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1. Introduction
When it comes to uncertainty quantification, point estimates of model parameters
are not good enough. One needs to have estimates of the uncertainties in the pa-
rameters of a model if one is going to determine uncertainties in the quantities of
interest produced by that model. Yet in spite of this, published model parameters
all too often lack associated uncertainties; for example, they are missing in param-
eterizations of strength models for rolled homogeneous armor (RHA).1–3 Future
researchers who do uncertainty propagation calculations may then be left to make
educated guesses about the parameter uncertainties.4 The point of this report and its
two companion reports is to try to reverse this state of affairs by showing current and
future researchers, especially at the CCDC Army Research Laboratory (ARL), how
to use existing software tools to obtain parameter estimates that include uncertainty.
These tools are used, not on a “toy” problem, but rather on the realistic problem of
finding fitting parameters to strength models for RHA. Two approaches are used:
Bayesian analysis via the packages Stan5 and PyMC3,6 and an approximate inter-
val predictor model (IPM) approach7,8 that can be solved using off-the-shelf linear
programming tools from, for example, SciPy.9

This report is meant as an overview of how to use the aforementioned two ap-
proaches to fit a parameterized model to data, to ascertain the uncertainties in the
model parameters and evaluate the quality of the fit of the model to the data. Its
coverage of Bayesian software tools is mostly limited to a discussion of how to
express a Bayesian model (discussed in Sections 2 and 5) in forms that these tools
can accept. However, there are a few brief mentions of certain functions of these
tools, and one may use them to assist in finding relevant documentation for how
to execute a Bayesian analysis with said tools. A discussion of how to implement
the approximate IPM approach is in Section 7. Those who want more details of
how to implement these analyses may wish to consult at least one of the two com-
panion technical reports10,11: one covers step by step a workflow using the R lan-
guage12 and relevant packages that that interface with it, such as the Bayesian tool
RStan13 and the linear programming package lpSolve14 used to implement the IPM
approach; and the other covers step by step a workflow that uses the Python lan-
guage,15 two Python-based Bayesian tools, PyStan16 and PyMC3,6 and the afore-
mentioned SciPy to implement the IPM approach.
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Excerpts of program code, variables, functions, and filenames are written in a fixed-
width font like this. The lines in excerpts of program code files are also num-
bered.

2. Overview of Bayesian Analysis
When employing Bayesian analysis to estimate the uncertainties in strength model
parameters, one treats the parameters as random variables and seeks the probability
density function (PDF) of these parameters, given the model and the data at hand.
(For more details on PDFs, see Appendix A.) To obtain the PDF of these model
parameters, one uses Bayes’ rule, which, for continuous random variables, takes
the following form17:

p(θ|D) =
p(D|θ)p(θ)∫

Rnp
p(D|θ∗)p(θ∗)dθ∗

(1)

Here, θ represents a vector of np model parameters, where np ≥ 1, and D represents
a known quantity on which θ is supposed to depend, usually some set of exper-
imental data. The symbol Rnp represents all possible vectors of length np. Three
particular expressions merit particular mention:

• p(θ), the PDF of what is called the prior distribution, or often just the prior,
which represents a possibly rough estimate of what model parameter values
may be more or less likely, without taking D fully into account. Whether the
expression p(x) indicates a prior for x or just a PDF of x in general depends
on context.

• p(D|θ), the PDF of the likelihood, which represents how likely D would be
what it is, given a particular value for the model parameter vector θ.

• p(θ|D), the PDF of what is called the posterior distribution, or often just the
posterior, which is the PDF of θ once D has been taken into account. This is
the primary output of Bayesian analysis.

In this report, the prior and likelihood together are described as a Bayesian model.
This is distinct from a model used for prediction, such as a strength model, though
such a model is necessarily a part of a Bayesian model. Indeed, the model parameter
vector θ is technically a vector of the parameters of the overall Bayesian model, of
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which the parameters of the predictive part of the model (e.g., a strength model) are
a subset. This is elaborated in the discussion of the likelihood later on.

The prior PDF is often assumed to be the product of its marginal PDFs*, that is,
p(θ) =

∏np

i=1 p(θi). The marginal PDF of the prior for a particular model parameter
may be noninformative, indicating complete or nearly complete ignorance of the
likely values of a model parameter. Such a prior is typically flat, that is, p(θi) is the
same for all possible values of θi, and also improper (i.e.,

∫ ∞
−∞

p(θ∗i )dθ
∗
i → ∞).18

Alternatively, the marginal prior PDF p(θi) may also be weakly informative. By
definition, such a prior PDF is proper (i.e.,

∫ ∞
−∞

p(θ∗i )dθ
∗
i = 1), and it also tends to

be wide or fat, indicating that it represents a rough order-of-magnitude estimate of
a parameter’s possible values.18 A sufficiently narrow marginal prior PDF may be
considered strongly informative, with the sharp peak of the PDF being indicative
of a parameter’s likely value given previous experiments, theory, and so on. The
overall prior p(θ) may be strongly informative for a particular parameter, while
being weakly informative for the rest of the model parameters. However, if the
predictive part of the model imposes correlations among the model parameters,
then a strong marginal prior for one parameter may not only affect the locations of
the peaks of the marginal posterior PDFs of the other parameters, but may lead to
narrower peaks for those PDFs as well. Strongly informative priors should be used
with caution. If they are based on misinformation, and there is not enough data in
D to contradict this misinformation, then the resulting posterior will be misleading.

The likelihood, in practice, often accounts for the discrepancy between the predic-
tions of a model and the experimental data. For example, there may be a strength
model σmdl(e,θmdl) that predicts the flow stress given a material state e (which may
be a combination of, for instance, plastic strain, strain rate, and temperature) and a
parameter vector θmdl , whose components are a subset of the components of θ. This
model is such that when D consists of a set of N experimental inputs {ei}, i ∈ [1,N],
along with the corresponding set of experimental outputs {σi}, then σmdl(ei,θmdl)

is an imperfect predictor of σi. The experimental outputs may be thought of as
samples of random variables represented by the following sampling statement:

{σi} ∼ Dlik(σmdl, {ei},θmdl,θerr) (2)

*Appendix A defines what a marginal PDF is; see Eq. A-3.
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The “∼” operator indicates that the set {σi} is assumed to have been drawn from
a random distribution Dlik that models the analyst’s assumptions of how the set of
model predictions {σmdl(ei,θmdl)} departs from reality. This distribution may de-
pend not only on the model predictions but directly upon {ei} itself (as, for example,
in the work of Kennedy and O’Hagan19). The vector θerr contains any parameters of
the distribution Dlik that characterize noise and errors in the experiment and possi-
bly errors in the model as well.* The components of this vector are the components
of θ that are not components of θmdl . If pDlik

is the PDF of Dlik , then

p(D|θ) = p({ei}, {σi} | θmdl,θerr) = pDlik
({σi} | σmdl, {ei},θmdl,θerr) (3)

where the arguments of pDlik
after “|” are parameters of Dlik . The components of

θerr are often called nuisance parameters, since they are needed for analysis but are
not inputs to the predictive model itself.18

From the posterior distribution itself, one can obtain both point estimates of strength
model parameters and measures of their uncertainties. From a combination of the
posterior and the likelihood, one may obtain the posterior predictive distribution

(PPD), which can be used to check how well a model’s predictions agree with the
data.18 The PPD may be summarized by the following sampling statement,

Σpred({ei}) ∼ Dlik(σmdl, {ei},θmdl,θerr), if θ ∼ Dpost (4)

where Σpred({ei}) is a random set of possible experimental outputs for a given set
of experimental inputs {ei}, provided that σmdl represents the actual behavior of
the experimental system; and Dpost is the posterior distribution, which again has
PDF p(θ|D). Equation 4 implies that a sample from the PPD is obtained by sam-
pling θ (i.e., θmdl and θerr) from the posterior distribution, substituting that into the
likelihood Dlik(. . . ), and then sampling from the likelihood. The PPD includes the
effects of nuisance parameters. However, when one inputs PDFs of parameters into
tools for uncertainty propagation analyses, one generally does not input the PDFs
of the nuisance parameters. To see the effects of the uncertainties in the predictive
model parameters alone, one may use the pushed forward posterior (PFP),21 which

*It is possible to construct Dlik such that error is taken into account through θmdl alone.20 In
that case, θerr is an empty, zero-length vector.
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may be represented by the sampling statement

Σp f p(ei) ∼ σmdl(ei,θmdl), if θmdl ∼ Dpost (5)

This statement implies that a sample of the PFP is obtained by sampling the pre-
dictive model parameters θmdl from the posterior distribution, and substituting that
into the predictive model σmdl(ei,θmdl). Ideally, a sufficiently large number of sam-
ples from the PPD should form a pattern that resembles the experimental outputs
{σi}. Similarly, a sufficiently large number of samples from the PFP ideally should
resemble what the experimental outputs would look like if there were no error. The
extent to which these ideals hold indicates the level of accuracy of the assumptions
used to construct the likelihood, such as the choice of σmdl and Dlik .

The posterior PDF is often difficult or impossible to obtain analytically, so in prac-
tice it is estimated numerically via various algorithms collectively called Markov
Chain Monte Carlo (MCMC). Briefly, these algorithms take the likelihood as input,
may either take priors as input or assume noninformative priors, and produce as
output what are called chains, sequences of random samples from what is supposed
to be the posterior distribution. These samples can then be postprocessed to obtain
information about the posterior and related quantities such as the PPD and PFP.
The particular software tools mentioned in Section 1, Stan and PyMC3, implement
a form of MCMC called Hamiltonian Monte Carlo (HMC),22 which uses gradients
of the logarithms of the likelihood and prior to sample posterior distributions that
would be more difficult for MCMC methods that do not use gradients to sample,
and the no U-turn sampler (NUTS),23 which automatically and adaptively sets the
parameters for HMC that would otherwise need to be manually set by the software
user. For those interested in more details of MCMC algorithms, one may consult
Kruschke,17 Smith,24 Gelman et al.,18 and Betancourt,22 as well as other works.

3. Overview of Approximate Interval Predictor Model Approach
An IPM7,8 is simply a function that returns an interval as its output rather than a
single value. For example, given a function to predict the flow stress, σmdl(e,θmdl),
and a set Θ, the interval within which the flow stress is estimated to lie is
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[σmin(e;Θ), σmax(e;Θ)], where

σmin(e;Θ) = min
θmdl∈Θ

σmdl(e,θmdl) (6)

σmax(e;Θ) = max
θmdl∈Θ

σmdl(e,θmdl) (7)

The setΘ is chosen so as to keep the intervals from the IPM reasonably tight, given
known data points {ei, σi}. For example, Θ may be chosen such that

Θ = arg min
Θ′

1
N

N∑
i=1
[σmax(ei;Θ′) − σmin(ei;Θ′)] (8)

The minimization of Eq. 8 under the constraint

σmin(ei;Θ) ≤ σi ≤ σmax(ei;Θ),∀i ∈ [1,N] (9)

may not be tractable, especially if there is no analytical solution to Eqs. 6 and 7, thus
requiring a nested optimization (i.e., at each iteration to solve Eq. 8, optimization
routines would need to be used to estimate σmin and σmax for each data point).
However, one may obtain a more tractable problem by approximating σmdl(e,θmdl)

with a first-order Taylor expansion about a point estimate of θmdl , θ0, and taking Θ
to be a hyperrectangle with corners θ0 − ∆θmin and θ0 + ∆θmax . If gσmdl

(e) is the
gradient of σmdl(. . . ) with respect to θmdl evaluated at e and θ0, and |gσmdl

(e)| is
the elementwise absolute value of gσmdl

(e), then Eqs. 6 and 7 can be approximated
as follows:

σmin(e;Θ) ≈ σmdl(e,θ0) −
1
2

(
gσmdl

(e) + |gσmdl
(e)|

)T
∆θmin

+
1
2

(
gσmdl

(e) − |gσmdl
(e)|

)T
∆θmax

(10)

σmax(e;Θ) ≈ σmdl(e,θ0) −
1
2

(
gσmdl

(e) − |gσmdl
(e)|

)T
∆θmin

+
1
2

(
gσmdl

(e) + |gσmdl
(e)|

)T
∆θmax

(11)

Here, a superscript T indicates the transpose. Given Eqs. 10 and 11 along with a
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fixed θ0, Eq. 8 becomes

∆θmin,∆θmax = arg min
∆θ′min,∆θ

′
max

1
N

[
N∑

i=1
|gσmdl

(ei)|

]T

(∆θ′min + ∆θ
′
max) (12)

Together, Eqs. 9–12 form a constrained minimization problem that can be solved
through linear programming.

The previously described approach for estimating Θ does not guarantee that it does
not contain invalid values of θmdl . For example, even though the elements of θmdl

must be nonnegative, θ0−∆θmin may have negative elements. There are two possible
approaches to remedy this. One of these is to use transformed parameters, so for
example, if a strength model takes nonnegative parameters, then θmdl represents the
natural logarithm of the parameters, and σmdl(e,θmdl) = σ

′
mdl(e,exp(θmdl)), where

the exponential function is taken to operate elementwise. Another approach is to
simply truncate the bounds of Θ, so for example, if the estimated value of ∆θmin is
a + δ, where δ causes Θ to contain invalid values, then ∆θmin can be taken to be
just a. While this approach is more simplistic, it can still lead to reasonable results
if the elements of δ are small.

4. Data for Analyses
The stress-strain data to be used in Bayesian analysis of strength models comes
from the Material Implementation, Database, and Analysis Source (MIDAS).25 Ta-
bles of this stress-strain data, along with some of the details of how they have been
obtained, are in Appendix B. The data can be divided into nc subsets, where subset
ic (ic ∈ [1,nc]) is associated with a plastic strain rate Ûε ic

p and an initial temperature
T ic

init of the sample being deformed. A graph of the data is shown in Fig. 1, with each
subset plotted as a curve. Examination of these curves indicates that they can be
grouped into two categories, one for relatively smooth curves, which are associated
with strain rates no greater than 1/s, and one for rougher, wavier curves, associated
with higher strain rates. As pointed out in Appendix B, the low-strain-rate data and
high-strain-rate data have been obtained with different instruments, which may be
taken into account when fitting strength models to them.

At first, it may seem that when the stress-strain data are input to a computational
Bayesian analysis, far less storage should be needed for the strain rate and temper-
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Fig. 1 Plots of flow stress σ vs. plastic strain εp for RHA from MIDAS, with the plastic strain
rate denoted as Ûεp and the initial sample temperature Tinit
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ature than for the stresses and strains, since only one strain rate and temperature
would be needed for each stress-strain curve. However, when a sample is deformed
at a high strain rate, there is no time for the heat generated from plastic work to
dissipate from the sample while it deforms. Accordingly, during deformation, the
temperature of the sample rises from its initial value. Ideally, the best way to ac-
count for this temperature rise due to the buildup of heat would be to measure the
temperature of the sample as it deforms (as done, for example, in Walley et al.26).
However, this has not been done for the stress-strain data under consideration here.
Instead, the temperature rise ∆T as the sample deforms is estimated as follows27–29:

∆T = T ic
j − T ic

j−1 ≈
βTQ

ρc(T ic
j−1)

∫ ε icp, j

ε ic
p, j−1

σdεp (13)

Here, T ic
j and ε ic

p,j are the temperature and plastic strain of data point j in subset
ic, βTQ is the Taylor-Quinney coefficient, ρ is the density, and c(T) is the specific
heat, which is a function of temperature T . The integral in Eq. 13 is the area under
the portion of stress-strain curve ic that is over the strain interval [ε ic

p,j−1, ε
ic
p,j]. In

this equation, βTQ indicates the fraction of plastic work converted to heat, so its
maximum value is 1.29 The density is taken to be 7840 kg/m3.30 Specific heat values
of RHA do not appear to be readily available, but since the equations of state for
RHA and iron do not appear to be significantly different,31 specific heat values of
body-centered cubic (BCC) iron,32 shown in Appendix B, are used instead. Linear
interpolation is used to estimate c(T) for temperature values not given in Table B-1.
Equation 13 treats the specific heat as approximately constant over the temperature
rise ∆T .

If the temperature associated with the first point of curve ic, T ic
1 , were equal to

T ic
init , calculating the set of temperatures {T ic

j } from the temperature rise would be
straightforward. However, the initial temperature is for an unstrained sample, and
for high strain rates, the plastic strain ε ic

p,1 is not 0 but some small finite value, usually
around 2.5%. At this finite strain, the temperature has already increased from T ic

init .
To approximately account for this, one can note two things illustrated in Fig. 2,
which shows an example stress-strain curve starting at (ε ic

p,1, σ
ic
1 ). The part of the

curve over the interval [0, ε ic
p,1] is essentially missing. It is unlikely that the curve is

above the horizontal line σ = σic
1 , so the area of the shaded rectangle in the figure,

σic
1 ε

ic
p,1, is a likely overestimate of the area under the missing part of the stress-
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strain curve. On the other hand, the area under the line from the origin to (ε ic
p,1, σ

ic
1 ),

0.5σic
1 ε

ic
p,1, is a likely underestimate, because the intercept of the stress-strain curve

with the σ-axis is not zero but rather the initial yield stress for the temperature and
strain rate that is associated with the curve. Accordingly, an approximation of the
temperature rise due to this missing part of the curve then is

T ic
1 − T ic

init ≈
βTQ

ρc(T ic
init)

fareaσ
ic
1 ε

ic
p,1, farea ∈ [0.5,1] (14)

assuming that c(T) is approximately constant over the temperature range [T ic
init,T

ic
1 ].

Likely overestimate 
of area under 

missing part of 
stress-

strain curve

Available 
stress-strain 
curve i

c

Likely underestimate 
of area under missing 
part of stress-strain 
curve

(ϵp ,1
ic ,σ 1

ic)

σ

ϵp

Fig. 2 Example stress-strain curve where the available data points start at (ε ic
p,1, σ

ic
1 ), so that

the part of the curve over the interval [0, ε ic
p,1] is missing. The shaded rectangle, with area

σic
1 ε

ic
p,1, is a likely overestimate of the area under the missing part of the stress-strain curve.

The hatched triangle, with area σic
1 ε

ic
p,1/2, is a likely underestimate of the area.

While βTQ is often taken to be equal to 0.9 for metals, there is a wide spread of
values found in the literature, with βTQ sometimes found to be as low as 0.4.29

Estimation of farea amounts to educated guesswork. Accordingly, temperatures are
estimated for a few combinations of reasonable estimates of βTQ and farea, shown
in Table 1. Plots of these estimated temperatures are shown in Fig. 3.

5. Constructing Bayesian Models
To construct an Bayesian model to fit a strength model, one needs a likelihood and
a prior. To determine a prior, one of course needs to know the plausible ranges of
values of strength model parameters, while the likelihood needs the predictions of a
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Table 1 Possible combinations of values of βTQ and farea used in temperature estimation

βTQ farea
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0.6 0.55
0.9 0.95
0.6 0.95
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(a) 77 K, 2500/s (b) 298 K, 3500/s (c) 298 K, 7000/s
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(c) 473 K, 3000/s (d) 673 K, 3000/s (e) 873 K, 3500/s

Fig. 3 Estimated temperatures along stress-strain curves with the initial temperatures and
strain rates shown, given the values of βTQ and farea in Table 1
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strength model as one of its inputs. Many strength models may be used to model the
plastic behavior of RHA, but here, the focus is on two of them: one by Johnson and
Cook33 and one by Zerilli and Armstrong34 that is specific to BCC materials. These
two models are chosen because they have relatively simple closed forms and are
available in Army-relevant codes such as CTH.35 The Johnson-Cook model may be
written as follows:

σJC(εp, Ûεp,T∗; θJC) = (A + Bεn
p )[1 + C ln( Ûεp/ Ûεp0)][1 − (T∗)m] (15)

T∗ = (T − Troom)/(Tmelt − Troom) (16)

Here, σJC is the flow stress according to the Johnson-Cook model, εp is the plastic
strain, Ûεp is the plastic strain rate, Ûεp0 = 1/s, T is the temperature, Troom is the room
temperature, Tmelt is the melting temperature, A, B, n, C, and m are fitting parame-
ters, and θJC = (A,B,n,C,m). Following Gray et al.,1 Troom and Tmelt are taken to
be 298 and 1783 K, respectively. Since the Johnson-Cook model cannot be applied
where the temperature is below Troom, only stress-strain data for temperatures of
Troom and above are used with it.

The Zerilli-Armstrong model for BCC materials may be written as follows:

σZ A,BCC(εp, Ûεp,T ; θZ A,BCC) = C0 + C1 exp[(−C3 + C4 ln( Ûεp/ Ûεp0))T] + C5ε
n
p (17)

Here, σZ A,BCC is the flow stress according to the Zerilli-Armstrong (BCC) model;
εp, Ûεp, and T are again the plastic strain, plastic strain rate, and temperature, respec-
tively; Ûεp0 = 1/s; C0, C1, C3, C4, C5, and n are fitting parameters; and θZ A,BCC =

(C0,C1,C3,C4,C5,n). (There is no parameter C2; such a parameter belongs to the
face-centered cubic version of the Zerilli-Armstrong model.1)

To construct a likelihood, one needs a model of the discrepancy between the model
predictions and the experimental data. Conceptually, this may be modeled as fol-
lows19:

{σic
j } = σmdl({eic

j },θmdl) + e(D,θe
err) + δ(D,θδerr) (18)

Following similar notation in Section 4, the vector of experimental stress values is
written as {σic

j }, where j ∈ [1,Nic ] and Nic is the number of data points in the sub-
set associated with stress-strain curve ic. Given the constitutive models described in
Eqs. 15 and 17, “mdl” now stands in for “JC” or “Z A,BCC,” and eic

j represents the
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combination of plastic strain ε ic
p,j , plastic strain rate Ûε ic

p , and temperature T ic
j . The

vector σmdl({eic
j },θmdl) consists of predicted stress values, one for each element

of {eic
j }. Concatenating vectors θe

err and θδerr yields θerr . Here, e(D,θe
err) is a ran-

dom function that represents noise from experimental instruments, while δ(D,θδerr)

is a smoother random function that represents more systematic departures between
the model predictions and real-world behavior, i.e., model inadequacy. While this
may be a reasonable conceptual depiction of model error, it can have significant
practical problems, because for almost any value of θmdl , one can construct a func-
tion δ(D,θe

err) that makes up the difference between {σic
j } and σmdl({eic

j },θmdl).
Furthermore, estimating θδerr can be expensive. For example, if δ(. . . ) is taken
to be a Gaussian process, then it has a covariance matrix of size N × N , where
N =

∏nc
ic=1 Nic . This matrix requires O(N2) storage and requires O(N3) time to in-

vert, and the inversion has to be done at least once per MCMC iteration. Because of
these issues, an explicit representation of model inadequacy is avoided in the rest of
this report. A likelihood that neglects model inadequacy is at least a useful starting
point, and the results of proceeding with it can be used to indicate if some alternate
likelihood may be advisable. Interested readers who wish to delve more deeply into
representations of model inadequacy may wish to consult Kennedy and O’Hagan,19

Ling et al.,36 or Sargsyan et al.20

When model inadequacy is neglected and discrepancies between model predictions
and data are attributed solely to measurement noise, the likelihood PDF may be
simplified. If the noise in the measurement of one flow stress value is independent
of the noise in the measurement of another, then the PDF of the set of stress values
is the product of the PDFs of each individual value, so the overall likelihood PDF
may be decomposed as follows:

p(D|θ) = pDlik
({σic

j } | σmdl, {eic
j },θmdl,θerr)

=

nc∏
ic=1

Nic∏
j=1

p(σic
j |σmdl,eic

j ,θmdl,θerr)
(19)

The random noise in an experimental output may be approximated as being nor-
mally distributed and centered about the model prediction for that output, such that

p(σic
j |σmdl,eic

j ,θmdl,θerr) = pnormal(σ
ic
j |σmdl(eic

j ,θmdl),SDσ) (20)
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where pnormal(. . . ) is the PDF of a normal distribution with mean σmdl(eic
j ,θmdl) and

standard deviation SDσ. (See Appendix A for more discussion of normal distribu-
tions.) Of course, SDσ is meant to indicate how much noise is in a measurement
source. For this particular problem, the choice of measurement source depends on
the strain rate, so SDσ depends on it as well. Here, SDσ is assumed to be a constant
for each source, so that

SDσ( Ûε
ic
p ) =


SDσ,1 Ûε ic

p ≤ 1.0/s

SDσ,2 otherwise
(21)

If the noise in the measurement sources were well known, then SDσ,1 and SDσ,2

could be treated as known quantities, and θerr would be an empty, zero-length
vector. However, here they are treated as nuisance parameters, that is, θerr =

(SDσ,1,SDσ,2).

If the assumption of negligible model inadequacy does not hold, then the resulting
PDF of model parameters, p(θ|D), will still tend to center around a value of θ that
minimizes the least-squares error (weighted by SDσ,1 and SDσ,2) as well as the dis-
crepancy (or more precisely, the Kullback-Leibler divergence) between the approx-
imate constructed likelihood and the actual random distribution that generated the
experimental data.37 Furthermore, if more experimental data were to be obtained,
the PDFs of the strength model parameters would become narrower, regardless of
how well the model tracks the trends in the experimental data. Accordingly, the
width of these PDFs cannot be used to gauge the accuracy of the strength model.
However, the average values of the nuisance parameters SDσ,1 and SDσ,2 do in-
crease to accommodate discrepancies between model predictions and experimental
results, so they do provide a rough estimate of the accuracy of the model.

The PDF of all the priors here is taken to be the product of the prior PDFs of the in-
dividual parameters, including nuisance parameters. For example, for the Johnson-
Cook model, this is

p(θJC,SDσ,1,SDσ,2) = p(A)p(B)p(n)p(C)p(m)p(SDσ,1)p(SDσ,2) (22)

Since noninformative priors may lead to both instability in numerical analyses38

and improper posteriors, they are not used in any analysis in this report. Instead,
priors are mostly weakly informative.
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For both the Johnson-Cook and Zerilli-Armstrong (BCC) models, the parameter n

is the exponent for a power-law curve whose slope decreases with increasing εp;
therefore, n is in the interval [0,1]. The simplest choice of prior distribution for n,
then, would be a uniform prior over that interval. However, for more flexibility, p(n)

is taken to be pbeta(n|nα,nβ), the PDF of a beta probability distribution (described
in Appendix A), which is also 0 outside of [0,1]. The parameters of this distribution
are taken to be nα = nβ = 1.1, leading to the PDF shown in Fig. 4a. This PDF
distribution is still nearly as flat as a uniform prior, but is slightly more informative,
indicating a random variable that is highly unlikely to have values at the extremes
of the interval [0,1] but could readily be almost anything else in that interval.

The other model parameters are positive but have no other hard limits on their range
of values. For simplicity, the prior distribution used for each of these parameters
is a modified normal distribution that is centered around a point estimate of the
parameter—which may be little more than a rough guess—and truncated so that its
PDF is zero for negative parameter values, that is,39

p(a) = pT[0,∞)
normal(a|aguess mean,aguess sd)

=


pnormal(a|aguess mean,aguess sd)∫ ∞

0 pnormal(a∗ |aguess mean,aguess sd)da∗
a ≥ 0

0 otherwise

(23)

where a stands in for any model parameter except n, and the expression
pnormal(a|aguess mean,aguess sd) indicates the PDF of a normal distribution (described
in Appendix A) with mean aguess mean and standard deviation aguess sd . The super-
script T[0,∞) indicates that the domain of the PDF is truncated to the interval [0,∞).
The integral in Eq. 23 is a normalization factor that ensures that the PDF remains
proper. When the prior for a is weakly informative, aguess mean is set to an order-
of-magnitude estimate of that parameter. Most of these estimates are from previous
model fits in Gray et al.1 Initial order-of-magnitude estimates of parameters are
shown in Table 2. For the prior to be weakly informative, aguess sd should be at least
the same order of magnitude as aguess mean. However, since the model parameters
are presumed to be nonzero, p(0) needs to at least be approximately 0. Accord-
ingly, in a weakly informative prior for a, aguess sd is set to aguess mean/3. A plot
of the prior PDF p(A), where Aguess mean is set to the initial estimate for A in the
aforementioned table and Aguess sd is set to Aguess mean/3 ≈ 333 MPa, is shown in
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Fig. 4b.

Table 2 Initial rough estimates of model parameters

Parameter Estimate

A (MPa) 1000
B (MPa) 1000
n 0.5
C 0.001
m 1
C0 (MPa) 100
C1 (MPa) 1000
C3 (K−1) 0.001
C4 (K−1) 0.00001
C5 (MPa) 1000
SDσ,1, SDσ,2 (MPa) 100
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Fig. 4 Marginal prior PDFs for parameters n and A, where a) p(n) = pbeta(n|1.1,1.1) and b)
p(A) = pT [0,∞)normal (A|1000,1000/3)

For parameter A of the Johnson-Cook model, a strongly informative prior is also
available, because it represents an experimentally obtainable quasi-static yield stress.
In Gray et al.,1 the original source for the stress-strain data to which the Johnson-
Cook and Zerilli-Armstrong (BCC) models are to be fit, samples of 5-inch-thick*

RHA are taken perpendicular and parallel to the rolling direction of the armor plate.
In Benck,30 four samples of 4-inch RHA, also tested perpendicular and parallel

*According to Meyer and Kleponis,2 the RHA used by Gray et al.1 is 2 inches thick, but this
appears to be a misreading of the test certificate in Fig. B-2 in Gray et al.,1 which describes the plates
as “2 ¬ 5 ¬X¬ 74 ¬X¬ 74”, indicating two 5-inch-thick square plates with a side length of 74
inches. A 2-inch thickness is inconsistent with the weight of each plate, 7765 lb, and a steel density
of about 0.284 lb/in2.
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to the rolling direction, have measured yield strengths of 700.0, 702.0, 704.0, and
723.0 MPa. According to the specification for RHA,40 plates of 4 to 6 inches should
have the same range of hardness values, which suggests that the yield strengths of
4 and 5-inch plates should be about the same. This in turn suggests a value for
Aguess mean of 707.25 MPa, the mean of the measured yield strengths for the 4-inch-
thick RHA, and a value for Aguess sd of 10.63 MPa, the standard deviation of those
measured yield strengths. The narrowness of this standard deviation, as compared
with the standard deviation of about 333 MPa for the weakly informative prior for
A, is what makes this prior strong.

A Bayesian model may be expressed in terms of sampling statements, and doing
so simplifies the process of inputting the model into Bayesian software tools.17,39,41

Sampling statements for the priors are as follows:

n ∼ beta(nα,nβ) (24)

A ∼ normal(Aguess mean, Aguess sd)T[0,∞) (25)

B ∼ normal(Bguess mean,Bguess sd)T[0,∞) (26)

C ∼ normal(Cguess mean,Cguess sd)T[0,∞) (27)

m ∼ normal(mguess mean,mguess sd)T[0,∞) (28)

Ck ∼ normal(Ck,guess mean,Ck,guess sd)T[0,∞) (29)

SDσ,1 ∼ normal(SDσ,1,guess mean,SDσ,1,guess sd)T[0,∞) (30)

SDσ,2 ∼ normal(SDσ,2,guess mean,SDσ,2,guess sd)T[0,∞) (31)

where k ∈ {0,1,3,4,5}, beta(nα,nβ) is the beta distribution with PDF p(n) =

pbeta(n|nα,nβ), normal(aguess mean,aguess sd)T[0,∞) is the truncated normal distribu-
tion with the PDF in Eq. 23, and the values of nα, nβ, Aguess mean, Aguess sd , and so
on, are as previously described. Because the likelihood PDF is assumed to decom-
pose into a product of PDFs, one for each data point, a sampling statement can be
associated with each data point (rather than having a sampling statement for the set
of data points as a whole as in Eq. 2). Following Eq. 20, each of these sampling
statements may be expressed as

σic
j ∼ normal(σmdl(eic

j ,θmdl),SDσ,k) (32)

where k = 1 if Ûε ic
p ≤ 1/s, and k = 2 otherwise. For the Johnson-Cook and Zerilli-
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Armstrong (BCC) models specifically, the sampling statements corresponding to
their respective likelihoods are

σic
j ∼ normal(σJC(ε

ic
p,j, Ûε

ic
p , (T

ic
j )
∗,θJC),SDσ,k) (33)

and
σic

j ∼ normal(σZ A,BCC(ε
ic
p,j, Ûε

ic
p ,T

ic
j ,θZ A,BCC),SDσ,k) (34)

6. Specifying Bayesian Models for Software Tools
To use existing software tools to analyze Bayesian models, these models need to be
translated from the mathematical notation seen in Sections 2 and 5 to a form that
these software tools can use. The following sections discuss how this translation is
done for Stan39 and PyMC3.6

6.1 Specifying Models With Stan Specification Files
In order to use the various interfaces of Stan (such as RStan,13 PyStan,16 or Cmd-
Stan42), a specification of a Bayesian model should be written in plain text, prefer-
ably in a separate file,43,44 using the syntax of the Stan language. This language
currently consists of several program blocks,* each of which begins with a keyword
or keyphrase followed by statements enclosed in braces.39 These are the program
blocks of the Stan specification files used in the analyses of this report:

• the functions block, which contains the definitions of one or more func-
tions to be used in subsequent program blocks;

• the data block, which contains declarations of the input variables needed
for the Bayesian model;

• the transformed data block, which contains declarations of variables
that are functions of the variables from the data block;

• the parameters block, which contains declarations of the unknown model
parameters to be found; and

*This may change in the future; see Carpenter.45
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• the model block, which contains descriptions of the priors and likelihood of
the model, in a syntax that resembles the sampling statements of Sections 2
and 5.

As an example, the program blocks of the specification of the Johnson-Cook model
(shown in Appendix C) are shown and discussed in more detail.

The functions block is as follows.

2 functions {

3 vector jc(vector epsilon_p, real log_epsilon_p_dot, vector T_star,

4 real A, real B, real n, real C, real m) {

5
6 int length_epsilon_p = num_elements(epsilon_p);

7 vector[length_epsilon_p] sigma;

8
9 real edot_factor = (1.0 + C*log_epsilon_p_dot);

10
11 // The exponentiation operator "^" doesn't vectorize, so I need a

12 // "for" loop here.

13 for (i in 1:length_epsilon_p) {

14 sigma[i] = (A + B*(epsilon_p[i])^n)*edot_factor*
15 (1.0 - (T_star[i])^m);

16 }

17
18 return sigma;

19 }

20 }

This block defines the function jc, which specifies the Johnson-Cook strength
model, σJC . Arguments to functions in Stan have types. The first argument,
epsilon_p, of type vector, represents a sequence of plastic strain values εp,
where epsilon_p[1] is the first value in the sequence, epsilon_p[2] is
the second value, and so on. The integer value in the brackets is called an index.
The second argument, log_epsilon_p_dot, of type real, represents a sin-
gle scalar value for ln( Ûεp/ Ûεp0). In general, variables of type real represent double
precision floating-point numbers. The argument T_star represents a sequence of
values of T∗, and the arguments A, B, n, C, and m represent the fitting parameters of
the Johnson-Cook model.

Lines 6–9, in the body of the function jc, are variable declarations in Stan.
These indicate the names of variables that are used in the rest of the body of the
function (i.e., length_epsilon_p, sigma) and edot_factor, the types of
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these variables, and they may also initialize the values of these variables. Here,
length_epsilon_p is of type int, which indicates that it is a scalar in-
teger value, and it is initialized to num_elements(epsilon_p), which is
the number of values in the vector epsilon_p. Like epsilon_p, sigma is
of type vector. However, when declaring a variable of this type, the num-
ber of values stored in this variable must be given in brackets following the key
word “vector”. Accordingly, the declaration for the variable sigma starts with
vector[length_epsilon_p], indicating that the number of values stored in
sigma is length_epsilon_p. The variable edot_factor is set to an arith-
metic expression that corresponds to the factor [1 + C ln( Ûεp/ Ûεp0)] in the Johnson-
Cook model. (In this expression, “*” is the multiplication operator, as it is in many
programming languages.) Like all statements in Stan, the variable declarations are
terminated by semicolons. Variable declarations are usually allowed in any block of
statements enclosed by braces (e.g., a function body), but they must be at the top of
the block, above any other statements.

The token “//” indicates the start of comment text. Everything from this token to
the end of the line is ignored by a Stan implementation. (The comment text here
indicates that the exponentiation operator “^” does not work with vectors.)

The expression for(...) indicates iteration, which means that the statements
within the braces following for(...) (i.e., lines 14–15) are executed repeat-
edly. For each repetition (or iteration), the variable i takes on a different value,
starting from 1 and continuing through 2, 3, and so on, all the way up to
length_epsilon_p. This for loop specifies how element i of the sequence
sigma is related to element i of the sequences epsilon_p and T_star, given
certain values of the other arguments of the function jc. The expressions (A +

B*(epsilon_p[i])^n), edot_factor, and (1.0 - (T_star[i])^m)

correspond to the factors (A+Bεn
p ), [1+C ln( Ûεp/ Ûεp0)], and [1−(T∗)m] in the Johnson-

Cook model. One may note that the for loop could have been written without
edot_factor as follows.

for (i in 1:length_epsilon_p) {

sigma[i] = (A + B*(epsilon_p[i])^n)*(1.0 + C*log_epsilon_p_dot)*
(1.0 - (T_star[i])^m);

}

However, since the value of the expression 1.0 + C*log_epsilon_p_dot

20



does not change in any iteration of the for loop, it is assigned to edot_factor
in the last variable declaration above the loop, and then edot_factor is used in
place of the expression. This avoids repeatedly calculating the expression unneces-
sarily.

Finally, the return statement in line 18 indicates the value or values that function
jc returns when it is evaluated. In this case, what is returned is sigma, the vector
of flow stress values as determined from the Johnson-Cook model.

The next block is the data block:

24 data {

25 int<lower=1> num_curves;

26 int<lower=0> curve_sizes[num_curves];

27 vector[num_curves] epsilon_p_dot;

28
29 vector[sum(curve_sizes)] epsilon_p;

30 vector[sum(curve_sizes)] sigma;

31 vector[sum(curve_sizes)] T;

32
33 real<lower=0.0> T_melt;

34 real<lower=0.0> T_room;

35
36 real<lower=0.0> epsilon_p_dot_0;

37
38 real<lower=0.0> A_guess_mean; real<lower=0.0> A_guess_sd;

39 real<lower=0.0> B_guess_mean; real<lower=0.0> B_guess_sd;

40 real<lower=0.0> C_guess_mean; real<lower=0.0> C_guess_sd;

41 real<lower=0.0> m_guess_mean; real<lower=0.0> m_guess_sd;

42
43 real<lower=0.0> n_alpha; real<lower=0.0> n_beta;

44
45 vector<lower=0.0>[2] sd_sigma_guess_mean;

46 vector<lower=0.0>[2] sd_sigma_guess_sd;

47 }

The data block is composed entirely of variable declarations, similar to the ones
already seen in the body of the function jc shown previously. Within this block,
one can use the notation <lower=lo, upper=hi> to indicate that a variable
is constrained to be no lower than lo and no higher than hi. If the variable has
no lower or upper bound, then either lower=lo or upper=hi is omitted. If at
the end of a variable name in a declaration, there is an integer expression in brack-
ets, such as “[num_curves]”, that means the variable is an array variable. This
means that curve_sizes (line 26) is such a variable. An array variable is sim-
ilar to a variable of type vector in that it is a sequence of values, so that, for
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example, curve_sizes[1] is the first value, curve_sizes[2] is the second
value, and so on. The number of values in this sequence is the value of the afore-
mentioned integer expression in the brackets of the variable declaration, which for
curve_sizes is just num_curves. There are several differences between array
variables and vectors, and these are described in the Stan reference manual.39 For
the purposes of this report, two particular differences are noted:

• Arithmetic operators such as “+” and “*” (but not “^”!) are defined for vec-
tors but not arrays.

• A vector always contains a sequence of real numbers, whereas the values in
arrays may be real numbers, integers, or even other Stan types such as vectors
or matrices.

For an array or vector variable, like curve_sizes or epsilon_p, the con-
straints specified in the <lower=lo, upper=hi> notation apply to all values
stored in the variable.

Here, num_curves is the number of stress-strain curves. The array
curve_sizes indicates the number of data points in each stress-strain curve.
Due to limitations in the types available in the Stan language, the data for
strains, stresses, and temperatures are stored in vectors according to a scheme rec-
ommended in the Stan language manual for so-called ragged data structures,39

which is illustrated in Fig. 5. The first curve_sizes[1] elements of sigma,
epsilon_p, and T are the stress σ, plastic strain εp, and temperatures T for the
first stress-strain curve, measured for strain rate epsilon_p_dot[1], while the
next curve_sizes[2] elements of sigma, epsilon_p, and T are the stress,
plastic strain, and temperatures for the second stress-strain curve, measured for
strain rate epsilon_p_dot[2], and so on. Much of the notation for the variables
in the data block is similar to the mathematical notation used for the Johnson-
Cook model and its priors. For example, T_melt is Tmelt , epsilon_p_dot_0
is Ûεp0 (where “dot” refers to the dot over the character ε), A_guess_mean is
Aguess mean, and so on.

The next block is the transformed data block:

51 transformed data {

52 vector[num_curves] log_epsilon_p_dot = log(epsilon_p_dot/epsilon_p_dot_0);
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... ... ... ...epsilon_p

Strains for 
curve 1

Strains for 
curve 2

...

Strains for 
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Strains for curve 
num_curves

... ... ... ...sigma
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... ... ... ...T
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for curve 1
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for curve 2

...
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...curve_sizes

Num. data pts. 
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Fig. 5 Storage of data for stress-strain curves in the Stan vectors epsilon_p, sigma, T, and
curve_sizes
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53 vector[sum(curve_sizes)] T_star = (T - T_room)/(T_melt - T_room);

54 }

The purpose of this block is to avoid redundant computation. Rather than
repeatedly compute log(epsilon_p_dot/epsilon_p_dot_0) or (T -

T_room)/(T_melt - T_room) again and again as a model is sampled, it is
computed once and stored in log_epsilon_p_dot and T_star. The variable
T_star, of course, represents T∗. This block also shows an example of arithmetic
operators (such as the division operator “/”) being applied to vectors. For exam-
ple, dividing the vector epsilon_p_dot by epsilon_p_dot_0 divides each
element of epsilon_p_dot by epsilon_p_dot_0. The log function oper-
ates elementwise, so that if x is a vector, array, or matrix, and y = log(x), then
y[i] is the natural logarithm of x[i].

The next block is the parameters block:

58 parameters {

59 real<lower=0.0> A;

60 real<lower=0.0> B;

61 real<lower=0.0, upper=1.0> n;

62 real<lower=0.0> C;

63 real<lower=0.0> m;

64
65 real<lower=0.0> sd_sigma[2];

66 }

This block, of course, contains the parameters of the Johnson-Cook model, along
with constraints on their values. This block also contains an array parameter
sd_sigma with two elements that correspond to parameters SDσ,1 and SDσ,2.
The same notation used for constraining variables in the data block is used in this
block as well.

The final block is the model block:

70 model {

71 A ~ normal(A_guess_mean, A_guess_sd)T[0.0,];

72 B ~ normal(B_guess_mean, B_guess_sd)T[0.0,];

73 n ~ beta(n_alpha, n_beta);

74 C ~ normal(C_guess_mean, C_guess_sd)T[0.0,];

75 m ~ normal(m_guess_mean, m_guess_sd)T[0.0,];

76
77 for (i in 1:2) {

78 sd_sigma[i] ~

79 normal(sd_sigma_guess_mean[i],

80 sd_sigma_guess_sd[i])T[0.0,];
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81 }

82
83 {

84 int start_ind = 1;

85 for (curve_ind in 1:num_curves) {

86 int end_ind = start_ind + curve_sizes[curve_ind] - 1;

87
88 real curr_sd_sigma = (epsilon_p_dot[curve_ind] <= 1.0

89 ? sd_sigma[1]

90 : sd_sigma[2]);

91
92 sigma[start_ind:end_ind] ~ normal(jc(epsilon_p[start_ind:end_ind],

93 log_epsilon_p_dot[curve_ind],

94 T_star[start_ind:end_ind],

95 A, B, n, C, m),

96 curr_sd_sigma);

97
98 start_ind = end_ind + 1;

99 }

100 }

101 }

This contains the representation of the priors (lines 71–81) and the likelihood model
(lines 83–100). By design, the “∼” operator resembles the sampling statement no-
tation used to specify parts of a Bayesian model, as seen in Sections 2 and 5. The
T[0,] notation indicates that the normal distribution for the priors has been trun-
cated so that the probability density of the prior is zero for negative parameter val-
ues. This corresponds to the T[0,∞) notation in Section 5. Indeed, aside from that
slight difference in notation, variable declarations, and for loops, this section of
the Stan specification file is nearly a transcription of the sampling statements in
Eqs. 24–28 and Eq. 33.

The for loop within lines 83–100 is surrounded by braces so that the dec-
laration for start_ind can be just above the loop. Otherwise, that dec-
laration would need to be at the top of the model block, away from the
context where the variable is most relevant.* In the body of this for loop,
the variable curr_sd_sigma stands in for SDσ( Ûεp). The notation with “?”
and “:” in lines 88–90 is used here to express the contents of Eq. 21; if
epsilon_p_dot[curve_ind] is less than 1, then curr_sd_sigma equals
sd_sigma[1]; otherwise, it equals sd_sigma[2]. Also, in this same loop,
one also can see the range notation for expressing segments of vectors and

*As mentioned before, when variable declarations are in a block of statements enclosed by
braces, they must be at the top of the block, above any other statements.
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arrays, where, for example, sigma[start_ind:end_ind] represents the
sequence of values sigma[start_ind], sigma[start_ind + 1], . . . ,
sigma[end_ind]. When curve_ind is 1, start_ind and end_ind are
1 and curve_sizes[1], making sigma[start_ind:end_ind] the se-
quence of stress values for the first stress-strain curve. When curve_ind is 2,
sigma[start_ind:end_ind] becomes the sequence of stress values for the
second stress-strain curve, and so on for curve_ind values of 3, 4, and onward.
The “∼” operator applies to all elements of sigma[start_ind:end_ind]; es-
sentially, in lines 92–96, Eq. 33 is applied for ic = curve_ind and j ranging from
1 to curve_sizes[curve_ind].

Given that in the for loop in lines 83–100, the “∼” operator is used with a segment
of a vector, one might expect that the for loop in lines 77–81 is unnecessary and
that

// WARNING: Will not work!

sd_sigma ~ normal(sd_sigma_guess_mean, sd_sigma_guess_sd)T[0.0,];

could be used instead. If it were not for the truncation indicated by T[0.0,], this
would indeed be the case. Due to limitations of current implementations of Stan,
though, this leads to a parsing error with the message “Outcomes in truncated

distributions must be univariate.”

The Stan model specification file for the Zerilli-Armstrong (BCC) model,
za_bcc.stan, is similar in form to the specification file for the Johnson-Cook
model and is shown in Appendix C.

6.2 Specifying Models with PyMC3
With PyMC3, one creates a Bayesian model by starting from an empty model object
and then adding objects to it that represent random variables. The random variables
are one of two types:

• a parameter to be fit, which is initially set to its prior, or

• a variable associated with observed data, which defines part of the likelihood.

One can create a PyMC3 model directly in a Python script or Jupyter notebook.
However, it is more flexible (and not much more difficult) to define the model
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via a Python function. This way, if the inputs to the model change, such as the
stress-strain data or parameters for priors such as C0,guess mean, a new model can be
recreated simply by executing the function with the new inputs. Provided is a walk-
through of a Python module file that contains such a function, za_bcc_pymc3.py,
which is shown in Appendix D. This module file begins by importing from other
modules, as shown:

2 import numpy as np

3 import pymc3 as pm

4 from za_bcc import za_bcc

The first two statements, of course, import the NumPy and PyMC3 modules, and
the third statement imports a function from a module that implements the Zerilli-
Armstrong (BCC) model shown in Eq. 17. The contents of this last module are
shown in Appendix D.

After the import statements begins the definition of the make_za_bcc_model
function, which builds up a PyMC3 model object and then returns it. It has the
following arguments:

• epsilon_p is a list of 1-D NumPy arrays. epsilon_p[i] is an array of
strain values for the stress-strain curve i, where epsilon_p[i][0] is the
first strain value for curve i, epsilon_p[i][1] is the second strain value
for curve i, and so on.

• sigma and T are lists of arrays like epsilon_p, except that they hold
stresses and temperatures, respectively, instead of strains.

• epsilon_p_dot is a list or 1-D NumPy array such that
epsilon_p_dot[i] is the strain rate for curve i.

• prior_params is a Python dictionary used to set the parameters of the
marginal prior PDFs for the Zerilli-Armstrong parameters. For example, the
dictionary value prior_params["C0_guess_mean"] is C0,guess mean.

The first statement in the body of the make_za_bcc_model function defines the
truncated normal distribution normal(. . . )T[0,∞) described in Section 5:

52 PosNormal = pm.Bound(pm.Normal, lower = 0.0)
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Here, PosNormal is an object representing a truncated normal distribution. The
PyMC3 function pm.Bound takes as its first argument an object representing a
distribution of a random variable, which in this case is pm.Normal, an object
representing the normal distribution. It also takes one or more arguments specifying
the bounds of truncation, in this case, a lower bound of 0.0.

The next couple statements define some variables that are used later:

56 num_curves = len(epsilon_p)

57 log_epsilon_p_dot = np.log(epsilon_p_dot)

Given how epsilon_p is defined, the number of its elements is the number of
stress-strain curves, so for convenience, this number is assigned to num_curves.
The array log_epsilon_p_dot contains the natural logarithms of the strain
rates and is needed by the function za_bcc.

At this point, the Bayesian model begins to be built up.

61 model = pm.Model()

62
63 with model:

The first of these statements creates an empty model object and assigns it to the vari-
able named model. The next line begins a Python with block. The statements that
are part of this block (that is, the indented statements beneath the “with model:”
clause) add to the empty model object. The following statements add information
about the priors of the model:

67 C0 = PosNormal("C0",

68 mu = prior_params["C0_guess_mean"],

69 sd = prior_params["C0_guess_sd"])

70
71 C1 = PosNormal("C1",

72 mu = prior_params["C1_guess_mean"],

73 sd = prior_params["C1_guess_sd"])

74
75 C3 = PosNormal("C3",

76 mu = prior_params["C3_guess_mean"],

77 sd = prior_params["C3_guess_sd"])

78
79 C4 = PosNormal("C4",

80 mu = prior_params["C4_guess_mean"],

81 sd = prior_params["C4_guess_sd"])

82
83 C5 = PosNormal("C5",

84 mu = prior_params["C5_guess_mean"],
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85 sd = prior_params["C5_guess_sd"])

86
87 n = pm.Beta("n",

88 alpha = prior_params["n_alpha"],

89 beta = prior_params["n_beta"])

90
91 sd_sigma = PosNormal("sd_sigma",

92 mu = np.asarray(prior_params["sd_sigma_guess_mean"]),

93 sd = np.asarray(prior_params["sd_sigma_guess_sd"]),

94 shape = 2)

The statements in lines 67–85 are largely equivalent to Eq. 29. As mentioned pre-
viously, the PosNormal function in these lines represents normal(. . . )T[0,∞). The
statement in lines 67–69 creates an object representing a random variable labeled
with the string "C0" and adds that object to model. This object is also assigned to
a Python variable that, for the sake of convenience, is also named C0. The only
reason assignment to a variable is needed is because the variable is needed as
an argument to the za_bcc function. Even without the assignment, the function
call PosNormal("C0", ...) is sufficient to add a random variable labeled
"C0" to the model. Lines 87–89 express Eq. 24, with pm.Beta representing the
beta distribution. Lines 91–94 in the previous excerpt of Python code, which ex-
press Eqs. 30 and 31, create a random variable sd_sigma that is a 1-D array
with two elements, as indicated by the argument shape = 2. Array elements
sd_sigma[0] and sd_sigma[1] correspond to parameters SDσ,1 and SDσ,2,
respectively.

The following Python for loop is used to add information about the likelihood to
the model:

98 for i in range(num_curves):

99 pm.Normal("sigma_curve{}".format(i),

100 mu = za_bcc(epsilon_p[i],

101 log_epsilon_p_dot[i], T[i],

102 C0, C1, C3, C4, C5, n,

103 exp_func = pm.math.exp),

104 sd = (sd_sigma[0]

105 if (epsilon_p_dot[i] <= 1.0)

106 else sd_sigma[1]),

107 observed = sigma[i])

The statement in the for loop executes a call to the function pm.Normal, which
adds a normally distributed random variable to the model. The label of this random
variable (which starts with "sigma_curve") indicates that it is supposed to refer
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to flow stress σ associated with stress-strain curve i. The association with the flow
stress data for curve i is established with the argument observed = sigma[i]

(line 107), which also establishes that the random variable defines part of the like-
lihood. Since sigma[i] is an array, the random variable associated with it is an
array as well, one that is the same size as sigma[i]. The function call that creates
each of the random variables labeled "sigma_curve0", "sigma_curve1",
and so on, represents the sampling statement in Eq. 34 being applied for all indices
j in the interval [1,Nic ], with ic = i. The argument for mu in lines 100–103 is
the mean of the likelihood, σZ A,BCC(ε

ic
p,j, Ûε

ic
p ,T

ic
j ,θZ A,BCC) (again for all indices j in

[1,Nic ] and ic = i), while the argument for sd in lines 104–106 expresses Eq. 21.

After the for loop has finished, the function make_za_bcc_model can then
return the PyMC3 model object that it has built up.

The function za_bcc in lines 100–103 from the previous excerpt of Python code
has an additional argument, exp_func, that may seem confusing: an argument for
an object representing the exponential function. The reasoning for the presence of
this argument is as follows. When za_bcc is used to define a Bayesian model for
PyMC3, it needs a version of the exponential function—namely, pm.math.exp—
that can take as input PyMC3 objects representing random variables, since the
Zerilli-Armstrong parameters are such objects in that context. However, in other
contexts (such as those where za_bcc is used to generate simulated data), one
needs an exponential function that operates on ordinary numbers, in which case the
exponential function should be something like np.exp instead.

The Python module file for the Johnson-Cook model, jc_pymc3.py, is similar in
form to the previous module file and is shown in Appendix D.

7. Implementing the Approximate Interval Predictor Model
Approach in Python

Implementing an approximate IPM according to the scheme in Section 3 involves
five steps:

1. Finding an estimate of θ0

2. Finding the gradient of σmdl with respect to its parameters

30



3. Expressing Eqs. 9 and 12 in a form suitable for a particular linear program-
ming implementation

4. Executing the linear programming implementation

5. Checking if the resulting estimates for ∆θmin and ∆θmax lead to a reasonable
approximation for the set Θ

For the sake of convenience, the first step is implemented by taking θ0 to be the
mean of the joint PDF of θmdl as estimated from a previously done Bayesian anal-
ysis. (Least squares regression could have been used to obtain θ0, if the results of a
Bayesian analysis were unavailable.)

The second step can be implemented with the aid of a symbolic computation pack-
age such as SymPy,46 and the definition of a Python function resulting from this is
as follows:

1 import numpy as np

2
3 def jc_grad(epsilon_p, log_epsilon_p_dot, T_star,

4 A, B, n, C, m):

5
6 dJCdA = (-T_star**m + 1)*(C*log_epsilon_p_dot + 1.0)

7 dJCdB = (epsilon_p**n)*(-T_star**m + 1)*(C*log_epsilon_p_dot + 1.0)

8
9 dJCdn = np.where(epsilon_p == 0,

10 np.full(len(epsilon_p), 0.0),

11 B*(epsilon_p**n)*(-T_star**m + 1)*
12 (C*log_epsilon_p_dot + 1.0)*
13 np.log(epsilon_p))

14
15 dJCdC = log_epsilon_p_dot*(A + B*epsilon_p**n)*(-T_star**m + 1)

16
17 dJCdm = np.where(T_star == 0,

18 np.full(len(T_star), 0.0),

19 -T_star**m*(A + B*epsilon_p**n)*
20 (C*log_epsilon_p_dot + 1.0)*
21 np.log(T_star))

22
23 return np.vstack((dJCdA, dJCdB, dJCdn, dJCdC, dJCdm))

The function jc_grad represents the gradient of the Johnson-Cook flow stress
Eq. 15 with respect to parameters A, B, n, C, and m. However, it is not the re-
sult of a blind copy-and-paste from the output of SymPy. This would be prob-
lematic, since the expressions for the derivatives with respect to parameters n and
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m are undefined where εp or T∗ are zero, because of the presence of the factors
εn

p ln εp and (T∗)m lnT∗, respectively, in those expressions. Mathematically, though,
as εp → 0 and T∗ → 0, these factors approach zero, and the numerical calculation
of the derivatives reflects that. Furthermore, to allow the Python function arguments
epsilon_p and T_star to be arrays, np.where is used rather than a raw if

statement.

The third step, of course, depends on one’s choice of linear programming im-
plementation. In the case of the linprog function from SciPy9 (specifically its
optimize submodule), Eq. 9 is expressed through an array A and vector b that
satisfies the inequality Au ≤ b, where the operator “≤” is here taken to operate ele-
mentwise. The vector u describes the variables to be optimized. For the purposes
of this section, it consists of the desired values of the elements of ∆θmin followed
by the desired values of the elements of ∆θmax . The rows of A are coefficients of
the elements of u, Each row of A and its corresponding element of b represents the
left- and right-hand sides of an inequality. To fit this format, Eq. 12 can be combined
with Eqs. 10 and 11 and rearranged to obtain

−
1
2

(
gσmdl

(ei) + |gσmdl
(ei)|

)T
∆θmin

+
1
2

(
gσmdl

(ei) − |gσmdl
(ei)|

)T
∆θmax ≤ σi − σmdl(ei,θ0)

(35)

1
2

(
gσmdl

(ei) − |gσmdl
(ei)|

)T
∆θmin

−
1
2

(
gσmdl

(ei) + |gσmdl
(ei)|

)T
∆θmax ≤ − (σi − σmdl(ei,θ0))

(36)

Equation 35 is used to determine row i of A and element i of b, while Eq. 36 is used
to determine row 2i of A and element 2i of b. Let ep_vec, log_ep_dot_vec,
T_star_vec, and sigma_vec represent vectors whose elements are values of
εp, Ûεp, T∗, σ, and let theta_0 represent θ0. Then, A and b (represented by the
Python variables A_mat and b_vec) can be constructed as follows:

1 num_data_pts = len(ep_vec)

2 half_len_u = len(theta_0)

3 len_u = 2*half_len_u

4
5 A_mat = np.empty((2*num_data_pts, len_u))

6 b_vec = np.empty(2*num_data_pts)

7
8 g_sigma_mdl = jc_grad(ep_vec, log_ep_dot_vec, T_star_vec, *theta_0)

32



9 g_sigma_mdl_abs = np.fabs(g_sigma_mdl)

10
11 g_gabs_half_sum = 0.5*(g_sigma_mdl + g_sigma_mdl_abs)

12 g_gabs_half_diff = 0.5*(g_sigma_mdl - g_sigma_mdl_abs)

13
14 sigma_minus_sigma_mdl = sigma_vec - jc(ep_vec,

15 log_ep_dot_vec,

16 T_star_vec,

17 *theta_0)

18
19 A_mat[:num_data_pts, :half_len_u] = -g_gabs_half_sum.T

20 A_mat[:num_data_pts, half_len_u:] = g_gabs_half_diff.T

21 b_vec[:num_data_pts] = sigma_minus_sigma_mdl

22
23 A_mat[num_data_pts:, :half_len_u] = g_gabs_half_diff.T

24 A_mat[num_data_pts:, half_len_u:] = -g_gabs_half_sum.T

25 b_vec[num_data_pts:] = -sigma_minus_sigma_mdl

Here, column i of g_sigma_mdl represents gσmdl
(ei), and jc is a Python function

outputting the Johnson-Cook flow stress, shown in Appendix D.

In SciPy’s linprog function, Eq. 12 is expressed as a vector whose elements are
the coefficients of∆θ′min and∆θ′max . Given the previous definitions of g_sigma_mdl
and g_sigma_mdl_abs, this vector of coefficients can be represented in Python
as follows:

1 g_sigma_mdl_abs_sum = g_sigma_mdl_abs.sum(axis = 1)

2 coefficients = np.concatenate([g_sigma_mdl_abs_sum, g_sigma_mdl_abs_sum])

3 coefficients /= num_data_pts

Strictly speaking, it is not mathematically necessary to divide coefficients by
num_data_pts (i.e., N in Eq. 12), but it makes the minimization more tractable.

The fourth step is largely straightforward:

1 import scipy.optimize as so

2
3 result = so.linprog(coefficients, A_ub = A_mat, b_ub = b_vec,

4 method = "interior-point")

5
6 print("result.success = {}".format(result.success))

7
8 Delta_theta_min = result.x[:half_len_u]

9 Delta_theta_max = result.x[half_len_u:]

10
11 JC_param_lb = theta_0 - Delta_theta_min

12 JC_param_ub = theta_0 + Delta_theta_max

The Python vectors JC_param_lb and JC_param_ub represent the estimated
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lower and upper bounds on the Johnson-Cook parameters. One catch is that the
default method used by linprog for minimization does not work for this prob-
lem, so a more robust alternative method, interior point, is used instead, hence the
argument “method = "interior-point"” passed to linprog.

The fifth step is necessary because the lower and upper bounds in JC_param_lb
and JC_param_ub are estimated approximately via a Taylor expansion. To see if
these bounds are reasonable, the set Θ is taken to be the hyperrectangle with the
corners JC_param_lb and JC_param_ub, and σmin(e,Θ) and σmax(e,Θ) are
estimated using Eqs. 6 and 7 (rather than the approximations in Eqs. 10 and 11).
One can then determine how much of the flow stress data is actually bounded by
σmin(e,Θ) and σmax(e,Θ). To do this, one first needs to create wrappers around the
jc function that will work as objective functions for the minimize function from
the optimize submodule of SciPy9:

1 def jc_for_min(ABnCm, ep, l_epdot, T_s):

2 return jc(ep, l_epdot, T_s,

3 ABnCm[0], ABnCm[1], ABnCm[2], ABnCm[3], ABnCm[4])

4
5 def jc_for_max(ABnCm, ep, l_epdot, T_s):

6 return -jc_for_min(ABnCm, ep, l_epdot, T_s)

Since a minimization routine is used to find σmax , jc_for_max is the negative
of the Johnson-Cook flow stress. (Maximizing an objective function is the same
as minimizing the negative of that function.) One can then use the following for
loop to generate estimates of σmin and σmax for each set of strain, strain rate, and
temperature inputs and check how much of the data is within bounds:

1 num_data_pts_in_bounds = 0

2
3 for i in range(num_data_pts):

4 result_min = so.minimize(jc_for_min,

5 theta_0,

6 args = (ep_vec[i],

7 log_ep_dot_vec[i],

8 T_star_vec[i]),

9 bounds = so.Bounds(JC_param_lb,

10 JC_param_ub))

11 assert result_min.success

12
13 result_max = so.minimize(jc_for_max,

14 theta_0,

15 args = (ep_vec[i],

16 log_ep_dot_vec[i],

17 T_star_vec[i]),
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18 bounds = so.Bounds(JC_param_lb,

19 JC_param_ub))

20 assert result_max.success

21
22 sigma_min = result_min.fun

23 sigma_max = -result_max.fun

24
25 num_data_pts_in_bounds += int(sigma_min <= sigma[i] <= sigma_max)

26
27 print("Fraction of data points in bounds = {}".format(

28 num_data_pts_in_bounds/num_data_pts))

A more complete example of implementing an approximate IPM in Python can be
found in Ramsey.11 An implementation in R can be found in Ramsey.10

8. Fitting Strength Models
8.1 Bayesian Analysis
Fitting the Bayesian models is done with multiple software implementations of
MCMC: the sampling function of RStan 2.17.2,13 the sampling method of
PyStan 2.17.1.0,16 and the sample function of the PyMC3 3.5 module.6 Each
MCMC run uses four chains. Each chain consists of at least 1000 warmup or tun-
ing samples, which are discarded, followed by 1000 samples that are taken to be
from the posterior distribution. Before fitting the models to real stress-strain data,
they are tested by fitting them to simulated data—that is, data consisting of sam-
ples from the likelihood of the model given known model parameters and other
model inputs—and ensuring that they yield point estimates for model parameters
close to the parameter values used to generate the simulated data. Initial values of
model parameters need to be supplied when using RStan or PyStan to run MCMC
on the Zerilli-Armstrong (BCC) model, and when using PyMC3 to run MCMC on
either the Johnson-Cook or Zerilli-Armstrong models. The initial value used for n is
nα/(nα + nβ), or 0.5. For the other parameters, the initial values used are the values
of Aguess mean, Bguess mean, and so on.

After an MCMC run, diagnostics are run on the resulting chains to check for vari-
ous potential problems. With RStan and PyMC3, some of these diagnostics, such as
those pertaining to divergences and tree depth,47–49 are run automatically. With Py-
Stan, the corresponding diagnostics have to be executed manually after an MCMC
run, and furthermore, they are provided by a third-party Python module50 rather
than PyStan itself. Other diagnostics, such as the potential scale reduction factor,
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R̂,51 are computed when RStan, PyStan, or PyMC3 is prompted to print a table of
statistics summarizing the MCMC run (via a function or method named summary).
When R̂ ≈ 1, the MCMC run is likely to have converged, provided that the other
diagnostics do not indicate any problems.*

Histograms approximating the marginal posterior PDFs of the model parameters
have been created for the values of βTQ and farea in Table 1. Figure 6 shows the
posteriors for the model parameters of the Johnson-Cook model, assuming weakly
informative priors, while Fig. 7 shows posteriors for the same strength model,
but with the strongly informative prior for A based on the yield stress data from
Benck.30 The histograms shown happen to have been generated from MCMC sam-
ples from RStan and PyStan, respectively. However, histograms have also been gen-
erated from PyMC3, and these look largely the same as the ones shown in Figs. 6
and 7. Figure 8 shows the posteriors of model parameters for the Zerilli-Armstrong
(BCC) model, when the model is fit to all of the available RHA data from MIDAS.
Again, it makes little difference whether the histograms are generated from sam-
ples from RStan, PyStan, or PyMC3, so here histograms generated using samples
from the last of these are shown. Whereas SDσ,2/SDσ,1 ≈ 3 for the Johnson-Cook
model, for these fits to the Zerilli-Armstrong (BCC) model, SDσ,1 and SDσ,2 are
much closer in value. To see if this is due to the Zerilli-Armstrong (BCC) model
being fit to low-temperature data that are not used with the Johnson-Cook model,
another set of fits to the Zerilli-Armstrong model has been done, using only the
stress-strain data for temperatures 298 K and above. Posteriors from these fits (here
generated from samples from RStan) are shown in Fig. 9.

While histogram plots are useful for visualizing the marginal PDFs of model pa-
rameters, they are not nearly as useful for expressing the PDFs in a form that may
be input to tools, such as Dakota,53 that take marginal PDFs of model parameters
as input for uncertainty propagation analyses. A simple approximate approach is to
report moments of the MCMC samples, such as the mean and standard deviation,
for each model parameter. These may later be used to estimate the parameters of
a closed-form marginal PDF via the method of moments,54 and those parameters
may be input to uncertainty propagation tools. For βTQ = 0.9 and farea = 0.75, the
means and standard deviations of model parameters are shown in Tables 3 and 4.

*There is a bug in PyStan that can cause the calculation of R̂ to yield spurious NaN values.52

A workaround for this is to set pystan.constants.EPSILON to float("-inf") before
starting this calculation.
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Fig. 6 Histograms approximating the posterior marginal PDFs of Johnson-Cook model pa-
rameters and nuisance parameters SDσ,1 and SDσ,2. These are generated from samples of
RStan MCMC runs with the values of βTQ and farea in Table 1, and weakly informative pri-
ors.
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Fig. 7 Histograms approximating the posterior marginal PDFs of Johnson-Cook model pa-
rameters and nuisance parameters SDσ,1 and SDσ,2. These are generated from samples of
PyStan MCMC runs with the values of βTQ and farea in Table 1, and a strongly informative
prior for A.
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Fig. 8 Histograms approximating the posterior marginal PDFs of Zerilli-Armstrong (BCC)
model parameters and nuisance parameters SDσ,1 and SDσ,2. These are generated from sam-
ples of PyMC3 MCMC runs with the values of βTQ and farea in Table 1, using data for all
temperatures.
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Fig. 9 Histograms approximating the posterior marginal PDFs of Zerilli-Armstrong (BCC)
model parameters and nuisance parameters SDσ,1 and SDσ,2. These are generated from sam-
ples of RStan MCMC runs with the values of βTQ and farea in Table 1, using the same data
used to fit the Johnson-Cook model.
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For other values of βTQ and farea, they are shown in Tables 5–8.

Table 3 Mean and standard deviation of MCMC samples (from RStan) of parameters of
Johnson-Cook model and nuisance parameters SDσ,1 and SDσ,2, for an MCMC run with
weakly informative priors and a run with a strongly informative prior on A, with βTQ = 0.9
and farea = 0.75

Weak prior Strong prior for A

Mean of A (MPa) 576.572779 699.842690
SD of A (MPa) 52.744813 10.100359

Mean of B (MPa) 982.583681 866.224370
SD of B (MPa) 50.288671 9.544459

Mean of n 0.077363 0.092704
SD of n 0.005634 0.001700

Mean of C 0.004519 0.004542
SD of C 0.000080 0.000081

Mean of m 1.048066 1.047197
SD of m 0.003670 0.003576

Mean of SDσ,1 (MPa) 9.388639 9.645859
SD of SDσ,1 (MPa) 0.355841 0.361472

Mean of SDσ,2 (MPa) 32.563166 32.346724
SD of SDσ,2 (MPa) 0.657904 0.665879

In addition to statistics for the marginal PDFs of the model parameters, one may
also need information on how the PDFs of these parameters are correlated, espe-
cially if one intends to use these PDFs as input to uncertainty propagation analyses.
For example, when the software Dakota is used for such analyses, it takes as input
either a correlation or rank correlation matrix, depending on the method of uncer-
tainty propagation used.53 In R, these can be calculated via the cor function, and
in Python, these can be calculated via the corr method of so-called data frame
objects from the module Pandas.55 Correlation matrices are shown in Tables 9–16.

8.2 Approximate Interval Predictor Approach
In the estimation of intervals for the Johnson-Cook parameters, θ0 is taken to be
the mean of the PDFs of the Johnson-Cook parameters for the case of a strong
prior on A (using MCMC samples from PyMC3). This choice of point estimate θ0

is motivated by the finding in Section 9.5 that this point estimate leads to a more
accurate estimate of the yield stress. The bounds are shown in Tables 17 and 18.

In the estimation of intervals for the Zerilli-Armstrong (BCC) parameters, θ0 is
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Table 4 Mean and standard deviation of MCMC samples (from PyStan) of parameters of
Zerilli-Armstrong (BCC) model and nuisance parameters SDσ,1 and SDσ,2, for an MCMC
run using MIDAS RHA data for all available temperatures and a run using data for tempera-
tures of 298 K and above, with βTQ = 0.9 and farea = 0.75

All temps. Temps. above 298 K

Mean of C0 (MPa) 108.553321 1.839621
SD of C0 (MPa) 25.904923 1.815009

Mean of C1 (MPa) 1529.402241 1535.481564
SD of C1 (MPa) 8.600941 12.284287

Mean of C3 (K−1) 0.002189 0.001400
SD of C3 (K−1) 0.000031 0.000023

Mean of C4 (K−1) 0.000041 0.000026
SD of C4 (K−1) 0.000001 0.000001

Mean of C5 (MPa) 748.575960 590.804923
SD of C5 (MPa) 22.102742 10.464798

Mean of n 0.158338 0.178280
SD of n 0.009668 0.007571

Mean of SDσ,1 (MPa) 31.621727 13.919752
SD of SDσ,1 (MPa) 0.939569 0.583100

Mean of SDσ,2 (MPa) 47.465057 43.251601
SD of SDσ,2 (MPa) 0.844922 0.904651

Table 5 Mean and standard deviations of MCMC samples (from PyMC3) of parameters of
the Johnson-Cook model, given weakly informative priors

βTQ = 0.9 βTQ = 0.9 βTQ = 0.6 βTQ = 0.6
farea = 0.55 farea = 0.95 farea = 0.55 farea = 0.95

Mean of A (MPa) 571.729244 577.465150 505.617796 508.842938
SD of A (MPa) 55.380371 54.856011 61.367112 60.277468

Mean of B (MPa) 986.494201 982.442422 1045.630598 1043.442048
SD of B (MPa) 52.838208 52.263373 59.117625 58.059811

Mean of n 0.076851 0.077521 0.069949 0.070252
SD of n 0.005833 0.005874 0.005396 0.005263

Mean of C 0.004448 0.004583 0.004141 0.004235
SD of C 0.000078 0.000083 0.000069 0.000071

Mean of m 1.048050 1.048270 1.043259 1.043241
SD of m 0.003611 0.003723 0.003182 0.003305

Mean of SDσ,1 (MPa) 9.276518 9.491527 8.738919 8.853090
SD of SDσ,1 (MPa) 0.354264 0.355389 0.310506 0.319895

Mean of SDσ,2 (MPa) 32.418929 32.749525 31.299643 31.442369
SD of SDσ,2 (MPa) 0.654751 0.654508 0.611589 0.627223
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Table 6 Mean and standard deviations of MCMC samples (from PyMC3) of parameters of
the Johnson-Cook model, given strongly informative prior for parameter A

βTQ = 0.9 βTQ = 0.9 βTQ = 0.6 βTQ = 0.6
farea = 0.55 farea = 0.95 farea = 0.55 farea = 0.95

Mean of A (MPa) 700.329969 700.634539 695.752574 696.396703
SD of A (MPa) 9.820886 10.253312 10.181293 10.167980

Mean of B (MPa) 865.049053 866.181603 864.675977 864.968226
SD of B (MPa) 9.290963 9.780525 9.659818 9.613680

Mean of n 0.092745 0.092832 0.091313 0.091417
SD of n 0.001659 0.001703 0.001648 0.001666

Mean of C 0.004469 0.004612 0.004160 0.004253
SD of C 0.000076 0.000080 0.000069 0.000072

Mean of m 1.047219 1.047243 1.042508 1.042553
SD of m 0.003429 0.003622 0.003234 0.003336

Mean of SDσ,1 (MPa) 9.531653 9.752201 9.040389 9.160295
SD of SDσ,1 (MPa) 0.358033 0.357239 0.312129 0.325318

Mean of SDσ,2 (MPa) 32.184856 32.512920 31.098566 31.274576
SD of SDσ,2 (MPa) 0.621758 0.648511 0.600998 0.610700

Table 7 Mean and standard deviations of MCMC samples (from RStan) of parameters of the
Zerilli-Armstrong (BCC) model, using data for all available temperatures

βTQ = 0.9 βTQ = 0.9 βTQ = 0.6 βTQ = 0.6
farea = 0.55 farea = 0.95 farea = 0.55 farea = 0.95

Mean of C0 (MPa) 113.827793 101.181205 109.965407 103.115558
SD of C0 (MPa) 25.701954 25.116845 28.755151 27.341270

Mean of C1 (MPa) 1517.897271 1541.482625 1467.823733 1481.833286
SD of C1 (MPa) 8.633638 8.812933 8.309163 8.317124

Mean of C3 (K−1) 0.002203 0.002175 0.002275 0.002267
SD of C3 (K−1) 0.000031 0.000031 0.000035 0.000034

Mean of C4 (K−1) 0.000040 0.000042 0.000036 0.000037
SD of C4 (K−1) 0.000001 0.000001 0.000001 0.000001

Mean of C5 (MPa) 752.244448 746.702766 775.958027 774.334031
SD of C5 (MPa) 22.217745 21.753644 26.143405 24.276243

Mean of n 0.158015 0.158304 0.139478 0.139233
SD of n 0.009719 0.009423 0.008828 0.008342

Mean of SDσ,1 (MPa) 31.796849 31.540939 33.165289 32.537641
SD of SDσ,1 (MPa) 0.973442 0.941127 1.109610 1.076349

Mean of SDσ,2 (MPa) 47.551671 47.521018 49.886479 49.514722
SD of SDσ,2 (MPa) 0.851183 0.835937 0.905822 0.901693
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Table 8 Mean and standard deviations of MCMC samples (from RStan) of parameters of the
Zerilli-Armstrong (BCC) model, using the same data used to fit the Johnson-Cook model (i.e.,
data for temperatures above 298 K)

βTQ = 0.9 βTQ = 0.9 βTQ = 0.6 βTQ = 0.6
farea = 0.55 farea = 0.95 farea = 0.55 farea = 0.95

Mean of C0 (MPa) 1.869449 1.904104 1.841419 1.768092
SD of C0 (MPa) 1.834897 1.877007 1.837713 1.773979

Mean of C1 (MPa) 1527.354004 1544.250604 1489.155368 1498.549931
SD of C1 (MPa) 12.444307 12.803857 11.826671 12.110162

Mean of C3 (K−1) 0.001399 0.001399 0.001415 0.001416
SD of C3 (K−1) 0.000022 0.000023 0.000024 0.000025

Mean of C4 (K−1) 0.000026 0.000027 0.000024 0.000025
SD of C4 (K−1) 0.000001 0.000001 0.000001 0.000001

Mean of C5 (MPa) 593.815529 587.184189 610.048428 606.561237
SD of C5 (MPa) 10.373255 10.749925 11.255388 11.251672

Mean of n 0.175715 0.181337 0.160380 0.162693
SD of n 0.007359 0.008088 0.006260 0.006489

Mean of SDσ,1 (MPa) 13.584468 14.273011 12.116796 12.451585
SD of SDσ,1 (MPa) 0.580964 0.624221 0.495483 0.510742

Mean of SDσ,2 (MPa) 43.274173 43.216117 43.063903 43.053094
SD of SDσ,2 (MPa) 0.911625 0.895961 0.867597 0.877680

taken to be the mean of the PDFs of the parameters fit only to data for temperatures
of 298 K and above (again using MCMC samples from PyMC3). This choice of
point estimate θ0 is motivated by indications in Section 9 that the Zerilli-Armstrong
(BCC) model appears ill-suited to fitting the low-temperature data for RHA. The
bounds are shown in Tables 19 and 20. For the case where βTQ = 0.6 and farea =

0.55, the estimated lower bound is originally calculated to be on the order of −10−7

but is truncated to zero.
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Table 9 Correlation matrices of model parameters of a Johnson-Cook model with weakly
informative priors, generated from MCMC samples of RStan runs, for the values of βTQ and
farea from Table 1

βTQ farea Correlation matrix

0.9 0.75

A B n C m
A 1.0 −1.0 0.99 0.06 −0.05
B −1.0 1.0 −0.99 −0.05 0.04
n 0.99 −0.99 1.0 0.07 −0.07
C 0.06 −0.05 0.07 1.0 −0.69
m −0.05 0.04 −0.07 −0.69 1.0

0.9 0.55

A B n C m
A 1.0 −1.0 0.99 0.05 −0.06
B −1.0 1.0 −0.99 −0.04 0.04
n 0.99 −0.99 1.0 0.05 −0.07
C 0.05 −0.04 0.05 1.0 −0.69
m −0.06 0.04 −0.07 −0.69 1.0

0.9 0.95

A B n C m
A 1.0 −1.0 0.99 0.13 −0.11
B −1.0 1.0 −0.99 −0.11 0.1
n 0.99 −0.99 1.0 0.12 −0.12
C 0.13 −0.11 0.12 1.0 −0.69
m −0.11 0.1 −0.12 −0.69 1.0

0.6 0.55

A B n C m
A 1.0 −1.0 0.99 0.08 −0.05
B −1.0 1.0 −0.99 −0.07 0.05
n 0.99 −0.99 1.0 0.07 −0.06
C 0.08 −0.07 0.07 1.0 −0.65
m −0.05 0.05 −0.06 −0.65 1.0

0.6 0.95

A B n C m
A 1.0 −1.0 0.99 0.01 −0.03
B −1.0 1.0 −0.99 −0.0 0.02
n 0.99 −0.99 1.0 0.0 −0.03
C 0.01 −0.0 0.0 1.0 −0.63
m −0.03 0.02 −0.03 −0.63 1.0
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Table 10 Rank correlation matrices of model parameters of a Johnson-Cook model with
weakly informative priors, generated from MCMC samples of RStan runs, for the values of
βTQ and farea from Table 1

βTQ farea Rank correlation matrix

0.9 0.75

A B n C m
A 1.0 −1.0 0.99 0.07 −0.06
B −1.0 1.0 −0.99 −0.06 0.05
n 0.99 −0.99 1.0 0.07 −0.07
C 0.07 −0.06 0.07 1.0 −0.67
m −0.06 0.05 −0.07 −0.67 1.0

0.9 0.55

A B n C m
A 1.0 −1.0 0.99 0.04 −0.05
B −1.0 1.0 −0.99 −0.03 0.03
n 0.99 −0.99 1.0 0.04 −0.06
C 0.04 −0.03 0.04 1.0 −0.67
m −0.05 0.03 −0.06 −0.67 1.0

0.9 0.95

A B n C m
A 1.0 −1.0 1.0 0.12 −0.12
B −1.0 1.0 −0.99 −0.11 0.11
n 1.0 −0.99 1.0 0.12 −0.12
C 0.12 −0.11 0.12 1.0 −0.68
m −0.12 0.11 −0.12 −0.68 1.0

0.6 0.55

A B n C m
A 1.0 −1.0 1.0 0.07 −0.06
B −1.0 1.0 −0.99 −0.07 0.05
n 1.0 −0.99 1.0 0.07 −0.06
C 0.07 −0.07 0.07 1.0 −0.63
m −0.06 0.05 −0.06 −0.63 1.0

0.6 0.95

A B n C m
A 1.0 −1.0 1.0 0.01 −0.03
B −1.0 1.0 −0.99 0.0 0.02
n 1.0 −0.99 1.0 0.0 −0.03
C 0.01 0.0 0.0 1.0 −0.61
m −0.03 0.02 −0.03 −0.61 1.0
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Table 11 Correlation matrices of model parameters of a Johnson-Cook model with a strongly
informative prior for A, generated from MCMC samples of PyStan runs, for the values of βTQ

and farea from Table 1

βTQ farea Correlation matrix

0.9 0.75

A B n C m
A 1.0 −0.98 0.91 −0.01 0.01
B −0.98 1.0 −0.83 0.07 −0.07
n 0.91 −0.83 1.0 −0.0 −0.02
C −0.01 0.07 −0.0 1.0 −0.69
m 0.01 −0.07 −0.02 −0.69 1.0

0.9 0.55

A B n C m
A 1.0 −0.98 0.92 0.02 −0.02
B −0.98 1.0 −0.83 0.03 −0.05
n 0.92 −0.83 1.0 0.02 −0.04
C 0.02 0.03 0.02 1.0 −0.7
m −0.02 −0.05 −0.04 −0.7 1.0

0.9 0.95

A B n C m
A 1.0 −0.98 0.91 0.05 −0.06
B −0.98 1.0 −0.82 0.01 −0.01
n 0.91 −0.82 1.0 0.04 −0.09
C 0.05 0.01 0.04 1.0 −0.7
m −0.06 −0.01 −0.09 −0.7 1.0

0.6 0.55

A B n C m
A 1.0 −0.99 0.92 0.04 −0.03
B −0.99 1.0 −0.85 −0.01 −0.02
n 0.92 −0.85 1.0 0.01 −0.04
C 0.04 −0.01 0.01 1.0 −0.62
m −0.03 −0.02 −0.04 −0.62 1.0

0.6 0.95

A B n C m
A 1.0 −0.99 0.92 0.0 0.0
B −0.99 1.0 −0.85 0.04 −0.05
n 0.92 −0.85 1.0 −0.02 −0.0
C 0.0 0.04 −0.02 1.0 −0.64
m 0.0 −0.05 −0.0 −0.64 1.0
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Table 12 Rank correlation matrices of model parameters of a Johnson-Cook model with a
strongly informative prior for A, generated from MCMC samples of PyStan runs, for the val-
ues of βTQ and farea from Table 1

βTQ farea Rank correlation matrix

0.9 0.75

A B n C m
A 1.0 −0.98 0.9 −0.0 0.01
B −0.98 1.0 −0.81 0.06 −0.07
n 0.9 −0.81 1.0 0.01 −0.02
C −0.0 0.06 0.01 1.0 −0.68
m 0.01 −0.07 −0.02 −0.68 1.0

0.9 0.55

A B n C m
A 1.0 −0.98 0.91 0.03 −0.02
B −0.98 1.0 −0.82 0.03 −0.04
n 0.91 −0.82 1.0 0.03 −0.05
C 0.03 0.03 0.03 1.0 −0.67
m −0.02 −0.04 −0.05 −0.67 1.0

0.9 0.95

A B n C m
A 1.0 −0.98 0.9 0.03 −0.05
B −0.98 1.0 −0.81 0.02 −0.02
n 0.9 −0.81 1.0 0.02 −0.08
C 0.03 0.02 0.02 1.0 −0.68
m −0.05 −0.02 −0.08 −0.68 1.0

0.6 0.55

A B n C m
A 1.0 −0.98 0.91 0.04 −0.03
B −0.98 1.0 −0.84 −0.01 −0.02
n 0.91 −0.84 1.0 0.01 −0.04
C 0.04 −0.01 0.01 1.0 −0.59
m −0.03 −0.02 −0.04 −0.59 1.0

0.6 0.95

A B n C m
A 1.0 −0.98 0.92 0.02 −0.0
B −0.98 1.0 −0.84 0.02 −0.04
n 0.92 −0.84 1.0 −0.01 −0.01
C 0.02 0.02 −0.01 1.0 −0.62
m −0.0 −0.04 −0.01 −0.62 1.0
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Table 13 Correlation matrices of model parameters of a Zerilli-Armstrong (BCC) model fit to
data for all available temperatures, generated from MCMC samples of PyMC3 runs, for the
values of βTQ and farea from Table 1

βTQ farea Correlation matrix

0.9 0.75

C0 C1 C3 C4 C5 n
C0 1.0 −0.18 0.21 0.16 −0.89 0.89
C1 −0.18 1.0 −0.81 −0.29 −0.2 0.19
C3 0.21 −0.81 1.0 0.58 0.2 −0.16
C4 0.16 −0.29 0.58 1.0 0.01 −0.04
C5 −0.89 −0.2 0.2 0.01 1.0 −0.88

n 0.89 0.19 −0.16 −0.04 −0.88 1.0

0.9 0.55

C0 C1 C3 C4 C5 n
C0 1.0 −0.14 0.19 0.14 −0.89 0.89
C1 −0.14 1.0 −0.81 −0.26 −0.23 0.21
C3 0.19 −0.81 1.0 0.56 0.21 −0.17
C4 0.14 −0.26 0.56 1.0 0.01 −0.06
C5 −0.89 −0.23 0.21 0.01 1.0 −0.89

n 0.89 0.21 −0.17 −0.06 −0.89 1.0

0.9 0.95

C0 C1 C3 C4 C5 n
C0 1.0 −0.15 0.18 0.16 −0.89 0.89
C1 −0.15 1.0 −0.81 −0.24 −0.24 0.22
C3 0.18 −0.81 1.0 0.56 0.23 −0.19
C4 0.16 −0.24 0.56 1.0 −0.01 −0.03
C5 −0.89 −0.24 0.23 −0.01 1.0 −0.88

n 0.89 0.22 −0.19 −0.03 −0.88 1.0

0.6 0.55

C0 C1 C3 C4 C5 n
C0 1.0 −0.12 0.19 0.12 −0.91 0.91
C1 −0.12 1.0 −0.74 −0.08 −0.21 0.18
C3 0.19 −0.74 1.0 0.44 0.19 −0.1
C4 0.12 −0.08 0.44 1.0 −0.03 0.0
C5 −0.91 −0.21 0.19 −0.03 1.0 −0.89

n 0.91 0.18 −0.1 0.0 −0.89 1.0

0.6 0.95

C0 C1 C3 C4 C5 n
C0 1.0 −0.11 0.17 0.12 −0.91 0.91
C1 −0.11 1.0 −0.76 −0.16 −0.22 0.2
C3 0.17 −0.76 1.0 0.47 0.2 −0.13
C4 0.12 −0.16 0.47 1.0 −0.02 −0.02
C5 −0.91 −0.22 0.2 −0.02 1.0 −0.9

n 0.91 0.2 −0.13 −0.02 −0.9 1.0
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Table 14 Rank correlation matrices of model parameters of a Zerilli-Armstrong (BCC) model
fit to data for all available temperatures, generated from MCMC samples of PyMC3 runs, for
the values of βTQ and farea from Table 1

βTQ farea Rank correlation matrix

0.9 0.75

C0 C1 C3 C4 C5 n
C0 1.0 −0.16 0.19 0.15 −0.89 0.89
C1 −0.16 1.0 −0.79 −0.29 −0.19 0.19
C3 0.19 −0.79 1.0 0.58 0.18 −0.15
C4 0.15 −0.29 0.58 1.0 0.0 −0.04
C5 −0.89 −0.19 0.18 0.0 1.0 −0.88

n 0.89 0.19 −0.15 −0.04 −0.88 1.0

0.9 0.55

C0 C1 C3 C4 C5 n
C0 1.0 −0.12 0.17 0.12 −0.89 0.89
C1 −0.12 1.0 −0.79 −0.26 −0.22 0.21
C3 0.17 −0.79 1.0 0.55 0.2 −0.16
C4 0.12 −0.26 0.55 1.0 0.02 −0.06
C5 −0.89 −0.22 0.2 0.02 1.0 −0.88

n 0.89 0.21 −0.16 −0.06 −0.88 1.0

0.9 0.95

C0 C1 C3 C4 C5 n
C0 1.0 −0.14 0.17 0.15 −0.87 0.88
C1 −0.14 1.0 −0.8 −0.23 −0.24 0.22
C3 0.17 −0.8 1.0 0.55 0.23 −0.19
C4 0.15 −0.23 0.55 1.0 0.0 −0.04
C5 −0.87 −0.24 0.23 0.0 1.0 −0.87

n 0.88 0.22 −0.19 −0.04 −0.87 1.0

0.6 0.55

C0 C1 C3 C4 C5 n
C0 1.0 −0.11 0.18 0.12 −0.9 0.9
C1 −0.11 1.0 −0.73 −0.08 −0.21 0.18
C3 0.18 −0.73 1.0 0.42 0.18 −0.11
C4 0.12 −0.08 0.42 1.0 −0.03 −0.0
C5 −0.9 −0.21 0.18 −0.03 1.0 −0.89

n 0.9 0.18 −0.11 −0.0 −0.89 1.0

0.6 0.95

C0 C1 C3 C4 C5 n
C0 1.0 −0.1 0.16 0.12 −0.91 0.91
C1 −0.1 1.0 −0.75 −0.15 −0.21 0.19
C3 0.16 −0.75 1.0 0.46 0.19 −0.12
C4 0.12 −0.15 0.46 1.0 −0.02 −0.01
C5 −0.91 −0.21 0.19 −0.02 1.0 −0.89

n 0.91 0.19 −0.12 −0.01 −0.89 1.0
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Table 15 Correlation matrices of model parameters of a Zerilli-Armstrong (BCC) model fit to
the same data used to fit the Johnson-Cook model, generated from MCMC samples of RStan
runs, for the values of βTQ and farea from Table 1

βTQ farea Correlation matrix

0.9 0.75

C0 C1 C3 C4 C5 n
C0 1.0 −0.08 0.1 0.06 −0.04 0.04
C1 −0.08 1.0 −0.64 −0.14 −0.86 0.87
C3 0.1 −0.64 1.0 0.74 0.86 −0.86
C4 0.06 −0.14 0.74 1.0 0.45 −0.47
C5 −0.04 −0.86 0.86 0.45 1.0 −0.86

n 0.04 0.87 −0.86 −0.47 −0.86 1.0

0.9 0.55

C0 C1 C3 C4 C5 n
C0 1.0 −0.11 0.13 0.07 −0.01 0.0
C1 −0.11 1.0 −0.62 −0.09 −0.85 0.87
C3 0.13 −0.62 1.0 0.71 0.85 −0.84
C4 0.07 −0.09 0.71 1.0 0.41 −0.42
C5 −0.01 −0.85 0.85 0.41 1.0 −0.85

n 0.0 0.87 −0.84 −0.42 −0.85 1.0

0.9 0.95

C0 C1 C3 C4 C5 n
C0 1.0 −0.05 0.1 0.11 −0.05 0.05
C1 −0.05 1.0 −0.63 −0.12 −0.85 0.87
C3 0.1 −0.63 1.0 0.74 0.85 −0.85
C4 0.11 −0.12 0.74 1.0 0.42 −0.45
C5 −0.05 −0.85 0.85 0.42 1.0 −0.85

n 0.05 0.87 −0.85 −0.45 −0.85 1.0

0.6 0.55

C0 C1 C3 C4 C5 n
C0 1.0 −0.05 0.09 0.08 −0.06 0.06
C1 −0.05 1.0 −0.66 −0.16 −0.88 0.87
C3 0.09 −0.66 1.0 0.72 0.88 −0.87
C4 0.08 −0.16 0.72 1.0 0.46 −0.49
C5 −0.06 −0.88 0.88 0.46 1.0 −0.89

n 0.06 0.87 −0.87 −0.49 −0.89 1.0

0.6 0.95

C0 C1 C3 C4 C5 n
C0 1.0 −0.1 0.11 0.09 −0.01 0.01
C1 −0.1 1.0 −0.64 −0.15 −0.87 0.86
C3 0.11 −0.64 1.0 0.73 0.88 −0.87
C4 0.09 −0.15 0.73 1.0 0.46 −0.49
C5 −0.01 −0.87 0.88 0.46 1.0 −0.88

n 0.01 0.86 −0.87 −0.49 −0.88 1.0

51



Table 16 Rank correlation matrices of model parameters of a Zerilli-Armstrong (BCC) model
fit to the same data used to fit the Johnson-Cook model, generated from MCMC samples of
RStan runs, for the values of βTQ and farea from Table 1

βTQ farea Rank correlation matrix

0.9 0.75

C0 C1 C3 C4 C5 n
C0 1.0 −0.06 0.07 0.04 −0.04 0.04
C1 −0.06 1.0 −0.62 −0.13 −0.85 0.87
C3 0.07 −0.62 1.0 0.72 0.85 −0.84
C4 0.04 −0.13 0.72 1.0 0.42 −0.44
C5 −0.04 −0.85 0.85 0.42 1.0 −0.85

n 0.04 0.87 −0.84 −0.44 −0.85 1.0

0.9 0.55

C0 C1 C3 C4 C5 n
C0 1.0 −0.09 0.12 0.07 −0.01 0.0
C1 −0.09 1.0 −0.58 −0.08 −0.83 0.86
C3 0.12 −0.58 1.0 0.7 0.84 −0.82
C4 0.07 −0.08 0.7 1.0 0.4 −0.41
C5 −0.01 −0.83 0.84 0.4 1.0 −0.83

n 0.0 0.86 −0.82 −0.41 −0.83 1.0

0.9 0.95

C0 C1 C3 C4 C5 n
C0 1.0 −0.06 0.1 0.1 −0.03 0.04
C1 −0.06 1.0 −0.61 −0.11 −0.84 0.87
C3 0.1 −0.61 1.0 0.72 0.84 −0.84
C4 0.1 −0.11 0.72 1.0 0.41 −0.43
C5 −0.03 −0.84 0.84 0.41 1.0 −0.84

n 0.04 0.87 −0.84 −0.43 −0.84 1.0

0.6 0.55

C0 C1 C3 C4 C5 n
C0 1.0 −0.04 0.08 0.07 −0.05 0.05
C1 −0.04 1.0 −0.64 −0.15 −0.86 0.86
C3 0.08 −0.64 1.0 0.71 0.87 −0.87
C4 0.07 −0.15 0.71 1.0 0.44 −0.48
C5 −0.05 −0.86 0.87 0.44 1.0 −0.88

n 0.05 0.86 −0.87 −0.48 −0.88 1.0

0.6 0.95

C0 C1 C3 C4 C5 n
C0 1.0 −0.1 0.11 0.08 0.0 0.0
C1 −0.1 1.0 −0.63 −0.15 −0.86 0.86
C3 0.11 −0.63 1.0 0.71 0.87 −0.86
C4 0.08 −0.15 0.71 1.0 0.44 −0.46
C5 0.0 −0.86 0.87 0.44 1.0 −0.87

n 0.0 0.86 −0.86 −0.46 −0.87 1.0
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Table 17 Lower and upper bounds centered on point estimate for Johnson-Cook parameters
given strong prior on A, for βTQ = 0.9

farea = 0.55 farea = 0.75 farea = 0.95

Lower bound of A (MPa) 700.329969 700.618008 700.634539
Upper bound of A (MPa) 700.329969 700.618008 700.634540

Lower bound of B (MPa) 865.049053 865.515315 866.181602
Upper bound of B (MPa) 865.049053 865.515315 866.181612

Lower bound of n 0.072046 0.072011 0.071939
Upper bound of n 0.123858 0.123377 0.122826

Lower bound of C 0.004469 0.004541 0.004612
Upper bound of C 0.006972 0.007103 0.007242

Lower bound of m 0.876410 0.874260 0.872110
Upper bound of m 1.053115 1.051230 1.049291

Table 18 Lower and upper bounds centered on point estimate for Johnson-Cook parameters
given strong prior on A, for βTQ = 0.6

farea = 0.55 farea = 0.95

Lower bound of A (MPa) 695.752574 696.396703
Upper bound of A (MPa) 695.752574 696.396703

Lower bound of B (MPa) 864.675977 864.968226
Upper bound of B (MPa) 864.675977 864.968226

Lower bound of n 0.071672 0.071666
Upper bound of n 0.121127 0.120480

Lower bound of C 0.004160 0.004253
Upper bound of C 0.006701 0.006872

Lower bound of m 0.878135 0.875202
Upper bound of m 1.053570 1.051180
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Table 19 Lower and upper bounds centered on point estimate for Zerilli-Armstrong (BCC)
parameters fit only to data for temperatures of 298 K and above, for βTQ = 0.9

farea = 0.55 farea = 0.75 farea = 0.95

Lower bound of C0 (MPa) 1.8539766 1.8678995 1.8794430
Upper bound of C0 (MPa) 1.8539766 1.8678995 1.8794430

Lower bound of C1 (MPa) 1527.7659993 1535.4145842 1544.2866591
Upper bound of C1 (MPa) 1527.7659993 1535.4145842 1544.2866591

Lower bound of C3 (K−1) 0.0013978 0.0013996 0.0013985
Upper bound of C3 (K−1) 0.0013978 0.0013996 0.0013985

Lower bound of C4 (K−1) 0.0000046 0.0000057 0.0000070
Upper bound of C4 (K−1) 0.0000486 0.0000489 0.0000491

Lower bound of C5 (MPa) 593.2154268 590.7882786 586.9919218
Upper bound of C5 (MPa) 593.2154268 590.7882786 586.9919218

Lower bound of n (MPa) 0.1761679 0.1783322 0.1814527
Upper bound of n (MPa) 0.2122496 0.2162962 0.2222087

Table 20 Lower and upper bounds centered on point estimate for Zerilli-Armstrong (BCC)
parameters fit only to data for temperatures of 298 K and above, for βTQ = 0.6

farea = 0.55 farea = 0.95

Lower bound of C0 (MPa) 1.8041549 1.8190732
Upper bound of C0 (MPa) 1.8041549 1.8190732

Lower bound of C1 (MPa) 1489.5834168 1498.8622115
Upper bound of C1 (MPa) 1489.5834168 1498.8622115

Lower bound of C3 (K−1) 0.0014146 0.0014162
Upper bound of C3 (K−1) 0.0014146 0.0014162

Lower bound of C4 (K−1) 0.0000000 0.0000010
Upper bound of C4 (K−1) 0.0000483 0.0000487

Lower bound of C5 (MPa) 609.8943328 606.3797476
Upper bound of C5 (MPa) 609.8943328 606.3797476

Lower bound of n (MPa) 0.1605899 0.1627577
Upper bound of n (MPa) 0.1881080 0.1918422
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9. Evaluations of Model Fits
9.1 Comparison of Priors to Posteriors
As a sanity check, one may compare the priors for the model parameters to their
corresponding posteriors. If a posterior largely resembles its corresponding prior,
this suggests that the posterior has been largely determined by the prior rather than
the likelihood, which is a problem if a prior is only weakly informative and little
more than an educated guess. Accordingly, plots showing the marginal prior PDFs
for Bayesian model parameters along with histograms estimating the marginal pos-
terior PDFs are shown in Figs. 10–13. These plots are based on results from RStan,
but again, the results from PyStan and PyMC3 are largely the same.

As should be the case, where weakly informative priors are used, the marginal pos-
terior PDFs are, for the most part, substantially narrower than their corresponding
prior PDFs. The one exception to this is for the prior and marginal posterior of C0,
in Fig. 12a, where the Zerilli-Armstrong model is being fit to all temperature data.
This suggests that this model may not be sufficient to capture the trends in the stress
and strain at all temperatures. It may also indicate that a more informative prior is
needed for C0, which depends on physical considerations such as the average grain
diameter and the influence on the yield stress of such things as the presence of
solutes and the initial dislocation density,34 not all of which are known at this time.

Usually, the peaks of these posterior PDFs are different from the priors as well.
There are three cases where this is not true. Two of these pertain to the parameter
m in the Johnson-Cook fits. Here, both the prior and marginal posterior PDFs peak
near m = 1, as shown in Figs. 10e and 11e. Since m ≈ 1 in most of the fits done
by Johnson and Cook in their original paper on their strength model,33 this is not
surprising and likely reflects the physical trend in thermal softening. Of perhaps
more concern is the case for parameter B in the Johnson-Cook fit where all priors
are weakly informative. It may very well be that the prior estimate of the mean
value of parameter for B, 1000 MPa, is simply a very good guess, but given that 1)
the fit with weakly informative priors appears to underestimate the yield strength of
RHA and 2) the posterior mean for B is not nearly as close to 1000 MPa when a
strongly informative prior for A is used, this appears unlikely.
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Fig. 10 Histograms approximating the posterior marginal PDFs of Johnson-Cook model pa-
rameters and nuisance parameters SDσ,1 and SDσ,2. These are generated from samples of an
RStan MCMC run with βTQ = 0.9, farea = 0.75, and weakly informative priors. Priors are
superimposed over the histograms.
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Fig. 11 Histograms approximating the posterior marginal PDFs of Johnson-Cook model pa-
rameters and nuisance parameters SDσ,1 and SDσ,2. These are generated from samples of an
RStan MCMC run with βTQ = 0.9, farea = 0.75, and a strongly informative prior for A. Priors
are superimposed over the histograms.
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Fig. 12 Histograms approximating the posterior marginal PDFs of Zerilli-Armstrong (BCC)
model parameters and nuisance parameters SDσ,1 and SDσ,2. These are generated from sam-
ples of an RStan MCMC run with βTQ = 0.9, farea = 0.75, using data for all temperatures.
Priors are superimposed over the histograms.
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Fig. 13 Histograms approximating the posterior marginal PDFs of Zerilli-Armstrong (BCC)
model parameters and nuisance parameters SDσ,1 and SDσ,2. These are generated from sam-
ples of an RStan MCMC run with βTQ = 0.9, farea = 0.75, using the same data used to fit the
Johnson-Cook model. Priors are superimposed over the histograms.

59



9.2 Comparison of PPD to Experimental Data Trends
As mentioned in Section 2, the PPD can be used to check how well a model’s
predictions accord with experimental data. The sampling statement for the PPD
that corresponds to the likelihood in Eq. 32 is

σ
ic,pred
j (eic

j ) ∼ normal(σmdl(eic
j ,θmdl),SDσ,k), if {θmdl,SDσ,k} ∼ Dpost (37)

where Dpost is the posterior distribution, k = 1 for strain rates of 1/s or less,
and k = 2 otherwise. Unlike the PPD in the more general Eq. 4, here, there
is a distinct PPD associated with each value of eic

j . To generate samples for
the PPD, each MCMC sample of {θmdl,SDσ,k} is substituted into the likelihood
normal(σmdl(ei,θmdl),SDσ,k), and then a sample from that likelihood is taken to be
a value σic,pred

j (eic
j ), following Gelman et al.18 Accordingly, the number of samples

of the PPD for eic
j (i.e., the number of values of σic,pred

j (eic
j ) drawn) is the same

as the number of MCMC samples. Since there are ncNic PPDs (one for each value
of ic ∈ [1,nc] and j ∈ [1,Nic ]), and this number of PPDs may be large, visualiz-
ing each PPD with a histogram would be unwieldy. Instead, two statistics are to
be taken from each PPD, the mean and the 95% highest density interval (HDI).
The 95% HDI of σic,pred

j (eic
j ) is the interval such that 1) the probability that a value

of σic,pred
j (eic

j ) is in this interval is 95% and 2) the values within this interval all
have higher probability densities than values outside of it.17 Figures 14–22 show
the mean and 95% HDI for the PPDs of the Johnson-Cook and Zerilli-Armstrong
(BCC) models under various fitting conditions, along with the experimental data.

The experimental data are largely within the 95% HDI of the model fits shown
in the aforementioned figures. However, as a measure of the fit of the model to
experimental data, this is a low bar, since the width of the HDI is determined largely
by SDσ,k , which tends to increase with data spread or misfit. If one compares the
means of the model fits to experimental data, one can see that they do not quite
track the trends in the data, even for the quasi-static data that do not have the same
problems with oscillation as the high-strain-rate data. For example, in Fig. 14a,
where the initial sample temperature is 298 K and the strain rate is 0.001/s, the
curvature of the mean prediction curves (for various values of βTQ and farea) of
the Johnson-Cook model are such that they overpredict the flow stress for plastic
strains between about 2.5% to 10%, and then underpredict the strains thereafter. In
Fig. 14b, where the strain rate is 0.1/s, the mean model predictions largely track the
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(c) (d)

Fig. 14 Stress-strain data for initial sample temperatures of 298 K, along with estimates of
the mean and the 95% HDI for PPDs generated from samples of PyStan MCMC runs for
the Johnson-Cook model with weakly informative priors. The 95% HDI for βTQ = 0.9 and
farea = 0.75 is plotted as a shaded region between the minimum and maximum of the HDI.
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(c)

Fig. 15 Stress-strain data for high initial sample temperatures along with estimates of the mean
and the 95% HDI for PPDs generated from samples of PyStan MCMC runs for the Johnson-
Cook model with weakly informative priors. The 95% HDI for βTQ = 0.9 and farea = 0.75 is
plotted as a shaded region between the minimum and maximum of the HDI.
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(c) (d)

Fig. 16 Stress-strain data for initial sample temperatures of 298 K, along with estimates of
the mean and the 95% HDI for PPDs generated from samples of PyStan MCMC runs for the
Johnson-Cook model with a strongly informative prior for A. The 95% HDI for βTQ = 0.9 and
farea = 0.75 is plotted as a shaded region between the minimum and maximum of the HDI.
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(c)

Fig. 17 Stress-strain data for high initial sample temperatures along with estimates of the
mean and the 95% HDI for PPDs generated from samples of PyStan MCMC runs for the
Johnson-Cook model with a strongly informative prior for A. The 95% HDI for βTQ = 0.9 and
farea = 0.75 is plotted as a shaded region between the minimum and maximum of the HDI.
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(a) (b)

Fig. 18 Stress-strain data for initial sample temperatures of 77 K, along with estimates of
the mean and the 95% HDI for PPDs generated from samples of PyStan MCMC runs for
the Zerilli-Armstrong (BCC) model fit data for all available temperatures. The 95% HDI for
βTQ = 0.9 and farea = 0.75 is plotted as a shaded region between the minimum and maximum
of the HDI.

experimental data up to about 10% plastic strain, and then increasingly underpredict
the flow stress. A similar problem can be seen in Fig. 19b, where the initial sample
temperature is 298 K and the strain rate is 0.1/s, the mean model predictions of the
Zerilli-Armstrong (BCC) model are such that they largely track the experimental
data until about 5% strain, where they also begin to increasingly underpredict the
flow stress.

Figure 18a shows why the mean of SDσ,1 for the Zerilli-Armstrong (BCC) models
fit to data for all available temperatures tends to be larger than the mean of SDσ,1 for
models fit only to data for temperatures 298 K and above. Here, the experimental
data show a response that is much stiffer than the overall flatter response predicted
from the Zerilli-Armstrong model, which also has to fit the comparatively flatter
stress-strain data for other initial sample temperatures and strain rates. The param-
eter SDσ,1, then, has to expand to account for this discrepancy.

While the model fits are rather approximate, they do appear to be improved by ac-
counting for the temperature rise during sample deformation. In one particular case,
the one for a sample with initial temperature of 77 K and strain rate Ûεp = 2500/s,
it appears necessary for an even remotely reasonable fit to be obtained at all. As
seen in Fig. 1, for this case, the stress-strain curve slopes downward, at least for
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(c) (d)

Fig. 19 Stress-strain data for initial sample temperatures of 298 K, along with estimates of
the mean and the 95% HDI for PPDs generated from samples of PyStan MCMC runs for
the Zerilli-Armstrong (BCC) model fit data for all available temperatures. The 95% HDI for
βTQ = 0.9 and farea = 0.75 is plotted as a shaded region between the minimum and maximum
of the HDI.
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(c)

Fig. 20 Stress-strain data for high initial sample temperatures along with estimates of the
mean and the 95% HDI for PPDs generated from samples of PyStan MCMC runs for the
Zerilli-Armstrong (BCC) model fit to data for all available temperatures. The 95% HDI for
βTQ = 0.9 and farea = 0.75 is plotted as a shaded region between the minimum and maximum
of the HDI.
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(c) (d)

Fig. 21 Stress-strain data for initial sample temperatures of 298 K, along with estimates of
the mean and the 95% HDI for PPDs generated from samples of PyStan MCMC runs for the
Zerilli-Armstrong (BCC) model fit to the same data used for the Johnson-Cook model. The
95% HDI for βTQ = 0.9 and farea = 0.75 is plotted as a shaded region between the minimum
and maximum of the HDI.
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(c)

Fig. 22 Stress-strain data for high initial sample temperatures along with estimates of the
mean and the 95% HDI for PPDs generated from samples of PyStan MCMC runs for the
Zerilli-Armstrong (BCC) model fit to the same data used for the Johnson-Cook model. The
95% HDI for βTQ = 0.9 and farea = 0.75 is plotted as a shaded region between the minimum
and maximum of the HDI.
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plastic strains beyond 3%. This trend is due to thermal softening, and it cannot be
captured by any model of the form σmodel = a Ûεp (T) + b Ûεp (T)ε

n
p—which describes

both the Johnson-Cook and Zerilli-Armstrong (BCC) models—if temperature T is
treated as constant. This is because if a Ûεp (T) and b Ûεp (T) are constant, the model pre-
dicts a monotonically increasing σmodel with increasing εp, which obviously does
not account for the experimentally determined trend. Figure 18b shows the Zerilli-
Armstrong (BCC) model predicting a downward slope of the flow stress with in-
creasing plastic strain, especially for βTQ = 0.9, because the temperature rise has
been at least approximately taken into account.

9.3 Comparison of PFP to Experimental Data Trends
As with the PPDs, for a fixed eic

j , each of the MCMC samples of θmdl is substituted
into σmdl(eic

j ,θmdl). Thus, one obtains a set of samples from the PFP for a given eic
j ,

which is the same size as the set of MCMC samples. The bounds of the 95% HDI
of the PFPs for all of the values of eic

j , for the Johnson-Cook and Zerilli-Armstrong
(BCC) models under various fitting conditions, are shown in Figs. 23–31.

Since the PFPs do not include the effects of the nuisance parameters, they are much
narrower than their corresponding PPDs, and unlike the PPDs, they do not envelop
most of the experimental data. For the noisier data from experiments at high strain
rates, this is to be expected, since noise is primarily taken into account through
the nuisance parameters, whose influence is excluded here. Ideally, the plots of this
noisy data should oscillate around the 95% HDI of the PFPs, as it approximately
does in, for example, Fig. 28d. By contrast, the less noisy data taken from quasi-
static experiments should be largely within the 95% HDI of the PFPs, provided
that the Bayesian model is correct in attributing all the discrepancy between the
model and experimental results to measurement noise. However, the results shown
in Figs. 23a–b, 25a–b, 27a, 28a–b, and 30a–b indicate that the Bayesian model is
not correct in this regard. This is consistent with the findings in Section 9.2 that the
means of the PPDs do not fully track the experimental trends.

9.4 Evaluation of Output from Approximate Interval Predictor Model
The vast majority of the experimental flow stress values—99.9% for the Johnson-
Cook model and 99.7% for the Zerilli-Armstrong (BCC) model—are between the
values of σmin(e,Θ) and σmax(e,Θ) calculated from the parameter bounds in Ta-
bles 17–20, as can be seen in Figs. 32–35. However, only a subset of model pa-
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(c) (d)

Fig. 23 Stress-strain data for initial sample temperatures of 298 K, along with estimates of
the 95% HDI for PFPs generated from samples of PyStan MCMC runs for the Johnson-Cook
model with weakly informative priors. The 95% HDI for βTQ = 0.9 and farea = 0.75 is plotted
as a shaded region between the minimum and maximum of the HDI.
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(c)

Fig. 24 Stress-strain data for high initial sample temperatures along with estimates of the 95%
HDI for PFPs generated from samples of PyStan MCMC runs for the Johnson-Cook model
with weakly informative priors. The 95% HDI for βTQ = 0.9 and farea = 0.75 is plotted as a
shaded region between the minimum and maximum of the HDI.
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(c) (d)

Fig. 25 Stress-strain data for initial sample temperatures of 298 K, along with estimates of
the 95% HDI for PFPs generated from samples of PyStan MCMC runs for the Johnson-Cook
model with a strongly informative prior for A. The 95% HDI for βTQ = 0.9 and farea = 0.75
is plotted as a shaded region between the minimum and maximum of the HDI.
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(c)

Fig. 26 Stress-strain data for high initial sample temperatures along with estimates of the 95%
HDI for PFPs generated from samples of PyStan MCMC runs for the Johnson-Cook model
with a strongly informative prior for A. The 95% HDI for βTQ = 0.9 and farea = 0.75 is plotted
as a shaded region between the minimum and maximum of the HDI.
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(a) (b)

Fig. 27 Stress-strain data for initial sample temperatures of 77 K, along with estimates of the
95% HDI for PFPs generated from samples of PyStan MCMC runs for the Zerilli-Armstrong
(BCC) model fit data for all available temperatures. The 95% HDI for βTQ = 0.9 and farea =
0.75 is plotted as a shaded region between the minimum and maximum of the HDI.

rameters have significant differences between their upper and lower bounds. For
the Johnson-Cook model, these are n, C, and m.* For the Zerilli-Armstrong (BCC)
model, only the intervals for parameters C4 and n have significant non-zero width.
This does not mean that it makes sense to say, for example, that there is no uncer-
tainty in parameters A and B. Rather, it simply means that varying those parameters
is not necessary to obtain a set Θ) that accounts for the vast bulk of the available
experimental data. For example, two very different values for A in the Bayesian fits
for the Johnson-Cook model (shown in 3) appeared to account for the experimental
data about equally well, indicating that varying A does not help much to account
for the data in the first place. Similarly, the curvatures of the predicted stress-strain
curves according to the Johnson-Cook model are determined largely from B and n,
and varying n appears to be enough to account for the curvatures. It is likely most
appropriate to say that given certain baseline values of the model parameters, only
a subset of the parameters need to be varied to account for discrepancies between
model predictions and experimental results.

*For the case where βTQ = 0.9 and farea = 0.95, the differences between the upper and lower
bounds for A and B are practically negligible and almost certainly due to the inexactness of floating-
point arithmetic.
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(c) (d)

Fig. 28 Stress-strain data for initial sample temperatures of 298 K, along with estimates of the
95% HDI for PFPs generated from samples of PyStan MCMC runs for the Zerilli-Armstrong
(BCC) model fit data for all available temperatures. The 95% HDI for βTQ = 0.9 and farea =
0.75 is plotted as a shaded region between the minimum and maximum of the HDI.
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(c)

Fig. 29 Stress-strain data for high initial sample temperatures along with estimates of the
95% HDI for PFPs generated from samples of PyStan MCMC runs for the Zerilli-Armstrong
(BCC) model fit to data for all available temperatures. The 95% HDI for βTQ = 0.9 and
farea = 0.75 is plotted as a shaded region between the minimum and maximum of the HDI.
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(c) (d)

Fig. 30 Stress-strain data for initial sample temperatures of 298 K, along with estimates of the
95% HDI for PFPs generated from samples of PyStan MCMC runs for the Zerilli-Armstrong
(BCC) model fit to the same data used for the Johnson-Cook model. The 95% HDI for βTQ =

0.9 and farea = 0.75 is plotted as a shaded region between the minimum and maximum of the
HDI.

78



0.025 0.050 0.075 0.100 0.125 0.150 0.175
p

1125

1150

1175

1200

1225

1250

1275

1300

 (M
Pa

)

473 K, 3000.0/s

95% HDI, TQ = 0.9, farea = 0.75
95% HDI, TQ = 0.9, farea = 0.55
95% HDI, TQ = 0.9, farea = 0.95
95% HDI, TQ = 0.6, farea = 0.55
95% HDI, TQ = 0.6, farea = 0.95
Exp. Data

0.025 0.050 0.075 0.100 0.125 0.150 0.175
p

900

950

1000

1050

1100

1150

 (M
Pa

)

673 K, 3000.0/s

95% HDI, TQ = 0.9, farea = 0.75
95% HDI, TQ = 0.9, farea = 0.55
95% HDI, TQ = 0.9, farea = 0.95
95% HDI, TQ = 0.6, farea = 0.55
95% HDI, TQ = 0.6, farea = 0.95
Exp. Data

(a) (b)

0.025 0.050 0.075 0.100 0.125 0.150 0.175
p

600

650

700

750

800

850

900

950

 (M
Pa

)

873 K, 3500.0/s

95% HDI, TQ = 0.9, farea = 0.75
95% HDI, TQ = 0.9, farea = 0.55
95% HDI, TQ = 0.9, farea = 0.95
95% HDI, TQ = 0.6, farea = 0.55
95% HDI, TQ = 0.6, farea = 0.95
Exp. Data

(c)

Fig. 31 Stress-strain data for high initial sample temperatures along with estimates of the
95% HDI for PFPs generated from samples of PyStan MCMC runs for the Zerilli-Armstrong
(BCC) model fit to the same data used for the Johnson-Cook model. The 95% HDI for βTQ =

0.9 and farea = 0.75 is plotted as a shaded region between the minimum and maximum of the
HDI.
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(c) (d)

Fig. 32 Stress-strain data for initial sample temperatures of 298 K, along with estimates of the
minimum and maximum flow stress values generated from parameter bounds for the Johnson-
Cook model. For βTQ = 0.9 and farea = 0.75, the region between the flow stress values is
plotted as a shaded region.
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(c)

Fig. 33 Stress-strain data for high initial sample temperatures along with estimates of the
minimum and maximum flow stress values generated from parameter bounds for the Johnson-
Cook model. For βTQ = 0.9 and farea = 0.75, the region between the flow stress values is
plotted as a shaded region.
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Fig. 34 Stress-strain data for initial sample temperatures of 298 K, along with estimates of the
minimum and maximum flow stress values generated from parameter bounds for the Zerilli-
Armstrong (BCC) model. For βTQ = 0.9 and farea = 0.75, the region between the flow stress
values is plotted as a shaded region.

82



0.025 0.050 0.075 0.100 0.125 0.150 0.175
p

1000

1100

1200

1300

 (M
Pa

)

473 K, 3000.0/s

TQ = 0.9, farea = 0.75
TQ = 0.9, farea = 0.55
TQ = 0.9, farea = 0.95
TQ = 0.6, farea = 0.55
TQ = 0.6, farea = 0.95

Exp. Data

0.025 0.050 0.075 0.100 0.125 0.150 0.175
p

700

800

900

1000

1100

1200

 (M
Pa

)

673 K, 3000.0/s

TQ = 0.9, farea = 0.75
TQ = 0.9, farea = 0.55
TQ = 0.9, farea = 0.95
TQ = 0.6, farea = 0.55
TQ = 0.6, farea = 0.95

Exp. Data

(a) (b)

0.025 0.050 0.075 0.100 0.125 0.150 0.175
p

600

700

800

900

1000

 (M
Pa

)

873 K, 3500.0/s

TQ = 0.9, farea = 0.75
TQ = 0.9, farea = 0.55
TQ = 0.9, farea = 0.95
TQ = 0.6, farea = 0.55
TQ = 0.6, farea = 0.95

Exp. Data

(c)

Fig. 35 Stress-strain data for high initial sample temperatures along with estimates of the
minimum and maximum flow stress values generated from parameter bounds for the Zerilli-
Armstrong (BCC) model. For βTQ = 0.9 and farea = 0.75, the region between the flow stress
values is plotted as a shaded region.
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9.5 Predictions of Yield Strength
For the Johnson-Cook model, parameter A is an estimate of the yield strength. For
the Zerilli-Armstrong (BCC) model, no single parameter of the model provides an
estimate. Instead, for this model, the quasi-static yield strength is estimated as the
mean of the PPD for εp = 0 and Ûεp = 0.001/s. Estimated yield strengths for various
values of βTQ and farea are shown in Table 21 for the Zerilli-Armstrong (BCC)
model fit to the MIDAS data for all available temperatures, and in Table 22 for the
Zerilli-Armstrong (BCC) model fit to the same data used with the Johnson-Cook
model.

Table 21 Yield strengths, estimated as the mean of a PPD for εp = 0 and Ûεp = 0.001/s, for
PPDs generated from samples of RStan MCMC runs for the Zerilli-Armstrong (BCC) model
fit to data for all available temperatures and the βTQ and farea values from Table 1

βTQ farea Yield stress (MPa)

0.9 0.75 983.291
0.9 0.55 983.784
0.9 0.95 984.853
0.6 0.55 982.384
0.6 0.95 981.5

Table 22 Yield strengths, estimated as the mean of a PPD for εp = 0 and Ûεp = 0.001/s, for PPDs
generated from samples of RStan MCMC runs for the Zerilli-Armstrong (BCC) model fit to
the same data used for the Johnson-Cook model and the βTQ and farea values from Table 1

βTQ farea Yield stress (MPa)

0.9 0.75 1051.94
0.9 0.55 1050.09
0.9 0.95 1053.12
0.6 0.55 1045.7
0.6 0.95 1046.62

A strong prior on at least one parameter appears to be necessary for a strength
model to have a reasonable estimate of the yield strength. Without such a prior, the
Johnson-Cook model tends to underpredict the yield strength (i.e., parameter A in
the model) by about 18%–27%, as can be seen by comparing parameter A in Ta-
bles 3 and 5 with the estimated yield strength of RHA discussed in Section 5, about
700 MPa. The Zerilli-Armstrong (BCC) model overpredicts the yield strength by
about 40%–50%, as can be seen by comparing the yield strengths shown in Ta-
bles 21 and 22 with the aforementioned estimated yield strength of RHA. Unfortu-
nately, there does not appear to be a parameter in the Zerilli-Armstrong model for
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which a physically based strong prior can be set, except perhaps for C0, on which
little if any information appears to be available.

9.6 Effects of Uncertainties in Temperature Rise Estimation
The approximation of sample temperature rise discussed in Section 4 involves two
parameters with substantial uncertainties, βTQ and farea. Of the two parameters,
βTQ appears to have the larger effect on the fits.

In Figs. 6–9, there are usually two clusters of marginal PDFs for each model pa-
rameter, one for βTQ = 0.6 and one for βTQ = 0.9. There are some exceptions to
this. For example, in the Johnson-Cook model with a strongly informative prior for
A, the marginal PDFs of A, B, or n for various values of βTQ and farea (in Fig. 7)
nearly overlap, showing little sensitivity to either βTQ or farea. This makes sense,
since 1) the marginal posterior PDF of A is largely fixed by its prior and 2) there is
a high correlation between parameters A, B, and n, as shown in Tables 11 and 12.
Parameter C0 of the Zerilli-Armstrong (BCC) model also appears insensitive to βTQ

and farea, for both the fits to all MIDAS data and the fits to data for initial sample
temperatures of 298 K and above (the same data used for the Johnson-Cook model).
For the former set of fits, this insensitivity appears to be due to the marginal poste-
rior PDF of C0 being largely dictated by the prior on C0, rather than the data. For
the latter set of fits, there appears to be some trend driving C0 toward zero, though
the reason for this trend is unclear. There are also some parameters, such as C for
the Johnson-Cook model and C1 and C4 for the Zerilli-Armstrong (BCC) model,
that show more sensitivity to both βTQ and farea.

The mean and 95% HDI of the PPDs shown in Figs. 14–22, as well as the minimum
and maximum flow stresses shown in Figs. 32–35 estimated from the approximate
IPM approach, are almost completely insensitive to farea, while usually showing
some sensitivity to βTQ. Generally, all the curves pertaining to βTQ = 0.6 overlap
each other, and all the curves pertaining to βTQ = 0.9 overlap each other, but the two
sets of curves often do not overlap. One apparent exception to this is for the cases
where the initial sample temperature is 77 K and the strain rate is 2500/s, shown in
Fig. 18b, which do show some sensitivity to farea. This may be because the stress
at the beginning of the stress-strain curve for this initial sample temperature and
strain rate, 1791 MPa, is relatively high compared to that of the other curves, about
25% higher than the stress at the beginning of the stress-strain curve for sample
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temperature 298 K and strain rate 7000/s. Thus, for the low-temperature curve, a
change in farea represents a larger change in the area under the missing part of the
curve than it does for other curves.

While the uncertainties in temperature rise estimation may affect the values of the
model parameters and model predictions, they appear to have little effect on inter-
actions between parameters. This can be seen from the correlation matrices, shown
in Tables 9–16, which are insensitive to both βTQ and farea.

10. Conclusions
This report has discussed how to mathematically describe a Bayesian model as-
sociated with a material strength model and related experimental data. It has given
examples of how one may represent the priors in a Bayesian model, which represent
background knowledge, and how priors may be weakly or strongly informative. It
has discussed how the likelihood of a Bayesian model may be constructed from as-
sumptions of how the experimental data are expected to deviate from the model. It
has also discussed how to translate a mathematical description of a Bayesian model
into forms usable by software tools, such as a specification file written in the Stan
language or a Python function to be used with PyMC3. In this report are also exam-
ples of how uncertainties in model parameters may be reported, such as histograms
to visualize the marginal PDFs of model parameters and tables of moments of the
distributions with these PDFs. The correlations between the random distributions
of these model parameters are also reported, and in forms suitable as input to tools
used for uncertainty propagation analysis, such as Dakota.53

Evaluations are presented of the quality of Bayesian fits of particular strength mod-
els (namely, the Johnson-Cook and Zerilli-Armstrong [BCC] models) to experi-
mental data. The evaluations that have been done include comparing priors to their
associated posteriors, comparing PPDs and PFPs to experimental data, and compar-
ing what the strength models predict to be the yield strength to an experimentally
obtained yield strength. Other evaluations could have been done, such as cross-
validation,18 where one fits a model to a subset of the data (e.g., all but one of the
stress-strain curves) and checks how well the resulting fitted model predicts the ex-
perimental data that has not been used to fit the data (e.g. the stress-strain curve
that is left out). However, the evaluations that have been done—particularly the
comparision of PPDs and PFPs to the data—already show significant discrepancies
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between the experimental data and what the strength models discussed in this re-
port are able to predict, even with the PDFs of the parameters taken into account.
This indicates the importance of publishing the nuisance parameters, even if they
cannot be directly be input to uncertainty propagation analyses, since they provide
an indication of model discrepancies that future researchers can use to estimate the
degree of trust to put in such analyses.

Also discussed in this report is an alternative to the Bayesian approach, based on an
approximate IPM approach, that can obtain bounds for model parameters. A caveat
with this approach is that if varying a model parameter about its baseline values
does little to account for discrepancies between model predictions and experimental
results, then the estimated lower and upper bounds for that parameters may be the
same. In spite of this, though, the estimated bounds on the model parameters lead
to predictions that encompasss the vast majority of the experimental data.

It is hoped that this report will be useful to future researchers who do model fits,
both within and outside ARL, so that they can present their results in a fashion that
is more useful for uncertainty quantification.
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Appendix A. Probability Density Functions of Random
Distributions
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A random variable has a certain distribution, which defines how likely it is that an
instance, or sample, of the variable has a certain value or be within a certain range
of values. As a simple example, the distribution of an unfair coin toss might be such
that the probability of heads is, say, 60%, and samples from this distribution might
be {H,H,T,H,T,H,T,H,H,T}, where H is heads and T is tails. Continuous random
variables, of course, do not have a discrete set of possible values, such as the heads
and tails of coins, or the values one through six on the faces of dice. Rather, the
distribution of random values for continuous variables is usually characterized via
a probability density function (PDF).

If a is a continuous scalar quantity, then the PDF p(a) might be plotted as a curve
like the one shown in Fig. A-1. Intuitively, one may guess that the most probable
ranges of values of a are near the maximum of p(a). More generally, the probability
that a is between alow and ahigh is1

P(alow ≤ a ≤ ahigh) =

∫ ahigh

alow
p(a)da (A-1)
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Fig. A-1 Example probability density p(a)

One may note that while p(a) is restricted to be nonnegative, it can exceed 1. It is
only the probability P(alow ≤ a ≤ ahigh) that must be less than or equal to 1. If one
generates a large number of samples from a probability distribution and creates a
histogram from these samples, the result tends to resemble the distribution’s PDF.
An example of this is shown in Fig. A-2.

1Grinstead CM, Snell JL. Introduction to probability. 2nd ed. Providence (RI): American Math-
ematical Society; 1997.
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Fig. A-2 Example histogram associated with the probability density p(a). The counts in each
bin of the histogram have been normalized such that the area under the histogram is 1.

PDFs are not just for scalar quantities. For a variable a that could be a vector, matrix,
tensor, and so on, the probability that a is within a subset of possible values A is

P(a ∈ A) =
∫

A
p(a)da (A-2)

where p(a) is the PDF of a. Note that by the definition of probability, as the set A
expands to include all possible values of a, P(a ∈ A) approaches 1. Associated with
the components of a is a marginal probability distribution, and the marginal PDF of
component ai of a is2

p(ai) =

∫ ∞

−∞

· · ·

∫ ∞

−∞

∫ ∞

−∞

· · ·

∫ ∞

−∞

p(a)da1 · · · dai−1dai+1 · · · dana (A-3)

where na is the number of components of a. Individual marginal PDFs can be visu-
alized readily (as in, for example, Fig. A-1), even when the overall (or joint) PDF
p(a) is difficult or impossible to visualize directly.

There are several known random distributions, which are described as follows.3

One of the simplest is the uniform distribution. For a continuous variable a that is

2Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB. Bayesian data analysis.
3rd ed. Boca Raton (FL): CRC Press; 2013.

3Grinstead CM, ibid.
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equally likely to be anywhere between [amin,amax], the PDF of a is simply

punif(a|amin,amax) =


1/(amax − amin) amin ≤ a ≤ amax

0 otherwise
(A-4)

Because amin and amax are parameters of the uniform distribution itself, they are
placed after the “|” in the previous equation. Other parameterized distributions are
the exponential, beta, and normal distributions, and these have the following PDFs.

pexp(a|λ) =

λ exp(−λa) x ≥ 0

0 otherwise
(A-5)

pbeta(a|α, β) =


aα−1(1 − a)β−1/
∫ 1
0 (a

∗)α−1(1 − a∗)β−1da∗ 0 ≤ a ≤ 1

0 otherwise
(A-6)

pnormal(a|µ,SD) =
1

SD
√

2π
exp

[
−

1
2

(a − µ
SD

)2
]

(A-7)

Again, parameters pertaining to the random distribution itself are placed after the “|”
in the previous equations. Parameters µ and SD in particular represent the mean and
standard deviation of the normal distribution. Example plots of these parameterized
PDFs are shown in Fig. A-3.
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These are tables of the data that have been used in Bayesian analyses of strength
models of rolled homogeneous armor (RHA). Table B-1 contains values for the spe-
cific heat of body-centered cubic (BCC) iron—which is assumed to approximate the
specific heat of RHA—as a function of temperature. In this table, the specific heat
values are for constant volume, except for values for temperatures above 773 K,
where only values for constant pressure are available. The specific heat values are
converted from molar heat capacity values from Austin1 using the molar mass of
iron taken from the CRC Handbook,2 55.845 g/mol. Tables B-2 through B-10 con-
tain the stress-strain data for RHA that comes from the Material Implementation,
Database, and Analysis Source (MIDAS).3 The original source for these data is
Gray et al.,4 who have obtained high-strain-rate data with a split Hopkinson pres-
sure bar and low-strain-rate data (where the plastic strain rate is no greater than 1/s)
with “either an Instron or an MTS testing system”. However, the original published
data are engineering stress and strain, while in the MIDAS database, it has been
corrected to true stress and true plastic strain.5

Table B-1 Specific heat of BCC iron versus temperature

Temp. Spec. heat Temp. Spec. heat Temp. Spec. heat Temp. Spec. heat Temp. Spec. heat
(K) (J/kg ·K) (K) (J/kg ·K) (K) (J/kg ·K) (K) (J/kg ·K) (K) (J/kg ·K)

20 4.123 200 382.356 323 454.329 573 565.287 1023 1154.566
30 11.246 225 400.349 333 457.328 623 583.281 1033 1341.245
40 27.515 250 419.092 343 459.577 673 602.773 1073 877.170
50 53.230 273.1 430.338 353 461.826 723 623.016 1123 812.694
75 134.949 283 436.336 363 464.825 773 647.756 1173 778.957

100 212.920 293 442.334 373 470.823 823 718.230
125 272.148 298 444.583 423 494.814 873 790.203
150 322.379 303 447.582 473 519.555 923 871.172
175 356.866 313 451.330 523 541.296 973 962.638

1Austin JB. Heat capacity of iron: A review. Industrial & Engineering Chemistry.
1932;24(11):1225–1235.

2Rumble J, editor. CRC handbook of chemistry and physics. 98th ed. Boca Raton (FL): CRC
Press; 2017.

3Lawrence Livermore National Laboratory. MIDAS: Material implementation,
database, and analysis source. c2018 [accessed 2018 Mar]. https://pls.llnl.

gov/people/divisions/physics-division/condensed-matter-science-

section/eos-and-materials-theory-group/projects/midas-material-

implementation-database-and-analysis-source.
4Gray GT III, Chen SR, Wright W, Lopez MF. Constitutive equations for annealed metals under

compression at high strain rates and high temperatures. Los Alamos (NM): Los Alamos National
Laboratory; 1994 Jan. Report No.: LA-12669-MS.

5Florando J. Lawrence Livermore National Laboratory, Livermore, CA. Personal communica-
tion, 2017.
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Table B-2 Flow stress versus plastic strain of RHA for initial temperature 77 K and plastic
strain rate 0.001/s

Strain Stress Strain Stress Strain Stress Strain Stress Strain Stress
(MPa) (MPa) (MPa) (MPa) (MPa)

0.000062 1552.7 0.032648 1764.6 0.067995 1854.4 0.104813 1930 0.143498 1986.7
0.00022 1566.5 0.033594 1765 0.068757 1855.3 0.105444 1931.3 0.144944 1987.5
0.000535 1582.5 0.034303 1768 0.069571 1857.4 0.107179 1930.5 0.145548 1989.3
0.000903 1597.1 0.035066 1770.6 0.070412 1857.9 0.108177 1933.9 0.146337 1989.3
0.001376 1609.2 0.035828 1771.9 0.071385 1859.2 0.109045 1934.4 0.147125 1991
0.001875 1621.7 0.036563 1774.1 0.072199 1862.2 0.109912 1938.7 0.147835 1991.4
0.002453 1631.6 0.037483 1776.2 0.072856 1864.3 0.110779 1940.8 0.149359 1994.5
0.003294 1642.4 0.039034 1779.7 0.07375 1865.2 0.111699 1943 0.150568 1995.8
0.003872 1650.2 0.03977 1781 0.074486 1867.4 0.112881 1944.3 0.151093 1995.8
0.004712 1659.2 0.040427 1782.7 0.075248 1870 0.113565 1945.2 0.151882 1996.6
0.005475 1664 0.041136 1785.3 0.076036 1872.1 0.114669 1946 0.152749 1997.9
0.006184 1669.2 0.041872 1787 0.076956 1875.1 0.115378 1946.9 0.153643 2000.5
0.007209 1676.5 0.042818 1790.1 0.077928 1875.1 0.116456 1948.6 0.15451 2001
0.008076 1681.7 0.043659 1793.5 0.079295 1876.9 0.117402 1949.1 0.155666 2002.3
0.00897 1685.1 0.044605 1794.4 0.080057 1879.5 0.118505 1951.2 0.156428 2003.1
0.009889 1689.4 0.045315 1795.7 0.08074 1881.6 0.119268 1952.1 0.157296 2003.1
0.010835 1693.8 0.046445 1800 0.081529 1882.9 0.120266 1953.4 0.158373 2004
0.011808 1698.5 0.047338 1800.9 0.08237 1884.7 0.121081 1954.2 0.159477 2006.6
0.012675 1702.4 0.048048 1803 0.083316 1887.2 0.122237 1956.8 0.16087 2007.9
0.013437 1705.8 0.048941 1805.6 0.084446 1889.8 0.123341 1958.1 0.162 2010.5
0.014199 1709.7 0.049756 1807.3 0.085287 1891.6 0.124471 1958.6 0.162604 2010.5
0.014961 1713.6 0.050492 1808.6 0.086128 1893.7 0.12526 1960.3 0.163971 2010.5
0.01575 1715.3 0.051569 1810.4 0.0876 1897.2 0.126232 1961.6 0.164838 2011.3
0.01638 1716.2 0.052332 1812.5 0.088335 1898.9 0.127204 1962.5 0.165863 2012.2
0.017064 1717.9 0.053173 1816 0.08936 1900.2 0.128098 1963.8 0.167361 2013.9
0.017852 1722.3 0.05383 1817.7 0.090438 1902.8 0.129202 1965.5 0.168255 2013.5
0.019114 1725.3 0.054618 1820.7 0.090858 1903.7 0.130279 1967.2 0.169306 2015.2
0.020086 1727.4 0.055748 1825 0.091726 1905 0.13091 1968.9 0.170252 2016.5
0.020874 1730.5 0.056799 1825.9 0.092619 1905.8 0.131725 1971.1 0.171067 2018.3
0.021584 1733.5 0.057456 1826.8 0.093513 1906.7 0.132618 1972.4 0.171881 2020.4
0.022504 1736.5 0.05835 1828.5 0.094538 1908.4 0.133538 1974.6 0.172591 2020.4
0.023266 1739.5 0.059086 1831.1 0.095773 1911.9 0.134353 1974.6 0.173564 2020
0.024159 1741.7 0.060137 1833.2 0.097218 1914 0.135167 1975.9 0.174378 2020.9
0.024869 1743.8 0.061057 1835 0.097823 1914.9 0.136035 1975.9 0.175745 2022.2
0.026051 1747.7 0.06195 1836.7 0.098795 1917.9 0.136797 1978 0.176691 2022.2
0.027234 1750.3 0.062712 1838.9 0.09961 1920.1 0.138216 1980.6 0.177479 2023.9
0.027996 1752 0.063842 1841 0.100398 1924.4 0.139083 1981.9 0.178136 2024.3
0.028653 1755.1 0.064815 1844.9 0.101292 1924.8 0.13995 1982.8 0.178583 2024.3
0.029678 1757.2 0.065524 1847.9 0.102054 1925.7 0.140844 1983.2
0.030466 1759 0.066181 1849.7 0.102816 1926.1 0.141659 1984.9
0.031229 1762 0.067154 1852.2 0.103657 1926.6 0.142631 1985.8
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Table B-3 Flow stress versus plastic strain of RHA for initial temperature 77 K and plastic
strain rate 2500/s

Strain Stress Strain Stress Strain Stress Strain Stress Strain Stress
(MPa) (MPa) (MPa) (MPa) (MPa)

0.019951 1791.9 0.042917 1817.4 0.065427 1787.8 0.088992 1780.1 0.116886 1739.6
0.020109 1794.6 0.043495 1816.8 0.065901 1789.4 0.089491 1778.7 0.117385 1738.7
0.02032 1797.1 0.043915 1816.8 0.066295 1789.4 0.090043 1777 0.117884 1737.8
0.020504 1801 0.044336 1816.9 0.066663 1790.8 0.090673 1775 0.118331 1737
0.020742 1805.7 0.044808 1813.9 0.066873 1791.2 0.091224 1774.4 0.118804 1737
0.021005 1809.9 0.045176 1812.8 0.067188 1790.2 0.091776 1772.6 0.119277 1736.9
0.021242 1813.7 0.045517 1810.5 0.067477 1788.1 0.092301 1769.7 0.119881 1737
0.021505 1817.4 0.045937 1808.5 0.068002 1785.1 0.092957 1768.1 0.120432 1734.1
0.021664 1820.1 0.046436 1806.3 0.06829 1783.8 0.093561 1767.4 0.12101 1731.9
0.021979 1823.8 0.046829 1801.9 0.068605 1782.4 0.094271 1768.1 0.121587 1730.9
0.022426 1824.6 0.047249 1797.4 0.069156 1778.5 0.09477 1769.2 0.122086 1729.2
0.022768 1824.8 0.047747 1792.4 0.069603 1777.3 0.095401 1769.2 0.122428 1728.2
0.023162 1826.6 0.048245 1788.5 0.070049 1774.9 0.0959 1771.1 0.123347 1727.4
0.02353 1826.4 0.048665 1784.9 0.070469 1774.9 0.096347 1772.6 0.123872 1726.4
0.024055 1827.1 0.049085 1780.8 0.070864 1775.8 0.097109 1773.6 0.124608 1725.5
0.024529 1828.3 0.049557 1777.1 0.071232 1776.8 0.097793 1773.9 0.125238 1726.3
0.024949 1828.4 0.050003 1773.8 0.071626 1778.9 0.098475 1772.3 0.125817 1727.2
0.025868 1827.9 0.050476 1772.1 0.0721 1782.1 0.099105 1768.8 0.126237 1728
0.026341 1828.7 0.051053 1769.8 0.072441 1783.1 0.099683 1767.3 0.126736 1728.6
0.026893 1827.7 0.051474 1769.1 0.072993 1785.7 0.100155 1764.9 0.127393 1727.5
0.027629 1828 0.051841 1769.6 0.073309 1788.7 0.100759 1763.1 0.127944 1726.1
0.028207 1827.7 0.052262 1769.3 0.073625 1791.4 0.101022 1762.2 0.128496 1722.9
0.028653 1827.3 0.052709 1771.8 0.073862 1792.5 0.101758 1762.4 0.129046 1718.8
0.029231 1827.1 0.053129 1773.5 0.074282 1793.4 0.102152 1763.3 0.129414 1715.9
0.02973 1826.6 0.053445 1774.9 0.074781 1794.1 0.102651 1764.7 0.129886 1711.3
0.030177 1825.7 0.053787 1777.2 0.075202 1794.5 0.103151 1765.4 0.130647 1707.3
0.030702 1823.9 0.054155 1780.2 0.075911 1794.4 0.103703 1768.3 0.131145 1703.4
0.031174 1821.4 0.05455 1784.4 0.076226 1793.4 0.104019 1770.5 0.131644 1701.4
0.031699 1819.5 0.054919 1788.3 0.077014 1792 0.104308 1771.5 0.132117 1701.3
0.032198 1818.2 0.055129 1789.9 0.077618 1790.5 0.104834 1774.8 0.132432 1700.4
0.032645 1818.6 0.055629 1793.9 0.078091 1790 0.105044 1775.6 0.1328 1699.7
0.03346 1819.2 0.056076 1797.6 0.078511 1789.2 0.105465 1778.4 0.133168 1699.9
0.033985 1822 0.056497 1800.9 0.079089 1788.2 0.105964 1779.8 0.133509 1699.6
0.034327 1824.3 0.056813 1803.2 0.079483 1787.9 0.10649 1780 0.133982 1700.3
0.034748 1827.3 0.057207 1806.2 0.079877 1787.1 0.107015 1778.3 0.134376 1701.2
0.035169 1829.8 0.057707 1808.9 0.080507 1785.6 0.107724 1775.8 0.134666 1701.8
0.035537 1831.6 0.058154 1809.7 0.081111 1784.5 0.108117 1773.2 0.13506 1702.2
0.035905 1833.5 0.058627 1808.9 0.081611 1784 0.108564 1771.2 0.1359 1701.5
0.036273 1834.9 0.059047 1807.7 0.082057 1783.9 0.109194 1767.3 0.136504 1697.8
0.036667 1833.7 0.059388 1806.2 0.082556 1783.4 0.109482 1764.9 0.137081 1692.7
0.037087 1832.5 0.059755 1803.5 0.08295 1783.5 0.109928 1760.2 0.137553 1687.3
0.03756 1830.8 0.06028 1800.5 0.083633 1783.1 0.110295 1756.4 0.137841 1681.6
0.038137 1827.2 0.060727 1798.5 0.084264 1782.7 0.110846 1751.9 0.138102 1675.8
0.03861 1824.6 0.061304 1794.1 0.084711 1783.5 0.111476 1748.1 0.138548 1669.8
0.039161 1822.3 0.06175 1791.3 0.08521 1783 0.112342 1746.2 0.139072 1662.8
0.039686 1818.9 0.062406 1787.6 0.085551 1783.5 0.112972 1743.5 0.139386 1658.2
0.040185 1817.9 0.063063 1786 0.086287 1784.2 0.11397 1741.7 0.139911 1652.8
0.040632 1817.5 0.06343 1786.2 0.086839 1783.2 0.114364 1741.4 0.140409 1648.5
0.041236 1818.1 0.063851 1787 0.087285 1783.2 0.115126 1741.2
0.041682 1816.8 0.064403 1786.4 0.087889 1782.1 0.115573 1740.4
0.042208 1816.3 0.065007 1786.9 0.088441 1781.1 0.116387 1739.7
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Table B-4 Flow stress versus plastic strain of RHA for initial temperature 298 K and plastic
strain rate 0.001/s

Strain Stress Strain Stress Strain Stress Strain Stress Strain Stress
(MPa) (MPa) (MPa) (MPa) (MPa)

0.000028 1064.6 0.031693 1298.4 0.068066 1346 0.103861 1362.6 0.1416 1374.4
0.000291 1081 0.032377 1299.3 0.069038 1346 0.104307 1362.6 0.142573 1375.7
0.000527 1094.4 0.033612 1302.3 0.069774 1346.9 0.105017 1362.2 0.144018 1375.7
0.000816 1107.3 0.034321 1304.1 0.070379 1346.5 0.105621 1361.7 0.144649 1375.3
0.001105 1120.7 0.035084 1305.8 0.071062 1346.9 0.1062 1361.7 0.145542 1375.3
0.001525 1135.3 0.03603 1307.1 0.071955 1347.3 0.106936 1362.2 0.14641 1374.4
0.001946 1140.9 0.036713 1309.3 0.072639 1346.9 0.107592 1362.2 0.147172 1376.6
0.00276 1152.2 0.037317 1310.1 0.073401 1348.2 0.108696 1362.6 0.148039 1376.6
0.003338 1159.5 0.038027 1311.8 0.073953 1348.2 0.109406 1363 0.148959 1376.6
0.00389 1166.4 0.03871 1312.3 0.074715 1347.4 0.110299 1363.9 0.149984 1378.3
0.004415 1173.3 0.039472 1313.1 0.075477 1348.7 0.110983 1365.6 0.150799 1379.2
0.005072 1180.2 0.040208 1314.4 0.076265 1350.4 0.111587 1365.2 0.151377 1378.7
0.005729 1185.8 0.041207 1317.9 0.077606 1350.4 0.112323 1364.8 0.153032 1377.4
0.00636 1192.3 0.041864 1317.5 0.078421 1350.4 0.113033 1364.8 0.154189 1376.2
0.007148 1197.4 0.042784 1319.2 0.079104 1350 0.113663 1365.2 0.154846 1377
0.007858 1203.1 0.04352 1321.4 0.079629 1350.8 0.114452 1365.6 0.155582 1377.5
0.008462 1206.5 0.044203 1320.9 0.080418 1351.3 0.115661 1364.4 0.156554 1377.5
0.009014 1210.8 0.044755 1320.9 0.081233 1351.7 0.116791 1365.7 0.157264 1378.3
0.009592 1215.6 0.045543 1323.1 0.081679 1352.6 0.117658 1365.2 0.158236 1379.2
0.010197 1218.2 0.046594 1325.7 0.082415 1352.6 0.118447 1365.2 0.159103 1378.8
0.010749 1220.7 0.047173 1326.1 0.082993 1353.4 0.119288 1365.7 0.159734 1379.6
0.011353 1225.9 0.048014 1326.5 0.083598 1353 0.119997 1366.5 0.160654 1378.8
0.011957 1228.9 0.048986 1328.3 0.084202 1354.3 0.120733 1368.3 0.161732 1378.3
0.012641 1232 0.049879 1329.1 0.085122 1354.7 0.121653 1368.7 0.162625 1378.4
0.013376 1236.3 0.050747 1330.9 0.086095 1354.7 0.122573 1367 0.163335 1378.4
0.014664 1241 0.05164 1332.2 0.086699 1355.6 0.124255 1367.4 0.164255 1380.1
0.015426 1246.6 0.052297 1331.7 0.08754 1356 0.124938 1366.5 0.165201 1381.4
0.016346 1249.7 0.052954 1332.2 0.088145 1356.5 0.125937 1365.3 0.165936 1381.8
0.016977 1252.3 0.053717 1331.7 0.088959 1356.9 0.126489 1365.7 0.166593 1381.8
0.017581 1254.8 0.054531 1332.6 0.089721 1358.6 0.127119 1366.1 0.167303 1380.5
0.018317 1258.3 0.055293 1333 0.090352 1359.1 0.127855 1366.1 0.169169 1381
0.019158 1260.9 0.056187 1334.8 0.091167 1358.2 0.12867 1367.9 0.169958 1381
0.019841 1263.9 0.056713 1334.3 0.091666 1359.1 0.129038 1367.9 0.170825 1381.4
0.02063 1265.6 0.057527 1335.6 0.092849 1358.6 0.129406 1368.3 0.171587 1381
0.021365 1269.1 0.058684 1337.4 0.09348 1357.4 0.130352 1369.2 0.172375 1381.4
0.022338 1271.2 0.05963 1339.1 0.094531 1358.7 0.131035 1369.6 0.173348 1382.3
0.023179 1274.3 0.060392 1338.7 0.095319 1356.9 0.132165 1370.5 0.17453 1382.3
0.023941 1277.3 0.061233 1339.1 0.096187 1359.5 0.133138 1370.9 0.175582 1381.4
0.025018 1281.2 0.061916 1340 0.097317 1359.1 0.134793 1371.8 0.176607 1383.2
0.025938 1283.8 0.062442 1340 0.098552 1359.5 0.135687 1371.3 0.177421 1383.2
0.026726 1285.5 0.063178 1340.4 0.099656 1360 0.136922 1372.2 0.178262 1384
0.027567 1287.2 0.063913 1341.3 0.100628 1360 0.1375 1373.5 0.179182 1384.5
0.028697 1291.5 0.064754 1341.7 0.10097 1360 0.138446 1373.5 0.180023 1384.5
0.029696 1293.3 0.065517 1341.7 0.101732 1360.4 0.139314 1373.5
0.030511 1295.4 0.066226 1342.6 0.102468 1360.8 0.140155 1374.4
0.031089 1297.6 0.066857 1342.2 0.103177 1362.1 0.140786 1374.8
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Table B-5 Flow stress versus plastic strain of RHA for initial temperature 298 K and plastic
strain rate 0.1/s

Strain Stress Strain Stress Strain Stress Strain Stress Strain Stress
(MPa) (MPa) (MPa) (MPa) (MPa)

0.000212 1068.9 0.028986 1310.9 0.067382 1363.7 0.104517 1381.6 0.14499 1398.1
0.000475 1087.9 0.029801 1310.9 0.06825 1364.1 0.105017 1382 0.145489 1397.7
0.000606 1099.5 0.030458 1312.7 0.069196 1365 0.106173 1383.7 0.146698 1397.7
0.000842 1116.4 0.031036 1315.3 0.070037 1366.3 0.106856 1383.7 0.147723 1398.1
0.000973 1133.2 0.031824 1316.6 0.07093 1368.5 0.107592 1383.7 0.148275 1398.6
0.001315 1149.1 0.032955 1319.2 0.071771 1368.5 0.108617 1384.2 0.148827 1399
0.001604 1159.9 0.033769 1320 0.072744 1369.3 0.109905 1384.6 0.149642 1400.3
0.001945 1171.6 0.034453 1320.9 0.073795 1370.2 0.111035 1385.5 0.150351 1398.6
0.002339 1178.9 0.035819 1324.3 0.074741 1370.2 0.111692 1384.2 0.151587 1399
0.002681 1185.4 0.036397 1324.3 0.07574 1371.1 0.112481 1385 0.152769 1398.1
0.003259 1193.1 0.036897 1326.1 0.076502 1372.4 0.113348 1385.9 0.153715 1398.1
0.0036 1195.7 0.038184 1330.4 0.077605 1373.7 0.114268 1386.8 0.154609 1399
0.004415 1206.5 0.039183 1333.4 0.078499 1373.2 0.115082 1387.2 0.155135 1399
0.005151 1211.2 0.039787 1333.8 0.079445 1373.7 0.116055 1388.1 0.155897 1399.5
0.005703 1216.8 0.040523 1335.1 0.080286 1373.3 0.116817 1387.6 0.156344 1400.3
0.006281 1221.2 0.0421 1336.9 0.08118 1374.1 0.117842 1388.5 0.157447 1399.9
0.006754 1224.6 0.043046 1337.7 0.082205 1375.8 0.118551 1387.2 0.158499 1401.2
0.007411 1230.2 0.043624 1339 0.083177 1374.6 0.119471 1387.2 0.158919 1400.8
0.00791 1234.1 0.044571 1340.3 0.084176 1374.6 0.120391 1386.4 0.159313 1400.3
0.008567 1238.4 0.04599 1341.2 0.085017 1375.4 0.121127 1385.5 0.160916 1400.3
0.009119 1243.2 0.046515 1340.8 0.0857 1376.3 0.121863 1387.2 0.16181 1401.2
0.009671 1246.2 0.047251 1342.5 0.086462 1376.3 0.122861 1386.8 0.162414 1401.6
0.010222 1250.1 0.047856 1342.5 0.087145 1376.7 0.124018 1386.4 0.163623 1402.9
0.011431 1254.8 0.048539 1344.7 0.087934 1376.7 0.124649 1388.5 0.164517 1402.5
0.012299 1257.8 0.049722 1345.5 0.088775 1377.2 0.125411 1388.5 0.165595 1402.5
0.012982 1261.3 0.050352 1346.8 0.089642 1376.7 0.126698 1390.7 0.166383 1402.9
0.013691 1263.4 0.051272 1349.4 0.090142 1377.2 0.127671 1389.8 0.167355 1403.4
0.014322 1265.6 0.051903 1349.4 0.091061 1378.5 0.128459 1390.7 0.168223 1404.2
0.01511 1266.9 0.052639 1351.1 0.091902 1379.3 0.129484 1391.6 0.169195 1403.8
0.01603 1270.8 0.053427 1350.7 0.092796 1378.5 0.130772 1391.6 0.169931 1403.8
0.016766 1273.8 0.054216 1352.9 0.093689 1378.9 0.131193 1391.6 0.17093 1403.8
0.017528 1277.7 0.055162 1352.4 0.094636 1378.5 0.132112 1392.4 0.172007 1404.3
0.018763 1282 0.056029 1355.5 0.095214 1378.9 0.132848 1392.9 0.172795 1405.1
0.019815 1285 0.056686 1356.8 0.095897 1378.5 0.134451 1393.8 0.173558 1404.3
0.020393 1286.8 0.057947 1357.6 0.096659 1378.9 0.135292 1393.3 0.174372 1404.7
0.021391 1287.6 0.058736 1359.4 0.097264 1380.2 0.136659 1395.1 0.175318 1405.1
0.022311 1291.9 0.059656 1359.4 0.098026 1380.2 0.13771 1394.2 0.175897 1405.6
0.023231 1296.3 0.060549 1360.2 0.099209 1382 0.13863 1394.6 0.17679 1406.4
0.023967 1298.8 0.061679 1359.8 0.100102 1379.4 0.13955 1395.1 0.177657 1406
0.024703 1298.9 0.062573 1360.7 0.100864 1380.2 0.140259 1395.5 0.178446 1406.4
0.025859 1302.3 0.063519 1359.8 0.101889 1381.1 0.141153 1395.9 0.179155 1406.9
0.026595 1304.5 0.064307 1362.8 0.102599 1382 0.142204 1397.2 0.179786 1406.9
0.027672 1306.2 0.065332 1363.7 0.103282 1381.1 0.142809 1396.8 0.180233 1408.2
0.028277 1310.1 0.066278 1362.8 0.103887 1380.7 0.144149 1397.7
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Table B-6 Flow stress versus plastic strain of RHA for initial temperature 298 K and plastic
strain rate 3500/s

Strain Stress Strain Stress Strain Stress Strain Stress Strain Stress
(MPa) (MPa) (MPa) (MPa) (MPa)

0.028009 1290.9 0.057762 1379.4 0.093368 1429.5 0.123083 1441.7 0.158363 1430.6
0.02843 1295 0.058157 1380.5 0.09371 1429.8 0.123398 1442.7 0.158626 1433.9
0.028772 1298.3 0.05863 1381.4 0.094235 1431 0.123793 1444.4 0.158916 1437.9
0.029141 1302.1 0.059024 1382.1 0.094787 1432.6 0.124187 1445.8 0.1591 1439.5
0.02943 1305.9 0.059418 1383.6 0.095339 1434.1 0.125448 1444.6 0.159521 1443.7
0.029694 1309.3 0.059944 1386.1 0.096023 1436.3 0.125868 1445.9 0.159916 1446.8
0.030088 1310.4 0.060759 1389 0.096469 1436.4 0.127365 1442.9 0.160232 1448.5
0.030535 1311.5 0.061573 1389.1 0.097389 1438.6 0.127733 1441.6 0.160941 1451.2
0.031112 1309.5 0.062204 1389.4 0.098335 1438.7 0.128337 1439.2 0.161441 1452.3
0.03148 1307.7 0.063386 1390.1 0.098676 1437.8 0.129098 1436.2 0.161887 1451.2
0.0319 1307.2 0.063885 1389.8 0.099307 1437.3 0.129702 1435.3 0.162517 1448.1
0.03232 1306.6 0.064279 1390.5 0.099753 1435.1 0.130227 1433 0.163147 1444.2
0.032662 1306.1 0.064936 1390.4 0.100278 1432.7 0.130962 1430.8 0.163567 1440.7
0.033318 1306.9 0.06554 1390.7 0.100803 1429.2 0.131382 1429 0.164039 1436.3
0.033765 1306.7 0.066355 1390.8 0.101721 1420.8 0.131986 1427.4 0.164327 1432.5
0.034264 1308.2 0.067143 1391.3 0.10193 1418.6 0.132459 1426.3 0.164825 1428.9
0.034659 1308.9 0.067695 1390.9 0.10235 1414.8 0.133693 1421.5 0.165324 1425.6
0.035079 1310 0.068457 1391.4 0.102874 1409.4 0.134796 1422.5 0.165822 1422.3
0.035447 1311.2 0.069087 1391.7 0.10332 1404 0.135716 1425.3 0.166295 1421.9
0.035868 1312.3 0.069639 1392.5 0.103845 1399.8 0.136505 1428.3 0.16682 1420.8
0.036577 1313.8 0.070375 1393.9 0.104396 1398.6 0.136926 1430.7 0.167346 1419.7
0.037181 1313.4 0.0709 1395.2 0.105027 1401.2 0.137294 1434 0.168055 1419.4
0.037864 1313.7 0.071347 1396.1 0.1055 1402.8 0.137557 1436.2 0.16858 1420.1
0.038469 1314.6 0.072083 1397.5 0.105764 1406.7 0.138004 1439.3 0.168948 1420.3
0.039126 1315.8 0.07274 1398.6 0.106264 1413 0.138504 1443.1 0.1695 1420.9
0.039625 1315.9 0.07337 1398.9 0.10658 1416.9 0.138689 1444.7 0.17021 1422.1
0.04015 1316.4 0.074054 1400.3 0.106896 1421.8 0.138925 1447 0.170709 1423.2
0.040728 1316.9 0.074527 1400.4 0.107476 1430.7 0.139372 1449.8 0.171549 1422
0.041096 1318.5 0.075105 1402 0.107634 1432.8 0.139767 1451.4 0.171917 1422.5
0.0422 1321.6 0.075736 1403.9 0.107818 1435.7 0.140293 1454 0.172364 1421.9
0.04249 1323.7 0.076156 1404.1 0.108003 1438.9 0.14116 1457.2 0.172915 1418.9
0.042937 1325.5 0.076603 1405.4 0.108292 1442.4 0.142184 1453.8 0.173308 1416.1
0.043331 1328.3 0.077102 1407.1 0.108845 1447.4 0.142815 1452.9 0.173728 1413
0.043778 1331.4 0.077628 1408 0.109108 1450.9 0.143287 1449.2 0.174306 1410.7
0.044146 1333.4 0.078337 1408.9 0.109714 1456.6 0.14368 1447.5 0.174726 1409.7
0.044646 1335.2 0.078811 1410.7 0.110029 1459.6 0.1441 1443.5 0.175172 1409
0.045145 1337.8 0.079047 1411.9 0.110371 1460.6 0.144651 1439.7 0.175698 1411.2
0.045593 1341.4 0.079416 1415 0.111028 1462.7 0.145229 1437.7 0.175909 1412.3
0.046223 1343.8 0.079705 1417.4 0.111527 1460.8 0.145649 1435.9 0.176356 1415.3
0.046539 1346.3 0.080152 1420.7 0.11221 1459.4 0.146174 1433.7 0.17654 1418
0.046934 1349 0.080547 1422.9 0.112656 1455.6 0.146646 1431.8 0.176777 1420.5
0.047407 1351.2 0.080994 1424.7 0.113128 1450.7 0.147093 1431.6 0.177041 1427
0.047985 1354.2 0.081493 1427.5 0.113521 1446.2 0.148353 1429 0.177226 1431.8
0.048275 1357.1 0.081861 1429 0.114019 1439.3 0.149246 1426.2 0.177411 1435.9
0.048722 1359.7 0.082361 1430.7 0.114465 1435.2 0.150244 1425.1 0.177753 1441.6
0.049011 1361.8 0.082939 1432.2 0.114937 1430.6 0.150822 1423.5 0.178043 1445.5
0.04951 1362.3 0.083938 1433.9 0.115435 1425.6 0.151321 1421.6 0.178307 1449.5
0.050088 1362.8 0.084647 1433.3 0.115881 1421.5 0.152029 1419.9 0.178518 1452.8
0.05043 1365.2 0.085303 1432.3 0.116327 1417.4 0.152135 1420.1 0.178597 1454.8
0.050877 1366.2 0.085934 1432.6 0.117298 1412.5 0.153263 1414 0.178887 1459.1
0.051403 1369.6 0.086669 1430.7 0.118348 1412.1 0.153867 1411.6 0.179308 1465.7
0.052191 1369.7 0.087352 1430.5 0.118769 1413 0.154392 1410.5 0.179624 1468.5
0.052822 1370.4 0.087851 1430.5 0.119426 1415.6 0.154838 1408 0.180255 1470.4
0.053374 1372.1 0.088508 1429.2 0.119768 1418.1 0.155574 1408.8 0.180676 1472
0.053847 1372.7 0.089007 1428.8 0.120031 1419.7 0.155784 1409.6 0.18107 1472.1
0.054477 1372.6 0.090031 1428.1 0.120558 1424.7 0.15631 1411.4 0.1817 1469.7
0.054977 1373.5 0.090793 1427.8 0.121057 1427.4 0.156494 1412.6 0.182277 1466.3
0.055423 1374.5 0.09145 1427.6 0.121426 1430.3 0.157125 1415.8 0.182775 1460.5
0.055975 1375.8 0.091739 1428.4 0.121899 1433.4 0.157467 1418.6 0.183116 1456.8
0.056737 1376 0.092265 1428.8 0.122346 1436.6 0.157783 1421.8 0.183351 1448.8
0.057263 1377.3 0.092921 1428.6 0.122846 1440.5 0.157941 1423.8 0.183586 1443.4
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Table B-7 Flow stress versus plastic strain of RHA for initial temperature 298 K and plastic
strain rate 7000/s

Strain Stress Strain Stress Strain Stress Strain Stress Strain Stress
(MPa) (MPa) (MPa) (MPa) (MPa)

0.03648 1359 0.058189 1417.2 0.08481 1462.9 0.116208 1484.7 0.154932 1485
0.036769 1360.7 0.058662 1417.8 0.08531 1465.7 0.116418 1485.5 0.155746 1483
0.037032 1364.1 0.058925 1416.6 0.085862 1468.5 0.117022 1485.7 0.156297 1479.6
0.037427 1366.5 0.059424 1416.2 0.086177 1470.4 0.117601 1486 0.157164 1477.6
0.037821 1369.3 0.059975 1415.4 0.086546 1472.6 0.118179 1487.8 0.157689 1477.5
0.038216 1372.5 0.060474 1414.7 0.087072 1476.6 0.119362 1491.8 0.158293 1477.7
0.03869 1377.2 0.061079 1414.2 0.087466 1479.1 0.119913 1491.3 0.159003 1477.4
0.039111 1380.4 0.061499 1413.2 0.087861 1480.9 0.120334 1491.8 0.159397 1477.1
0.039532 1383.9 0.061945 1412.6 0.088124 1482.9 0.120991 1492.4 0.159764 1477.7
0.039874 1387.2 0.062313 1412.4 0.088623 1484.9 0.121516 1493.1 0.16029 1479.1
0.040268 1390.4 0.063154 1411.6 0.089359 1488.5 0.121989 1493.5 0.160869 1481.5
0.040715 1393.9 0.06381 1412.7 0.0902 1490.4 0.122646 1494.4 0.161184 1482.2
0.041136 1396.6 0.064284 1414 0.090779 1491.9 0.123356 1494.5 0.16171 1483.9
0.0414 1400.4 0.065046 1415.8 0.091567 1492.7 0.124643 1494.4 0.162183 1485.4
0.041715 1404.1 0.06544 1417.2 0.091882 1491.8 0.125588 1492.6 0.162788 1487.8
0.042005 1407.4 0.065808 1419.5 0.092565 1491.5 0.126376 1492.9 0.163602 1489.2
0.042347 1411.1 0.06615 1420.7 0.093011 1489.3 0.126954 1492.4 0.164181 1490.5
0.042742 1413 0.066518 1421.7 0.093458 1487.8 0.127453 1491.3 0.164943 1491.2
0.043084 1415.4 0.066807 1422.5 0.093983 1485.8 0.128267 1490.4 0.166178 1493.7
0.043636 1420.4 0.067307 1425 0.094586 1483.7 0.128767 1490.8 0.166414 1492.2
0.044031 1424 0.068043 1428 0.095059 1482.6 0.129213 1489.7 0.167228 1491.3
0.044768 1432 0.068437 1429.9 0.095374 1480.2 0.129844 1489.9 0.16778 1489.8
0.045215 1434.6 0.0687 1431.1 0.095794 1477.5 0.13079 1490.7 0.168699 1490.2
0.045557 1437.9 0.069147 1432.9 0.096476 1474.9 0.13121 1491.6 0.169198 1488.3
0.045899 1440.3 0.069462 1434 0.097054 1472.1 0.13234 1493.3 0.169933 1486.1
0.046267 1441.4 0.069857 1435.9 0.097868 1468.5 0.133812 1494.8 0.170458 1484.2
0.046766 1443.9 0.070199 1437 0.098419 1466.9 0.1346 1494.7 0.171246 1480.4
0.047134 1444.2 0.070593 1438 0.098682 1466.1 0.135204 1493.4 0.171824 1479.6
0.047554 1443.2 0.071066 1439.3 0.09918 1463.4 0.135651 1494.3 0.172296 1477
0.048105 1439.9 0.071749 1440.7 0.099758 1462.5 0.136202 1493.8 0.172847 1474.4
0.048499 1437.2 0.072143 1440.9 0.100467 1462.2 0.136727 1493.4 0.173451 1471.3
0.048761 1432.7 0.072853 1441.9 0.100887 1462 0.137253 1493 0.174028 1468.6
0.049207 1428.3 0.073457 1441.4 0.101387 1460.9 0.137831 1493.6 0.174632 1466.9
0.049548 1424.5 0.074271 1440.2 0.101859 1461.3 0.139013 1493.6 0.175183 1464.7
0.049888 1420.3 0.074718 1439.5 0.102622 1462.1 0.139407 1493.8 0.175866 1464.4
0.050203 1416.6 0.075742 1438 0.103383 1461.8 0.140432 1493.4 0.176864 1462.1
0.050544 1412.4 0.076267 1437.2 0.104119 1463.8 0.141193 1492.2 0.177521 1461.9
0.050832 1408.2 0.076687 1436.6 0.104513 1464 0.141771 1490.6 0.177915 1460.9
0.051173 1403.6 0.077265 1436.2 0.105722 1465.7 0.142349 1490.4 0.178466 1459.4
0.051671 1398.8 0.078027 1435.8 0.10609 1465.9 0.142848 1491.5 0.178887 1459.1
0.052091 1397.4 0.078579 1435.4 0.106537 1466 0.143505 1490.5 0.179464 1458.6
0.052537 1395.9 0.078841 1435.4 0.107299 1466.4 0.144372 1489.6 0.180147 1457.2
0.053089 1394.3 0.079314 1435.1 0.107588 1466.7 0.145423 1490.6 0.18104 1453.4
0.053457 1394.6 0.079761 1436.5 0.108113 1467.5 0.146158 1490.6 0.181512 1450.8
0.053904 1396.4 0.080024 1437.3 0.108691 1468.6 0.146605 1490.3 0.182115 1446.3
0.054193 1398.9 0.080313 1437.7 0.1099 1471 0.147735 1491.5 0.182798 1442.8
0.054798 1401.3 0.080707 1438.7 0.1104 1473 0.148444 1492.3 0.183349 1439.5
0.055166 1404 0.080996 1440.3 0.111451 1474.9 0.149101 1493.2 0.183899 1433.6
0.055482 1406 0.081549 1444.6 0.112371 1475.8 0.149758 1492.2 0.184476 1428.8
0.055823 1408.4 0.082154 1446.5 0.11287 1477 0.150415 1492.3 0.184975 1424.8
0.056244 1410.2 0.082863 1449.9 0.113527 1477.5 0.151439 1492.6 0.185578 1420.3
0.056665 1411.7 0.083153 1451.8 0.114 1479.1 0.151912 1491.5
0.057059 1413.6 0.083495 1453.7 0.114526 1480.7 0.152779 1489.4
0.057453 1415 0.083968 1458.2 0.11513 1482.1 0.153619 1487.4
0.057795 1416.6 0.084494 1460.6 0.115525 1483 0.15417 1486.2
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Table B-8 Flow stress versus plastic strain of RHA for initial temperature 473 K and plastic
strain rate 3000/s

Strain Stress Strain Stress Strain Stress Strain Stress Strain Stress
(MPa) (MPa) (MPa) (MPa) (MPa)

0.030984 1177.8 0.05687 1235.8 0.087142 1287 0.118271 1280.2 0.148874 1270.6
0.031406 1185.6 0.057501 1237.4 0.087667 1286.7 0.118928 1280.9 0.149452 1271.4
0.031722 1192 0.058105 1240.3 0.088193 1286.4 0.119769 1281.7 0.149873 1272.3
0.032065 1200.8 0.05871 1244.5 0.088718 1285.3 0.120347 1282.4 0.150503 1272.6
0.03246 1205.3 0.058974 1247 0.089243 1285 0.120846 1281.8 0.150871 1274
0.032829 1209 0.0595 1251.6 0.089742 1281.6 0.121424 1281.8 0.151581 1276
0.033407 1211.7 0.059895 1256 0.091055 1278.7 0.122028 1282.5 0.151897 1276.7
0.033986 1214.7 0.060421 1259 0.092158 1277.2 0.122501 1283.1 0.152265 1277.7
0.034328 1217.6 0.060841 1262.1 0.092579 1279 0.123132 1284.5 0.152843 1280.3
0.034774 1219.6 0.061367 1265.1 0.093472 1281.8 0.1235 1285.2 0.153737 1283.2
0.0353 1221.8 0.062392 1265.8 0.094051 1283.8 0.124315 1287.5 0.154736 1286
0.035852 1224.1 0.06276 1266.9 0.09476 1285.6 0.124788 1289.2 0.155708 1287.3
0.036509 1226.2 0.063102 1267.3 0.09497 1286.1 0.124867 1289.1 0.155997 1287.7
0.037088 1227.5 0.063889 1266.3 0.095707 1289.5 0.125366 1290.7 0.156444 1287.8
0.037744 1228.8 0.064625 1265.3 0.096259 1290.7 0.126206 1284.6 0.156785 1287.7
0.038165 1229.9 0.065097 1263.5 0.096653 1292.1 0.126888 1281.5 0.157573 1286.7
0.038717 1230.9 0.065754 1262.2 0.097047 1292.4 0.127492 1278.4 0.158203 1284.4
0.039479 1233.6 0.066279 1261.5 0.097546 1291 0.128043 1277.3 0.158833 1281.7
0.040031 1233.4 0.066647 1260.2 0.098203 1290.9 0.128831 1275.5 0.159463 1279.8
0.04053 1234.8 0.067251 1260.2 0.098597 1291.5 0.129356 1274.8 0.159988 1276.5
0.04103 1237.5 0.067671 1259.7 0.099306 1289.4 0.129645 1274.8 0.16046 1272.9
0.041529 1238.9 0.068302 1261.3 0.100172 1288.2 0.130355 1275.7 0.160854 1270.9
0.042081 1240.7 0.068722 1262.4 0.101196 1286.1 0.130749 1276 0.161457 1266.4
0.042686 1243.3 0.069143 1264.3 0.102405 1285.7 0.131143 1276.2 0.162034 1263.8
0.043264 1245 0.069643 1267.2 0.10293 1285.8 0.131458 1277.3 0.162612 1261.3
0.043764 1248.1 0.070563 1269.7 0.103298 1285.3 0.132247 1281.2 0.163085 1260.3
0.044316 1250.7 0.070799 1271 0.103902 1285.2 0.132589 1282.3 0.163767 1259.4
0.044999 1252.7 0.071641 1274.7 0.104375 1284.2 0.133062 1285.8 0.16424 1260.2
0.045525 1254.9 0.072114 1277.7 0.104821 1284 0.133404 1288 0.165134 1261.6
0.046103 1256.2 0.072482 1278.8 0.105373 1284.1 0.133851 1289.3 0.166081 1267.4
0.046734 1257.5 0.073113 1281.6 0.10582 1283.9 0.134456 1291.2 0.166712 1270.6
0.047076 1259.1 0.073586 1283.4 0.106266 1284.8 0.13527 1290.1 0.16758 1274.2
0.047523 1261.8 0.073928 1283.8 0.106897 1286.7 0.135953 1290.3 0.167921 1276
0.047943 1263.8 0.074821 1285.8 0.107187 1287.9 0.137004 1289.7 0.16829 1278.1
0.048364 1265.3 0.075767 1287 0.10766 1291.2 0.137686 1285.4 0.169131 1283.2
0.048837 1267.1 0.076686 1284.9 0.107923 1292.8 0.138421 1284 0.169446 1283.1
0.049284 1268.2 0.077737 1283.9 0.108528 1295.5 0.139209 1283 0.170103 1284.1
0.049809 1269.6 0.078341 1282.7 0.109867 1292.1 0.13976 1280.8 0.170629 1283.4
0.050283 1271.8 0.078787 1280.5 0.110261 1290.4 0.140469 1279.8 0.171548 1280.3
0.050598 1272.7 0.079575 1279.5 0.110812 1288.1 0.140942 1278.1 0.172545 1277.9
0.051071 1272.4 0.080284 1277.8 0.111337 1285.1 0.14152 1276.9 0.172992 1276.6
0.051622 1270.5 0.080993 1276.4 0.112072 1283 0.141888 1277.2 0.173516 1273
0.052147 1266.9 0.08165 1275.2 0.112518 1282 0.14257 1275.9 0.174199 1269.9
0.05275 1260.4 0.082044 1275.1 0.113227 1279.1 0.14328 1275.7 0.175354 1264.4
0.053301 1257.2 0.082858 1275.2 0.113936 1279.4 0.143726 1275.2 0.17601 1260.3
0.053878 1251.9 0.083515 1276.3 0.114436 1279.9 0.144304 1274 0.176901 1253.3
0.05435 1246.4 0.084172 1277.4 0.114882 1280.8 0.145013 1272.3 0.177478 1246.1
0.054795 1240.1 0.084671 1280 0.115539 1280.7 0.146116 1272.4 0.178002 1239.2
0.055215 1236.7 0.085592 1285.1 0.11588 1279.9 0.146878 1271.8 0.178657 1232.2
0.05574 1234.8 0.086433 1286.4 0.116695 1280.3 0.147535 1271.3 0.179181 1224
0.056344 1234.8 0.086853 1287 0.117457 1279.3 0.148139 1270.9
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Table B-9 Flow stress versus plastic strain of RHA for initial temperature 673 K and plastic
strain rate 3000/s

Strain Stress Strain Stress Strain Stress Strain Stress Strain Stress
(MPa) (MPa) (MPa) (MPa) (MPa)

0.020894 1007.3 0.045945 1103.7 0.077839 1123.5 0.117924 1113.9 0.155884 1111.3
0.021262 1009.8 0.046575 1102.6 0.07868 1124.1 0.118791 1112.9 0.156435 1112.2
0.021499 1013 0.047126 1100.3 0.079547 1126.3 0.119579 1110.1 0.156961 1112.7
0.021736 1016.6 0.047625 1099.3 0.079757 1126 0.120261 1108.5 0.157512 1112.1
0.022052 1020.5 0.048124 1098.8 0.080755 1123.7 0.120944 1107 0.158064 1111.4
0.022395 1025.2 0.048571 1099.5 0.081596 1122.7 0.121496 1107.9 0.158616 1111.9
0.02271 1028.2 0.049176 1102.1 0.082541 1120.4 0.1221 1108.3 0.159535 1110.9
0.023078 1030.8 0.049754 1102.3 0.082961 1120.3 0.122915 1109.7 0.160506 1108.3
0.02342 1032.1 0.050463 1103.1 0.083355 1118.3 0.123572 1110.5 0.160717 1108.4
0.023788 1033 0.050963 1105.4 0.084012 1118.3 0.123888 1112.8 0.16119 1109.3
0.024234 1031.7 0.051752 1111.5 0.085824 1116.6 0.124282 1114.6 0.161716 1112.4
0.024812 1028.1 0.05212 1113.5 0.086849 1121 0.125097 1118.7 0.162137 1116.7
0.025258 1023.8 0.052619 1114.2 0.087427 1119.5 0.12557 1120.4 0.162953 1125
0.025808 1017.7 0.053145 1116.1 0.08811 1121.9 0.126517 1123.9 0.163295 1128.2
0.026333 1012.1 0.053618 1117.2 0.088925 1125.3 0.127016 1126 0.163716 1132.9
0.026857 1007.3 0.054038 1118.7 0.089293 1125.7 0.128014 1126.3 0.164163 1136.1
0.027461 1002.5 0.054853 1119.8 0.089635 1126.4 0.128881 1126.8 0.164873 1139.6
0.027933 1000.7 0.05551 1120.3 0.090134 1128.2 0.129564 1123 0.165713 1135.3
0.02838 1002.8 0.056166 1119.1 0.09087 1130.1 0.130115 1119.3 0.166369 1130.2
0.028748 1004.9 0.056797 1118 0.091475 1132.2 0.130771 1116.7 0.166815 1125.2
0.029116 1008.3 0.057506 1115.9 0.092132 1135.8 0.131453 1113.6 0.167313 1119.9
0.029485 1013.8 0.058136 1113.6 0.092894 1135.7 0.132136 1112.4 0.167574 1111.9
0.029933 1018.8 0.058713 1110.9 0.093997 1133.2 0.132582 1111.2 0.168229 1102.4
0.030117 1023.3 0.059107 1107.9 0.094968 1128.5 0.133108 1111.7 0.168648 1096.8
0.030328 1028.5 0.059657 1103.6 0.095466 1125.6 0.133712 1113.3 0.169146 1091.4
0.030592 1033.7 0.060104 1101.9 0.096149 1121.2 0.134212 1115.7 0.169828 1087.7
0.030829 1038.9 0.060944 1098.9 0.096778 1117 0.134554 1117.6 0.170484 1086.3
0.03104 1042 0.061363 1095.6 0.097618 1114.4 0.135027 1120.5 0.171089 1088.9
0.031356 1047.5 0.062046 1092.8 0.098301 1113.6 0.135816 1121.8 0.171563 1092.7
0.031724 1051.3 0.062781 1091.5 0.098958 1115.6 0.136525 1124.4 0.172168 1099.7
0.03204 1054.8 0.063333 1089.3 0.099589 1118.8 0.137314 1126.9 0.172617 1108.3
0.032382 1059 0.063779 1088.4 0.100326 1121.9 0.137865 1125.1 0.172775 1111.8
0.032724 1062 0.064173 1088.3 0.100826 1126.8 0.138574 1122.4 0.173355 1122
0.033093 1064.1 0.064856 1087.9 0.101326 1132.1 0.139545 1118.2 0.174119 1134.6
0.033644 1064.7 0.065408 1089.4 0.101852 1136.1 0.140227 1111.1 0.174383 1138.3
0.034275 1065.7 0.065671 1090.7 0.102561 1136.5 0.141171 1105.1 0.175146 1146.1
0.034853 1066.3 0.066302 1094 0.103192 1138.5 0.141828 1103.9 0.17533 1145.9
0.035405 1067.8 0.066538 1095 0.104085 1139 0.142458 1103.6 0.176144 1144.6
0.035904 1068.1 0.066801 1096.7 0.10482 1135.8 0.142879 1105 0.176878 1133.9
0.036482 1070.8 0.067327 1099.3 0.105608 1133.3 0.143668 1109 0.177244 1125.9
0.037139 1071.7 0.067774 1101.7 0.106106 1130.7 0.14422 1112.1 0.177558 1119.7
0.037691 1072.8 0.068142 1102.9 0.106788 1124.1 0.144957 1118.7 0.178108 1110.7
0.038033 1074.5 0.068484 1103.7 0.107418 1117.9 0.145352 1122.8 0.178553 1103.3
0.038533 1077.7 0.068825 1104.1 0.108205 1112.4 0.145799 1126 0.179156 1097.9
0.03898 1080.9 0.069903 1106.5 0.108861 1110.8 0.14643 1130.5 0.179733 1094
0.039401 1084.2 0.070848 1105.4 0.109491 1109.7 0.146956 1132.9 0.180206 1093.9
0.0399 1087 0.07203 1104.9 0.110148 1109.7 0.147612 1129.9 0.180758 1095.8
0.040216 1089.9 0.072556 1103.9 0.11091 1110.4 0.148584 1128.4 0.1811 1097.5
0.040742 1093.5 0.073107 1103.6 0.111436 1112.1 0.149266 1122.7 0.181495 1101.8
0.041163 1096.8 0.073449 1103.6 0.11183 1113.6 0.149764 1118.4 0.18189 1107.1
0.041504 1097.6 0.074079 1104.5 0.112698 1117.6 0.150367 1114 0.182232 1113.2
0.041846 1099.7 0.074657 1105.9 0.113276 1119.3 0.150945 1110.3 0.182522 1117.2
0.042293 1101.7 0.074999 1107.9 0.113959 1121.2 0.151863 1105.6 0.182917 1122.9
0.042661 1103 0.075394 1109.5 0.114406 1121.8 0.152414 1102.3 0.183154 1123.7
0.043161 1104.5 0.075815 1112.6 0.115036 1121.1 0.153124 1103 0.183521 1122.2
0.04366 1106 0.076682 1116.4 0.115798 1120.2 0.153912 1104.3 0.184125 1118.3
0.044212 1107 0.07684 1117 0.116244 1119.7 0.154228 1106.2 0.184623 1110.8
0.044816 1107.5 0.077313 1120.1 0.116822 1117.9 0.154911 1108 0.184937 1105.8
0.04542 1105.6 0.077497 1120.7 0.117531 1115.1 0.15541 1110.4
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Table B-10 Flow stress versus plastic strain of RHA for initial temperature 873 K and plastic
strain rate 3500/s

Strain Stress Strain Stress Strain Stress Strain Stress Strain Stress
(MPa) (MPa) (MPa) (MPa) (MPa)

0.024813 728.8 0.048262 834.8 0.08079 880.2 0.116274 859.3 0.151119 925.7
0.025024 734.6 0.048892 833.8 0.081551 879.5 0.116852 861.1 0.151592 926.4
0.025314 737.7 0.049286 833.9 0.08205 876.3 0.117694 864.2 0.152643 928.7
0.025577 740.5 0.04989 833.8 0.082496 874.7 0.118299 869 0.153405 927.3
0.025761 744.6 0.050573 833.2 0.083179 870.9 0.118746 872.5 0.154376 926.3
0.026051 749 0.051151 831.4 0.084071 866.1 0.119325 876.2 0.155112 924.5
0.026341 753.8 0.051597 831 0.084938 865.7 0.120219 881.5 0.155978 922.6
0.026604 757.4 0.052595 830.2 0.085831 864.9 0.120587 885 0.156503 921.7
0.02692 760.5 0.053121 830.1 0.086566 866.2 0.121455 892.6 0.157291 920.5
0.02742 764.3 0.053594 830.1 0.087328 867.5 0.121876 895.3 0.157685 920.2
0.027709 768.3 0.05425 830.8 0.08788 868.2 0.122323 898.7 0.158499 917.9
0.027946 771.9 0.054828 830.7 0.088958 871.6 0.122876 904 0.159103 917.3
0.028262 775 0.055196 831.6 0.089693 873.3 0.123192 906.4 0.159734 917.5
0.028499 777.8 0.055853 832.3 0.09014 873.2 0.123902 913 0.160496 919.3
0.028893 780.8 0.056431 833.4 0.090692 874.7 0.124823 919 0.161021 918.8
0.029235 782.7 0.056852 834.7 0.09148 877.2 0.125664 919.7 0.161941 920.5
0.029577 782.8 0.057351 836.3 0.092085 879.8 0.126189 919.9 0.162545 920.3
0.030023 781.6 0.057693 836.8 0.0929 880.6 0.127003 916.9 0.163438 921.7
0.030443 779.1 0.058611 833.5 0.093425 882.1 0.127895 914.9 0.163911 922.3
0.030968 778.3 0.059294 831.7 0.094108 881.9 0.128762 912.5 0.164568 922.8
0.031651 775.6 0.059819 829.6 0.09466 882.9 0.129497 908.8 0.16533 923.2
0.032123 773.1 0.060213 828 0.095475 885.3 0.130442 906.7 0.16596 923.6
0.032543 771.1 0.061237 825.5 0.095895 885.7 0.131125 905.7 0.166512 923.1
0.033147 769.8 0.062234 823.4 0.096394 887.2 0.131597 905.3 0.167011 922.6
0.033541 769.5 0.062944 825.3 0.096946 888.3 0.132307 905 0.16772 922
0.033987 769.9 0.06368 827.9 0.097577 890.1 0.132727 906.1 0.168245 921.5
0.034461 773.7 0.063995 828.8 0.098312 888.2 0.133515 906.9 0.169033 920
0.034777 776.8 0.064548 833.2 0.098916 885.3 0.133909 906.1 0.169663 918.6
0.035119 780.7 0.064969 836.1 0.099598 882.3 0.134698 909.2 0.170189 918.5
0.035409 785.9 0.065416 840.2 0.100044 878.7 0.135434 910.4 0.170609 917.7
0.035751 792.3 0.06589 845.4 0.100621 875.5 0.135933 910.6 0.17116 917.9
0.036093 796.2 0.066442 850.2 0.101356 870.9 0.136432 912.4 0.172369 919.3
0.036383 799.7 0.066942 855.4 0.10196 867.2 0.137195 915.9 0.173341 918.4
0.036962 806.8 0.067152 856.5 0.102721 864.2 0.137799 916 0.173604 918.5
0.037225 809.9 0.067757 860 0.103482 861.5 0.138351 916.3 0.174418 918.8
0.03762 813.3 0.068335 860.6 0.104165 860.9 0.139402 920.5 0.175048 918.6
0.037909 816 0.06915 864.8 0.104875 864.2 0.139848 919 0.175652 917.6
0.038225 818.6 0.070359 868.9 0.1054 864.5 0.140321 918.9 0.17623 916
0.038488 821.3 0.071279 868.1 0.106005 868.6 0.141215 923.7 0.17686 915.8
0.038883 824.3 0.071725 867.3 0.106689 875.4 0.142108 920.2 0.177754 917.4
0.039303 826.4 0.072277 868 0.107058 877.8 0.142843 919.1 0.178253 918.1
0.03975 827.7 0.073144 868 0.107215 878 0.143394 917.8 0.179015 920.2
0.040276 828.5 0.073538 867.6 0.107847 882.9 0.144051 918 0.179646 922.2
0.040906 829.6 0.073984 868.4 0.108635 882.1 0.144813 918.7 0.180198 923.8
0.041642 830.2 0.074615 868.7 0.10937 880.7 0.145443 918.5 0.18075 925.8
0.04222 830.6 0.074851 869.3 0.109895 878.7 0.146153 918.2 0.181223 927.2
0.042798 831.3 0.075771 871.2 0.110787 876.3 0.146547 917.4 0.181985 929.3
0.04356 831.9 0.076244 872.4 0.11147 872.9 0.14744 917.7 0.182589 928
0.044269 832.9 0.076796 873.1 0.112336 867.9 0.147912 916.9 0.183352 930.1
0.045162 833 0.077532 874.8 0.11307 863.7 0.148649 919.5 0.184402 930.6
0.045793 833.7 0.078215 876.2 0.113701 862.8 0.149358 921.5
0.046265 832.8 0.079082 877.8 0.114252 860 0.149726 923
0.046659 833.7 0.079345 878.8 0.115066 858.1 0.149936 923.5
0.047343 834.4 0.079949 880.2 0.11588 857.7 0.150567 924.8
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Appendix C. Stan Specification Files
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These are the Stan specification files that have been used for Bayesian analyses
of the Johnson-Cook1 and the Zerilli-Armstrong model for body-centered cubic
materials.2 Comments in these files of the form //!{...} can be ignored, since
they are meant to be read by tools that extract source code fragments.

C.1 Specification File jc.stan
1 //!{funcstart}

2 functions {

3 vector jc(vector epsilon_p, real log_epsilon_p_dot, vector T_star,

4 real A, real B, real n, real C, real m) {

5
6 int length_epsilon_p = num_elements(epsilon_p);

7 vector[length_epsilon_p] sigma;

8
9 real edot_factor = (1.0 + C*log_epsilon_p_dot);

10
11 // The exponentiation operator "^" doesn't vectorize, so I need a

12 // "for" loop here.

13 for (i in 1:length_epsilon_p) {

14 sigma[i] = (A + B*(epsilon_p[i])^n)*edot_factor*
15 (1.0 - (T_star[i])^m);

16 }

17
18 return sigma;

19 }

20 }

21 //!{funcend}

22
23 //!{datastart}

24 data {

25 int<lower=1> num_curves;

26 int<lower=0> curve_sizes[num_curves];

27 vector[num_curves] epsilon_p_dot;

28
29 vector[sum(curve_sizes)] epsilon_p;

30 vector[sum(curve_sizes)] sigma;

31 vector[sum(curve_sizes)] T;

32
33 real<lower=0.0> T_melt;

34 real<lower=0.0> T_room;

35
36 real<lower=0.0> epsilon_p_dot_0;

37

1Johnson GR, Cook WH. A constitutive model and data for metals subjected to large strains,
high strain rates and high temperatures. In: Seventh international symposium on ballistics: Proceed-
ings; 1983 Apr; The Hague (Netherlands). American Defense Preparedness Association; 1983. p.
541–547.

2Zerilli FJ, Armstrong RW. Dislocation-mechanics-based constitutive relations for material dy-
namics calculations. Journal of Applied Physics. 1987;61(5):1816-1825.
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38 real<lower=0.0> A_guess_mean; real<lower=0.0> A_guess_sd;

39 real<lower=0.0> B_guess_mean; real<lower=0.0> B_guess_sd;

40 real<lower=0.0> C_guess_mean; real<lower=0.0> C_guess_sd;

41 real<lower=0.0> m_guess_mean; real<lower=0.0> m_guess_sd;

42
43 real<lower=0.0> n_alpha; real<lower=0.0> n_beta;

44
45 vector<lower=0.0>[2] sd_sigma_guess_mean;

46 vector<lower=0.0>[2] sd_sigma_guess_sd;

47 }

48 //!{dataend}

49
50 //!{transdatastart}

51 transformed data {

52 vector[num_curves] log_epsilon_p_dot = log(epsilon_p_dot/epsilon_p_dot_0);

53 vector[sum(curve_sizes)] T_star = (T - T_room)/(T_melt - T_room);

54 }

55 //!{transdataend}

56
57 //!{paramstart}

58 parameters {

59 real<lower=0.0> A;

60 real<lower=0.0> B;

61 real<lower=0.0, upper=1.0> n;

62 real<lower=0.0> C;

63 real<lower=0.0> m;

64
65 real<lower=0.0> sd_sigma[2];

66 }

67 //!{paramend}

68
69 //!{modelstart}

70 model {

71 A ~ normal(A_guess_mean, A_guess_sd)T[0.0,];

72 B ~ normal(B_guess_mean, B_guess_sd)T[0.0,];

73 n ~ beta(n_alpha, n_beta);

74 C ~ normal(C_guess_mean, C_guess_sd)T[0.0,];

75 m ~ normal(m_guess_mean, m_guess_sd)T[0.0,];

76
77 for (i in 1:2) {

78 sd_sigma[i] ~

79 normal(sd_sigma_guess_mean[i],

80 sd_sigma_guess_sd[i])T[0.0,];

81 }

82
83 {

84 int start_ind = 1;

85 for (curve_ind in 1:num_curves) {

86 int end_ind = start_ind + curve_sizes[curve_ind] - 1;

87
88 real curr_sd_sigma = (epsilon_p_dot[curve_ind] <= 1.0

89 ? sd_sigma[1]

90 : sd_sigma[2]);

91
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92 sigma[start_ind:end_ind] ~ normal(jc(epsilon_p[start_ind:end_ind],

93 log_epsilon_p_dot[curve_ind],

94 T_star[start_ind:end_ind],

95 A, B, n, C, m),

96 curr_sd_sigma);

97
98 start_ind = end_ind + 1;

99 }

100 }

101 }

102 //!{modelend}

C.2 Specification File za_bcc.stan
1 functions {

2
3 vector za_bcc(vector epsilon_p, real log_epsilon_p_dot, vector T,

4 real C0, real C1, real C3, real C4, real C5, real n) {

5
6 int length_epsilon_p = num_elements(epsilon_p);

7 vector[length_epsilon_p] sigma;

8
9 real C3_C4_fac = -C3 + C4*log_epsilon_p_dot;

10
11 // The exponentiation operator "^" doesn't vectorize, so I need a

12 // "for" loop here.

13 for (i in 1:length_epsilon_p) {

14 sigma[i] = C0 + C1*exp(C3_C4_fac*(T[i])) + C5*(epsilon_p[i])^n;

15 }

16
17 return sigma;

18 }

19
20 }

21
22 data {

23 int<lower=1> num_curves;

24 int<lower=0> curve_sizes[num_curves];

25
26 vector[num_curves] epsilon_p_dot;

27
28 vector[sum(curve_sizes)] epsilon_p;

29 vector[sum(curve_sizes)] sigma;

30 vector[sum(curve_sizes)] T;

31
32 real<lower=0.0> C0_guess_mean;

33 real<lower=0.0> C0_guess_sd;

34
35 real<lower=0.0> C1_guess_mean;

36 real<lower=0.0> C1_guess_sd;

37
38 real<lower=0.0> C3_guess_mean;

39 real<lower=0.0> C3_guess_sd;

40
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41 real<lower=0.0> C4_guess_mean;

42 real<lower=0.0> C4_guess_sd;

43
44 real<lower=0.0> C5_guess_mean;

45 real<lower=0.0> C5_guess_sd;

46
47 real<lower=0.0> n_alpha;

48 real<lower=0.0> n_beta;

49
50 real<lower=0.0> sd_sigma_guess_mean[2];

51 real<lower=0.0> sd_sigma_guess_sd[2];

52 }

53
54 transformed data {

55 vector[num_curves] log_epsilon_p_dot = log(epsilon_p_dot);

56 }

57
58 parameters {

59 real<lower=0.0> C0;

60 real<lower=0.0> C1;

61 real<lower=0.0> C3;

62 real<lower=0.0> C4;

63 real<lower=0.0> C5;

64 real<lower=0.0, upper=1.0> n;

65
66 real<lower=0.0> sd_sigma[2];

67 }

68
69 model {

70 C0 ~ normal(C0_guess_mean, C0_guess_sd)T[0.0,];

71 C1 ~ normal(C1_guess_mean, C1_guess_sd)T[0.0,];

72 C3 ~ normal(C3_guess_mean, C3_guess_sd)T[0.0,];

73 C4 ~ normal(C4_guess_mean, C4_guess_sd)T[0.0,];

74 C5 ~ normal(C5_guess_mean, C5_guess_sd)T[0.0,];

75
76 n ~ beta(n_alpha, n_beta);

77
78 for (i in 1:2) {

79 sd_sigma[i] ~

80 normal(sd_sigma_guess_mean[i],

81 sd_sigma_guess_sd[i])T[0.0,];

82 }

83
84 {

85 int start_ind = 1;

86 for (curve_ind in 1:num_curves) {

87 int end_ind = start_ind + curve_sizes[curve_ind] - 1;

88
89 real curr_sd_sigma = (epsilon_p_dot[curve_ind] <= 1.0

90 ? sd_sigma[1]

91 : sd_sigma[2]);

92
93 sigma[start_ind:end_ind] ~ normal(za_bcc(epsilon_p[start_ind:end_ind],

94 log_epsilon_p_dot[curve_ind],
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95 T[start_ind:end_ind],

96 C0, C1, C3, C4, C5, n),

97 curr_sd_sigma);

98
99 start_ind = end_ind + 1;

100 }

101 }

102 }
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These are the contents of some of the Python module files that have been used for
Bayesian analyses of strength models. Comments of the form #!{...} can be ig-
nored, since they are meant to be read by tools that extract source code fragments.
Documentation of the parameters and return values of functions follows the guide-
lines of the Numpydoc docstring guide.1

D.1 Module File jc.py
1 def jc(epsilon_p, log_epsilon_p_dot, T_star,

2 A, B, n, C, m):

3 """Flow stress according to the Johnson-Cook model

4
5 Parameters

6 ----------

7
8 epsilon_p

9 Strain

10
11 log_epsilon_p_dot

12 Natural logarithm of the normalized strain rate (i.e. strain

13 rate divided by the reference strain rate)

14
15 T_star

16 Normalized temperature, usually (T - T_room)/(T_melt - T_room),

17 where T_melt and T_room are the melting and room temperatures

18
19 A, B, n, C, m

20 The Johnson-Cook parameters

21 """

22
23 return ((A + B*(epsilon_p**n))*
24 (1.0 + C*log_epsilon_p_dot)*(1 - T_star**m))

D.2 Module File jc_pymc3.py
1 from jc import jc

2 import numpy as np

3 import pymc3 as pm

4
5 def make_jc_model(epsilon_p, sigma,

6 epsilon_p_dot, T,

7 T_melt, T_room, epsilon_p_dot_0,

8 prior_params):

9
10 """Create a PyMC3 model conforming to the Zerilli-Armstrong (BCC) model

11
12 Parameters

13 ----------

1Numpydoc maintainers. Numpydoc docstring guide. c2017 [accessed 2018 May]. https:
//numpydoc.readthedocs.io/en/latest/format.html
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14
15 epsilon_p : list of 1-d NumPy array

16 Strain values for all curves, where `epsilon_p[0]` contains

17 strain values for the first curve, `epsilon_p[1]` contains

18 strain values for the second curve, etc.

19
20 sigma : list of 1-d NumPy array

21 Stress values for all curves, where `sigma[0]` contains stress

22 values for the first curve, `sigma[1]` contains stress values

23 for the second curve, etc.

24
25 epsilon_p_dot : 1-d array_like

26 List or array where element `i` contains the strain rate for

27 curve `i`

28
29 T : list of 1-d array_like

30 Temperature values for all curves, where `T[0]` contains

31 temperature values for the first curve, `T[1]` contains

32 temperature values for the second curve, etc.

33
34 T_melt : float

35 Melting temperature

36
37 T_room : float

38 Room temperature

39
40 epsilon_p_dot_0 : float

41 Reference strain rate, usually 1.0 per second.

42
43 prior_params : dict

44 Dictionary with the following keys: "A_guess_mean",

45 "B_guess_mean", "C_guess_mean", "m_guess_mean",

46 "sd_sigma_guess_mean", "A_guess_sd", "B_guess_sd",

47 "C_guess_sd", "m_guess_sd", "sd_sigma_guess_sd", "n_alpha",

48 and "n_beta". The values corresponding to

49 "sd_sigma_guess_mean" and "sd_sigma_guess_sd" are lists or 1-d

50 arrays with 2 elements, where both elements are positive

51 numbers. Values corresponding to other keys are positive

52 scalars.

53
54 Returns

55 -------

56
57 A PyMC3 model

58 """

59
60 PosNormal = pm.Bound(pm.Normal, lower = 0.0)

61
62 model = pm.Model()

63
64 num_curves = len(epsilon_p)

65 T_melt_minus_T_room = T_melt - T_room

66 log_epsilon_p_dot = np.log(np.asarray(epsilon_p_dot)/epsilon_p_dot_0)

67
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68 with model:

69
70 # Priors

71 A = PosNormal("A",

72 mu = prior_params["A_guess_mean"],

73 sd = prior_params["A_guess_sd"])

74
75 B = PosNormal("B",

76 mu = prior_params["B_guess_mean"],

77 sd = prior_params["B_guess_sd"])

78
79 n = pm.Beta("n",

80 alpha = prior_params["n_alpha"],

81 beta = prior_params["n_beta"])

82
83 C = PosNormal("C",

84 mu = prior_params["C_guess_mean"],

85 sd = prior_params["C_guess_sd"])

86
87 m = PosNormal("m",

88 mu = prior_params["m_guess_mean"],

89 sd = prior_params["m_guess_sd"])

90
91 sd_sigma = PosNormal("sd_sigma",

92 mu = np.asarray(prior_params["sd_sigma_guess_mean"]),

93 sd = np.asarray(prior_params["sd_sigma_guess_sd"]),

94 shape = 2)

95
96 for i in range(num_curves):

97 T_star = (T[i] - T_room)/T_melt_minus_T_room

98
99 pm.Normal("sigma_curve{}".format(i),

100 mu = jc(epsilon_p[i],

101 log_epsilon_p_dot[i], T_star,

102 A, B, n, C, m),

103 sd = (sd_sigma[0]

104 if (epsilon_p_dot[i] <= 1.0)

105 else sd_sigma[1]),

106 observed = sigma[i])

107
108 return model

D.3 Module File za_bcc.py
1 import numpy

2
3 def za_bcc(epsilon_p, log_epsilon_p_dot, T,

4 C0, C1, C3, C4, C5, n, exp_func = numpy.exp):

5 """Flow stress according to the Zerilli-Armstrong (BCC) model

6
7 Parameters

8 ----------

9
10 epsilon_p
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11 Strain

12
13 log_epsilon_p_dot

14 Natural logarithm of the strain rate

15
16 T

17 Temperature

18
19 C0, C1, C3, C4, C5, n

20 The Zerilli-Armstrong (BCC) parameters. (Note that there is no

21 C2 parameter, since that is for the Zerilli-Armstrong FCC

22 model.)

23
24 exp_func : function, optional

25 Object representing the exponential function

26 """

27
28 return (C0 + C1*exp_func((-C3 + C4*log_epsilon_p_dot)*T) +

29 C5*epsilon_p**n)

D.4 Module File za_bcc_pymc3.py
1 #!{importstart}

2 import numpy as np

3 import pymc3 as pm

4 from za_bcc import za_bcc

5 #!{importend}

6
7 def make_za_bcc_model(epsilon_p, sigma,

8 epsilon_p_dot, T,

9 prior_params):

10 """Create a PyMC3 model conforming to the Zerilli-Armstrong (BCC) model

11
12 Parameters

13 ----------

14
15 epsilon_p : list of 1-d NumPy array

16 Strain values for all curves, where `epsilon_p[0]` contains

17 strain values for the first curve, `epsilon_p[1]` contains

18 strain values for the second curve, etc.

19
20 sigma : list of 1-d NumPy array

21 Stress values for all curves, where `sigma[0]` contains stress

22 values for the first curve, `sigma[1]` contains stress values

23 for the second curve, etc.

24
25 epsilon_p_dot : 1-d array_like

26 List or array where element `i` contains the strain rate for

27 curve `i`

28
29 T : list of 1-d array_like

30 Temperature values for all curves, where `T[0]` contains

31 temperature values for the first curve, `T[1]` contains

32 temperature values for the second curve, etc.
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33
34 prior_params : dict

35 Dictionary with the following keys: "C0_guess_mean",

36 "C1_guess_mean", "C3_guess_mean", "C4_guess_mean",

37 "C5_guess_mean", "sd_sigma_guess_mean", "C0_guess_sd",

38 "C1_guess_sd", "C3_guess_sd", "C4_guess_sd", "C5_guess_sd",

39 "sd_sigma_guess_sd", "n_alpha", and "n_beta". The values

40 corresponding to "sd_sigma_guess_mean" and "sd_sigma_guess_sd"

41 are lists or 1-d arrays with 2 elements, where both elements

42 are positive numbers. Values corresponding to other keys are

43 positive scalars.

44
45 Returns

46 -------

47
48 A PyMC3 model

49 """

50
51 #!{boundnormstart}

52 PosNormal = pm.Bound(pm.Normal, lower = 0.0)

53 #!{boundnormend}

54
55 #!{miscvarsstart}

56 num_curves = len(epsilon_p)

57 log_epsilon_p_dot = np.log(epsilon_p_dot)

58 #!{miscvarsend}

59
60 #!{withmodelstart}

61 model = pm.Model()

62
63 with model:

64 #!{withmodelend}

65
66 #!{priorsstart}

67 C0 = PosNormal("C0",

68 mu = prior_params["C0_guess_mean"],

69 sd = prior_params["C0_guess_sd"])

70
71 C1 = PosNormal("C1",

72 mu = prior_params["C1_guess_mean"],

73 sd = prior_params["C1_guess_sd"])

74
75 C3 = PosNormal("C3",

76 mu = prior_params["C3_guess_mean"],

77 sd = prior_params["C3_guess_sd"])

78
79 C4 = PosNormal("C4",

80 mu = prior_params["C4_guess_mean"],

81 sd = prior_params["C4_guess_sd"])

82
83 C5 = PosNormal("C5",

84 mu = prior_params["C5_guess_mean"],

85 sd = prior_params["C5_guess_sd"])

86
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87 n = pm.Beta("n",

88 alpha = prior_params["n_alpha"],

89 beta = prior_params["n_beta"])

90
91 sd_sigma = PosNormal("sd_sigma",

92 mu = np.asarray(prior_params["sd_sigma_guess_mean"]),

93 sd = np.asarray(prior_params["sd_sigma_guess_sd"]),

94 shape = 2)

95 #!{priorsend}

96
97 #!{likstart}

98 for i in range(num_curves):

99 pm.Normal("sigma_curve{}".format(i),

100 mu = za_bcc(epsilon_p[i],

101 log_epsilon_p_dot[i], T[i],

102 C0, C1, C3, C4, C5, n,

103 exp_func = pm.math.exp),

104 sd = (sd_sigma[0]

105 if (epsilon_p_dot[i] <= 1.0)

106 else sd_sigma[1]),

107 observed = sigma[i])

108 #!{likend}

109
110 #!{retstart}

111 return model

112 #!{retend}
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List of Symbols, Abbreviations, and Acronyms
βTQ Taylor-Quinney coefficient

θ vector of Bayesian model parameters

θerr vector of nuisance parameters

θmdl vector of parameters of the predictive part of a Bayesian model

Ûεp plastic strain rate

Ûεp0 reference plastic strain rate, 1/s

εp plastic strain

D experimental data or other known quantity on which parameter
vector θ is supposed to depend

e material state (e.g., a combination of the plastic strain, strain rate,
and temperature at a point)

ρ density

σJC flow stress according to the Johnson-Cook model

σmdl flow stress according to some predictive model

σZ A,BCC flow stress according to the Zerilli-Armstrong (BCC) model

A fitting parameter of Johnson-Cook model that represents yield
strength at reference strain rate and room temperature

B fitting parameter of Johnson-Cook model that represents strain
hardening prefactor at reference strain rate and room temperature

C fitting parameter of Johnson-Cook model that represents strain
hardening effects due to strain rate

c(T) specific heat as function of temperature

Ci fitting parameter of Zerilli-Armstrong (BCC) model, where i ∈

{0,1,3,4,5}
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farea fraction such that fareaσ
ic
1 ε

ic
p,1, where (ε ic

p,1, σ
ic
1 ) is the first point of

a stress-strain curve, equals the area under the missing part of a
stress-strain curve over the interval [0, ε ic

p,1]

ic index associated with a stress-strain curve

m fitting parameter of Johnson-Cook model that represents thermal
softening exponent

N number of data points

n fitting parameter of Johnson-Cook and Zerilli-Armstrong models
that represents strain hardening exponent

nc number of stress-strain curves

nα,nβ parameters of the beta distribution used as a prior for fitting pa-
rameter n

Nic number of data points for stress-strain curve ic

p(x |d1, d2, . . . ) PDF of a quantity x given quantities d1, d2, . . .

p(x) PDF or prior PDF of a quantity x

SDσ standard deviation of the noise in a flow stress measurement

SDσ,1 standard deviation of the noise in a flow stress measurement from
a quasi-static experiment

SDσ,2 standard deviation of the noise in a flow stress measurement from
a high-strain-rate experiment

T temperature

T∗ normalized temperature in Johnson-Cook model

Tmelt melting temperature

Troom room temperature

1-D one-dimensional

ARL CCDC Army Research Laboratory
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BCC body-centered cubic

HDI highest density interval

HMC Hamiltonian Monte Carlo

IPM interval predictor model

MCMC Markov Chain Monte Carlo

MIDAS Material Implementation, Database, and Analysis Source

NUTS no U-turn sampler

PDF probability density function

PFP pushed forward posterior

PPD posterior predictive distribution

RHA rolled homogeneous armor
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