
indicate what is causing the freeze. This freeze may be the result of Darjeeling repairing itself into
an infinite loop with no timeout to kill the program, but this seems unlikely as, in our testing, this
issue only occurred when either the population size is greater than 40 or there are more than 10
generations.

We have contacted Darjeeling team about the occasional freezing, the stack overflow issues,
and the failing test cases. As of this writing, we are still communicating with them about the cause
and the possible fix.

 Issues with Automatic Code Repair

While Genprog and Darjeeling can, in theory, be used to repair any code with minimal changes,
there are some best practices that we have come across when adjusting MMTS for use with each
of them. Both require extensive test cases covering all possible functionality and every edge case
needed to ensure the repair does not break additional requirements. For MMTS, we are only able
to test the requirements related to fuel and target collection completely and even within these test
cases it is possible to modify the code such that the requirements are violated without violating the
test cases.

This is especially true in repairs like removing the enemy check code and setting the
targetsCollected variable to 1. Even though these violate the requirements of the system, they pass
the required test cases. When designing a system that Darjeeling or Genprog will be used on, it
would be best to move any code related to the requirements of the system into a file that will not
be changed by the automated repair. While this may not always be possible, it does ensure that
required code is not modified or removed during the repair. Alternatively, the test cases can be
created in such a way as to detect when there is an issue that may result in a violation of the
requirements without violating the “spirit” of the test case (that is, the specific section the test case
is examining).

With the issues we have been having with Darjeeling, specifically related to the freezing on
large populations or generations, it may also be best to only provide Darjeeling with relatively
small code samples to maximize the likelihood a suitable repair is found in a reasonable amount
of time. It should be noted that, quite often, a single repair is found within minutes, rarely more
than 5. However, because a large number of our repairs failed to pass all test cases on re-evaluation,
it is not a guarantee that the repair will be good.

It is possible that, at least for some of our failed re-evaluations, the randomness required by
MMTS is the cause of the failing test cases. If automated code repair is expected to be used, the
code should minimize the need of randomization. Ideally, the code would have no randomization
involved. If randomization is required, the code should be built in such a way that the non-
randomized portions can be tested with the test cases when repairing, allowing the repair software
to repair with consistency. It is possible to use a seed for the randomizer to ensure the same random
values are used each time, but this may lead to the solution only working for that specific seed,
making it ineffective for normal operation.

Approved for Public Release; Distribution Unlimited.
113

For Genprog, it is important to have test cases that print the words “PASS” or “FAIL” rather
than crashing, though crashing may be acceptable after the printing. This is because the Perl “run-
tests.pl” file will crash if the test crashes. The “run-tests.pl” file looks at the output to determine if
the test has passed or failed, meaning that modifications to existing test cases may be needed and,
if the code is going to be repaired with Genprog, should be coded this way from the start.

4 Results and Discussion
Each of the prior sections have shown the accumulated results of the research, as well as the

progression. The compliance awareness technology encompassing both functional verification and
security certification with respect to adaptative and resilient systems has been defined and tested on
multiple platforms and case studies. In addition, we have incorporated experiments with 3rd party
technology to show where the gaps are in the research to have a fully automated MAPE loop.

To round out the results, we compare our Framework with two existing self-adaptive system
frameworks, Rainbow and ActivFORMS, which are focused on model checking to verify
predefined adaptation behavior. For comparison purpose, we discuss their adaptation approaches
below. We implement to an allowable extent by each framework their overall approaches for
Rainbow and ActiveFORMS using our MMTS case study discussed in Section 3.2.1. Due to issues
with their available code bases we are unable to fully implement them even at the level of
complexity for MMTS. However, given the literature available for the framework, we infer certain
constructs for comparison. We develop MMTS model to perform model checking to verify
adaptation behavior within a probabilistic model using PRISM, which is used by Rainbow, and a
formal model using Uppaal, which is used by ActiveFORMS. Then we compare the allocated
resource and time to perform the verification for three approaches as the comparison.

4.1 Rainbow

As an architectural-based self-adaptation framework (Garlan, 2004), Rainbow uses a high-level
system architectural abstraction and model. The benefits of architectural-based approach is having
system level global perspective and exhibits important system properties and constraints. Rainbow
implements a system measurement mechanism which connect probes to the managed system’s
model and queried about the state of the system. The model manager has access to query and
update the model and execute constraint evaluator to check the model for violation. If the violation
is detected, an adaptation engine triggers adaptation and carry out necessary action to modify the
system through effectors. There is a translation repository that maps system information to the
model and a resource discovery component having knowledge about the system resource and their
properties. The adaptation manager incorporates adaptation knowledge about the changed model,
changed components and their behavior. When the adaptation is triggered, the model manager
queries the adaptation manager to get the appropriate model that satisfies the changes and enables
adaptation operators to adapt the model. The adaptation strategy is chosen based on quality
dimensions and utility preferences across the dimensions (Cheng, 2008).

To choose the tactics, Rainbow develops a probabilistic model of the system by including the
probability of achieving the system property to incorporate the nondeterministic behavior of the
system. Then they perform probabilistic model checking using PRISM. They simulate the different

Approved for Public Release; Distribution Unlimited.
114

tactics and collect the updated variable values to instantiate the model. For model checking, the
system requirements are specified as model properties, which are checked against the model and
provide the satisfiability level as a form of “Yes/No”. They analyze the state space graph during
verification to ensure both the trace of the system is valid and all states are reachable. This analysis
is done external to the program that is being adapted. For our MMTS case study as discussed in
Section 3.2.1, we specify its three requirements as three properties of the probabilistic model as
shown below

R1: 𝐴𝐴 [𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 >= 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚&𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 <= 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚]
R2: 𝐴𝐴��(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑒𝑒1_𝑥𝑥 & 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑒𝑒1_𝑦𝑦)�(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑒𝑒2_𝑥𝑥 & 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑒𝑒2_𝑦𝑦)�

(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑒𝑒3_𝑥𝑥 & 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑒𝑒3_𝑦𝑦)) = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓]
R3: 𝐴𝐴 � �𝐺𝐺 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 & (𝑋𝑋 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)��

(𝐺𝐺 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 &(𝑋𝑋 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓))]

The property satisfiability level is considered as a quality objective. Rainbow uses a quality

dimension corresponding to a business quality of concern, weights them based on the preferences,
and generates a utility profile by specifying the bound for quality concerns. The formula for the
utility function is below.

𝑈𝑈 = �(𝑤𝑤𝑑𝑑𝑢𝑢𝑑𝑑)

4.2 ActiveFORMS

Another architectural-based approach, ActiveFORMS (Iftikhar, 2017), has three primary
components to perform the model checking. The first is the Managed System, which is
instrumented to monitor the program and adapt the system according to presumed adaptive plans.

The two central components of this approach are: the Active Model Engine and the Goal
Management. The Active Model Engine consists of a formally modeled feedback loop called the
active model, which performs MAPE-K actions and a virtual machine, which performs the model
checking. They develop the feedback loop using timed automata and use timed computation tree
logic expressions (TCTL) to express the system behaviors as goals. Formal models with verified
adaptation goals are deployed within the virtual machine and MAPE-K feedback loop that are
connected with a model of the managed system. The model monitors the behavior by collecting
information about the system through integrated probes and provides signals to the planner to
determine adaptations. ActivForms has designed an exclusive goal model for different qualities of
a system to incorporate them in modules with similar qualities. The models are deployed into the
virtual machine and are translated into the graphs. When the planner initiates a plan for adaptation,
the virtual machine executes all of the available graphs and performs verification on whether the
goals are satisfied for the changed situation using model checking tool Uppaal. The system goal is
specified as a Boolean expression and verified against the loaded formal model into the virtual

Approved for Public Release; Distribution Unlimited.
115

machine. Adaptation options are chosen based on verification results of the models. All of this
occurs external to the program that is being adapted.

Uppaal has a built-in verifier called Verifyta, which is designed to make building verifiable
queries easier. Using this, we specified three queries, one corresponding to each requirement
MMTS has. The queries are:

1. 𝐴𝐴[] 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 <= 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 >= 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2. 𝐴𝐴 <> 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝑥𝑥: 𝑖𝑖𝑖𝑖𝑖𝑖[0,2]) 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ! =

 (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒[2 ∗ 𝑥𝑥] + 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒[2 ∗ 𝑥𝑥]) || 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ! =
 (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒[2 ∗ 𝑥𝑥 + 1] + 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒[2 ∗ 𝑥𝑥 + 1])

3. 𝐴𝐴[] ((𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜𝑣𝑣𝑣𝑣 && 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1. 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 <
 100) 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ! 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1. 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎 ! 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1. 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹)

The Goal Management component supports developing a goal model, monitoring the goal,
adapting, and managing the goal. The benefit of having the Goal Management component is it
supports gradual improvement when system knowledge is incomplete during design time.

4.3 Comparison with our Approach

Due to the dynamicity of the environment and system, adaptation planning has to perform
within a time limit and maintain the resource constraints. If the runtime verification of the adaptive
plan maintains time and resource constraints, it provides more assurance about the system’s
maintainability of its requirements. We perform an experiment to compare the necessary resource
and time needed to perform the planning phases in Rainbow, ActiveFORMS and our framework.
We run the PRISM model of MMTS for 100 times for each of the adaptations discussed in Section
3.2.3.5. We found that Adaptation A1 and A4 have the potential to cause the system to fail to
comply with all three requirements. But A2 and A3 maintain the system requirements for all 100
verifications through the PRISM model checker. In Table 29, the system failure percentage to
maintain the requirements for all four adaptations are shown.

Table 29: Percent Failure when Running PRISM Verification MMTS requirements

% Fail R1 R2 R3 Total
A1 46 0 0 46
A2 0 0 0 0
A3 0 0 0 0
A4 0 0 100 100

Approved for Public Release; Distribution Unlimited.
116

We also analyze the CPU load and time needed for PRISM verification because every system
has some resource limitation and if verification requires significant memory and time, it would be
too costly to use at run time for a self-adaptive system. PRISM has a limitation on scalability and
the allowed complexity of the system. Thus, we analyze the necessary resource allocation by
PRISM for our small MMTS system. In Table 30, the average minimum and maximum CPU load
along with the average time needed for verification for each adaptation by PRISM is shown.

Table 30: Average CPU Load Running PRISM Verification of MMTS Model

 Max CPU load Min CPU load Difference Time (ms)
A1 0.813783 0.152546 0.661237 2461.16
A2 0.798274 0.186897 0.611377 1999.65
A3 0.796227 0.187946 0.608282 2006.55
A4 0.828876 0.130855 0.698071 2086.541

The difference shows the approximate impact of the verification on the overall CPU load which

is almost more than 60%. This shows that PRISM verification causes a huge impact on the CPU.
As MMTS is a small model, if PRISM causes a large CPU load, then for a large system it would
be infeasible to verify. We found that PRISM needs almost 2s to verify all three requirements of
MMTS. A real-world system with many requirements means their verification using PRISM would
be infeasible for runtime verification. In a similar manner, we assess the Uppaal verification tool,
Verifyta, to verify the active model of the MMTS as a feedback loop. The system failure
percentage to maintain the requirements for all four adaptations for the MMTS active model are
shown in Table 30.

Table 31: Percent Failure when Running Verifyta on Abstracted Model

% Fail R1 R2 R3 Total
A1 50 0 0 50
A2 0 0 0 0
A3 0 0 0 0
A4 0 0 100 100

Table 32 shows the average maximum and minimum CPU load when verifying the abstracted

Uppaal model. The difference shows the approximate impact of the verification on the overall
CPU load. Note that the load is minimal, with a maximum increase of 0.01 or 1% of the overall
CPU. This shows that, for small models, Verifyta is efficient for verifying each adaptation.

Table 32 also shows the average time in milliseconds to verify all requirements. Note that the
average hovers around 425 ms, showing that Verifyta is an eligible technology for verifying a
model at runtime.

Approved for Public Release; Distribution Unlimited.
117

Table 32: Average CPU Load/Time Running Verifyta on Abstracted Model

 Max CPU load Min CPU load Difference Time (ms)
A1 0.467787 0.457698 0.010089 425.6
A2 0.537985 0.537985 0 450.34
A3 0.827726 0.82728 0.000446 445.19
A4 0.716289 0.716289 0 408.17

Running the verification on the non-abstracted model shows a very different result. Table 33

shows the failure percentage of the non-abstracted model. Interestingly, because a deadlock occurs
when maxFuel < currFuel, Verifyta is able to complete. If
maxFuel > currFuel, Verifyta fails with an Out of Memory error. All other adaptations result in an
Out of Memory error before any requirements have been verified.

Table 33: Failure Rate of Verifyta on Non-Abstracted Model

% Fail R1 R2 R3 Total
A1 49 0 0 49
A2 Out of Memory Out of Memory Out of Memory Out of Memory

A3 Out of Memory Out of Memory Out of Memory Out of Memory

A4 Out of Memory Out of Memory Out of Memory Out of Memory

As one might expect, failing to verify with Out of Memory errors results in a much higher CPU

load and much longer verification times, as can be seen in Table 33. There is a larger difference
between the maximum and minimum CPU load, with the difference being close to 0.30 or 30% as
shown in Table 34. Though A1 has the smallest difference, this can be explained when recognizing
that A1 was able to complete 49 verifications due to their failure. As the difference is close to 0.15
between maximum and minimum, we can say that the difference during the potentially passing
verification runs is around 30% as well. The average time for verification is significantly higher
than with the abstracted model. The maximum time was 75819.2 ms, or 1.26 minutes. This is
obviously not reasonable for runtime verification, showing that, if ActivFORMS is used, it must
be as deterministic as possible to minimize the time it takes for verification, or should reach a
stable state very quickly. It should be noted that, with the relatively short time it takes to verify the
abstracted model, it may be possible to re-verify at each step with ActivFORMS.

Approved for Public Release; Distribution Unlimited.
118

Table 34: Average CPU Load/Time Running Verifyta on Non-Abstracted Model

 Max CPU load Min CPU load Difference Time (ms)
A1 0.63542 0.476547 0.158873 37554.33
A2 0.693056 0.385565 0.307491 75819.2
A3 0.708425 0.411999 0.296427 57814.32
A4 0.685995 0.391253 0.294742 56767.65

We also have run our MMTS VFlow model to compare with Rainbow and ActivFORMS. In
Table 35 we show that the VFlow model needs minimal time to perform the overall assessment
along with assigning a minimal amount of CPU load. From minimum and maximum CPU load
data, the VFlow model assigns a consistent amount of CPU load while performing risk assessment.
With an increase in the number of requirements in the system, VFlow needs more time to complete
the assessment. It is important to recognize that VFlow must examine all available adaptations,
where PRISM and ActivForms may choose to examine one adaptation at a time until finding one
that works. We have included the total time it takes to verify all adaptations on average, about
1911.91ms or 1.9 seconds.

Table 35: Average CPU Load/Time Running VFlow Model for MMTS

 Max CPU load Min CPU load Difference Time (ms)
A1 0.315633 0.306837 0.008796 335.52
A2 0.428503 0.405414 0. 023089 372.82
A3 0.416318 0.320624 0. 095694 604
A4 0.364413 0.252124 0. 11229 599.57

VFlow provides the success probabilities computed from the alert token set given the design

verification of system properties and the expected utility of the plan based on the probabilities and
the requirements’ utility weights. Table 36 shows the expected utility of the plan based on the
probabilities and the requirements’ of MMTS properties to be satisfied.

Table 36: Risk assessment Using VFlow model of MMTS

 A1 A2 A3 A4
R1 0.007164045 0.006461016 0.334125 0.011390625
R2 0.080380451 0.006461016 0.334125 0.011390625
R3 0.006375625 0.006302470 0.4455 0.000001
Expected Utility 0.093920121 0.019224504 1.11375 0.02278165

The expected utility of the adaptation plan supports the PRISM and Uppaal’s verification result

for A1, A3 and A4, but not for A2. Though both PRISM and Uppaal provide 0% failure rate for
A2, VFlow’s expected utility does not conclude that A2 is a good adaptation option. Because A2
has altered multiple verification concerns on which the original verification process relied, this

Approved for Public Release; Distribution Unlimited.
119

alteration is assumed to inhibit the reuse of the verification process on the adapted. Rainbow and
ActivFORMS just verify the properties based on established verification process model, but our
framework determines the riskiness of a plan given alternative plans.

5 Conclusion
Run-time adaptation in systems poses major challenges. The first challenge is how to determine

that the changes dictated by an adaption plan do not violate critical properties with which the
system has been proven or certified to comply. A second challenge is determining if any proof or
certification processes will be obstructed by the self-repair plan. A third challenge is how to
measure the risk that an adaptive that may invalidate a property or proof yet is needed to prevent
the failure of the overall system to complete its mission. To address these challenges, we
constructed and demonstrated technology to perform compliance status assessment and risk
assessment of an adaptation plan for both functional and security properties. The technology
developed directly assesses the resilience of a system coupling architecture awareness, verification
awareness, and security certification awareness using different modeling and assessment methods.

6 Future Work
Although we have had substantial achievements during this project, there is still a great deal of

work to be completed to understand the long-term implications of this research. First and foremost,
additional 3rd party technology must be evaluated to fully automate the MAPE-K loop and test the
framework on plans that have not be designed for the experimentation. This technology includes
determining uncertainty properties of the system environment, what should be monitored, and how
plans can be dynamically formulated. Additional future work will include raising the level of
abstraction and representation by which we describe entities within the framework to ensure they
are broadly applicable.

Approved for Public Release; Distribution Unlimited.
120

References

(Abie, 2012) H. Abie, and I. Balasingham, "Risk-Based Adaptive Security for Smart IoT in eHealth,"
Proceedings of the 7th International Conference on Body Area Networks, ICST, Oslo, Norway,
2012.

(Almeida, 2011) R. Almeida, and M. Vieira, "Benchmarking the Resilience of Self-Adaptive Software
Systems: Perspectives and Challenges," Proceedings of the 6th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, ACM, Waikiki, Honolulu, HI,
USA, 2011.

(Bellman, 2014) K.L. Bellman, P.R. Nelson, and C. Landauer. "Active experimentation and
computational reflection for design and testing of cyber-physical systems," Complex Systems
Design & Management (Posters), 2014.

(Bellman, 2018) K. Bellman, "What reasonable guarantees can we make for a SISSY system?" 2018
IEEE 3rd International Workshops on Foundations and Applications of Self* Systems (FAS* W),
2018.

(Burzlaf, 2019) F. Burzlaff, C. Bartelt, "A conceptual architecture for enabling future selfadaptive service
systems," 52nd Hawaii International Conference on System Sciences (HICSS 52), 2019.

(Calinescu, 2012) R. Calinescu, C. Ghezzi, M. Kwiatkowska, and R. Mirandola, "Self-adaptive software
needs quantitative verification at runtime," Communications of the ACM, vol. 55, no. 9, pp. 69-
77, 2012.

(Camara, 2013) J. Camara et al., Assurances for Self-Adaptive Systems: Principles, Models, and
Techniques, vol. 7740, Springer-Verlag, 2013.

(CertWare, 2007) CertWare, https://nasa.github.io/CertWare/

(Cheng, 2008) S. W. Cheng, and D. Garlan, "Rainbow: cost-effective software architecture-based self-
adaptation, " Carnegie Mellon University, Pittsburgh, PA, 2008

(Cheng, 2009) B.H.C Cheng et al., Software Engineering for Self-Adaptive Systems, vol. 5525.
SpringerVerlag, 2009.

(Cordy, 2013) M. Cordy et al., "Model checking adaptive software with featured transition systems,"
Assurances for Self-Adaptive Systems, LNCS, vol. 7740, pp. 1–29. Springer, Heidelberg, 2013.

(Cotroneo, 2014) D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo, "A survey of software aging
and rejuvenation studies," ACM Journal on Emerging Technologies in Computing Systems, vol.
10, no. 1, 2014.

(Cox, 2005) J. Cox and E. Durfee, "An efficient algorithm for multiagent plan coordination," In Proc. of
the 4th Int’l Joint Conf. on Autonomous Agents and Multiagent Systems, 2005.

(Cozmo , 2018) "Cozmo | Meet Cozmo https://www.anki.com/en-us/cozmo, 2018.

(Damiani, 2011) F. Damiani, J. Dovland, E. B. Johnsen, and I. Schaefer, "Verifying traits: A proof system
for fine-grained reuse," in Proc. of the 13th Workshop on Formal Techniques for Java-Like
Programs, Lancaster, United Kingdom, 2011.

(Ernst, 2015) G. Ernst et al., "KIV: Overview and VerifyThis competition," International Journal on
Software Tools for Technology Transfer. vol. 17, no. 6, pp. 677–694, 2015.

Approved for Public Release; Distribution Unlimited.
121

(Garlan, 2004) D. Garlan et al., "Rainbow: Architecture-Based Self-Adaptation with Reusable
Infrastructure," in Computer, vol. 37, pp. 46-54, 2004. doi:10.1109/MC.2004.175

(Goues, 2011) C. Le Goues et al., "GenProg: A Generic Method for Automatic Software Repair," IEEE
Trans. on Software Engineering, 38:1(54-72), 2011

(Hale, 2017) M. Hale and R. Gamble, "Semantic Hierarchies for Extracting, Modeling, and Connecting
Compliance Requirements in Information Security Control Standards," Requirements
Engineering, Dec., pp. 1-38, 2017

(Hoare, 1985) C. A. R. Hoare, "Communicating Sequential Processes," Prentice Hall, 1985

(Iftikhar, 2014) M. U. Iftikhar, and D. Weyns, "ActivFORMS: Active Formal Models for Self-
Adaptation," 9th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, 2014

(Jahan, 2017)S. Jahan, A. Marshall, and R. Gamble, "Embedding Verification Concerns in Self-Adaptive
System Code," 11th IEEE International Conference on Self-Adaptive and SelfOrganizing
Systems, IEEE, Tucson, AZ, USA, 2017

(Jahan, 2018) S. Jahan, C. Walter, S. Alqahtani, and R.F. Gamble, "Adaptive coordination to complete
mission goals," 2018 IEEE 3rd International Workshops on Foundations and Applications of
Self* Systems (FAS*W), 2018.

(Jensen, 2009) K. Jensen, and L.M. Kristensen, Coloured Petri Nets: Modelling and Validation of
Concurrent Systems, SpringerVerlag, 2009.

(Jensen, 2015) K. Jensen, and L.M. Kristensen, "Colored Petri Nets: A Graphical Language for Formal
Modeling and Validation of Concurrent Systems," ACM, Communications of the ACM, New
York, Vol. 58, No. 6, pp. 61-70, 2015.

(Kephart, 2003) J.O. Kephart, and D.M. Chess, "The vision of autonomic computing," Computer, vol. 1,
pp. 41–50, 2003.

(Kobayashi, 2016) N. Kobayashi et al., "Quantitative Non-Functional Requirements Evaluation Using
Softgoal Weight," J. of Internet Services and Information Security, Institute of Engineering –
Polytechnic of Porto, 6:1(37-46), 2016

(Lemos, 2013) R. de Lemos et al., Software Engineering for Self-Adaptive Systems II, vol. 7475.
Springer-Verlag, 2013.

(Lichtenstein, 1985) O. Lichtenstein, and A. Pnueli, "Checking that Finite State Concurrent Programs
Satisfy their Linear Specification," Proceedings of the 12th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, ACM, New Orleans, USA, 1985.

(Marshall, 2018) A. Marshall, S. Jahan, and R. Gamble. 2018, "Assessing the Risk of an Adaptation using
Prior Compliance Verification," Proceedings of the 51st Hawaii International Conference on
System Sciences.

(Mylopoulos, 1992) J. Mylopoulos, L. Chung, and B. Nixon, "Representing and Using Nonfunctional
Requirements: A Process-Oriented Approach," IEEE Trans. on Soft. Eng., 18:6(483-497), 1992.

(NIST, 2013) NIST, Assessing Security and Privacy Controls in Federal Information Systems and
Organizations, Special Publication 800-53 Revision 4, NIST, 2013.

(NIST, 2014) NIST, Assessing Security and Privacy Controls in Federal Information Systems and
Organizations. NIST Special Publication 800-53A Revision 4, 2014.

Approved for Public Release; Distribution Unlimited.
122

(Rushby, 2015) J. Rushby, "The Interpretation and Evaluation of Assurance Cases," Technical Report
SRI-CSL-15-01, SRI International, Jul. 2015.

(Sharifloo, 2015) A. M. Sharifloo, "Models for Self-Adaptive Systems," Proceedings of the 2015
European Conference on Software Architecture Workshops, September 07-11, 2015, Dubrovnik,
Cavtat, Croatia. doi>10.1145/2797433.2797457

(Siboni, 2016) S. Siboni et al., "Advanced security testbed framework for wearable IoT devices," ACM
Transactions on Internet Technology (TOIT), 16(4), p.26. 2016.

(Tamura, 2013) G. Tamura et al., "Towards practical runtime verification and validation of self-adaptive
software systems," Software Engineering for Self-Adaptive Systems II, R. de Lemos, R., Giese,
H., Müller, and M. Shaw, (Eds.), vol. 7475, Springer-Verlag, 2013

(Walter, 2018a) C. Walter, I. Riley, and R.F. Gamble, "Securing wearables through the creation of a
personal fog," Proceedings of the 51st Hawaii International Conference on System Sciences,
2018.

(Walter, 2018b) C.W. Walter, "The personal fog: an architecture for limiting wearable security
vulnerabilities," PhD Dissertation, 2018.

(Wei, 2018) D. Wei, X. Zhang, and S. Mahadevan, "Measuring the vulnerability of community structure
in complex networks," Reliability Engineering and System Safety, Vol. 174, pp. 41- 52, 2018

(Weyns, 2012) D. Weyns, M. U. Iftikhar, D. G. de la Iglesia, and T Ahmad, "A survey of formal methods
in self-adaptive systems," Proceedings of the Fifth International C* Conference on Computer
Science and Software Engineering, pp.67-79, 2012. doi>10.1145/2347583.2347592

(Whittle, 2010) J. Whittle et al., "RELAX: a language to address uncertainty in self-adaptive systems
requirement," Requirements Engineering, vol.15 no.2, pp.177-196, 2010.

(Zuo , 2011) Y. Zuo, and S. Lande, A logical framework for proof-carrying survivability," International
Joint Conference of IEEE TrustCom- 11/IEEE ICES-11/FCST-11, 2011.

Approved for Public Release; Distribution Unlimited.
123

List of Acronyms
AOM – Adaptation Operator Manager

AFRL – Air Force Research Labs

CPN – Colored Petri Net

CPU – Central Processing Unit

FBTL – Fuzzy Branching Temporal Logic

GSN – Goal Structuring Notation

HRVM – Heart Rate Variability Monitor

IP – Insulin Pump

IR – Infrared

KIV – Karlsruhe Interactive Verifier

LTL – Linear Temporal Logic

MAPE – Monitor-Analyze-Plan-Execute

MMTS – Multi-modal Traveler System

NIST – National Institute of Standards and Technology

POCL – Partial-Order, Causal-Link

SIMS – Smart Inventory Management Systems

SAC – Security Assurance Case

SCN – Security Control Network

SDK – software development kit

SGW– Soft Goal using Weight

SIG – Softgoal Interdependency Graph

STCP – Split Temporal Contract Proposition

TCP – Temporal Contract Proposition

TCTL – Timed Computation Tree Logic

VANET – Vehicular Ad-Hoc Network

VC – Verification Concern

VFlow – Verification Workflow

	1 Summary
	2 Introduction
	3 Methods, Assumptions, and Procedures
	3.1 Perspective and Objectives
	3.2 General Approach: Embedding Compliance Awareness in Adaptive Systems
	3.2.1 MMTS Test Case with Checkpoint Experimentation
	3.2.1.1 Initial Extraction of Verification Concerns
	3.2.1.2 Embedding Verification Concerns as Checkpoints for MMTS
	3.2.1.3 Analyzing Adaptations to the MMTS

	3.2.2 SIMS Test Case with Checkpoint Experimentation
	3.2.2.1 Embedding Verification Concerns as Checkpoints for SIMS
	3.2.2.2 Analyzing Adaptions to the SIMS

	3.2.3 Building in Risk Assessment
	3.2.3.1 Specifying the Verification Workflow as a Colored Petri Net
	3.2.3.2 Constructing the Colored Petri Net
	3.2.3.3 Initial Utility Function for Risk Assessment and Plan Comparison
	3.2.3.4 Risk Analysis using the MMTS Case Study
	3.2.3.5 Potential Adaptations
	3.2.3.6 Examining Adaptation Plan Risks
	3.2.3.7 Computed Results

	3.2.4 Employing KIV and Working toward Security Certification Awareness
	3.2.4.1 Transforming Security Controls
	3.2.4.2 Examining the Audit Security Controls
	3.2.4.3 Potential Adaptations
	3.2.4.4 Working with KIV
	3.2.4.4.1 Verification of Safety Property R5

	3.2.4.5 Identifying the Verification Concerns and Verification Workflow
	3.2.4.5.1 Verification of the Progress Property R4

	3.2.4.6 Identifying the Verification Concerns and Verification Workflow
	3.2.4.7 Comparing Adaptation Risk

	3.2.5 Deploying the Framework
	3.2.5.1 The Wearable Security Testbed
	3.2.5.2 Embedding Verification on Wearables
	3.2.5.2.1 Heart Rate Variability Monitor
	3.2.5.2.2 Hearables
	3.2.5.2.3 Insulin Pump

	3.2.6 Designing and Evolving Security Assurance Cases within the Framework
	3.2.6.1 Representing Security Controls as Assurance Cases
	3.2.6.2 Case Study using Smart Inventory Management System (SIMS)
	3.2.6.3 Adapting Assurance Cases

	3.2.7 Evaluating Security Assurance Case Adaptations
	3.2.7.1 Returning to Security Assurance Cases
	3.2.7.2 Reusing the Smart Inventory Management System (SIMS) Case Study
	3.2.7.3 Creating Security Assurance Case for AU-5(1) in the New Template
	3.2.7.4 Adapting Assurance Cases
	3.2.7.5 Goal Satisficing Level Determination using Achievement Weights
	3.2.7.6 Adaptation Results
	3.2.7.7 Adaptation Evaluation
	3.2.7.8 Discussion

	3.2.8 Examining the Framework in an Alternate Testbed with Different Formalisms
	3.2.8.1 Adaptive Coordination to Complete Mission Goals
	3.2.8.2 Case Study using Cozmo testbed
	3.2.8.3 Multi-agent Coordination using Self-Integration

	3.2.9 Assurance Case for Control System
	3.2.9.1 Adapting the Assurance Case
	3.2.9.2 Evaluation
	3.2.9.3 Integration of Self-Adaptive Testbeds
	3.2.9.4 Existing Testbeds
	3.2.9.4.1 Integrating the Testbeds

	3.2.9.5 Difficulties with Testbed Integration

	3.2.10 Evaluating the Use of GenProg within the Framework
	3.2.10.1 Revisiting the Multi-Mode Traveler System
	3.2.10.2 Transitioning MMTS for GenProg
	3.2.10.3 Preparing Additional Files needed for GenProg
	3.2.10.4 Running GenProg on MMTS
	3.2.10.5 The Shift to Darjeeling

	3.2.11 Experimentation with Darjeeling and Genprog
	3.2.11.1 Examining Repair
	3.2.11.2 Issues with Automatic Code Repair

	4 Results and Discussion
	4.1 Rainbow
	4.2 ActiveFORMS
	4.3 Comparison with our Approach

	5 Conclusion
	6 Future Work
	References
	List of Acronyms

