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1 Summary  
Performing dynamic compliance guaranteeing processes, such as verification and security 

certification of functional and security requirements at run time on an adaptive system is 
exceedingly complex and stretches current formal model-checking capabilities. We use the generic 
term adaptive system for a system that satisfies any self-* property, such as self-repair or self-
protection. We advocate for technology that abstracts key properties from compliance 
guaranteeing processes performed prior to system deployment, embeds the properties within the 
adaptive system, and assesses these properties against planned adaptations or repairs at run time. 
The results of the assessment determine the potential for repeating a compliance guaranteeing 
process post adaptation and ascertain the resulting risks to the system if the adaptation is performed 
given a compliance guaranteeing process may be compromised.  

The goal of the project is to develop this technology within a framework to determine the 
potential for reusing compliance guaranteeing processes of critical requirements that may be 
affected by the adaptive plan (i.e. code repair, functional change, security change) of a self-
adaptive system. The framework will translate the reuse potential into a risk measurement that, 
should the adaptive plan be deployed, it will violate one or more requirements. The risk will be 
calculated without performing full re-verification or re-certification. We use the term compliance 
aware to represent the dual goals to achieve verification awareness – the embedded key properties 
needed for verification of critical functional requirements – and certification awareness the 
embedded key properties needed for certification of critical security requirements in the form of 
security controls (NIST, 2013). Thus, the overall research objective is to devise a framework that 
makes an adaptive system both architecture and compliance aware and enables a run-time risk 
assessment of an adaptive plan. The techniques developed that underpin the framework can be 
used to better inform adaptive system design to improve resiliency.  

2 Introduction  
Resilience requires automatically adapting to a situation that impedes a mission. An adaptive 

software system can monitor itself, analyze a failure occurrence, and recover by altering its state, 
logic, or architecture. Such autonomous systems rely on continuous monitoring of the system and 
environment, analyzing performance anomalies, planning the most viable adaptation strategy 
given the context and available resources, and executing the adaptation on the deployed system. 
Substantial research exists in self-adaptive systems at all levels, e.g., architectural reconfiguration, 
interface alterations, and changes to embedded systems, but it focuses primarily on performing a 
functional or architectural change without disruption (Cheng, 2009), (Lemos, 2013). Once altered, 
the same requirements compliance guaranteeing processes that were imposed on the originally 
deployed system should be similarly imposed on the adapted system. Research in self-verification 
during and subsequent to system adaptation is severely lacking, especially for distributed systems, 
service-oriented architectures, and embedded systems (Calinescu, 2012), (Tamura, 2013). 
Software verification and validation, along with security certification, are difficult and tedious 
processes, demanding well-defined requirements, clear evaluation strategies, and automated 
methods that should not require more code than the functionality being assessed (Zuo, 2011). This 
project defines a framework for technology to determine if an adaptation can inhibit the reuse of 
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the original compliance guaranteeing processes used for verification or certification, where 
verification refers to a formal methods process and certification is specific to guaranteeing 
compliance with security controls such as those in the NIST SP800-53 (NIST, 2013). It extracts 
critical properties and the flow of assessment or examination from those processes to determine 
how the adaptation will affect them (Jahan, 2017). The more devastating the effect, the lower the 
likelihood that a compliance guaranteeing process can be reused. The lower the likelihood of 
process reuse, the higher the likelihood of compliance violation because rarely can an alternate 
compliance guaranteeing process be used for a requirement (Marshall, 2018). 

There are multiple research issues to be addressed to construct and deploy this technology. One 
major research issue is to define a strategy to determine if a requirement can be re-guaranteed 
through verification or certification of the adapted system at the time the adaptation plan is 
designed and selected. The challenge is to go beyond identifying the critical properties and 
determining the system’s level of compliance through verification or certification to capturing and 
modeling the compliance guaranteeing process by which verification or certification was initially 
performed. Formal processes of verification and certification are far too costly in resources to 
deploy at run time. Though model-checking introduces a level of abstraction into the compliance 
guaranteeing process, it too is limited in what can be expressed and assessed (Sharifloo, 2015), 
(Calinescu, 2012), (Cordy, 2013), (Weyns, 2012). To address this research issue, we advocate for 
modeling the verification and certification processes (i.e. compliance guaranteeing processes) in a 
way that can be embedded into the system to make it compliance aware. With this awareness, 
technology can be developed to assess how it was guaranteed to be compliant with how an 
adaptation affects the reuse of the compliance guaranteeing process. This report demonstrates an 
initial framework that embodies this technology. 

Another research issue is that metrics need to be defined that associate a risk level with the 
determination of how an adaptive plan inhibits the reuse of the compliance guaranteeing process. 
In addition, once a risk factor is calculated, it is essential to understand how that risk propagates 
throughout the system requirements. This project aligns risk assessment with re-verification and 
re-certification status assessment. With the framework, the risk metrics are directly tied to the 
criticality of the affected properties and the extent to which those effects impact reuse of one or 
more compliance guaranteeing processes.  

A third research issue is how to encode compliance awareness and risk assessment into the 
dynamic adaptive plan analysis at runtime (Abie, 2012), (Almeida, 2011), (Camara, 2013), 
(Cheng, 2009). The framework developed defines modeling abstractions that express internal 
processing and external interaction performance parameters and their dependencies. It embeds an 
executable Colored Petri Net (CPN) (Jensen, 2009), (Jensen, 2015) for each critical requirement 
that represents the architecture of the compliance guaranteeing process and the properties used for 
verification and certification. The output of each CPN is aggregated to calculate the risk of an 
adaptation plan against alternative plans. Overall, the modeling and assessment mechanisms 
developed for this project will inform the capturing of relevant meta-data at design time to lead to 
better compliance awareness representations and manipulations in resilient systems.  
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3 Methods, Assumptions, and Procedures   

3.1 Perspective and Objectives 

Not all system requirements can be formally verified, validated, or certified. But many critical 
properties, especially those that are relevant across the system landscape, would benefit from 
formal approaches applied to the safety and security of the system, given the environments in 
which it operates. Autonomous systems must continually comply with certain properties and 
maintain behavior guarantees. When these systems adapt to a situation, the resulting change should 
fall within the boundaries of the existing property and behavior guarantees or provide notification 
as to the extent and risk of the failure as part of compliance awareness (Cotroneo, 2014).  

Our perspective is that the compliance guaranteeing process for a critical requirement, such as 
an invariant (safety property) or behavior expectation over time (liveness property), should be 
represented in some form to an adaptive system as part of its compliance awareness, which 
includes architecture awareness and situational awareness. That is, we should be able to capture 
and model the meta-data that represents the variables, state changes, and communications among 
systems, components, and internal processes that are needed to guarantee a requirement. Because 
initially we focused on formal verification of requirements (and later addressed security 
certification), we call the resulting model a verification workflow or VFlow. If an adaptation alters 
any of the meta-data, then it has the potential to invalidate the verification or certification process, 
signaling a potential issue with the reuse of the same process within the repaired system. As stated 
in Section 2, assessing process reuse provides a computationally efficient and effective method of 
predetermining the potential level of requirements violation within the system at run time.  Even 
if the adaptation is not performed because of the potential for violation, substantive knowledge can 
be retained to inform the heuristics that help plan the next adaptation. 

The main objectives of the project are as follows. 
• Develop technology that investigates the reuse of compliance guaranteeing processes. 
• Define utility functions that express the risk of inhibiting the reuse of compliance 

guaranteeing processes due to changing properties on which the processes rely.  
• Devise a framework for run-time compliance awareness.  
• Derive, model and embed VFlows for computationally efficient assessment of formal 

verification process reuse.  
• Design security assurance cases (SACs) as representative of certification processes for 

compliance with security controls.  
• Devise case studies to evaluate the framework for assessing verification and 

certification process reuse during run-time adaptation. 
• Evaluate the use of GenProg/Darjeeling within the framework, 

The approach uses a combination of techniques to embed compliance awareness into the case 
studies and compute the overall risk of an adaptation plan with respect to functional and security 
requirements. For functional requirements, techniques include manual proof and the use of the 
KIV theorem prover (Ernst, 2015) to find verification concerns that are paramount to the proof 
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process, a Colored Petri Net [(Jensen, 2009), (Jensen, 2015) representation for the VFlow that 
assesses the potential violations to reusing a compliance guaranteeing process, and an analysis 
technique to compare adaptations to determine the least risky. For security requirements, manual 
proof and the KIV theorem prover are shown to be valid techniques. Additional techniques for 
security certification employ representations of security controls from the NIST SP800-53 (NIST, 
2013) as SACs. Achievement weights are deployed at assurance case goals to provide a level of 
confidence in the claims of compliance with a security control given the effect of an adaptation. 
Satisficing scores are calculated across a network of related security controls as detailed within the 
NIST SP800-53 to provide a risk assessment across all requirements when an adaptation is 
planned. Adaptation operators are defined for SACs to inform the risk assessment.  

Four cases studies are defined and used to demonstrate the techniques. The Multi-modal 
Traveler System (MMTS) is a basic program of a traveler moving within a grid to conserve fuel 
and avoid enemies. The Smart Inventory Management Systems (SIMS) represents a component-
based system that must comply with security controls. The wearable security experimentation 
testbed (Walter, 2018a) provides a platform to exercise the use of the CPNs. The Cozmo 
experimentation testbed provides a platform to exercise the use of the SACs.  

The assumption is that investigating a means for the dynamic assessment of resilient systems 
when adapted at run time will inform design practices for adaptive systems. In addition, such 
technology should reduce the resources needed for re-verification and re-certification by providing 
automated strategies that distinguish the components and properties directly and indirectly affected 
by an adaptation from those whose compliance is more likely to remain intact. 

3.2 General Approach: Embedding Compliance Awareness in Adaptive 
Systems 

We develop a run-time, metadata-driven verification and certification framework within which 
adaptation plans or patches can be compared to determine the least risky choice at runtime shown 
in Figure 1. This framework fits within the four phases of the traditional MAPE loop: Monitor, 
Analyze, Plan and Execute (Kephart, 2003).  

 

  
Figure 1: Metadata based Verification and Certification Framework 
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We perform formal proof process and certification of system’s requirement compliance for 
original deployed code of the system and develop argumentation that system maintains a justified 
confidence level to comply with specified requirements and goals. We construct the structure of 
argumentation of system’s compliance as a form of assurance case by linking the claims of 
system’s intended behavioral goals and evidences of system’s compliance with goals as a part of 
certification. This formal verification and certification process extracts metadata which contain 
information about potential state variables, their association with system’s functions, methods, and 
components, their condition and impact on original verification and certification process. We 
model the metadata extracted from verification process of each functional requirement as 
verification workflow and certification process as assurance cases and deployed them a part of 
knowledge of MAPE-K loop. The benefit of this approach is having precise knowledge about 
system and proof process provides assurance about correct behavior of system.  

In the monitor phase, the framework allows for examination of states of local and global 
variables extracted from metadata of formal verification and certification process and events of 
interest based on situational awareness. Potential problems that can occur due to the events are 
determined, along with their importance to the system operation, within the analyze phase.  

The planning phase is where our effort is mainly concentrated. In this phase, the planner 
eventually chooses adaptation plan to resolve the problem and creates expected change set for 
plan. But adaptation may add/delete/modify system’s functionality which inhibit to reuse the 
original verification process and have negative impact on confidence level of certification process. 
Our approach determines the risk to reuse the original requirement compliance verification process 
due to adaption changes and recalculate the confidence level of assurance case at runtime. The risk 
is represented using probability estimates to violate requirement from which we compute the 
expected utility of each adaptive plan. Probability estimates are calculated based on state variables 
and their conditions elevated from the original proof process, along with their impact on the proofs 
and knowledge supplied by the MAPE-K planner. We introduce a utility function that uses 
probability estimate to perform risk assessment. We employ rule-based adaptation operation to 
evolve assurance cases with the changes provided by MAPE-K planner and determine impact on 
state variables calculated from their conditions elevated from the original certification process. 
These impacts are accumulated and passed through higher level goals. We introduce two metrics: 
achievement weights and satisficing levels to realize the condition of goals within assurance cases 
and calculate the confidence level of system’s compliance with certification process.  

After determining the least risky plan by assessing risk and confidence level, we deploy the 
modification planned in planning step to system and evolve assurance cases to reflect the changes 
on model in execution step. 

The following sections detail several investigations performed during the contract period to 
provide a broad understanding of compliance awareness and run-time adaptation risk assessment 
using the various case studies and platforms. Each investigation works with a set of dedicated 
requirements and potential adaptations that may be different from those used in another section for 
the same case study or platform. These differences are due to the focus of the research, approach, 
implementation, and expected outcome for that investigation. We use the terms self-adaptive 
system and adaptive system interchangeably, along with adaptation and self-adaptation. Because 
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we were originally focused on verification of functional requirements, verification awareness 
appears instead of the more generic term of compliance awareness. Similarly, certification 
awareness is introduced when examining security controls as a part of the larger effort.  

3.2.1 MMTS Test Case with Checkpoint Experimentation  

Self-adaptive systems must comply with requirements even after adaptation.  Compliance to 
system requirements after adaptation can be assured by performing re-verification process against 
employed system code. Re-verification requires human intervention which is not feasible for 
autonomous system and dynamic compliance assessment is very resources intensive. On the other 
hand, if the adaptation does not impact state variables associated with system requirement, 
performing dynamic compliance assessment is not necessary. We abstract original verification 
process and extract metadata representing how the variables, state changes, and communications 
among systems, components, and internal processes are assessed to establish the compliance status 
of a requirement. From these metadata, we identify potential state variables associated with system 
requirement. Identified state variables are organized according to verification process and embed 
them into system code as checkpoints to realize the state of verification process for each 
requirement. But adaptation changes functionality, and it has potentiality to effect on state 
variables associated with original verification process, which subsequently arises deviation to the 
original verification process. If deviations to the verification process are detected, the adaptation 
can be considered to have a higher risk of violating critical requirements. We simulate adaptation 
plan and collect checkpoint logs. If adaptation affects requirements, simulation arises flags even if 
the issues do not immediately cause a requirement violation. Thus, failure to complete a path 
through the checkpoints indicates that the verification process may not be reusable.  

Our first case study is Multi-Mode Traveler System (MMTS) where a “traveler” moves on a 
grid with enemies statically placed in random positions. Traveler have to move by avoiding 
enemies and maintain a fuel threshold range. The traveler’s fuel level along with the minimum and 
maximum fuel levels are set initially and maintained the range. But a move may keep fuel same as 
prior or increase or decrease a unit from the traveler’s reserves depending on which next move is 
chosen. That is, the traveler’s fuel is not associated with its current position, but how it has traveled 
on the grid. We select three MMTS requirements for verification shown in Table 1. Let 𝑝𝑝 = (𝑥𝑥, 𝑦𝑦) 
be the traveler’s position.  
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Table 1: MMTS Requirements and their LTL representation 

 Statement LTL Expression Type 
MR1 The fuel level must 

satisfy the defined 
threshold 

□(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) Invariant 

MR2 The traveler must not 
enter an enemy 
position 

□(𝑝𝑝 ∉ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) Invariant 

MR3 If the traveler can 
move, it must move  □(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑝𝑝) ⟹ ◇[ ∃𝑞𝑞 ∶ 𝑞𝑞 ≠ 𝑝𝑝 ∶ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑞𝑞)] Progress 

 
The component-based system architecture including self-adaptive MAPE-K loop as related to 

the verification of MMTS’s three requirements is shown in Table 1. In Figure 2 the MAPE-K loop 
components are shown as purple ellipse and three system components are shown as light blue 
boxes. Checkpoints associated with components related with verification process are included 
within the components and shown as dark blue boxes. The fuel threshold invariant, MR1, and 
avoiding enemy position invariant, MR2 is checked with respect to traveler’s current position 
using checkpoint C1.A and C1.B at component getCurrentStatus. Requirement, MR1 implies that 
fuel level cannot go below minimum fuel and cannot exceed maximum fuel level. MR1 is an 
invariant property (□) for MMTS and checked against current fuel level of the traveler. 
Requirement, MR2 implies that traveler is never in a position where there is an enemy, and it’s 
also an invariant property for MMTS. If 𝑝𝑝 is current position of the traveler on the grid and 
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is the set of positions indicating placement of enemies on the grid, then 𝑝𝑝 cannot be 
an element of 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. 

If MR1 and MR2 are satisfied, traveler computes available valid moves that traveler can make 
from current position, and generates set of 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣. This computation is part of progress 
property, MR3 which implies that if the traveler can move to a new position, then eventually (◇) 
the traveler moves to a new (distinct) position. The computation considers the current state so that 
current position, 𝑝𝑝 is not element of 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣, intersection of 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 and 
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is null and all the element of validPositions satisfy the fuel constraints. Being 
validPositions nonempty indicates that travel can move and is checked at C1.C.  If traveler can 
move, a next position is chosen randomly from 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 set in getNextPosition. 
Checkpoint C2.A checks whether next position is chosen or not.  Adjusted fuel level for the chosen 
position will be checked at C3.A again before changing position in setPosition.  
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Figure 2: MMTS architecture Diagram 

 Initial Extraction of Verification Concerns 

While verifying the requirements against the system’s code, we followed the following method 
and documented the process to identify verification concerns.  

Given that a requirement may be expressed as a safety or progress property, we focus on 
manual techniques to prove them given an implementation. One type of safety property is an 
invariant. To prove that properties A and B are invariant, as written in Linear Temporal Logic 
(LTL) (Lichtenstein, 1985) below 

□ (A ∧ B) 

It must be the case that the properties expressed by A and B hold in all reachable states. That 
can be restated in terms of Hoare triples to express proofs and the potential for proof reuse 
(Damiani, 2011) and read as “for all statements s in program F, A and B must be preserved by the 
execution of s.” 

[∀s ∈ F | {A ∧ B } s { A ∧ B }] 

This immediately makes A and B verification concerns. Sometimes, other state variables may 
affect A or B, either by being embedded into a condition that may cause them to be false or by 
having a side effect that can impact their state. Assume that during the verification process, it is 
determined that  

C ⇒ A 
 

Then the state of C may impact the state of A. Thus, C becomes a verification concern.  

Progress property proofs can follow a similar verification process use for safety property 
proofs, except that progress crosses states and, therefore, dependencies exist between verification 
concerns and must be captured. For example, the progress property below written in LTL, means 
that “if D becomes true in some state, then in the next state D will be changed to D ∧ K.” 

□ (D ⇒ ○ (D ∧ K)) 
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This property can be stated in terms of Hoare triples, such as  

[∀s ∈ F | { D } s { (D ∧ K) }]  

which clarifies that in a state when D holds, the next state will have D and K both true, since all 
statements must ensure this is the case.  

With progress properties, the verification concerns still reflect the initial conditions expressed 
in the Hoare triples, making both D and K verification concerns. Other properties may need to hold 
to ensure that none of the statements that can execute inhibit K from being true in the next state. 
Often time functions are assumed to be atomic, meaning they cannot be interrupted. Thus, a 
statement in F may be a function G. When proving a property, it may be necessary to examine the 
functions that G comprises resulting in an examination of intermediate (internal) state changes. 
For example, assume that G = (f  ° g) and the following statements for f and g can be proven.  

 
[∀t ∈ f | { D } t { (J) }] 

[∀w ∈ g | { J } w { (D ∧ K) }] 
 
Since the next complete state change occurs after G, the progress property is not violated. But if 

an adaptive plan did not abide by the atomicity assumptions, then the intermediate state transition 
could be problematic. Therefore, these properties, such as J above, are also captured as verification 
concerns.  

In the MMTS case study, we have manually proven the requirements against Java code and 
extracted the verification concerns from those proofs. To verify a goal Hoare triple, we analyze 
the code to identify subgoal lemmas, usually in the form of additional Hoare triples that imply the 
goal. The fact that the identified lemmas imply the Hoare triple is dependent on the analyzed code 
rather than being tautological, so we reify it as an additional lemma. We generate three types of 
lemmas. The first two are Hoare triples and implications from which we extract verification 
concerns. The third lemma type states that a given method is a pure function and does not generate 
verification concerns. Since Hoare triple lemmas specify Boolean preconditions and 
postconditions, they formulate the verification concerns. For implication lemmas, extraction of 
verification concerns is less straightforward. We identify them based on the argument used to 
verify an implication lemma.  

We assume the correctness of certain methods that are not part of the main controlling function. 
These methods are typically “getter” and “setter” functions, such as traveler.getFuel or 
traveler.setMaxFuel, which function as expected. We also assume the correctness of standard Java 
library methods. With these assumptions, our verification process focuses on defining subgoals 
involving methods that are part of the main controller.  

Even with these assumptions, we found that similar verification concerns can emerge from the 
proof lemmas, leading to the creation of an excessive number of checkpoints. Our objective is to 
maintain a high level of abstraction and reduce overhead. Therefore, we filter the lemmas to obtain 
a smaller subset of verification concerns from which checkpoints are generated. Our current 
approach identifies a domain of influence for each method in the main controller, consisting of the 
set of state variables the method may modify. We assume this becomes part of the documentation 
associated with the verification process. We filter out any Hoare triple lemmas for which the 
postcondition does not contain state variables in the method’s domain of influence. For example, if 
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computeResult does not have numFailures in its domain of influence, we would not generate any 
verification concerns from the Hoare triple.  

{numFailures = 0} computeResult( ) {numFailures = 0} 
One disadvantage is that proof violations may go unnoticed if an adaptation modifies a method 

to affect state variables outside its domain of influence. This scenario will be addressed by future 
work.  

As requirement MR3 relies on requirement MR1 and MR2 as subgoals, so proof process of 
MR3 contains proofs of MR1 and MR2. Here, we provide proof discussion only for MR3. We 
specified MR3 as a form of following Hoare triple.  

 
L1: ∀𝑥𝑥, 𝑦𝑦 ∶  {𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥, 𝑦𝑦)} 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, … ) {𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥, 𝑦𝑦)} 

             where, 𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥, 𝑦𝑦)  ≜  𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ≠  ∅ ∧  𝑝𝑝 =  (𝑥𝑥, 𝑦𝑦)  

             and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥, 𝑦𝑦)  ≜  𝑝𝑝 ≠  (𝑥𝑥, 𝑦𝑦) 

L1 means that, whenever 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 is nonempty, the traveler eventually move to new 
position and update will be set at setPosition. To satisfy the Hoare triple, 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑠𝑠 ≠  ∅, 
and 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 must not equal (𝑥𝑥, 𝑦𝑦) at that point need to be satisfied, which relies on following 
subgoal lemmas. 
 

L2: {𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ} 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, … ) {𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ},  
where 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ ≜  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≤  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ≤  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

      L3: {safePos} update(state, …) {safePos} 
where safePos ≜ p ∉ enemyPos 

     L4: CheckEnemy returns false if the traveler is not in an enemy position 
        {safePos} CheckEnemy(state, …) {retVal = false} 
    L5: computeValidPositions is pure. 
    L6: CheckEnemy does not modify the position  

  ∀q : {p = q} CheckEnemy(state, …) {p = q} 
   L7: computeValidPositions never returns the current position 

  ∀q : {p = q} computeValidPositions(state) {q ∉ retVal} 
   L8: generateRandomNextMove returns one of the positions passed to it  

  ∀s : {s ≠ ∅} generateRandomNextMove(s) {retVal ∈ s} 

   L9: (L2 ∧ L3 ∧ … ∧ L8) ⇒ L1 

 
Verification process of three requirements of MMTS generates verification concerns which 

needs to be checked by analyzing checkpoint logs to realize adaptation impact on reusing 
verification process. Verification concerns associated with two invariant requirements of MMTS, 
MR1 and MR2 are fuel, minFuel, maxFuel, position, and enemyPos.  But verification concerns 
associated with MR3 are validPositions, newPos along with the above-mentioned verification 
concerns. The proof lemmas that generate verification concerns and associated conditions set as 
checkpoints are shown in Table 2. 
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Table 2: Checkpoint conditions derived from lemmas 

Lemma Checkpoint conditions 
L1 validPositions ≠ ∅; p ≠ (x, y) 
L2 minFuel ≤ fuel ≤ maxFuel 
L3 p ∉ enemyPos 
L4 p ∉ enemyPos; enemyCheckPassed = true 
L7 p ∉ validPositions 
L8 validPositions ≠ ∅; newPos ∈ validPositions 

L9 fuelCheckPassed = true; 
enemyCheckPassed = true; canMove = true 

 Embedding Verification Concerns as Checkpoints for MMTS 

To realize adaptation plan’s potentiality to invalidate original verification process, we generate 
a restricted Petri Net for each requirement using ProM by embedding checkpoints into the code that 
relate to  

 
• Identified verification concerns 
• Their use in the code that affected the requirement proof, which may require 

multiple checkpoints for the same verification concern 
• Progress property dependencies among verification concerns.  

 
We organize identified verification concerns according to the verification process and embed 

associated checkpoints within underlying code as a part of verification workflow. Figure 3 shows a 
checkpoint for fuel consistency associated with MR1 at line 34-38 and checkpoint for current 
position is not at enemy position associated with MR2 at line 39-40. Other checkpoints are also 
inserted within the code and this insertion of checkpoints has no interference on the original 
functionality of MMTS. Flag has been raised if violation has been detected. We also include a log 
generation method which collects the logs of checkpoints, assuming that logging has not interfered 
with system operation and also adaptation doesn’t cause stop logging. Analysis of the checkpoint 
for the simulation of adaptation plan will pinpoint where potential deviations to the original 
verification process may occur because of the adaptation. If deviations to the verification process 
are detected, the adaptation can be considered to have a higher risk of violating critical 
requirements. 
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Figure 3: MMTS Code with Logging of Verification Concerns as Checkpoints 
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Figure 4 shows the ProM visualization of a successful, non-adaptive execution of MMTS with 
100 moves. Figure 4 shows that for given 100 moves, there are 100 paths that proceed through all 
the checkpoints and has no deviation from verification workflow which indicates the requirements 
are not violated. 

 

 
Figure 4: Visualization of a successful, non-adaptive execution of MMTS 

 Analyzing Adaptations to the MMTS 

We simulate two adaptation plans that could occur if the Monitor observes fuel level and “fuel line 
anomaly” has been detected at Analyze process.  
 

A1.  Reduce the maximum fuel value so that the traveler maintains a lower overall fuel 
value. 

A2.  Force the traveler to stop for a number of “moves” for repair. 

Figure 5 shows the ProM visualization of Adaptation A1, where a flag has been raised at 1st 
Check Fuel checkpoint. Investigation on this flag issue indicates that the current fuel level exceed 
to the maxFuel value as maxFuel is reduced by half of its prior value shown in Figure 6 (line 96). 
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Therefore, when the maxFuel value was decreased the verification processes for MR1 and MR3 
were impacted because the precondition for the fuel consistency is not satisfied. 

 

 
Figure 5: ProM Visualization of the Verification Workflow for Plan A1 

 

 
Figure 6: Adaptation A1 implementation Code for MMTS 

Figure 7 is ProM visualization for adaptation plan A2.  Adaptation A2 allows traveler to stop 
for 5 moves to repair by forcefully making 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 set empty shown in line 96 in Figure 
8. Figure 7 shows that 5 paths during the 100 iterations found valid positions to be empty. Those 
5 paths were the repair paths and the verification process for MR3, as well as for MR1 and MR2, 
was not impacted because according to MR3, the traveler is only required to move if 
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 is non-empty. 
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Figure 7: ProM Visualization of the Verification Workflow for Plan A2 

 

 
 

Figure 8: Adaptation A2 implementation Code for MMTS 
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3.2.2 SIMS Test Case with Checkpoint Experimentation 

Our next case study is Smart Inventory Management System (SIMS) which tracks inventory’s 
stock condition using a pressure sensor and adjusts a pressure threshold depending on the inventory 
movement. SIMS architecture, implemented as multiple threads in Java.  SIMS has three 
components with local MAPE-K control loops: Measure reads the pressure sensor and sends data 
to Process, Process adjusts the threshold calculated from those readings and sends new threshold 
value to Measure, and Audit stores audit records from Measure and Process for security 
certification. The Measure and Process components has capability to support Audit and 
accountability policy as security requirement. This capability includes sensing auditable events, 
generating audit records, and sending audit records on a channel to be received by the Audit 
component and appropriately placed in the audit trail.    

The SIMS case study will serve multiple purposes. First, it will provide a mechanism to test 
the efficacy of the methodologies crafted for the first case study.  Second, it will allow us to explore 
security certification issues. Finally, in its final form, it will be a distributed service-oriented 
architecture that broadens the scope of the systems we are analyzing. Currently, it is fully simulated 
in Java so that we can work with the findings from the 1st case study, MMTS. During this 
simulation, we refined the architecture and processes, which are shown in Figure 9. The simulation 
of the distributed system includes:  

 
• A MAPE loop component that examines the information stored in the audit trail, as 

well as other information, to signify if an event of interest has occurred that requires 
an adaptive plan to be assessed. Adaptation can be imposed on any of the components 

• A connection service that checks that the network connection is active and not 
compromised 

• A measurement service that reads the state of a pressure sensor measuring the amount 
of inventory 

• A cloud service that examine the sensor data over time, forecasts the best inventory 
weight, and changes the threshold values so that the sensor reports adhere to the 
forecast 

• An audit component that house an audit trail of data collected from the system 
components.   
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Figure 9: Architecture for the Smart Inventory Management System 

The base level requirements for SIMS appear in Table 3, where they are associated with their 
formal LTL expression. In this case, we introduce two versions of the same requirement, SR2a 
and SR2b, where SR2a is much more restrictive than SR2b. The reason for examining these two 
versions is to show how flexibility in the requirements may allow for safe adaptations that can be 
re-verified, whereas more restrictive requirements result in a higher risk. 

Table 3: SIMS Requirements and their LTL representation 

 Statement LTL Expression Type 
SR1 Sensor signals high 

unless the pressure is 
below a predefined 
threshold 

□(signal = 1 ⇔ (pressure  ≥ threshold)) Invariant 

SR2a Sensor status is 
appended to the cloud 
status on the next step 
after the 
measurement when 
the network 
connection is good 

□(connection = true ∧ threshold = t  
     ∧ pressure = p ∧ cloudDB = c  
    ⇒ (○cloudDB = c ˄ (t,p)) 

Progress 

SR2b Sensor eventually 
sends its status to the 
cloud when the 
connection is good  

□(connection = true ∧ threshold = t  
     ∧ pressure = p  
    ⇒ (◇(t,p) ∈ cloudDB) 

Progress 

 

We have implemented a simulation of the hardware/software aspects of the SIMS system in 
Java and proven that the code meets the requirements in Table 3. While verifying the requirements 
against the SIMS Java code, we followed the similar methods used for the MMTS case study. 
While doing so, we documented the process to identify verification concerns. From the verification 
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process for SR1, the verification concerns that emerged were signal (is it measurable), pressure 
and threshold. Since signal subsumes the state of pressure and threshold (i.e., if it is measurable, 
the values can be ascertained), we retain signal as the only verification concern for SR1. For the 
proof of requirement SR2a and SR2b, the verification concerns identified were signal, pressure, 
threshold, cloud availability, and connection status. 

 Embedding Verification Concerns as Checkpoints for SIMS 

Figure 10 shows a checkpoint for the first of four signal checks at lines 14-19. This code can be 
inserted without any interference on the original functionality of SIMS.  

 

 
 

Figure 10: Sample checkpoints within SIMS case study code 

Figure 11 shows a static image of the executed base code with the embedded checkpoints for 
SIMS after ProM analyzed the log files for 100 paths based on the verification process for SR2a 
and SR2b which were similar enough to combine into a single process. In addition, the verification 
concerns for SR2a and SR2b subsume those of SR1, so SR1’s checkpoints are used as well. 
Normally, ProM shows each path using a token that flows through the places indicated by blue 
ellipses. Each place represents a verification concern that produced an embedded checkpoint. In 
Figure 11, 85 paths have the signal with the pressure meeting the threshold (Signal Check 2) and 
15 paths have the signal with the pressure below the expected threshold (Signal Check 3) likely 
due to changes by the cloud feedback. Signal Check 1, as seen in Figure 10, ensures that at the 
start of the measuring the sensor is functioning properly (from requirement R1), while Signal 
Check 4 determines that at the end of the measurement, the sensor is still functioning properly. 
These two checks are necessary to ensure the invariant is not violated during the entire process. 
Also in Figure 11 are the dedicated checkpoints for the cloud database contents for SR2a and 
SR2b. The difference between the two requirements is that SR2a requires the sensor output to be 
appended to the cloud database on the next step (as denoted by ○) after the measurement is taken 
and provided the network connection is good. But SR2b requires only that eventually (as denoted 
by ◇) the measurement appears in the cloud database given a good network connection.  
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Figure 11: ProM visualization of 100 paths through SIMS with embedded checkpoints 

 Analyzing Adaptions to the SIMS 

We have configured four adaptive plans for the SIMS case study given a sensor problem or a 
network problem. These self-adaptations will allow initial investigation into comparison 
approaches and risk assessment. They are: 

 
• Plan-1: Replace the sensor, when the primary sensor is not sending signals 
• Plan-2: Store data into local database when the connection is lost and then send to 

cloud once connection is re-established 
• Plan-3: Ignore sensor data and always send low signal 
• Plan-4: Throw away data and don't store it any database. 

 
Given the embedded checkpoints, we deploy a simulation of the plans with SIMS to see the 

logged results. Currently, ProM provides a visual comparison of the how the checkpoints were 
reached if 100 measurements were attempted. Figure 12 illustrates the checkpoint logs when Plan-
2 is executed. We use this plan because it also shows the differences between requirement R2a and 
R2b.  
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Figure 12: ProM visualization of checkpoint logs for Plan-2 

 
When Plan-2 is execution, Figure 12 shows that SR2a’s verification process may be inhibited 

because the associated cloud check fails. The failure does not occur because the adaptive plan 
forces the sensor output to be stored locally when the network connection is bad. Rather the failure 
occurs because when the network connection is restored (i.e. good), the local database is pushed 
to the cloud. But the requirement say that the cloud must be its previous state plus the latest 
measurement. However, its previous state does not include the local database. Thus, requirement 
SR2a is restrictive in its statement such that its verification process uses the “before” state of the 
cloud database to verify the “after” state of the cloud database when the most recent measurement 
is added. 

Figure 12 also shows that SR2b’s verification process is unaffected by Plan-2. This is because 
the verification process only examines the cloud database after the connection is deemed good to 
find that the latest sensor measurement is available. So, when the local database is pushed to the 
cloud, as long as it contains the latest measurement, the verification process is not affected. This 
process, along with the embedded checkpoints, suggest that requirements that have some 
flexibility and less details within their verification process can withstand adaptation better then 
restrictively stated requirements that may have the same semantics. 

3.2.3 Building in Risk Assessment 

In this section, we extend the lessons learned in the embedded checkpoint work to designing 
the overall framework so that it can incorporate adaptation plan risk assessment with respect to 
verification and certification constraints provided at design time. The extension includes (1) the 
introduction of the verification workflow specified as a Colored Petri Net, (2) the expression of an 
initial utility function for risk assessment and plan comparison, and (3) an example of risk analysis 
using the MMTS case study and additional adaptive plans.  
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 Specifying the Verification Workflow as a Colored Petri Net 

Each verified requirement has a related verification workflow or VFlow that models the 
verification process using the following information: 

 
• Verification concerns as derived from the verification process.  
• Components or processes in the system architecture where the verification concerns 

were of interest, which may involve multiple components and processes. 
• Conditions related to the impact or prominence of verification concerns in the 

verification process. These conditions describe change types or ranges that fall in one 
of three sets related to expected impact: devastating, worrisome, or unconcerned.  

 
The system architecture, as part of the VFlow construction, underlies the verification process 

and self-adaptive system. Components are generally examined independently for compliance and, 
then, as part of the larger system architecture through their interfaces. Within the components are 
the state variables, functions, and dependencies that the verification process must also examine, in 
the form of lemma proofs. Thus, the VFlow should represent the proper granularity of the 
architecture description that best fits the verification process perspective and flow. 

 Constructing the Colored Petri Net 

A Petri Net is a bipartite graph that makes available mathematical analyses and decision 
processes to a wide range of applications by allowing the expression of system functionalities and 
architectures.  Colored Petri Nets (CPNs) introduce additional functionality through distinguishing 
features among tokens traversing the network and complex processing by the transitions that 
dictate token paths. Their flexibility in modeling architectures and component processing, along 
with the availability of automated tools to simulate them, make them an appropriate representation 
for VFlows used to assess the risk of an adaptive plan. 

The current representation of a VFlow models the major components important to the 
verification processes as places in the CPN. A generic VFlow is shown in Figure 13. Tokens 
traverse the places using transitions. In a CPN, transitions can perform complex processing based 
on embedded, immutable data structures. 
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Figure 13: Generic VFlow represented as a CPN 

There are three token colors used for the initial VFlow expression in a CPN. Pink tokens hold 
the adaptive plan’s change set. The planning portion of the MAPE-K loop formulates and 
configures potential plans to be risk-assessed. The assumption is that the change sets embody 
information related to (1) what parameters are changed, (2) how, in general, they are changed, (3) 
what major components are affected, and (4) what the planner believes the impact of that change 
to be overall. The change impact can be determined by the planner based on accumulated 
knowledge through techniques such as reasoning over the success or failure history of changes, 
machine learning outcomes based on adaptive plans shared across related information systems, 
and partial plan simulations. Details on the calculation of the change impact will be discussed as 
part of the risk utility function. The structure of the pink token appears below where each element 
of the change set has a unique ID, the verification concern affected (VC), the type of effect to the 
verification concern (condition), and its planner-calculated change impact (𝑝̂𝑝). 

 

tpink = ((ID1, VC1, condition1, 𝑝̂𝑝1), …, (IDn, VCn, conditionn, 𝑝̂𝑝n)) 

 
The blue token traverses the CPN looking for verification concerns in the verification process 

that may be affected by the change set. These are called conflicts. This token holds the outcomes 
of multiple affected verification concerns as well as change sets represented by pink tokens. Thus, 
checks against verification concerns can be performed at all places in the CPN, regardless of where 
the pink token designates the change will occur. As seen in the construct below, the blue token 
tracks the places traversed (visited) so that it ensures that every verification concern in the change 
set is examined at every place. The tracking also determines when the blue token’s cycle is 
complete and it can be absorbed to terminate the CPN.  

 
tblue = (visited, vcMatches, vcConflicts, dependencies, conflictCount, tokenCount) 

 
The set vcMatches in the blue token accumulates the conflicts found as a set of tuples of the 

form (IDconflict, vcInfo, conflictPlace, 𝑝̂𝑝). IDconflict is a unique identifier of the conflict based 



Approved for Public Release; Distribution Unlimited. 
23 

 
 
 

on the blue token’s conflictCount. This identifier is used for the alert and may be repeated across 
alerts if more than one place is affected. vcInfo holds a record of the verification concern affected 
and the impact determined by the transition based on the change set’s condition for that verification 
concern. Thus, vcInfo embodies the VFlow’s impact indicator which may be different from the 
change set’s impact indicator, 𝑝̂𝑝. The conflictPlace is where the conflict was found. Each conflict 
in vcMatches will be at a unique place because a verification concern can only appear once at a 
place. If any change to a verification concern can strongly impact the risk of reusing the 
verification process for the requirement, it will be reflected in the impact indicator in vcInfo.  

The set vcConflicts in the blue token holds the pink token’s information for comparison with 
information at each place in the VFlow as the blue token traverses the CPN. Given that progress 
properties embody dependencies among state variables. These relationships are captured in the 
blue token’s dependencies set, which allows the blue token to manage the dependencies by 
enforcing a check on the impact of a verification concern at a place before or after a conflict was 
already found with its dependent verification concern. The conflictCount generates the unique ID 
for each pink token information, while the tokenCount generates a unique ID per red token.  

Red tokens are output by transitions to represent alerts. These alerts indicate potential conflicts 
between the adaptation’s change set and the requirement’s original verification process. The 
structure of a red token is as follows. 

 
tred = (ID, IDconflict, vcInfo, 𝑝̂𝑝, conflictPlace, placeStatus) 

 
The red token ID and IDconflict are assigned by the blue token prior to the red token being 

sent to the end state. The red token must hold all of the factors needed for the risk assessment of 
the adaptive plan for that VFlow. The set vcInfo contains tuples of the form (VC, vcImpact), so 
that the transitions’ impact factor based on the pink token’s change set condition is recorded. The 
pink token’s p ̂ value is also maintained in the red token along with the place where the conflict 
occurred and the weight of that place’s importance to the verification process. 

An example transition appears as pseudo code below. This is one of 18 transition rules used in 
a VFlow based on our modeling of verification processes for safety and progress properties. 
Transitions always require a blue token and a pink token as input. In this example, the blue token, 
B, has not visited the input place to the transition. The transition, T, does not have a verification 
concern (VC) that conflicts with what the blue token has accumulated in B.vcConflicts. The 
transition does have a conflict with a VC in the pink token P’s change set. We have successfully 
encoded these rules and tokens into the CPN and can now automate their generation along with 
the risk factors discussed next. 
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Figure 14: Pseudo Code of an example transition 

 Initial Utility Function for Risk Assessment and Plan Comparison 

For each requirement 𝑟𝑟 and adaptation plan 𝑎𝑎, the VFlow outputs a set of red tokens 𝑇𝑇(𝑟𝑟, 𝑎𝑎) 
representing alerts. Once the red tokens are generated, the system calculates a metric that can be 
used to compare the risks of adaptation plans based on the token information. To obtain a workable 
formula, we assume that each red token, independently of all other tokens, has the potential to 
represent an actual violation of verification process reuse. That is, the adaptive plan has altered 
something that was relied on by the original proof of the requirement. We also assume that 
verification process reuse is violated if and only if there is at least one red token representing an 
actual impact. We assume that a group of red tokens cannot represent the violation in combination, 
without doing so individually. For each red token 𝑡𝑡, let 𝑆𝑆(𝑡𝑡) be an indicator variable with value 0 
if 𝑡𝑡 represents an actual violation and 1 otherwise. For each requirement 𝑟𝑟 and adaptation plan 𝑎𝑎, 
let 𝐼𝐼(𝑟𝑟, 𝑎𝑎) be an indicator with value 0 if 𝑎𝑎 violates the reuse of 𝑟𝑟’s proof and 1 otherwise. Although 
the values of 𝑆𝑆(𝑡𝑡) and 𝐼𝐼(𝑟𝑟, 𝑎𝑎) would typically be deterministic, we assume they are infeasible to 

Transition Conditions: 
    T.place_name is not in B.visited  
    No VC in T.vcInfo appears in B.vcConflicts 
    A VC in P conflicts with a VC in T.vcInfo 
Transition Actions: 
     FORALL VC in T.vcInfo that appear in P  
                    Increase B.count and B.IDconflict 

Create a red token, R, with B.count as its ID, 
                          B.IDconflict as its IDconflict, and other  
                          information held by P and T 
                    Update B.vcMatches to include IDconflict and  
                          the appropriate information held by T  
                          for all matching VCs 
                    Add the appropriate change information  
                          from P to B.vcConflicts using  
                          B.count for IDconflict 
           FORALL VC in P that are not in T.vcInfo 
                             Increase B.count and B. IDconflict 
              Add the appropriate change information from P 
                       to B.vcConflicts using B.count for  

IDconflict 
             Add T.placeName to B.visited 
             Send B to output place 
             Send P to its place of origin 
             Send all red tokens to end place 
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compute, and therefore model 𝑆𝑆(𝑡𝑡) and 𝐼𝐼(𝑟𝑟, 𝑎𝑎) as random variables. Our assumptions given above 
translate to the following statements. For each requirement 𝑟𝑟 and plan 𝑎𝑎, 

 
𝐼𝐼(𝑟𝑟, 𝑎𝑎) = 0 ⇔ �∃ 𝑡𝑡 ∈ 𝑇𝑇(𝑟𝑟, 𝑎𝑎)�(𝑆𝑆(𝑡𝑡) = 0) 

For each requirement 𝑟𝑟 and plan 𝑎𝑎, the random variables in the set are mutually independent. 
 

 

� {𝑆𝑆(𝑡𝑡)}
𝑡𝑡∈𝑇𝑇(𝑟𝑟,𝑎𝑎)

 

From these statements, we deduce that the probability that plan 𝑎𝑎 does not violate the reuse of 
requirement 𝑟𝑟’s proof is 

 

𝑃𝑃(𝐼𝐼(𝑟𝑟, 𝑎𝑎) = 1) = � 𝑃𝑃(𝑆𝑆(𝑡𝑡) = 1)
𝑡𝑡∈𝑇𝑇(𝑟𝑟,𝑎𝑎)

. 

 
To compare adaptation plans, we define the requirement utility of plan 𝑎𝑎 to be the weighted 

sum  
 

𝑈𝑈(𝑎𝑎) = � 𝑤𝑤(𝑟𝑟)𝐼𝐼(𝑟𝑟, 𝑎𝑎)
𝑟𝑟∈𝑅𝑅

 

 
where 𝑅𝑅 is the set of requirements and 𝑤𝑤(𝑟𝑟) is a stakeholder-supplied utility weight for the need 
to maintain system compliance with requirement 𝑟𝑟. The expected requirement utility is then as 
follows. 

 

𝐸𝐸[𝑈𝑈(𝑎𝑎)] = � �𝑤𝑤(𝑟𝑟) � 𝑃𝑃(𝑆𝑆(𝑡𝑡) = 1)
𝑡𝑡∈𝑇𝑇(𝑟𝑟,𝑎𝑎)

�
𝑟𝑟∈𝑅𝑅

 

 
If the expected requirement utility can be computed, it can be used as a metric to distinguish 

riskier plans from less risky plans. However, this goal requires an estimate 𝑝𝑝(𝑡𝑡) ≈ 𝑃𝑃(𝑆𝑆(𝑡𝑡) = 1) 
for each token 𝑡𝑡. Each red token contains such an estimate 𝑝̂𝑝(𝑡𝑡), based on whatever knowledge the 
planner may have to compute it. Since 𝑝̂𝑝(𝑡𝑡) is presumed to have been computed without 
consideration of the characteristics of the original verification process, we wish to adjust it based 
on proof-related information to get the final estimate 𝑝𝑝(𝑡𝑡). 

Our approach to computing 𝑝𝑝(𝑡𝑡) is based on the idea that verification concerns and 
architectural places can have differing levels of prominence or impact in a verification process. 
We assume that red tokens generated from a high-impact place or verification concern are more 
likely to represent actual reuse violations than those coming from low-impact places or concerns. 
A red token 𝑡𝑡 contains impact multipliers 𝑀𝑀𝑃𝑃𝑃𝑃(𝑡𝑡) and 𝑀𝑀𝑉𝑉𝑉𝑉(𝑡𝑡), representing the impact of the 
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architecture place and verification concern (respectively) from which the token was generated. 
Lower multipliers represent higher impact/risk. We apply these multipliers to 𝑝̂𝑝(𝑡𝑡) to get 𝑝𝑝(𝑡𝑡), 
resulting in an estimate that takes into account the proof characteristics. 

We considered two possible ways to apply the multipliers: scaling the probability and scaling 
the odds. The latter allows for the possibility of multipliers greater than 1, which would indicate 
that the estimate given by the planner should be increased rather than decreased. One of the 
outcomes of this study is a comparison of the two approaches based on how well they estimate the 
relative risk of adaptations. 

With probability scaling, we have 
 

𝑝𝑝(𝑡𝑡) = 𝑀𝑀𝑃𝑃𝑃𝑃(𝑡𝑡)𝑀𝑀𝑉𝑉𝑉𝑉(𝑡𝑡)𝑝̂𝑝(𝑡𝑡). 
 

With odds scaling, we have 
 
 𝑝𝑝(𝑡𝑡) = 𝑜𝑜(𝑡𝑡)

1+𝑜𝑜(𝑡𝑡)
, where 𝑜𝑜(𝑡𝑡) = 𝑀𝑀𝑃𝑃𝑃𝑃(𝑡𝑡)𝑀𝑀𝑉𝑉𝑉𝑉(𝑡𝑡)𝑝𝑝�(𝑡𝑡)

1−𝑝𝑝�(𝑡𝑡) .  

 
(If 𝑝̂𝑝(𝑡𝑡) = 1, this formula is undefined, and we instead use 𝑝𝑝(𝑡𝑡) = 1.) 

 

 Risk Analysis using the MMTS Case Study 

To evaluate our risk comparison methodology, we apply it the MMTS case study described in 
Section 3.2.1. The case study involves a system on which we impose multiple self-adaptive plans. 
As the system is quite simple, we can manually reason about and compare the risks of each 
adaptation. Our goal is to determine whether the more mechanistic utility comparison metric 
described in Section 3.2.4 can come to conclusions similar to those which we have derived 
manually, given the original verification processes. 

The MMTS consists of a traveler that moves in a grid while attempting to avoid stationary 
enemies distributed randomly on the grid. At each step, the traveler attempts to choose a new 
position and move to it. Based on the direction of the move, the traveler’s fuel level may increase, 
decrease, or stay the same when it reaches the next position. The traveler is given an upper and 
lower limit on its fuel value, and must keep the fuel within that threshold. More complex variants 
of the system employ mission planning and enemy avoidance. 

The MMTS base code provides an update process that chooses and sets the new position and 
fuel value. We identified three high-level architectural components that comprise the update 
process. The first is getCurrentStatus (gCS), which reads and validates the state at the start of the 
update. The second is getNextPosition (gNP), which determines the set of valid moves and 
randomly chooses a move from that set. The third is setPosition (sP), which moves the traveler to 
the chosen position and updates its fuel level. These three components form the architectural places 
in the VFlow for the two of the MMTS requirements, R1 and R2, stated in LTL below. 

R1: □ (minFuel ≤ fuel ≤ maxFuel) 
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R2: □ ((canMove ∧ position = p) ⇒ ○notAt(p)) 

For R1, the fuel level must stay within the threshold at all times. For R2, if the traveler can 
move at a given time step, then it must move. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is defined as validPositions ≠ ∅, where 
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 is computed according to the current traveler state to exclude positions containing 
enemies and moves that would lead to a fuel threshold violation. A random move from the 
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 set is chosen in each update. If the set is empty, the traveler stays in its current 
position. 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑝𝑝) is defined as 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≠  𝑝𝑝, given p represents the current position. In the 
prior report, this requirement is listed as R3, because R2 was to ensure that the traveler was not in 
an enemy position. Since the original R2 was a safety property, its risk factors were similar to R1 
relating to the fuel threshold. But R3 (here R2) is a progress property, which increases the 
complexity of the verification process and the dependency expressions for the verification 
concerns. Hence, we temporarily removed the original R2 and replaced it with the progress 
property R3 for the experimentation with our utility function. In addition, for the MMTS case 
study, we assume the stakeholder-supplied utility weights of the requirements are 𝑤𝑤(R1) = 0.75 
and 𝑤𝑤(R2) = 1. 

We have verified that the MMTS code (without adaptation) satisfies these requirements and 
derived the verification concerns. As an outcome of the verification process, we extract impact 
multipliers for use in the risk comparison calculations. These multipliers are based on the 
prominence of different verification concerns and architectural places in requirements’ proofs, as 
well as the conditions required by the proofs. 

Table 4 shows the place impact multiplier for each of the 3 architectural places in MMTS for 
each requirement (R1-safety, R2-progress). In this case study, we manually assigned values of 0.2 
(high impact), 0.5 (medium impact), or 0.9 (low impact) based on our perception of the importance 
of each place in each proof. These values and others described in this section are shown in the 
example VFlow for R1 in Figure 15. 

 
Table 4. Impact multiplier for the VFlow place if a change occurs 

 gCS gNP sP 
R1 0.9 0.5 0.2 
R2 0.5 0.5 0.2 
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Figure 15. VFlow for R1 with the change set from adaptation A1 

 
As discussed previously, the impact multiplier for a verification concern can depend on the type 

of change made. Verification concern impacts are categorized as devastating, worrisome, or 
unconcerned, and the corresponding impact multiplier values are 0.2, 0.5, and 0.9, respectively. 
Table 5 and Table 6 show the rules that we used for categorizing the relevant verification concerns’ 
impacts for R1 and R2, respectively. The categorization is based on the type and/or magnitude of 
the change, which is supplied by the planner. 
 

Table 5. Verification concern impacts from the VFlow perspective for R1 

R1 devastating worrisome unconcerned 

fuel 
Change greater than or equal to 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, positive or 
negative. 

Change greater than or equal to 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

2
, positive or 

negative. 

Change less than 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

2
, positive or 

negative 

minFuel Change greater than or equal to 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, positive. 

Change greater than or equal to 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

2
, positive. 

Negative change or change 
less than 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

2
. 

maxFuel Change greater than or equal to 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, negative. 

Change greater than or equal to 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

2
, negative. 

Positive change or change less 
than 𝑚𝑚𝑎𝑎𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

2
. 
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Table 6. Verification concern impacts from the VFlow perspective for R2 

R2 devastating worrisome unconcerned 

fuel Set to 0. Large change, positive or negative. Small change, positive or 
negative. 

minFuel Set to maxFuel. Increased to a value less than 
maxFuel. Set to 0. 

maxFuel Set to 0. Decreased to a value greater than 
minFuel. Increased. 

validPosition Changed to a nonempty set with no 
change in nextMove. 

Changed to a nonempty set with a 
change in nextMove. Set to ∅. 

nextMove Set to null with no change in 
validPosition. 

Set to null with a change in 
validPosition. 

Set to null with 
validPositionchanged to ∅. 

position Changed with nextMove set to null. Maintained with nextMove set to 
null. 

Maintained when 
validPositionis empty. 

 

 Potential Adaptations 

In our example scenario, the MMTS is initialized with the traveler at position (0,0) with a fuel 
value of 80, a lower fuel threshold minFuel = 0, and an upper fuel threshold maxFuel = 160. The 
system is simulated for 25 time steps, at which point an engine failure occurs, triggering the 
adaptation process. The planner configures possible adaptation plans and constructs their change 
sets to assess the risk of impacting proof reuse for requirements R1 and R2. To compare more 
plans and perform deeper risk analysis, we increased the number of potential adaptive plans from 
2 to 4. The original and new adaptive plans are described below. 
 
A1: maxFuel is divided by 2 within gCS. (original) 
A2: maxFuel is reduced by 40, and minFuel is increased by 40 within gCS. (new) 
A3: The next move for the traveler is not chosen for 5 time steps within gNP, even if 

validPositions is nonempty (to simulate a stop for repair). (new) 
A4: validPositions is changed to the empty set for 5 time steps (to simulate a stop for repair) in 

gNP. (original) 

 Examining Adaptation Plan Risks 

By manual analysis and simulation, we have identified the potential risks of each plan with 
respect to the requirements. A1 is risky for R1, as it leads to a violation if the current fuel value is 
greater than 80. When R1 fails, it also causes a failure in R2, because the traveler stops moving if 
it detects a violation of the fuel threshold. Therefore, A1 is also risky for R2. A2 can also pose a 
threat to R1 and R2 if the current fuel value is below 40 or above 120, but that is not possible given 
the function for calculating the fuel by the 25th time step when the adaptation occurs. Therefore, 
A2 has very little risk if performed early in the traveler movement. 

A3 and A4 both disallow movement for 5 moves, which poses no threat to R1. A3 is very risky 
for R2, and in fact will always cause a violation if the set of valid moves is nonempty at the time 
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of the adaptation. A4 is superficially similar to A3, but it actually is not risky for R2, because R2 
only requires movement when the set 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 is nonempty. 

Based on our analysis, A3 should be considered risky for R2, while A1 should be considered 
risky for R1 and R2. A2 might be considered marginally risky for R1 and R2, because it could fail 
under some circumstances, although those circumstances are not possible in our simulation. A4 
poses no risk for either of the requirements. 

It remains to be shown how the planner generates the initial success probability estimate 𝑝̂𝑝 for 
each plan’s pink token(s). In this case study, we assume the planner knows that reducing the set of 
valid moves is less risky, so it uses 𝑝̂𝑝 = 0.99 for all of A4’s pink tokens. We assume the planner 
has been able to determine that changing the logic in getNextPosition (gNP) has some risk to both 
requirements, so it uses 𝑝̂𝑝 = 0.5 for A3’s pink tokens. 

For A1 and A2, we assumed that the planner might run predictive simulations involving 
perturbations of minFuel or maxFuel, to estimate the sensitivity of the system to such changes. We 
performed 200-step simulations in which either minFuel or maxFuel was perturbed at the 100th 
step, with 1000 runs of the simulation for each perturbation size and requirement. The simulations 
produced a success rate of 0.532 for R1 when maxFuel was reduced by 80, meaning 53.2% of the 
1000 simulations found no violation of R1. The corresponding success rate for R2 was 0.505. 
Therefore, we set 𝑝̂𝑝 = 0.532 for A1’s pink token in R1’s VFlow, and 𝑝̂𝑝 = 0.505 for the pink token 
in R2’s VFlow. 

In all simulations where minFuel was increased by 40 or maxFuel was decreased by 40, no 
proof violations were detected. Assuming the planner would be cautious enough not to indicate a 
guaranteed success based on a simulation, we set 𝑝̂𝑝 = 0.99 for all of A2’s pink tokens. 

 Computed Results 

Table 7 and Table 8 show the success probabilities computed from the set of red tokens for each 
requirement/plan pair, along with the expected utility based on the probabilities and the 
requirements’ utility weights. Table 7 provides the results for the probability scaling approach. 
Table 8 shows the odds scaling results. 

 
 

Table 7. Results from probability scaling approach 

Results Using Probability Scaling 
 R1 Success Prob. R2 Success Prob. Expected Utility 

A1 0.0127 0.00708 0.0166 
A2 0.0204 0.00630 0.0216 
A3 1 0.0500 0.800 
A4 1 0.446 1.20 
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Table 8. Results from odds scaling approach 

Results Using Odds Scaling 
 R1 Success Probability R2 Success Probability Expected Utility 

A1 0.0345 0.0226 0.0485 
A2 0.875 0.858 1.51 
A3 1 0.0909 0.841 
A4 1 0.978 1.73 

 
The risk values calculated using odds scaling match fairly well with what we would expect 

based on our manual reasoning. For R1, A3 and A4 were found to have no risk, A2 was found to 
have low risk (high success probability), and A1 was found to have high risk. For R2, A1 and A3 
were found to have high risk, while A2 and A4 had low risk. However, there are some 
discrepancies from what we would expect. For example, the success probability computed for R2 
was higher for A3 than for A1, even though A3 nearly always causes a failure for R2 while A1 
causes failures less frequently. The same issue occurs when probability scaling is used. An 
additional problem occurs with probability scaling in that A2 is found to have the lowest success 
probability for R2, even though it is one of the safer adaptations for that requirement. 

3.2.4 Employing KIV and Working toward Security Certification Awareness 

In this section, we detail efforts (1) investigating the formal expression and classification of 
security controls used for certifying federal information systems, (2) using the SIMS case study to 
show the impact of adaptation on security certification and (3) develop a theoretical methodology 
and heuristic guidelines for the use of the KIV theorem prover (Ernst, 2015) to identify verification 
concerns, the impact of their change on the risk of inhibiting the verification process, and the 
modeling of the verification workflow for adaptation plan comparison and risk assessment. 

To scope our examination of the impact of self-adaptive plans on security certification, we start 
with three main assumptions.  

 
• The planning process as part of the MAPE-K (Monitor, Analyze, Plan, Execute with 

Knowledge) can produce adaptive plans that may not have been evaluated prior to system 
deployment, 

• A static analysis tool can be available that disallows any configured plans that do not follow 
predefined rules, such as naming conventions, and 

• If an adaptive plan interferes with or alters a verification concern extracted from the proof 
process, there is an increased risk that the same proof strategy to show security control 
compliance cannot be reused, providing the basis for the risk assessment of the plan. 

 
The first assumption allows the planner to go beyond prefabricated plans or plans that must 

satisfy predefined adaptive constraints. The planner can use any knowledge of predefined plans, 
attempted but not deployed plans, and meta-data from successfully deployed plans. The second 
assumption allows for constraints to be applied to the plan configuration. With this assumption, 
we can introduce constraints on deleting processes that explicitly serve as security control 
mechanisms as part of an adaptive plan configuration. 
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The third assumption forms the foundation of the approach. Because each requirement 
verification or certification process is documented, the pattern of control flow and how states are 
examined provide meta-data about the process: verification concerns (VCs) and verification 
workflow (VFlows). VCs and VFlows become part of the planning process within the MAPE-K 
control loop as verification and certification awareness. If an adaptive plan alters a VC in a risky 
manner at a risky place in the workflow, the original verification/certification process may be 
voided and not be reusable. The greater the risk, the higher the probability that a new proof process 
would be needed, thus increasing the probability of a requirement violation by the adaptive plan. 

 Transforming Security Controls 

Because security controls express functional and non-functional requirements, certification 
processes involve determining the existence of certain functionality in the system, as well as the 
correctness of the functionality. In this report, we focus on security control AU-12(1), which 
appears in Figure 16, as taken directly from the NIST SP 800-53 (NIST, 2013). AU-12 is 
designated all baselines (i.e. low, moderate, and high impact systems). This means that all 
information systems adhering to the security controls must consider AU-12. Enhancement 1 is part 
of the baseline of controls for high impact systems. A high impact information system means that 
there is a high degree of concern, such as monetary, reputation, or life-threatening, should one of 
confidentiality, integrity, or availability be violated with respect to the data stored and in transit. 

Figure 16 shows that AU-12 references additional audit controls, namely AU-2a, AU-2d, and 
AU-3. These control statements appear in Figure 17 as taken directly from the NIST SP800-53 
(NIST, 2013). Security certification examines the requirements of AU-12, followed by the 
requirements for its first enhancement and assessing these against the system. The NIST SP800-
53a (NIST, 2014) guidelines state that examination can be done on the “procedures addressing 
audit record generation” because of the reference to AU-2a and “list of auditable events” because 
of the reference to AU-2d and AU-3. When enhancement (1) is included, the examination 
guidelines extend to “system-wide audit trail”. 
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Figure 16: AU-12 Control Statement with Enhancement (1) 

 

 
Figure 17: Control Statements for AU-2a, AU-2d, and AU-3 

 

Formally expressing the security control statements manifests their separation of non-functional 
from functional requirements. Below we restate them as R1-R5 using formal notation and the 
ontological relationships expressed in (Hale, 2017). In LTL, the square is “invariant” and the 
diamond is “eventually”. 

 

AU-12 AUDIT GENERATION  
Control: The information system:  

a. Provides audit record generation capability for the auditable events defined 
in AU-2 a. at [Assignment: organization-defined information system 
components];  
b. Allows [Assignment: organization-defined personnel or roles] to select 
which auditable events are to be audited by specific components of the 
information system; and  
c. Generates audit records for the events defined in AU-2 d. with the content 
defined in AU-3.  

Control Enhancements: 
(1) AUDIT GENERATION | SYSTEM-WIDE / TIME-CORRELATED 
AUDIT TRAIL  

The information system compiles audit records from [Assignment: 
organization-defined information system components] into a system-wide 
(logical or physical) audit trail that is time-correlated to within 
[Assignment: organization-defined level of tolerance for the relationship 
between time stamps of individual records in the audit trail]. 

AU-2 AUDIT EVENTS  
Control: The organization:  

a. Determines that the information system is capable of auditing the following 
events: [Assignment: organization-defined auditable events];  

…  
d. Determines that the following events are to be audited within the information 
system: [Assignment: organization-defined audited events (the subset of the  
auditable events defined in AU-2 a.) along with the frequency of (or situation 
requiring) auditing for each identified event]. 
 

AU-3 CONTENT OF AUDIT RECORDS  
Control: The information system generates audit records containing information 

that establishes what type of event occurred, when the event occurred, where the event 
occurred, the source of the event, the outcome of the event, and the identity of any 
individuals or subjects associated with the event. 
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R1: (non-functional) For each component (C) in the information system (IS) identified to have 
auditable events, there exists a function to perform auditing for predefined auditable events 
(AU-12a, AU-2a). Below, we call the function generateAuditRecord. 

(∀𝐶𝐶 ∈ 𝐼𝐼𝑆𝑆: ∃𝐶𝐶. 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) 
 

R2: (functional) For each predefined auditable event, an audit record satisfying the minimal 
contents is generated when an auditable event occurs (AU-12c, AU-2d, AU-3) 

□(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑒𝑒) ⟹◇(𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒))) 
where 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 contains tuples of the form (𝑣𝑣, 𝑡𝑡, 𝑤𝑤, 𝑐𝑐, 𝑜𝑜, 𝑖𝑖𝑖𝑖), with 𝑣𝑣 the event 

type; 𝑡𝑡 the event time; 𝑤𝑤 where event occurred; 𝑐𝑐 the event source; 𝑜𝑜 the event outcome, and 
𝑖𝑖𝑖𝑖 the event identity.   

 
R3: (non-functional) There exists a system-wide, virtual or physical component, which we will 

call 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, that collects auditable events (AU-12(1)) from designated components. 
(∃𝐶𝐶 ∈ 𝐼𝐼𝐼𝐼 ∶ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∈ 𝐶𝐶) 

 
R4: (functional) All audit records are sent to the audit trail (AU-12(1)) 

□(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑒𝑒) ⇒◇(𝑒𝑒 ∈ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)) 
 

R5: (functional) The audit trail time-correlates the audit records (AU-12(1)) 

□(∀ 𝑖𝑖, 𝑗𝑗 ∈ [0, ‖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎‖) ∩ ℤ ∶ 
𝑖𝑖 < 𝑗𝑗 ⇒ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[𝑖𝑖]. 𝑡𝑡 ≤ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[𝑗𝑗]. 𝑡𝑡) 

R6: (functional) Time correlation is checked against a defined level of tolerance (AU-12(1)) 

□(∀ 𝑖𝑖 ∈ [0, ‖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎‖ − 1) ∩ ℤ : 
                               𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[𝑖𝑖 + 1]. 𝑡𝑡 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[𝑖𝑖]. 𝑡𝑡 > 𝜀𝜀 ⇒ 
                                                         𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[𝑖𝑖]. 𝑡𝑡, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[𝑖𝑖 + 1]. 𝑡𝑡)) 

 
R1 requires that the mechanism exists in identified components to capture predefined auditable 

events. R3 requires the existence of an audit trail. The requirements R2 and R4-R6 must be 
certified by testing or formal verification. 
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Figure 18: SIMS Architecture 

 
Figure 18 shows a different SIMS architecture than originally designed in Figure 9, because the 

connectivity process was unnecessary when the simulation of the system was implemented as 
multiple threads in Java. SIMS tracks inventory’s stock condition using a pressure sensor and 
adjusts pressure the threshold depending on the inventory movement. Thus, for this experiment, 
SIMS has three components with local MAPE-K control loops: Measure reads the pressure sensor, 
Process adjusts the threshold, and Audit houses audit records from Measure and Process for 
security certification.  

  Examining the Audit Security Controls 

Within Figure 16 and Figure 17 there is text of the form [Assignment: …]. This text provides 
the organization with the flexibility to tailor the security controls with more explicit values or 
expressions so that they are relevant to the system of interest. Once tailoring is performed, the 
resulting values cannot be changed without re-certification, and thus, form safety properties.  

Table 9 shows the tailored values chosen to satisfy AU-12(1), AU-2a, AU-2b, and AU-3 for the 
SIMS case study. Once tailoring is completed, certification can begin. For the targeted audit 
security controls in Section 3.2.4.1, the first part of the process is to determine if the required 
mechanisms exist to satisfy R1 and R3. For R1, Table 9 indicates that Measure and Process are 
responsible for record generation (row 1) and produce audit records from the auditable events of 
signal updates in Measure and threshold value changes in Process (row 5).  

To ensure the existence requirements (R1 and R3) are maintained in an adaptive plan, a mapping 
of the security control to the component process is provided to the planning process in the MAPE-
K control loop. If an adaptive plan is configured that deletes the process, then the violation of the 
requirement is clear and can be provided as an alert to the human analyst that recertification will 
need to be performed for that mechanism. 
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We focus the requirements proof and self-adaptation assessment on the Audit component. Its 
process control flow is depicted in Figure 19. The main update loop consists of checkCongestion 
(logs the amount of buffer capacity being used), dequeueAuditRecord (removes an audit record 
from the queue), findInsertionPoint (uses a binary search to determine where the audit record’s 
timestamp fits), checkTimeTolerance (logs when the time difference is not within the prescribed 
tolerance), and storeAuditRecord (stores the audit record at the determined insertion point of the 
audit trail). 

Table 9: Tailored Values for the Targeted Security Controls 

Targeted control Organization-defined Assignment 

AU-12a information system components (for audit record 
generation capability) Measure, Process 

AU-12b personnel or roles Human analyst 

AU-12(1) information system components (from which 
audit records will be compiled) Measure, Process 

AU-12(1) level of tolerance for the relationship between 
time stamps of individual records in the audit trail 10 seconds  

AU-2a auditable events 
signal updates, 
threshold value 
changes 

AU-2d audited events with frequency of (or situation 
requiring) auditing for each defined event at every occurrence 

 

 Potential Adaptations 

During deployment of the SIMS, the planning process configures the following potential plans 
for risk assessment, none of which violate the existence criteria for R1 and R3. 

 
A1: Allow Audit to periodically drop messages. 
A2: Add dequeued records to the end of the audit trail (instead of performing binary search) 

until a predefined number of records have been added. 
A3: Increase the performance of the sorting technique by providing a rolling lower 

timestamp and sorting only records less than it.  
 
We will return to these adaptations and their impact on the verification of the audit security 

controls in Section 3.2.4.7. 
To compare adaptations configured by the planner, we assess their risk of inhibiting the reuse 

of the original verification process of the security control requirements. In this section, we outline 
the methodology of extracting the verification concerns (VCs) and the verification workflows 
(VFlows) using the KIV theorem prover. We focus on proving the safety property R5 and the 
progress property R4 from Section 3.2.4.1. Figure 20 outlines the process to identify the VCs and 
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VFlow associated with a proof. With the Java code restated in KIV’s language, KIV can prove 
LTL expressions. We define a set of lemmas that provide guidance to the KIV proof so that the 
proof process is made more explicit and the meta-information needed to identify VCs and VFlows 
per requirement is available.  

 

Table 10: Targeted Functions for Audit Control Certification of Mechanism Existence 

Control 
 
Requirement 
Mapping 

Mechanism  
 
Certification 
Process  

Targeted Function(s) 

AU-12a R1 

Provide audit 
record 
generation 
capability  

Examine 
Measure for 
capability Measure.generateAuditRecord 
Examine 
Process for 
capability 

 
Process.generateAuditRecord 

AU-12(1) R3 

Provide audit 
record 
compilation 
(physical) 

Examine Audit 
for capability 

Audit.findInsertionPoint 
Audit.checkTimeTolerance 
Audit.storeAuditRecord 

AU-2a R1 
Provide 
auditable event 
recognition 

Examine 
Measure for 
capability 
specific to 
updating signal  

 
Measure.updateSignal 

Examine 
Process for 
capability 
specific to 
computing 
threshold 

 
Process.updateThresholds 
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Figure 19: Process Control Flow for Audit 

 

 Working with KIV 

Each LTL state transition has two phases in KIV: the program modifies the state and the 
environment modifies the state. Let 𝑋𝑋 be a state variable. 𝑋𝑋′ denotes the value after program 
modification. 𝑋𝑋′′ denotes the value after program and environment modification, which is the 
value in the next state. It must be explicit about what the environment cannot change, otherwise 
KIV assumes the environment can change any state variable. For Audit, we assume the 
environment does not modify any state variables other than the input message queue. 

Hoare triples (Hoare, 1985) are an intuitive way to prove program properties and extract VCs. 
However, they make no guarantees about the states in between their pre- and postconditions. Thus, 
they are not suitable for proofs where intermediate states must satisfy a property. To allow KIV to 
use Hoare triples when proving a property for a single component, we augment them with 
intermediate state and termination guarantees. Our temporal contract proposition (TCP) is similar 
to KIV’s rely-guarantee statements for threads but can be used to decompose the different 
procedure calls in an individual program thread. 

 

 
Figure 20: VC and VFlow Identification Process 
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A TCP is stated as 𝑡𝑡𝑡𝑡𝑡𝑡(𝑃𝑃𝑃𝑃𝑃𝑃, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝑀𝑀𝑀𝑀𝑀𝑀, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃), which means that when Code is executed under 

condition Pre, it eventually terminates with condition Post, and all intermediate states satisfy 
condition Mid. In KIV, we state a TCP with the template: 

 
Pre, [: Vin, Vinout| Code(Vin; Vinout); [PL RestProg] ] 
⊦ 
Mid until (Post ∧ RestProg) 

 
where Vin, Vinout are any input/output program parameters. [PL RestProg] represents the program 
(if any) that executes after Code. Mid until (Post ∧ RestProg) means (Post ∧ RestProg) holds in 
the present or some future state, and Mid holds in every state before that, starting at the present 
state. 

3.2.4.4.1 Verification of Safety Property R5 

In KIV, invariants to be proven are often represented as  
 

¬(𝑁𝑁′′ = 𝑁𝑁 − 1 𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮 ¬𝑝𝑝) 
 
to mean “there does not exist a natural number variable 𝑁𝑁 that decreases until 𝑝𝑝 is false.” Typically, 
for KIV to prove an invariant it symbolically executes a full iteration of the main loop, considering 
all program branches and proving p at every step. Then it applies induction to complete the proof. 

Instead of focusing on symbolic execution directly, our methodology uses TCPs when possible 
to skip over parts of the code until a main loop iteration has been completed. Symbolic execution 
is used directly to prove the TCPs, but not to apply them. In accordance with the KIV TCP template 
described in Section 3.2.4.4, applying 𝑡𝑡𝑡𝑡𝑡𝑡(𝑃𝑃𝑃𝑃𝑃𝑃, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝑀𝑀𝑀𝑀𝑀𝑀, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) to a proof goal where Pre and 
[: Vin, Vinout| Code(Vin; Vinout); [PL RestProg] ] are known to be true allows KIV to deduce Mid 
until (Post ∧ RestProg). Note that we must instantiate RestProg with a specific program formula 
when applying a TCP, but not when proving one. To actually skip over Code we need to derive a 
new proof goal where the program formula is RestProg. We apply the following lemma, called 
lemma-invariant, after applying the TCP: 

 
N = n, 
□(AfterI ∧ InvProp ∧ N ≤ n ⇒ ¬(N = N’’ + 1 until ¬InvProp)), 
□(MidI ⇒ InvProp), 
MidI until (InvProp ∧ AfterI) 
    ⊦  
¬(N = N’’ + 1 until ¬InvProp) 
We apply lemma-invariant using the substitution AfterI = Post ∧ RestProg and MidI = Mid. 

InvProp is substituted with the invariant property to be proven (i.e., to prove □ p, we use InvProp 
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= p). Given that Post contains InvProp, the fact Mid until (Post ∧ RestProg) derived from the TCP 
implies MidI until (InvProp ∧ AfterI). N = n can always be established for some n. 

Since KIV knows that MidI until (InvProp ∧ AfterI) and N = n hold when lemma-invariant is 
applied, two new proof goals result, matching the second and third formulas in lemma-invariant. 
Using KIV’s execute always rule, we can remove the always from these proof goals. Therefore, 
the new proof goals that we reach are:  

 
AfterI ∧ InvProp ∧ N ≤ n ⇒ ¬ (N = N’’ + 1 until ¬ InvProp), 
MidI ⇒ InvProp 
 
Figure 21 shows a fragment of a KIV proof tree in which a TCP has been applied, followed by 

an application of lemma-invariant. In this case, KIV was able to automatically close the proof goal 
MidI ⇒ InvProp, resulting in only one new proof goal. 

 

 

To roughly match our Java simulation’s architecture for the SIMS case study, our KIV code 
assigns four (compound) state variables to each component: internal state, external state visible to 
the environment, and input and output message queues. Since the Audit component uses only one 
input queue and does not send messages, we abstract the KIV Audit state in this discussion to three 
variables: Int for the internal state, Ext for the external state, and InQ representing Audit’s single 
input message queue. For brevity in our discussion, we define some abbreviations: 

 
e ≡ □ (Int’’ = Int’ ∧ Ext’’ = Ext’ ∧ ∃ Msgs :InQ’’ = InQ’ + Msgs) 
s ≡ sorted(Ext.auditTrail, compareRecords) 

t ≡ Int.auditRecord = nullOpt ∨ Int.insertionPoint < 0 ∨  
      (Int.insertionPoint ≤ # Ext.auditTrail ∧  

Figure 21: KIV Tree Showing Guided Invariant Proof Process 
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       sorted(Ext.auditTrail.insert (Int.insertionPoint, Int.record.getOpt),  
                     compareRecords)) 

where e is an environmental assumption saying that the only possible environmental state 
modification is to add a list of new messages to the back of InQ. s arises from our modeling of 
Java comparators, which are used in the Java code. compareRecords is a comparator constant that 
compares audit records based on time stamp. Sorted is a predicate indicating that a list is sorted 
according to a comparator. 

In our proof of R5, we first show that □s implies R5, making □s an intermediate invariant to 
be proven. t is an intermediate condition needed in some of our TCPs. Intuitively, t means that 
there is no audit record being passed to the process in the control flow (see Figure 19) or no 
insertion point has been selected or inserting the audit record at the insertion point preserves the 
sorting. The use of nullOpt and getOpt in this formula arise from our modeling of optional sorts, 
which can have null values.  

The resulting TCPs constructed to prove □s are as follows: 
 
tcp(e ∧ s, checkCongestion(; Int, Ext, InQ), s, s) 
tcp(e ∧ s , dequeueAuditRecord(; Int, Ext, InQ), s, s) 
tcp(e ∧ s , findInsertionPoint(; Int, Ext, InQ), s, s ∧ t) 
tcp(e ∧ s  ∧ t, checkTimeTolerance(; Int, Ext, InQ), s, s ∧ t) 
tcp(e ∧ s ∧ t, storeAuditRecord(; Int, Ext, InQ), s, s) 
 
After applying these TCPs in order and following each TCP application with lemma-invariant, 

we reach a proof goal where the program formula is: 
 
[: Int, Ext, InQ | while true do update(; Int, Ext, InQ) ] 

 
This is the same program formula we had when we started the induction, because we have 
completed an iteration of the main loop. KIV also knows that N has decreased, because it decreased 
once in the evaluation of the loop condition and we preserved that fact by the inclusion of N ≤ n 
in the new proof goals (using lemma-invariant). Since N has decreased without a violation of s, 
and we have reached the original program formula, we can have KIV apply the induction to 
complete the proof of □s. 

 Identifying the Verification Concerns and Verification Workflow 

Verification concerns (VCs) are state variables with values that are relevant to the proof. VCs 
are identified by verification conditions (see Figure 20) that are examined within the instantiated 
lemma-invariants associated with the TCPs used to guide the KIV proof. For example, the 
conditions  

 



Approved for Public Release; Distribution Unlimited. 
42 

 
 
 

auditRecord = nullOpt 
insertionPoint ≤ #auditTrail  

 
are a subset of conditions needed to prove R5 within the processes findInsertionPoint, 
checkTimeTolerance, and storeAuditRecord. The conditions rely on auditRecord, 
insertionPoint, and auditTrail, identifying them a VCs for R5, as well as the processes where the 
conditions are checked, which will be used in the construction of the Colored Petri Net (CPN) that 
describe the associated verification workflow.   

Once the VCs are identified, the conditions used for the proof indicate the range of potential 
changes to the variables that may increase risk. While it is plausible that finding the VCs could be 
automated given the resulting KIV proof, the flexibility with which the VCs can be changed by 
self-adaptation is still a manual procedure. Table 11 shows how a human analyst might classify 
the impact of certain changes to a VC given the conditions used in the proof of R5. We separate 
them into fuzzy sets of Devastating, Worrisome, and Unconcerned.   

Table 11: R5 VC Conditions for Change Impact 

R5 Devastating Worrisome Unconcerned 

auditRecord  Alter time stamp 
Set to null 

Alter contents 

insertionPoint 
Continuous set to #auditTrail 
Set to > #auditTrail 
Eliminate sorting  

 
Alter sorting 
performance 

auditTrail Remove records  Reorder records  
 

 
Removing auditRecord from auditTrail causes record loss, making both changes potentially 

devastating to maintaining R5. Setting insertionPoint to null and eliminating sorting is 
problematic, but decreasing the performance of the sorting algorithm may not cause problems. A 
change in the condition table that is part of an adaptation will be reflected in the risk impact factor, 
MVC, for the targeted VC. 

 
Figure 22: VFlow for Safety Property R5 and Adaptation A2 
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In Figure 20, the process control flow and the verification conditions that result from the KIV 

proof contribute to the definition of the verification workflow (VFlow) per requirement. We rely 
on prior work for the construction of a CPN as the VFlow representation as reported in the previous 
quarter. The objective of the VFlow is to inform the planning process of the comparative risk 
values associated with potential adaptation on the proof reuse for that requirement.  

To calculate the overall utility of a plan, the CPN representing a VFlow mimics the process 
control flow with the processes as transitions. Three tokens are used: blue (for traversal through 
the VFlow), pink (representing the change) and red (representing the risk impact factors computed 
by the transitions). 

Figure 22 represents the VFlow crafted by the meta-data taken from the proof of R5. Three 
processes, findInsertionPoint, checkTimeTolerance, and storeAuditRecord, are represented as 
transitions. Because the processes are equally involved in the proof, a change to them has equal 
impact on proof reuse. This will be reflected in the process impact multiplier, MPL. For adaptation 
A2, the pink token indicates that the change will occur within findInsertionPoint. The planning 
process assigns values representing its assessment of the plan quality, which is the risk impact 
multiplier 𝑝̂𝑝. The blue token carries the information presented by the pink token to each transition 
for assessment.     

Red tokens are produced when a VC has an impact value above 0. They carry the accumulated 
impact values, MVC, MPL, and 𝑝̂𝑝 to the end state. Multiple red tokens can be produced if multiple 
VCs are affected and if multiple processes contribute to the potential risk. For R5, adaptation A2 
causes three red tokens to be generated, one from each transition, meaning that a VC at the 
transition was impacted. This VC is insertionPoint for each red token because A2 invokes the 
condition “Continuous set to #auditTrail” which is devastating. We will discuss how the impact 
values are used in Section 3.2.4.7.  

3.2.4.5.1 Verification of the Progress Property R4 

For Audit, we decompose R4 into two progress properties.  
 
R4.1: □(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑣𝑣) ⇒◇(𝑣𝑣 ∈ 𝐼𝐼𝐼𝐼𝐼𝐼)) 
R4.2: □((𝑣𝑣 ∈ 𝐼𝐼𝐼𝐼𝐼𝐼) ⇒◇(𝑣𝑣 ∈ Ext. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)) 
 
In this section, we outline the methodology used to guide KIV to prove R4.2. We use e and s as 

defined in Section 3.2.4.4.1, along with the following abbreviations: 
 
e1 ≡ □(messageVar ∈ InQ ∧ InQ′=InQ ⇒ messageVar ∈ InQ′′) 
s1 ≡ messageVar ∈ InQ ⇒ messageVar ∈ InQ′′ 
s2 ≡ Int.auditRecord ≠nullOpt ∧  

              Int.auditRecord.getOpt = messageVar.auditRecord 
 
where e1 states that when the program does not modify InQ, a message in the queue will be 
preserved in the queue in the next state; this is easily proven from e.  
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We rely on the proof of R5 for □s since our code relies on the fact that the audit trail is sorted 
to avoid generating an out-of-bounds insertion index, which would cause the program to crash. 
We make an additional assumption that we are only interested in messages containing audit 
records. This condition is stated as isRecordMessage(messageVar). 

In KIV, the progress property goal for R4.2 is stated as 
 
□(𝑞𝑞 ⇒◇𝑝𝑝), where 
𝑞𝑞 ≡ messageVar ∈ InQ ∧ isRecordMessage(messageVar) 
𝑝𝑝 ≡ messageVar.auditRecord ∈ Ext.auditTrail 
 
We refer to q as the progress precondition under which some form of progress is required to 

eventually occur. We refer to p as the progress postcondition that ensures the progress required by 
q happens. When proving a progress property, it is helpful to decompose the proof across the 
process control flow so that, similar to the invariant proof, we can prove lemmas on smaller code 
blocks. Since the requirement has the form □(𝑞𝑞 ⇒◇𝑝𝑝), which includes a temporal formula inside 
the always, we require lemmas that are somewhat more complex than lemma-invariant. 

Let the term q-preserving describe parts of the program in which the progress precondition 
cannot change from true to false. A key observation driving our methodology is that, due to the 
nature of the LTL eventually operator, we can use TCPs to “skip” over q-preserving code, only 
proving 𝑞𝑞 ⇒◇𝑝𝑝 at the end of each skip and when non-q-preserving code is encountered. 

As in the invariant example, we can prove and apply a TCP 𝑡𝑡𝑡𝑡𝑡𝑡(𝑃𝑃𝑃𝑃𝑃𝑃, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝑀𝑀𝑀𝑀𝑀𝑀, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) to allow 
KIV to deduce Mid until (Post ∧ RestProg), then use that fact in an additional lemma. The lemma 
used to skip past q-preserving code is lemma-progress: 

 
N = n, 
□(AfterP ∧ N ≤ n ⇒  

                ¬(N = N'' + 1 until (PreProgress ∧ ¬◇PostProgress))), 

□(AfterP ∧ PreProgress ⇒ ◇ PostProgress), 

□(MidP ∧ PreProgress ⇒ ● PreProgress), 
MidP until AfterP 
⊦ 
¬(N = N'' + 1 until (PreProgress ∧ ¬◇PostProgress)) 

 
where the ● operator is a weak next indicating that PreProgress holds in the next state if there is a 
next state. This lemma is applied using the substitution AfterP = Post ∧ RestProg, MidP = Mid, 
PreProgress = q, PostProgress = p. It is used in a similar manner to lemma-invariant, but the proof 
goals generated are different. Again, using KIV’s execute always rule, applying this lemma after 
a TCP results in the following new proof goals: 
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Post ∧ RestProg ∧ N ≤ n ⇒ ¬ (N = N'' + 1 until (q ∧ ¬ ◇ p)) 

Post ∧ RestProg ∧ q ⇒ ◇ p 
Mid ∧ q ⇒ ● q 
 
Code that is not q-preserving creates a disjunction in the proof goal, because it may either (1) 

not actually change q from true to false, or (2) establish or preserve some other condition, 𝑟𝑟, that 
ensures ◇𝑝𝑝. To represent this case, we define a split temporal contract proposition (STCP) as  

 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑃𝑃𝑃𝑃𝑃𝑃, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝑀𝑀𝑀𝑀𝑀𝑀, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1, 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡2) 

 
meaning when Code is executed under condition Pre, either (1) it eventually terminates with 
condition Post1, and all intermediate states satisfy condition Mid, or (2) it eventually terminates 
with condition Post2, with intermediate states not necessarily satisfying Mid. Typically, Code 
represents a non-q-preserving program part, and Post2 represents the intermediate condition 𝑟𝑟. We 
represent a STCP in KIV using the following template. 

 
Pre, [: Vin, Vinout| Code(Vin; Vinout); [PL RestProg] ] 
⊦ 
(Mid until (Post1 ∧ RestProg)) ∨ ◇(Post2 ∧ RestProg)  
 
The first case of the disjunction can be handled using lemma-progress. The second case requires 

a new temporal logic lemma, called lemma-progress-split:  
 
 
N = n, 
□(AfterPS ∧ N ≤ n ⇒  

                 ¬(N = N'' + 1 until (PreProgress ∧ ¬◇PostProgress))), 

□(AfterPS ⇒ ◇PostProgress), 

◇AfterPS 
⊦ 
¬(N = N'' + 1 until (PreProgress ∧ ¬◇PostProgress)) 
 
After applying a STCP, we apply lemma-progress-split with the substitution AfterPS = Post2 ∧ 

RestProg, PreProgress = q, PostProgress = p. We get two new proof goals: 
 
Post2 ∧ RestProg ∧ N ≤ n ⇒ ¬(N = N'' + 1 until (q ∧ ¬◇p)) 
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Post2 ∧ RestProg ⇒ ◇p 
 
 

 
Figure 23: KIV Tree with Progress Property Proof Process 

 
Figure 23 shows a fragment of a KIV proof tree (Ernst, 2015) where a STCP has been applied 

followed by an application of lemma-progress in one branch and lemma-progress-split in the other 
branch. 

By applying TCPs and STCPs along with lemma-progress and lemma-progress-split, we 
eventually skip to the end of the program’s main loop and can apply induction as with an invariant 
proof. At that point, the remaining proof goals have the form u ⇒ ◇p for some formula u. These 
goals may also use TCPs in their proofs, but as they do not require induction, lemma-invariant, 
lemma-progress, and lemma-progress-split are typically not required. For brevity, we list here only 
the TCPs and STCPs used with lemma-progress and lemma-progress-split to reach the end of the 
main loop, though the other TCPs do produce VCs: 

 
tcp(e ∧ e1 ∧ □s, checkCongestion(; Int, Ext, InQ), s1, true) 

stcp(e ∧ e1 ∧ □s, dequeueAuditRecord(; Int, Ext, InQ), s1, true, s2) 

tcp(e ∧ e1 ∧ □s,  findInsertionPoint(; Int, Ext, InQ); 
                                      checkTimeTolerance(; Int, Ext, InQ);  
                                      storeAuditRecord(; Int, Ext, InQ),s1, true) 
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 Identifying the Verification Concerns and Verification Workflow 

The precondition of R4.2 identifies that the program is in a state in which messageVar, 
containing a non-null auditRecord, appears in InQ, identifying these three state variables 
immediately as VCs. They are also included as postconditions, since messageVar must eventually 
be removed from InQ, while auditRecord must eventually be placed in auditTrail. Thus, 
auditTrail is a VC. In addition, the proof relied on the invariant established conditions making 
insertionPoint also a VC. It is also noted that all processes have conditions in the proof that 
contain one or more of the identified VCs. 

Table 12 denotes the potential impacts of certain changes to the identified VCs from Section 
3.2.4.5.1 for R4.2. It can be seen that the same changes in Table 11 are viewed as impacting this 
requirement differently. For example, sorting changes are of less concern because the requirement 
focuses on ensuring the audit records are stored in the audit trail.  

 
Table 12: R4.2 VC Conditions for Change Impact 

R4.2 Devastating Worrisome Unconcerned  
messageVar Modify auditRecord   

InQ Alter queuing of 
auditRecord Reorder queue  

auditRecord Alter contents; 
 Set to null  Alter time stamp 

insertionPoint 

Set to > #auditTrail 
 

 

Eliminate sorting; 
Alter sorting 
performance; 
Continuous set to 
#auditTrail 
 

auditTrail Remove records  Reorder records 
 
While the process control flow is the same for the CPN created for R4.2’s VFlow, the internal 

computation performed at the transitions to determine which VCs match and the impact estimate 
of that match can introduce different risk values.  

The VFlow representing the meta-data from the proof process for R4.2 involves all five 
processes in the SIMS case study, which will be equally impacted by changes affecting their VCs. 
Figure 24 shows the CPN representing R4.2’s VFlow. Notice that the pink token is associated with 
findInsertionPoint as it was in Figure 22. The same VC, insertionPoint, is affected, but the affect 
is less (unconcerned) than for R5.  
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 Comparing Adaptation Risk 

We use a previously derived utility function to compare adaptation plans A1-A3 according to 
the assessed risk they pose to inhibiting the reuse of the verification processes for R4 and R5. The 
success probability of an adaptation plan a with respect to a requirement r is estimated as 
∏ 𝑝𝑝(𝑡𝑡)𝑡𝑡∈𝑇𝑇(𝑟𝑟,𝑎𝑎) , where 𝑇𝑇(𝑟𝑟, 𝑎𝑎) is the set of red tokens generated from 𝑟𝑟’s VFlow for adaptation plan 
a and 𝑝𝑝(𝑡𝑡) is an estimate of the probability that token 𝑡𝑡 does not represent an actual violation of a 
verification process. We consider probability scaling, where 

𝑝𝑝(𝑡𝑡) = 𝑀𝑀𝑃𝑃𝑃𝑃(𝑡𝑡)𝑀𝑀𝑉𝑉𝑉𝑉(𝑡𝑡)𝑝̂𝑝(𝑡𝑡) 
with 𝑀𝑀𝑃𝑃𝑃𝑃(𝑡𝑡) a risk factor associated with changing a process, 𝑀𝑀𝑉𝑉𝑉𝑉(𝑡𝑡) a risk factor associated with 
the VC and a verification condition, and 𝑝̂𝑝(𝑡𝑡) the quality that the planning process associates with 
the adaptation plan. These values all appear in each red token 𝑡𝑡. The expected utility of an  
adaptation plan is  

𝐸𝐸[𝑈𝑈(𝑎𝑎)] = � �𝑤𝑤(𝑟𝑟) � 𝑝𝑝(𝑡𝑡)
𝑡𝑡∈𝑇𝑇(𝑟𝑟,𝑎𝑎)

�
𝑟𝑟∈𝑅𝑅

 

where 𝑤𝑤(𝑟𝑟) is the impact weight applied to a requirement 𝑟𝑟. 

 
Figure 24: VFlow for R4.2 and Adaptation A2 

Comparing the potential risk of adaptation on the reuse of the proof process means providing 
values for the impact factors for 𝑝𝑝(𝑡𝑡). Starting with MVC, we assign VC conditions that match the 
plan and are devastating (0.2 impact factor), worrisome (0.5 impact factor), and unconcerned (0.9 
impact factor), where a higher impact factor has less impact. The lowest impact factor is chosen if 
more than one condition matches. If there is no match, the MVC = 1.  

For adaptation A1, auditRecord’s devastating condition “Set to null” is matched for R4.2 (Table 
12, MVC = 0.2), but is only worrisome for R5 (Table 11, MVC = 0.5), since time-correlating the 
auditTrail is unaffected, but dropping is problematic overall. For adaptation A2, insertionPoint’s 
devastating condition “Continuous set to #auditTrail” is matched for R5 with MVC = 0.2. For R4.2, 
this same condition is rated at unconcerned so its MVC = 0.9. For Adaptation A3, the match is with 
insertionPoint’s unconcerned condition “Alter sorting performance”, making MVC = 0.9 for both 
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R4.2 and R5. Since the impact on the processes is the same, MPL = 0.5. The AU-12 requirements 
are representative of the baseline security control and valued similarly. Therefore, we set w(r) = 1 
for all requirements r. The planning process rates the quality of the plan. For A1: 𝑝̂𝑝 = 0.25, A2: 𝑝̂𝑝 = 
0.6, A3: 𝑝̂𝑝 = 0.75.  

Using the VFlows associated with requirements R4.2 and R5, the expected utility of A1-A3 is 
calculated as follows from the resulting red tokens: 

𝐸𝐸[𝑈𝑈(𝐴𝐴1)] =  (0.25 ∗ 0.2 ∗ 0.5)3 +  (0.25 ∗ 0.2 ∗ 0.5)3 =  2.60 × 10−4 
𝐸𝐸[𝑈𝑈(𝐴𝐴2)] =  (0.6 ∗ 0.9 ∗ 0.5)3 +  (0.6 ∗ 0.9 ∗ 0.5)3 =  1.99 × 10−2 
𝐸𝐸[𝑈𝑈(𝐴𝐴3)] =  (0.75 ∗ 0.9 ∗ 0.5)3 +  (0.75 ∗ 0.9 ∗ 0.5)3 =   7.69 × 10−2 

Thus, adaptation plan A3 has the highest utility and is the least risky because of its plan to 
increase the performance of the sorting technique by providing a rolling lower timestamp and 
sorting only records less than the timestamp. As expected, A1’s plan to allow Audit to periodically 
drop messages is the riskiest. 

 

3.2.5 Deploying the Framework 

 The Wearable Security Testbed 

In order to embed formal verification on a physical device, an existing self-adaptive device is 
needed. We used an in-house wearable security testbed that relies on Raspberry Pi 3 Model Bs to 
simulate both the wearables and base stations. The testbed communicates between devices using 
Bluetooth, a common communication protocol that has been shown to be vulnerable to attacks 
(Walter, 2018b). The testbed allows developers and researchers to program directly on the device, 
with direct control of the Bluetooth communication. We input the Raspberry Pis with a MAPE-
K (monitor, analyze, plan, execute, knowledge) loop for monitoring the data communication, 
analyzing the packets being sent, planning an adaptation method, and executing the optimal 
adaptation option. Each adaptation is designed to prevent an attacker from performing an attack. 
We start with providing to the planner 2 potential adaptations should a vulnerability be detected 
by wearable or base station.  

 
• Send empty data packets, preventing an attacker from eavesdropping on data 

communication or beginning a Man-in-the-Middle attack. Because the base station 
remains connected, it is possible for the wearable to override this adaptation, allowing 
an attacker to gain data through eavesdropping. 

• Disconnect and await reconnection, preventing an attacker from eavesdropping but 
potentially allowing a Man-in-the-Middle attack. Because the devices are 
disconnected, there is a risk of a loss of data if the base station and wearable do not 
reconnect. 

 
The testbed uses an in-house developed self-awareness process, called fostering, to handle data 

communication that was also pushed to the control of the MAPE-K loop. Fostering allows a 
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wearable that has become disconnected from its base station to learn of potentially insecure 
environments by temporarily (for only a few packets) connecting to other devices in the area also 
running the self-awareness application. These devices exchange no more than 2 data packets 
containing the current security state of the area before disconnecting. The existence of fostering 
gives rise to 2 additional adaptation options, for a total of 4 potential adaptive plans that are 
accessible by the planner. 

 
A1. Send empty data packets and disallow fostering 
A2. Disconnect and disallow fostering 
A3. Send empty data packets and allow fostering 
A4. Disconnect and allow fostering 

 
 
 

 Embedding Verification on Wearables 

To prototype the algorithm for the CPN that expresses our verification contract with each 
requirement in the wearable devices, we use the wearable testbed to simulate three self-adaptive 
wearables. 

 
• Heart Rate Variability Monitor (HRVM), which uses captured heart rate data over a 

known period of time to determine the amount of stress a user is under 
• Hearables, wearables which are designed to be worn in the ear, streaming audio data 

from and accelerometer data to a base station 
• Insulin Pump, a medical grade wearable that tracks a user’s blood glucose level and 

receives instructions about when to administer insulin from a base station 
 

3.2.5.2.1 Heart Rate Variability Monitor 

To formally define the HRVM, we created pseudocode describing the general operation of the 
wearable (Figure 25). From this pseudocode, we extract critical functional requirements of the 
wearable.  

 
HRVM1. The buffer does not overflow, leading to a loss of heart rate data 
HRVM2. Data is not lost when the wearable has determined the wearer is in a stressed 

state 
 
To show these requirements are never violated, we formally prove them using the pseudocode. 

Figure 26 shows the proof outline. 
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Figure 25: Pseudocode for the heart rate variability monitor 

 

i  0 
N  length(buffer) 
L  length(buffer) 
while (true) 
do     
    i++                                                                       //S1 
    hr_rate_info  read(port1) 
    buffer[i]  hr_rate_info 
    connected_device_sync_request  read(port2) 
    stressed  computeStressLevel(buffer) 
    if (connected_device in list_of_valid_devices) 
        then 
            if (connected_device_sync_request) or (i mod N == 0 and connected) //S2 and S3 
                then 
                    send(buffer) 
                    i  0 
                    buffer_change  false 
                    N  L 
            else 
                if (connected and streaming) //S4 
                    then 
                        send(hr_rate_info) 
                        i  0 
                        buffer_change  false 
                else 
                    buffer_change  true //S5 
            if (stressed and i == N)  //S6 
                then 
                    increaseBufferSize() 
                    buffer_change  true 
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Figure 26: Proof outline for heart rate variability monitor 

From the proofs we extract VCs and formulate the VConds, as in Tables Table 13 and Table 14 
for each requirement. For requirement HRVM1, the VCs are the state variables i (representing the 
place in the buffer which data is read in to), N (the size of the buffer), connected_device (the device 
that the HRVM is connected to), and send (the ability of the HRVM to send data to its base station). 
Requirement HRVM2 has 6 VCs. The first 4 are the same VCs as requirement 1. The final 2 are 
read (the ability of the HRVM to read data from the base station and from its own sensors) and 
stressed (the value representing the stressed state of the user.  

The VConds for Devastating, Worrisome, and Unconcerned are in Table 13 for requirement 
HRVM1 and Table 14 for requirement HRVM2. Recall from the last report that changes which 
are in the Unconcerned set have a very small chance of affecting the original proof reuse, while 
changes in the Devastating set have a very large chance of affecting the proof reuse.  

 
Table 13: Verification concern condition table for Requirement HRVM1 

Mvc 
HVRM1 Devastating (0.2) Worrisome (0.5) Unconcerned (0.9) 

I 
Remove i  0, set i > N, increase i by 
more than 1 per state change, perform 

i  0 in a different location 

Set i < 0, decrease i by more than 
1 per state change  

N Reduce N, reset N where is it not 
currently performed Increase N above L Increase N where is it not 

currently performed 
connected Inhibit connection Disconnect without altering N  

Send Inhibit send while connected, Expect 
send while disconnected  Sending null data (empty 

packets) 
 
 

  

Proof Sketch for HRVM1 
S1: i increases only if i < N (Read) 
S2-S4: connected, i is set to 0  after send and buffer length is reset (Reset) 
S5: not connected, i is set to 0 (Rewrite) 
S6: not connected, N is increased (Increase) 
Therefore, i is always at most N. 
 
Proof Sketch for HRVM2 
Assume R1: Inv (i ≤ N) 
S1: next hr_rate_info is always added to the buffer and is not lost (Read) 
S2 – S4:  connected leads-to buffer send  (so data in buffer is not lost) and reset to add next hr_info 

into available spot (Reset) 
S5: data is lost, but stressed is not determined  (Rewrite) 
S6: not connected and stressed leads-to buffer length increase to add next hr_info (so data in buffer 

is not lost) (Increase) 
Therefore, when a read is performed in a stressed state, the read is eventually stored in the buffer. 
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Table 14: Verification concern condition table for Requirement HRVM2 

Mvc 

HVRM2 Devastating (0.2) Worrisome (0.5) Unconcerned (0.9) 
I Any change to i   

N Reducing N when disconnected Increase N above L Increase N where is it not 
currently performed 

connected Inhibit connection Disconnect without altering N  

Read Inhibiting read Adding more reads without buffer 
and send accommodations  

stressed Adding or removing stress from a 
guard   

Send Inhibit send while connected, Expect 
send while disconnected  Sending null data (empty 

packets) 
 

From the expected utility function shown in Equation 1, w(r) to be the weight of the 
requirement. These weights are assigned by the developer based on the flexibility of the 
requirement to the overall function of the wearable. Lower values mean the requirement is rigid in 
its acceptance of change. Thus, the lower the value the more likely inhibiting proof reuse occurs, 
which is represented by any alteration to the verification contract, affecting the risk of the 
adaptation. For the HRVM, we assign a higher weight to requirement HRVM1. Requirement 
HRVM1, not allowing the buffer to overflow, allows for some flexibility in how all stress data is 
stored. In the case of a full buffer, overwriting old data will still allow stress data to be collected 
and stored, thus fulfilling the primary purpose of the HRVM, though it does mean that individual 
heart rate data will be lost, leading to a more rigid requirement HRVM2. The weights are listed 
below. 

 
• w(HVRM1) = 0.75 
• w(HVRM2) = 0.35 

 
The pseudocode in Figure 25 provides a description of the process flow diagramed in Figure 

27, which is translated into the VFlow used by the Colored Petri Net (CPN) algorithm and 
implemented within the simulated HRVM wearable on the testbed. We assign impact factors to 
each process in the flow, to represent the risk of a change to that process as it affects proof reuse. 
For the HRVM, we assign a value of MPL=0.5 to all processes, indicating a moderate impact for 
both requirements.  
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Figure 27: Process flow for the HRVM 

 

Because the plans are defined the same for each wearable and are statically placed in the 
planner, their impact value, (p̂), is provided based on the security and social situational awareness 
each plan provides. These weights are: 

 
• p̂(A1) = 0.55 
• p̂(A2) = 0.6 
• p̂(A3) = 0.65 
• p̂(A4) = 0.75 

 
With all these values determined, the planner is capable of calculating the expected utility of 

the adaptations. Equation 1 shows the expected utility function and Table 15 shows the results of 
calculating the expected utility of the adaptations. For the HRVM, the least risky adaptation is A1, 
sending empty data packets without allowing fostering. This status is because it changes the fewest 
VCs, only affecting the send by sending empty packets in both requirements HRVM1 and 
HRVM2. Adaptation A3, send empty packets with fostering, is not chosen because, when fostered, 
the send must be prohibited. This status is because connecting to another device while fostering 
requires the HRVM to not send data even though it is connected, resulting in a devastating value 
for MVC.  

 
    𝑬𝑬[𝑼𝑼(𝒂𝒂)] = ∑ �𝒘𝒘(𝒓𝒓) ∏ 𝑷𝑷(𝑺𝑺(𝒕𝒕) = 𝟏𝟏)𝒕𝒕∈𝑻𝑻(𝒓𝒓,𝒂𝒂) �𝒓𝒓∈𝑹𝑹                                       (1) 

Equation 1: Equation used to determine the expected utility of the adaptation 
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Table 15: Calculation results for HRVM 

 
 
An example of the VFlow as represented by the CPN, which runs directly on the HRVM, can 

be seen in Figure 28. Note that the CPN is the same for each of the 4 adaptations. The pink tokens 
contain information about the VCs and VConds, the blue tokens contain information about the 
adaptation examination through the VFlow, and the red tokens are the alert values used by the 
planner to determine the expected utility of the adaptation. 

 

 
Figure 28: The Colored Petri Net for the HRVM running on the wearable 

  

a r Mvc Mpl p ̂ P(S(t)=1) w(r) w(r) * P(S(t=1)) E[U(a)]
R1 0.9 0.5 0.55 0.2475 0.75 0.185625
R2 0.9 0.5 0.55 0.2475 0.35 0.086625
R1 0.5 0.5 0.6 0.15 0.75 0.1125
R2 0.5 0.5 0.6 0.15 0.35 0.0525
R1 0.9 0.5 0.65 0.2925 0.75 0.219375
R2 0.2 0.5 0.65 0.065 0.35 0.02275
R1 0.5 0.5 0.75 0.1875 0.75 0.140625
R2 0.2 0.5 0.75 0.075 0.35 0.02625

0.166875

A1 0.27225

A2 0.165

A3 0.242125

A4



Approved for Public Release; Distribution Unlimited. 
56 

 
 
 

3.2.5.2.2 Hearables 

To formally define the hearables, we created pseudocode describing the general operation of 
the wearable (Figure 29). From this pseudocode, we extract critical functional requirements of the 
wearable.  

 
Hear1. Music may be streamed from any connection 
Hear2. The buffer may only be sent on an authorized connection 
Hear3. Accelerometer data is always collected and temporarily stored 

 
To show these requirements are never violated, we formally prove them using the pseudocode. 

Figure 30 shows the proof outline. 
 

 
Figure 29: Pseudocode for the hearable 

 

i  0 
N  length(buffer) 
buffer_change  false 
while (true) 
do 
    i++                                                                                   
    accelerometer_info  read(port1) 
    buffer[i]  accelerometer_info 
    if (any_connection)                                                          
        then 
        playMusic(read(port2)) 
    else 
        if (auth_connection and i > 0 and buffer_change)      
        then 
            send(buffer[1..i]) 
            i  0 
            buffer_change  true 
        else 
            if ( i  == N and buffer_change)                                
                then 
                i  0 
                buffer_change  true 
            else 
                buffer_change  false 
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Figure 30: Proof outline of hearable requirements 

From the proofs, we extract VCs and craft VConds as shown in Table 16-Table 18 for each 
requirement. For requirement Hear1, the verification concerns are any_connection (used to 
determine if there is a connection of any type), playMusic (used to play music to the wearer), and 
read (used to read the music from the base station or the accelerometer data). Requirement Hear2’s 
VCs are i (representing the place in the buffer which data is read into), send (the function to send 
accelerometer data to the base station), read (used to read music from the base station or the 
accelerometer data), and auth_connection (used to determine if the connection is an authorized 
connection). For requirement Hear3, the VCs are i, buffer_change (used to recognize that the 
buffer has been changed in some way), send, and read.  

 
Table 16: Verification concern condition table for hearables requirement Hear1 

Mvc 

Hear1 Devastating (0.2) Worrisome (0.5) Unconcerned (0.9) 

Any_connection  Set to 0 when connected Set to 1 when not 
connected 

playMusic Inhibiting playMusic   

Read Inhibiting read Read blocks due to no incoming 
data  

Proof Sketch for Hear1 
S1: not affected (Read) 
S2: Music is read and played if there is any connection (Play) 
S3 & S4 not affected (Adjust) 
Therefore, when there is a connection, music is played 
 
Proof Sketch for Hear 2 
S1: accelerometer is read and added to the buffer 
S2: not affected 
S3: Buffer is sent, up to i, only when connected to an authorized connection 
S4: If no connection and buffer is full, overwrite the buffer 
Therefore, the buffer is only sent when connected to an authorized connection 
 
Proof Sketch for Hear 3 
S1: accelerometer data is read and input into the buffer 
S2: not affected 
S3: Buffer is sent to base station, i is set to 0 to reset the buffer, and buffer_change is set 

to true 
S4: Buffer is full and cannot be sent, i is set to 0 to reset the buffer, and buffer_change is 

set to true 
Therefore, accelerometer data will always be collected and stored 
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Table 17: Verification concern condition table for hearables requirement Hear2 

Mvc 

Hear2 Devastating (0.2) Worrisome (0.5) Unconcerned (0.9) 
i i > N i not reset when needed i=0 

Send Inhibit send while connected to 
authorized device Expect send while disconnected Send null data 

Read Inhibit read   

Auth_connection Set to 1 when not connected to 
authorized device 

Set to 0 when connected to 
authorized device 

Set to 0 when not 
connected to authorized 

device 
 

Table 18: Verification concern condition table for hearables requirement Hear3 

Mvc 
Hear3 Devastating (0.2) Worrisome (0.5) Unconcerned (0.9) 

i i>N i not reset when needed i=0 

Buffer_change Set to false when change has been 
made Set to true when no change made  

Send Inhibit send while connected to 
authorized device Expect send while disconnected Send null data 

Read Inhibit read   
 
For w(r), we assign a lower weight (more rigidity) to requirement Hear1, since playing music 

is the primary purpose of the hearables. Requirement Hear3 has more flexibility for change but is 
more rigid than requirement Hear2 as accelerometer data always being collected is important for 
hands-free control of the hearables and the music playing features. It is not a problem if the buffer 
is not sent on an authorized connection, as overflowing the buffer does not cause a problem for the 
hearables. The weights are listed below. 

 
• w(Hear1) = 0.35 
• w(Hear2) = 0.75 
• w(Hear3) = 0.5 

 
For the hearables, the process flow is very similar to the HRVM flow shown in Figure 27. 

However, there is the addition of a ‘Play’ process after the ‘Adjust’ process to account for the need 
to play music. We assign a value of MPL=0.5 for ‘Initialize’ and ‘Adjust’, indicating a moderate 
impact for the requirements, and a value of MPL=0.3 for ‘Play,’ indicating a major restriction on 
changes to that process.  

We use the same values for p̂ as in the HRVM for the static adaptations. These retained values 
force the wearable to use its verification awareness directly on determining the least risky plan, 
illustrating the differences that verification awareness makes. Table 19 shows the results of 
calculating the expected utility of the adaptations. For the hearables, the least risky adaptation is 
A4, disconnecting and fostering. This status is because, for the sending empty packets adaptations, 
remaining connected requires the inhibiting of the read for Hear2 and Hear3, as any connection 
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with the hearables base station will result in the reading of music data from the base station to be 
inhibited to maintain the empty packet solution.  

 
Table 19: Calculation results for the hearables 

 
 
 

3.2.5.2.3 Insulin Pump 

To formally define the insulin pump wearable, we created pseudocode describing the general 
operation of the wearable (Figure 31). From this pseudocode, we extract critical functional 
requirements of the wearable.  

 
IP1. The buffer may never be full when blood sugar level is high 
IP2. The insulin pump only connects to authorized base stations 
IP3. Insulin is administered when blood sugar levels are too high 

 
To show these requirements are never violated, we formally prove them using the pseudocode. 

Figure 32 shows the proof outline. 

a r Mvc Mpl p ̂ P(S(t)=1) w(r) w(r) * P(S(t=1)) E[U(a)]
R1 0.5 0.5 0.55 0.1375 0.35 0.048125
R2 0.2 0.5 0.55 0.055 0.75 0.04125
R3 0.2 0.5 0.55 0.055 0.5 0.0275
R1 1 0.5 0.6 0.3 0.35 0.105
R2 0.9 0.5 0.6 0.27 0.75 0.2025
R3 0.9 0.5 0.6 0.27 0.5 0.135
R1 0.5 0.5 0.65 0.1625 0.35 0.056875
R2 0.2 0.5 0.65 0.065 0.75 0.04875
R3 0.2 0.5 0.65 0.065 0.5 0.0325
R1 0.9 0.5 0.75 0.3375 0.35 0.118125
R2 0.9 0.5 0.75 0.3375 0.75 0.253125
R3 0.9 0.5 0.75 0.3375 0.5 0.16875

A4 0.54

A1 0.116875

A2 0.4425

A3 0.138125
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Figure 31: Pseudocode for the insulin pump 

 

i  0 
N  length(buffer) 
L  N 
D  max_blood_sugar_allowed 
while (true) 
do 
    i++ 
    blood_sugar_info  read(port1)                                    
    administer_insulin  read(port2) 
    buffer[i]  computeBloodSugar(blood_sugar_info) 
    if ( connected and auth_connection and i < N )            
        then 
            send(buffer[1..i]) 
            i  0 
            N  L 
    else 
        if ( i == N and bloodSugarLevel(buffer) ≤ D)              
            then 
                i  0 
                N  L 
        else 
            if ( i == N)                                                              
                then 
                    N  increase(N) 
    if ( bloodSugarLevel(buffer) ≥ D or administer_insulin )     
        then 
            administerInsulin() 
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Figure 32: Proof outline of the insulin pump requirements 

From these proofs, we extract the VCs and craft the VConds associated with each requirement 
and shown in Table 20-Table 22. For requirement IP1, the VCs are i (representing the place in the 
buffer which data is read into), N (the size of the buffer), connected (representing if the insulin 
pump is connected to a base station), and send (the function to send information to the base station). 
Requirement IP2’s verification concerns are auth_connection (used to determine if a connection 
is an authorized connection) and connected. For requirement IP3, the verification concerns are 
read (used to read both the current blood sugar levels and data streamed from the base station), 
administer_insulin (used to administer insulin directly to the wearer), bloodSugarLevel (a 
calculation which determines the blood sugar level of the wearer), and D (the maximum safe blood 
sugar level for the wearer). 

 
 
 
 
  

  

Proof sketch for IP1: 
S1: i increases only if i < N (read) 
S2: i is set to zero after send and buffer length is reset (reset) 
S3: i is set to zero and buffer length is reset (rewrite) 
S4: not connected, N is increased (increase) 
S5: no change to buffer (Administer) 
Therefore, i is always at most N  
 
Proof sketch for IP 2: 
S1: no change 
S2: send is only called if connected to an authorized device 
S3-S5: not applicable for authorized connections 
Therefore, i will only connect to authorized base stations 
 
Proof sketch for IP 3: 
S1: Reads if it needs to administer insulin from the base station 
S2-S4: no change to insulin 
S5: Insulin is administered if base station is connected the pump to administer or  

           if blood sugar level is too high 
Therefore, insulin is administered when blood sugar level is too high 



Approved for Public Release; Distribution Unlimited. 
62 

 
 
 

 
 

Table 20: Verification concern condition table for IP1 

Mvc 

IP1 Devastating (0.2) Worrisome (0.5) Unconcerned (0.9) 
i Remove i := 0, set i > N, increase i 

by more than 1 per state change, set i 
to 0 where it is not currently 

performed 

Set i < 0, decrease i by more than 
1 per state change 

 

N Reduce N, reset N to L where is it 
not currently performed 

Increase N above L Increase N where is it not 
currently performed 

connected Inhibit connection Disconnect without altering N  
send Inhibit send while connected, Expect 

send while disconnected 
 Sending null data (empty 

packets) 
 

Table 21: Verification concern condition table for IP2 

Mvc 

IP2 Devastating (0.2) Worrisome (0.5) Unconcerned (0.9) 

Connected Set to true when connected to non-
authorized device 

Set to false when connected to 
an authorized device  

Auth_connection Set to true when connected to non-
authorized device 

Set to false when connected to 
authorized device  

 

Table 22: Verification concern condition table for IP3 

Mvc 

IP3 Devastating (0.2) Worrisome (0.5) Unconcerned (0.9) 
Read Inhibit read Read null data  

Administer_insulin Set to false when instructed to 
administer 

Set to true when not told to 
administer 

Unable to set 
administer_insulin 

bloodSugarLevel Prevent processing   
D Value of D raised Value of D lowered  

 
For w(r) we assign a lower weight to requirement IP3, since administering insulin is the primary 

purpose of the insulin pump. Requirements IP1 and IP2 are given the same weights. Both the buffer 
never being full in a high blood sugar state and the sending of the buffer to only authorized devices 
are equally important for the insulin pump. The weights are listed below. 

 
• w(IP1) = 0.75 
• w(IP2) = 0.75 
• w(IP3) = 0.5 

 
The pseudocode for the insulin pump is very similar to the flow for the HRVM shown in Figure 

27. However, there is an addition of a ‘Administer’ process after the ‘Adjust’ process to account 
for the additional need to provide insulin if the wearer is in a dangerous state. We assign impact 
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factors to each process as follows: MPL=0.5 for ‘Initialize’ and ‘Adjust’, indicating a moderate 
impact for the requirements, and MPL=0.1 for ‘Administer,’ indicating a major impact for the 
requirement.  

We use the same values for p̂ as in the HRVM, as the adaptations remain static from the 
perspective of the planner.  Table 23 shows the results of calculating the expected utility of the 
adaptations. For the insulin pump, the least risky adaptation is A2, disconnecting without fostering. 
The insulin pump is capable of providing insulin in an emergency without input from its base 
station. Neither adaptation A3 nor adaptation A4 are chosen because fostering will cause 
connected to become true when connected to an unauthorized device to foster. In this case, both 
adaptation A1 and A2 are equally risky, so A2 is chosen based primarily on its higher p̂ value.  

 
Table 23: Calculation results for the insulin pump 

 

The implementation exercise reported this quarter allowed us to assess both efficacy and 
performance of the algorithm. We knew that none of the CPN tools available would provide what 
we needed because of their lack of APIs. However, we needed the algorithm to respond rapidly 
with the risk assessment results, which was achieved. The use of static plans was a first step in 
making the direct change to the code. Additional infrastructure will need to be embedded into the 
component to accommodate dynamic changes at runtime from the coding standpoint. We believe 
the algorithm for risk assessment will remain viable. 
 
 
 
  

a r Mvc Mpl p ̂ P(S(t)=1) w(r) w(r) * P(S(t=1)) E[U(a)]
R1 0.9 0.5 0.55 0.2475 0.75 0.185625
R2 1 0.5 0.55 0.275 0.75 0.20625
R3 0.5 0.5 0.55 0.1375 0.5 0.06875
R1 0.5 0.5 0.6 0.15 0.75 0.1125
R2 1 0.5 0.6 0.3 0.75 0.225
R3 0.9 0.5 0.6 0.27 0.5 0.135
R1 0.9 0.5 0.65 0.2925 0.75 0.219375
R2 0.2 0.5 0.65 0.065 0.75 0.04875
R3 0.9 0.5 0.65 0.2925 0.5 0.14625
R1 0.5 0.5 0.75 0.1875 0.75 0.140625
R2 0.2 0.5 0.75 0.075 0.75 0.05625
R3 0.9 0.5 0.75 0.3375 0.5 0.16875

0.460625A1

A2 0.4725

A3 0.414375

A4 0.365625
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3.2.6 Designing and Evolving Security Assurance Cases within the 
Framework 

 Representing Security Controls as Assurance Cases 

The NIST SP800-53(NIST, 2013) has become the de facto standard for security compliance 
best practices to protect information confidentiality, integrity, and availability. The document 
details 18 security control families that house security requirements with which companies 
working with the US government must demonstrate compliance. A self-adaptive information 
system complying with designated security controls means (1) compliance must be guaranteed at 
an expected confidence level, (2) mechanisms deployed to enable security controls should not be 
deleted as part of an adaptation, and (3) the system should have awareness of its security controls, 
mechanisms enabling their effectiveness, and dependencies between controls to reduce conflict 
and change propagation effects.   

Figure 33 shows the SC-8 Transmission Confidentiality and Integrity security control. The 
“SC” stands for the control family “System and Communications Protection”. Figure 33 includes, 
as an example, one of the four control enhancements to SC-8. In SC-8, the information system 
must have a functional mechanism to perform the selected protections (e.g. confidentiality and/or 
integrity). Omitted from Figure 33 are the supplemental guidance statements that provide an 
overview of the control and enhancement.  

Other aspects of the security control statement that are relevant for system security awareness 
are the Selection/Assignment blocks and Related controls. The appearance of 
[Selection/Assignment: …] in a control statement provides the organization with the opportunity 
to explicitly tailor the controls across the entire organization, certain segments of the organization, 
or specific information systems. Related controls list external controls with which there exists an 
interdependency, though it may depend on the instantiated values imposed by tailoring. 

The challenge to providing security awareness to a self-adaptive system is three-fold: (1) the 
security control must be expressed in a way that separates, yet captures the statement information, 
(2) how compliance is guaranteed in the system should be made explicit but at different abstraction 
levels, and (3) change must be introduced into the representation in such a way that its effect is 
understood and assessable. To address the security awareness challenge, we rely on assurance case 
concepts. Because the NIST SP800-53 controls generally follow the statement structure in Figure 
33, we define a security assurance case template, shown in Figure 34, using Goal Structuring 
Notation (GSN) that expresses the pattern of the security control while allowing for compliance 
guarantees to be represented as claim or goal arguments. A security assurance case can instantiate 
the template by providing the values of the parameters indicated by curly braces.  
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Figure 33: SC-8 Security Control Statement with Enhancement SC-8(1) 

In Figure 34, Goals are represented as rectangles. The security control is the main assurance 
case Goal, which can have 0 or more enhancements that depend on it shown by the SupportedBy 
link (filled arrow). It is dependent on 0 or more related controls. Context nodes (ovals) attached to 
goals through the InContextOf link (hollow arrow) provide environment and state information. 
The main Goal can have 0 or more tailoring Context nodes to express selection and/or assignment. 
In GSN, the argument that supports the claim extends from an assessment Strategy (parallelogram) 
that may contain subgoals on which the argument depends. These subgoals may be defined in 
lower level Modules (folder shape), such as process-specific operational goals related to an 
assessment method. For security controls, assessment methods can include examination, model 
checking, requirements verification, and testing. The assessments provide the evidence needed for 
the Solution (circle). We introduce an additional Context node as a numeric measure [0..1] of how 
flexible the satisfaction of the goal is to the full certification effort, which may be based on its 
singular importance or its interdependencies that could negatively impact certification through the 
propagation of compliance violation. A triangle associated with a GSN node means the node is 
abstract or uninstantiated. The joined triangles mean the node is both undeveloped and 
uninstantiated. The impact baseline allocation is provided. The “provides” attribute holds the 
provision set of state variables and conditions that are part of the mechanisms needed for 
compliance with the security control. This set flows through a SupportedBy link that is augmented 
with a diamond to indicate the security control source for the provision set. In Figure 34, provision 
sets flow to the main control from related controls and enhancements. The achievement weight, 
𝑎𝑎𝑤𝑤, is assigned to all goals. It holds the current value calculated at the goal for assessing the 
satisficing level of the main goal as discussed in Section 3.2.7.5.  

 

 

SC-8: TRANSMISSION CONFIDENTIALITY AND INTEGRITY 
Control: The information system protects the [Selection (one or more): confidentiality; integrity] 

of transmitted information. 
Related controls: AC-17, PE-4. 
 
Control Enhancements: 

(1) TRANSMISSION CONFIDENTIALITY AND INTEGRITY | CRYPTOGRAPHIC OR 
ALTERNATE PHYSICAL PROTECTION 

The information system implements cryptographic mechanisms to [Selection (one or more): 
prevent unauthorized disclosure of information; detect changes to information] during transmission 
unless otherwise protected by [Assignment: organization-defined alternative physical safeguards]. 
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Figure 34: GSN Template for a Security Assurance Case 

 Case Study using Smart Inventory Management System (SIMS) 

To demonstrate our security assurance case adaptation approach, we use our Smart Inventory 
Management System (SIMS) discussed in Section 3.2.2. We impose the SC-8 security control 
from Section 3.2.6.1 in which an information protection mechanism has been implemented at 
Measure and Process for secure transmission. 

Suppose that during execution, the SIMS Audit MAPE-K loop monitor detects that an incoming 
transmission channel is malfunctioning. Analysis determines a correction is needed, triggering the 
planner to generate potential adaptations, such as:  

A1: Disable confidentiality service protecting channel. There may be a conflict between 
the integrity and confidentiality protection services requiring correction. The 
organization places a higher priority on integrity.  

A2: Store data locally and transmit data in a batch when channel is restored. Shutting down 
the channel temporarily would not compromise protection.  

A3: Activate and perform transmission through another channel. Activate redundant 
channels with their own protection services according to priority use, to allow deeper 
analysis of the original channel malfunction. 

 Figure 35 instantiates the security assurance case template (Figure 34) for SC-8 given the SIMS 
behavior expectations. The enhancement SC-8(1) is a GSN Away Goal dependent on SC-8’s 
compliance guarantee. SC-8 depends on related controls AC-17 and PE-4, also notated as Away 
Goals. The Selection tailoring appears in Context nodes C1 and C2, showing that both 
confidentiality and integrity should be protected in transmission. SC-8 has a moderate flexibility 
value (0.60 in Context node C3). Since it appears in the related controls of many other controls, a 
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change could impact the overall security certification. The argument Strategy (S1) to satisfy SC-8 
relies on a module (M1) for the argumentation of the transmission process.   

 
Figure 35: Security Assurance Case for SC-8 

Figure 36 shows the expanded module M1’s contents for the transmitInformation process. The 
top-level goal of the module is that transmitInformation has a satisfactory impact on the assessment 
process, requiring guarantees with three operational goals that check the protection services 
(OpGoal G-1), check the channel used (OpGoal G-2), and ensure that the transmission is 
performed without interruption (OpGoal G-3). 



Approved for Public Release; Distribution Unlimited. 
68 

 
 
 

 
Figure 36: Expanded GSN Module for transmitInformation 

 Adapting Assurance Cases  

Given that functional adaptations can affect security control compliance, adaptations configured 
by the MAPE-K loop should be reflected in related security assurance cases so that confidence and 
risk levels of the adaptations can be assessed. We assume that the planner can represent the 
parameters of the adaptation as a set of tuples, ChangeSet, formulated around state variables 
affected by the change and understood by an Adaptation Operator Manager (AOM) within the 
planner that oversees the security assurance cases. The AOM currently considers two high-level 
types of adaptations: (1) those that make a direct change to the state variables within the code, and 
(2) those that indirectly alter behavior of the state variables by modifying the code. For type (2), it 
considers two subcategories: (i) those that introduce new functionality that may include new state 
variables in support of the system’s goals, and (ii) those that replace functionality with new 
functionality relying only on existing state variables. To accommodate the AOM, the ChangeSet 
includes state (contextual) and process changes, evidence for ensuring functional accuracy, and a 
rationale for the adaptation, as follows: 

ChangeSet =  
    {(stateVar, newState, changeCond, evidence, rationale)1,…, 
      (stateVar, newState, changeCond, evidence, rationale)N} 
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where stateVar is an existing variable to be changed to newState, changeCond constrains stateVar 
in the adapted system, evidence is the available argument support for the change, and rationale 
describes the anomaly detected.  

The planner’s expression of the internal constraints of changeCond may introduce a newly 
created state variable, newVar, that impacts the existing stateVar, or a new function, newFunc, 
that is part of the adaptation. Both newVar and newFunc can be null, but newVar cannot be 
introduced without newFunc. Using changeCond, the AOM assigns one of three operators, 
ChangeVal, Support, or Substitute. ChangeVal and Substitute both apply only to existing state 
variables. ChangeVal is directed toward a tailored state variable found in Context nodes, while 
Substitute is directed toward state variables that are not part of tailoring but are targeted by the 
new functionality designated in the ChangeSet. Support works with a new state variable that is 
part of the new functionality introduced by ChangeSet. The AOM crafts the operators to adapt 
affected security assurance cases using the following rules. 

Rule 1: 
IF   newVar = null & newFunc = null  

THEN  ChangeVal(stateVar, newState, evidence, rationale) 
 

Rule 2: 
IF   newVar ≠ null & newFunc ≠ null  

THEN  Support(stateVar, newVar, newFunc, evidence, rationale) 
Rule 3: 
IF   newVar = null & newFunc ≠ null  

THEN  Substitute(stateVar, newState, newFunc, evidence, rationale) 
 

Given Rule 1, when both newVar and newFunc are null in changeCond, it indicates a direct 
change to a state variable. Thus, the targeted stateVar will be forced to change state to newState as 
part of the adaptation, yielding  

 
ChangeVal(stateVar, newState, evidence, rationale) 

 
ChangeVal is applied to a Context node within any security assurance case that holds the 

assignment of the affected state variable. The operation does not cause a change to the structure of 
the security assurance case as it only impacts an existing context node. The Context node change 
could affect the satisfaction of the goal and any security control that depends on that goal 
satisfaction. The adaptation A1 in Section 3.2.6.2 involves disabling confidentiality protection for 
data transmission on the main channel. For A1, the planner configures ChangeSetA1 as 

 
ChangeSetA1 = {(cProtect, false, (null, null), null, “channel malfunction”)} 

 
Since newVar = null and newFunc = null within the changeCond of ChangeSetA1, the AOM 

triggers the following ChangeVal operator using Rule 1 
 

ChangeValA1(cProtect, false, null, “channel malfunction”) 
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The operation modifies the context node in the security assurance case for SC-8 (and possibly 

others), because the assurance case houses the assigned value for cProtect. The change is shown in 
C1 of Figure 37. 

 
Figure 37: Adaptation change in context node by ChangeVal Operation 

An adaptation can maintain a state variable but introduce new functionality to use it in a different 
way. This scenario is reflected within changeCond in the ChangeSet by introducing new variables 
and functions that work with an existing state variable. We restrict changeCond to have at most one 
new state variable introduced as part of the new functionality. In this adaptation scenario, the AOM 
activates the Support operator using Rule 2. 

 
Support(stateVar, newVar, newFunc, evidence, rationale) 

 

The Support operation changes the security assurance case structure by incorporating a new 
argument subtree containing a goal node that describes the new supporting functionality as 
introduced by the adaptation. The adaptation A2 in Section 3.2.6.2 introduces functionality to 
locally store and enable batch transmission of data, while maintaining the state of streamInfo to 
satisfy the OpGoal: G-3 subgoal of Module: M1 within the SC-8 security assurance case (see Figure 
38). The planner configures ChangeSetA2 to express the changes  

 
ChangeSetA2 =  

{(streamInfo, null, (localStorage, store(streamInfo, localStorage)),  
storageLog, “channel malfunction”), 

  (streamInfo, null, (batchTransmission, enable(batchTransmission)),  
checkBatchTransmission , “channel malfunction”)} 

 

Within ChangeSetA2 there are two tuples that express a change that needs state variable 
streamInfo without directly changing its state. Given the changeCond information, the AOM 
identifies the need for two Support operations that introduce two new state variables (localStorage 
and batchTransmission) and their new functions (store and enable). The operations are:  

 
SupportA2.1(streamInfo, localStorage, store(streamInfo, localStorage),  

    storageLog, “channel malfunction”) 
SupportA2.2(streamInfo, batchTransmission, enable(batchTransmission),  

    checkBatchTransmission, “channel malfunction”) 
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The change to the security assurance case for SC-8 is shown in Figure 38. OpGoal G-3 now has 
two new subtrees to form the new arguments representing the adaptive functionality. Goal G-
3(Sub1) represents the functionality for storing the data locally (SupportA2.1) and Goal G-3(Sub2) 
represents the functionality for transmitting the batch data (SupportA2.2). These two subgoals are 
supported by Solution evidence provided by the planner (storageLog and 
checkBatchTransmission). Given their satisfaction, the OpGoal G-3 is still considered to perform 
transmission without interruption. The overall security certification would be affected if the new 
subgoals caused a failure in satisfying a higher-level goal. 

Recall that a mechanism that is deployed to guarantee the effectiveness of a security control 
cannot be removed entirely without violating that guarantee. The current assumption is that the 
planner configures adaptations that retain these mechanisms. Thus, when functionality must be 
replaced, the planner can only change lower level processes to minimize security assurance case 
failure. For these cases, the AOM uses the Substitute operator as seen in Rule 3 to produce the 
following. 

Substitute(stateVar, newState, newFunc, evidence, rationale) 
 

The operation replaces the goal associated with stateVar with an alternative goal describing the 
new functionality. Adaptation A3 assumes that each channel has a priority field. It introduces the 
priorityReplace(channel, newChannel) function that embeds a priority field comparison and 
replaces the existing malfunctioning channel with another channel that is available in the system. 
The planner configures the following ChangeSetA3: 

 
ChangeSetA3 = {(channel, newChannel, (null, priorityReplace(channel, newChannel)),  

      checkChannel, “channel malfunction”)} 
 

Using ChangeSetA3 the AOM identifies the change as a Substitute operation because it does not 
introduce a new state variable but only introduces a new function to replace the current channel 
with a new channel at the correct priority level, which occurs only within a Goal node. The 
Substitute operation is configured as  

 
SubstituteA3(channel, newChannel, priorityReplace(channel, newChannel),  

       checkChannel, “channel malfunction”)  
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Figure 38: Adaptation change in transmitInformation by Support Operation 

As shown in Figure 39, the adaptation updates the OpGoal: G-2 in Module: M1 of SC-8 to reflect 
that the current channel now relies on a priority. The Solution node remains the same. 

 
Figure 39: Adaptation change in checkChannel by Substitute Operation 

 

One challenge in adapting the security assurance cases is that security controls have 
interdependencies, as shown in the presented template. Thus, we will be investigating how to create 
operators that propagate the adaptation to all dependent controls. To automate the instantiation and 
adaptation, we will examine how best to implement the security assurance cases, such as using 
XML, and implement the AOM into the MAPE-K control loop to directly adapt the assurance case 
as the code is adapted.  
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3.2.7 Evaluating Security Assurance Case Adaptations 

 Returning to Security Assurance Cases 

For the security assurance cases, we continue to use the NIST SP800-53 security controls. We 
return to the use of audit controls, AU-4, AU-5, and AU-5(1) as shown in Figure 40. A security 
control associates a title with each identifier. AU-4 refers to the 4th control within the Audit family 
of controls. The actor is either the information system or the organization. The control statement 
follows the actor designation. It may be a single statement, like AU-4, or separated into distinct 
parts, like AU-5(a) and AU-5(b). The statement can contain a mix of functional and non-functional 
requirements. Tailoring, a major part of security control certification, is performed when the 
organization instantiates what is required by the [Assignment: …] for the information system under 
consideration.   

The related controls infer a dependency relationship among the controls. For AU-5, they are 
AU-4 and SI-12. There are other controls that tag AU-5 as a related control, such as AU-4, with 
different dependencies. The relationships may be tightly coupled, where AU-5 relies on the audit 
storage capacity determined in AU-4, or loosely coupled, where AU-4 provides AU-5 with a 
parameter it obtains from its related control AU-11. These inter-dependencies can be used to assess 
the impact of a self-adaptation on not just a single security control, but on the network of security 
controls. AU-5(1) is a control enhancement, which provides additional specification decisions and 
constraints. The related controls can be inherited from the main control or the enhancement can 
have its own related controls that are not shared with the main control. Controls are assigned to a 
baseline set related to the impact on the confidentiality, integrity, or availability of the system if a 
breach occurs. For example, AU-5 appears in the baseline set for moderate impact, while AU-5(1) 
appears in the baseline set for high impact systems.  

 



Approved for Public Release; Distribution Unlimited. 
74 

 
 
 

 
Figure 40: Security Controls AU-4, AU-5, and AU-5(1) 

 
The NIST SP800-53A (NIST, 2014) companion to the 800-53 (NIST, 2013), provides 

assessment guidelines for each security control. Figure 41 shows the guidelines for AU-5(1). 
Notice that it dissects the security control statement into evaluative portions, providing distinct 
labels for each portion. We use both the security control and its guidelines to create and instantiate 
a security assurance case for a specific information system using GSN.  
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Figure 41: AU-5(1) Assessment Guidelines 

 Reusing the Smart Inventory Management System (SIMS) Case Study 

We demonstrate security assurance case expression, evolution, and satisficing evaluation on a 
sample Smart Inventory Management System (SIMS) mentioned in Section 3.2.2. The process 
flow for SIMS appears in Figure 42. Process flow understanding is needed because it is possible 
to formally express the low-level functionality that is part of a security control and directly prove 
the implementation complies with it as we have shown in a prior report. A formal proof can be 
part of the argument needed within a security assurance case as described in the next section.  

 
Figure 42: SIMS Audit Component Processes 
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The MAPE-K loop in each SIMS’s component monitors for anomalies in the system and 
activates the planner to generate an adaptation. The checkCongestion process in Figure 42 provides 
the monitor with information about the input queue. Imagine that the monitor has received a certain 
pattern of information from checkCongestion that causes it to invoke the analyze phase. Here it is 
determined that the input queue is filling too rapidly for Audit, but that Measure and Process are 
not the problems. The planner configures three potential adaptations.  

A1: Increase the capacity ratio limit, delaying the generation of an audit trail capacity alert. 
A2: Introduce a new storage buffer and alter Audit to offload older records in its audit trail to 

the new buffer.  
A3: Change Audit to overwrite old records and disable capacity alert within the same audit trail.  

We return to these adaptations after introducing the assurance cases for the security controls. 

 Creating Security Assurance Case for AU-5(1) in the New Template 

Given that 800-53 security controls have a similar structure as in Figure 40, we extend a GSN 
template for security assurance cases to allow for dependency and achievement weight expressions 
as shown in Figure 34. The 800-53A directs the expansion of the assurance case into subgoals, 
context elements, and strategies for each control. Evidence can be formulated by multiple means, 
such as testing, model checking, and proof. We express the template in XML, based on CertWare 
(CertWare, 2007) but without the use of its display facilities to allow for more coding flexibility.  

Figure 43 instantiates the security assurance case template for AU-5(1) using 800-53A labels. 
The subgoal Req1 is a functional requirement represented by an invariant expressed in Linear 
Temporal Logic, as “it is always the case that the audit trail size is less than the capacity ratio limit 
associated with the record storage capacity or an alert occurs.” The context nodes in the 
instantiation have the tailoring for capRatioLimit and the various alert parameters segregated in 
Figure 41. AU-5 holds the capacity value in its provision set for AU-5(1) that it acquires from its 
dependency on AU-4. AU-5(1) assigns the value of capAlert which it provides to AU-5. The 
modules M1-M6 are the operational goals related to the process flow for SIMS in Figure 42. 

 

 Adapting Assurance Cases  

To illustrate performing and evaluating an adaptation on a security assurance case, we expand 
Module M5 in Figure 43 to show the argument of maintaining a satisfactory impact on the 
checkCapacity process. Figure 44 shows the expanded module for M5, which has the argument 
over the proof process of our system. The proof process is modeled as operational goals to maintain 
the invariant subgoal from Figure 44.  

We assume the MAPE-K loop planner can describe the needed changes to the XML that 
represents the security assurance case and construct the adapted assurance cases for A1 through 
A3 as described in Section 3.2.7.2. 
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Figure 43: Security Assurance Case for AU-5(1) 

Adaptation A1 directly affects the assurance case for AU-5(1) by changing the capRatioLimit 
tailored value in the context node Context: AU-5(1)[3] of Figure 43. Figure 45 reflects the change 
to the adapted Context: AU-5(1)[3] node, where the tailored value increases from 75% to 90%. It 
also includes the XML for that context node where the adaptation increases capRatioLimit as 
shown on line 31. The impact to the achievement weight is shown on line 34.  
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Figure 44: Expanded checkCapacity Module 

 

 

Figure 45: AU-5(1) with Adaptation A1 

Adaptation A2 introduces a new buffer into the Audit component, but AU-5(1)’s assurance case 
has no solution node to satisfy the new subgoal. Because there exist security controls that refer to 
offloading audit records to alternate storage, we assume the planner can reuse the evidence that 
such logging is sufficient to comply with operation goal G-6.  

Figure 46 reflects the adapted operational goal G-6 from Figure 44 for adaptation A2. This 
adaptation introduces a new branch for G-6 to be satisfied with an argument using an external 
buffer to store older records in the audit trail through G-6(Sub1), G-6(S1), G-6(EVD1). The XML 
produced by the planner reflects the argument additions. Line 31 shows a reduced achievement 
weight to 0.5, reflecting the potential for a negative impact on the goal. The goal for the new 
supporting argument is added at line 34. 
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Figure 46: AU-5(1) with Adaptation A2 

Figure 47 shows the affected operational goals G-4 and G-6 from Figure 44 due to adaptation 
A3. The adaptation affects G-6 and G-4 by substituting their functions with overwriting older 
records and disabling the capacity alert, respectively, to satisfy module M5’s goal. The XML lines 
31and 35 indicate the reduced achievement weights to 0.2 that impact the goal specified in line 12. 
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 Goal Satisficing Level Determination using Achievement Weights  

Maintaining the security control in the self-adaptive system is a non-functional requirement. 
We represent each main security control as a softgoal and use the subgoals and operational goals 
from its security assurance case to create direct edges that form a Softgoal Interdependency Graph 
(SIG) (Mylopoulos, 1992). The SIG results in a tree with only AND relationships. We adapt the 
Soft Goal using Weight (SGW) approach (Kobayashi, 2016), to determine the satisficing level of 
the assurance case. A modified vulnerability metric calculation (Wei, 2018) provides the 
achievement weight of each softgoal. Satisficing calculations can indicate the impact of an 
adaptation on the security assurance case, including propagation of required state values from other 
security controls. The remainder of the section defines the formulas used and their adaptations. 
We show how the achievement weights and satisficing levels are calculated for adaptations A1-
A3 and the level of satisficing that results from each.  

 

 
Figure 47: AU-5(1) with Adaptation A3 

Using the SGW approach, we define a softgoal interdependency graph, SIGA, for the security 
assurance case, A, as a tree of goals with the main security goal, 𝑚𝑚𝐴𝐴, as the root. SIGA = (GA, 
DA) where 
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• GA = {𝑚𝑚𝐴𝐴} ∪ OA 
• OA = set of subgoals and operational goals for A that support the main security control, 𝑚𝑚𝐴𝐴 

(root) 
• For all goals 𝑔𝑔 ∈ GA, 𝑎𝑎𝑤𝑤(𝑔𝑔) is the achievement weight calculated for that goal. 
• DA = the set of edges (p, c), representing dependencies among the parent (p) and child (c) 

goals in SIGA.  
 

 
Figure 48: Sample Security Control Network   

The related security controls introduce inter-dependencies that form a network of security 
controls. As assurance cases, they only have knowledge of the controls on which they depend. 
However, from the MAPE-K loop perspective, the inter-dependencies can be traversed as an 
adaptation is evaluated. A partial dependency graph appears in Figure 48. The links specify the 
provision sets passed from source (diamond) to target control. This expression facilitates the 
propagation impact evaluation of an adaptation. 
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The security control network (SCN) = (M, DM), where 
 
• M = {⋃ 𝑚𝑚SIG }, the set of all SIG root goals 
• DM = set of weighted, directed edges with provision sets representing dependencies among 

security controls (Figure 48). 
 

The community structure advocated by vulnerability metric calculation provides for a higher 
degree of influence across the edges. In our representation, a security control and its enhancements 
form a natural community, as represented by the green box surrounding AU-5 and AU-5(1) in 
Figure 48. To calculate 𝑎𝑎𝑤𝑤(𝑔𝑔) for 𝑔𝑔 ∈ GA, we measure the vulnerabilities of the community 
structure in the SCN. The achievement weight is inversely related to a community’s vulnerability. 

Achievement weight is then defined for a SIGA as   
 

   𝑎𝑎𝑤𝑤(𝑔𝑔) = 𝐼𝐼(𝑔𝑔), for leaf nodes, 𝑔𝑔 ∈ OA 
       = 𝑎𝑎𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣�𝑎𝑎𝑤𝑤(𝑐𝑐)�, for all 𝑐𝑐 ∈ 𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑔𝑔) for non-leaf nodes, 𝑔𝑔 ∈ GA 

 

where 𝐼𝐼(𝑔𝑔) is the impact factor defined on the state variables supporting the operational goals at 
the SIG leaves. Currently, 𝐼𝐼(𝑔𝑔) must be determined by the certifiers prior to deployment given 
potential changes to state variables and the organization’s risk policy.  

Table 24 provides sample values for 𝐼𝐼(𝑔𝑔) related to the state variables affects by adaptations 
A1-A3. A lower value has more negative impact on achievement weights. In a community, the 
control enhancements (e.g. AU-5(1)) propagate their achievement weights to their community 
parent (e.g. AU-5) as one of its edges.  

 
Table 24: Sample Impact Table 

𝐼𝐼(𝑔𝑔) capRatioLimit capacity auditTrail insertionPoint 
1 = 75 % = 100 Store record ≤ #records 
0.9  > 100  

 

0.5 < 75% < 100 Offload older 
record  

> #records 

0.2 > 75%  Overwrite 
older record 

 

0 ≤ 0% or  
≥ 100% 

≤ 0 Drop record < 0 

 
Determining the satisficing level of a main control softgoal, such as AU-5, relies on the SCN. 

A partial SCN is shown in Figure 48. The satisficing level, 𝑆𝑆𝑆𝑆(𝑚𝑚), of main goal 𝑚𝑚 is the average 
of achievement weights that include 𝑎𝑎𝑤𝑤(𝑚𝑚) and the 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑚𝑚) as defined by the direction 
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that the provision sets are passed. For example, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(AU-4) = {AU-2, AU-5, AU-6, AU-7, 
AU-11, SI-4} from Figure 40, with a subset shown in Figure 48.  Thus, 

         𝑆𝑆𝑆𝑆(𝑚𝑚) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑤𝑤(𝑚𝑚) +  ∑ 𝑎𝑎𝑤𝑤(𝑔𝑔)𝑔𝑔 ∈ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑚𝑚) )  

A control enhancement, 𝑒𝑒, that has a neighbor outside of its community can potentially have 
𝑆𝑆𝐿𝐿(𝑒𝑒)  ≠ 𝑎𝑎𝑤𝑤(𝑒𝑒). In this case, 𝑆𝑆𝐿𝐿(𝑒𝑒) has priority. When security controls are mutually related with 
the same provision, the algorithm cannot double count the impact. To resolve this issue, our 
satisficing algorithm preserves the last calculated achievement weight, 𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑔𝑔), and uses that 
achievement weight as the neighbor’s achievement weight to stabilize the network-based 
calculation. We assume that when deployed, the SIMS security controls have an achievement 
weight of 1. We show how adaptations A1-A3 directly lower certain achievement weights and 
propagate the impact through the SCN. 

 Adaptation Results 

Table 25 shows the achievement weight changes for AU-5’s partial community after applying 
adaptations A1-A3 to the security assurance case for AU-5(1). Though we focused on Module M5, 
other modules are also affected by the adaptations and are reflected in Table 25. 
 

Table 25: 𝒂𝒂𝒘𝒘(𝒈𝒈) in AU-5 Community 

Goal Base A1 A2 A3 
Opp-G1 1 0.2 1 1 
Opp-G2 1 1 1 1 
Opp-G3 1 1 1 1 
Opp-G4 1 1 1 0.2 
Opp-G5 1 1 0.5 1 
Opp-G6 1 1 0.5 0.2 
M1 1 1 1 1 
M2 1 1 0.5 0.2 
M3 1 1 0.5 0.6 
M4 1 1 1 1 
M5 1 0.867 0.833 0.733 
M6 1 0.867 0.833 0.733 
G1 1 0.956 0.778 0.711 
AU-5(1) 1 0.956 0.778 0.711 
AU-5 1 0.956 0.778 0.711 

Table 26 shows the satisficing level computed for each main security control at the base 
(deployed) level and after applying adaptations A1-A3. Note that 𝑆𝑆𝐿𝐿(AU-5(1)) = 𝑎𝑎𝑤𝑤(AU-5(1)) 
because the A1-A3 are internal to that security control. AU-5 is affected by A1-A3 because of its 
relationship with AU-5(1). The effects of A1 and A2 only propagate to AU-5 since the adapted 
provisions remain in the community. Adaptation A3 impacts AU-5 and AU-4 because capAlert is 
in the propagated provision set (Figure 48).  
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Table 26: Satisficing Levels 

 Base A1 A2 A3 
AU-2 1 1 1 1 
AU-4 1 1 1 0.928 
AU-5 1 0.985 0.926 0.903 

AU-5(1) 1 0.956 0.778 0.711 
AU-11 1 1 1 1 
SI-12 1 1 1 1 

 Adaptation Evaluation 

To evaluate the alignment of the adaptive system behavior with the satisficing level 
determination in Section 3.2.7.6, we deploy A1-A3 in the SIMS application. We embed 
checkpoints as probes in the checkCapacity module (M5 in Figure 43 and Figure 44) and log the 
effects on the audit trail. Figure 49 shows how the checkpoints are placed to determine if (i) a 
record is generated (CK1), (ii) the capRatioLimit is maintained (CK2), (iii) the audit trail capacity 
is maintained with capability to store a record within the auditTrail (CK3), (iv) the alert is properly 
performed by capAlert (CK4), (v) the proper insertionPoint can be found to store the next record 
while maintaining the existing auditTrail contents (CK5), and (vi) the record is stored in auditTrail 
(CK6).  

We ran tests with sufficient audit trail capacity and insufficient audit trail capacity. With 
sufficient capacity, adaptation A1 performs better than A2 and A3. Allowing more records to flow 
into the audit trail is a local change that impacts only a single state variable and does not propagate 
outside the community. Thus, A1 is not heavily relied on by the assurance case argument or proof 
for all audit functionality. A2 and A3 impact several operational goals that are needed for the 
overall argument or proof. Table 27 shows the results with insufficient capacity in which the audit 
trail can hold only 50 records. Column 1 represents the base deployment (B), followed by the 
adaptations when the number of records needed is 75 and 100. A1 does poorly with insufficient 
records. A2 performs the best but requires addition buffer storage. A3 performs worse than A1 
overall. A3 fails at CK4 by disabling capAlert and fails at CK5 when overwrite functionality 
violates the requirement that the insertion point maintains the records in the audit trail.  

 

 
Figure 49: checkCapacity Checkpoints 
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Table 27: Performance Evaluation Results 

 #Rec CK1 CK2 CK3 CK4 CK5 CK6 
B  75 75 37 50 75 50 50 
B  100 100 37 50 100 50 50 
A1  75 75 43 50 75 50 50 
A1 100 100 43 50 100 50 50 
A2 75 75 74 50 75 75 75 
A2 100 100 99 50 100 100 100 
A3 75 75 74 50 37 37 75 
A3  100 100 99 50 37 37 100 

 Discussion 

We focused on the AU-5 control, which is the same control that we formally specified and 
proved correct using the KIV theorem prover in Section 3.2.4. We also represented this control 
within our verification process model and provided a risk assessment calculation for comparative 
adaptive plans. The use of security assurance cases for the same control provides a complementary 
specification that introduces the calculation of a satisficing level of a security control for a potential 
self-adaptation based on its internal changes and from propagated satisficing levels in the network. 
In addition, we implement the security assurance cases using XML to perform the adaptations and 
measurements at runtime, as demonstrated using a sample application with three adaptations and 
embedded checkpoints. We show the alignment of the adaptation failure rates with the calculated 
satisficing levels. Using system domain knowledge, experts can introduce satisficing level 
thresholds to identify acceptable adaptations.  

Scalability is a potential limitation of both the formal and the assurance case approaches given 
the size of the security control network of related controls for a large-scale system. The embedded 
verification process model along with the XML representation can streamline the automated 
assessment process when an adaptation is considered. Though codifying the security assurance 
cases in XML is potentially burdensome during design, once codified, achievement weight and 
satisficing level determination could be optimized. Formal verification offline and during design 
time can provide the evidence needed for the adaptive security assurance case.  

 

3.2.8 Examining the Framework in an Alternate Testbed with Different 
Formalisms 

 Adaptive Coordination to Complete Mission Goals 

Coordinating distributed systems, such as autonomous systems, is a complex problem in which 
each system develops an individual, local plan that is refined while synchronizing with other 
systems to make use cooperative opportunities for improved completion of mission objectives and 
avoid potential conflicts.  The coordination objective is to achieve the global mission goal while 
using resources effectively even as the environment changes. To model the specifications of the 
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local and global missions, we use the Partial-Order, Causal-Link (POCL) plans for multi-agent 
systems (Cox, 2005). POCL plans describe each individual agent’s plan to reach its local goal. 
Moreover, the union of local POCL plans represents the overall multi-agent system, or unit, plan. 
Any detected violations of the multi-agent POCL plan would be used as adaptation triggers such 
that agents can self-integrate into each other’s local goals to accomplish a global mission. 

In order to ensure adaptations to the local goal do not conflict with the global goal, there needs 
to be a method in place to both detect when a change is required and validate that mission 
constraints can be maintained by any potential changes. One way to do this is with assurance cases 
(Rushby, 2015). Assurance cases organize the necessary evidence and arguments to show that a 
system complies with a critical requirement. Assurance cases provide the descriptive medium that 
can regulate adaptive changes to requirements for an agent to maintain resilience in achieving its 
goals (Jahan, 2018) will discuss in Section 3.2.8.3.  

 Case Study using Cozmo testbed  

To examine self-adaptation for local integration that ensures global goal completion, we create 
a platform for multiple physical agents to coordinate to complete a global mission with minimal 
intercommunication. Our platform uses the Anki Cozmo robot as an agent (Cozmo, 2018). Access 
to Cozmo’s SDK allows for custom programs to be created. The architecture of our testbed is 
depicted in Figure 50. We use Raspberry Pis as base stations running our code, using Bluetooth to 
communicate with each other. Bluetooth has good throughput to communicate current mission 
goals, such as which cubes have been collected, consistently transmits messages for devices that 
are near each other, and does not require internet connectivity for testing. Each Raspberry Pi is 
tethered to an Android device running the Cozmo app. This tethering is the only way to access the 
Cozmo SDK. The Android device connects to Cozmo through wi-fi and performs the required 
image processing for Cozmo to recognize objects and to know its world location. Each Cozmo 
hosts its own wi-fi server, allowing only a single connection from a device running the Cozmo 
app. Each Raspberry Pi contains the mission for its connected Cozmo to complete. For our case 
study, we use the existing Cozmo cubes as objects to collect as the unit’s mission to complete. 

Each Cozmo contains a camera, IR sensor, and knowledge of its location and distances to objects 
it can recognize. It can recognize faces, its charging station, and the cubes that come with the 
Cozmo. We can create simple local tasks for it to complete, including specifying the distinct cubes 
it is assigned to collect. Cozmo first searches for its assigned cubes to collect. After finding an 
assigned cube, it will attempt to collect it, followed by all the cubes it can as part of the unit’s 
global goals. 
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Figure 50: Cozmo testbed architecture 

For the case study, we have two Cozmos assigned to collect all cubes as quickly as possible. 
The cube assignment could be segregated across the two Cozmos or overlap. Each Cozmo is told 
to complete the task independently in as little time as possible. They are in contact with each other 
Cozmo to ensure all cubes are collected. In the naive approach, each Cozmo will search for and 
collect the cubes they are assigned. However, to improve this method, each Cozmo will be capable 
of adapting, through their connected Raspberry Pis, their own cube-collection order and the cubes 
they collect based on their position. Each Cozmo first examines its surroundings to detect cubes 
in its vicinity and reports to the other Cozmo the cubes it can see. If it is able to see the cubes it is 
assigned to collect, and these cubes are close to it, it will adjust the order of cubes it can collect by 
collecting the closest cube, returning it to its “home base,” and then collecting the next cube in the 
order. Cozmo can reorder its collection method based on distance.  

However, if Cozmo can only see cubes it is not assigned to collect, it can use the knowledge it 
obtained and stored through communicating with the other Cozmo to update its list of cubes to 
including newly assigned ones. Thus, a Cozmo can self-integrate into the second Cozmo’s mission 
to ensure a rapid completion with minimal resources. For our case study, we will embed the code 
for each Cozmo to examine, assess, and perform one of two adaptations to its policy: 

A1. Broadcast current task allocation to other Cozmos before deciding to pick up cubes  
A2. Broadcast information about completed and current goals after detecting or picking up a 

cube 
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 Multi-agent Coordination using Self-Integration 

The multi-agent system we target enables multiple agents to work together to achieve a global 
mission goal by accomplishing their individual goals independently. However, these agents must 
coordinate their local goals to avoid potential conflicts with another agent’s local goals and take 
advantage of cooperative opportunities to complete the global goal. Each agent has its own plan 
to accomplish its local goal and the union of agents’ plans represents the multi-agent (global) plan. 
By combining agents’ plans in one global plan, the agents can detect any conflict between their 
plans and coordinate to avoid such conflicts. Conflicts may include redundant goals or missing 
requirements for specific goals. In order to detect any violation or flaw of the plan specifications, 
agents are supposed to exchange the important information about their current and intended goals. 
By detecting flaws, they can locally decide to adapt by self-integrating into each other’s local plan 
(i.e. assign themselves to another agent’s local goal or to a step of its plan) to achieve the overall 
mission goal. They must still satisfy their local goal, but it may be altered to allow for resiliency.  

We model each agent’s plan to accomplish its goal using POCL. As stated in (Cox, 2005), a 
multi-agent POCL plan is a tuple 𝑃𝑃 = (𝐴𝐴, 𝑂𝑂, 𝑆𝑆, ≺𝑇𝑇 , ≺𝐶𝐶 , #, =, 𝑋𝑋) where: 

 
• A is the set of agents 
• O is a set of plan operators (such as explore, detect, pick-up etc.) 
• S is a set of plan steps (instantiated operator enhanced with temporal and spatial details). 
• ≺𝑇𝑇 is the temporal partial order on S, where e ∈≺𝑇𝑇 is a tuple 〈𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗  〉 with 𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗 ∈  S  (ordering 

constraints). 
• ≺𝐶𝐶  is the causal partial order where e ∈≺𝐶𝐶 is a tuple 〈𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗  ,c〉 with 𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗  ∈  S and𝑐𝑐 ∈ ∑ 

where ∑is a predefined set of temporal and spatial conditions. 
• (O,S,≺𝑇𝑇,≺𝐶𝐶) represents a POCL plan for an individual agent. 
• X is a set of tuples of form 〈𝑠𝑠, 𝑎𝑎〉, representing that the agent a∈A is assigned to executing 

step s. 
• = is the symmetric concurrency relation over the steps in S. 
• # is a symmetric non-concurrency relation (ordering) over the steps in S. 

 
The relation 〈𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗  〉 ∈ # can be defined using the ordering constraints: 〈𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗  〉 ∈≺T or 

〈𝑠𝑠𝑗𝑗 , 𝑠𝑠𝑖𝑖 〉 ∈≺T that indicates that 𝑠𝑠𝑖𝑖 and 𝑠𝑠𝑗𝑗  should be done in a specific temporal order. The relation 
〈𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗  〉 ∈ = means that 𝑠𝑠𝑖𝑖 and 𝑠𝑠𝑗𝑗 are required to be executed at the same time. For example, if two 
Cozmos are required to carry the same cube together then they both need to be timely synchronized 
in their cube picking steps.  

Given the POCL definition of a multi-agent plan, we specify the temporal and causal partial 
order flaws of the agent plan and use them as adaptation triggers. For the agent’s local plan, a plan 
flaw is either a causal link threat flaw or an open condition flaw as defined in (Cox, 2005).  

A causal-link threat flaw in a single agent POCL plan exists when there is some step 𝑠𝑠𝑘𝑘  and 
some causal link e ∈≺C of the form 

 
〈𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗 , 𝑐𝑐〉, 𝑠𝑠. 𝑡𝑡. 𝑛𝑛𝑛𝑛𝑛𝑛(𝑐𝑐) ∈ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑠𝑠𝑘𝑘), 〈𝑠𝑠𝑘𝑘, 𝑠𝑠𝑖𝑖〉 ∉ ≺𝑇𝑇  𝑎𝑎𝑎𝑎𝑎𝑎 〈𝑠𝑠𝑗𝑗 , 𝑠𝑠𝑘𝑘〉 ∉ ≺𝑇𝑇. 
 
Example 1: Using the Cozmo Testbed Architecture, assume Cozmo A is the agent that has the 

following causal link in its plan: 
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〈𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗 , 𝑐𝑐〉 = 〈findCube(type1), pickup(type1), cube1_at_p〉 
 
However, Cozmo A needs to announce to all other Cozmos that it has detected the cube before 

deciding to pick it up. This requirement would be specified as follows: 
 
〈𝑠𝑠𝑖𝑖, 𝑠𝑠𝑘𝑘, 𝑐𝑐〉 = 〈findCube(type1), communicate(Cozmo), cube1_at_p〉 
 
〈𝑠𝑠𝑘𝑘, 𝑠𝑠𝑗𝑗 , 𝑐𝑐〉 = 〈communicate(Cozmo), accomplishTask(type1),  

                       sufficient_knowledge〉  
 
Here, Cozmo A has to communicate with other Cozmos to accumulate sufficient knowledge 

before making the decision either to pick the cube or ignore it (represented by accomplishTask). 
Assume another agent Cozmo B (hereafter we use Cozmo instead of agent) announced that it is 
closer to position p than Cozmo A and it is going to pick up cube 1. The current local goal for 
Cozmo A conflicts with Cozmo B. This conflict would trigger adaptation opportunity for Cozmo 
A to reassign itself to another goal by finding another cube.  

 
An open precondition flaw exists when there is some step 𝑠𝑠𝑗𝑗 with precondition c but there is 

no causal link 〈𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑗𝑗 , 𝑐𝑐〉  ∈≺C. 
Example 2: Building on the previous example, assume Cozmo A receives a message from 

Cozmo B with the location of cube 2 in position q. It then reassigns itself to pick up this cube via 
step 𝑠𝑠𝑗𝑗 which represents “pick up cube from position q”. However, the causal link constraint for 
picking up the cube is (moveTocube, pickup, distance < collecting_range). To achieve the goal of 
picking up cube2, according to the given specification, Cozmo A needs to introduce a new step 𝑠𝑠𝑖𝑖 
to move itself close enough to the cube to grab it. This process is a self-integration of Cozmo A to 
accomplish the global goal of collecting as many cubes as possible by assigning itself to a new 
local goal.  

 
〈𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗 , 𝑐𝑐〉 = 〈moveTocube (type2), pickup(type2), distance (A,q) < collecting_range 〉 
 
A parallel step threat flaw exists in a multi-agent plan when there are steps belonging to 

different agents 𝑠𝑠𝑗𝑗 and 𝑠𝑠𝑖𝑖 where post(𝑠𝑠𝑖𝑖) is inconsistent with post(𝑠𝑠𝑗𝑗), 〈𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗〉  ∉≺T, 〈𝑠𝑠𝑗𝑗 , 𝑠𝑠𝑖𝑖〉  ∉≺T, 
and 〈𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗〉  ∉ #. 

Example 3: This flaw occurs when two Cozmos see the same cube and go to pick it up. Here, 
the postcondition of both Cozmos would be “holding the cube”, which is not physically possible 
for two Cozmos to do simultaneously. The adaptation here would be to change the goal for one of 
the Cozmos according to certain rules. The rules would be used to set priorities for Cozmos, 
including distance to the cube, battery life, and the ability to pick up other types of cubes. For 
instance, one Cozmo might be only allowed to pick up one cube, the detected one, but the other 
Cozmo is more flexible and can collect all cubes.  
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3.2.9 Assurance Case for Control System 

The multi-agent plan coordination problem can benefit from self-integration that coordinates the 
goals of the local control system with those of the global control system increasing the confidence 
level of mission success. We use GSN to define assurance cases that specify a global mission goal 
for the group of agents and a local mission goal for each agent. The assurance case argument is used 
to validate the temporal and spatial constraints of the mission, which could be violated at any point 
of time due to the adaptation of the agent. We apply resilience-based operations to the assurance 
case to allow the integration of the local goals of the agents to make the global goal consistent. In 
this way, both the temporal and spatial constraints of the mission can be continued to be validated. 
In this section, we illustrate the use of assurance cases to provide confidence that the local control 
system complies with its mission requirements.  

 

 
Figure 51: Instance of a local mission assurance case 

 
We configure an instance of a local mission assurance case for the individual Cozmo agents 

using GSN notation as shown in Figure 51. The main goal is collecting cubes, which requires the 
satisfaction of two external goals (called “away goals” in GSN): Announcement and Global 
Control. The Announcement goal dictates which set of cubes are assigned for detection and 
collection. The Global Control goal provides the rationale regarding the local control system’s 
action and choice of cube.  

For assurance cases, the argument for a goal involves a strategy that includes sub-goals and 
solutions for collecting evidence to satisfy the argument. The argument of a local goal uses the 
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POCL plan for that local mission. Because the POCL plan must maintain temporal and causal 
partial order constraints to avoid the conflicts for global mission, we reflect that as a subgoal in 
the assurance case in Figure 51. We have identified that the base approach of performing the local 
mission is to detect a cube and pick that cube. So, the causal link for base plan of local mission is 

 
〈𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗 , 𝑐𝑐〉 = 〈findCube(type1), pickup (type1), cube1_at_p〉.  
 
We use Fuzzy Branching Temporal Logic (FBTL) to express the causal link constraints to 

facilitate uncertainty handling and improve the tolerance level of the system while removing 
inconsistencies among the plans for the global mission. We identify the flexibility point for the 
constraints and represent them using FBTL semantics: 

Ax<pickup(cube) detect(cube) 
The context nodes connected through the GSN InContextOf link (hollow arrow in Figure 51) 

with the goal node holds the assigned context value for the goal. In Figure 51, the context node 
attached to the main goal assigns the Cozmo (agent) a location and status and cube location 
information for which the POCL plan will execute. The POCL plan involves an operation to 
accomplish the goal and argumentation over how the satisfaction of that operation is represented 
through the modules. 

 Adapting the Assurance Case 

When an adaptation occurs and changes the system functionality, we need to incorporate the 
changed functionality into the assurance case to maintain consistency with the expectation that the 
constraints are satisfied. This incorporation demands relaxing the original ordering constraint (Ax) 
based on domain knowledge, which improves the tolerance level of POCL flaws.  

In Section 3.2.6.3, we discuss three adaptation operators for assurance cases: (i) ChangeVal that 
changing the value in a Context node, (ii) Support that adds new functionality for existing state 
variables, causing new arguments to be added to existing subgoals, and (iii) Substitute that alters 
existing functionality and can introduce new state variables. 

To support dynamically relax some constraints of the agent for coordinating with other agents, 
we introduce a RelaxConstraints operator by involving the RELAX process from (Whittle, 2010). 
This operator affects the constraint maintenance goals in the assurance case in Figure 51. During 
the RELAX process, the operator monitors the POCL plan and environment to define the 
relationship between the environment attributes and the plan’s constraints. To complement the 
new RelaxConstraints operators and avoid the inconsistency of the causal order constraint in the 
POCL plan, we introduce an Augmentation operator to adjust the system’s functionality by adding 
intermediate steps and/or local state variables to accomplish them, while retaining the critical 
functionality from a global perspective. In the remainder of the section, we discuss Adaptations 
A1 and A2 with respect to the evolution needed by the assurance case using the RelaxConstraints 
and Augmentation operators. 

If Adaptation A1 occurs, it activates communication among the Cosmos about current task 
allocation, which nullifies the cube detection process. This changes the status of the Cozmo agent 
to inactive for the detection step, as reflected in context node of cube detection goal shown in 
Figure 52. The POCL flaws in Example 1 in Section 3.2.8.3, trigger this adaptation. The causal 
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link constraints for the POCL plan needs to relax the base causal link ordering. By monitoring the 
environment and POCL plan, RelaxConstraints determines the flexible point based on domain 
knowledge to relax the constraint that states “Cosmo shall communicate before proceeding to 
either detect or pick up for as many cubes as possible.” 

Ax<(AGF(∆(pickedUpCubes)∈S)) communicate(Cozmo) 
The “as many cubes as possible” clause is introduced for flexibility while handling the 

uncertainty and the number of cubes picked up, which is expressed as “∆(pickedUpCubes)” to 
define the relaxed, uncertainty factors as an element of fuzzy set S. The AGF quantifier expresses 
a temporal “eventually true” expression with the uncertainty factor.  Since the rationale for 
applying A1 is to improve resource utilization, a new justification node is connected to the altered 
goal. This adaptation includes new steps in causal links as shown in Example 1. The dependency 
on new steps introduces a new subgoal “Communication Activation goal” that is placed within the 
assurance case through the use of the Augmentation operator (Figure 52).  

 

 
Figure 52: Applying adaptation A1 to the assurance case 

Adaptation A2 also involves new intermediate broadcasting steps for causal link order in the 
POCL plan. The POCL plan flaws in Examples 2 and 3 in Section 3.2.8.3 trigger this adaptation. 
The adaptation introduces a new operational goal for both detecting and picking up the cube. The 
new goal reflects the additional functionality needed for Cozmo to broadcast its accomplishment 
of detecting or picking up the cube as shown in Figure 53. From this broadcasting, other agents 
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can self-integrate to aid in the task completion. The rationale behind this adaptation is same as 
adaptation A1 that is, improving resource utilization. The RelaxConstraints operator is activated 
because the POCL plan needs to relax the base causal link ordering by including intermediate 
steps.  

          AX>(AGF(∆(detectedCubes)∈S) ∨ AGF(∆(pickedUpCubes)∈S)) broadcast(taskAccomplishment) 

The relaxed constraints state that “Cozmo shall broadcast its accomplishment after detecting or 
picking up for as many cubes as possible.” The adaptation demands the use of the Augmentation 
operator for detection and pick up functionality by including a broadcast function.  

 
Figure 53: Adaptation A2 applied to the original assurance case 

 Evaluation 

We evaluate our method first by looking at how long it takes for Cozmo to collect all three 
cubes by itself, which yields a baseline for the maximum time expected to complete the mission. 
We assume Cozmo goes after the cubes in distance order with the closest cube first. Once collected, 
Cozmo returns to its original starting point, turns around, and deposits the cube behind it. Once all 
cubes are deposited, Cozmo returns to its starting location and completes its mission.  Using 
POCL, we represent this plan as follows: 

 
P = 〈findCube(type1), pick_up(type1), cube1_at_p〉, 
        〈findCube(type2), pick_up(type2), cube2_at_p〉, 
        〈 findCube(type3), pick_up(type3), cube3 _at_p〉 
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Notice that this plan does not ensure Cozmo collects cubes based on distance. Instead, Cozmo 
decides the ordering at runtime based on the distance from Cozmo to each cube. We look only at 
the time it takes to collect all cubes. The examination setup appears in Figure 54. 

With the baseline established (column 2 in Table 28), we introduce a second Cozmo with the 
same collecting mission. We examine two different methods of coordination in this case. The first, 
the naïve method, allows both Cozmos to collect all cubes. Thus, their local goal is the same as 
the global goal, but the requirements for collection must be maintained. Each Cozmo uses the 
Bluetooth communication between the Raspberry Pis to send the cubes they have collected and 
deposited at their starting position. As a naïve method, it is possible that two Cozmo may attempt 
to collect the same cube, wasting resources. Each Cozmo uses the same POCL mission as the 
initial single-Cozmo approach. 

 

 
Figure 54: Cozmo testing setup 

 
To implement our coordination method using self-integration, with the global goal of collecting 

all cubes and a local goal of collecting specific cubes. The Cozmos use adaptation A2 to broadcast 
their completed missions to each other. We only use A2 for our experimentation because this 
adaptation is most likely to cause self-integration between Cozmos, as Cozmos must adapt to a 
changing mission based on what the other Cozmo has done. We assign each Cozmo to collect cube 
2 of Figure 54. Cozmo A is assigned cube 1’s collection and Cozmo B is assigned cube 3’s 
collection. In this setup, the cubes they are assigned to collect are far away from their starting 
position. Each Cozmo communicates the distances from their current positions to their cubes, and, 
if the Cozmo cannot find its cube from its initial search, informs the other Cozmo that it cannot 
find all of its assigned cubes. For self-integration, if one Cozmo cannot see an assigned cube and 
the other can, the Cozmo that can see the cube will adjust its mission to allow the collection of that 
cube. If a cube it is not assigned to collect is significantly closer than a cube it is assigned to collect, 
Cozmo will assign itself to collect the nearby cube. Each Cozmo assumes that, while it is collecting 
the nearest cube, the other Cozmo will also adapt to collect any cube it is missing to complete the 
global goal. The POCL representation for each Cozmo plan is listed below: 
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Both Cozmos: 
P = 〈findCube(type1), communicate(Cozmo), cube1_at_p〉, 
        〈findCube(type2), communicate(Cozmo), cube2_at_p〉, 
        〈findCube(type3), communicate(Cozmo), cube3_at_p〉  
 
After communicating, Cozmo A will recognize that it is closest to cube2 and cube3 while 

Cozmo B will recognize that it is closer to cube1 than Cozmo A. They adapt their final plans, such 
that Cozmo B will choose to pick up cube1, while Cozmo A chooses to pick up cubes 2 and 3. 
Their new POCL plans are shown below: 

 
Cozmo A: 
P = 〈communicate(CozmoB), accomplishTask(type2), sufficient_knowledge〉, 
        〈pick_up(type2), cube2_at_p〉, 
        〈communicate(CozmoB), accomplishTask(type3), sufficient_knowledge〉, 
        〈pick_up(type3), cube3 _at_p〉 
 
 
Cozmo B: 
P = 〈communicate(CozmoA), accomplishTask(type2), sufficient_knowledge〉, 
        〈pick_up(type1),cube1_at_p〉 
 
 

Table 28: Results of Cozmo tests 

 
 
We run each test 5 times and show the average in Table 28. For the single Cozmo approach, 

the average was 141.89 seconds as our baseline to improve on. For the naïve coordination 
approach, the average was 81.75 seconds, a notable improvement of slightly over 60 seconds. 
However, there were some problems observed between the two Cozmos in this approach, as 
occasionally they would attempt to go after the same cube. Usually, one Cozmo would arrive first, 
collect the cube, and leave before the other Cozmo could arrive. The second Cozmo would 
continue to attempt to collect the already collected cube rather than focus on another cube, as the 
alert that a cube was collected does not come until after the cube had been deposited, wasting some 
time.  

For the self-integrating approach, where each Cozmo was in more constant communication 
about its current mission and could make adaptive decisions on its mission, the average was 84.03 
seconds. Surprisingly, this is worse than the naïve approach, though with coordination Cozmo 
completed the mission in the fastest single time (Run 5). This difference can be attributed to Run 
3, where the two Cozmo took 104.11 seconds to collect all cubes. We observed this time was due 
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Run1 140.73 87.45 79.04
Run2 153.37 84.79 87.30
Run3 131.98 76.88 104.11
Run4 141.95 81.45 79.18
Run5 141.41 78.19 70.55
Average 141.89 81.75 84.03
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to the method Cozmo uses to perform predefined actions. Cozmo is designed to be perceived as a 
virtual pet, requiring a personality. To simulate a personality in a robot, the developers have 
multiple methods of performing each action. In most cases, Cozmo will move toward the cube in 
a straight-forward manner, line up with the cube, and move forward to pick it up. However, in 
reviewing Run 3, Cozmo chose to slowly move forward as if to pounce on the cube, before 
suddenly turning and picking up the cube. This behavior took approximately 20 seconds more and 
accounts for the additional time.  

 Integration of Self-Adaptive Testbeds 

Testbeds are common when researching problems that require a large number of functionally 
similar but programmatically different parts (Siboni, 2016) or are too large or expensive to own a 
full version of the testable system though the individual parts are reasonably priced (Bellman, 
2014). Testbeds are often designed to simulate a real environment as accurately as possible. 
However, corners may be cut to focus functionality so that the testbed can be used to exploit the 
specific problem that is being researched. Thus, while capable of advancing knowledge through 
direct experimentation, testbeds have limited usefulness outside of their problem domain.  

At the same time, in real world operations there are interconnected systems that cannot be easily 
simulated using a single testbed. To address this challenge, multiple, smaller testbeds capable of 
examining specific problems could be linked together and collaboratively solve problems through 
inter-testbed connectivity. Additionally, by linking testbeds together, it becomes possible to 
improve the abilities of a single testbed without major modifications to the testbed architecture.  

A unique problem arises when examining testbeds capable of self-adaptation. It is possible that 
a self-adaptive system will choose to adapt such that any other system relying on its operation will 
violate system requirements (Bellman, 2018), even if the adapting system maintains its individual 
requirements through the adaptation. This scenario is especially true when attempting to integrate 
multiple special-purpose or domain-specific testbeds, as each is capable of adaptation that has been 
verified for its specific use cases and runtime operations, but that may inadvertently affect the 
runtime stability of the linked system.  

We have examined the difficulties of linking two existing, distinct testbeds. We outline use 
cases in which each testbed incorporates or is influenced by information from the other testbed to 
examine new problems. Though each testbed is capable of verifying its critical requirements and 
mechanisms for performing self-adaptation, they rely on different components, are implemented 
differently, employ distinct verification, and have unique approaches to data communication. We 
discuss the potential process of testbed cooperation based on their distinct factors.  

 Existing Testbeds 

Previously, we created two testbeds to examine self-adaptive and verification capabilities for 
different systems. The first testbed uses Raspberry Pi 3s to simulate near-future wearables, 
allowing the wearables to intercommunicate with Bluetooth and self-adapt their communication 
to potential security vulnerabilities (Walter, 2018a) as discussed in Section 3.2.5.1. Our second 
testbed focuses on mission collaboration between autonomous Cozmo robots discussed in Section 
3.2.8.2. 
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3.2.9.4.1 Integrating the Testbeds 

Figure 55 shows the proposed architecture of a system with multiple intercommunicating, but 
distinct testbeds. On the left are the self-adaptive, coordinating Cozmos, focused on completing 
their local and the global missions. They would interact with the wearable testbed on the right 
through a Bluetooth link between base stations, similar to their normal communication with each 
other. The direct communication between testbeds through Bluetooth requires each testbed to parse 
data is it not designed to accept and has become a hindrance in integration. To solve this, we shift 
the testbeds to rely on the cloud to capture relevant testbed data for sharing, provide AI and 
machine learning techniques to discover potential adaptations and rationale for their use to 
influence the testbeds toward self-improvement, which may even impose additional requirements 
that are subject to verification and validation. Currently, each testbed makes use of the cloud in 
different ways. The wearable testbed would rely on cloud-based machine learning to discover 
insecure environments, prompting adaptation. The Cozmo testbed would use the cloud to primarily 
store information about the current mission and facilitate coordination, including potential 
adaptation needs. Testbed integration requires a cloud that both stores information and makes use 
of cloud-based AI and machine learning algorithms to understand the unique adaptation needs for 
both testbeds.  

 

 
Figure 55: Architecture for integrating testbeds 

If an adaptation in one testbed translates to the need for adaptation in the other, cloud services 
can intervene to prevent an infinite adaptation loop, testbed deadlock by forcing change at the 
wrong time periods, or other testbed from moving into a state that violates its requirements. 

We describe three potential use cases that would benefit from integrating the two testbeds. The 
first is the scenario where an adaptation to a Cozmo’s local mission is needed to complete the 
global mission. However, in order to complete the local mission, additional sensor data is needed 
from other nearby sensors. In this case, the adaptation plan will be shared between the Cozmo 
testbed and the wearable testbed along with a request for sensor information through the cloud. 
The base station of the wearables will respond with information about the available and active 
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sensors. If a needed sensor is available and active, the Cozmo testbed will be able to request the 
specific sensor information it needs and the data will be shared. The cloud will use cloud-based 
AI algorithms to determine the appropriate sensor information from the wearables, providing the 
format the wearables use for data communication to the Cozmo testbed and, if needed, translating 
this information to the Cozmo testbed in a format it can utilize. 

An obvious example of this use case is using the Cozmo to simulate a search and rescue robot, 
searching for survivors in a disaster situation. The Cozmo can connect to a nearby base station, 
indicating that there may be a survivor in the area. When connected, it adapts to complete the 
global mission of finding survivors rather than continuing its local mission of searching a 
prescribed area. It then requests sensor information from the base station. The base station may be 
connected to wearables that include heartrate or other health information. The base station can be 
expected to have GPS data. This data is useful for the Cozmo’s current adapted mission, so it 
requests heartrate and GPS data though the cloud. The heartrate information can be used to get a 
general sense of the health of the survivor and the GPS data can be used to pinpoint the location 
of the survivor for rescue. The machine learning algorithms running on the cloud can be trained to 
prioritize users whose health data shows the user needs immediate medical attention or those 
whose data shows increased health risk. While this would not result in ignoring survivors, it would 
allow survivors to be rescued in priority order, potentially resulting in a larger number saved. 

A second use case is where the testbeds can be jointly used to assess adaptations produced by 
the cloud that can improve the communication between devices. The wearable testbed already 
includes adaptation options that result in adjusting the communication between wearables and their 
base stations. Thus, it is reasonable that an adaptation on the wearable testbed could influence the 
cloud-based decisions to change something about the internal or external communication with the 
Cozmo testbed. The two primary adaptations of the wearable testbed on Bluetooth adaptation are 
sending empty packets (to prevent eavesdropping on sensitive data) and disconnecting and 
awaiting a secure reconnection. In both of these cases, communication with the Cozmo testbed 
would be interrupted in some way. In the first case, the Cozmo testbed would remain connected, 
but would be unable to receive any data from the wearables, as only empty packets would be sent. 
In the second, the testbeds would disconnect and reconnection would only occur once the wearable 
testbed requests reconnection. These communication changes may force a new adaptation to the 
Cozmo as to how it can be interrupted when communication and data transfer are reestablished.  

In both of these cases, the adaptation plan will be sent from the wearable testbed to the Cozmo 
testbed to inform the Cozmo testbed of the expected change to the communication. Once the 
Cozmo testbed is aware of the adaptation, it will not attempt to request data from the wearables, 
potentially limiting the available adaptations for the Cozmo but ensuring integrity of the wearable 
adaptations. In the case of disconnection, the Cozmo testbed will not attempt to force a 
reconnection and will not accept a reconnection request from any device other than the wearable 
testbed that caused the disconnection. However, as these adaptations only apply to the Bluetooth 
communication, it is still possible to gain information from the cloud, though this information will 
only allow old data, not up-to-the-minute information as is possible with the Bluetooth connection.  

The third use case for testbed integration occurs when an adaptation is required by one testbed 
based on the expectation of an adaptation in the other testbed. For example, a Cozmo may be 
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simulating an autonomous vehicle, using the wearable testbed to simulate pedestrians and other 
vehicles in a simulated VANET. In this case, the Cozmo may detect the potential for a collision 
with another vehicle, requiring it to adapt to the potential issue. This adaptation needs to be 
transmitted to all other autonomous vehicles in the area. It may be beneficial to transmit this 
information to pedestrians so they can react, if possible. In this case, the Cozmo will send its plan 
to the wearable testbed before adapting. The wearable testbed must then adapt its operation to alert 
pedestrians to the issue and adjust the sensor information to react to the new Cozmo plan. In this 
case, a cloud service may be used to alert those not in the area, such as emergency personnel, if 
there is potential danger with the adaptation, providing a faster response time to a wreck.  

 Difficulties with Testbed Integration 

There are a number of challenges to integrating multiple testbeds. The largest issue is ensuring 
there is an existing and consistent protocol for the request and transfer of data between the testbeds. 
There have been middleware systems proposed (Burzlaf, 2019) to help solve this issue but, at 
present, there is no universal solution. It is especially problematic for Bluetooth communication, 
as it requires the protocol to be run and interpreted locally. Currently, the best option is to ensure 
that the receiver requests only specific data that it knows the other testbed has. It makes integrating 
additional testbeds difficult, as each new testbed requires all previous testbeds to be updated to 
accept the data of the new testbed.  

An additional issue is the need for a method to communicate adaptation plans that can be parsed 
and examined by other testbeds. For example, with the current systems a message must be sent to 
inform all testbeds about an adaptation to ensure that the adaptation does not negatively affect the 
other testbed. However, this sharing requires all testbeds to have methods of handling all possible 
adaptations of all other testbeds. An intermediate system must be designed to allow a testbed to 
have an understanding of the more global effects of the adaptation. One assumption is that a cloud 
service could serve as the intermediary, providing an understanding of the possible adaptations 
each testbed can perform and the impacts both locally and propagated through the interconnection. 

3.2.10 Evaluating the Use of GenProg within the Framework 

 Revisiting the Multi-Mode Traveler System 

In order to use GenProg (Goues, 2011) with our case studies, we adapted the Multi-Mode 
Traveler System (MMTS) to be repairable by GenProg. We chose MMTS because it has clearly 
defined requirements, has been proven to always maintain its requirements under normal 
operation, and has adaptations already created that were tested to show they could potentially cause 
it to fail to maintain its requirements.  

The basic workflow for MMTS (as detailed in Figure 2) is shown in Figure 56. There are three 
main components that are executed during every update loop, each with subcomponents that have 
been proven to maintain the requirements. The first component, getCurrentStatus, checks the 
current position of the traveler to verify that the traveler is not already in a position that violates 
one of the three requirements. If the current status of the traveler does break one of these 
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requirements, it will not continue forward. If the current status satisfies both safety requirements, 
it moves to getNextPosition. In getNextPosition, the traveler gets information about the eight 
possible moves it has. It determines if the move would cause it to violate one of the safety 
requirements. It could violate the requirement either by gaining or losing fuel to push it outside 
the threshold or by attempting to move into a space occupied by an enemy. If there are no moves 
available, it returns to getCurrentStatus, as the traveler is unable to move without violating a safety 
requirement. Given the way requirement 3 is stated, if the traveler cannot move, whatever action 
it takes will not violate the requirement. If it can move, it shifts to setPosition, where the traveler 
is moved to a position that has been previously shown to not be in violation of the safety 
requirements. 

 

 
Figure 56: Control Flow of MMTS 

 

 Transitioning MMTS for GenProg 

In order to use GenProg to repair MMTS, we must first convert MMTS from Java, the language 
it was originally written in, to C, the language the public version of GenProg is capable of 
repairing. This process was non-trivial even though the sample program is not very complex. We 
manually had to ensure that the C code (and use of its libraries) maintains the same architecture 
and functionality as the Java code, which was proven to meet the three requirements using the KIV 
theorem prover.  

Figure 57 shows the CheckEnemy function in Java. Figure 58 shows the same function in C. 
Note the Java function is simpler, as Java includes the contains() function for checking the location 
of an enemy compared to the current position. The Java CheckEnemy code also includes a separate 
class/object containing the traveler’s position information (both the currPos variable and the 
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enemyPos variables). In contrast, the C version of CheckEnemy uses arrays to represent the enemy 
positions and checks against x and y values represented as ints. The CheckEnemy function is run 
both during getCurrentStatus (Figure 56) to check if an enemy is currently at the same spot as the 
traveler, and in getNextPosition (Figure 56) to check if an enemy is in the position that the traveler 
may move to). The C version is longer, primarily because of the lack of built in contains() methods. 
Without contains(), the program must manually check if the location being examined contains an 
enemy by comparing all possible positions with the location of each enemy. If the enemy is in the 
position being checked based on the _x and _y coordinates, the C program returns a 1, equivalent 
to true in Java. Otherwise, the C program returns a 0, showing that there is no enemy in the checked 
location. 

 

 
Figure 57: Example of CheckEnemy Code in the Java Version of MMTS 

 
Figure 58: Example of CheckEnemy Code in the C Version of MMTS 

To work with GenProg, a bug must be forcibly introduced into the MMTS code for GenProg to 
repair. The bug should cause the traveler to violate a requirement. Instead of forcing a violation of 
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one of the three functional requirements directly, we introduced a mission requirement that could 
be violated through the normal operation of the functionally correct code. Our new requirement is 
that the traveler must travel to four specific spots on the grid to pick up designated “targets”. This 
could potentially be violated if enemies are placed on the grid that prevent the traveler from 
reaching the targets. By introducing the new requirement, we had to ensure that there were no 
random or non-deterministic actions that the traveler could take that would cause a violation of 
this new requirement that GenProg could not fix.  To provide additional consistency for GenProg, 
we introduced a priority path into the code for the traveler so that it collects all targets. Should a 
position on the priority path not be a viable move given functional requirements 1 and 3, the 
traveler will move randomly outside of the priority path to comply with requirement 2. 

An example of the code setting the priority path is shown in Figure 59. Essentially, the priority 
path is represented as a large switch statement based on the current move number. This new code 
provides GenProg with more code to use for repair of a bug and allows GenProg to adjust the 
priority path by only changing one or two of the switch cases. An example of the code that allows 
the traveler to choose the priority path when possible but still choose randomly when it is not 
possible to move along the priority path is shown in Figure 60. Note that, if the priority path 
position has already been shown to be invalid, it will skip the code for returning to the priority 
position. When it skips, it randomly searches all available options for a valid move on the grid. 
Once a move is found, it returns the index of the move, allowing the traveler to move.  

 

 
Figure 59: MMTS Setting the Priority Path 
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Figure 60: Priority Path Code vs Random Movement 

 

 Preparing Additional Files needed for GenProg 

With MMTS converted to C and the ability to insert a bug into the system, we began the final 
preparations of MMTS for GenProg’s self-repair method. This preparation required creating test 
cases testing that validate the code will never go below the minimum fuel value, will never go 
above the maximum fuel value, and is able to collect all the targets. GenProg will run these tests 
to discover any differences that occur between the passing and failing test cases in an attempt to 
optimize the possible repair locations, weighting the paths unique to the failing test cases higher 
than the paths common between passing and failing test cases. Thus, GenProg will first attempt to 
make modifications only to parts of the code that are run when failing the test cases initially, though 
it will branch out if a repair has not been found. 

For GenProg to execute the code and test cases, the preparation of a Makefile is needed that is 
capable of compiling the project, running the test cases, and outputting the test case results to a 
file for GenProg to examine. This Makefile is different from a standard Makefile that only 
compiles the code properly for eventual execution. We created this Makefile based on existing 
examples of GenProg Makefiles, ensuring the method of collecting the output from the test cases 
was identical to previous working versions. It also required minor modifications to the test cases, 
forcing them to print to the command line that they had failed without actually failing in a standard 
C test case manner. An example of the Makefile for one of the test cases is found in Figure 61. It 
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shows that, when the command “make collectSecondTarget.log” is run, the machine will first 
compile the test case. Once compiled, it will run the test case with all of the output sent to the file 
“collectSecondTarget.log”. This file is then re-written to the console, which GenProg can access 
to verify that the system has passed or failed. 

 

 
Figure 61: Makefile Commands to Run Test Case Collecting Second Target 

An example test case is depicted in Figure 62. This test case checks if the traveler can collect 
the second target once it has collected the first target. Note that, even when it fails, it still returns 
0 rather than returning 1 to alert to an error or failure. There are similar test cases for each of the 
other targets that can be collected, as well as test cases checking to ensure the minimum and 
maximum fuel is never exceeded.  

 

 
Figure 62: Example Test Case Collecting the Second Target 

 Running GenProg on MMTS 

Having modified the test cases and created a working Makefile, we set enemies up directly in 
the path of the traveler. This configuration causes two of the test cases, collectFirstTarget and 
collectAllTargets, to fail. Because the test cases related to collecting the second, third, and fourth 
targets do not have an enemy directly in their path, they all still pass, though a change to the code 
may cause them to begin to fail. We created a configuration document for use with GenProg that 
contains the specific test cases that pass and that fail, as well as basic information about the 
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compilation and location of the Makefiles associated with MMTS. We then attempted to run 
GenProg to repair the failure to collect all targets bug in MMTS. 

Once all of the setup of MMTS had been completed, we downloaded the existing GenProg 
virtual machines, with a working version of GenProg, to repair MMTS. Unfortunately, running 
GenProg on MMTS was impossible due to a major issue. Specifically, GenProg was unable to 
come up with a weighted list of different lines used between the failed and successful test cases. 
Initially, we attempted to minimize the C code by adjusting the location of the targets, thus 
decreasing the number of lines to create the priority path, but this did not solve the issue. We then 
moved to a fresh install of GenProg, taken from the official GenProg Github account. This install 
did not fix the issue, leaving the default GenProg only capable of brute-force attempts at repair, 
which all failed. To get GenProg working as expected, we contacted GenProg developers’ team 
for advice on getting around the error. The team was unable to get GenProg working with our 
code. They suggested getting MMTS set up to use Darjeeling, an updated version of the GenProg 
code repair project that is language independent, which created the list of locations differently, and 
proposed that it would fix the issue.  

 The Shift to Darjeeling 

Darjeeling uses BugZoo to keep track of the associated passing and failing test cases, as well 
as the lines that are run in each. The information from BugZoo is used by Darjeeling to create a 
weighted path of possible repair locations, resolving the issue we had with GenProg. Additionally, 
Darjeeling contains the initial GenProg repair options, allowing us to run a slightly updated 
GenProg repair directly on MMTS. Running Darjeeling, we came up with over 500 candidate 
repairs. However, most of the repairs violate MMTS constraints. Two such repairs can be seen in 
Figures Figure 63 and Figure 64. Figure 63 is the first repair Darjeeling found. The repair is made 
to the CheckEnemy() function, shown originally in Figure 58. The issue here is that, rather than 
changing the priority path, Darjeeling removes the code to check if an enemy is in a given position 
(see the “-” preceding the code at lines 7-23 in Figure 63). This deletion causes the enemy blocking 
the priority path to be ignored, allowing the traveler to collect all targets. Darjeeling also adds a 
single line (see the “+” preceding the code at line 24) setting the priority path of one of the 
directions to zero. This addition does nothing functionally but is a byproduct of the genetic 
algorithm’s attempt to repair the code. This solution would not be accepted as valid, as it breaks 
requirement 2 of MMTS.  
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Figure 63: Example Repair from Darjeeling that Removes Enemy Checking 

 
Figure 64 shows a second potential patch crafted by Darjeeling. Specifically, it shows a 

pointless change (adding at line 8 a second “validPosition_Y[7] = -100000”) to the code that sets 
a valid position to an invalid position. Then, in the code for setting the priority path, it sets the 
targetsCollected value for the first target to true (line 17). This solution does not actually collect 
the target, as needed. Rather, Darjeeling evolves a solution that satisfies the requirement 
(collecting all targets) without actually needing to collect all targets. Because the randomization 
of MMTS results in the other targets getting collected based on the location after the random 
movement, this solution works, though it does break our new requirement because the traveler 
does not travel to the location required to collect the target. 
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Figure 64: Example Repair from Darjeeling that Sets the Target to Collected 

3.2.11 Experimentation with Darjeeling and Genprog 

One important thing to note with our implementation of Darjeeling is the difficulty of getting 
Darjeeling working with our code. While, in theory, Darjeeling/Genprog should be incredibly 
simple to get running, we have had repeated problems getting it running with our code. We began 
working with Genprog specifically, as it is a command line tool designed for use with the C 
language and seemed to be the simpler option. Using the existing bugs that Genprog can fix as a 
template, we built our MMTS C code from the ground up to be used by Genprog while still 
following the requirements of MMTS. Primarily this involved ensuring the Makefile used to build 
and test the code was formatted the way Genprog expected it and the tests printed out a pass or fail 
when they completed.  

Once we had a version of MMTS in C that could be tested with the Makefile, we had to create 
a perl script to run the tests individually that checked if each test printed “PASS” or “FAIL” after 
completing and exited appropriately from that. This adds additional confusion when creating the 
tests, as the tests must print the result of the test (PASS/FAIL) but must not include an exit code 
that could cause Genprog to crash. This file also includes the complete list of test cases. With the 
Perl script, we must create a “test.sh” shell script to actually run the specific tests. This script also 
specifies which tests pass and which tests fail with the initial, unpatched code.  

Genprog must also know the specific files that are able to be changed in the “bugged-
program.txt” file. This can include either a single or multiple files. The file(s) listed in bugged-
program.txt must be preprocessed through a pre-compiling command of the compiler and placed 
in the “preprocessed” folder. For our code, only a single file needed to be repaired, 
BaseComponent.c. 

Finally, before running Genprog, we had to create a configuration file with the needed flags. 
We had to specify the type of search (genetic algorithm), compiler command when compiling the 
main code, test command for testing, type of crossover (for the genetic algorithm), the extension 
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of the files, number of passing and failing tests, bugged-program.txt, the location of the 
preprocessed folder, the test script command, the population size, the number of generations to 
run, information about the mutation rates/types, the cache location, and the location for the 
coverage path for positive and negative test cases. The coverage paths show the lines that are 
touched when running the file, so Genprog will optimize by initially attempting to change lines 
that only exist in the negative path.  

Once all this had been created for MMTS, we can run Genprog to attempt to repair MMTS. We 
chose to use the existing Genprog virtual machines available from the repair benchmarks website 
(https://repairbenchmarks.cs.umass.edu/), as recommended to us when initially examining the use 
of Genprog. We used these machines as they have been shown to work with existing bugs that 
have been examined and ensured that no errors when running Genprog stemmed from an issue 
with installing Genprog from scratch.  

When attempting to run Genprog on the MMTS code, Genprog would crash. We examined 
specific problems, tracking down small changes that needed to be made to the created scripts to 
allow the system to move forward, but eventually ran into a roadblock that we could not overcome. 
Specifically, Genprog could not find the path through the code and could not determine the lines 
that it could change, choosing to not make any changes rather than change randomly. This is odd, 
as it was able to run all the tests successfully and confirm MMTS was working as expected. After 
contacting the Genprog team, they recommended the shift to Darjeeling for examination. 

Darjeeling has some similarities to Genprog in its approach. While it is language independent, 
it does use a very similar genetic algorithm approach as one of its possible repair methods, albeit 
with some optimizations and improvements. Most importantly, it uses the Bugzoo project to keep 
track of each bug and the path within the code of both the passing and failing test cases. While this 
requires a bit more installing and verifying, it does simplify the number of additional files that 
must be created for repair. 

Darjeeling requires only a Dockerfile for creation of a docker instance to test the repairs, the file 
for running tests, the test.sh script, and two .yml files, one for Bugzoo and one for the Darjeeling 
repair function. The mmts.bugzoo.yml file lists basic information about the Dockerfile that is 
created and the location of the bug within the docker container that is created. It also specifes the 
passing/failing test case numbers and the type of repair to be tested. The mmts.repair.yml files 
defines the number of usable threads, language, specific files, algorithm information, type of 
transformations available, and potential optimizations for the repair function. With this, and with 
significant help and back-and-forth with the Darjeeling team (specifically Chris Timperley), we 
were able to get Darjeeling running successfully on our MMTS code. 
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 Examining Repair 

Darjeeling repairs code based on test cases. It requires some passing and some failing test cases 
and will continue attempting a repair until all test cases are passing. For MMTS, we have a total 
of 7 test cases, two to ensure fuel consumption is within acceptable ranges, one to collect each 
target (with the traveler being relocated to the position it would be before collecting the previous 
target), and one to collect all targets. Before repair, the test cases for collecting all targets and 
collecting the first target fail. However, all other test cases succeed.  

When running Darjeeling’s repair, we utilize the ‘--continue’ flag to continue searching for 
patches after an initially successful patch has been discovered. This provides more potential 
patches to analyze. For analysis, we created a script that applies the patch and runs the test cases 
against the patched code to verify the success of the repair. We have analyzed a total of 356 
potential patches to MMTS. Of these, 138 pass 7 test cases. There are 188 patches that result in at 
least one failed test case and 30 that result in endless recursion and a stack overflow error, meaning 
they cannot be tested. 

We then run the patches through an additional script that analyzes the type of fix we see most 
commonly. These are removing the traveler’s ability to check for enemies (seen in Figure 65), 
setting the goal to have been collected without actually making it to the goal (Figure 66), and 
removing the X or Y coordinate from the environment (Figure 67). All 138 successful patches 
used one of these methods of patches.  

Removing the enemy check, as seen in Figure 65, violates the MMTS requirement focused on 
avoiding enemies, as it allows the traveler to land on the enemy if it is in the way. This is done by 
deleting the line “enemyPos = 1;”, but could be achieved by deleting more of the lines around it, 
as seen in the red lines in Figure 65. Setting the goal as already collected results in the newly 
introduced requirement related to collecting all the targets to be violated, as the traveler was unable 
to move to the position of the target. This is done by adding “targetsCollected[0] = 1;” anywhere 
in the code that is reachable when run, as seen in Figure 66. 

 



Approved for Public Release; Distribution Unlimited. 
110 

 
 
 

 
Figure 65: Removal of Enemy Check 

 

 
Figure 66: Set First Target to Collected 

 

--- MMTS/BaseComponent.c 
+++ MMTS/BaseComponent.c 
@@ -207,23 +207,7 @@ 
    int enemyPos = 0; 
    for (int x = 0; x < MAX_SIZE; x++) 
    { 
-       for (int y = 0; y < MAX_SIZE; y++) 
-       { 
-           if (X_POSITION[x][y] == _x && Y_POSITION[x][y] == _y) 
-           { 
-               if (ENEMY_POSITION[x][y] == 1) 
-               { 
-                   //waiting = 1; 
-                   enemyPos = 1; 
-               } 
-               else 
-               { 
-                   enemyPos = 0; 
-               } 
-               break; 
-           } 
-       } 
-   } 
+       priorityPath[3] = 0;    } 
    return enemyPos; 
 } 
 int getChangeFuel(int _x, int _y, int _newPosX, int _newPosY) 

--- MMTS/BaseComponent.c 
+++ MMTS/BaseComponent.c 
@@ -345,7 +345,7 @@ 
        case 13: 
            priorityPath[2] = 1; 
            moveTraveler(priorityPath, moveNumber); 
-           priorityPath[2] = 0; 
+           targetsCollected[0] = 1; 
            break; 
        default: 
            moveTraveler(priorityPath, moveNumber); 
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Figure 67: Remove y_Coordinate 

 
Removing the X or Y coordinate from the environment is unusual. It does not directly affect the 

travelers code. It works because of the way the proven code sets enemies. The enemies are set 
based on the environment, while the traveler has its own internal knowledge of its location. By 
removing the X or Y coordinates from the environment, the enemies are set either the Y or X 
coordinate only. This means that the traveler can avoid the enemies by moving off the set 
environment to the targets. Figure 67shows the removal of the “y_Coordinate(Y_POSITION)” 
line that creates the Y portion of the environment. Adding additional lines here (such as 
“enemy_Position(…);”, as seen in Figure 67) does not affect the patch, but is also not needed. 

Of the 188 patches that result in a failed test case, 140 only failed a single test case, with 48 
failing multiple test cases. The test case checking the traveler never goes above its maximum fuel 
value was the most common failing test case, failing 161 times total. The test case checking all 
targets were collected failed 44 times. The test cases for each individual target failed 27 times for 
the first test case, 7 for the second, 31 for the third, and 20 for the fourth. Finally, the test case 
checking that the traveler does not go below the minimum fuel value failed 9 times. This could be 
related to the required randomization of MMTS, though that would not account for the number of 
failures of the maximum fuel check. It is far more likely to be the cause of the failing tests for 
collecting specific targets, as a different choice of direction when avoiding an enemy can result in 
the traveler making it back onto its priority path and allow it to collect all targets.  

The final 30 patches, those that result in the stack overflow error, all place the “moveTraveler” 
function call within the “moveTraveler” method, resulting in endless recursion. As there is not 
enough memory to store all the calls, the memory stack overflows and MMTS crashes. This means 
that none of the test cases are able to complete. While it is difficult or impossible to predict what 
patches may result in a stack overflow error (would require solving the np-complete halting 
problem), it is unusual to see these patches are seen as valid. It is possible this is a bug in the 
Darjeeling code.  

We have run into one additional major issue with Darjeeling in our testing. Specifically, when 
using more than 40 possible patches in the population size or more than 10 generations, Darjeeling 
will freeze saying it has evaluated three candidates in a row without showing that it is evaluating 
other patches. These patches were queued up to be evaluated earlier in the run and other candidate 

--- MMTS/BaseComponent.c 
+++ MMTS/BaseComponent.c 
@@ -28,7 +28,7 @@ 
    _y = Set_PositionY(y); 
    enemy_Position(ENEMY_POSITION,manualEnemySet); 
    x_Coordinate(X_POSITION); 
-   y_Coordinate(Y_POSITION); 
+   enemy_Position(ENEMY_POSITION, manualEnemySet); 
    printf("x = %d, y = %d", x, y); 
    printf("_x = %d, _y = %d", _x, _y); 
 } 
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patches have been queued for evaluation, but it freezes after evaluating three candidates in a row. 
Interestingly, there are times where three candidate patches will be evaluated in a row before 
another candidate patch is queued with no freezing at all. There is nothing printed that would 
indicate what is causing the freeze. This freeze may be the result of Darjeeling repairing itself into 
an infinite loop with no timeout to kill the program, but this seems unlikely as, in our testing, this 
issue only occurred when either the population size is greater than 40 or there are more than 10 
generations. 

We have contacted Darjeeling team about the occasional freezing, the stack overflow issues, 
and the failing test cases. As of this writing, we are still communicating with them about the cause 
and the possible fix. 

 Issues with Automatic Code Repair 

While Genprog and Darjeeling can, in theory, be used to repair any code with minimal changes, 
there are some best practices that we have come across when adjusting MMTS for use with each 
of them. Both require extensive test cases covering all possible functionality and every edge case 
needed to ensure the repair does not break additional requirements. For MMTS, we are only able 
to test the requirements related to fuel and target collection completely and even within these test 
cases it is possible to modify the code such that the requirements are violated without violating the 
test cases.  

This is especially true in repairs like removing the enemy check code and setting the 
targetsCollected variable to 1. Even though these violate the requirements of the system, they pass 
the required test cases. When designing a system that Darjeeling or Genprog will be used on, it 
would be best to move any code related to the requirements of the system into a file that will not 
be changed by the automated repair. While this may not always be possible, it does ensure that 
required code is not modified or removed during the repair. Alternatively, the test cases can be 
created in such a way as to detect when there is an issue that may result in a violation of the 
requirements without violating the “spirit” of the test case (that is, the specific section the test case 
is examining).  

With the issues we have been having with Darjeeling, specifically related to the freezing on 
large populations or generations, it may also be best to only provide Darjeeling with relatively 
small code samples to maximize the likelihood a suitable repair is found in a reasonable amount 
of time. It should be noted that, quite often, a single repair is found within minutes, rarely more 
than 5. However, because a large number of our repairs failed to pass all test cases on re-evaluation, 
it is not a guarantee that the repair will be good.  

It is possible that, at least for some of our failed re-evaluations, the randomness required by 
MMTS is the cause of the failing test cases. If automated code repair is expected to be used, the 
code should minimize the need of randomization. Ideally, the code would have no randomization 
involved. If randomization is required, the code should be built in such a way that the non-
randomized portions can be tested with the test cases when repairing, allowing the repair software 
to repair with consistency. It is possible to use a seed for the randomizer to ensure the same random 
values are used each time, but this may lead to the solution only working for that specific seed, 
making it ineffective for normal operation. 
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For Genprog, it is important to have test cases that print the words “PASS” or “FAIL” rather 
than crashing, though crashing may be acceptable after the printing. This is because the Perl “run-
tests.pl” file will crash if the test crashes. The “run-tests.pl” file looks at the output to determine if 
the test has passed or failed, meaning that modifications to existing test cases may be needed and, 
if the code is going to be repaired with Genprog, should be coded this way from the start.  

4 Results and Discussion 
Each of the prior sections have shown the accumulated results of the research, as well as the 

progression. The compliance awareness technology encompassing both functional verification and 
security certification with respect to adaptative and resilient systems has been defined and tested on 
multiple platforms and case studies. In addition, we have incorporated experiments with 3rd party 
technology to show where the gaps are in the research to have a fully automated MAPE loop.  

To round out the results, we compare our Framework with two existing self-adaptive system 
frameworks, Rainbow and ActivFORMS, which are focused on model checking to verify 
predefined adaptation behavior. For comparison purpose, we discuss their adaptation approaches 
below. We implement to an allowable extent by each framework their overall approaches for 
Rainbow and ActiveFORMS using our MMTS case study discussed in Section 3.2.1. Due to issues 
with their available code bases we are unable to fully implement them even at the level of 
complexity for MMTS. However, given the literature available for the framework, we infer certain 
constructs for comparison.  We develop MMTS model to perform model checking to verify 
adaptation behavior within a probabilistic model using PRISM, which is used by Rainbow, and a 
formal model using Uppaal, which is used by ActiveFORMS. Then we compare the allocated 
resource and time to perform the verification for three approaches as the comparison.  

4.1 Rainbow 

As an architectural-based self-adaptation framework (Garlan, 2004), Rainbow uses a high-level 
system architectural abstraction and model. The benefits of architectural-based approach is having 
system level global perspective and exhibits important system properties and constraints. Rainbow 
implements a system measurement mechanism which connect probes to the managed system’s 
model and queried about the state of the system. The model manager has access to query and 
update the model and execute constraint evaluator to check the model for violation. If the violation 
is detected, an adaptation engine triggers adaptation and carry out necessary action to modify the 
system through effectors. There is a translation repository that maps system information to the 
model and a resource discovery component having knowledge about the system resource and their 
properties.  The adaptation manager incorporates adaptation knowledge about the changed model, 
changed components and their behavior. When the adaptation is triggered, the model manager 
queries the adaptation manager to get the appropriate model that satisfies the changes and enables 
adaptation operators to adapt the model. The adaptation strategy is chosen based on quality 
dimensions and utility preferences across the dimensions (Cheng, 2008).  

To choose the tactics, Rainbow develops a probabilistic model of the system by including the 
probability of achieving the system property to incorporate the nondeterministic behavior of the 
system. Then they perform probabilistic model checking using PRISM. They simulate the different 
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tactics and collect the updated variable values to instantiate the model. For model checking, the 
system requirements are specified as model properties, which are checked against the model and 
provide the satisfiability level as a form of “Yes/No”. They analyze the state space graph during 
verification to ensure both the trace of the system is valid and all states are reachable. This analysis 
is done external to the program that is being adapted. For our MMTS case study as discussed in 
Section 3.2.1, we specify its three requirements as three properties of the probabilistic model as 
shown below 

 
R1:  𝐴𝐴 [ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 >= 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚&𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 <= 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ] 
R2:  𝐴𝐴��(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑒𝑒1_𝑥𝑥 & 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑒𝑒1_𝑦𝑦)�(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑒𝑒2_𝑥𝑥 & 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑒𝑒2_𝑦𝑦)� 

(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑒𝑒3_𝑥𝑥 & 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑒𝑒3_𝑦𝑦))  = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ] 
R3:  𝐴𝐴 � �𝐺𝐺 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 & (𝑋𝑋 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)�� 

(𝐺𝐺 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 &(𝑋𝑋 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)) ] 
 
The property satisfiability level is considered as a quality objective. Rainbow uses a quality 

dimension corresponding to a business quality of concern, weights them based on the preferences, 
and generates a utility profile by specifying the bound for quality concerns. The formula for the 
utility function is below.  

 

𝑈𝑈 = �(𝑤𝑤𝑑𝑑𝑢𝑢𝑑𝑑) 

4.2 ActiveFORMS 

Another architectural-based approach, ActiveFORMS (Iftikhar, 2017), has three primary 
components to perform the model checking. The first is the Managed System, which is 
instrumented to monitor the program and adapt the system according to presumed adaptive plans.   

The two central components of this approach are: the Active Model Engine and the Goal 
Management. The Active Model Engine consists of a formally modeled feedback loop called the 
active model, which performs MAPE-K actions and a virtual machine, which performs the model 
checking. They develop the feedback loop using timed automata and use timed computation tree 
logic expressions (TCTL) to express the system behaviors as goals. Formal models with verified 
adaptation goals are deployed within the virtual machine and MAPE-K feedback loop that are 
connected with a model of the managed system. The model monitors the behavior by collecting 
information about the system through integrated probes and provides signals to the planner to 
determine adaptations. ActivForms has designed an exclusive goal model for different qualities of 
a system to incorporate them in modules with similar qualities. The models are deployed into the 
virtual machine and are translated into the graphs.  When the planner initiates a plan for adaptation, 
the virtual machine executes all of the available graphs and performs verification on whether the 
goals are satisfied for the changed situation using model checking tool Uppaal. The system goal is 
specified as a Boolean expression and verified against the loaded formal model into the virtual 
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machine. Adaptation options are chosen based on verification results of the models. All of this 
occurs external to the program that is being adapted. 

Uppaal has a built-in verifier called Verifyta, which is designed to make building verifiable 
queries easier. Using this, we specified three queries, one corresponding to each requirement 
MMTS has. The queries are: 

 
1. 𝐴𝐴[] 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 <=  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 >=  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
2. 𝐴𝐴 <>  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝑥𝑥: 𝑖𝑖𝑖𝑖𝑖𝑖[0,2]) 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ! =

 (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒[2 ∗ 𝑥𝑥]  +  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒[2 ∗ 𝑥𝑥]) || 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ! =
 (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒[2 ∗ 𝑥𝑥 +  1]  +  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒[2 ∗ 𝑥𝑥 + 1]) 

3. 𝐴𝐴[] ((𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜𝑣𝑣𝑣𝑣 && 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1. 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 <
 100) 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ! 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1. 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎 ! 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1. 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) 

The Goal Management component supports developing a goal model, monitoring the goal, 
adapting, and managing the goal. The benefit of having the Goal Management component is it 
supports gradual improvement when system knowledge is incomplete during design time.  

4.3 Comparison with our Approach 

Due to the dynamicity of the environment and system, adaptation planning has to perform 
within a time limit and maintain the resource constraints. If the runtime verification of the adaptive 
plan maintains time and resource constraints, it provides more assurance about the system’s 
maintainability of its requirements. We perform an experiment to compare the necessary resource 
and time needed to perform the planning phases in Rainbow, ActiveFORMS and our framework. 
We run the PRISM model of MMTS for 100 times for each of the adaptations discussed in Section 
3.2.3.5. We found that Adaptation A1 and A4 have the potential to cause the system to fail to 
comply with all three requirements. But A2 and A3 maintain the system requirements for all 100 
verifications through the PRISM model checker. In Table 29, the system failure percentage to 
maintain the requirements for all four adaptations are shown. 

 
 

 
Table 29: Percent Failure when Running PRISM Verification MMTS requirements 

% Fail R1 R2 R3 Total 
A1 46 0 0 46 
A2 0 0 0 0 
A3 0 0 0 0 
A4 0 0 100 100 
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We also analyze the CPU load and time needed for PRISM verification because every system 
has some resource limitation and if verification requires significant memory and time, it would be 
too costly to use at run time for a self-adaptive system. PRISM has a limitation on scalability and 
the allowed complexity of the system. Thus, we analyze the necessary resource allocation by 
PRISM for our small MMTS system. In Table 30, the average minimum and maximum CPU load 
along with the average time needed for verification for each adaptation by PRISM is shown. 

 

Table 30: Average CPU Load Running PRISM Verification of MMTS Model 

 Max CPU load Min CPU load Difference  Time (ms) 
A1 0.813783 0.152546 0.661237 2461.16 
A2 0.798274 0.186897 0.611377 1999.65 
A3 0.796227 0.187946 0.608282 2006.55 
A4 0.828876 0.130855 0.698071 2086.541 

 
The difference shows the approximate impact of the verification on the overall CPU load which 

is almost more than 60%. This shows that PRISM verification causes a huge impact on the CPU. 
As MMTS is a small model, if PRISM causes a large CPU load, then for a large system it would 
be infeasible to verify. We found that PRISM needs almost 2s to verify all three requirements of 
MMTS. A real-world system with many requirements means their verification using PRISM would 
be infeasible for runtime verification. In a similar manner, we assess the Uppaal verification tool, 
Verifyta, to verify the active model of the MMTS as a feedback loop. The system failure 
percentage to maintain the requirements for all four adaptations for the MMTS active model are 
shown in Table 30. 
 

Table 31: Percent Failure when Running Verifyta on Abstracted Model 

% Fail R1 R2 R3 Total 
A1 50 0 0 50 
A2 0 0 0 0 
A3 0 0 0 0 
A4 0 0 100 100 

 
Table 32 shows the average maximum and minimum CPU load when verifying the abstracted 

Uppaal model. The difference shows the approximate impact of the verification on the overall 
CPU load. Note that the load is minimal, with a maximum increase of 0.01 or 1% of the overall 
CPU. This shows that, for small models, Verifyta is efficient for verifying each adaptation.  

Table 32 also shows the average time in milliseconds to verify all requirements. Note that the 
average hovers around 425 ms, showing that Verifyta is an eligible technology for verifying a 
model at runtime.  
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Table 32: Average CPU Load/Time Running Verifyta on Abstracted Model 

 Max CPU load Min CPU load Difference Time (ms) 
A1 0.467787 0.457698 0.010089 425.6 
A2 0.537985 0.537985 0 450.34 
A3 0.827726 0.82728 0.000446 445.19 
A4 0.716289 0.716289 0 408.17 

 
Running the verification on the non-abstracted model shows a very different result. Table 33 

shows the failure percentage of the non-abstracted model. Interestingly, because a deadlock occurs 
when maxFuel < currFuel, Verifyta is able to complete. If  
maxFuel > currFuel, Verifyta fails with an Out of Memory error. All other adaptations result in an 
Out of Memory error before any requirements have been verified. 
  

Table 33: Failure Rate of Verifyta on Non-Abstracted Model 

% Fail R1 R2 R3 Total 
A1 49 0 0 49 
A2 Out of Memory Out of Memory Out of Memory Out of Memory 

A3 Out of Memory Out of Memory Out of Memory Out of Memory 

A4 Out of Memory Out of Memory Out of Memory Out of Memory 
 
As one might expect, failing to verify with Out of Memory errors results in a much higher CPU 

load and much longer verification times, as can be seen in Table 33. There is a larger difference 
between the maximum and minimum CPU load, with the difference being close to 0.30 or 30% as 
shown in Table 34. Though A1 has the smallest difference, this can be explained when recognizing 
that A1 was able to complete 49 verifications due to their failure. As the difference is close to 0.15 
between maximum and minimum, we can say that the difference during the potentially passing 
verification runs is around 30% as well. The average time for verification is significantly higher 
than with the abstracted model. The maximum time was 75819.2 ms, or 1.26 minutes. This is 
obviously not reasonable for runtime verification, showing that, if ActivFORMS is used, it must 
be as deterministic as possible to minimize the time it takes for verification, or should reach a 
stable state very quickly. It should be noted that, with the relatively short time it takes to verify the 
abstracted model, it may be possible to re-verify at each step with ActivFORMS. 
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Table 34: Average CPU Load/Time Running Verifyta on Non-Abstracted Model 

 Max CPU load Min CPU load Difference Time (ms) 
A1 0.63542 0.476547 0.158873 37554.33 
A2 0.693056 0.385565 0.307491 75819.2 
A3 0.708425 0.411999 0.296427 57814.32 
A4 0.685995 0.391253 0.294742 56767.65 

 

We also have run our MMTS VFlow model to compare with Rainbow and ActivFORMS. In 
Table 35 we show that the VFlow model needs minimal time to perform the overall assessment 
along with assigning a minimal amount of CPU load. From minimum and maximum CPU load 
data, the VFlow model assigns a consistent amount of CPU load while performing risk assessment. 
With an increase in the number of requirements in the system, VFlow needs more time to complete 
the assessment. It is important to recognize that VFlow must examine all available adaptations, 
where PRISM and ActivForms may choose to examine one adaptation at a time until finding one 
that works. We have included the total time it takes to verify all adaptations on average, about 
1911.91ms or 1.9 seconds.  

  

Table 35: Average CPU Load/Time Running VFlow Model for MMTS 

 Max CPU load Min CPU load Difference Time (ms) 
A1 0.315633 0.306837 0.008796 335.52 
A2 0.428503 0.405414 0. 023089 372.82 
A3 0.416318 0.320624 0. 095694 604 
A4 0.364413 0.252124 0. 11229 599.57 

 
VFlow provides the success probabilities computed from the alert token set given the design 

verification of system properties and the expected utility of the plan based on the probabilities and 
the requirements’ utility weights. Table 36 shows the expected utility of the plan based on the 
probabilities and the requirements’ of MMTS properties to be satisfied.  

Table 36: Risk assessment Using VFlow model of MMTS 

 A1 A2 A3 A4 
R1 0.007164045 0.006461016 0.334125 0.011390625 
R2 0.080380451 0.006461016 0.334125 0.011390625 
R3 0.006375625 0.006302470 0.4455 0.000001 
Expected Utility 0.093920121 0.019224504 1.11375 0.02278165 

 
The expected utility of the adaptation plan supports the PRISM and Uppaal’s verification result 

for A1, A3 and A4, but not for A2. Though both PRISM and Uppaal provide 0% failure rate for 
A2, VFlow’s expected utility does not conclude that A2 is a good adaptation option. Because A2 
has altered multiple verification concerns on which the original verification process relied, this 
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alteration is assumed to inhibit the reuse of the verification process on the adapted. Rainbow and 
ActivFORMS just verify the properties based on established verification process model, but our 
framework determines the riskiness of a plan given alternative plans.  

 

5 Conclusion  
Run-time adaptation in systems poses major challenges. The first challenge is how to determine 

that the changes dictated by an adaption plan do not violate critical properties with which the 
system has been proven or certified to comply. A second challenge is determining if any proof or 
certification processes will be obstructed by the self-repair plan. A third challenge is how to 
measure the risk that an adaptive that may invalidate a property or proof yet is needed to prevent 
the failure of the overall system to complete its mission. To address these challenges, we 
constructed and demonstrated technology to perform compliance status assessment and risk 
assessment of an adaptation plan for both functional and security properties. The technology 
developed directly assesses the resilience of a system coupling architecture awareness, verification 
awareness, and security certification awareness using different modeling and assessment methods.   

6 Future Work  
Although we have had substantial achievements during this project, there is still a great deal of 

work to be completed to understand the long-term implications of this research. First and foremost, 
additional 3rd party technology must be evaluated to fully automate the MAPE-K loop and test the 
framework on plans that have not be designed for the experimentation. This technology includes 
determining uncertainty properties of the system environment, what should be monitored, and how 
plans can be dynamically formulated. Additional future work will include raising the level of 
abstraction and representation by which we describe entities within the framework to ensure they 
are broadly applicable.  
  



Approved for Public Release; Distribution Unlimited. 
120 

 
 
 

References 
 

(Abie, 2012) H. Abie, and I. Balasingham, "Risk-Based Adaptive Security for Smart IoT in eHealth," 
Proceedings of the 7th International Conference on Body Area Networks, ICST, Oslo, Norway, 
2012. 

(Almeida, 2011) R. Almeida, and M. Vieira, "Benchmarking the Resilience of Self-Adaptive Software 
Systems: Perspectives and Challenges," Proceedings of the 6th International Symposium  on 
Software Engineering for Adaptive and Self-Managing Systems, ACM, Waikiki, Honolulu, HI, 
USA, 2011. 

(Bellman, 2014) K.L. Bellman, P.R. Nelson, and C. Landauer. "Active experimentation and 
computational reflection for design and testing of cyber-physical systems," Complex Systems 
Design & Management (Posters), 2014. 

(Bellman, 2018) K. Bellman, "What reasonable guarantees can we make for a SISSY system?" 2018 
IEEE 3rd International Workshops on Foundations and Applications of Self* Systems (FAS* W), 
2018. 

(Burzlaf, 2019) F. Burzlaff, C. Bartelt, "A conceptual architecture for enabling future selfadaptive service 
systems," 52nd Hawaii International Conference on System Sciences (HICSS 52), 2019. 

(Calinescu, 2012) R. Calinescu, C. Ghezzi, M. Kwiatkowska, and R. Mirandola, "Self-adaptive software 
needs quantitative verification at runtime," Communications of the ACM, vol. 55, no. 9, pp. 69-
77, 2012. 

(Camara, 2013) J. Camara et al., Assurances for Self-Adaptive Systems: Principles, Models, and 
Techniques, vol. 7740, Springer-Verlag, 2013. 

(CertWare, 2007) CertWare, https://nasa.github.io/CertWare/  

(Cheng, 2008) S. W. Cheng, and D. Garlan, "Rainbow: cost-effective software architecture-based self-
adaptation, " Carnegie Mellon University, Pittsburgh, PA, 2008 

(Cheng, 2009) B.H.C Cheng et al., Software Engineering for Self-Adaptive Systems, vol. 5525. 
SpringerVerlag, 2009. 

(Cordy, 2013) M. Cordy et al., "Model checking adaptive software with featured transition systems," 
Assurances for Self-Adaptive Systems, LNCS, vol. 7740, pp. 1–29. Springer, Heidelberg, 2013. 

(Cotroneo, 2014) D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo, "A survey of software aging 
and rejuvenation studies," ACM Journal on Emerging Technologies in Computing Systems, vol. 
10, no. 1, 2014. 

(Cox, 2005) J. Cox and E. Durfee, "An efficient algorithm for multiagent plan coordination," In Proc. of 
the 4th Int’l Joint Conf. on Autonomous Agents and Multiagent Systems, 2005. 

(Cozmo , 2018) "Cozmo | Meet Cozmo https://www.anki.com/en-us/cozmo, 2018. 

(Damiani, 2011) F. Damiani, J. Dovland, E. B. Johnsen, and I. Schaefer, "Verifying traits: A proof system 
for fine-grained reuse," in Proc. of the 13th Workshop on Formal Techniques for Java-Like 
Programs, Lancaster, United Kingdom, 2011. 

(Ernst, 2015) G. Ernst et al., "KIV: Overview and VerifyThis competition," International Journal on 
Software Tools for Technology Transfer. vol. 17, no. 6, pp. 677–694, 2015. 



Approved for Public Release; Distribution Unlimited. 
121 

 
 
 

(Garlan, 2004) D. Garlan et al., "Rainbow: Architecture-Based Self-Adaptation with Reusable 
Infrastructure," in Computer, vol. 37, pp. 46-54, 2004. doi:10.1109/MC.2004.175 

(Goues, 2011) C. Le Goues et al., "GenProg: A Generic Method for Automatic Software Repair," IEEE 
Trans. on Software Engineering, 38:1(54-72), 2011 

(Hale, 2017) M. Hale and R. Gamble, "Semantic Hierarchies for Extracting, Modeling, and Connecting 
Compliance Requirements in Information Security Control Standards," Requirements 
Engineering, Dec., pp. 1-38, 2017 

(Hoare, 1985) C. A. R. Hoare, "Communicating Sequential Processes," Prentice Hall, 1985  

(Iftikhar, 2014) M. U. Iftikhar, and D. Weyns, "ActivFORMS: Active Formal Models for Self-
Adaptation," 9th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, 2014 

(Jahan, 2017)S. Jahan, A. Marshall, and R. Gamble, "Embedding Verification Concerns in Self-Adaptive 
System Code," 11th IEEE International Conference on Self-Adaptive and SelfOrganizing 
Systems, IEEE, Tucson, AZ, USA, 2017 

(Jahan, 2018) S. Jahan, C. Walter, S. Alqahtani, and R.F. Gamble, "Adaptive coordination to complete 
mission goals," 2018 IEEE 3rd International Workshops on Foundations and Applications of 
Self* Systems (FAS*W), 2018. 

(Jensen, 2009) K. Jensen, and L.M. Kristensen, Coloured Petri Nets: Modelling and Validation of 
Concurrent Systems, SpringerVerlag, 2009. 

(Jensen, 2015) K. Jensen, and L.M. Kristensen, "Colored Petri Nets: A Graphical Language for Formal 
Modeling and Validation of Concurrent Systems," ACM, Communications of the ACM, New 
York, Vol. 58, No. 6, pp. 61-70, 2015. 

(Kephart, 2003) J.O. Kephart, and D.M. Chess, "The vision of autonomic computing," Computer, vol. 1, 
pp. 41–50, 2003. 

(Kobayashi, 2016) N. Kobayashi et al., "Quantitative Non-Functional Requirements Evaluation Using 
Softgoal Weight," J. of Internet Services and Information Security, Institute of Engineering – 
Polytechnic of Porto, 6:1(37-46), 2016 

(Lemos, 2013) R. de Lemos et al., Software Engineering for Self-Adaptive Systems II, vol. 7475. 
Springer-Verlag, 2013. 

(Lichtenstein, 1985) O. Lichtenstein, and A. Pnueli, "Checking that Finite State Concurrent Programs 
Satisfy their Linear Specification," Proceedings of the 12th ACM SIGACT-SIGPLAN 
Symposium on Principles of Programming Languages, ACM, New Orleans, USA, 1985. 

(Marshall, 2018) A. Marshall, S. Jahan, and R. Gamble. 2018, "Assessing the Risk of an Adaptation using 
Prior Compliance Verification," Proceedings of the 51st Hawaii International Conference on 
System Sciences. 

(Mylopoulos, 1992) J. Mylopoulos, L. Chung, and B. Nixon, "Representing and Using Nonfunctional 
Requirements: A Process-Oriented Approach," IEEE Trans. on Soft. Eng., 18:6(483-497), 1992. 

(NIST, 2013) NIST, Assessing Security and Privacy Controls in Federal Information Systems and 
Organizations, Special Publication 800-53 Revision 4, NIST, 2013. 

(NIST, 2014) NIST, Assessing Security and Privacy Controls in Federal Information Systems and 
Organizations. NIST Special Publication 800-53A Revision 4, 2014. 



Approved for Public Release; Distribution Unlimited. 
122 

 
 
 

(Rushby, 2015) J. Rushby, "The Interpretation and Evaluation of Assurance Cases," Technical Report 
SRI-CSL-15-01, SRI International, Jul. 2015.  

(Sharifloo, 2015) A. M. Sharifloo, "Models for Self-Adaptive Systems," Proceedings of the 2015 
European  Conference on Software Architecture Workshops, September 07-11, 2015, Dubrovnik, 
Cavtat, Croatia. doi>10.1145/2797433.2797457  

(Siboni, 2016) S. Siboni et al., "Advanced security testbed framework for wearable IoT devices," ACM 
Transactions on Internet Technology (TOIT), 16(4), p.26. 2016. 

(Tamura, 2013) G. Tamura et al., "Towards practical runtime verification and validation of self-adaptive 
software systems," Software Engineering for Self-Adaptive Systems II, R. de Lemos, R., Giese, 
H., Müller, and M. Shaw, (Eds.), vol. 7475, Springer-Verlag, 2013 

(Walter, 2018a) C. Walter, I. Riley, and R.F. Gamble, "Securing wearables through the creation of a 
personal fog," Proceedings of the 51st Hawaii International Conference on System Sciences, 
2018.  

(Walter, 2018b) C.W. Walter, "The personal fog: an architecture for limiting wearable security 
vulnerabilities," PhD Dissertation, 2018.  

(Wei, 2018) D. Wei, X. Zhang, and S. Mahadevan, "Measuring the vulnerability of community structure 
in complex networks," Reliability Engineering and System Safety, Vol. 174, pp. 41- 52, 2018 

(Weyns, 2012) D. Weyns, M. U. Iftikhar, D. G. de la Iglesia, and T Ahmad, "A survey of formal methods 
in self-adaptive systems," Proceedings of the Fifth International C* Conference on Computer 
Science and Software Engineering, pp.67-79, 2012.  doi>10.1145/2347583.2347592 

(Whittle, 2010) J. Whittle et al., "RELAX: a language to address uncertainty in self-adaptive systems 
requirement," Requirements Engineering, vol.15 no.2, pp.177-196, 2010.  

(Zuo , 2011) Y. Zuo, and S. Lande, A logical framework for proof-carrying survivability," International 
Joint Conference of IEEE TrustCom- 11/IEEE ICES-11/FCST-11, 2011. 

  



Approved for Public Release; Distribution Unlimited. 
123 

 
 
 

List of Acronyms 
AOM – Adaptation Operator Manager  

AFRL – Air Force Research Labs 

CPN – Colored Petri Net 

CPU – Central Processing Unit 

FBTL – Fuzzy Branching Temporal Logic  

GSN – Goal Structuring Notation 

HRVM – Heart Rate Variability Monitor 

IP – Insulin Pump 

IR – Infrared  

KIV – Karlsruhe Interactive Verifier  

LTL – Linear Temporal Logic  

MAPE – Monitor-Analyze-Plan-Execute 

MMTS – Multi-modal Traveler System 

NIST – National Institute of Standards and Technology  

POCL – Partial-Order, Causal-Link  

SIMS – Smart Inventory Management Systems 

SAC – Security Assurance Case 

SCN – Security Control Network  

SDK – software development kit 

SGW– Soft Goal using Weight  

SIG – Softgoal Interdependency Graph  

STCP – Split Temporal Contract Proposition  

TCP – Temporal Contract Proposition 

TCTL – Timed Computation Tree Logic  

VANET – Vehicular Ad-Hoc Network  

VC – Verification Concern 

VFlow – Verification Workflow  
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