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1. Introduction

When it comes to uncertainty quantification, point estimates of model parameters
are not good enough. One needs to have estimates of the uncertainties in the pa-
rameters of a model if one is going to determine uncertainties in the quantities of
interest produced by that model. Yet in spite of this, published model parameters
all too often lack associated uncertainties; for example, they are missing in param-
eterizations of strength models for rolled homogeneous armor (RHA).'-3 Future
researchers who do uncertainty propagation calculations may then be left to make
educated guesses about the parameter uncertainties.* The point of this report and its
two companion reports is to try to reverse this state of affairs by showing current and
future researchers, especially at the CCDC Army Research Laboratory (ARL), how
to use existing software tools to obtain parameter estimates that include uncertainty.
These tools are used, not on a “toy” problem, but rather on the realistic problem of
finding fitting parameters to strength models for RHA. Two approaches are used:
Bayesian analysis via the packages Stan® and PyMC3,° and an approximate inter-
val predictor model (IPM) approach’-® that can be solved using off-the-shelf linear

programming tools from, for example, SciPy.’

This report is meant as an overview of how to use the aforementioned two ap-
proaches to fit a parameterized model to data, to ascertain the uncertainties in the
model parameters and evaluate the quality of the fit of the model to the data. Its
coverage of Bayesian software tools is mostly limited to a discussion of how to
express a Bayesian model (discussed in Sections 2 and 5) in forms that these tools
can accept. However, there are a few brief mentions of certain functions of these
tools, and one may use them to assist in finding relevant documentation for how
to execute a Bayesian analysis with said tools. A discussion of how to implement
the approximate IPM approach is in Section 7. Those who want more details of
how to implement these analyses may wish to consult at least one of the two com-
panion technical reports!%!!: one covers step by step a workflow using the R lan-
guage!? and relevant packages that that interface with it, such as the Bayesian tool
RStan!? and the linear programming package IpSolve!# used to implement the IPM
approach; and the other covers step by step a workflow that uses the Python lan-
guage,! two Python-based Bayesian tools, PyStan'® and PyMC3,° and the afore-
mentioned SciPy to implement the IPM approach.



Excerpts of program code, variables, functions, and filenames are written in a fixed-

width font 1ike this. The lines in excerpts of program code files are also num-
bered.

2. Overview of Bayesian Analysis

When employing Bayesian analysis to estimate the uncertainties in strength model
parameters, one treats the parameters as random variables and seeks the probability
density function (PDF) of these parameters, given the model and the data at hand.
(For more details on PDFs, see Appendix A.) To obtain the PDF of these model
parameters, one uses Bayes’ rule, which, for continuous random variables, takes
the following form!”:

p(D]0)p(8)

0|D) =
P bl )p(07)de

&)

Here, 0 represents a vector of n, model parameters, where n, > 1, and D represents
a known quantity on which 0 is supposed to depend, usually some set of exper-
imental data. The symbol R"» represents all possible vectors of length n,. Three

particular expressions merit particular mention:

* p(0), the PDF of what is called the prior distribution, or often just the prior,
which represents a possibly rough estimate of what model parameter values
may be more or less likely, without taking D fully into account. Whether the
expression p(x) indicates a prior for x or just a PDF of x in general depends

on context.

* p(D|0), the PDF of the likelihood, which represents how likely D would be

what it is, given a particular value for the model parameter vector 0.

* p(0|D), the PDF of what is called the posterior distribution, or often just the
posterior, which is the PDF of @ once D has been taken into account. This is

the primary output of Bayesian analysis.

In this report, the prior and likelihood together are described as a Bayesian model.
This is distinct from a model used for prediction, such as a strength model, though
such a model is necessarily a part of a Bayesian model. Indeed, the model parameter

vector 0 is technically a vector of the parameters of the overall Bayesian model, of



which the parameters of the predictive part of the model (e.g., a strength model) are

a subset. This is elaborated in the discussion of the likelihood later on.

The prior PDF is often assumed to be the product of its marginal PDFs*, that is,
p(0) = ]_[lnj , P(0:). The marginal PDF of the prior for a particular model parameter
may be noninformative, indicating complete or nearly complete ignorance of the
likely values of a model parameter. Such a prior is typically flat, that is, p(6;) is the
same for all possible values of 6;, and also improper (i.e., /_ o:o p(07)do: — 00).18
Alternatively, the marginal prior PDF p(6;) may also be weakly informative. By
definition, such a prior PDF is proper (i.e., /_ 0:0 p(07)do; = 1), and it also tends to
be wide or fat, indicating that it represents a rough order-of-magnitude estimate of
a parameter’s possible values.!® A sufficiently narrow marginal prior PDF may be
considered strongly informative, with the sharp peak of the PDF being indicative
of a parameter’s likely value given previous experiments, theory, and so on. The
overall prior p(@) may be strongly informative for a particular parameter, while
being weakly informative for the rest of the model parameters. However, if the
predictive part of the model imposes correlations among the model parameters,
then a strong marginal prior for one parameter may not only affect the locations of
the peaks of the marginal posterior PDFs of the other parameters, but may lead to
narrower peaks for those PDFs as well. Strongly informative priors should be used
with caution. If they are based on misinformation, and there is not enough data in

D to contradict this misinformation, then the resulting posterior will be misleading.

The likelihood, in practice, often accounts for the discrepancy between the predic-
tions of a model and the experimental data. For example, there may be a strength
model 0,4:(e, 0,,4;) that predicts the flow stress given a material state e (which may
be a combination of, for instance, plastic strain, strain rate, and temperature) and a
parameter vector 0,,;,, whose components are a subset of the components of 0. This
model is such that when D consists of a set of N experimental inputs {e;},i € [1, V],
along with the corresponding set of experimental outputs {o;}, then o,q:(€;, 0,41)
is an imperfect predictor of ;. The experimental outputs may be thought of as

samples of random variables represented by the following sampling statement:

{oi} ~ Diik(Tmar, {€i}, Omar 0err) (2)

*Appendix A defines what a marginal PDF is; see Eq. A-3.



The “~” operator indicates that the set {07} is assumed to have been drawn from
a random distribution Dy;; that models the analyst’s assumptions of how the set of
model predictions {o7,4:(€;,0,,4:)} departs from reality. This distribution may de-
pend not only on the model predictions but directly upon {e;} itself (as, for example,
in the work of Kennedy and O’Hagan'®). The vector 0., contains any parameters of
the distribution Dy;; that characterize noise and errors in the experiment and possi-
bly errors in the model as well.” The components of this vector are the components

of 0 that are not components of 0,,4;. If pp,,, is the PDF of D, then

p(D[0) = p({e;}, {07} | 0ma1, 0crr) = Py {0i} | Omar, (€}, Omars 0err)  (3)

where the arguments of pp,, after “|” are parameters of Oy;;. The components of
0., are often called nuisance parameters, since they are needed for analysis but are

not inputs to the predictive model itself.'

From the posterior distribution itself, one can obtain both point estimates of strength
model parameters and measures of their uncertainties. From a combination of the
posterior and the likelihood, one may obtain the posterior predictive distribution
(PPD), which can be used to check how well a model’s predictions agree with the

data.'® The PPD may be summarized by the following sampling statement,

77 ({e;}) ~ Diir(Omars {€: s Omarr Oerr), if 0 ~ Doy (4)

where £7¢?({e;}) is a random set of possible experimental outputs for a given set
of experimental inputs {e;}, provided that o, represents the actual behavior of
the experimental system; and D, is the posterior distribution, which again has
PDF p(0|D). Equation 4 implies that a sample from the PPD is obtained by sam-
pling 0 (i.e., 0,,4; and 0,,,) from the posterior distribution, substituting that into the
likelihood Dy;x(. . . ), and then sampling from the likelihood. The PPD includes the
effects of nuisance parameters. However, when one inputs PDFs of parameters into
tools for uncertainty propagation analyses, one generally does not input the PDFs
of the nuisance parameters. To see the effects of the uncertainties in the predictive

model parameters alone, one may use the pushed forward posterior (PFP),?! which

It is possible to construct Dy; such that error is taken into account through 0,,4; alone.Z’ In
that case, 0., is an empty, zero-length vector.



may be represented by the sampling statement
Zpfp(ei) ~ O-mdl(ei’ 9ma’l)a if 9mdl ~ Z)post (5)

This statement implies that a sample of the PFP is obtained by sampling the pre-
dictive model parameters 0,,,; from the posterior distribution, and substituting that
into the predictive model o,,4;(€;, 0,,4;). Ideally, a sufficiently large number of sam-
ples from the PPD should form a pattern that resembles the experimental outputs
{o}. Similarly, a sufficiently large number of samples from the PFP ideally should
resemble what the experimental outputs would look like if there were no error. The
extent to which these ideals hold indicates the level of accuracy of the assumptions

used to construct the likelihood, such as the choice of 0,4 and Dy;y.

The posterior PDF is often difficult or impossible to obtain analytically, so in prac-
tice it is estimated numerically via various algorithms collectively called Markov
Chain Monte Carlo (MCMC). Briefly, these algorithms take the likelihood as input,
may either take priors as input or assume noninformative priors, and produce as
output what are called chains, sequences of random samples from what is supposed
to be the posterior distribution. These samples can then be postprocessed to obtain
information about the posterior and related quantities such as the PPD and PFP.
The particular software tools mentioned in Section 1, Stan and PyMC3, implement
a form of MCMC called Hamiltonian Monte Carlo (HMC),2? which uses gradients
of the logarithms of the likelihood and prior to sample posterior distributions that
would be more difficult for MCMC methods that do not use gradients to sample,
and the no U-turn sampler (NUTS),?? which automatically and adaptively sets the
parameters for HMC that would otherwise need to be manually set by the software
user. For those interested in more details of MCMC algorithms, one may consult

Kruschke,!” Smith,?* Gelman et al.,'8 and Betancourt,?? as well as other works.

3. Overview of Approximate Interval Predictor Model Approach

An IPM’# is simply a function that returns an interval as its output rather than a
single value. For example, given a function to predict the flow stress, ,q;(€, 0,,41),

and a set O, the interval within which the flow stress is estimated to lie is



[O-min(e; G), O'max(e; 9)], where

O-min(e; ®) = min O-mdl(ea 0mdl) (6)
mdi €O

Omax(€;0) = max_ oyar(e, 0,a1) (7
mdl €O

The set O is chosen so as to keep the intervals from the IPM reasonably tight, given

known data points {e;, 0;}. For example, ® may be chosen such that

N

1
O =argmin — > [0pax(€;; Q') — Tpin(e;; )] @®)
@/ N ;

The minimization of Eq. 8 under the constraint
Tmin(€;; O) < 07 < Tpax(€;; 0),Vi € [1,N] )

may not be tractable, especially if there is no analytical solution to Egs. 6 and 7, thus
requiring a nested optimization (i.e., at each iteration to solve Eq. 8, optimization
routines would need to be used to estimate o, and o,,, for each data point).
However, one may obtain a more tractable problem by approximating o,4;(€, 0,,4;)
with a first-order Taylor expansion about a point estimate of 0,,4;, 09, and taking @
to be a hyperrectangle with corners 0g — A@,,;, and ¢ + A0,,,,. If g, ,(e) is the
gradient of 0,4(. . .) with respect to 0,,4 evaluated at e and 09, and |g,, ,(e)| is
the elementwise absolute value of g, . (e), then Eqs. 6 and 7 can be approximated

as follows:

O-min(e; 9) ~ O-mdl(e’ 00) - ol (e) + |g0'md1 (e)l)T A\ B

1
2 (10)
+

N = —

(ga'mdl (e) - |g0’md1 (e)l)T Aﬁmax

1
O-max(e; 9) ~ O-mdl(e’ 00) - 5 (ga'mdl(e) - |g0'mdl(e)|)T ABmtn
(11)

1
+ 5 (ga'mdl (e) + |g0'md1(e)|)TA0max

Here, a superscript T indicates the transpose. Given Egs. 10 and 11 along with a



fixed 09, Eq. 8 becomes

T
(A0 +A0,,)  (12)

N
. 1
Aﬂmin’ AGma)c = A;l/rg IAI})I’H N l; |g0’mdl (ei)l max

min’= " max

Together, Eqs. 9-12 form a constrained minimization problem that can be solved

through linear programming.

The previously described approach for estimating ® does not guarantee that it does
not contain invalid values of 0,,4;. For example, even though the elements of 0,4
must be nonnegative, 0p—A0,,;, may have negative elements. There are two possible
approaches to remedy this. One of these is to use transformed parameters, so for
example, if a strength model takes nonnegative parameters, then 0,,,; represents the
natural logarithm of the parameters, and o,,4;(€, 0,,4;) = 0'}21 dl(e, exp(0,,41)), where
the exponential function is taken to operate elementwise. Another approach is to
simply truncate the bounds of ®, so for example, if the estimated value of A@,,;, is
a + 0, where 0 causes O to contain invalid values, then A0,,;, can be taken to be
just a. While this approach is more simplistic, it can still lead to reasonable results

if the elements of § are small.

4. Data for Analyses

The stress-strain data to be used in Bayesian analysis of strength models comes
from the Material Implementation, Database, and Analysis Source (MIDAS).25 Ta-
bles of this stress-strain data, along with some of the details of how they have been
obtained, are in Appendix B. The data can be divided into n. subsets, where subset
i. (i, € [1,n.]) is associated with a plastic strain rate élif and an initial temperature
Tl.’;l. . of the sample being deformed. A graph of the data is shown in Fig. 1, with each
subset plotted as a curve. Examination of these curves indicates that they can be
grouped into two categories, one for relatively smooth curves, which are associated
with strain rates no greater than 1/s, and one for rougher, wavier curves, associated
with higher strain rates. As pointed out in Appendix B, the low-strain-rate data and
high-strain-rate data have been obtained with different instruments, which may be

taken into account when fitting strength models to them.

At first, it may seem that when the stress-strain data are input to a computational

Bayesian analysis, far less storage should be needed for the strain rate and temper-
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Fig. 1 Plots of flow stress o vs. plastic strain ¢, for RHA from MIDAS, with the plastic strain
rate denoted as ¢, and the initial sample temperature 7;,,;;



ature than for the stresses and strains, since only one strain rate and temperature
would be needed for each stress-strain curve. However, when a sample is deformed
at a high strain rate, there is no time for the heat generated from plastic work to
dissipate from the sample while it deforms. Accordingly, during deformation, the
temperature of the sample rises from its initial value. Ideally, the best way to ac-
count for this temperature rise due to the buildup of heat would be to measure the
temperature of the sample as it deforms (as done, for example, in Walley et al.26),
However, this has not been done for the stress-strain data under consideration here.

Instead, the temperature rise AT as the sample deforms is estimated as follows>"2°:

AT =Tl ~ T, zﬁ#ﬁ/fs"” ode, (13)
peT2y) Jegs
Here, T;C and 6;;/ are the temperature and plastic strain of data point j in subset
ic, Bro is the Taylor-Quinney coefficient, p is the density, and c¢(T') is the specific
heat, which is a function of temperature 7. The integral in Eq. 13 is the area under
the portion of stress-strain curve i. that is over the strain interval [6;;‘:}._ l,eéfj]. In
this equation, Sr¢o indicates the fraction of plastic work converted to heat, so its
maximum value is 1.2° The density is taken to be 7840 kg/m?>.3" Specific heat values
of RHA do not appear to be readily available, but since the equations of state for
RHA and iron do not appear to be significantly different,3! specific heat values of
body-centered cubic (BCC) iron,*? shown in Appendix B, are used instead. Linear
interpolation is used to estimate c¢(7") for temperature values not given in Table B-1.
Equation 13 treats the specific heat as approximately constant over the temperature

rise AT.

If the temperature associated with the first point of curve i, T{", were equal to
T

.o.» calculating the set of temperatures {T flc} from the temperature rise would be
j

straightforward. However, the initial temperature is for an unstrained sample, and

for high strain rates, the plastic strain €' is not 0 but some small finite value, usually

1
around 2.5%. At this finite strain, the [;emperature has already increased from Tl‘r‘” "
To approximately account for this, one can note two things illustrated in Fig. 2,
which shows an example stress-strain curve starting at (e;;‘:l,o{"). The part of the
curve over the interval [0, 6;:1] is essentially missing. It is unlikely that the curve is

above the horizontal line o = o

1 2
O'i" eI’;'l, is a likely overestimate of the area under the missing part of the stress-

so the area of the shaded rectangle in the figure,



ic
. . 1 ’
0.50';" e;"l, is a likely underestimate, because the intercept of the stress-strain curve

strain curve. On the other hand, the area under the line from the origin to (61’;51, o

with the o-axis is not zero but rather the initial yield stress for the temperature and
strain rate that is associated with the curve. Accordingly, an approximation of the

temperature rise due to this missing part of the curve then is

. i Pro i
T =T = i Jarea € area € 105,11 (14)
init

assuming that ¢(7') is approximately constant over the temperature range [7}’;1. - ch].

Likely overestimate
of area under .
Available

missing part of _
stress- Stress—.stram
strain curve curve 1

.......................
.

Likely underestimate
of area under missing
part of stress-strain
curve

>c,

Fig. 2 Example stress-strain curve where the available data points start at (e}if 1> o-fc ), so that
the part of the curve over the interval [0, 6;;1] is missing. The shaded rectangle, with area

crf“ el’j 1» is a likely overestimate of the area under the missing part of the stress-strain curve.

f" € /2, is a likely underestimate of the area.
p,1

The hatched triangle, with area o
While Brp is often taken to be equal to 0.9 for metals, there is a wide spread of
values found in the literature, with Srp sometimes found to be as low as 042
Estimation of f,., amounts to educated guesswork. Accordingly, temperatures are
estimated for a few combinations of reasonable estimates of Srg and fureq, Shown

in Table 1. Plots of these estimated temperatures are shown in Fig. 3.

5. Constructing Bayesian Models

To construct an Bayesian model to fit a strength model, one needs a likelihood and
a prior. To determine a prior, one of course needs to know the plausible ranges of

values of strength model parameters, while the likelihood needs the predictions of a

10



Table 1 Possible combinations of values of 87 and f,,., used in temperature estimation

ﬂTQ farea
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Fig. 3 Estimated temperatures along stress-strain curves with the initial temperatures and
strain rates shown, given the values of Sro and f,, ., in Table 1
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strength model as one of its inputs. Many strength models may be used to model the
plastic behavior of RHA, but here, the focus is on two of them: one by Johnson and
Cook?3 and one by Zerilli and Armstrong>* that is specific to BCC materials. These
two models are chosen because they have relatively simple closed forms and are
available in Army-relevant codes such as CTH.?> The Johnson-Cook model may be

written as follows:

(€€, T50,¢) = (A + Be,)[1 + Cln(é,/é,0)][1 — (T7)"] (15)
T = (T - Troom)/(Tmelt - Troom) (16)

Here, oc is the flow stress according to the Johnson-Cook model, €, is the plastic
strain, €, is the plastic strain rate, €,9 = 1/s, T is the temperature, ;. is the room
temperature, Tp,;; 1s the melting temperature, A, B, n, C, and m are fitting parame-
ters, and 0;c = (A, B,n,C,m). Following Gray et al.,! Tyoom and T, are taken to
be 298 and 1783 K, respectively. Since the Johnson-Cook model cannot be applied
where the temperature is below 7, only stress-strain data for temperatures of

T, 00m and above are used with it.

The Zerilli-Armstrong model for BCC materials may be written as follows:

0zABcc(€p,€p,T50248cc) = Co + Crexp[(—=C3 + CyIn(é,/€,0))T] + Cse,  (17)

Here, 0za pcc 1s the flow stress according to the Zerilli-Armstrong (BCC) model;
€p, €p, and T are again the plastic strain, plastic strain rate, and temperature, respec-
tively; €0 = 1/s; Co, C1, C3, C4, Cs, and n are fitting parameters; and 074 pcc =
(Co, C1,C3,Cy4,Cs,n). (There is no parameter Cy; such a parameter belongs to the

face-centered cubic version of the Zerilli-Armstrong model.!)

To construct a likelihood, one needs a model of the discrepancy between the model
predictions and the experimental data. Conceptually, this may be modeled as fol-
lows!?:

{5} = omar({€7 ), Omar) + e(D, 6;,,) + 5(D, 65,,) (18)

err

Following similar notation in Section 4, the vector of experimental stress values is
written as {O';C}, where j € [1, N, ] and N;, is the number of data points in the sub-
set associated with stress-strain curve i.. Given the constitutive models described in
Egs. 15 and 17, “md![” now stands in for “JC” or “ZA, BCC,” and e;F represents the

12



combination of plastic strain 61’;]., plastic strain rate ¢, and temperature TJ’C The
vector O'mdl({e;c },0,,q1) consists of predicted stress values, one for each element
of {e;.C}. Concatenating vectors 0°,. and 0° _ yields 0,,,. Here, e(D,0¢,,) is a ran-

err err
dom function that represents noise from experimental instruments, while 6(D, 0°,,)
is a smoother random function that represents more systematic departures between
the model predictions and real-world behavior, i.e., model inadequacy. While this
may be a reasonable conceptual depiction of model error, it can have significant
practical problems, because for almost any value of 0,,4;, one can construct a func-

tion 5(D,0¢, ) that makes up the difference between {0';"} and O'mdl({ei.“},()mdl).

err
0

Furthermore, estimating 05,

can be expensive. For example, if d(...) is taken
to be a Gaussian process, then it has a covariance matrix of size N X N, where
N = ]_[l'.lc":l N;,. This matrix requires O(N?) storage and requires O(N?) time to in-
vert, and the inversion has to be done at least once per MCMC iteration. Because of
these issues, an explicit representation of model inadequacy is avoided in the rest of
this report. A likelihood that neglects model inadequacy is at least a useful starting
point, and the results of proceeding with it can be used to indicate if some alternate
likelihood may be advisable. Interested readers who wish to delve more deeply into
representations of model inadequacy may wish to consult Kennedy and O’Hagan,'”

Ling et al.,? or Sargsyan et al.?°

When model inadequacy is neglected and discrepancies between model predictions
and data are attributed solely to measurement noise, the likelihood PDF may be
simplified. If the noise in the measurement of one flow stress value is independent
of the noise in the measurement of another, then the PDF of the set of stress values
is the product of the PDFs of each individual value, so the overall likelihood PDF
may be decomposed as follows:

p(DI8) = poy, ({0} [ Tmars (€5, Omat, Bery)

ne  Nie
i i
= l_l l—[p(o-f |0-mdl» ejc,emdl» eerr)

io=1 j=1

19)
The random noise in an experimental output may be approximated as being nor-
mally distributed and centered about the model prediction for that output, such that

P(O';C |0-mdla e;c, 0,41, 0err) = pnormal(o-;c |0-mdl(ej-ca 0mdl), SDa') (20)
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where prormal(. - . ) is the PDF of a normal distribution with mean o’mdl(ez?, 0,.4:) and
standard deviation SD. (See Appendix A for more discussion of normal distribu-
tions.) Of course, SD, is meant to indicate how much noise is in a measurement
source. For this particular problem, the choice of measurement source depends on
the strain rate, so SD, depends on it as well. Here, SD, is assumed to be a constant
for each source, so that

SDy1 € <1.0/s

SD(el) = 1)

SD,» otherwise

If the noise in the measurement sources were well known, then SD,; and SD.»
could be treated as known quantities, and 0,,, would be an empty, zero-length
vector. However, here they are treated as nuisance parameters, that is, 0., =
(SDC,-J,SDO-Q).

If the assumption of negligible model inadequacy does not hold, then the resulting
PDF of model parameters, p(0|D), will still tend to center around a value of 0 that
minimizes the least-squares error (weighted by SD, 1 and SD,;») as well as the dis-
crepancy (or more precisely, the Kullback-Leibler divergence) between the approx-
imate constructed likelihood and the actual random distribution that generated the
experimental data.’” Furthermore, if more experimental data were to be obtained,
the PDFs of the strength model parameters would become narrower, regardless of
how well the model tracks the trends in the experimental data. Accordingly, the
width of these PDFs cannot be used to gauge the accuracy of the strength model.
However, the average values of the nuisance parameters SD,; and SD;» do in-
crease to accommodate discrepancies between model predictions and experimental

results, so they do provide a rough estimate of the accuracy of the model.

The PDF of all the priors here is taken to be the product of the prior PDFs of the in-
dividual parameters, including nuisance parameters. For example, for the Johnson-
Cook model, this is

p(0,c,8Ds1,8Dg2) = p(A)p(B)p(n)p(C)p(m)p(SDs1)p(SDs2)  (22)

Since noninformative priors may lead to both instability in numerical analyses>®

and improper posteriors, they are not used in any analysis in this report. Instead,

priors are mostly weakly informative.
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For both the Johnson-Cook and Zerilli-Armstrong (BCC) models, the parameter n
is the exponent for a power-law curve whose slope decreases with increasing €,;
therefore, n is in the interval [0, 1]. The simplest choice of prior distribution for n,
then, would be a uniform prior over that interval. However, for more flexibility, p(n)
is taken to be ppera(n|nq,ng), the PDF of a beta probability distribution (described
in Appendix A), which is also 0 outside of [0, 1]. The parameters of this distribution
are taken to be n, = ng = 1.1, leading to the PDF shown in Fig. 4a. This PDF
distribution is still nearly as flat as a uniform prior, but is slightly more informative,
indicating a random variable that is highly unlikely to have values at the extremes

of the interval [0, 1] but could readily be almost anything else in that interval.

The other model parameters are positive but have no other hard limits on their range
of values. For simplicity, the prior distribution used for each of these parameters
is a modified normal distribution that is centered around a point estimate of the
parameter—which may be little more than a rough guess—and truncated so that its

PDF is zero for negative parameter values, that is,>”

710,
p(a) = pn(EH:;)l(alaguess means Aguess sd)

pnormal(alaguess means Aguess sd)

© %k %k
= f() Prormal(@ |aguess means Aguess sa)da

0 otherwise

a>0 (23)

where a stands in for any model parameter except n, and the expression
Prnormal(@|guess means Aguess sa) indicates the PDF of a normal distribution (described
in Appendix A) with mean dg;egs mean and standard deviation a5 s4. The super-
script T'[0, co) indicates that the domain of the PDF is truncated to the interval [0, co).
The integral in Eq. 23 is a normalization factor that ensures that the PDF remains
proper. When the prior for a is weakly informative, dgyess mean 18 s€t to an order-
of-magnitude estimate of that parameter. Most of these estimates are from previous
model fits in Gray et al.! Initial order-of-magnitude estimates of parameters are
shown in Table 2. For the prior to be weakly informative, dgy.ss s¢ should be at least
the same order of magnitude as dgess mean- However, since the model parameters
are presumed to be nonzero, p(0) needs to at least be approximately 0. Accord-
ingly, in a weakly informative prior for a, dgess sa 18 €t t0 Aguess mean/3. A plot
of the prior PDF p(A), where Agyess mean 15 set to the initial estimate for A in the

aforementioned table and Ag,egs sa 1S Set t0 Aguess mean/3 = 333 MPa, is shown in
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Fig. 4b.

Table 2 Initial rough estimates of model parameters

Parameter Estimate
A (MPa) 1000
B (MPa) 1000
n 0.5
C 0.001
m 1
Co (MPa) 100
Ci (MPa) 1000
C; (K™ 0.001
Cy (K™ 0.00001
Cs (MPa) 1000

SDO-,I, SDO-’Z (MPa) 100

0.0012 A
1.0 1

0.0010 A
0.8

0.0008 -
—~ 0.6 —
£ < 0.0006 -
o o
041 0.0004 -
0.2 0.0002 A
0.0 - 0.0000 A
0.00 0.25 0.50 0.75 1.00 0 1000 2000
n A (MPa)

Fig. 4 Marginal prior PDFs for parameters n and A, where a) p(n) = ppew(n]1.1,1.1) and b)
p(A) = pT1%*) (411000, 1000/3)

normal

For parameter A of the Johnson-Cook model, a strongly informative prior is also
available, because it represents an experimentally obtainable quasi-static yield stress.
In Gray et al.,' the original source for the stress-strain data to which the Johnson-
Cook and Zerilli-Armstrong (BCC) models are to be fit, samples of 5-inch-thick®
RHA are taken perpendicular and parallel to the rolling direction of the armor plate.
In Benck,*® four samples of 4-inch RHA, also tested perpendicular and parallel

*According to Meyer and Kleponis,” the RHA used by Gray et al.! is 2 inches thick, but this
appears to be a misreading of the test certificate in Fig. B-2 in Gray et al.,! which describes the plates
as“2 = 5 —=X— 74 —X— 747, indicating two 5-inch-thick square plates with a side length of 74
inches. A 2-inch thickness is inconsistent with the weight of each plate, 7765 1b, and a steel density
of about 0.284 1b/in”.
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to the rolling direction, have measured yield strengths of 700.0, 702.0, 704.0, and
723.0 MPa. According to the specification for RHA,*" plates of 4 to 6 inches should
have the same range of hardness values, which suggests that the yield strengths of
4 and 5-inch plates should be about the same. This in turn suggests a value for
Aguess mean Of 707.25 MPa, the mean of the measured yield strengths for the 4-inch-
thick RHA, and a value for Agss sq¢ 0f 10.63 MPa, the standard deviation of those
measured yield strengths. The narrowness of this standard deviation, as compared
with the standard deviation of about 333 MPa for the weakly informative prior for

A, is what makes this prior strong.

A Bayesian model may be expressed in terms of sampling statements, and doing

so simplifies the process of inputting the model into Bayesian software tools. 73941
Sampling statements for the priors are as follows:

n ~ beta(ng, ng) (24)

A ~ normal(Agyess mean> Aguess sd)T[0,00) (25)

B ~ normal(Bgyess means Bguess sd)T[0.00) (26)

C ~ normal(Cguess means Cguess sd)T[0.00) @7)

m ~ normal(Mgyess means Mguess sd)T[0,00) (28)

Cx ~ normal(Cy guess mean> Cr.guess sd)T[0.00) (29)

SDg.1 ~ normal(SDy- 1 guess means SDer.1 guess sd)T10.0) (30)

SDyp ~ normal(SD g2 guess means SDo2.guess sa)T[0,0) G

where k € {0,1,3,4,5}, beta(ny,ng) is the beta distribution with PDF p(n) =
Poeta(n|nq,ng), normal(dguess means Aguess sd)T[0,00) 18 the truncated normal distribu-
tion with the PDF in Eq. 23, and the values of ny, ng, Aguess mean> Aguess sd» and so
on, are as previously described. Because the likelihood PDF is assumed to decom-
pose into a product of PDFs, one for each data point, a sampling statement can be
associated with each data point (rather than having a sampling statement for the set
of data points as a whole as in Eq. 2). Following Eq. 20, each of these sampling

statements may be expressed as
0';" ~ normal(c, mdz(e;”, 0,141), SDg ) (32)

where k = 1 if é,’f < 1/s, and k = 2 otherwise. For the Johnson-Cook and Zerilli-
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Armstrong (BCC) models specifically, the sampling statements corresponding to

their respective likelihoods are
o'e ~ normal(cyc (€', 5, (T)",0,), SDo k) (33)

and

o ~normal(ozascc(ey ;- €51, 02za8cc), SDo k) (34)

>,

6. Specifying Bayesian Models for Software Tools

To use existing software tools to analyze Bayesian models, these models need to be
translated from the mathematical notation seen in Sections 2 and 5 to a form that
these software tools can use. The following sections discuss how this translation is
done for Stan* and PyMC3.

6.1 Specifying Models With Stan Specification Files

In order to use the various interfaces of Stan (such as RStan,'? PyStan,'® or Cmd-
Stan*?), a specification of a Bayesian model should be written in plain text, prefer-

ably in a separate file,*>*

using the syntax of the Stan language. This language
currently consists of several program blocks,” each of which begins with a keyword
or keyphrase followed by statements enclosed in braces.? These are the program

blocks of the Stan specification files used in the analyses of this report:

¢ the functions block, which contains the definitions of one or more func-

tions to be used in subsequent program blocks;

* the data block, which contains declarations of the input variables needed

for the Bayesian model;

e the transformed data block, which contains declarations of variables

that are functions of the variables from the data block;

* the parameters block, which contains declarations of the unknown model

parameters to be found; and

*This may change in the future; see Carpenter.*’
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* the model block, which contains descriptions of the priors and likelihood of
the model, in a syntax that resembles the sampling statements of Sections 2
and 5.

As an example, the program blocks of the specification of the Johnson-Cook model

(shown in Appendix C) are shown and discussed in more detail.

The functions block is as follows.

functions {
vector jc (vector epsilon_p, real log_epsilon_p_dot, wvector T_star,

real A, real B, real n, real C, real m) {

int length_epsilon_p = num_elements (epsilon_p);

vector[length_epsilon_p] sigma;
real edot_factor = (1.0 + Cxlog_epsilon_p_dot);

// The exponentiation operator """ doesn't vectorize, so I need a
// "for" loop here.
for (i in l:length_epsilon_p) {
sigma[i] = (A + Bx(epsilon_p[i])"n)*edot_factorx*
(1.0 = (T_star[i])"m);

return sigma;

This block defines the function jc, which specifies the Johnson-Cook strength
model, o;c. Arguments to functions in Stan have rypes. The first argument,
epsilon_p, of type vector, represents a sequence of plastic strain values e,
where epsilon_p[1] is the first value in the sequence, epsilon_p[2] is
the second value, and so on. The integer value in the brackets is called an index.
The second argument, 1og_epsilon_p_dot, of type real, represents a sin-
gle scalar value for In(€é,/€,0). In general, variables of type real represent double
precision floating-point numbers. The argument T_star represents a sequence of
values of T*, and the arguments A, B, n, C, and m represent the fitting parameters of

the Johnson-Cook model.

Lines 6-9, in the body of the function jc, are variable declarations in Stan.
These indicate the names of variables that are used in the rest of the body of the

function (i.e., length_epsilon_p, sigma) and edot_factor, the types of
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these variables, and they may also initialize the values of these variables. Here,
length_epsilon_p is of type int, which indicates that it is a scalar in-
teger value, and it is initialized to num_elements (epsilon_p), which is
the number of values in the vector epsilon_p. Like epsilon_p, sigma is
of type vector. However, when declaring a variable of this type, the num-
ber of values stored in this variable must be given in brackets following the key
word “vector”. Accordingly, the declaration for the variable sigma starts with
vector[length_epsilon_p], indicating that the number of values stored in
sigmais length_epsilon_p. The variable edot__factor is set to an arith-
metic expression that corresponds to the factor [1 + CIn(€,/€,0)] in the Johnson-
Cook model. (In this expression, “x” is the multiplication operator, as it is in many
programming languages.) Like all statements in Stan, the variable declarations are
terminated by semicolons. Variable declarations are usually allowed in any block of
statements enclosed by braces (e.g., a function body), but they must be at the top of

the block, above any other statements.

The token *“/ /” indicates the start of comment text. Everything from this token to
the end of the line is ignored by a Stan implementation. (The comment text here

indicates that the exponentiation operator “~”” does not work with vectors.)

The expression for (...) indicates iteration, which means that the statements
within the braces following for (...) (i.e., lines 14-15) are executed repeat-
edly. For each repetition (or iteration), the variable i takes on a different value,
starting from 1 and continuing through 2, 3, and so on, all the way up to
length_epsilon_p. This for loop specifies how element i of the sequence
sigma is related to element i of the sequences epsilon_p and T_star, given
certain values of the other arguments of the function jc. The expressions (A +
Bx (epsilon_pl[i]) "n),edot_factor,and (1.0 - (T_star[i]) " m)
correspond to the factors (A+Be,), [1+C In(€,/€,0)], and [1—-(T*)"] in the Johnson-
Cook model. One may note that the for loop could have been written without
edot_factor as follows.
for (i in 1:length_epsilon_p) {

sigma[i] = (A + Bx(epsilon_p[i])”*n)* (1.0 + Cxlog_epsilon_p_dot) *
(1.0 = (T_star[i]) m);

However, since the value of the expression 1.0 + Cxlog_epsilon_p_dot
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does not change in any iteration of the for loop, it is assigned to edot__factor
in the last variable declaration above the loop, and then edot_factor is used in
place of the expression. This avoids repeatedly calculating the expression unneces-

sarily.

Finally, the return statement in line 18 indicates the value or values that function
Jc returns when it is evaluated. In this case, what is returned is sigma, the vector

of flow stress values as determined from the Johnson-Cook model.

The next block is the dat a block:

data {

int<lower=1> num_curves;

int<lower=0> curve_sizes[num_curves];

vector [num_curves] epsilon_p_dot;
vector [sum(curve_sizes)] epsilon_p;
vector [sum(curve_sizes)] sigma;
vector[sum(curve_sizes)] T;
real<lower=0.0> T_melt;
real<lower=0.0> T_room;

real<lower=0.0> epsilon_p_dot_0;

real<lower=0.
real<lower=0.
real<lower=0.

real<lower=0.

0>
0>
0>
0>

A_guess_mean;
B_guess_mean;
C_guess_mean;

m_guess_mean;

real<lower=0.
real<lower=0.
real<lower=0.

real<lower=0.

0>
0>
0>
0>

A_guess_sd;
B_guess_sd;
C_guess_sd;

m_guess_sd;

real<lower=0.0> n_alpha; real<lower=0.0> n_beta;

vector<lower=0.0>[2] sd_sigma_guess_mean;

vector<lower=0.0>[2] sd_sigma_guess_sd;

The data block is composed entirely of variable declarations, similar to the ones
already seen in the body of the function jc shown previously. Within this block,
one can use the notation <lower=1o, upper=hi> to indicate that a variable
is constrained to be no lower than 1o and no higher than hi. If the variable has
no lower or upper bound, then either lower=10 or upper=hi is omitted. If at
the end of a variable name in a declaration, there is an integer expression in brack-
ets, such as “[num_curves]”, that means the variable is an array variable. This
means that curve_sizes (line 26) is such a variable. An array variable is sim-

ilar to a variable of type vector in that it is a sequence of values, so that, for
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example, curve_sizes[1] is the first value, curve_sizes[2] is the second
value, and so on. The number of values in this sequence is the value of the afore-
mentioned integer expression in the brackets of the variable declaration, which for
curve_sizesisjust num_curves. There are several differences between array
variables and vectors, and these are described in the Stan reference manual.>® For

the purposes of this report, two particular differences are noted:

* Arithmetic operators such as “+” and “x” (but not “~”!) are defined for vec-

tors but not arrays.

* A vector always contains a sequence of real numbers, whereas the values in
arrays may be real numbers, integers, or even other Stan types such as vectors

or matrices.

For an array or vector variable, like curve_sizes or epsilon_p, the con-
straints specified in the <lower=1o0, upper=hi> notation apply to all values

stored in the variable.

Here, num_curves 1is the number of stress-strain curves. The array
curve_sizes indicates the number of data points in each stress-strain curve.
Due to limitations in the types available in the Stan language, the data for
strains, stresses, and temperatures are stored in vectors according to a scheme rec-
ommended in the Stan language manual for so-called ragged data structures,
which is illustrated in Fig. 5. The first curve_sizes[1] elements of sigma,
epsilon_p, and T are the stress o, plastic strain €,, and temperatures 7" for the
first stress-strain curve, measured for strain rate epsilon_p_dot [1], while the
next curve_sizes[2] elements of sigma, epsilon_p, and T are the stress,
plastic strain, and temperatures for the second stress-strain curve, measured for
strainrate epsilon_p_dot [2], and so on. Much of the notation for the variables
in the data block is similar to the mathematical notation used for the Johnson-
Cook model and its priors. For example, T_melt is Ty, epsilon_p_dot_0
is €,0 (Where “dot” refers to the dot over the character €), A_guess_mean is

Aguess mean»> and so on.

The next block is the transformed data block:

transformed data {

vector [num_curves] log_epsilon_p_dot = log(epsilon_p_dot/epsilon_p_dot_0);
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Strains for Strains for Strains for Strains for curve
curve 1 curve 2 curve 3 num_curves

epsilon_p [eeeje[=[e] .- [o[o]@[0[0]0] - [@]

Stresses Stresses Stresses Stresses for curve
for curve 1 for curve 2 forcurve 3 num_curves

sigma [CeeeF=[e] ... [e]o[@[@]0[0] --- [@]

Temperatures Temperatures Temperatures Temperatures for
for curve 1 for curve 2 for curve 3 Curveé num_curves

T [e[e[e[e]...[o] - [o[e]o[e[0]0] .- [@]

Num. data pts. Num. data pts. Num. data pts.
in curve 1 in curve 2 in curve 3

Num. data pts.

- in curve
N num_curves

curve_sizes

Fig. 5 Storage of data for stress-strain curves in the Stan vectors epsilon_p, sigma, T, and
curve_sizes
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vector [sum(curve_sizes)] T_star = (T - T_room)/(T_melt - T_room);

}

The purpose of this block is to avoid redundant computation. Rather than
repeatedly compute log (epsilon_p_dot/epsilon_p_dot_0) or (T -
T_room)/ (T_melt - T_room) again and again as a model is sampled, it is
computed once and stored in 1og_epsilon_p_dot and T_star. The variable
T_star, of course, represents 7*. This block also shows an example of arithmetic
operators (such as the division operator “/”’) being applied to vectors. For exam-
ple, dividing the vector epsilon_p_dot by epsilon_p_dot_0 divides each
element of epsilon_p_dot by epsilon_p_dot_0. The 1og function oper-
ates elementwise, so that if x is a vector, array, or matrix, and y = log(x), then

y [1] is the natural logarithm of x [1].

The next block is the parameters block:

parameters {
real<lower=0.0> A;
real<lower=0.0> B;
real<lower=0.0, upper=1.0> n;
real<lower=0.0> C;

real<lower=0.0> m;

real<lower=0.0> sd_sigma([2];

This block, of course, contains the parameters of the Johnson-Cook model, along
with constraints on their values. This block also contains an array parameter
sd_sigma with two elements that correspond to parameters SD, 1 and SDg».
The same notation used for constraining variables in the dat a block is used in this

block as well.

The final block is the mode1 block:

model {
A ~ normal (A_guess_mean, A_guess_sd)T[0.0,1]1;
B ~ normal (B_guess_mean, B_guess_sd)T[0.0,];
n ~ beta(n_alpha, n_beta);
C ~ normal (C_guess_mean, C_guess_sd)T[0.0,];
m ~ normal (m_guess_mean, m_guess_sd)T[0.0,];

for (i in 1:2) {
sd_sigmal[i] ~
normal (sd_sigma_guess_mean[i],

sd_sigma_guess_sd[1])T[0.0,1;
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int start_ind = 1;
for (curve_ind in 1:num_curves) {

int end_ind = start_ind + curve_sizes[curve_ind] - 1;

real curr_sd_sigma = (epsilon_p_dot[curve_ind] <= 1.0
? sd_sigmall]

: sd_sigmal2]);

sigma[start_ind:end_ind] ~ normal (jc(epsilon_p[start_ind:end_ind],
log_epsilon_p_dot[curve_ind],
T_star[start_ind:end_ind],
A, B, n, C, m),

curr_sd_sigma);

start_ind = end_ind + 1;

This contains the representation of the priors (lines 71-81) and the likelihood model
(lines 83-100). By design, the “~ operator resembles the sampling statement no-
tation used to specify parts of a Bayesian model, as seen in Sections 2 and 5. The
T [0, ] notation indicates that the normal distribution for the priors has been trun-
cated so that the probability density of the prior is zero for negative parameter val-
ues. This corresponds to the 7'[0, o) notation in Section 5. Indeed, aside from that
slight difference in notation, variable declarations, and for loops, this section of
the Stan specification file is nearly a transcription of the sampling statements in
Egs. 24-28 and Eq. 33.

The for loop within lines 83-100 is surrounded by braces so that the dec-
laration for start_ind can be just above the loop. Otherwise, that dec-
laration would need to be at the top of the model block, away from the
context where the variable is most relevant.” In the body of this for loop,
the variable curr_sd_sigma stands in for SD;(€,). The notation with “?”
and “:” in lines 88-90 is used here to express the contents of Eq. 21; if
epsilon_p_dot [curve_ind] is less than 1, then curr_sd_sigma equals
sd_sigma[1l]; otherwise, it equals sd_sigma[2]. Also, in this same loop,

one also can see the range notation for expressing segments of vectors and

*As mentioned before, when variable declarations are in a block of statements enclosed by
braces, they must be at the top of the block, above any other statements.
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arrays, where, for example, sigma[start_ind:end_ind] represents the
sequence of values sigma[start_ind], sigma[start_ind + 1], ...,
sigma[end_ind]. When curve_ind is 1, start_ind and end_ind are
I and curve_sizes[1l], making sigma[start_ind:end_ind] the se-
quence of stress values for the first stress-strain curve. When curve_ind is 2,
sigma[start_ind:end_ind] becomes the sequence of stress values for the
second stress-strain curve, and so on for curve_ind values of 3, 4, and onward.
The “~” operator applies to all elements of sigma [start_ind:end_ind];es-
sentially, in lines 92-96, Eq. 33 is applied for i, = curve_ind and j ranging from

1to curve_sizes[curve ind].

Given that in the for loop in lines 83—-100, the “~” operator is used with a segment
of a vector, one might expect that the for loop in lines 77-81 is unnecessary and
that

// WARNING: Will not work!

sd_sigma ~ normal (sd_sigma_guess_mean, sd_sigma_guess_sd)T[0.0,]1;

could be used instead. If it were not for the truncation indicated by T[0.0, ], this
would indeed be the case. Due to limitations of current implementations of Stan,
though, this leads to a parsing error with the message “Outcomes in truncated

distributions must be univariate.”

The Stan model specification file for the Zerilli-Armstrong (BCC) model,
za_bcc.stan, is similar in form to the specification file for the Johnson-Cook

model and is shown in Appendix C.

6.2 Specifying Models with PyMC3

With PyMC3, one creates a Bayesian model by starting from an empty model object
and then adding objects to it that represent random variables. The random variables

are one of two types:

* a parameter to be fit, which is initially set to its prior, or

* avariable associated with observed data, which defines part of the likelihood.

One can create a PyMC3 model directly in a Python script or Jupyter notebook.

However, it is more flexible (and not much more difficult) to define the model
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via a Python function. This way, if the inputs to the model change, such as the
stress-strain data or parameters for priors such as Coguess mean, @ new model can be
recreated simply by executing the function with the new inputs. Provided is a walk-
through of a Python module file that contains such a function, za_bcc_pymc3.py,
which is shown in Appendix D. This module file begins by importing from other
modules, as shown:

import numpy as np

import pymc3 as pm

from za bcc import za bcc

The first two statements, of course, import the NumPy and PyMC3 modules, and
the third statement imports a function from a module that implements the Zerilli-
Armstrong (BCC) model shown in Eq. 17. The contents of this last module are
shown in Appendix D.

After the import statements begins the definition of the make_za_bcc_model
function, which builds up a PyMC3 model object and then returns it. It has the

following arguments:

* epsilon_pisalist of 1-D NumPy arrays. epsilon_p[i] is an array of
strain values for the stress-strain curve i, where epsilon_p[1i] [0] is the
first strain value for curve i, epsilon_p[i] [1] is the second strain value

for curve i, and so on.

* sigma and T are lists of arrays like epsilon_p, except that they hold

stresses and temperatures, respectively, instead of strains.

* epsilon_p_dot is a list or 1-D NumPy array such that

epsilon_p_dot [i] is the strain rate for curve 1.

* prior_params is a Python dictionary used to set the parameters of the
marginal prior PDFs for the Zerilli-Armstrong parameters. For example, the

dictionary value prior_params ["CO_guess_mean"] is Coguess mean-

The first statement in the body of the make_za_bcc_model function defines the

truncated normal distribution normal(. . . )70, described in Section 5:

PosNormal = pm.Bound(pm.Normal, lower = 0.0)
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Here, PosNormal is an object representing a truncated normal distribution. The
PyMC3 function pm.Bound takes as its first argument an object representing a
distribution of a random variable, which in this case is pm.Normal, an object
representing the normal distribution. It also takes one or more arguments specifying

the bounds of truncation, in this case, a lower bound of 0.0.

The next couple statements define some variables that are used later:

num_curves = len(epsilon_p)

log_epsilon_p_dot = np.log(epsilon_p_dot)

Given how epsilon_p is defined, the number of its elements is the number of
stress-strain curves, so for convenience, this number is assigned to num_curves.
The array log_epsilon_p_dot contains the natural logarithms of the strain

rates and is needed by the function za_bcc.

At this point, the Bayesian model begins to be built up.
model = pm.Model ()

with model:

The first of these statements creates an empty model object and assigns it to the vari-
able named mode 1. The next line begins a Python with block. The statements that
are part of this block (that is, the indented statements beneath the “with model:”
clause) add to the empty model object. The following statements add information
about the priors of the model:

CO = PosNormal ("CO",

mu = prior_params["CO_guess_mean"],

sd = prior_params["CO_guess_sd"])

Cl = PosNormal ("C1",
mu = prior_params["Cl_guess_mean"],

sd = prior_params["Cl_guess_sd"])

C3 = PosNormal ("C3",
mu = prior_params["C3_guess_mean"],

sd = prior_params["C3_guess_sd"])
C4 = PosNormal ("C4",
mu = prior_params["C4_guess_mean"],

sd = prior_params["C4_guess_sd"])

C5 = PosNormal ("C5",

mu = prior_params["C5_guess_mean"],
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sd = prior_params["C5_guess_sd"])

n = pm.Beta("n",
alpha = prior_params["n_alpha"],

beta = prior_params["n_beta"])

sd_sigma = PosNormal ("sd_sigma",
mu = np.asarray (prior_params["sd_sigma_guess_mean"]),
sd = np.asarray (prior_params["sd_sigma_guess_sd"]),

shape = 2)

The statements in lines 67-85 are largely equivalent to Eq. 29. As mentioned pre-
viously, the PosNormal function in these lines represents normal(. . . )7[0,c). The
statement in lines 67-69 creates an object representing a random variable labeled
with the string "CO" and adds that object to mode 1. This object is also assigned to
a Python variable that, for the sake of convenience, is also named CO0. The only
reason assignment to a variable is needed is because the variable is needed as
an argument to the za_lbcc function. Even without the assignment, the function
call PosNormal ("CO", ...) is sufficient to add a random variable labeled
"CO" to the model. Lines 87-89 express Eq. 24, with pm.Beta representing the
beta distribution. Lines 91-94 in the previous excerpt of Python code, which ex-
press Egs. 30 and 31, create a random variable sd_sigma that is a 1-D array
with two elements, as indicated by the argument shape = 2. Array elements
sd_sigma[0] and sd_sigma[1l] correspond to parameters SD, 1 and SD,»,

respectively.

The following Python for loop is used to add information about the likelihood to
the model:

for i in range (num_curves) :
pm.Normal ("sigma_curve{}".format (i),
mu = za_bcc(epsilon_pl[i],
log_epsilon_p_dot([i], TI[il],
co, c1, c3, c4, C5, n,
exp_func = pm.math.exp),
sd = (sd_sigma[0]
if (epsilon_p_dot[i] <= 1.0)
else sd_sigma[l]),

observed = sigmal[i])

The statement in the for loop executes a call to the function pm.Normal, which
adds a normally distributed random variable to the model. The label of this random

variable (which starts with "sigma_curve") indicates that it is supposed to refer
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to flow stress o associated with stress-strain curve i. The association with the flow
stress data for curve 1 is established with the argument observed = sigma[i]
(line 107), which also establishes that the random variable defines part of the like-
lihood. Since sigma [i] is an array, the random variable associated with it is an
array as well, one that is the same size as sigma [ i]. The function call that creates
each of the random variables labeled "sigma_curve(Q", "sigma_curvel",
and so on, represents the sampling statement in Eq. 34 being applied for all indices
J in the interval [1,N; ], with i, = i. The argument for mu in lines 100-103 is
the mean of the likelihood, O'ZA,Bcc(E;;j, éé“,T}“, 024 5cc) (again for all indices j in
[1,N;.] and i, = i), while the argument for sd in lines 104—-106 expresses Eq. 21.

After the for loop has finished, the function make_za_bcc_model can then
return the PyMC3 model object that it has built up.

The function za_bcc in lines 100-103 from the previous excerpt of Python code
has an additional argument, exp_ func, that may seem confusing: an argument for
an object representing the exponential function. The reasoning for the presence of
this argument is as follows. When za_Dbcc is used to define a Bayesian model for
PyMC3, it needs a version of the exponential function—namely, pm.math.exp—
that can take as input PyMC3 objects representing random variables, since the
Zerilli-Armstrong parameters are such objects in that context. However, in other
contexts (such as those where za_lbcc is used to generate simulated data), one
needs an exponential function that operates on ordinary numbers, in which case the

exponential function should be something like np . exp instead.

The Python module file for the Johnson-Cook model, jc_pymc3. py, is similar in

form to the previous module file and is shown in Appendix D.

7. Implementing the Approximate Interval Predictor Model
Approach in Python

Implementing an approximate IPM according to the scheme in Section 3 involves

five steps:

1. Finding an estimate of 0

2. Finding the gradient of 0,4, with respect to its parameters
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3. Expressing Eqs. 9 and 12 in a form suitable for a particular linear program-

ming implementation

4. Executing the linear programming implementation

5. Checking if the resulting estimates for A®,,;, and A@®,,,, lead to a reasonable

approximation for the set @

For the sake of convenience, the first step is implemented by taking 0 to be the

mean of the joint PDF of 0,,;; as estimated from a previously done Bayesian anal-

ysis. (Least squares regression could have been used to obtain 0, if the results of a

Bayesian analysis were unavailable.)

The second step can be implemented with the aid of a symbolic computation pack-

age such as SymPy,*® and the definition of a Python function resulting from this is

as follows:

import numpy as np

def jc_grad(epsilon_p, log_epsilon_p_dot, T_star,

dJCdA
dJCcdB

ddCdn

dJjcdc

dJCdm

A, B, n, C, m):

(-T_starxxm + 1)* (Cxlog_epsilon_p_dot + 1.0)
(epsilon_px*#*n)* (-T_star+*m + 1)x(Cxlog_epsilon_p_dot + 1.0)

np.where (epsilon_p == 0,
np.full (len(epsilon_p), 0.0),
Bx (epsilon_px+n) * (-T_starx*m + 1)
(Cxlog_epsilon_p_dot + 1.0)x*
np.log(epsilon_p))

log_epsilon_p_dotx (A + Bxepsilon_px*n)* (-T_starx*m + 1)

np.where(T_star == 0,
np.full (len(T_star), 0.0),
—T_starxxmx (A + Bxepsilon_px*n)*
(Cxlog_epsilon_p_dot + 1.0)x*
np.log(T_star))

return np.vstack ((dJCdA, dJCdB, dJCdn, dJCdC, dJCdm))

The function jc_grad represents the gradient of the Johnson-Cook flow stress

Eq. 15 with respect to parameters A, B, n, C, and m. However, it is not the re-

sult of a blind copy-and-paste from the output of SymPy. This would be prob-

lematic, since the expressions for the derivatives with respect to parameters n and
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m are undefined where €, or 7" are zero, because of the presence of the factors
€, In¢g, and (7)™ In T, respectively, in those expressions. Mathematically, though,
as €, — 0 and T* — 0, these factors approach zero, and the numerical calculation
of the derivatives reflects that. Furthermore, to allow the Python function arguments
epsilon_p and T_star to be arrays, np.where is used rather than a raw 1 f

statement.

The third step, of course, depends on one’s choice of linear programming im-
plementation. In the case of the 1inprog function from SciPy® (specifically its
optimize submodule), Eq. 9 is expressed through an array A and vector b that
satisfies the inequality Au < b, where the operator “<” is here taken to operate ele-
mentwise. The vector u describes the variables to be optimized. For the purposes
of this section, it consists of the desired values of the elements of AO,,;, followed
by the desired values of the elements of A@,,,,. The rows of A are coefficients of
the elements of u, Each row of A and its corresponding element of b represents the
left- and right-hand sides of an inequality. To fit this format, Eq. 12 can be combined
with Egs. 10 and 11 and rearranged to obtain

1
- E (go'mdl(ei) + |g0'md1(ei)|)T Aemin
| ) (35)
+ 5 (gamd,(ei) - |g0'md/(ei)|) Aemax <0 — O-mdl(eia 00)
1 T
E (gO'mdl(ei) - |g0'mdl(ei)|) Aﬂmm
| (36)

- 5 (go'mdl(ei) + |ga'md1(ei)|)T AOpy < — (O'i - O'mdl(eia 00))

Equation 35 is used to determine row i of A and element i of b, while Eq. 36 is used
to determine row 2i of A and element 2i of b. Let ep_vec, log_ep_dot_vec,
T_star_vec, and sigma_vec represent vectors whose elements are values of
€, €, T*, 0, and let theta_0 represent 0y. Then, A and b (represented by the
Python variables A_mat and b_vec) can be constructed as follows:

num_data_pts = len (ep_vec)

half_len_u = len(theta_0)

len_u = 2+«half_len_u

A_mat = np.empty((2+xnum_data_pts, len_u))
b_vec = np.empty (2+«num_data_pts)

g_sigma_mdl = jc_grad(ep_vec, log_ep_dot_vec, T_star_vec, xtheta_0)
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g_sigma_mdl_abs = np.fabs (g_sigma_mdl)

g_gabs_half_sum = 0.5%(g_sigma_mdl + g_sigma_mdl_abs)
g_gabs_half_diff = 0.5%(g_sigma_mdl - g_sigma_mdl_abs)

sigma_minus_sigma_mdl = sigma_vec - jc (ep_vec,
log_ep_dot_vec,

T _star_vec,

*theta_0)
A_mat[:num_data_pts, :thalf_len_u] = -g_gabs_half_sum.T
A_mat[:num_data_pts, half_len_u:] = g_gabs_half diff.T
b_vec[:num_data_pts] = sigma_minus_sigma_mdl
A_mat [num_data_pts:, :thalf len u] = g_gabs_half diff.T
A_mat [num_data_pts:, half_len_u:] = —-g_gabs_half_ sum.T
b_vec[num_data_pts:] = -sigma_minus_sigma_mdl

Here, column i of g_sigma_md1l represents g, ,(e;), and jc is a Python function

outputting the Johnson-Cook flow stress, shown in Appendix D.

In SciPy’s 1inprog function, Eq. 12 is expressed as a vector whose elements are
the coefficients of A@’ . and A®,, .. Given the previous definitions of g_sigma_mdl

and g_sigma_mdl_abs, this vector of coefficients can be represented in Python

as follows:
g_sigma_mdl_abs_sum = g_sigma_mdl_abs.sum(axis = 1)
coefficients = np.concatenate ([g_sigma_mdl_abs_sum, g_sigma_mdl_abs_sum])

coefficients /= num_data_pts

Strictly speaking, it is not mathematically necessary to divide coefficients by

num_data_pts (i.e., N in Eq. 12), but it makes the minimization more tractable.

The fourth step is largely straightforward:

import scipy.optimize as so

result = so.linprog(coefficients, A_ub = A_mat, b_ub = b_vec,
method = "interior-point")

print ("result.success = {}".format (result.success))

Delta_theta_min = result.x[:half_len_u]

Delta_theta_max = result.xl[half_ len_u:]

JC_param_1lb = theta_0 - Delta_theta_min
JC_param_ub = theta_0 + Delta_theta_max

The Python vectors JC_param_1b and JC_param_ub represent the estimated
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lower and upper bounds on the Johnson-Cook parameters. One catch is that the
default method used by 1inprog for minimization does not work for this prob-
lem, so a more robust alternative method, interior point, is used instead, hence the

argument “method = "interior-point"” passedto linprog.

The fifth step is necessary because the lower and upper bounds in JC_param_1b
and JC_param_ub are estimated approximately via a Taylor expansion. To see if
these bounds are reasonable, the set @ is taken to be the hyperrectangle with the
corners JC_param_1lb and JC_param_ub, and oy,,(e,0®) and 0,,.(e, @) are
estimated using Eqgs. 6 and 7 (rather than the approximations in Egs. 10 and 11).
One can then determine how much of the flow stress data is actually bounded by
omin(€, ) and 0,4, (e,0). To do this, one first needs to create wrappers around the
jc function that will work as objective functions for the minimize function from
the opt imize submodule of SciPy®:

def jc_for_min (ABnCm, ep, l_epdot, T_s):

return jc(ep, 1l_epdot, T_s,
ABnCm[0], ABnCm[1l], ABnCm[2], ABnCm[3], ABnCm[4])

def jc_for_max (ABnCm, ep, 1l_epdot, T_s):

return -jc_for_min(ABnCm, ep, l_epdot, T_s)

Since a minimization routine is used to find 0,4y, jc_for_max is the negative
of the Johnson-Cook flow stress. (Maximizing an objective function is the same
as minimizing the negative of that function.) One can then use the following for
loop to generate estimates of 0,;, and 0,4, for each set of strain, strain rate, and

temperature inputs and check how much of the data is within bounds:
num_data_pts_in_bounds = 0

for i in range (num_data_pts):

result_min = so.minimize (jc_for_min,
theta_0,
args = (ep_vec[il],

log_ep_dot_vec[i],
T_star_vec[i]),
bounds = so.Bounds (JC_param_1lb,
JC_param_ub))

assert result_min.success

result_max = so.minimize (jc_for_max,
theta_0,
args = (ep_vecl[i],

log_ep_dot_vec[i],

T_star_vec[i]),
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bounds = so.Bounds (JC_param_lb,
JC_param_ub))

assert result_max.success

sigma_min = result_min.fun

sigma_max = -result_max.fun
num_data_pts_in_bounds += int (sigma_min <= sigma[i] <= sigma_max)

print ("Fraction of data points in bounds = {}".format (

num_data_pts_in_bounds/num_data_pts))

A more complete example of implementing an approximate IPM in Python can be

found in Ramsey.!! An implementation in R can be found in Ramsey.'”

8. Fitting Strength Models

8.1 Bayesian Analysis

Fitting the Bayesian models is done with multiple software implementations of
MCMC: the sampling function of RStan 2.17.2,'3 the sampling method of
PyStan 2.17.1.0,!6 and the sample function of the PyMC3 3.5 module.® Each
MCMC run uses four chains. Each chain consists of at least 1000 warmup or tun-
ing samples, which are discarded, followed by 1000 samples that are taken to be
from the posterior distribution. Before fitting the models to real stress-strain data,
they are tested by fitting them to simulated data—that is, data consisting of sam-
ples from the likelihood of the model given known model parameters and other
model inputs—and ensuring that they yield point estimates for model parameters
close to the parameter values used to generate the simulated data. Initial values of
model parameters need to be supplied when using RStan or PyStan to run MCMC
on the Zerilli-Armstrong (BCC) model, and when using PyMC3 to run MCMC on
either the Johnson-Cook or Zerilli-Armstrong models. The initial value used for 7 is
nq/(ng + ng), or 0.5. For the other parameters, the initial values used are the values

Of Aguess mean»s Bguess mean»s and SO on.

After an MCMC run, diagnostics are run on the resulting chains to check for vari-
ous potential problems. With RStan and PyMC3, some of these diagnostics, such as

those pertaining to divergences and tree depth,*’~*

are run automatically. With Py-
Stan, the corresponding diagnostics have to be executed manually after an MCMC
run, and furthermore, they are provided by a third-party Python module®® rather

than PyStan itself. Other diagnostics, such as the potential scale reduction factor,
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R! are computed when RStan, PyStan, or PyMC3 is prompted to print a table of
statistics summarizing the MCMC run (via a function or method named summary).
When R ~ 1, the MCMC run is likely to have converged, provided that the other

diagnostics do not indicate any problems.*

Histograms approximating the marginal posterior PDFs of the model parameters
have been created for the values of Srp and fu.., in Table 1. Figure 6 shows the
posteriors for the model parameters of the Johnson-Cook model, assuming weakly
informative priors, while Fig. 7 shows posteriors for the same strength model,
but with the strongly informative prior for A based on the yield stress data from
Benck.?" The histograms shown happen to have been generated from MCMC sam-
ples from RStan and PyStan, respectively. However, histograms have also been gen-
erated from PyMC3, and these look largely the same as the ones shown in Figs. 6
and 7. Figure 8 shows the posteriors of model parameters for the Zerilli-Armstrong
(BCC) model, when the model is fit to all of the available RHA data from MIDAS.
Again, it makes little difference whether the histograms are generated from sam-
ples from RStan, PyStan, or PyMC3, so here histograms generated using samples
from the last of these are shown. Whereas SD,»/SD 1 ~ 3 for the Johnson-Cook
model, for these fits to the Zerilli-Armstrong (BCC) model, SD,; and SD,» are
much closer in value. To see if this is due to the Zerilli-Armstrong (BCC) model
being fit to low-temperature data that are not used with the Johnson-Cook model,
another set of fits to the Zerilli-Armstrong model has been done, using only the
stress-strain data for temperatures 298 K and above. Posteriors from these fits (here

generated from samples from RStan) are shown in Fig. 9.

While histogram plots are useful for visualizing the marginal PDFs of model pa-
rameters, they are not nearly as useful for expressing the PDFs in a form that may
be input to tools, such as Dakota,> that take marginal PDFs of model parameters
as input for uncertainty propagation analyses. A simple approximate approach is to
report moments of the MCMC samples, such as the mean and standard deviation,
for each model parameter. These may later be used to estimate the parameters of
a closed-form marginal PDF via the method of moments,>* and those parameters
may be input to uncertainty propagation tools. For Srp = 0.9 and f,,., = 0.75, the

means and standard deviations of model parameters are shown in Tables 3 and 4.

*There is a bug in PyStan that can cause the calculation of R to yield spurious NaN values.>?
A workaround for this is to set pystan.constants.EPSILON to float ("—-inf") before
starting this calculation.
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Fig. 6 Histograms approximating the posterior marginal PDFs of Johnson-Cook model pa-
rameters and nuisance parameters SD, | and SD, >. These are generated from samples of
RStan MCMC runs with the values of Sro and f,,., in Table 1, and weakly informative pri-
ors.
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Fig. 7 Histograms approximating the posterior marginal PDFs of Johnson-Cook model pa-
rameters and nuisance parameters SD, ; and SD ;. These are generated from samples of
PyStan MCMC runs with the values of Sro and f,., in Table 1, and a strongly informative
prior for A.
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Fig. 8 Histograms approximating the posterior marginal PDFs of Zerilli-Armstrong (BCC)
model parameters and nuisance parameters SD, | and SD,; ». These are generated from sam-
ples of PyYMC3 MCMC runs with the values of Sro and f,., in Table 1, using data for all
temperatures.
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Fig. 9 Histograms approximating the posterior marginal PDFs of Zerilli-Armstrong (BCC)
model parameters and nuisance parameters SD. | and SD, ». These are generated from sam-
ples of RStan MCMC runs with the values of Srp and f,,., in Table 1, using the same data
used to fit the Johnson-Cook model.
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For other values of Brp and f,¢q, they are shown in Tables 5-8.

Table 3 Mean and standard deviation of MCMC samples (from RStan) of parameters of
Johnson-Cook model and nuisance parameters SD, ; and SD, », for an MCMC run with
weakly informative priors and a run with a strongly informative prior on A, with Sro = 0.9
and f,;., =0.75

Weak prior Strong prior for A

Mean of A (MPa) 576.572779 699.842690
SD of A (MPa) 52.744813 10.100359
Mean of B (MPa) 982.583681 866.224370
SD of B (MPa) 50.288671 9.544459
Mean of n 0.077363 0.092704
SD of n 0.005634 0.001700
Mean of C 0.004519 0.004542
SD of C 0.000080 0.000081
Mean of m 1.048066 1.047197
SD of m 0.003670 0.003576
Mean of SD 1 (MPa) 9.388639 9.645859
SD of SD,1 (MPa) 0.355841 0.361472
Mean of SD » (MPa) 32.563166 32.346724
SD of SD» (MPa) 0.657904 0.665879

In addition to statistics for the marginal PDFs of the model parameters, one may
also need information on how the PDFs of these parameters are correlated, espe-
cially if one intends to use these PDFs as input to uncertainty propagation analyses.
For example, when the software Dakota is used for such analyses, it takes as input
either a correlation or rank correlation matrix, depending on the method of uncer-
tainty propagation used.>? In R, these can be calculated via the cor function, and
in Python, these can be calculated via the corr method of so-called data frame

objects from the module Pandas.> Correlation matrices are shown in Tables 9—16.

8.2 Approximate Interval Predictor Approach

In the estimation of intervals for the Johnson-Cook parameters, 0 is taken to be
the mean of the PDFs of the Johnson-Cook parameters for the case of a strong
prior on A (using MCMC samples from PyMC3). This choice of point estimate 0¢
is motivated by the finding in Section 9.5 that this point estimate leads to a more

accurate estimate of the yield stress. The bounds are shown in Tables 17 and 18.

In the estimation of intervals for the Zerilli-Armstrong (BCC) parameters, 0 is
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Table 4 Mean and standard deviation of MCMC samples (from PyStan) of parameters of
Zerilli-Armstrong (BCC) model and nuisance parameters SD, ; and SD, », for an MCMC
run using MIDAS RHA data for all available temperatures and a run using data for tempera-
tures of 298 K and above, with fro = 0.9 and f;,., = 0.75

All temps.  Temps. above 298 K
Mean of Cy (MPa) 108.553321 1.839621
SD of Cy (MPa) 25.904923 1.815009
Mean of C; (MPa) 1529.402241 1535.481564
SD of C; (MPa) 8.600941 12.284287
Mean of C3 (K™1) 0.002189 0.001400
SD of C3 (K1) 0.000031 0.000023
Mean of C; (K™1) 0.000041 0.000026
SD of C4 (K1) 0.000001 0.000001
Mean of Cs (MPa) 748.575960 590.804923
SD of Cs (MPa) 22.102742 10.464798
Mean of n 0.158338 0.178280
SD of n 0.009668 0.007571
Mean of SD,; (MPa) 31.621727 13.919752
SD of SD 1 (MPa) 0.939569 0.583100
Mean of SD. » (MPa) 47.465057 43.251601
SD of SD » (MPa) 0.844922 0.904651

Table 5 Mean and standard deviations of MCMC samples (from PyMC3) of parameters of
the Johnson-Cook model, given weakly informative priors

ﬂTQ =09 BTQ =09 BTQ =0.6 ﬂTQ = 0.6

Jarea =055 farea =0.95  furea =0.55  furea = 0.95
Mean of A (MPa) 571.729244  577.465150  505.617796  508.842938
SD of A (MPa) 55.380371 54.856011 61.367112 60.277468
Mean of B (MPa) 986.494201 082.442422  1045.630598  1043.442048
SD of B (MPa) 52.838208 52.263373 59.117625 58.059811
Mean of n 0.076851 0.077521 0.069949 0.070252
SD of n 0.005833 0.005874 0.005396 0.005263
Mean of C 0.004448 0.004583 0.004141 0.004235
SD of C 0.000078 0.000083 0.000069 0.000071
Mean of m 1.048050 1.048270 1.043259 1.043241
SD of m 0.003611 0.003723 0.003182 0.003305
Mean of SD,,; (MPa) 9.276518 9.491527 8.738919 8.853090
SD of SDs,1 (MPa) 0.354264 0.355389 0.310506 0.319895
Mean of SD. > (MPa) 32.418929 32.749525 31.299643 31.442369
SD of SD » (MPa) 0.654751 0.654508 0.611589 0.627223
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Table 6 Mean and standard deviations of MCMC samples (from PyMC3) of parameters of
the Johnson-Cook model, given strongly informative prior for parameter A

Mean of A (MPa)
SD of A (MPa)

Mean of B (MPa)
SD of B (MPa)

Mean of n
SD of n

Mean of C
SDof C

Mean of m
SD of m

Mean of SD.,1 (MPa)
SD of SD,; (MPa)

Mean of SD. » (MPa)
SD of SD » (MPa)

ﬂTQ =09 ﬂTQ =09 BTQ =0.6 ﬂTQ =0.6
Jarea =0.55  farea =0.95  furea =0.55  farea = 0.95
700.329969 700.634539 695.752574 696.396703
9.820886 10.253312 10.181293 10.167980
865.049053  866.181603  864.675977  864.968226
9.290963 9.780525 9.659818 9.613680
0.092745 0.092832 0.091313 0.091417
0.001659 0.001703 0.001648 0.001666
0.004469 0.004612 0.004160 0.004253
0.000076 0.000080 0.000069 0.000072
1.047219 1.047243 1.042508 1.042553
0.003429 0.003622 0.003234 0.003336
9.531653 9.752201 9.040389 9.160295
0.358033 0.357239 0.312129 0.325318
32.184856 32.512920 31.098566 31.274576
0.621758 0.648511 0.600998 0.610700

Table 7 Mean and standard deviations of MCMC samples (from RStan) of parameters of the
Zerilli-Armstrong (BCC) model, using data for all available temperatures

Bro=09 PBro=09 Bro=06  Pro=0.6

farea =0.55 farea =0.95 farea =0.55 farea =0.95
Mean of Cy (MPa) 113.827793 101.181205 109.965407 103.115558
SD of Cy (MPa) 25.701954 25.116845 28.755151 27.341270
Mean of C; (MPa) 1517.897271 1541.482625 1467.823733 1481.833286
SD of C; (MPa) 8.633638 8.812933 8.309163 8.317124
Mean of C3 (K™1) 0.002203 0.002175 0.002275 0.002267
SD of C3 (K™1) 0.000031 0.000031 0.000035 0.000034
Mean of C4 (K™1) 0.000040 0.000042 0.000036 0.000037
SD of Cy (K™1) 0.000001 0.000001 0.000001 0.000001
Mean of Cs (MPa) 752.244448  T746.702766  775.958027 774.334031
SD of Cs (MPa) 22.217745 21.753644 26.143405 24.276243
Mean of n 0.158015 0.158304 0.139478 0.139233
SD of n 0.009719 0.009423 0.008828 0.008342
Mean of SD.,1 (MPa) 31.796849 31.540939 33.165289 32.537641
SD of SD,1 (MPa) 0.973442 0.941127 1.109610 1.076349
Mean of SD, » (MPa) 47.551671 47.521018 49.886479 49.514722
SD of SDs » (MPa) 0.851183 0.835937 0.905822 0.901693
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Table 8 Mean and standard deviations of MCMC samples (from RStan) of parameters of the
Zerilli-Armstrong (BCC) model, using the same data used to fit the Johnson-Cook model (i.e.,
data for temperatures above 298 K)

Pro =0.9 Pro =0.9 Brg = 0.6 Bro = 0.6
farea =0.55 farea =0.95 farea =0.55 farea =0.95

Mean of Cy (MPa) 1.869449 1.904104 1.841419 1.768092
SD of Cy (MPa) 1.834897 1.877007 1.837713 1.773979
Mean of C; (MPa) 1527.354004 1544.250604  1489.155368  1498.549931
SD of C; (MPa) 12.444307 12.803857 11.826671 12.110162
Mean of C; (K™!) 0.001399 0.001399 0.001415 0.001416
SD of C3 (K1) 0.000022 0.000023 0.000024 0.000025
Mean of C; (K™") 0.000026 0.000027 0.000024 0.000025
SD of C4 (K1) 0.000001 0.000001 0.000001 0.000001
Mean of Cs (MPa) 593.815529  587.184189  610.048428  606.561237
SD of Cs (MPa) 10.373255 10.749925 11.255388 11.251672
Mean of n 0.175715 0.181337 0.160380 0.162693
SD of n 0.007359 0.008088 0.006260 0.006489
Mean of SD.,1 (MPa) 13.584468 14.273011 12.116796 12.451585
SD of SD,1 (MPa) 0.580964 0.624221 0.495483 0.510742
Mean of SD > (MPa) 43.274173 43.216117 43.063903 43.053094
SD of SDs > (MPa) 0.911625 0.895961 0.867597 0.877680

taken to be the mean of the PDFs of the parameters fit only to data for temperatures
of 298 K and above (again using MCMC samples from PyMC3). This choice of
point estimate 0 is motivated by indications in Section 9 that the Zerilli-Armstrong
(BCC) model appears ill-suited to fitting the low-temperature data for RHA. The
bounds are shown in Tables 19 and 20. For the case where Brp = 0.6 and fyeq =
0.55, the estimated lower bound is originally calculated to be on the order of —10~7

but is truncated to zero.
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Table 9 Correlation matrices of model parameters of a Johnson-Cook model with weakly
informative priors, generated from MCMC samples of RStan runs, for the values of 57 and
Jfareq from Table 1

Bro Jarea Correlation matrix
A B n C m
A 1.0 -1.0 0.99 0.06 -0.05
B -1.0 1.0 -0.99 -0.05 0.04
0.9 0.75 n 099 -0.99 1.0 0.07 -0.07
C 0.06 -0.05 0.07 1.0 -0.69
m —0.05 0.04 -0.07 -0.69 1.0
A B n C m
A 1.0 -1.0 0.99 0.05 -0.06
B -1.0 1.0 -0.99 -0.04 0.04
0.9 0.55 n 099 -0.99 1.0 0.05 -0.07
C 0.05 -0.04 0.05 1.0 -0.69
m —0.06 0.04 -0.07 -0.69 1.0
A B n C m
A 1.0 -1.0 0.99 0.13 -0.11
B -1.0 1.0 -0.99 -0.11 0.1
0.9 0.95 n 099 -0.99 1.0 0.12 -0.12
C 0.13 -0.11 0.12 1.0 -0.69
m —0.11 0.1 -0.12 -0.69 1.0
A B n C m
A 1.0 -1.0 0.99 0.08 -0.05
B -1.0 1.0 -0.99 -0.07 0.05
0.6 0.55 n 099 -0.99 1.0 0.07 -0.06
C 0.08 -0.07 0.07 1.0 -0.65
m —0.05 0.05 -0.06 -0.65 1.0
A B n C m
A 1.0 -1.0 0.99 0.01 -0.03
B -1.0 1.0 -0.99 -0.0 0.02
0.6 0.95 n 099 -0.99 1.0 0.0 -0.03
C 0.01 -0.0 0.0 1.0 -0.63
m —0.03 0.02 -0.03 -0.63 1.0
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Table 10 Rank correlation matrices of model parameters of a Johnson-Cook model with
weakly informative priors, generated from MCMC samples of RStan runs, for the values of
Bro and f,,., from Table 1

Bro  farea Rank correlation matrix
A B n C m
A 1.0 -1.0 0.99 0.07 -0.06
B -1.0 1.0 -0.99 -0.06 0.05
0.9 0.75 n 099 -0.99 1.0 0.07 -0.07
C 0.07 -0.06 0.07 1.0 -0.67
m —0.06 0.05 -0.07 -0.67 1.0
A B n C m
A 1.0 -1.0 0.99 0.04 -0.05
B -1.0 1.0 -0.99 -0.03 0.03
0.9 0.55 n 0.99 -0.99 1.0 0.04 -0.06
C 0.04 -0.03 0.04 1.0 -0.67
m —0.05 0.03 -0.06 -0.67 1.0
A B n C m
A 1.0 -1.0 1.0 0.12 -0.12
B -1.0 1.0 -0.99 -0.11 0.11
0.9 0.95 n 1.0 -0.99 1.0 0.12 -0.12
C 0.12 -0.11 0.12 1.0 -0.68
m —0.12 0.11 -0.12 -0.68 1.0
A B n C m
A 1.0 -1.0 1.0 0.07 -0.06
B -1.0 1.0 -0.99 -0.07 0.05
0.6 0.55 n 1.0 -0.99 1.0 0.07 -0.06
C 0.07 -0.07 0.07 1.0 -0.63
m —0.06 0.05 -0.06 -0.63 1.0
A B n C m
A 1.0 -1.0 1.0 0.01 -0.03
B -1.0 1.0 -0.99 0.0 0.02
0.6 0.95 n 1.0 -0.99 1.0 0.0 -0.03
C 0.01 0.0 0.0 1.0 -0.61
m —0.03 0.02 -0.03 -0.61 1.0
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Table 11 Correlation matrices of model parameters of a Johnson-Cook model with a strongly
informative prior for A, generated from MCMC samples of PyStan runs, for the values of 5ro

and f,, ., from Table 1

Correlation matrix

Pro  farea
0.9 0.75
0.9 0.55
0.9 0.95
0.6 055
0.6 0.95

S QO3 > S Qx> SO > S QO x>

S QO wx

1.0
-0.98

0.91
-0.01

0.01

1.0
-0.98

0.92

0.02
-0.02

1.0
-0.98

0.91

0.05
—-0.06

1.0
-0.99

0.92

0.04
-0.03

1.0
-0.99
0.92
0.0
0.0

B n C m
-0.98 091 -0.01 0.01

1.0 -0.83 0.07 -0.07
-0.83 1.0 -0.0 -0.02

0.07 -0.0 1.0 -0.69
-0.07 -0.02 -0.69 1.0

B n C m
—-0.98 0.92 0.02 -0.02

1.0 -0.83 0.03 -0.05
-0.83 1.0 0.02 -0.04

0.03 0.02 1.0 -0.7
-0.05 -0.04 -0.7 1.0

B n C m
-0.98 0.91 0.05 -0.06

1.0 -0.82 0.01 -0.01
-0.82 1.0 0.04 -0.09

0.01 0.04 1.0 -0.7
-0.01 -0.09 -0.7 1.0

B n C m
-0.99 0.92 0.04 -0.03

1.0 -0.85 -0.01 -0.02
-0.85 1.0 0.01 -0.04
-0.01 0.01 1.0 -0.62
-0.02 -0.04 -0.62 1.0

B n C m
-0.99 0.92 0.0 0.0

1.0 -0.85 0.04 -0.05
-0.85 1.0 -0.02 -0.0

0.04 -0.02 1.0 -0.64
-0.05 -0.0 -0.64 1.0
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Table 12 Rank correlation matrices of model parameters of a Johnson-Cook model with a
strongly informative prior for A, generated from MCMC samples of PyStan runs, for the val-
ues of Brp and f,,., from Table 1

Bro  farea Rank correlation matrix
A B n C m
A 1.0 -0.98 0.9 -0.0 0.01
B -0.98 1.0 -0.81 0.06 -0.07
0.9 0.75 n 0.9 -0.81 1.0 0.01 -0.02
Cc -0.0 0.06 0.01 1.0 -0.68
m 0.01 -0.07 -0.02 -0.68 1.0
A B n C m
A 1.0 -0.98 0.91 0.03 -0.02
B -0.98 1.0 -0.82 0.03 -0.04
0.9 0.55 n 091 -0.82 1.0 0.03 -0.05
C 0.03 0.03 0.03 1.0 -0.67
m -0.02 -0.04 -0.05 -0.67 1.0
A B n C m
A 1.0 -0.98 0.9 0.03 -0.05
B -0.98 1.0 -0.81 0.02 -0.02
0.9 0.95 n 0.9 -0.81 1.0 0.02 -0.08
C 0.03 0.02 0.02 1.0 -0.68
m -0.05 -0.02 -0.08 -0.68 1.0
A B n C m
A 1.0 -0.98 0.91 0.04 -0.03
B -0.98 1.0 -0.84 -0.01 -0.02
0.6 0.55 n 091 -0.84 1.0 0.01 -0.04
C 0.04 -0.01 0.01 1.0 -0.59
m -0.03 -0.02 -0.04 -0.59 1.0
A B n C m
A 1.0 -0.98 0.92 0.02 -0.0
B -0.98 1.0 -0.84 0.02 -0.04
0.6 0.95 n 092 -0.84 1.0 -0.01 -0.01
C 0.02 0.02 -0.01 1.0 -0.62
m -0.0 -0.04 -0.01 -0.62 1.0
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Table 13 Correlation matrices of model parameters of a Zerilli-Armstrong (BCC) model fit to
data for all available temperatures, generated from MCMC samples of PyMC3 runs, for the
values of Srp and f,., from Table 1

Pro  Jfarea Correlation matrix

Co C G Cy Cs n
Co 1.0 -0.18 0.21 0.16 —0.89 0.89
c; -0.18 1.0 -081 -029 -0.2 0.19
09 075 G 0.21 -0.81 1.0 0.58 0.2 -0.16
Cy 0.16 -0.29 0.58 1.0 0.01 -0.04
Cs -0.89 -0.2 0.2 0.01 1.0 -0.88
n 0.89 0.19 -0.16 -0.04 -0.88 1.0

C() C1 C3 C4 C5 n
Co 1.0 -0.14 0.19 0.14 -0.89 0.89
¢, -0.14 1.0 -0.81 -0.26 -0.23 0.21
0.9 055 (6] 0.19 -0.81 1.0 0.56 0.21 -0.17
Cy 0.14 -0.26 0.56 1.0 0.01 -0.06
Cs -0.89 -0.23 0.21 0.01 1.0 -0.89
n 0.89 0.21 -0.17 -0.06 -0.89 1.0

Co C1 C3 C4 C5 n
Co 1.0 -0.15 0.18 0.16 -0.89 0.89
¢y -0.15 1.0 -0.81 -0.24 -0.24 0.22
0.9 0.95 C3 0.18 -0.81 1.0 0.56 0.23 -0.19
Cy 0.16 -0.24 0.56 1.0 -0.01 -0.03
Cs -0.89 -0.24 0.23 -0.01 1.0 -0.88
n 0.89 0.22 -0.19 -0.03 -0.88 1.0

Co C G Cy Cs n
Go 1.0 -0.12 0.19 0.12 -0.91 0.91
¢ -0.12 1.0 -074 -0.08 -0.21 0.18
06 055 G 0.19 -0.74 1.0 0.44 0.19 -0.1
Cy 0.12  -0.08 0.44 1.0 -0.03 0.0
G -091 -0.21 0.19 -0.03 1.0 -0.89
n 0.91 0.18 -0.1 0.0 -0.89 1.0

Co C G Cy Cs n
Co 1.0 -0.11 0.17 0.12 -0.91 0.91
C -0.11 1.0 -076 -0.16 -0.22 0.2
06 095 G 0.17 -0.76 1.0 0.47 02 -0.13
Cy 0.12 -0.16 0.47 1.0 -0.02 -0.02
Cs -091 -0.22 02 -0.02 1.0 -09
n 0.91 02 -0.13 -0.02 -09 1.0
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Table 14 Rank correlation matrices of model parameters of a Zerilli-Armstrong (BCC) model
fit to data for all available temperatures, generated from MCMC samples of PyMC3 runs, for
the values of 57 and f,., from Table 1

Bro Jarea Rank correlation matrix

Co C G Cy Cs n
Co 1.0 -0.16 0.19 0.15 -0.89 0.89
Cc; -0.16 1.0 -079 -029 -0.19 0.19
09 075 (o} 0.19 -0.79 1.0 0.58 0.18 -0.15
Cy 0.15 -0.29 0.58 1.0 0.0 -0.04
Cs -0.89 -0.19 0.18 0.0 1.0 -0.88
n 0.89 0.19 -0.15 -0.04 -0.88 1.0

C() C1 C3 C4 C5 n
Co 1.0 -0.12 0.17 0.12 -0.89 0.89
¢, -0.12 1.0 -0.79 -0.26 -0.22 0.21
0.9 055 (6] 0.17 -0.79 1.0 0.55 02 -0.16
Cy 0.12 -0.26 0.55 1.0 0.02 -0.06
Cs -0.89 -0.22 0.2 0.02 1.0 —-0.88
n 0.89 0.21 -0.16 -0.06 -0.88 1.0

Co C1 C3 C4 C5 n
Co 1.0 -0.14 0.17 0.15 -0.87 0.88
¢, -0.14 1.0 -0.8 -0.23 -0.24 0.22
0.9 0.95 C3 0.17 -0.8 1.0 0.55 0.23 -0.19
Cy 0.15 -0.23 0.55 1.0 0.0 -0.04
Cs -0.87 -0.24 0.23 0.0 1.0 -0.87
n 0.88 0.22 -0.19 -0.04 -0.87 1.0

Co C G Cy Cs n
Co 1.0 -0.11 0.18 0.12 -0.9 0.9
¢, -0.11 1.0 -073 -0.08 -0.21 0.18
06 055 G 0.18 -0.73 1.0 0.42 0.18 -0.11
Cy 0.12  -0.08 0.42 1.0 -0.03 -0.0
G -09 -0.21 0.18 -0.03 1.0 -0.89
n 0.9 0.18 -0.11 -0.0 -0.89 1.0

Co C G Cy Cs n
Co 1.0 -0.1 0.16 0.12 -0.91 0.91
¢ -0.1 1.0 -075 -0.15 -0.21 0.19
06 095 G 0.16 -0.75 1.0 0.46 0.19 -0.12
Cy 0.12 -0.15 0.46 1.0 -0.02 -0.01
Cs -091 -0.21 0.19 -0.02 1.0 -0.89
n 0.91 0.19 -0.12 -0.01 -0.89 1.0
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Table 15 Correlation matrices of model parameters of a Zerilli-Armstrong (BCC) model fit to
the same data used to fit the Johnson-Cook model, generated from MCMC samples of RStan
runs, for the values of 5o and f,,., from Table 1

Pro  Jfarea Correlation matrix

Co C G Cy Cs n
Co 1.0 —-0.08 0.1 0.06 —0.04 0.04
Cc; -0.08 1.0 -0.64 -0.14 -0.86 0.87
09 075 (o} 0.1 -0.64 1.0 0.74 0.86 -0.86
Cy 0.06 -0.14 0.74 1.0 045 -047
Cs -0.04 -0.86 0.86 0.45 1.0 -0.86
n 0.04 0.87 -0.86 -0.47 -0.86 1.0

C() C1 C3 C4 C5 n
Co 1.0 -0.11 0.13 0.07 -0.01 0.0
¢, -0.11 1.0 -0.62 -0.09 -0.85 0.87
0.9 055 (6] 0.13 -0.62 1.0 0.71 0.85 -0.84
Cy 0.07 -0.09 0.71 1.0 041 -042
Cs -0.01 -0.85 0.85 0.41 1.0 -0.85
n 0.0 0.87 —-0.84 -042 -0.85 1.0

Co C1 C3 C4 C5 n
Co 1.0 -0.05 0.1 0.11  -0.05 0.05
¢, -0.05 1.0 -0.63 -0.12 -0.85 0.87
0.9 0.95 C3 0.1 -0.63 1.0 0.74 0.85 —-0.85
Cy 0.11 -0.12 0.74 1.0 042 -0.45
Cs -0.05 -0.85 0.85 0.42 1.0 -0.85
n 0.05 0.87 -0.85 -045 -0.85 1.0

Co C G Cy Cs n
Go 1.0 -0.05 0.09 0.08 -0.06 0.06
C; -0.05 1.0 -0.66 -0.16 -0.88 0.87
06 055 G 0.09 -0.66 1.0 0.72 0.88 -0.87
Cy 0.08 -0.16 0.72 1.0 0.46 -0.49
Cs -0.06 -0.88 0.88 0.46 1.0 -0.89
n 0.06 087 -0.87 -049 -0.89 1.0

Co C G Cy Cs n
Co 1.0 -0.1 0.11 0.09 -0.01 0.01
¢ -0.1 1.0 -0.64 -0.15 -0.87 0.86
06 095 G 0.11 -0.64 1.0 0.73 0.88 -0.87
Cy 0.09 -0.15 0.73 1.0 0.46 -0.49
Cs -0.01 -0.87 0.88 0.46 1.0 -0.88
n 0.01 0.86 -0.87 -0.49 -0.88 1.0
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Table 16 Rank correlation matrices of model parameters of a Zerilli-Armstrong (BCC) model
fit to the same data used to fit the Johnson-Cook model, generated from MCMC samples of
RStan runs, for the values of 51 and f,,., from Table 1

Bro Jarea Rank correlation matrix

Co C G Cy Cs n
Co 1.0 —-0.06 0.07 0.04 -0.04 0.04
Cc; -0.06 1.0 -0.62 -0.13 -0.85 0.87
09 075 (o} 0.07 -0.62 1.0 0.72 0.85 -0.84
Cy 0.04 -0.13 0.72 1.0 042 -0.44
Cs -0.04 -0.85 0.85 0.42 1.0 -0.85
n 0.04 0.87 -0.84 -0.44 -0.85 1.0

C() C1 C3 C4 C5 n
Co 1.0  -0.09 0.12 0.07 -0.01 0.0
¢, -0.09 1.0 -0.58 -0.08 -0.83 0.86
0.9 055 (6] 0.12 -0.58 1.0 0.7 0.84 -0.82
Cy 0.07 -0.08 0.7 1.0 0.4 -0.41
Cs -0.01 -0.83 0.84 0.4 1.0 -0.83
n 0.0 0.86 —-0.82 -041 -0.83 1.0

Co C1 C3 C4 C5 n
Co 1.0 -0.06 0.1 0.1 -0.03 0.04
Cc; -0.06 1.0 -0.61 -0.11 -0.84 0.87
0.9 0.95 C3 0.1 -0.61 1.0 0.72 0.84 -0.84
Cy 0.1 -0.11 0.72 1.0 041 -0.43
Cs -0.03 -0.84 0.84 0.41 1.0 -0.84
n 0.04 0.87 -0.84 -043 -0.84 1.0

Co C G Cy Cs n
Go 1.0 -0.04 0.08 0.07 -0.05 0.05
C -0.04 1.0 -0.64 -0.15 -0.86 0.86
06 055 G 0.08 -0.64 1.0 0.71 0.87 -0.87
Cy 0.07 -0.15 0.71 1.0 0.44 -0.48
Cs -0.05 -0.86 0.87 0.44 1.0 -0.88
n 0.05 0.86 -0.87 -0.48 -0.88 1.0

Co C G Cy Cs n
Co 1.0 -0.1 0.11 0.08 0.0 0.0
¢ -0.1 1.0 -0.63 -0.15 -0.86 0.86
06 095 G 0.11 -0.63 1.0 0.71 0.87 -0.86
Cy 0.08 -0.15 0.71 1.0 0.44 -0.46
Cs 0.0 -0.86 0.87 0.44 1.0 -0.87
n 0.0 0.86 -0.86 -0.46 -0.87 1.0
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Table 17 Lower and upper bounds centered on point estimate for Johnson-Cook parameters
given strong prior on A, for fro = 0.9

Jarea =0.55  farea =0.75  farea = 0.95

Lower bound of A (MPa)  700.329969  700.618008  700.634539
Upper bound of A (MPa)  700.329969  700.618008  700.634540

Lower bound of B (MPa)  865.049053  865.515315  866.181602
Upper bound of B (MPa)  865.049053  865.515315  866.181612

Lower bound of n 0.072046 0.072011 0.071939
Upper bound of n 0.123858 0.123377 0.122826
Lower bound of C 0.004469 0.004541 0.004612
Upper bound of C 0.006972 0.007103 0.007242
Lower bound of m 0.876410 0.874260 0.872110
Upper bound of m 1.053115 1.051230 1.049291

Table 18 Lower and upper bounds centered on point estimate for Johnson-Cook parameters
given strong prior on A, for fro = 0.6

farea = 0-55 farea = 0.95

Lower bound of A (MPa)  695.752574  696.396703
Upper bound of A (MPa)  695.752574  696.396703

Lower bound of B (MPa)  864.675977  864.968226
Upper bound of B (MPa) 864.675977 864.968226

Lower bound of n 0.071672 0.071666
Upper bound of n 0.121127 0.120480
Lower bound of C 0.004160 0.004253
Upper bound of C 0.006701 0.006872
Lower bound of m 0.878135 0.875202
Upper bound of m 1.053570 1.051180
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Table 19 Lower and upper bounds centered on point estimate for Zerilli-Armstrong (BCC)
parameters fit only to data for temperatures of 298 K and above, for fro = 0.9

Jarea = 0.55 Jarea = 0.75 Jarea = 0.95
Lower bound of Cy (MPa) 1.8539766 1.8678995 1.8794430
Upper bound of Cy (MPa) 1.8539766 1.8678995 1.8794430
Lower bound of C; (MPa) 1527.7659993 1535.4145842 1544.2866591
Upper bound of C; (MPa)  1527.7659993  1535.4145842  1544.2866591
Lower bound of C3 (K1) 0.0013978 0.0013996 0.0013985
Upper bound of C3 (K1) 0.0013978 0.0013996 0.0013985
Lower bound of C4 (K1) 0.0000046 0.0000057 0.0000070
Upper bound of C4 (K1) 0.0000486 0.0000489 0.0000491
Lower bound of Cs (MPa) 593.2154268 590.7882786  586.9919218
Upper bound of Cs (MPa) 593.2154268 590.7882786  586.9919218
Lower bound of n (MPa) 0.1761679 0.1783322 0.1814527
Upper bound of n (MPa) 0.2122496 0.2162962 0.2222087

Table 20 Lower and upper bounds centered on point estimate for Zerilli-Armstrong (BCC)
parameters fit only to data for temperatures of 298 K and above, for fro = 0.6

Sarea = 0.55 Jarea = 0.95
Lower bound of Cy (MPa) 1.8041549 1.8190732
Upper bound of Cy (MPa) 1.8041549 1.8190732
Lower bound of C; (MPa) 1489.5834168 1498.8622115
Upper bound of C; (MPa) 1489.5834168 1498.8622115
Lower bound of C3 (K1) 0.0014146 0.0014162
Upper bound of C3 (K™ 0.0014146 0.0014162
Lower bound of C4 (K1) 0.0000000 0.0000010
Upper bound of C4 (K1) 0.0000483 0.0000487
Lower bound of C5 (MPa)  609.8943328 606.3797476
Upper bound of Cs (MPa) 609.8943328 606.3797476
Lower bound of n (MPa) 0.1605899 0.1627577
Upper bound of n (MPa) 0.1881080 0.1918422
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9. Evaluations of Model Fits

9.1 Comparison of Priors to Posteriors

As a sanity check, one may compare the priors for the model parameters to their
corresponding posteriors. If a posterior largely resembles its corresponding prior,
this suggests that the posterior has been largely determined by the prior rather than
the likelihood, which is a problem if a prior is only weakly informative and little
more than an educated guess. Accordingly, plots showing the marginal prior PDFs
for Bayesian model parameters along with histograms estimating the marginal pos-
terior PDFs are shown in Figs. 10—13. These plots are based on results from RStan,

but again, the results from PyStan and PyMC3 are largely the same.

As should be the case, where weakly informative priors are used, the marginal pos-
terior PDFs are, for the most part, substantially narrower than their corresponding
prior PDFs. The one exception to this is for the prior and marginal posterior of Cy,
in Fig. 12a, where the Zerilli-Armstrong model is being fit to all temperature data.
This suggests that this model may not be sufficient to capture the trends in the stress
and strain at all temperatures. It may also indicate that a more informative prior is
needed for Cy, which depends on physical considerations such as the average grain
diameter and the influence on the yield stress of such things as the presence of

solutes and the initial dislocation density,3* not all of which are known at this time.

Usually, the peaks of these posterior PDFs are different from the priors as well.
There are three cases where this is not true. Two of these pertain to the parameter
m in the Johnson-Cook fits. Here, both the prior and marginal posterior PDFs peak
near m = 1, as shown in Figs. 10e and 11e. Since m =~ 1 in most of the fits done
by Johnson and Cook in their original paper on their strength model,>? this is not
surprising and likely reflects the physical trend in thermal softening. Of perhaps
more concern is the case for parameter B in the Johnson-Cook fit where all priors
are weakly informative. It may very well be that the prior estimate of the mean
value of parameter for B, 1000 MPa, is simply a very good guess, but given that 1)
the fit with weakly informative priors appears to underestimate the yield strength of
RHA and 2) the posterior mean for B is not nearly as close to 1000 MPa when a

strongly informative prior for A is used, this appears unlikely.
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Fig. 10 Histograms approximating the posterior marginal PDFs of Johnson-Cook model pa-
rameters and nuisance parameters SD, | and SD, ». These are generated from samples of an
RStan MCMC run with Sro = 0.9, f4rca = 0.75, and weakly informative priors. Priors are
superimposed over the histograms.
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Fig. 12 Histograms approximating the posterior marginal PDFs of Zerilli-Armstrong (BCC)
model parameters and nuisance parameters SD. | and SD, ». These are generated from sam-
ples of an RStan MCMC run with 7o = 0.9, f,,ca = 0.75, using data for all temperatures.
Priors are superimposed over the histograms.
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model parameters and nuisance parameters SD. | and SD, ». These are generated from sam-
ples of an RStan MCMC run with Srgp = 0.9, fircqa = 0.75, using the same data used to fit the
Johnson-Cook model. Priors are superimposed over the histograms.
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9.2 Comparison of PPD to Experimental Data Trends

As mentioned in Section 2, the PPD can be used to check how well a model’s
predictions accord with experimental data. The sampling statement for the PPD

that corresponds to the likelihood in Eq. 32 is
7€) ~ normal(cnar (€, Omar), SDerx)s if {8t SDo i} ~ Dpost  (37)

where D, 18 the posterior distribution, k = 1 for strain rates of 1/s or less,
and £k = 2 otherwise. Unlike the PPD in the more general Eq. 4, here, there
is a distinct PPD associated with each value of e;.c. To generate samples for
the PPD, each MCMC sample of {0,,4;,SDs 4} is substituted into the likelihood
normal(o,q;(€;, 0,q1), SDy 1), and then a sample from that likelihood is taken to be

a value O'Jl."’p Md(ej?), following Gelman et al.!® Accordingly, the number of samples

of the PPD for ej.” (i.e., the number of values of O'Jl."’p red(ej.”) drawn) is the same

as the number of MCMC samples. Since there are n.N;. PPDs (one for each value
of ic € [1,n.] and j € [1,N, ]), and this number of PPDs may be large, visualiz-
ing each PPD with a histogram would be unwieldy. Instead, two statistics are to
be taken from each PPD, the mean and the 95% highest density interval (HDI).
The 95% HDI of O';C’p red(ej.c) is the interval such that 1) the probability that a value
of 0';"”’ Md(ej.c) is in this interval is 95% and 2) the values within this interval all
have higher probability densities than values outside of it.!” Figures 14-22 show
the mean and 95% HDI for the PPDs of the Johnson-Cook and Zerilli-Armstrong
(BCC) models under various fitting conditions, along with the experimental data.

The experimental data are largely within the 95% HDI of the model fits shown
in the aforementioned figures. However, as a measure of the fit of the model to
experimental data, this is a low bar, since the width of the HDI is determined largely
by SD. x, which tends to increase with data spread or misfit. If one compares the
means of the model fits to experimental data, one can see that they do not quite
track the trends in the data, even for the quasi-static data that do not have the same
problems with oscillation as the high-strain-rate data. For example, in Fig. 14a,
where the initial sample temperature is 298 K and the strain rate is 0.001/s, the
curvature of the mean prediction curves (for various values of Brp and fur¢q) Of
the Johnson-Cook model are such that they overpredict the flow stress for plastic
strains between about 2.5% to 10%, and then underpredict the strains thereafter. In

Fig. 14b, where the strain rate is 0.1/s, the mean model predictions largely track the
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Fig. 14 Stress-strain data for initial sample temperatures of 298 K, along with estimates of
the mean and the 95% HDI for PPDs generated from samples of PyStan MCMC runs for
the Johnson-Cook model with weakly informative priors. The 95% HDI for fro = 0.9 and
farea = 0.75 is plotted as a shaded region between the minimum and maximum of the HDI.
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Fig. 15 Stress-strain data for high initial sample temperatures along with estimates of the mean
and the 95% HDI for PPDs generated from samples of PyStan MCMC runs for the Johnson-
Cook model with weakly informative priors. The 95% HDI for Sro = 0.9 and f,,., = 0.75 is
plotted as a shaded region between the minimum and maximum of the HDI.
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Fig. 16 Stress-strain data for initial sample temperatures of 298 K, along with estimates of
the mean and the 95% HDI for PPDs generated from samples of PyStan MCMC runs for the
Johnson-Cook model with a strongly informative prior for A. The 95% HDI for 5ro = 0.9 and
farea = 0.75 is plotted as a shaded region between the minimum and maximum of the HDI.
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Fig. 17 Stress-strain data for high initial sample temperatures along with estimates of the
mean and the 95% HDI for PPDs generated from samples of PyStan MCMC runs for the
Johnson-Cook model with a strongly informative prior for A. The 95% HDI for 5ro = 0.9 and
farea = 0.75 is plotted as a shaded region between the minimum and maximum of the HDI.
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Fig. 18 Stress-strain data for initial sample temperatures of 77 K, along with estimates of
the mean and the 95% HDI for PPDs generated from samples of PyStan MCMC runs for
the Zerilli-Armstrong (BCC) model fit data for all available temperatures. The 95% HDI for
Pro = 0.9 and f,,.., = 0.75 is plotted as a shaded region between the minimum and maximum
of the HDI.

experimental data up to about 10% plastic strain, and then increasingly underpredict
the flow stress. A similar problem can be seen in Fig. 19b, where the initial sample
temperature is 298 K and the strain rate is 0.1/s, the mean model predictions of the
Zerilli-Armstrong (BCC) model are such that they largely track the experimental
data until about 5% strain, where they also begin to increasingly underpredict the

flow stress.

Figure 18a shows why the mean of SD,; for the Zerilli-Armstrong (BCC) models
fit to data for all available temperatures tends to be larger than the mean of SD,; for
models fit only to data for temperatures 298 K and above. Here, the experimental
data show a response that is much stiffer than the overall flatter response predicted
from the Zerilli-Armstrong model, which also has to fit the comparatively flatter
stress-strain data for other initial sample temperatures and strain rates. The param-

eter SD, 1, then, has to expand to account for this discrepancy.

While the model fits are rather approximate, they do appear to be improved by ac-
counting for the temperature rise during sample deformation. In one particular case,
the one for a sample with initial temperature of 77 K and strain rate ¢, = 2500/s,
it appears necessary for an even remotely reasonable fit to be obtained at all. As

seen in Fig. 1, for this case, the stress-strain curve slopes downward, at least for
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Fig. 19 Stress-strain data for initial sample temperatures of 298 K, along with estimates of
the mean and the 95% HDI for PPDs generated from samples of PyStan MCMC runs for
the Zerilli-Armstrong (BCC) model fit data for all available temperatures. The 95% HDI for
Bro = 0.9 and fu,.q = 0.75 is plotted as a shaded region between the minimum and maximum
of the HDI.
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Fig. 20 Stress-strain data for high initial sample temperatures along with estimates of the
mean and the 95% HDI for PPDs generated from samples of PyStan MCMC runs for the
Zerilli-Armstrong (BCC) model fit to data for all available temperatures. The 95% HDI for
Bro = 0.9 and fu,.q = 0.75 is plotted as a shaded region between the minimum and maximum
of the HDI.
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Fig. 21 Stress-strain data for initial sample temperatures of 298 K, along with estimates of
the mean and the 95% HDI for PPDs generated from samples of PyStan MCMC runs for the
Zerilli-Armstrong (BCC) model fit to the same data used for the Johnson-Cook model. The
95% HDI for fro = 0.9 and f;,., = 0.75 is plotted as a shaded region between the minimum
and maximum of the HDI.
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Fig. 22 Stress-strain data for high initial sample temperatures along with estimates of the
mean and the 95% HDI for PPDs generated from samples of PyStan MCMC runs for the
Zerilli-Armstrong (BCC) model fit to the same data used for the Johnson-Cook model. The
95% HDI for fro = 0.9 and f;,., = 0.75 is plotted as a shaded region between the minimum
and maximum of the HDI.
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plastic strains beyond 3%. This trend is due to thermal softening, and it cannot be
captured by any model of the form Tyoder = ae, (T) + be, (T)e;}—which describes
both the Johnson-Cook and Zerilli-Armstrong (BCC) models—if temperature 7 is
treated as constant. This is because if a¢,(T') and b, (T) are constant, the model pre-
dicts a monotonically increasing o040 With increasing €,, which obviously does
not account for the experimentally determined trend. Figure 18b shows the Zerilli-
Armstrong (BCC) model predicting a downward slope of the flow stress with in-
creasing plastic strain, especially for Bro = 0.9, because the temperature rise has

been at least approximately taken into account.

9.3 Comparison of PFP to Experimental Data Trends

As with the PPDs, for a fixed e;", each of the MCMC samples of 0,,,; is substituted
into O'mdl(e’j“, 0,,4:). Thus, one obtains a set of samples from the PFP for a given ef/.“,
which is the same size as the set of MCMC samples. The bounds of the 95% HDI
of the PFPs for all of the values of e;." , for the Johnson-Cook and Zerilli-Armstrong
(BCC) models under various fitting conditions, are shown in Figs. 23-31.

Since the PFPs do not include the effects of the nuisance parameters, they are much
narrower than their corresponding PPDs, and unlike the PPDs, they do not envelop
most of the experimental data. For the noisier data from experiments at high strain
rates, this is to be expected, since noise is primarily taken into account through
the nuisance parameters, whose influence is excluded here. Ideally, the plots of this
noisy data should oscillate around the 95% HDI of the PFPs, as it approximately
does in, for example, Fig. 28d. By contrast, the less noisy data taken from quasi-
static experiments should be largely within the 95% HDI of the PFPs, provided
that the Bayesian model is correct in attributing all the discrepancy between the
model and experimental results to measurement noise. However, the results shown
in Figs. 23a-b, 25a-b, 27a, 28a-b, and 30a-b indicate that the Bayesian model is
not correct in this regard. This is consistent with the findings in Section 9.2 that the

means of the PPDs do not fully track the experimental trends.

9.4 Evaluation of Output from Approximate Interval Predictor Model

The vast majority of the experimental flow stress values—99.9% for the Johnson-
Cook model and 99.7% for the Zerilli-Armstrong (BCC) model—are between the
values of oi,(e,®) and 07,4, (e, ®) calculated from the parameter bounds in Ta-

bles 17-20, as can be seen in Figs. 32-35. However, only a subset of model pa-

70



298 K, 0.001/s

1400 A

1300 A

£ 1200
=
S}
1100 A
95% HDI, Brg = 0.9, farea = 0.75
—— 95% HDI, Bro = 0.9, fore, = 0.55
=== 95% HDI, Bro = 0.9, fores = 0.95
—-- 95% HDI, Bro = 0.6, fore, = 0.55
10004 | e 95% HDI, Brg = 0.6, farea = 0.95
+ Exp. Data
0.0000.0250.0500.0750.1000.1250.1500.175
&
(a)
298 K, 3500.0/s
1450 A
1400 4
© 1350 /f
< i
=3 v/i
S
1300
95% HDI, Bro = 0.9, farea = 0.75
1250 4 —— 95% HDI, Brg = 0.9, farea = 0.55
== 95% HDI, Bro = 0.9, farea = 0.95
—=+= 95% HDI, Bro = 0.6, farea = 0.55
----- 95% HDI, Brg = 0.6, farea = 0.95
1200 A +  Exp.Data

0.025 0.050 0.075 0.100 0.125 0.150 0.175
&p

(©)

Fig. 23 Stress-strain data for initial sample temperatures of 298 K, along with estimates of
the 95% HDI for PFPs generated from samples of PyStan MCMC runs for the Johnson-Cook
model with weakly informative priors. The 95% HDI for 7o = 0.9 and f;,., = 0.75 is plotted
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as a shaded region between the minimum and maximum of the HDI.
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Fig. 24 Stress-strain data for high initial sample temperatures along with estimates of the 95%
HDI for PFPs generated from samples of PyStan MCMC runs for the Johnson-Cook model
with weakly informative priors. The 95% HDI for Sro = 0.9 and f4,., = 0.75 is plotted as a
shaded region between the minimum and maximum of the HDI.
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Fig. 25 Stress-strain data for initial sample temperatures of 298 K, along with estimates of
the 95% HDI for PFPs generated from samples of PyStan MCMC runs for the Johnson-Cook
model with a strongly informative prior for A. The 95% HDI for Sro = 0.9 and f,cq = 0.75
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is plotted as a shaded region between the minimum and maximum of the HDI.
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Fig. 26 Stress-strain data for high initial sample temperatures along with estimates of the 95%
HDI for PFPs generated from samples of PyStan MCMC runs for the Johnson-Cook model
with a strongly informative prior for A. The 95% HDI for 7o = 0.9 and f,,., = 0.75 is plotted
as a shaded region between the minimum and maximum of the HDI.
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Fig. 27 Stress-strain data for initial sample temperatures of 77 K, along with estimates of the
95% HDI for PFPs generated from samples of PyStan MCMC runs for the Zerilli-Armstrong
(BCC) model fit data for all available temperatures. The 95% HDI for Srp = 0.9 and f;,., =
0.75 is plotted as a shaded region between the minimum and maximum of the HDI.

rameters have significant differences between their upper and lower bounds. For
the Johnson-Cook model, these are n, C, and m.* For the Zerilli-Armstrong (BCC)
model, only the intervals for parameters C4 and n have significant non-zero width.
This does not mean that it makes sense to say, for example, that there is no uncer-
tainty in parameters A and B. Rather, it simply means that varying those parameters
is not necessary to obtain a set @) that accounts for the vast bulk of the available
experimental data. For example, two very different values for A in the Bayesian fits
for the Johnson-Cook model (shown in 3) appeared to account for the experimental
data about equally well, indicating that varying A does not help much to account
for the data in the first place. Similarly, the curvatures of the predicted stress-strain
curves according to the Johnson-Cook model are determined largely from B and n,
and varying n appears to be enough to account for the curvatures. It is likely most
appropriate to say that given certain baseline values of the model parameters, only
a subset of the parameters need to be varied to account for discrepancies between

model predictions and experimental results.

“For the case where Srg = 0.9 and f,,., = 0.95, the differences between the upper and lower
bounds for A and B are practically negligible and almost certainly due to the inexactness of floating-
point arithmetic.
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Fig. 28 Stress-strain data for initial sample temperatures of 298 K, along with estimates of the
95% HDI for PFPs generated from samples of PyStan MCMC runs for the Zerilli-Armstrong
(BCC) model fit data for all available temperatures. The 95% HDI for Sro = 0.9 and f;,cq =
0.75 is plotted as a shaded region between the minimum and maximum of the HDI.
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Fig. 29 Stress-strain data for high initial sample temperatures along with estimates of the
95% HDI for PFPs generated from samples of PyStan MCMC runs for the Zerilli-Armstrong
(BCC) model fit to data for all available temperatures. The 95% HDI for fro = 0.9 and
farea = 0.75 is plotted as a shaded region between the minimum and maximum of the HDI.
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Fig. 30 Stress-strain data for initial sample temperatures of 298 K, along with estimates of the
95% HDI for PFPs generated from samples of PyStan MCMC runs for the Zerilli-Armstrong
(BCC) model fit to the same data used for the Johnson-Cook model. The 95% HDI for 8rp =
0.9 and f,,., = 0.75 is plotted as a shaded region between the minimum and maximum of the

HDI.

78

o (MPa)

o (MPa)

298 K, 0.1/s

1450

1400 4

1350 4

1300 4

1250 1

1200 4

1150 4

1100 4

95% HDI, Bro = 0.9, forea = 0.75
—— 95% HDI, Bro = 0.9, forea = 0.55
—=+ 95% HDI, Bro = 0.9, forea = 0.95
—-+ 95% HDI, Bro = 0.6, forea = 0.55
----- 95% HDI, Bro = 0.6, forea = 0.95

Exp. Data

0 - T T T T T T T
0.0000.0250.0500.0750.1000.1250.1500.175

&p

(b)

298 K, 7000.0/s

1500 A

1475 A

1450 -

1425 A

1400 A

1375 A

1350 A

1325 A

1300 -

;,.“: /N‘V\:‘lf\l‘.‘-

95% HDI, Bro = 0.9, fares = 0.75
—— 95% HDI, Bro = 0.9, farea = 0.55
==+ 95% HDI, Brg = 0.9, fyrea = 0.95
— =+ 95% HDI, Brg = 0.6, farea = 0.55
----- 95% HDI, Bro = 0.6, farea = 0.95
Exp. Data

0.050 0.075 0.100 0.125 0.150 0.175
&p

(d)




473 K, 3000.0/s

1300

1275 A

1250 A

1225 A

1200 A

o (MPa)

11754 °

1150 A

1125 A

95% HDI, Brg = 0.9, farea = 0.75
—— 95% HDI, Bro = 0.9, forea = 0.55
—=- 95% HDI, Bro = 0.9, fores = 0.95
—== 95% HDI, Brg = 0.6, forea = 0.55
----- 95% HDI, Bro = 0.6, fares = 0.95
Exp. Data

0.025 0.050 0.075 0.100 0.125 0.150 0.175

Fig. 31 Stress-strain data for high initial sample temperatures along with estimates of the
95% HDI for PFPs generated from samples of PyStan MCMC runs for the Zerilli-Armstrong
(BCC) model fit to the same data used for the Johnson-Cook model. The 95% HDI for 8rp =
0.9 and f,,., = 0.75 is plotted as a shaded region between the minimum and maximum of the

HDI.
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Fig. 32 Stress-strain data for initial sample temperatures of 298 K, along with estimates of the
minimum and maximum flow stress values generated from parameter bounds for the Johnson-
Cook model. For frg = 0.9 and f;r.q = 0.75, the region between the flow stress values is

plotted as a shaded region.
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Fig. 33 Stress-strain data for high initial sample temperatures along with estimates of the
minimum and maximum flow stress values generated from parameter bounds for the Johnson-
Cook model. For frgo = 0.9 and f;r.q = 0.75, the region between the flow stress values is
plotted as a shaded region.
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Fig. 34 Stress-strain data for initial sample temperatures of 298 K, along with estimates of the
minimum and maximum flow stress values generated from parameter bounds for the Zerilli-
Armstrong (BCC) model. For fro = 0.9 and fu,.q = 0.75, the region between the flow stress
values is plotted as a shaded region.
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Fig. 35 Stress-strain data for high initial sample temperatures along with estimates of the
minimum and maximum flow stress values generated from parameter bounds for the Zerilli-
Armstrong (BCC) model. For fro = 0.9 and fi,.q = 0.75, the region between the flow stress
values is plotted as a shaded region.
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9.5 Predictions of Yield Strength

For the Johnson-Cook model, parameter A is an estimate of the yield strength. For
the Zerilli-Armstrong (BCC) model, no single parameter of the model provides an
estimate. Instead, for this model, the quasi-static yield strength is estimated as the
mean of the PPD for €, = 0 and €, = 0.001/s. Estimated yield strengths for various
values of Sro and fur.q are shown in Table 21 for the Zerilli-Armstrong (BCC)
model fit to the MIDAS data for all available temperatures, and in Table 22 for the
Zerilli-Armstrong (BCC) model fit to the same data used with the Johnson-Cook
model.

Table 21 Yield strengths, estimated as the mean of a PPD for ¢, = 0 and ¢, = 0.001/s, for
PPDs generated from samples of RStan MCMC runs for the Zerilli-Armstrong (BCC) model
fit to data for all available temperatures and the 87 and f,,., values from Table 1

Bro  farea Yield stress (MPa)

09 075 983.291
09 055 983.784
09 095 984.853
06 055 982.384
06 095 9815

Table 22 Yield strengths, estimated as the mean of a PPD for ¢, = 0 and ¢, = 0.001/s, for PPDs
generated from samples of RStan MCMC runs for the Zerilli-Armstrong (BCC) model fit to
the same data used for the Johnson-Cook model and the 57 and f,,., values from Table 1

Bro  farea Yield stress (MPa)

09 075 1051.94
09 055 1050.09
09 095 1053.12
06 055 10457

06 095 1046.62

A strong prior on at least one parameter appears to be necessary for a strength
model to have a reasonable estimate of the yield strength. Without such a prior, the
Johnson-Cook model tends to underpredict the yield strength (i.e., parameter A in
the model) by about 18%-27%, as can be seen by comparing parameter A in Ta-
bles 3 and 5 with the estimated yield strength of RHA discussed in Section 5, about
700 MPa. The Zerilli-Armstrong (BCC) model overpredicts the yield strength by
about 40%—-50%, as can be seen by comparing the yield strengths shown in Ta-
bles 21 and 22 with the aforementioned estimated yield strength of RHA. Unfortu-

nately, there does not appear to be a parameter in the Zerilli-Armstrong model for
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which a physically based strong prior can be set, except perhaps for Cy, on which

little if any information appears to be available.

9.6 Effects of Uncertainties in Temperature Rise Estimation

The approximation of sample temperature rise discussed in Section 4 involves two
parameters with substantial uncertainties, Srg and fureq. Of the two parameters,

Bro appears to have the larger effect on the fits.

In Figs. 6-9, there are usually two clusters of marginal PDFs for each model pa-
rameter, one for frp = 0.6 and one for Brp = 0.9. There are some exceptions to
this. For example, in the Johnson-Cook model with a strongly informative prior for
A, the marginal PDFs of A, B, or n for various values of Br¢ and fur.q (in Fig. 7)
nearly overlap, showing little sensitivity to either Srp or fu-.q. This makes sense,
since 1) the marginal posterior PDF of A is largely fixed by its prior and 2) there is
a high correlation between parameters A, B, and n, as shown in Tables 11 and 12.
Parameter Cy of the Zerilli-Armstrong (BCC) model also appears insensitive to Srg
and f;,.q, for both the fits to all MIDAS data and the fits to data for initial sample
temperatures of 298 K and above (the same data used for the Johnson-Cook model).
For the former set of fits, this insensitivity appears to be due to the marginal poste-
rior PDF of Cj being largely dictated by the prior on Cy, rather than the data. For
the latter set of fits, there appears to be some trend driving Cp toward zero, though
the reason for this trend is unclear. There are also some parameters, such as C for
the Johnson-Cook model and C; and Cy4 for the Zerilli-Armstrong (BCC) model,

that show more sensitivity to both Brg and fur¢4-

The mean and 95% HDI of the PPDs shown in Figs. 14-22, as well as the minimum
and maximum flow stresses shown in Figs. 32-35 estimated from the approximate
IPM approach, are almost completely insensitive to f;,.,, while usually showing
some sensitivity to Sro. Generally, all the curves pertaining to Sro = 0.6 overlap
each other, and all the curves pertaining to Sro = 0.9 overlap each other, but the two
sets of curves often do not overlap. One apparent exception to this is for the cases
where the initial sample temperature is 77 K and the strain rate is 2500/s, shown in
Fig. 18b, which do show some sensitivity to f,.,. This may be because the stress
at the beginning of the stress-strain curve for this initial sample temperature and
strain rate, 1791 MPa, is relatively high compared to that of the other curves, about

25% higher than the stress at the beginning of the stress-strain curve for sample
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temperature 298 K and strain rate 7000/s. Thus, for the low-temperature curve, a
change in f,., represents a larger change in the area under the missing part of the

curve than it does for other curves.

While the uncertainties in temperature rise estimation may affect the values of the
model parameters and model predictions, they appear to have little effect on inter-
actions between parameters. This can be seen from the correlation matrices, shown

in Tables 9-16, which are insensitive to both Sro and fy,eq.

10. Conclusions

This report has discussed how to mathematically describe a Bayesian model as-
sociated with a material strength model and related experimental data. It has given
examples of how one may represent the priors in a Bayesian model, which represent
background knowledge, and how priors may be weakly or strongly informative. It
has discussed how the likelihood of a Bayesian model may be constructed from as-
sumptions of how the experimental data are expected to deviate from the model. It
has also discussed how to translate a mathematical description of a Bayesian model
into forms usable by software tools, such as a specification file written in the Stan
language or a Python function to be used with PyMC3. In this report are also exam-
ples of how uncertainties in model parameters may be reported, such as histograms
to visualize the marginal PDFs of model parameters and tables of moments of the
distributions with these PDFs. The correlations between the random distributions
of these model parameters are also reported, and in forms suitable as input to tools

used for uncertainty propagation analysis, such as Dakota.>?

Evaluations are presented of the quality of Bayesian fits of particular strength mod-
els (namely, the Johnson-Cook and Zerilli-Armstrong [BCC] models) to experi-
mental data. The evaluations that have been done include comparing priors to their
associated posteriors, comparing PPDs and PFPs to experimental data, and compar-
ing what the strength models predict to be the yield strength to an experimentally
obtained yield strength. Other evaluations could have been done, such as cross-
validation,!® where one fits a model to a subset of the data (e. g., all but one of the
stress-strain curves) and checks how well the resulting fitted model predicts the ex-
perimental data that has not been used to fit the data (e.g. the stress-strain curve
that is left out). However, the evaluations that have been done—particularly the

comparision of PPDs and PFPs to the data—already show significant discrepancies
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between the experimental data and what the strength models discussed in this re-
port are able to predict, even with the PDFs of the parameters taken into account.
This indicates the importance of publishing the nuisance parameters, even if they
cannot be directly be input to uncertainty propagation analyses, since they provide
an indication of model discrepancies that future researchers can use to estimate the

degree of trust to put in such analyses.

Also discussed in this report is an alternative to the Bayesian approach, based on an
approximate IPM approach, that can obtain bounds for model parameters. A caveat
with this approach is that if varying a model parameter about its baseline values
does little to account for discrepancies between model predictions and experimental
results, then the estimated lower and upper bounds for that parameters may be the
same. In spite of this, though, the estimated bounds on the model parameters lead

to predictions that encompasss the vast majority of the experimental data.

It is hoped that this report will be useful to future researchers who do model fits,
both within and outside ARL, so that they can present their results in a fashion that

is more useful for uncertainty quantification.
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Appendix A. Probability Density Functions of Random
Distributions
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A random variable has a certain distribution, which defines how likely it is that an
instance, or sample, of the variable has a certain value or be within a certain range
of values. As a simple example, the distribution of an unfair coin toss might be such
that the probability of heads is, say, 60%, and samples from this distribution might
be {H,H,T,H,T,H,T,H,H,T}, where H is heads and T is tails. Continuous random
variables, of course, do not have a discrete set of possible values, such as the heads
and tails of coins, or the values one through six on the faces of dice. Rather, the
distribution of random values for continuous variables is usually characterized via

a probability density function (PDF).

If a is a continuous scalar quantity, then the PDF p(a) might be plotted as a curve
like the one shown in Fig. A-1. Intuitively, one may guess that the most probable
ranges of values of a are near the maximum of p(a). More generally, the probability
that a is between a/°" and a"¢" is!

ahigh

P(d < a < ey = / pla)da (A-1)

alow

0.1754

0.150 4

0.125

0.100 4

p(a)

0.075 1

0.050 4

0.025 1

0.000 4

Fig. A-1 Example probability density p(a)

One may note that while p(a) is restricted to be nonnegative, it can exceed 1. It is
only the probability P(a'”" < a < a’'8") that must be less than or equal to 1. If one
generates a large number of samples from a probability distribution and creates a
histogram from these samples, the result tends to resemble the distribution’s PDF.

An example of this is shown in Fig. A-2.

! Grinstead CM, Snell JL. Introduction to probability. 2nd ed. Providence (RI): American Math-
ematical Society; 1997.
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Fig. A-2 Example histogram associated with the probability density p(a). The counts in each
bin of the histogram have been normalized such that the area under the histogram is 1.

PDFs are not just for scalar quantities. For a variable a that could be a vector, matrix,

tensor, and so on, the probability that a is within a subset of possible values A is

Plae A) = /p(a)da (A-2)
A

where p(a) is the PDF of a. Note that by the definition of probability, as the set A
expands to include all possible values of a, P(a € A) approaches 1. Associated with
the components of a is a marginal probability distribution, and the marginal PDF of

component a; of a is?

N N N N

where n, is the number of components of a. Individual marginal PDFs can be visu-
alized readily (as in, for example, Fig. A-1), even when the overall (or joint) PDF

p(a) is difficult or impossible to visualize directly.

There are several known random distributions, which are described as follows.?

One of the simplest is the uniform distribution. For a continuous variable a that is

2Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB. Bayesian data analysis.

3rd ed. Boca Raton (FL): CRC Press; 2013.
3Grinstead CM, ibid.
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equally likely to be anywhere between [a™", a"%*], the PDF of a is simply

i 1/(amax _ amin) amin < a < ghax
punif(a|a »a ) = . (A-4)
0 otherwise

min max

Because " and a™* are parameters of the uniform distribution itself, they are

“l”

placed after the “|” in the previous equation. Other parameterized distributions are

the exponential, beta, and normal distributions, and these have the following PDFs.

Aexp(-da) x>0
pexp(al/l) = ) (A-5)
0 otherwise

a® (1= a)f) [l(@) (1 —af'da* 0<a<1

Poeta(ala, B) = (A-6)

otherwise

1 1 ja—p\?
D) = = A7

GG|”

Again, parameters pertaining to the random distribution itself are placed after the
in the previous equations. Parameters p and SD in particular represent the mean and
standard deviation of the normal distribution. Example plots of these parameterized
PDFs are shown in Fig. A-3.
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Fig. A-3 Examples of parameterized PDFs
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These are tables of the data that have been used in Bayesian analyses of strength
models of rolled homogeneous armor (RHA). Table B-1 contains values for the spe-
cific heat of body-centered cubic (BCC) iron—which is assumed to approximate the
specific heat of RHA—as a function of temperature. In this table, the specific heat
values are for constant volume, except for values for temperatures above 773 K,
where only values for constant pressure are available. The specific heat values are
converted from molar heat capacity values from Austin' using the molar mass of
iron taken from the CRC Handbook,? 55.845 g/mol. Tables B-2 through B-10 con-
tain the stress-strain data for RHA that comes from the Material Implementation,
Database, and Analysis Source (MIDAS).? The original source for these data is
Gray et al.,* who have obtained high-strain-rate data with a split Hopkinson pres-
sure bar and low-strain-rate data (where the plastic strain rate is no greater than 1/s)
with “either an Instron or an MTS testing system”. However, the original published
data are engineering stress and strain, while in the MIDAS database, it has been

corrected to true stress and true plastic strain.’

Table B-1 Specific heat of BCC iron versus temperature

Temp. Spec.heat Temp. Spec.heat Temp. Spec.heat Temp. Spec.heat Temp. Spec. heat
K  J/kg-K) (K (Jkg Ky (K J/kg-K) (K  J/kg-K) (K) (J/kg - K)

20 4.123 200 382.356 323 454.329 573 565.287 1023 1154.566
30 11.246 225 400.349 333 457.328 623 583.281 1033 1341.245
40 27.515 250 419.092 343 459.577 673 602.773 1073 877.170
50 53.230 273.1 430.338 353 461.826 723 623.016 1123 812.694
75 134.949 283 436.336 363 464.825 773 647.756 1173 778.957
100 212.920 293 442.334 373 470.823 823 718.230
125 272.148 298 444.583 423 494 .814 873 790.203
150 322.379 303 447.582 473 519.555 923 871.172
175 356.866 313 451.330 523 541.296 973 962.638

"Austin JB. Heat capacity of iron: A review. Industrial & Engineering Chemistry.

1932;24(11):1225-1235.
ZRumble J, editor. CRC handbook of chemistry and physics. 98th ed. Boca Raton (FL): CRC

Press; 2017.
3Lawrence Livermore National Laboratory. MIDAS: Material implementation,

database, and analysis source. c2018 [accessed 2018 Mar]. https://pls.llnl.
gov/people/divisions/physics—-division/condensed-matter-science-
section/eos—and-materials-theory-group/projects/midas-material-

implementation-database—-and-analysis—source.
4Gray GT III, Chen SR, Wright W, Lopez MF. Constitutive equations for annealed metals under

compression at high strain rates and high temperatures. Los Alamos (NM): Los Alamos National

Laboratory; 1994 Jan. Report No.: LA-12669-MS.
SFlorando J. Lawrence Livermore National Laboratory, Livermore, CA. Personal communica-

tion, 2017.
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Table B-2 Flow stress versus plastic strain of RHA for initial temperature 77 K and plastic
strain rate 0.001/s

Strain Stress Strain Stress Strain Stress Strain Stress Strain Stress
(MPa) (MPa) (MPa) (MPa) (MPa)

0.000062  1552.7 0.032648 1764.6  0.067995 18544  0.104813 1930 0.143498  1986.7
0.00022 1566.5  0.033594 1765 0.068757 18553  0.105444  1931.3  0.144944  1987.5
0.000535  1582.5 0.034303 1768 0.069571  1857.4  0.107179  1930.5 0.145548  1989.3
0.000903  1597.1 0.035066  1770.6  0.070412  1857.9  0.108177 19339  0.146337  1989.3
0.001376  1609.2  0.035828 1771.9 0.071385 1859.2  0.109045 19344 0.147125 1991
0.001875  1621.7  0.036563  1774.1  0.072199  1862.2 0.109912  1938.7  0.147835 1991.4
0.002453  1631.6  0.037483 17762  0.072856  1864.3  0.110779 1940.8  0.149359  1994.5
0.003294  1642.4  0.039034  1779.7  0.07375 18652 0.111699 1943 0.150568  1995.8
0.003872  1650.2  0.03977 1781 0.074486  1867.4  0.112881 19443  0.151093  1995.8
0.004712  1659.2  0.040427 1782.7 0.075248 1870 0.113565 19452  0.151882  1996.6
0.005475 1664 0.041136 17853  0.076036  1872.1  0.114669 1946 0.152749 19979
0.006184 1669.2  0.041872 1787 0.076956  1875.1  0.115378 19469  0.153643  2000.5
0.007209  1676.5 0.042818  1790.1  0.077928  1875.1 0.116456  1948.6  0.15451 2001
0.008076  1681.7  0.043659  1793.5 0.079295 18769 0.117402 1949.1  0.155666  2002.3
0.00897 1685.1  0.044605 17944  0.080057 1879.5 0.118505 19512  0.156428  2003.1
0.009889  1689.4  0.045315 1795.7  0.08074 1881.6  0.119268 1952.1  0.157296  2003.1
0.010835 1693.8  0.046445 1800 0.081529 18829  0.120266  1953.4  0.158373 2004
0.011808 1698.5 0.047338  1800.9  0.08237 1884.7  0.121081 19542  0.159477  2006.6
0.012675 1702.4  0.048048 1803 0.083316  1887.2  0.122237  1956.8  0.16087 2007.9
0.013437  1705.8 0.048941 1805.6 0.084446  1889.8  0.123341  1958.1  0.162 2010.5
0.014199  1709.7  0.049756  1807.3  0.085287 1891.6  0.124471 1958.6  0.162604  2010.5
0.014961 1713.6  0.050492 1808.6  0.086128  1893.7  0.12526 1960.3  0.163971  2010.5
0.01575 1715.3  0.051569 18104  0.0876 1897.2  0.126232  1961.6  0.164838  2011.3
0.01638 17162 0.052332 18125 0.088335 1898.9 0.127204 1962.5 0.165863  2012.2
0.017064 1717.9 0.053173 1816 0.08936 1900.2  0.128098  1963.8  0.167361  2013.9
0.017852 17223  0.05383 1817.7  0.090438  1902.8  0.129202 1965.5 0.168255 2013.5
0.019114 17253 0.054618  1820.7  0.090858  1903.7  0.130279  1967.2  0.169306  2015.2
0.020086  1727.4  0.055748 1825 0.091726 1905 0.13091 1968.9  0.170252  2016.5
0.020874  1730.5 0.056799 18259  0.092619 1905.8 0.131725 1971.1  0.171067  2018.3
0.021584 17335 0.057456  1826.8 0.093513  1906.7 0.132618 19724  0.171881  2020.4
0.022504  1736.5  0.05835 1828.5 0.094538 19084  0.133538 1974.6  0.172591  2020.4
0.023266  1739.5 0.059086  1831.1 0.095773 19119 0.134353  1974.6  0.173564 2020
0.024159 17417  0.060137 18332  0.097218 1914 0.135167 19759  0.174378  2020.9
0.024869  1743.8  0.061057 1835 0.097823 19149 0.136035 19759 0.175745 20222
0.026051 1747.7  0.06195 1836.7  0.098795 1917.9  0.136797 1978 0.176691  2022.2
0.027234 17503  0.062712  1838.9  0.09961 1920.1  0.138216  1980.6  0.177479  2023.9
0.027996 1752 0.063842 1841 0.100398 19244  0.139083 19819 0.178136  2024.3
0.028653  1755.1  0.064815 18449  0.101292  1924.8  0.13995 1982.8  0.178583  2024.3
0.029678 17572  0.065524  1847.9  0.102054 1925.7 0.140844  1983.2

0.030466 1759 0.066181  1849.7 0.102816  1926.1  0.141659  1984.9

0.031229 1762 0.067154 18522  0.103657  1926.6  0.142631  1985.8
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Table B-3 Flow stress versus plastic strain of RHA for initial temperature 77 K and plastic
strain rate 2500/s

Strain Stress Strain Stress Strain Stress Strain Stress Strain Stress
(MPa) (MPa) (MPa) (MPa) (MPa)

0.019951 17919 0.042917 1817.4 0.065427 1787.8 0.088992  1780.1  0.116886  1739.6
0.020109  1794.6  0.043495 1816.8 0.065901 1789.4  0.089491  1778.7  0.117385  1738.7
0.02032 1797.1  0.043915 1816.8  0.066295 1789.4  0.090043 1777 0.117884  1737.8
0.020504 1801 0.044336  1816.9  0.066663  1790.8  0.090673 1775 0.118331 1737
0.020742  1805.7 0.044808 18139 0.066873 1791.2  0.091224 17744  0.118804 1737
0.021005 1809.9 0.045176  1812.8 0.067188 1790.2 0.091776  1772.6  0.119277  1736.9
0.021242  1813.7 0.045517 1810.5 0.067477  1788.1  0.092301  1769.7  0.119881 1737
0.021505 1817.4  0.045937 1808.5 0.068002  1785.1  0.092957 1768.1  0.120432 1734.1
0.021664  1820.1 0.046436  1806.3  0.06829 1783.8  0.093561  1767.4  0.12101 1731.9
0.021979  1823.8  0.046829 18019 0.068605 17824  0.094271 1768.1  0.121587  1730.9
0.022426  1824.6  0.047249  1797.4 0.069156  1778.5  0.09477 1769.2  0.122086  1729.2
0.022768  1824.8  0.047747 17924  0.069603  1777.3  0.095401 1769.2  0.122428  1728.2
0.023162  1826.6  0.048245 1788.5  0.070049 17749  0.0959 1771.1  0.123347 17274
0.02353 1826.4  0.048665 1784.9 0.070469 17749 0.096347 1772.6  0.123872  1726.4
0.024055 1827.1 0.049085 1780.8 0.070864 1775.8 0.097109 1773.6  0.124608  1725.5
0.024529 18283  0.049557 1777.1  0.071232 1776.8  0.097793  1773.9  0.125238  1726.3
0.024949  1828.4  0.050003 1773.8 0.071626  1778.9  0.098475 17723  0.125817 1727.2
0.025868 18279  0.050476  1772.1  0.0721 1782.1  0.099105  1768.8  0.126237 1728
0.026341  1828.7 0.051053 1769.8 0.072441 1783.1  0.099683  1767.3  0.126736  1728.6
0.026893  1827.7 0.051474 1769.1  0.072993  1785.7 0.100155 17649 0.127393  1727.5
0.027629 1828 0.051841 1769.6  0.073309  1788.7  0.100759  1763.1  0.127944  1726.1
0.028207  1827.7 0.052262 1769.3  0.073625 17914 0.101022 17622 0.128496  1722.9
0.028653  1827.3  0.052709 1771.8 0.073862  1792.5 0.101758 17624  0.129046  1718.8
0.029231  1827.1 0.053129 17735 0.074282 17934  0.102152 1763.3  0.129414 17159
0.02973 1826.6  0.053445 17749 0.074781  1794.1  0.102651 17647  0.129886  1711.3
0.030177 18257 0.053787 17772  0.075202 17945 0.103151 17654  0.130647 1707.3
0.030702 18239 0.054155 1780.2 0.075911 17944  0.103703 1768.3  0.131145 1703.4
0.031174  1821.4  0.05455 17844  0.076226 17934 0.104019 1770.5 0.131644 1701.4
0.031699  1819.5  0.054919 17883  0.077014 1792 0.104308  1771.5  0.132117  1701.3
0.032198  1818.2  0.055129 17899 0.077618 1790.5 0.104834  1774.8  0.132432  1700.4
0.032645 1818.6  0.055629 17939 0.078091 1790 0.105044 17756  0.1328 1699.7
0.03346 1819.2  0.056076  1797.6  0.078511  1789.2  0.105465 17784 0.133168  1699.9
0.033985 1822 0.056497  1800.9  0.079089  1788.2  0.105964  1779.8  0.133509  1699.6
0.034327 18243  0.056813  1803.2 0.079483 1787.9  0.10649 1780 0.133982  1700.3
0.034748  1827.3  0.057207 1806.2  0.079877  1787.1  0.107015 1778.3  0.134376  1701.2
0.035169  1829.8  0.057707 18089  0.080507 1785.6  0.107724  1775.8 0.134666  1701.8
0.035537 1831.6  0.058154 1809.7 0.081111 17845 0.108117 1773.2  0.13506 1702.2
0.035905 18335 0.058627 1808.9 0.081611 1784 0.108564 17712  0.1359 1701.5
0.036273 18349 0.059047 1807.7 0.082057 1783.9 0.109194 1767.3  0.136504  1697.8
0.036667  1833.7  0.059388  1806.2  0.082556  1783.4  0.109482 17649 0.137081  1692.7
0.037087  1832.5 0.059755 1803.5  0.08295 1783.5 0.109928 1760.2  0.137553  1687.3
0.03756 1830.8  0.06028 1800.5 0.083633 1783.1 0.110295 17564 0.137841 1681.6
0.038137 18272  0.060727  1798.5 0.084264 1782.7 0.110846 17519 0.138102  1675.8
0.03861 18246  0.061304 1794.1 0.084711 1783.5 0.111476 1748.1  0.138548  1669.8
0.039161 18223  0.06175 1791.3  0.08521 1783 0.112342  1746.2  0.139072  1662.8
0.039686 18189  0.062406  1787.6  0.085551 1783.5 0.112972  1743.5 0.139386  1658.2
0.040185 18179  0.063063 1786 0.086287 17842  0.11397 1741.7  0.139911  1652.8
0.040632  1817.5 0.06343 1786.2  0.086839  1783.2 0.114364 17414 0.140409  1648.5
0.041236  1818.1  0.063851 1787 0.087285 1783.2  0.115126  1741.2

0.041682  1816.8  0.064403  1786.4 0.087889  1782.1  0.115573  1740.4

0.042208  1816.3  0.065007 1786.9  0.088441 1781.1 0.116387  1739.7
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Table B-4 Flow stress versus plastic strain of RHA for initial temperature 298 K and plastic
strain rate 0.001/s

Strain Stress Strain Stress Strain Stress Strain Stress Strain Stress
(MPa) (MPa) (MPa) (MPa) (MPa)

0.000028  1064.6  0.031693  1298.4  0.068066 1346 0.103861  1362.6  0.1416 1374.4
0.000291 1081 0.032377  1299.3  0.069038 1346 0.104307  1362.6  0.142573  1375.7
0.000527  1094.4  0.033612 1302.3 0.069774 13469 0.105017 13622  0.144018  1375.7
0.000816  1107.3  0.034321  1304.1 0.070379 1346.5 0.105621 1361.7 0.144649 13753
0.001105  1120.7 0.035084  1305.8 0.071062 13469  0.1062 1361.7  0.145542 13753
0.001525 11353  0.03603 1307.1  0.071955 1347.3  0.106936  1362.2  0.14641 1374.4
0.001946 11409 0.036713  1309.3  0.072639  1346.9 0.107592 13622  0.147172  1376.6
0.00276 11522 0.037317 1310.1  0.073401 1348.2 0.108696 1362.6  0.148039  1376.6
0.003338  1159.5 0.038027 1311.8 0.073953  1348.2 0.109406 1363 0.148959  1376.6
0.00389 1166.4  0.03871 1312.3  0.074715 13474 0.110299  1363.9 0.149984  1378.3
0.004415 11733  0.039472  1313.1  0.075477 1348.7 0.110983  1365.6  0.150799  1379.2
0.005072  1180.2  0.040208 13144 0.076265 13504  0.111587  1365.2  0.151377  1378.7
0.005729  1185.8 0.041207 1317.9 0.077606 13504  0.112323  1364.8 0.153032 13774
0.00636 11923  0.041864 1317.5 0.078421 13504  0.113033  1364.8  0.154189  1376.2
0.007148 1197.4  0.042784 1319.2 0.079104 1350 0.113663  1365.2  0.154846 1377
0.007858  1203.1  0.04352 13214 0.079629  1350.8 0.114452 1365.6  0.155582  1377.5
0.008462  1206.5 0.044203 13209 0.080418 1351.3  0.115661  1364.4  0.156554  1377.5
0.009014  1210.8  0.044755 13209 0.081233  1351.7 0.116791 1365.7 0.157264 13783
0.009592  1215.6  0.045543  1323.1 0.081679 1352.6  0.117658  1365.2  0.158236  1379.2
0.010197 12182  0.046594 13257 0.082415 1352.6 0.118447 13652 0.159103  1378.8
0.010749  1220.7 0.047173  1326.1  0.082993 13534  0.119288  1365.7 0.159734  1379.6
0.011353 12259 0.048014  1326.5 0.083598 1353 0.119997  1366.5  0.160654  1378.8
0.011957 12289 0.048986 13283  0.084202 13543  0.120733  1368.3 0.161732 13783
0.012641 1232 0.049879  1329.1  0.085122 13547 0.121653  1368.7 0.162625 1378.4
0.013376 12363 0.050747 13309 0.086095 1354.7 0.122573 1367 0.163335  1378.4
0.014664 1241 0.05164 13322 0.086699  1355.6  0.124255 1367.4  0.164255  1380.1
0.015426  1246.6  0.052297  1331.7  0.08754 1356 0.124938  1366.5 0.165201  1381.4
0.016346  1249.7  0.052954 13322  0.088145 1356.5 0.125937  1365.3  0.165936  1381.8
0.016977 12523  0.053717 1331.7 0.088959 13569 0.126489  1365.7 0.166593  1381.8
0.017581  1254.8  0.054531 1332.6  0.089721 1358.6  0.127119  1366.1  0.167303  1380.5
0.018317 12583  0.055293 1333 0.090352  1359.1  0.127855 1366.1  0.169169 1381
0.019158 12609 0.056187 1334.8 0.091167 13582  0.12867 1367.9  0.169958 1381
0.019841 12639 0.056713 13343 0.091666  1359.1  0.129038  1367.9  0.170825 1381.4
0.02063 1265.6  0.057527 1335.6  0.092849 1358.6  0.129406 1368.3  0.171587 1381
0.021365  1269.1  0.058684  1337.4  0.09348 13574 0.130352  1369.2  0.172375 1381.4
0.022338  1271.2  0.05963 1339.1  0.094531 1358.7 0.131035 1369.6 0.173348  1382.3
0.023179 12743  0.060392 13387 0.095319 13569 0.132165 1370.5 0.17453 1382.3
0.023941 12773  0.061233  1339.1  0.096187  1359.5 0.133138 13709 0.175582  1381.4
0.025018  1281.2  0.061916 1340 0.097317  1359.1  0.134793  1371.8 0.176607  1383.2
0.025938  1283.8  0.062442 1340 0.098552 13595 0.135687  1371.3  0.177421  1383.2
0.026726 12855 0.063178  1340.4  0.099656 1360 0.136922 13722  0.178262 1384
0.027567  1287.2  0.063913  1341.3  0.100628 1360 0.1375 1373.5 0.179182  1384.5
0.028697  1291.5 0.064754  1341.7  0.10097 1360 0.138446 13735  0.180023  1384.5
0.029696 12933  0.065517  1341.7 0.101732 13604  0.139314  1373.5

0.030511 12954  0.066226  1342.6  0.102468  1360.8  0.140155 13744

0.031089  1297.6  0.066857 13422  0.103177 1362.1 0.140786 1374.8
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Table B-5 Flow stress versus plastic strain of RHA for initial temperature 298 K and plastic
strain rate 0.1/s

Strain Stress Strain Stress Strain Stress Strain Stress Strain Stress
(MPa) (MPa) (MPa) (MPa) (MPa)

0.000212  1068.9  0.028986 13109 0.067382  1363.7 0.104517 1381.6  0.14499 1398.1
0.000475 1087.9  0.029801 13109  0.06825 1364.1  0.105017 1382 0.145489  1397.7
0.000606  1099.5  0.030458  1312.7 0.069196 1365 0.106173  1383.7  0.146698  1397.7
0.000842 1116.4 0.031036 13153 0.070037 1366.3  0.106856  1383.7  0.147723  1398.1
0.000973 11332 0.031824 1316.6  0.07093 1368.5 0.107592  1383.7 0.148275 1398.6
0.001315  1149.1  0.032955 1319.2 0.071771  1368.5 0.108617 13842  0.148827 1399
0.001604  1159.9 0.033769 1320 0.072744  1369.3  0.109905 1384.6  0.149642  1400.3
0.001945 1171.6  0.034453 13209 0.073795 13702 0.111035 13855 0.150351 1398.6
0.002339 11789 0.035819 13243 0.074741 13702 0.111692  1384.2  0.151587 1399
0.002681 11854  0.036397 13243  0.07574 1371.1  0.112481 1385 0.152769  1398.1
0.003259  1193.1 0.036897  1326.1 0.076502  1372.4  0.113348 13859  0.153715  1398.1
0.0036 1195.7 0.038184 13304  0.077605 1373.7 0.114268 1386.8 0.154609 1399
0.004415  1206.5 0.039183 13334 0.078499 13732 0.115082  1387.2  0.155135 1399
0.005151  1211.2  0.039787  1333.8 0.079445 13737 0.116055 1388.1  0.155897  1399.5
0.005703  1216.8  0.040523  1335.1 0.080286 1373.3  0.116817 1387.6  0.156344  1400.3
0.006281  1221.2  0.0421 1336.9  0.08118 1374.1  0.117842  1388.5  0.157447  1399.9
0.006754 1224.6  0.043046  1337.7 0.082205 1375.8 0.118551 1387.2 0.158499  1401.2
0.007411  1230.2  0.043624 1339 0.083177 1374.6  0.119471  1387.2  0.158919  1400.8
0.00791 1234.1  0.044571  1340.3  0.084176  1374.6  0.120391 1386.4 0.159313  1400.3
0.008567  1238.4  0.04599 13412 0.085017 13754  0.121127 13855 0.160916  1400.3
0.009119 12432  0.046515 1340.8  0.0857 13763  0.121863  1387.2  0.16181 1401.2
0.009671 12462 0.047251 13425 0.086462 13763  0.122861 1386.8 0.162414  1401.6
0.010222  1250.1 0.047856 13425 0.087145 1376.7 0.124018 13864  0.163623  1402.9
0.011431  1254.8  0.048539 13447 0.087934 1376.7 0.124649  1388.5 0.164517 14025
0.012299  1257.8  0.049722 13455 0.088775 1377.2  0.125411  1388.5 0.165595  1402.5
0.012982  1261.3 0.050352  1346.8 0.089642 1376.7 0.126698  1390.7  0.166383  1402.9
0.013691  1263.4  0.051272 13494  0.090142  1377.2  0.127671 1389.8  0.167355  1403.4
0.014322  1265.6 0.051903 13494  0.091061 1378.5 0.128459  1390.7  0.168223  1404.2
0.01511 12669  0.052639  1351.1  0.091902 1379.3  0.129484  1391.6  0.169195  1403.8
0.01603 1270.8  0.053427  1350.7 0.092796 1378.5 0.130772 1391.6  0.169931  1403.8
0.016766  1273.8  0.054216 13529 0.093689 13789 0.131193  1391.6  0.17093 1403.8
0.017528  1277.7  0.055162 13524  0.094636  1378.5  0.132112 13924  0.172007  1404.3
0.018763 1282 0.056029 13555 0.095214 13789 0.132848 13929 0.172795 1405.1
0.019815 1285 0.056686  1356.8  0.095897  1378.5 0.134451  1393.8  0.173558  1404.3
0.020393  1286.8  0.057947 1357.6  0.096659  1378.9  0.135292  1393.3  0.174372  1404.7
0.021391  1287.6  0.058736  1359.4  0.097264 1380.2 0.136659  1395.1  0.175318  1405.1
0.022311 12919  0.059656  1359.4  0.098026  1380.2  0.13771 13942 0.175897  1405.6
0.023231 12963  0.060549  1360.2  0.099209 1382 0.13863 1394.6  0.17679 1406.4
0.023967  1298.8  0.061679  1359.8  0.100102  1379.4  0.13955 1395.1  0.177657 1406
0.024703 12989  0.062573  1360.7 0.100864  1380.2  0.140259 13955 0.178446  1406.4
0.025859 13023  0.063519 1359.8  0.101889  1381.1  0.141153 13959 0.179155  1406.9
0.026595 13045 0.064307 1362.8 0.102599 1382 0.142204 13972  0.179786  1406.9
0.027672  1306.2  0.065332  1363.7 0.103282  1381.1  0.142809 1396.8  0.180233  1408.2
0.028277  1310.1  0.066278  1362.8  0.103887  1380.7 0.144149  1397.7
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Table B-6 Flow stress versus plastic strain of RHA for initial temperature 298 K and plastic
strain rate 3500/s

Strain Stress Strain Stress Strain Stress Strain Stress Strain Stress
(MPa) (MPa) (MPa) (MPa) (MPa)

0.028009 12909  0.057762  1379.4  0.093368  1429.5  0.123083  1441.7  0.158363  1430.6
0.02843 1295 0.058157  1380.5  0.09371 1429.8  0.123398  1442.7 0.158626  1433.9
0.028772 12983  0.05863 1381.4  0.094235 1431 0.123793 14444  0.158916 14379
0.029141  1302.1  0.059024  1382.1 0.094787 1432.6  0.124187 1445.8 0.1591 1439.5
0.02943 1305.9 0.059418 1383.6  0.095339  1434.1 0.125448 1444.6  0.159521  1443.7
0.029694  1309.3  0.059944  1386.1 0.096023 1436.3  0.125868 14459 0.159916  1446.8
0.030088 13104  0.060759 1389 0.096469  1436.4  0.127365 14429 0.160232  1448.5
0.030535  1311.5 0.061573  1389.1  0.097389  1438.6  0.127733  1441.6  0.160941 14512
0.031112  1309.5 0.062204 1389.4  0.098335  1438.7 0.128337 14392 0.161441 14523
0.03148 1307.7  0.063386  1390.1  0.098676  1437.8 0.129098 14362 0.161887  1451.2
0.0319 1307.2  0.063885  1389.8  0.099307 1437.3  0.129702 14353 0.162517  1448.1
0.03232 1306.6  0.064279  1390.5 0.099753  1435.1 0.130227 1433 0.163147 14442
0.032662  1306.1 0.064936  1390.4  0.100278 14327  0.130962  1430.8  0.163567  1440.7
0.033318 13069  0.06554 1390.7 0.100803  1429.2  0.131382 1429 0.164039  1436.3
0.033765  1306.7 0.066355 1390.8  0.101721  1420.8 0.131986  1427.4  0.164327 14325
0.034264  1308.2 0.067143  1391.3  0.10193 1418.6  0.132459 14263  0.164825  1428.9
0.034659  1308.9 0.067695  1390.9  0.10235 14148  0.133693  1421.5 0.165324  1425.6
0.035079 1310 0.068457 13914  0.102874  1409.4  0.134796 14225 0.165822 14223
0.035447 13112 0.069087  1391.7  0.10332 1404 0.135716 14253  0.166295  1421.9
0.035868 13123  0.069639 13925 0.103845 1399.8  0.136505 1428.3  0.16682 1420.8
0.036577  1313.8  0.070375 13939 0.104396  1398.6  0.136926  1430.7 0.167346  1419.7
0.037181  1313.4  0.0709 1395.2  0.105027  1401.2  0.137294 1434 0.168055  1419.4
0.037864  1313.7 0.071347 1396.1  0.1055 1402.8  0.137557 1436.2  0.16858 1420.1
0.038469  1314.6  0.072083  1397.5 0.105764  1406.7  0.138004  1439.3  0.168948  1420.3
0.039126  1315.8 0.07274 1398.6  0.106264 1413 0.138504  1443.1  0.1695 1420.9
0.039625 13159 0.07337 13989  0.10658 14169  0.138689 14447  0.17021 1422.1
0.04015 13164  0.074054  1400.3  0.106896  1421.8  0.138925 1447 0.170709  1423.2
0.040728 13169 0.074527 14004 0.107476  1430.7 0.139372  1449.8 0.171549 1422

0.041096  1318.5 0.075105 1402 0.107634  1432.8  0.139767 14514  0.171917 14225
0.0422 1321.6  0.075736 14039 0.107818  1435.7 0.140293 1454 0.172364 14219
0.04249 13237 0.076156  1404.1  0.108003  1438.9 0.14116 1457.2  0.172915  1418.9
0.042937 13255 0.076603 14054  0.108292 14424  0.142184 1453.8 0.173308 1416.1
0.043331 13283  0.077102  1407.1  0.108845  1447.4  0.142815 14529 0.173728 1413

0.043778 13314  0.077628 1408 0.109108 14509  0.143287 14492  0.174306  1410.7
0.044146  1333.4  0.078337 14089  0.109714  1456.6  0.14368 14475  0.174726  1409.7
0.044646 13352 0.078811  1410.7 0.110029 1459.6  0.1441 1443.5  0.175172 1409

0.045145 1337.8  0.079047 14119 0.110371 1460.6  0.144651 1439.7 0.175698  1411.2
0.045593  1341.4  0.079416 1415 0.111028  1462.7  0.145229  1437.7  0.175909 14123
0.046223  1343.8 0.079705 14174  0.111527 1460.8 0.145649 14359 0.176356 14153
0.046539 13463  0.080152  1420.7 0.11221 1459.4  0.146174  1433.7  0.17654 1418

0.046934 1349 0.080547 14229 0.112656  1455.6  0.146646  1431.8 0.176777  1420.5
0.047407  1351.2  0.080994 14247 0.113128  1450.7 0.147093  1431.6  0.177041 1427

0.047985 13542 0.081493  1427.5 0.113521 1446.2  0.148353 1429 0.177226  1431.8
0.048275 1357.1 0.081861 1429 0.114019 14393  0.149246 14262 0.177411 14359
0.048722  1359.7 0.082361  1430.7 0.114465 14352  0.150244  1425.1 0.177753  1441.6
0.049011  1361.8  0.082939 14322  0.114937 1430.6  0.150822 14235 0.178043 14455
0.04951 1362.3  0.083938 14339 0.115435 1425.6  0.151321  1421.6  0.178307  1449.5
0.050088  1362.8 0.084647 14333  0.115881 1421.5 0.152029 14199 0.178518  1452.8
0.05043 13652 0.085303 14323  0.116327 14174  0.152135  1420.1  0.178597  1454.8
0.050877 1366.2  0.085934  1432.6  0.117298 14125 0.153263 1414 0.178887  1459.1
0.051403  1369.6  0.086669  1430.7 0.118348 1412.1 0.153867 1411.6  0.179308  1465.7
0.052191  1369.7  0.087352  1430.5 0.118769 1413 0.154392 14105 0.179624  1468.5
0.052822 13704  0.087851  1430.5 0.119426  1415.6  0.154838 1408 0.180255 1470.4
0.053374  1372.1  0.088508  1429.2  0.119768  1418.1  0.155574  1408.8  0.180676 1472

0.053847  1372.7 0.089007 1428.8  0.120031 1419.7 0.155784  1409.6  0.18107 1472.1
0.054477  1372.6  0.090031  1428.1  0.120558 14247  0.15631 14114 0.1817 1469.7
0.054977 13735 0.090793  1427.8  0.121057 14274 0.156494 1412.6  0.182277 1466.3
0.055423 13745  0.09145 1427.6  0.121426  1430.3  0.157125 14158 0.182775  1460.5
0.055975 13758 0.091739 14284  0.121899 14334  0.157467 1418.6  0.183116  1456.8
0.056737 1376 0.092265  1428.8  0.122346  1436.6  0.157783  1421.8  0.183351  1448.8
0.057263  1377.3  0.092921  1428.6  0.122846  1440.5 0.157941 1423.8 0.183586  1443.4
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Table B-7 Flow stress versus plastic strain of RHA for initial temperature 298 K and plastic
strain rate 7000/s

Strain Stress Strain Stress Strain Stress Strain Stress Strain Stress
(MPa) (MPa) (MPa) (MPa) (MPa)

0.03648 1359 0.058189 14172  0.08481 14629 0.116208  1484.7 0.154932 1485
0.036769  1360.7 0.058662  1417.8  0.08531 1465.7  0.116418  1485.5  0.155746 1483
0.037032  1364.1 0.058925 1416.6 0.085862  1468.5 0.117022  1485.7 0.156297  1479.6
0.037427  1366.5 0.059424 1416.2 0.086177 14704  0.117601 1486 0.157164  1477.6
0.037821 1369.3  0.059975 14154 0.086546  1472.6  0.118179 1487.8 0.157689 14775
0.038216  1372.5 0.060474 14147 0.087072  1476.6  0.119362  1491.8  0.158293  1477.7
0.03869 13772 0.061079 14142  0.087466  1479.1 0.119913  1491.3  0.159003  1477.4
0.039111 13804 0.061499 14132 0.087861 1480.9 0.120334  1491.8 0.159397  1477.1
0.039532 13839 0.061945 1412.6 0.088124 14829 0.120991 14924  0.159764  1477.7
0.039874  1387.2 0.062313 14124  0.088623 14849 0.121516  1493.1  0.16029 1479.1
0.040268  1390.4  0.063154 1411.6  0.089359  1488.5 0.121989 14935 0.160869  1481.5
0.040715 13939  0.06381 1412.7  0.0902 14904  0.122646 14944 0.161184  1482.2
0.041136  1396.6  0.064284 1414 0.090779 14919  0.123356 14945 0.16171 1483.9
0.0414 14004  0.065046  1415.8 0.091567 1492.7 0.124643 14944 0.162183  1485.4
0.041715  1404.1  0.06544 14172 0.091882  1491.8  0.125588  1492.6  0.162788  1487.8
0.042005 1407.4  0.065808  1419.5 0.092565 1491.5 0.126376 14929  0.163602  1489.2
0.042347  1411.1  0.06615 1420.7  0.093011 1489.3  0.126954 14924 0.164181  1490.5
0.042742 1413 0.066518  1421.7  0.093458  1487.8  0.127453  1491.3  0.164943 14912
0.043084 14154  0.066807 14225 0.093983  1485.8 0.128267 14904  0.166178  1493.7
0.043636  1420.4  0.067307 1425 0.094586  1483.7  0.128767  1490.8  0.166414  1492.2
0.044031 1424 0.068043 1428 0.095059  1482.6  0.129213  1489.7 0.167228  1491.3
0.044768 1432 0.068437 14299 0.095374  1480.2  0.129844  1489.9  0.16778 1489.8
0.045215 1434.6  0.0687 1431.1  0.095794  1477.5  0.13079 1490.7  0.168699  1490.2
0.045557 14379 0.069147 14329 0.096476 14749 0.13121 1491.6  0.169198  1488.3
0.045899 14403  0.069462 1434 0.097054  1472.1  0.13234 1493.3  0.169933  1486.1
0.046267  1441.4  0.069857 14359 0.097868  1468.5 0.133812  1494.8  0.170458  1484.2
0.046766 14439  0.070199 1437 0.098419 14669 0.1346 14947 0.171246  1480.4
0.047134 14442  0.070593 1438 0.098682  1466.1  0.135204 14934  0.171824  1479.6
0.047554 14432 0.071066 14393  0.09918 1463.4  0.135651 14943  0.172296 1477
0.048105 14399 0.071749  1440.7 0.099758 14625 0.136202 1493.8 0.172847 14744
0.048499 14372 0.072143 14409 0.100467 1462.2 0.136727 14934  0.173451 14713
0.048761 14327 0.072853 14419 0.100887 1462 0.137253 1493 0.174028  1468.6
0.049207 14283  0.073457 14414  0.101387 14609 0.137831 1493.6  0.174632  1466.9
0.049548 14245 0.074271 14402  0.101859 1461.3  0.139013  1493.6  0.175183  1464.7
0.049888 14203 0.074718 14395 0.102622  1462.1  0.139407 1493.8 0.175866  1464.4
0.050203  1416.6  0.075742 1438 0.103383  1461.8  0.140432 14934  0.176864  1462.1
0.050544 14124 0.076267 14372  0.104119 1463.8 0.141193 14922 0.177521 14619
0.050832  1408.2  0.076687  1436.6  0.104513 1464 0.141771  1490.6  0.177915  1460.9
0.051173  1403.6  0.077265 14362  0.105722  1465.7 0.142349 14904  0.178466  1459.4
0.051671  1398.8  0.078027  1435.8  0.10609 1465.9  0.142848 14915 0.178887  1459.1
0.052091  1397.4  0.078579 14354  0.106537 1466 0.143505  1490.5  0.179464  1458.6
0.052537 13959 0.078841 14354  0.107299 1466.4  0.144372  1489.6  0.180147 14572
0.053089 13943  0.079314  1435.1  0.107588  1466.7  0.145423  1490.6  0.18104 1453.4
0.053457 1394.6 0.079761 1436.5 0.108113 1467.5 0.146158 1490.6  0.181512  1450.8
0.053904 1396.4  0.080024 14373  0.108691  1468.6  0.146605 1490.3  0.182115  1446.3
0.054193 13989 0.080313  1437.7  0.1099 1471 0.147735 14915  0.182798 14428
0.054798  1401.3  0.080707  1438.7 0.1104 1473 0.148444 14923  0.183349 14395
0.055166 1404 0.080996  1440.3  0.111451 14749 0.149101 14932  0.183899  1433.6
0.055482 1406 0.081549 14446 0.112371  1475.8 0.149758 14922  0.184476  1428.8
0.055823  1408.4  0.082154  1446.5  0.11287 1477 0.150415 14923 0.184975  1424.8
0.056244  1410.2 0.082863 14499  0.113527 1477.5 0.151439 14926  0.185578 14203
0.056665 1411.7  0.083153  1451.8 0.114 1479.1  0.151912 14915

0.057059  1413.6  0.083495 14537 0.114526  1480.7  0.152779 1489.4

0.057453 1415 0.083968 14582  0.11513 1482.1  0.153619 1487.4

0.057795  1416.6  0.084494  1460.6  0.115525 1483 0.15417 1486.2
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Table B-8 Flow stress versus plastic strain of RHA for initial temperature 473 K and plastic
strain rate 3000/s

Strain Stress Strain Stress Strain Stress Strain Stress Strain Stress
(MPa) (MPa) (MPa) (MPa) (MPa)

0.030984 1177.8  0.05687 1235.8  0.087142 1287 0.118271  1280.2  0.148874  1270.6
0.031406  1185.6  0.057501 1237.4  0.087667  1286.7  0.118928  1280.9  0.149452 12714
0.031722 1192 0.058105 12403  0.088193 12864  0.119769  1281.7 0.149873 12723
0.032065  1200.8  0.05871 12445  0.088718 12853  0.120347 12824  0.150503  1272.6
0.03246 1205.3  0.058974 1247 0.089243 1285 0.120846  1281.8  0.150871 1274
0.032829 1209 0.0595 1251.6  0.089742  1281.6 0.121424 1281.8 0.151581 1276
0.033407  1211.7  0.059895 1256 0.091055  1278.7  0.122028  1282.5  0.151897  1276.7
0.033986  1214.7  0.060421 1259 0.092158 12772  0.122501  1283.1  0.152265  1277.7
0.034328  1217.6  0.060841  1262.1  0.092579 1279 0.123132  1284.5  0.152843  1280.3
0.034774  1219.6  0.061367  1265.1  0.093472  1281.8  0.1235 1285.2  0.153737  1283.2
0.0353 1221.8  0.062392  1265.8  0.094051  1283.8  0.124315 12875 0.154736 1286
0.035852  1224.1  0.06276 1266.9  0.09476 1285.6  0.124788  1289.2  0.155708  1287.3
0.036509  1226.2  0.063102  1267.3  0.09497 1286.1  0.124867  1289.1  0.155997  1287.7
0.037088  1227.5 0.063889  1266.3  0.095707 1289.5  0.125366  1290.7  0.156444  1287.8
0.037744  1228.8 0.064625 12653  0.096259 1290.7 0.126206  1284.6  0.156785  1287.7
0.038165 12299  0.065097  1263.5 0.096653  1292.1  0.126888  1281.5  0.157573  1286.7
0.038717 12309 0.065754 12622 0.097047 12924  0.127492 12784  0.158203 1284.4
0.039479  1233.6  0.066279  1261.5 0.097546 1291 0.128043  1277.3  0.158833  1281.7
0.040031 12334  0.066647 1260.2  0.098203 12909 0.128831 12755 0.159463  1279.8
0.04053 12348  0.067251  1260.2  0.098597 1291.5 0.129356  1274.8  0.159988  1276.5
0.04103 1237.5  0.067671  1259.7  0.099306  1289.4  0.129645 1274.8  0.16046 1272.9
0.041529 12389 0.068302 1261.3 0.100172  1288.2  0.130355 1275.7 0.160854  1270.9
0.042081  1240.7 0.068722  1262.4  0.101196  1286.1  0.130749 1276 0.161457  1266.4
0.042686 12433  0.069143  1264.3  0.102405 1285.7 0.131143  1276.2  0.162034  1263.8
0.043264 1245 0.069643  1267.2  0.10293 1285.8  0.131458  1277.3  0.162612  1261.3
0.043764  1248.1 0.070563  1269.7 0.103298  1285.3  0.132247  1281.2 0.163085 1260.3
0.044316  1250.7  0.070799 1271 0.103902 12852  0.132589  1282.3  0.163767  1259.4
0.044999 12527 0.071641 12747 0.104375 12842  0.133062  1285.8  0.16424 1260.2
0.045525 12549 0.072114  1277.7 0.104821 1284 0.133404 1288 0.165134  1261.6
0.046103  1256.2 0.072482  1278.8  0.105373  1284.1  0.133851  1289.3  0.166081  1267.4
0.046734 12575 0.073113  1281.6  0.10582 1283.9  0.134456 1291.2 0.166712  1270.6
0.047076  1259.1  0.073586  1283.4  0.106266  1284.8  0.13527 1290.1  0.16758 1274.2
0.047523  1261.8  0.073928  1283.8 0.106897  1286.7 0.135953  1290.3  0.167921 1276
0.047943  1263.8  0.074821 12858  0.107187 1287.9 0.137004  1289.7  0.16829 1278.1
0.048364 12653 0.075767 1287 0.10766 12912 0.137686 12854 0.169131  1283.2
0.048837  1267.1  0.076686 12849  0.107923  1292.8  0.138421 1284 0.169446  1283.1
0.049284 12682 0.077737 12839  0.108528 12955 0.139209 1283 0.170103  1284.1
0.049809  1269.6  0.078341  1282.7 0.109867 1292.1  0.13976 1280.8  0.170629  1283.4
0.050283  1271.8 0.078787  1280.5 0.110261  1290.4  0.140469  1279.8  0.171548  1280.3
0.050598 12727  0.079575 1279.5 0.110812  1288.1  0.140942  1278.1  0.172545 12779
0.051071  1272.4  0.080284  1277.8  0.111337  1285.1  0.14152 1276.9  0.172992  1276.6
0.051622  1270.5 0.080993 12764  0.112072 1283 0.141888  1277.2  0.173516 1273
0.052147  1266.9  0.08165 1275.2  0.112518 1282 0.14257 12759  0.174199  1269.9
0.05275 1260.4  0.082044  1275.1  0.113227  1279.1  0.14328 1275.7  0.175354  1264.4
0.053301 12572 0.082858 12752  0.113936  1279.4  0.143726 12752  0.17601 1260.3
0.053878  1251.9 0.083515 12763  0.114436  1279.9 0.144304 1274 0.176901  1253.3
0.05435 12464 0.084172 12774 0.114882  1280.8 0.145013 12723  0.177478  1246.1
0.054795  1240.1  0.084671 1280 0.115539  1280.7 0.146116  1272.4  0.178002  1239.2
0.055215  1236.7 0.085592  1285.1  0.11588 1279.9  0.146878  1271.8 0.178657  1232.2
0.05574 12348  0.086433 12864 0.116695 1280.3  0.147535 1271.3  0.179181 1224
0.056344  1234.8 0.086853 1287 0.117457 12793  0.148139 12709
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Table B-9 Flow stress versus plastic strain of RHA for initial temperature 673 K and plastic
strain rate 3000/s

Strain Stress Strain Stress Strain Stress Strain Stress Strain Stress
(MPa) (MPa) (MPa) (MPa) (MPa)

0.020894  1007.3  0.045945 1103.7 0.077839 11235 0.117924 11139 0.155884  1111.3
0.021262  1009.8  0.046575 1102.6  0.07868 11241  0.118791 11129  0.156435 1112.2
0.021499 1013 0.047126  1100.3  0.079547 11263  0.119579 1110.1  0.156961  1112.7
0.021736  1016.6  0.047625 1099.3  0.079757 1126 0.120261  1108.5  0.157512  1112.1
0.022052  1020.5 0.048124  1098.8  0.080755 1123.7 0.120944 1107 0.158064 1111.4
0.022395 10252  0.048571 1099.5 0.081596  1122.7 0.121496  1107.9 0.158616  1111.9
0.02271 1028.2  0.049176  1102.1  0.082541 11204  0.1221 1108.3  0.159535 1110.9
0.023078  1030.8  0.049754 11023  0.082961  1120.3  0.122915 1109.7  0.160506  1108.3
0.02342 1032.1  0.050463  1103.1  0.083355 1118.3  0.123572 1110.5 0.160717  1108.4
0.023788 1033 0.050963 11054 0.084012 11183  0.123888 1112.8 0.16119 1109.3
0.024234  1031.7 0.051752 1111.5 0.085824 1116.6 0.124282 11146 0.161716 11124
0.024812  1028.1  0.05212 1113.5 0.086849 1121 0.125097  1118.7 0.162137  1116.7
0.025258  1023.8  0.052619 11142  0.087427 1119.5  0.12557 11204 0.162953 1125
0.025808  1017.7 0.053145 1116.1  0.08811 11219  0.126517 11239 0.163295 1128.2
0.026333  1012.1  0.053618 1117.2 0.088925 11253 0.127016 1126 0.163716 11329
0.026857  1007.3  0.054038  1118.7 0.089293  1125.7 0.128014 11263  0.164163  1136.1
0.027461  1002.5 0.054853  1119.8 0.089635 11264  0.128881 1126.8 0.164873  1139.6
0.027933  1000.7  0.05551 1120.3  0.090134  1128.2  0.129564 1123 0.165713 11353
0.02838 1002.8  0.056166  1119.1  0.09087 1130.1  0.130115 11193 0.166369  1130.2
0.028748 10049  0.056797 1118 0.091475 11322 0.130771  1116.7 0.166815  1125.2
0.029116  1008.3  0.057506 11159 0.092132  1135.8 0.131453 1113.6 0.167313 11199
0.029485 1013.8  0.058136  1113.6 0.092894  1135.7 0.132136 11124  0.167574 11119
0.029933  1018.8  0.058713 11109 0.093997 11332  0.132582 1111.2 0.168229 1102.4
0.030117  1023.3  0.059107 11079 0.094968 11285 0.133108 1111.7 0.168648  1096.8
0.030328  1028.5 0.059657 1103.6  0.095466  1125.6 0.133712  1113.3  0.169146  1091.4
0.030592  1033.7 0.060104 11019 0.096149 11212 0.134212 11157 0.169828  1087.7
0.030829  1038.9  0.060944  1098.9  0.096778 1117 0.134554  1117.6  0.170484  1086.3
0.03104 1042 0.061363  1095.6  0.097618 11144  0.135027 1120.5 0.171089  1088.9
0.031356  1047.5 0.062046  1092.8 0.098301 1113.6 0.135816  1121.8  0.171563  1092.7
0.031724 10513  0.062781  1091.5 0.098958 1115.6  0.136525 11244  0.172168  1099.7
0.03204 1054.8  0.063333  1089.3  0.099589 1118.8 0.137314 11269 0.172617 1108.3
0.032382 1059 0.063779  1088.4  0.100326  1121.9 0.137865 1125.1  0.172775 1111.8
0.032724 1062 0.064173  1088.3  0.100826  1126.8  0.138574 11224  0.173355 1122
0.033093  1064.1 0.064856  1087.9  0.101326  1132.1  0.139545 11182 0.174119 1134.6
0.033644  1064.7 0.065408 1089.4  0.101852  1136.1  0.140227 1111.1  0.174383 11383
0.034275  1065.7  0.065671  1090.7  0.102561  1136.5 0.141171  1105.1  0.175146  1146.1
0.034853  1066.3  0.066302 1094 0.103192 11385 0.141828 1103.9  0.17533 1145.9
0.035405 1067.8  0.066538 1095 0.104085 1139 0.142458  1103.6  0.176144  1144.6
0.035904  1068.1  0.066801  1096.7  0.10482 1135.8  0.142879 1105 0.176878 11339
0.036482  1070.8  0.067327  1099.3  0.105608  1133.3  0.143668 1109 0.177244 11259
0.037139  1071.7  0.067774 1101.7  0.106106  1130.7  0.14422 1112.1  0.177558  1119.7
0.037691 1072.8 0.068142 11029 0.106788 1124.1  0.144957 1118.7 0.178108 1110.7
0.038033 10745 0.068484  1103.7 0.107418 1117.9  0.145352  1122.8  0.178553  1103.3
0.038533  1077.7 0.068825 1104.1 0.108205 11124  0.145799 1126 0.179156  1097.9
0.03898 1080.9  0.069903  1106.5 0.108861 1110.8  0.14643 1130.5  0.179733 1094
0.039401 10842 0.070848 11054  0.109491 1109.7 0.146956 11329  0.180206  1093.9
0.0399 1087 0.07203 11049 0.110148 1109.7 0.147612 11299 0.180758  1095.8
0.040216  1089.9  0.072556  1103.9  0.11091 11104  0.148584 11284  0.1811 1097.5
0.040742 10935 0.073107 1103.6 0.111436  1112.1  0.149266  1122.7 0.181495 1101.8
0.041163  1096.8  0.073449  1103.6  0.11183 1113.6  0.149764 11184  0.18189 1107.1
0.041504 1097.6  0.074079 11045 0.112698 1117.6  0.150367 1114 0.182232  1113.2
0.041846  1099.7  0.074657 11059  0.113276  1119.3  0.150945 1110.3  0.182522 1117.2
0.042293  1101.7  0.074999  1107.9 0.113959 1121.2 0.151863 1105.6  0.182917 11229
0.042661 1103 0.075394  1109.5 0.114406 1121.8 0.152414 11023  0.183154  1123.7
0.043161 11045 0.075815 1112.6 0.115036  1121.1  0.153124 1103 0.183521  1122.2
0.04366 1106 0.076682 11164  0.115798 11202  0.153912 11043  0.184125 1118.3
0.044212 1107 0.07684 1117 0.116244  1119.7  0.154228 1106.2  0.184623  1110.8
0.044816  1107.5 0.077313  1120.1  0.116822 1117.9 0.154911 1108 0.184937  1105.8
0.04542 1105.6  0.077497  1120.7 0.117531  1115.1  0.15541 1110.4
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Table B-10 Flow stress versus plastic strain of RHA for initial temperature 873 K and plastic
strain rate 3500/s

Strain Stress Strain Stress Strain Stress Strain Stress Strain Stress
(MPa) (MPa) (MPa) (MPa) (MPa)

0.024813  728.8 0.048262  834.8 0.08079 880.2 0.116274  859.3 0.151119  925.7
0.025024  734.6 0.048892  833.8 0.081551  879.5 0.116852  861.1 0.151592  926.4
0.025314  737.7 0.049286 8339 0.08205 876.3 0.117694  864.2 0.152643  928.7
0.025577  740.5 0.04989 833.8 0.082496  874.7 0.118299 869 0.153405  927.3
0.025761  744.6 0.050573  833.2 0.083179  870.9 0.118746  872.5 0.154376  926.3
0.026051 749 0.051151 831.4 0.084071  866.1 0.119325  876.2 0.155112 9245
0.026341  753.8 0.051597 831 0.084938  865.7 0.120219  881.5 0.155978  922.6
0.026604  757.4 0.052595  830.2 0.085831  864.9 0.120587 885 0.156503  921.7
0.02692 760.5 0.053121  830.1 0.086566  866.2 0.121455  892.6 0.157291  920.5
0.02742 764.3 0.053594  830.1 0.087328  867.5 0.121876  895.3 0.157685  920.2
0.027709  768.3 0.05425 830.8 0.08788 868.2 0.122323  898.7 0.158499  917.9
0.027946  771.9 0.054828  830.7 0.088958  871.6 0.122876 904 0.159103  917.3
0.028262 775 0.055196  831.6 0.089693  873.3 0.123192  906.4 0.159734  917.5
0.028499  777.8 0.055853 8323 0.09014 873.2 0.123902 913 0.160496  919.3
0.028893  780.8 0.056431 833.4 0.090692  874.7 0.124823 919 0.161021  918.8
0.029235  782.7 0.056852  834.7 0.09148 877.2 0.125664  919.7 0.161941  920.5
0.029577  782.8 0.057351  836.3 0.092085  879.8 0.126189  919.9 0.162545  920.3
0.030023  781.6 0.057693  836.8 0.0929 880.6 0.127003  916.9 0.163438  921.7
0.030443  779.1 0.058611  833.5 0.093425  882.1 0.127895  914.9 0.163911 9223
0.030968  778.3 0.059294  831.7 0.094108  881.9 0.128762  912.5 0.164568  922.8
0.031651  775.6 0.059819  829.6 0.09466 882.9 0.129497  908.8 0.16533 923.2
0.032123  773.1 0.060213 828 0.095475  885.3 0.130442  906.7 0.16596 923.6
0.032543  771.1 0.061237  825.5 0.095895  885.7 0.131125  905.7 0.166512  923.1
0.033147  769.8 0.062234  823.4 0.096394  887.2 0.131597  905.3 0.167011  922.6
0.033541  769.5 0.062944  825.3 0.096946  888.3 0.132307 905 0.16772 922
0.033987  769.9 0.06368 827.9 0.097577  890.1 0.132727  906.1 0.168245  921.5
0.034461  773.7 0.063995  828.8 0.098312  888.2 0.133515  906.9 0.169033 920
0.034777  776.8 0.064548  833.2 0.098916  885.3 0.133909  906.1 0.169663  918.6
0.035119  780.7 0.064969  836.1 0.099598  882.3 0.134698  909.2 0.170189  918.5
0.035409 7859 0.065416  840.2 0.100044  878.7 0.135434 9104 0.170609  917.7
0.035751  792.3 0.06589 845.4 0.100621  875.5 0.135933  910.6 0.17116 917.9
0.036093  796.2 0.066442  850.2 0.101356  870.9 0.136432 9124 0.172369  919.3
0.036383  799.7 0.066942  855.4 0.10196 867.2 0.137195 9159 0.173341  918.4
0.036962  806.8 0.067152  856.5 0.102721  864.2 0.137799 916 0.173604  918.5
0.037225  809.9 0.067757 860 0.103482  861.5 0.138351  916.3 0.174418  918.8
0.03762 813.3 0.068335  860.6 0.104165  860.9 0.139402  920.5 0.175048  918.6
0.037909 816 0.06915 864.8 0.104875  864.2 0.139848 919 0.175652  917.6
0.038225  818.6 0.070359  868.9 0.1054 864.5 0.140321 9189 0.17623 916
0.038488  821.3 0.071279  868.1 0.106005  868.6 0.141215  923.7 0.17686 915.8
0.038883  824.3 0.071725  867.3 0.106689  875.4 0.142108  920.2 0.177754  917.4
0.039303  826.4 0.072277 868 0.107058  877.8 0.142843  919.1 0.178253  918.1
0.03975 827.7 0.073144 868 0.107215 878 0.143394  917.8 0.179015  920.2
0.040276  828.5 0.073538  867.6 0.107847 8829 0.144051 918 0.179646  922.2
0.040906  829.6 0.073984  868.4 0.108635  882.1 0.144813  918.7 0.180198  923.8
0.041642  830.2 0.074615  868.7 0.10937 880.7 0.145443 9185 0.18075 925.8
0.04222 830.6 0.074851  869.3 0.109895  878.7 0.146153  918.2 0.181223  927.2
0.042798  831.3 0.075771  871.2 0.110787  876.3 0.146547 9174 0.181985  929.3
0.04356 831.9 0.076244  872.4 0.11147 872.9 0.14744 917.7 0.182589 928
0.044269 8329 0.076796  873.1 0.112336  867.9 0.147912  916.9 0.183352  930.1
0.045162 833 0.077532  874.8 0.11307 863.7 0.148649  919.5 0.184402  930.6
0.045793  833.7 0.078215  876.2 0.113701  862.8 0.149358  921.5

0.046265  832.8 0.079082  877.8 0.114252 860 0.149726 923

0.046659  833.7 0.079345  878.8 0.115066  858.1 0.149936  923.5

0.047343  834.4 0.079949  880.2 0.11588 857.7 0.150567  924.8
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25
26
27
28
29
30
31
32
33
34
35
36
37

These are the Stan specification files that have been used for Bayesian analyses
of the Johnson-Cook' and the Zerilli-Armstrong model for body-centered cubic
materials.> Comments in these files of the form // ! { ...} can be ignored, since

they are meant to be read by tools that extract source code fragments.

C.1 Specification File jc.stan

//!{funcstart}
functions {
vector jc(vector epsilon_p, real log_epsilon_p_dot, wvector T_star,

real A, real B, real n, real C, real m) {

int length_epsilon_p = num_elements (epsilon_p);

vector[length_epsilon_p] sigma;

real edot_factor = (1.0 + Cxlog_epsilon_p_dot);

// The exponentiation operator "~" doesn't vectorize, so I need a
// "for" loop here.
for (i in l:length_epsilon_p) {
sigma[i] = (A + Bx(epsilon_p[i])"n)*edot_factorx
(1.0 = (T_star[i])™m);

return sigma;

}
//!{funcend}

//!{datastart}
data {
int<lower=1> num_curves;
int<lower=0> curve_sizes[num_curves];

vector [num_curves] epsilon_p_dot;

vector[sum(curve_sizes)] epsilon_p;
vector [sum(curve_sizes)] sigma;
vector [sum(curve_sizes)] T;

real<lower=0.0> T_melt;

real<lower=0.0> T_room;

real<lower=0.0> epsilon_p_dot_0;

!Johnson GR, Cook WH. A constitutive model and data for metals subjected to large strains,
high strain rates and high temperatures. In: Seventh international symposium on ballistics: Proceed-
ings; 1983 Apr; The Hague (Netherlands). American Defense Preparedness Association; 1983. p.

541-547.
2Zerilli FJ, Armstrong RW. Dislocation-mechanics-based constitutive relations for material dy-

namics calculations. Journal of Applied Physics. 1987;61(5):1816-1825.
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38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

}

real<lower=0.
real<lower=0.
real<lower=0.

real<lower=0.

real<lower=0.

vector<lower=0.0>[2]
vector<lower=0.0>[2]

//!{dataend}

0>
0>
0>
0>

0>

A_guess_mean;
B_guess_mean;
C_guess_mean;

m_guess_mean;

n_alpha;

//!{transdatastart}

transformed data {

}

vector [num_curves]

vector [sum(curve_sizes) ]

//!{transdataend}

//!{paramstart}

parameters {

}

real<lower=0.
real<lower=0.
real<lower=0.
real<lower=0.

real<lower=0.

real<lower=0.

// ! {paramend}

//!{modelstart}
model ({

A ~

~ normal

3 Q5 W

(
~ normal (
for (i in 1:2

sd_sigmal[i]

0>
0>
0,
0>
0>

0>

normal (A_guess_mean,
~ normal (B_guess_mean,
~ beta(n_alpha,
C_guess_mean,

m_guess_mean,

)

Aj
B;

log_epsilon_p_dot =

T_star = (T - T_room)/(T_melt - T_room);

sd_sigma_guess_mean;

sd_sigma_guess_sd;

upper=1.0> n;

C;

m;

sd_sigmal[2];

n_beta);

A_guess_sd)T[0.0,1;
B_guess_sd)T[0.0,1;

C_guess_sd)T[0.0,];
m_guess_sd)T[0.0,];

normal (sd_sigma_guess_mean[i],

sd_sigma_guess_sd[i])T[0.0,1;

int start_ind = 1;

for

int end_ind

real curr_sd_sigma =

(curve_ind in l:num_curves) {

real<lower=0.0>
real<lower=0.0>
real<lower=0.0>

real<lower=0.0>

A_guess_sd;
B_guess_sd;
C_guess_sd;

m_guess_sd;

real<lower=0.0> n_beta;

log(epsilon_p_dot/epsilon_p_dot_0);

= start_ind + curve_sizes[curve_ind] - 1;

?

(epsilon_p_dot [curve_ind]

sd_sigmal[l]
sd_sigma[2]);
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92 sigma[start_ind:end_ind] ~ normal (jc(epsilon_p[start_ind:end_ind],
93 log_epsilon_p_dot [curve_ind],
94 T_star[start_ind:end_ind],

95 A, B, n, C, m),

96 curr_sd_sigma);

97

98 start_ind = end_ind + 1;

99 }

100 }

101}

102 //!{modelend}

C.2 Specification File za_bcc.stan

1 functions {

2

3 vector za_bcc (vector epsilon_p, real log_epsilon_p_dot, wvector T,
4 real CO, real Cl, real C3, real C4, real C5, real n) {
5

6 int length_epsilon_p = num_elements (epsilon_p);

7 vector[length_epsilon_p] sigma;

8

9 real C3_C4_fac = -C3 + Cédxlog_epsilon_p_dot;

10

11 // The exponentiation operator """ doesn't vectorize, so I need a
12 // "for" loop here.

13 for (i in l:length_epsilon_p) {

14 sigma[i] = CO + Clxexp(C3_C4_fac*(T[1i])) + C5Sx(epsilon_pl[i]) " "n;
15 }

16

17 return sigma;

18 }

19

20}

21

22 data {

23 int<lower=1> num_curves;

24 int<lower=0> curve_sizes[num_curves];

25

26 vector [num_curves] epsilon_p_dot;

27

28 vector[sum(curve_sizes)] epsilon_p;

29 vector [sum(curve_sizes)] sigma;

30 vector [sum(curve_sizes)] T;

31

32 real<lower=0.0> CO_guess_mean;

33 real<lower=0.0> CO_guess_sd;

34

35 real<lower=0.0> Cl_guess_mean;

36 real<lower=0.0> Cl_guess_sd;

37

38 real<lower=0.0> C3_guess_mean;

39 real<lower=0.0> C3_guess_sd;

40
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41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

real<lower=0.

real<lower=0.

real<lower=0.

real<lower=0.

real<lower=0.

real<lower=0.

real<lower=0.

real<lower=0.

vector [num_curves]

parameters {

real<lower=0.
real<lower=0.
real<lower=0.
real<lower=0.
real<lower=0.

real<lower=0.

real<lower=0.

model {

CO0 ~ normal (CO_guess_mean,

Cl ~
C3 ~
Cc4 ~
C5 ~

n ~ beta(n_alpha,

0>
0>

0>
0>

0>
0>

0>
0>

transformed data {

0>
0>
0>
0>
0>
0,

0>

normal (Cl_guess_mean,

(

(

normal (C3_guess_mean,

normal (C4_guess_mean,
(

normal (C5_guess_mean,

for (i in 1:2)

sd_sigmal[i]

C4_guess_mean;

C4_guess_sd;

C5_guess_mean

C5_guess_sd;

n_alpha;

n_beta;

sd_sigma_gues

sd_sigma_gues

log_epsilo

Cco;
C1;
C3;
C4;
C5;
upper=1.0> n;

sd_sigmal([2];

co
Cl
C3
c4
C5

n_beta);

’

s_mean([2];
s_sd[2];

n_p_dot =

_guess_sd)T[O.
_guess_sd)T[O.

)

)

_guess_sd)T[O0.

_guess_sd)T[O0.
)

_guess_sd)T[0.

normal (sd_sigma_guess_mean[i],

sd_sigma_guess_sd[i])T[0.0,1;

int start_ind = 1;

for

int end_ind

real curr_sd_sigma =

(curve_ind in 1:num_curves) {

o O O O O

log(epsilon_p_dot);

= start_ind + curve_sizes[curve_ind] - 1;

? s

S

sigma[start_ind:end_ind]

d_sigmall]
d_sigmal2]);

(epsilon_p_dot [curve_ind]

<= 1.0

~ normal (za_bcc (epsilon_p[start_ind:end_ind],

114
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95 T[start_ind:end_ind],
96 co, c1, c3, c4, c5, n),
97 curr_sd_sigma);

98

99 start_ind = end_ind + 1;

100 }

101 }

102}
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5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
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These are the contents of some of the Python module files that have been used for
Bayesian analyses of strength models. Comments of the form #! { . . . } can be ig-
nored, since they are meant to be read by tools that extract source code fragments.
Documentation of the parameters and return values of functions follows the guide-

lines of the Numpydoc docstring guide.!

D.1 Module File je.py

def jc(epsilon_p, log_epsilon_p_dot, T_star,
A, B, n, C, m):

"""Flow stress according to the Johnson-Cook model

Parameters

epsilon_p

Strain

log_epsilon_p dot
Natural logarithm of the normalized strain rate (i.e. strain

rate divided by the reference strain rate)

T _star
Normalized temperature, usually (T - T_room)/(T_melt - T_room),

where T_melt and T_room are the melting and room temperatures

A, B, n, C, m

The Johnson—-Cook parameters

mown

return ((A + Bx(epsilon_px*x*n))*

(1.0 + Cxlog_epsilon_p_dot)* (1l - T_starx*m))

D.2 Module File jc_pyme3.py

from jc import Ijc
import numpy as np

import pymc3 as pm

def make_jc_model (epsilon_p, sigma,
epsilon_p_dot, T,
T_melt, T_room, epsilon_p_dot_0,

prior_params) :

"""Create a PyMC3 model conforming to the Zerilli-Armstrong (BCC) model

Parameters

'Numpydoc maintainers. Numpydoc docstring guide. c2017 [accessed 2018 May]. https:
//numpydoc.readthedocs.io/en/latest/format.html
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15
16
17
18
19
20
21
2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
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43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

epsilon_p : list of 1-d NumPy array

Strain values for all curves, where ‘epsilon_p[0]"

strain values for the first curve,

strain values for the second curve, etc.

sigma : list of 1-d NumPy array

‘epsilon_p[1]"

Stress values for all curves, where ‘sigma[0]°

values for the first curve, ‘sigma[l]  contains stress values

for the second curve,

epsilon_p_dot

List or array where element "1  contains the strain rate for

curve "1’

T : list of 1

etc.

1-d array_like

-d array_like

Temperature values for

temperature values for

temperature values for

T _melt : floa
Melting t

T_room : floa

t

emperature

t

Room temperature

epsilon_p_dot_0 : float

Reference strain rate,

prior_params

Dictionary with the following keys:

"B_guess_mean",

dict

"sd_sigma_guess_mean",

"C_guess_
and "n_beta”.
"sd_sigma_guess_mean" and

arrays with 2 elements,

numbers.

scalars.

Returns

A PyMC3 model

mwn

sd", "m_guess_

"C_guess_mean",

all curves, where
the first curve,

the second curve,

‘0]
‘Tr1g°

etc.

usually 1.0 per second.

"m_guess_mean",

contains stress

contains

contains

"A_guess_mean",

"A_guess_sd", "B _guess_sd”,

sd", "sd_sigma_guess_sd",

The values corresponding to

"sd_sigma_guess_sd" are lists or 1-d

where both elements are positive

Values corresponding to other keys are positive

PosNormal = pm.Bound (pm.Normal, lower = 0.0)

model = pm.Mo

num_curves =

T_melt_minus_’

log_epsilon_p_dot = np.log(np.asarray (epsilon_p_dot)/epsilon_p_dot_0)

del ()

len (epsilon_p)

T_room = T_melt - T_room
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68
69
70
71
72
73
74
75
76
71
78
79
80
81
82
83
84
85
86
87
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89
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95
96
97
98
99
100
101
102
103
104
105
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108

O O 00 N NN R W =

with model:

# Priors
A = PosNormal ("A",

mu = prior_params["A_guess_mean"],

sd = prior_params["A_guess_sd"])
B = PosNormal ("B",
mu = prior_params|["B_guess_mean"],

sd = prior_params["B_guess_sd"])

n = pm.Beta("n",

alpha = prior_params["n_alpha"],

beta = prior_params["n_beta"])

C = PosNormal ("C",
mu = prior_params|["C_guess_mean"],

sd = prior_params["C_guess_sd"])

m = PosNormal ("m",

mu = prior_params|["m_guess_mean"],

sd = prior_params|["m_guess_sd"])

sd_sigma = PosNormal ("sd_sigma",
mu = np.asarray (prior_params["sd_sigma_guess_mean"]),
sd = np.asarray (prior_params["sd_sigma_guess_sd"]),

shape = 2)

for i in range (num_curves) :

T_star = (T[i] - T_room)/T_melt_minus_T_room
pm.Normal ("sigma_curve{}".format (i),
mu = jc(epsilon_pl[il],

log_epsilon_p_dot[i], T_star,
A, B, n, C, m),
sd = (sd_sigma[0]
if (epsilon_p_dot[i] <= 1.0)
else sd_sigmall]),

observed = sigmal[i])

return model

D.3 Module File za_bcc.py

import numpy
def za_bcc(epsilon_p, log_epsilon_p_dot, T,
co, C1, C3, C4, C5, n, exp_func = numpy.exp) :

"""Flow stress according to the Zerilli-Armstrong (BCC) model

Parameters

epsilon_p
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11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

—_
— O O 0 NN R W N =

L LW W YN NN NN NN DN = == s s e s
N —= O O 0 31 N L kWD = O OV 0 N N kW

Strain

log_epsilon_p_dot

Natural logarithm of the strain rate

Temperature

co, c1i, c3, c4,

C5, n

The Zerilli-Armstrong (BCC) parameters.

C2 parameter,

model.)

exp_func : function,

optional

(Note that there is no

Object representing the exponential function

mown

since that is for the Zerilli-Armstrong FCC

return (CO + Cl+sexp_func((-C3 + C4xlog_epsilon_p_dot)*T) +

CSxepsilon_px*n)

D.4 Module File za_bcc_pyme3.py

#!{importstart}
import numpy as np

import pymc3 as pm

from za_bcc import za_bcc

#! {importend}

def make_za_bcc_model (epsilon_p, sigma,

"""Create a PyMC3 model conforming to the Zerilli-Armstrong (BCC) model

Parameters

epsilon_p_dot, T,

prior_params) :

epsilon_p : list of 1-d NumPy array

Strain values for all curves, where ‘epsilon p[0]  contains

strain values for the first curve,

strain values for the second curve, etc.

sigma : list of 1-d NumPy array

Stress values for all curves, where ‘sigma[0]"

values for the first curve, 'sigma[l]  contains stress values

for the second curve,

epsilon_p_dot

etc.

1-d array_like

‘epsilon _p[1]° contains

contains stress

List or array where element "1  contains the strain rate for

curve "1’

T : list of 1-d
Temperature
temperature

temperature

array_like
values for
values for

values for

all curves, where
the first curve,

the second curve,
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“Tr17°

etc.
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33
34
35
36
37
38
39
40
41
4
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
7
73
74
75
76
77
78
79
80
81
82
83
84
85
86

prior_params dict

Dictionary with the following keys:

"Cl_guess_mean",
"C5_guess_mean",

"Cl_guess_sd",

"sd_sigma_guess_sd",

corresponding to

are lists or 1-d arrays with 2 elements,

are positive numbers.

positive scalars.

Returns

A PyMC3 model

mown

#! {boundnormstart}

PosNormal = pm.Bound(pm.Normal,

#! {boundnormend}

#!{miscvarsstart}

"C3_guess_mean",
"sd_sigma_guess_mean",

"C3_guess_sd",

"sd_sigma_guess_mean" and

"C4_guess_mean",

"C4_guess_sd",

"n_alpha", and "n_beta'.

lower = 0.0)

num_curves = len(epsilon_p)

log_epsilon_p_dot = np.log(epsilon_p_dot)

#!{miscvarsend}

#!{withmodelstart}
model = pm.Model ()

with model:
#!{withmodelend}

#!{priorsstart}

CO0 = PosNormal ("CO",

mu
sd

Cl = PosNormal ("C1",

mu
sd

C3 = PosNormal ("C3",

mu
sd

C4 = PosNormal ("C4",

mu
sd

C5 = PosNormal ("C5",

mu
sd

prior_params["CO_guess_mean"],

prior_params["CO_guess_sd"])

prior_params["Cl_guess_mean"],

prior_params(["Cl_guess_sd"])

prior_params["C3_guess_mean"],

prior_params["C3_guess_sd"])

prior_params["C4_guess_mean"],

prior_params|["C4_guess_sd"])

prior_params["C5_guess_mean"],

prior_params|["C5_guess_sd"])
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"CO0_guess_mean",

"CO0_guess_sd",
"C5_guess_sd",
The values
"sd_sigma_guess_sd"
where both elements

Values corresponding to other keys are



87 n = pm.Beta("n",

88 alpha = prior_params["n_alpha"],

89 beta = prior_params["n_beta"])

90

91 sd_sigma = PosNormal ("sd_sigma",

92 mu = np.asarray (prior_params["sd_sigma_guess_mean"]),
93 sd = np.asarray (prior_params["sd_sigma_guess_sd"]),
94 shape = 2)

95 #!{priorsend}

96

97 #!{likstart}

98 for i in range (num_curves) :

99 pm.Normal ("sigma_curve{}".format (i),

100 mu = za_bcc(epsilon_pl[il],

101 log_epsilon_p_dot[i], TI[i],
102 co, c1, c3, c4, C5, n,

103 exp_func = pm.math.exp),
104 sd = (sd_sigmal0]

105 if (epsilon_p_dot[i] <= 1.0)

106 else sd_sigmal[ll]),

107 observed = sigmal[il])

108 #!{likend}

109

110 #!{retstart}

111 return model

112 #!{retend}
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List of Symbols, Abbreviations, and Acronyms

Bro

0

0err

0,41

o
agjc
Omdl

OZABCC

A

c(T)

Taylor-Quinney coefficient

vector of Bayesian model parameters

vector of nuisance parameters

vector of parameters of the predictive part of a Bayesian model
plastic strain rate

reference plastic strain rate, 1/s

plastic strain

experimental data or other known quantity on which parameter

vector 0 is supposed to depend

material state (e.g., a combination of the plastic strain, strain rate,

and temperature at a point)

density

flow stress according to the Johnson-Cook model

flow stress according to some predictive model

flow stress according to the Zerilli-Armstrong (BCC) model

fitting parameter of Johnson-Cook model that represents yield

strength at reference strain rate and room temperature

fitting parameter of Johnson-Cook model that represents strain

hardening prefactor at reference strain rate and room temperature

fitting parameter of Johnson-Cook model that represents strain

hardening effects due to strain rate
specific heat as function of temperature

fitting parameter of Zerilli-Armstrong (BCC) model, where i €
{0,1,3,4,5}
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farea

2

p(xldi d,. ..

p(x)
SD,

SD

SDy2

T*
Tmell

TI‘OOW[
1-D

ARL

. i,; ic ic ic 1 1
fraction such that fueq07) €1 where (EPJ, o) is the first point of
a stress-strain curve, equals the area under the missing part of a

stress-strain curve over the interval [0, e;“l]
index associated with a stress-strain curve

fitting parameter of Johnson-Cook model that represents thermal

softening exponent
number of data points

fitting parameter of Johnson-Cook and Zerilli-Armstrong models

that represents strain hardening exponent
number of stress-strain curves

parameters of the beta distribution used as a prior for fitting pa-

rameter n

number of data points for stress-strain curve i,

PDF of a quantity x given quantities d;, da, ...

PDF or prior PDF of a quantity x

standard deviation of the noise in a flow stress measurement

standard deviation of the noise in a flow stress measurement from

a quasi-static experiment

standard deviation of the noise in a flow stress measurement from

a high-strain-rate experiment

temperature

normalized temperature in Johnson-Cook model
melting temperature

room temperature

one-dimensional

CCDC Army Research Laboratory
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BCC

HDI

HMC

IPM

MCMC

MIDAS

NUTS

PDF

PFP

PPD

RHA

body-centered cubic

highest density interval

Hamiltonian Monte Carlo

interval predictor model

Markov Chain Monte Carlo

Material Implementation, Database, and Analysis Source
no U-turn sampler

probability density function

pushed forward posterior

posterior predictive distribution

rolled homogeneous armor
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