
ARL-TR-8827• SEP 2019

Quantifying Uncertainties in
Parameterizations of StrengthModels of Rolled
Homogeneous Armor: Part 2, R-Based
Workflow
by JJ Ramsey

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorse-
ment or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

ARL-TR-8827• SEP 2019

Quantifying Uncertainties in
Parameterizations of StrengthModels of Rolled
Homogeneous Armor: Part 2, R-Based
Workflow
by JJ Ramsey
Computational and Information Sciences Directorate, CCDC Army Research
Laboratory

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704‐0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704‐0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202‐
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a
currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD‐MM‐YYYY)

2. REPORT TYPE

3. DATES COVERED (From ‐ To)

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

18. NUMBER
 OF
 PAGES

	

19a. NAME OF RESPONSIBLE PERSON

a. REPORT

b. ABSTRACT

c. THIS PAGE

19b. TELEPHONE NUMBER (Include area code)

 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

September 2019 Technical Report

Quantifying Uncertainties in Parameterizations of Strength Models of Rolled
Homogeneous Armor: Part 2, R-Based Workflow

JJ Ramsey

ARL-TR-8827

Approved for public release; distribution is unlimited.

October 2017-September 2019

US Army Combat Capabilities Development Command Army Research Laboratory
ATTN: FCDD-RLC-NB
Aberdeen Proving Ground, MD 21005-5066

This report describes a workflow, based on the Bayesian software tool RStan and the R language, that has been used to obtain
information on strength model parameters in rolled homogeneous armor that can be used in uncertainty propagation analyses.
This workflow is supplemented with an illustration of how an approximate interval predictor model can be implemented using
the R package lpSolve. It is hoped that this workflow may serve as a source of example code for other CCDC Army Research
Laboratory researchers who wish to obtain results that facilitate uncertainty quantification.

uncertainty quantification, Bayesian analysis, Johnson-Cook, Zerilli-Armstrong, RStan, interval predictor model

151

James J Ramsey

410-278-5614Unclassified Unclassified Unclassified UU

ii

Contents

List of Figures v

List of Tables vi

1. Introduction 1

2. Obtaining Software Tools 6

3. Working Directories 11

4. Data Files 11

5. Testing Models with Simulated Data 13
5.1 Functions for Testing Models 14
5.2 Testing Johnson-Cook Model with Simulated Data 17
5.3 Testing Zerilli-Armstrong (BCC) Model with Simulated Data 28

6. Fitting Strength Models to Experimental Data 38
6.1 Functions for Fitting Models 38
6.2 Preprocessing Experimental Data 41
6.3 Fitting Johnson-Cook Model to Experimental Data 47
6.4 Fitting Zerilli-Armstrong (BCC) Model to Experimental Data 51
6.5 Applying Approximate Interval Predictor Model Approach 56

7. Postprocessing of Model Fits 63
7.1 Plotting Priors with Posteriors 63
7.2 Plotting Posteriors for Different Values of βTQ and farea 69
7.3 Plotting PPDs and PFPs with Experimental Data 73
7.4 Determining Correlation Matrices 80

8. Conclusions 86

9. References 88

iii

Appendix A. Data Tables 91

Appendix B. Brief Introduction to R 102

Appendix C. R Code for Bayesian Analysis 122

Appendix D. Stan Specification Files 134

List of Symbols, Abbreviations, and Acronyms 140

Distribution List 142

iv

List of Figures
Fig. 1 Plots of flow stress σ vs. plastic strain εp for RHA from MIDAS, with

the plastic strain rate denoted as Ûεp and the initial sample temperature
Tinit ..2

Fig. 2 Main window of Anaconda Navigator, with the “Home” tab shown and
the “Environments” tab circled in a dashed red line.........................7

Fig. 3 Main window of Anaconda Navigator, with the “Environments” tab
shown and the “Create” button circled in a dashed red line................8

Fig. 4 Dialog window for creating environments with Anaconda Navigator,
with default settings..8

Fig. 5 Dialog window for creating environments with Anaconda Navigator,
with settings changed to create an environment named “Bayes” for R ..8

Fig. 6 Main window of Anaconda Navigator, with the “Environments” tab
showing a list of available software packages that are not installed. The
entry for the “Bayes” environment and the drop-down list with the entry
“Not installed” are both circled in a dashed red line.........................9

Fig. 7 Close-up of main window of Anaconda Navigator, with the
“Environments” tab showing the available software package with the
string “rstan” in its name. The search box and package name are circled
in a dashed red line. ..9

Fig. 8 Main window of Anaconda Navigator, with the “Home” tab shown and
the “Environments” tab circled in a dashed red line. Applications for the
“Bayes” environment are shown... 10

Fig. 9 Plot of simulated data used to test the Johnson-Cook RStan model.... 23

Fig. 10 Storage of data for stress-strain curves in the Stan vectors epsilon_p,
sigma, T, and curve_sizes .. 25

Fig. 11 Plot of simulated data used to test the Zerilli-Armstrong (BCC) RStan
model ... 32

Fig. 12 Temperatures as estimated in R along stress-strain curves with the initial
temperatures and strain rates shown, given the values of βTQ and farea
in Table 1... 45

Fig. 13 Histograms approximating the posterior marginal PDFs of
Johnson-Cook model parameters and nuisance parameters SDσ,1 and
SDσ,2. These are generated from samples of an RStan MCMC run with
βTQ = 0.9, farea = 0.75, and weakly informative priors. Priors are
superimposed over the histograms. ... 67

v

Fig. 14 Histograms approximating the posterior marginal PDFs of
Johnson-Cook model parameters and nuisance parameters SDσ,1 and
SDσ,2. These are generated from samples of RStan MCMC runs with
the values of βTQ and farea in Table 1, and weakly informative priors.71

Fig. 15 Stress-strain data for initial sample temperatures of 298 K, along with
estimates of the mean and the 95% HDI for PPDs generated from
samples of RStan MCMC runs for the Johnson-Cook model with
weakly informative priors. The 95% HDI for βTQ = 0.9 and
farea = 0.75 is plotted as a shaded region between the minimum and
maximum of the HDI. ... 81

Fig. 16 Stress-strain data for high initial sample temperatures along with
estimates of the mean and the 95% HDI for PPDs generated from
samples of RStan MCMC runs for the Johnson-Cook model with
weakly informative priors. The 95% HDI for βTQ = 0.9 and
farea = 0.75 is plotted as a shaded region between the minimum and
maximum of the HDI. ... 82

Fig. 17 Stress-strain data for initial sample temperatures of 298 K, along with
estimates of the 95% HDI for PFPs generated from samples of RStan
MCMC runs for the Johnson-Cook model with weakly informative
priors. The 95% HDI for βTQ = 0.9 and farea = 0.75 is plotted as a
shaded region between the minimum and maximum of the HDI. 83

Fig. 18 Stress-strain data for high initial sample temperatures along with
estimates of the 95% HDI for PFPs generated from samples of RStan
MCMC runs for the Johnson-Cook model with weakly informative
priors. The 95% HDI for βTQ = 0.9 and farea = 0.75 is plotted as a
shaded region between the minimum and maximum of the HDI. 84

Fig. B-1 Example plots used to illustrate the plotting features of R 116

List of Tables
Table 1 Possible combinations of values of βTQ and farea used in temperature

estimation ..3

Table A-1 Specific heat of BCC iron versus temperature 92

Table A-2 Flow stress versus plastic strain of RHA for initial temperature 77 K
and plastic strain rate 0.001/s... 93

Table A-3 Flow stress versus plastic strain of RHA for initial temperature 77 K
and plastic strain rate 2500/s ... 94

Table A-4 Flow stress versus plastic strain of RHA for initial temperature 298 K
and plastic strain rate 0.001/s... 95

vi

Table A-5 Flow stress versus plastic strain of RHA for initial temperature 298 K
and plastic strain rate 0.1/s .. 96

Table A-6 Flow stress versus plastic strain of RHA for initial temperature 298 K
and plastic strain rate 3500/s ... 97

Table A-7 Flow stress versus plastic strain of RHA for initial temperature 298 K
and plastic strain rate 7000/s ... 98

Table A-8 Flow stress versus plastic strain of RHA for initial temperature 473 K
and plastic strain rate 3000/s ... 99

Table A-9 Flow stress versus plastic strain of RHA for initial temperature 673 K
and plastic strain rate 3000/s ... 100

Table A-10 Flow stress versus plastic strain of RHA for initial temperature 873 K
and plastic strain rate 3500/s ... 101

vii

1. Introduction
This report describes in detail a workflow for Bayesian analysis that uses the R
language1 and a Bayesian software tool designed to interface with that language,
RStan.2 There are two intended audiences for this report. One audience is the set of
readers who have read the companion report3 and wish to know further details of
how to implement the analyses discussed within it. The other audience may not have
read that report, but is still somewhat familiar with the broad strokes of Bayesian
analysis and is looking for examples on how to implement it on something more
than a “toy” example. For those in this second audience (as well as those in the first
who need their memories refreshed), a few things are noted.

First, strength models for rolled homogeneous armor (RHA) are fit to the stress-
strain data described in Appendix A, which come from the Material Implementa-
tion, Database, and Analysis Source (MIDAS). These data consist of nc subsets,
where subset ic (ic ∈ [1,Nic]) is associated with plastic strain rate Ûε ic

p and temper-
ature T ic

init , which is the initial temperature of an unstrained experimental sample.
Each subset corresponds to one of the stress-strain curves shown in Fig. 1.

Second, the temperature rise during high-strain-rate deformation is approximately
taken into account through the following equations:

T ic
j − T ic

j−1 ≈
βTQ

ρc(T ic
j−1)

∫ ε icp, j

ε ic
p, j−1

σdεp (1)

T ic
1 − T ic

init ≈
βTQ

ρc(T ic
init)

fareaσ
ic
1 ε

ic
p,1, farea ∈ [0.5,1] (2)

Here, T ic
j−1, ε ic

p,j , and σic
j are, respectively, the temperature, plastic strain, and flow

stress of data point j in subset ic; βTQ is the Taylor-Quinney coefficient; ρ is the den-
sity; and c(T) is the specific heat, which is a function of temperature T . The integral
in Eq. 1 is the area under the portion of stress-strain curve ic that is over the strain
interval [ε ic

p,j−1, ε
ic
p,j]. The density is taken to be 7840 kg/m3, following Benck.4 The

specific heat values for body-centered cubic (BCC) iron, in Appendix A, are as-
sumed to approximate the specific heat values of RHA. The parameter farea takes
into account that when ε ic

p,1 , 0, T ic
1 , T ic

init . While βTQ is often taken to be equal
to 0.9 for metals, there is a wide spread of values found in the literature, with βTQ

sometimes found to be as low as 0.4.5 Estimation of farea amounts to educated

1

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
p

250

500

750

1000

1250

1500

1750

2000

 (M
Pa

)

Tinit = 77 K, p = 0.001/s
Tinit = 77 K, p = 2500.0/s
Tinit = 298 K, p = 0.1/s
Tinit = 298 K, p = 0.001/s
Tinit = 298 K, p = 3500.0/s

Tinit = 298 K, p = 7000.0/s
Tinit = 473 K, p = 3000.0/s
Tinit = 673 K, p = 3000.0/s
Tinit = 873 K, p = 3500.0/s

Fig. 1 Plots of flow stress σ vs. plastic strain εp for RHA from MIDAS, with the plastic strain
rate denoted as Ûεp and the initial sample temperature Tinit

2

guesswork. Accordingly, temperatures are estimated for a few combinations of rea-
sonable estimates of βTQ and farea, shown in Table 1.

Table 1 Possible combinations of values of βTQ and farea used in temperature estimation

βTQ farea

0.9 0.75
0.9 0.55
0.6 0.55
0.9 0.95
0.6 0.95

Third, the strength models to be fit are the Johnson-Cook model6 and the Zerilli-
Armstrong model for BCC materials.7 These two models take the following forms,

σJC(εp, Ûεp,T∗; θJC) = (A + Bεn
p)[1 + C ln(Ûεp/ Ûεp0)][1 − (T∗)m] (3)

T∗ = (T − Troom)/(Tmelt − Troom) (4)

σZ A,BCC(εp, Ûεp,T ; θZ A,BCC) = C0 + C1 exp[(−C3 + C4 ln(Ûεp/ Ûεp0))T] + C5ε
n
p (5)

where σJC is the flow stress according to the Johnson-Cook model; σZ A,BCC is
the flow stress according to the Zerilli-Armstrong (BCC) model; εp is the plastic
strain; Ûεp is the plastic strain rate; Ûεp0 = 1/s; T is the temperature; Troom is the
room temperature; Tmelt is the melting temperature; A, B, n, C, and m are fitting
parameters of the Johnson-Cook model; θJC = (A,B,n,C,m); C0, C1, C3, C4, C5,
and n are fitting parameters of the Zerilli-Armstrong (BCC) model; and θZ A,BCC =

(C0,C1,C3,C4,C5,n). (There is no parameter C2; such a parameter belongs to the
face-centered cubic version of the Zerilli-Armstrong model.8)

Fourth, because the experimental data for low strain rates come from a different
measurement source than those for a high strain rate, the errors associated with
each of them are different. The errors from both are assumed to be normally dis-
tributed, but the standard deviation of the noise from the low-strain-rate source is
taken to be SDσ,1, while that from the high-strain-rate source is taken to be SDσ,2.
These two standard deviations are taken to be nuisance parameters whose values
are determined as part of Bayesian analysis.

Fifth, this report contains a workflow for sampling the posterior predictive distribu-

tion9 (PPD) and the pushed forward posterior10 (PFP), which can be used to check
how well a model’s predictions agree with the data. For the Bayesian models con-

3

sidered in this report, a sample from the PPD associated with experimental inputs
ε ic

p,j , Ûε
ic
p , and T ic

j , σic,pred
j (ε ic

p,j, Ûε
ic
p ,T

ic
j), may be obtained as follows:

σ
ic,pred
j (ε ic

p,j, Ûε
ic
p ,T

ic
j) ∼ normal(σmdl(ε

ic
p,j, Ûε

ic
p ,T

ic
j ; θmdl),SDσ,k)

{θmdl,SDσ,k} ∼ Dpost

(6)

Here, Dpost is the posterior distribution in Bayesian analysis, k = 1 for strain
rates of 1/s or less, and k = 2 otherwise. Subscript “mdl” stands in for “JC”
or “Z A,BCC.” This sampling statement implies that a sample from the PPD is
obtained by sampling θmdl and SDσ,k from the posterior distribution, substituting
that sample into the likelihood distribution (i.e., normal(σmdl(. . .),SDσ,k)) and then
sampling from that likelihood. A sample of the PFP of the Bayesian models con-
sidered in this report may be obtained as follows:

σ
ic,p f p
j (ε ic

p,j, Ûε
ic
p ,T

ic
j) ∼ σmdl(ε

ic
p,j, Ûε

ic
p ,T

ic
j ; θmdl), if θmdl ∼ Dpost (7)

This sampling statement implies that a sample from the PFP is obtained by sampling
θmdl from the posterior distribution and substituting that sample into the predictive
model σmdl(. . .).

Sixth, the Bayesian tool in this report implements Markov Chain Monte Carlo
(MCMC), which produces one or more chains of samples from the posterior distri-
bution in Bayesian analysis.9,11 The particular MCMC algorithm used is Hamilto-
nian Monte Carlo12 with the no-U-turn sampler (NUTS).13

Finally, an alternative approach, based on an interval predictor model (IPM),14,15 is
used to estimate the parameter uncertainty. An IPM is simply a function that returns
an interval as its output rather than a single value. For example, given a function to
predict the flow stress, σmdl(e,θmdl) (where e ≡ (εp, Ûεp,T)), and a set Θ, the interval
within which the flow stress is estimated to lie is [σmin(e;Θ), σmax(e;Θ)], where

σmin(e;Θ) = min
θmdl∈Θ

σmdl(e,θmdl) (8)

σmax(e;Θ) = max
θmdl∈Θ

σmdl(e,θmdl) (9)

The setΘ is chosen so as to keep the intervals from the IPM reasonably tight, given

4

known data points {eic
j , σ

ic
j }. For example, Θ may be chosen such that

Θ = arg min
Θ′

nc∑
ic=1

Nic∑
j=1

[
σmax(eic

j ;Θ′) − σmin(eic
j ;Θ′)

]
(10)

The minimization of Eq. 10 under the constraint

σmin(eic
j ;Θ) ≤ σic

j ≤ σmax(eic
j ;Θ),∀ic ∈ [1,nc], j ∈ [1,Nic] (11)

may not be tractable, especially if there is no analytical solution to Eqs. 8 and 9, thus
requiring a nested optimization (i.e., at each iteration to solve Eq. 10, optimization
routines would need to be used to estimate σmin and σmax for each data point).
However, one may obtain a more tractable problem by approximating σmdl(e,θmdl)

with a first-order Taylor expansion about a point estimate of θmdl , θ0, and taking Θ
to be a hyperrectangle with corners θ0 − ∆θmin and θ0 + ∆θmax . If gσmdl

(e) is the
gradient of σmdl(. . .) with respect to θmdl evaluated at e and θ0, and |gσmdl

(e)| is
the elementwise absolute value of gσmdl

(e), then Eqs. 8 and 9 can be approximated
as follows:

σmin(e;Θ) ≈ σmdl(e,θ0) −
1
2

(
gσmdl

(e) + |gσmdl
(e)|

)T
∆θmin

+
1
2

(
gσmdl

(e) − |gσmdl
(e)|

)T
∆θmax

(12)

σmax(e;Θ) ≈ σmdl(e,θ0) −
1
2

(
gσmdl

(e) − |gσmdl
(e)|

)T
∆θmin

+
1
2

(
gσmdl

(e) + |gσmdl
(e)|

)T
∆θmax

(13)

Here, a superscript T indicates the transpose. Given Eqs. 12 and 13 along with a
fixed θ0, Eq. 10 becomes

∆θmin,∆θmax = arg min
∆θ′min,∆θ

′
max


nc∑

ic=1

Nic∑
j=1
|gσmdl

(eic
j)|


T

(∆θ′min + ∆θ
′
max) (14)

Together, Eqs. 11–14 form a constrained minimization problem that can be solved
through linear programming.

Because this report is aimed primarily at those who have had little exposure to
Bayesian analysis, it is written mostly in a step-by-step tutorial style, with the R

5

code needed for analysis shown explicitly. Readers unfamiliar with R may wish to
view Appendix B. Excerpts and variables from program code, as well as filenames,
are written in a fixed-width font like this.

2. Obtaining Software Tools
There are a variety of ways to obtain RStan,16 but here, instructions are presented
for how to obtain it via the freely available Anaconda distribution.17 (It is presumed
here that any permissions needed to install software on one’s computer have already
been obtained, and that one can configure any anti-malware tools on that computer
so that they will not interfere with launching of MCMC chains in parallel, an issue
that has been a problem for some Stan users.18) First, if the distribution has not been
installed already (and on certain CCDC Army Research Laboratory [ARL] work-
stations and computing clusters it may already be installed), then one should follow
the installation instructions for Anaconda available online.19 Since the details of
these instructions depend on one’s computing platform, they are not discussed here.
Once the distribution is installed, one can use the Anaconda Navigator GUI to in-
stall various software that one may need. When one first starts Navigator,20 one
sees a window that looks like the one in Fig. 2. One can then click on the “Environ-
ments” tab (shown circled in a dashed red line), and then one should see a window
like the one in Fig. 3.

At this point, one can then create a so-called “environment”, which, loosely speak-
ing, may be described as a container of software that one can maintain without
it interfering with other software on one’s system. To create an environment, one
should first click on the “Create” button (shown circled in a dashed red line). This
should produce a dialog window that looks like the one in Fig. 4. To provide an
environment for R named “Bayes”, the dialog window should look like Fig. 5.

Once the environment has been created, one can then install RStan. One first goes
to the “Environments” tab, clicks on “Bayes”, and then selects “Not installed” from
the drop-down list over the list of software packages. The Anaconda Navigator
window should then look like Fig. 6. From here, one can search for packages and
click the check boxes next to the package(s) one wishes to install. For example, to
install RStan, one can search for “rstan” and click the check box next to “r-rstan”
(not just “rstan”!), which looks like Fig. 7.

6

Fig. 2 Main window of Anaconda Navigator, with the “Home” tab shown and the “Environ-
ments” tab circled in a dashed red line

To finish installing, one clicks on the "Apply" button that appears at the lower right
corner of the Navigator window. This also installs any packages on which RStan
depends. To do the plotting and analysis described in later sections, one should
install the packages “r-hdinterval” and “r-lpsolve” as well. This is needed for later
calculations.

If one clicks on the “Home” tab in Anaconda Navigator (the tab just above the
“Environments” tab) and chooses the item “Bayes” from the drop-down menu next
to the text “Applications on”, one can see a window like the one in Fig. 8. From
this window, one can launch Jupyter Notebook,21 where one can write and execute
R code in an incremental, piecemeal fashion and intersperse the code with text
explaining one’s intended workflow. One can also install and then launch RStudio,22

an integrated development environment for R.

The aforementioned RStudio not only has syntax highlighting for R, but also for
the Stan language.22 For those who use the text editors Emacs or Vim, syntax high-
lighting for the Stan language is available as well.23,24

7

Fig. 3 Main window of Anaconda Navigator, with the “Environments” tab shown and the
“Create” button circled in a dashed red line

Fig. 4 Dialog window for creating environments with Anaconda Navigator, with default set-
tings

Fig. 5 Dialog window for creating environments with Anaconda Navigator, with settings
changed to create an environment named “Bayes” for R

8

Fig. 6 Main window of Anaconda Navigator, with the “Environments” tab showing a list of
available software packages that are not installed. The entry for the “Bayes” environment and
the drop-down list with the entry “Not installed” are both circled in a dashed red line.

Fig. 7 Close-up of main window of Anaconda Navigator, with the “Environments” tab showing
the available software package with the string “rstan” in its name. The search box and package
name are circled in a dashed red line.

9

Fig. 8 Main window of Anaconda Navigator, with the “Home” tab shown and the “Environ-
ments” tab circled in a dashed red line. Applications for the “Bayes” environment are shown.

10

3. Working Directories
It is presumed that all code and data in the following analyses are in sub-
directories immediately below some user-chosen base directory. Subdirectory
stan_model_specs contains all Stan model specification files. Subdirectory R
is the working directory from which all R code is sourced and executed. The sub-
directory MIDAS_data contains the stress-strain data from MIDAS described in
Appendix A, and the subdirectory Other_data contains other files that can be
processed with multiple programming languages.

4. Data Files
The original data from MIDAS have been stored in a set of comma-separated value
(CSV) files, with one file for a given strain rate and initial temperature. The data
from these files are shown in Appendix A. For each file, the first column is the
plastic strain (so no conversion from total strain to plastic strain is needed here), and
the second column is the true stress in megapascals. There are no column headings
in the CSV files. The naming convention for each file indicates the temperature and
strain rate for which the data have been determined. For example, in the filename
T298K_edot0.1_per_s.csv, “T298K” indicates that the initial temperature
is 298 K, and “edot0.1_per_s” indicates that the strain rate is 0.1/s.

The Other_data directory mentioned in Section 3 contains a CSV file named
Austin_Specific_Heat_BCC_Iron.csv that has the specific heat data as
a function of temperature for BCC iron. The first column is the absolute temperature
in kelvin, and the second column is the specific heat in J/(kg · K). The data from
this file are also in Appendix A.

Also in the Other_data directory are JavaScript Object Notation (JSON) files
used for the parameters for priors, as well as some other miscellaneous data. The
reason for putting these parameters into files is that they are used repeatedly in both
the process of fitting models and in later data analysis. The reason for using JSON
files in particular is that they are human-readable text files that can easily be read
into both R and Python sessions, and thus can be used not only in the workflow
discussed in this report but in the Python workflow discussed in Ramsey.25

Next are the contents of the data file JC_priors.json, which pertains to the
weakly informative priors of the Johnson-Cook model discussed in Ramsey.3

11

{

"A_guess_mean" : 1000.0,

"A_guess_sd" : 333.333333333333,

"B_guess_mean" : 1000.0,

"B_guess_sd" : 333.333333333333,

"C_guess_mean" : 0.001,

"C_guess_sd" : 0.000333333333333333,

"m_guess_mean" : 1.0,

"m_guess_sd" : 0.333333333333333,

"n_alpha" : 1.1,

"n_beta" : 1.1,

"sd_sigma_guess_mean" : [100.0, 100.0],

"sd_sigma_guess_sd" : [33.3333333333333, 33.3333333333333]

}

Between the curly braces is a comma-separated list of key-value pairs, where the
keys are strings, the values are either numbers or lists of numbers in brackets, and
a colon is used to separate the keys and values. Here, the keys correspond to data
variables in the Stan specification file in Section D.1.

As discussed in Ramsey,3 a strongly informative prior may also be used for pa-
rameter A of the Johnson-Cook model. The mean and standard deviation of this
prior, based on experimental data from Benck,4 are stored in a JSON file named
JC_prior_A_Benck.json:

{

"A_guess_mean": 707.25,

"A_guess_sd": 10.63

}

There are also other quantities that are needed for the fit of the Johnson-Cook
model, and since these quantities are also used later, they are saved to a JSON
file, entitled JC_other_data.json:

{

"T_room" : 298.0,

"T_melt" : 1783.0,

"epsilon_p_dot_0" : 1.0

}

This file, of course, has the values of parameters Tmelt , Troom, and Ûεp0.

12

Parameters for the priors of the Zerilli-Armstrong (BCC) model are in the file
ZA_BCC_priors.json:

{

"C0_guess_mean" : 100.0,

"C0_guess_sd" : 33.3333333333333,

"C1_guess_mean" : 1000.0,

"C1_guess_sd" : 333.333333333333,

"C3_guess_mean" : 1e-3,

"C3_guess_sd" : 3.33333333333333e-04,

"C4_guess_mean" : 1e-05,

"C4_guess_sd" : 3.33333333333333e-06,

"C5_guess_mean" : 1000.0,

"C5_guess_sd" : 333.333333333333,

"n_alpha" : 1.1,

"n_beta" : 1.1,

"sd_sigma_guess_mean" : [100.0, 100.0],

"sd_sigma_guess_sd" : [33.3333333333333, 33.3333333333333]

}

The keys correspond to data variables in the Stan specification file in Section D.2.
The values associated with these keys make the priors of the Zerilli-Armstrong
(BCC) model weakly informative.

5. Testing Models with Simulated Data
A Bayesian model should be tested with simulated data, that is, data sampled from
the likelihood of the model given known model parameters and other model inputs,
which in this case are the strain, strain rate, and temperature. When one fits the
model back to these simulated data, the resulting point estimates for the model
parameters should be approximately the same as the parameter values that one used
to create the simulated data in the first place. If not, that means that the model should
be revised. Examples of this sort of testing are shown for both the Johnson-Cook
and Zerilli-Armstrong (BCC) models.

13

5.1 Functions for Testing Models
Some custom R functions, whose sources are in the file bayes-stress-strain-
utils.R in Appendix C, have been used in the testing of models described later
on. These functions are as follows:

• simulate_data, which is used to help generate the kind of simulated data
described previously, while accounting for the temperature rise estimated in
Eq. 1;

• gen_lin_interp_func, which is used to generate a function that lin-
early interpolates tabular data (in particular, the specific heat data in Ap-
pendix A);

• plot_stress_strain_curves, which creates a plot of several stress-
strain curves and writes it to a file; and

• save_to_rds, a wrapper around the saveRDS function, which saves an
R object to an R Data Serialization (RDS) file. This wrapper ensures that
any directories in the file path supplied to save_to_rds actually exist and
creates them if they do not.

The details of these functions may be mainly of interest to readers who are look-
ing for example code to use as a reference. However, the contents of the func-
tion simulate_data pertain more to the physics and mathematics of the sample
problem, so it is discussed in more detail. This function has the following argu-
ments:

• sigma_model_func, a function representing the strength model (e.g., σJC

or σZ A,BCC from Eqs. 3 and 5) that returns the flow stress and takes four argu-
ments: plastic strain, plastic strain rate, temperature, and some data structure
containing the model parameters (such as an R list with named elements)

• epsilon_p_max, the largest plastic strain for which stresses are calculated

• epsilon_p_dot, the plastic strain rate

• T_init, the initial temperature of the sample

14

• theta_model the model parameters of the strength model (e.g., θJC or
θZ A,BCC from Eqs. 3 and 5)

• beta_TQ, the Taylor-Quinney coefficient

• rho, the density of the sample

• specific_heat_func, a function that returns the specific heat for
a given temperature (which can be and later on is generated using
gen_lin_interp_func)

• curve_size, the number of data points in the stress-strain curve

The following statement creates a vector of length curve_size, epsilon_p,
which contains evenly spaced strain values from 0 to epsilon_p_max:

epsilon_p <- seq(0.0, epsilon_p_max, length.out = curve_size)

The next two statements create the vectors temperature and sigma, which are
to hold sequences of temperatures and stresses, respectively.* Like epsilon_p,
these have length curve_size. At this point, the elements of these vectors are all
zero.

temperature <- numeric(curve_size)

sigma <- numeric(curve_size)

After this come the parts of the function that generate simulated temperature and
stress data. There is a potential circularity here. In general, the temperature depends
upon the stress, but to calculate the stress from the strength model, one needs the
temperature. To work around this, the temperature in element i of temperature
is estimated using the stress in element i−1 of sigma. To bootstrap this process, the
first elements of temperature and sigma are set using the initial temperature
T_init:

temperature[1] <- T_init

sigma[1] <- sigma_model_func(

epsilon_p[1],

epsilon_p_dot,

temperature[1],

*In R, the variable T is predefined to be equivalent to the Boolean value TRUE, so it is not used
as a variable for temperature.

15

theta_model

)

At this point, the rest of the elements of temperature and sigma can be set as
follows:

for (i in 2:curve_size) {

Estimate of area under stress-strain curve from

epsilon_p[i-1] to epsilon_p[i].

area_under_curve <- sigma[i-1]*(epsilon_p[i] - epsilon_p[i-1])

temp_rise <- beta_TQ*area_under_curve/

(rho*specific_heat_func(temperature[i-1]))

temperature[i] <- temperature[i-1] + temp_rise

sigma[i] <- sigma_model_func(

epsilon_p[i],

epsilon_p_dot,

temperature[i],

theta_model

)

}

As the comment in this R code indicates, area_under_curve is an estimate
of the area under the portion of the stress-strain curve that is over the inter-
val [epsilon_p[i - 1], epsilon_p[i]]. This corresponds to the integral
in Eq. 1, with the integrand being approximated as a constant with the value
sigma[i - 1]. The temperature rise temp_rise also follows from Eq. 1.
Once the temperature rise is estimated, then it is straightforward to determine
temperature[i] and then sigma[i].

Finally, the function returns its values as a list with named elements as follows:

return (list(

T = temperature,

epsilon_p = epsilon_p,

sigma = sigma

))

16

5.2 Testing Johnson-Cook Model with Simulated Data
First, one should load the RStan package (named rstan), if only to make sure it is
actually there. This may be done with the following line of R code:

library(rstan)

The output of this is as follows:

Loading required package: ggplot2

Loading required package: StanHeaders

rstan (Version 2.17.2, GitRev: 2e1f913d3ca3)

For execution on a local, multicore CPU with excess RAM we recommend calling

options(mc.cores = parallel::detectCores()).

To avoid recompilation of unchanged Stan programs, we recommend calling

rstan_options(auto_write = TRUE)

One of the previous messages, the one about setting mc.cores, basically advises
setting up RStan so that, for example, if one has at least four cores in one’s CPU
and one is running MCMC with, say, four chains, then the chains are generated in
parallel, with one chain per core. This is done later on.

At this point, a Stan specification file for the Johnson-Cook model should have been
written separately in a text editor. Here, the file is named jc.stan, shown in Ap-
pendix D. As discussed in Section 3, it is in the directory stan_model_specs,
which is a sibling to the directory R, the working directory where R code is be-
ing executed. Accordingly, stan_model_specs is in the parent of the working
directory, and in R, this working directory can be determined:

working_dir <- getwd()

The parent of the working directory is determined in R as follows:

parent_dir <- dirname(working_dir)

The full path to the Stan specification file jc.stan can then be specified as fol-
lows:

path_to_jc_stan_file <- file.path(parent_dir, "stan_model_specs", "jc.stan")

The file jc.stan can then be compiled into a stanmodel object named jc_model:

jc_model <- stan_model(path_to_jc_stan_file)

17

This compiling could have been done “behind the scenes” via the stan function
of the RStan package. However, it is usually better to do this as an explicit step, to
ensure that one has not made a syntax error in the specification. If there is such an er-
ror, then the compilation step fails, and one can then fix the specification file before
proceeding to the rest of the analysis. Even if the compilation has succeeded, there
may still be warnings, especially from the underlying C++ compiler that RStan
uses to create jc_model. Most warnings, especially one about auto_ptr being
deprecated, may be safely ignored, but out of caution it is best to at least read them.

To save the stanmodel object for future use, one can save it to an RDS file. This
file, named jc.rds, is stored in the subdirectory compiled_stan_models:

source("bayes-stress-strain-utils.R")

save_to_rds(jc_model, file.path("compiled_stan_models", "jc.rds"))

As mentioned before, the wrapper function save_to_rds ensures that the direc-
tory compiled_stan_models actually exists, and creates it if it does not.

One can use the readRDS function to bring the stanmodel object stored in
jc.rds into another R session. However, an RDS file of a stanmodel object
only works with R sessions done on the same system used to generate the RDS file,
or at least a system that is nearly identical.

Simulated stress-strain curves are to be created for several combinations of plastic
strain rate (epsilon_p_dot) and initial sample temperature (T_init), such as
those in the following R vectors:

epsilon_p_dot <- c(0.001, 0.1, 3500.0, 7000.0, 3000.0, 3000.0)

T_init <- c(298.0, 298.0, 298.0, 298.0, 473.0, 673.0)

These values are taken from Meyer and Kleponis.26 They are in units of 1/s and
Kelvin, respectively. To account for the temperature rise during deformation of a
sample, the sample density ρ and the specific heat as a function of temperature c(T)

are needed. Density ρ can be trivially represented by the R variable rho:

rho <- 7840.0 # kg/m^3

Representing the specific heat function in R is less straightforward. As mentioned
in Section 4, the specific heat data in Appendix A have been collected into the CSV
file Austin_Specific_Heat_BCC_Iron.csv. This can be read into an R

18

session as follows:

Parent directory

parent_dir <- dirname(getwd())

c_data <- read.table(

file.path(parent_dir, "Other_data",

"Austin_Specific_Heat_BCC_Iron.csv"),

sep = ","

)

The content of the CSV file is stored in a table-like object named c_data. The
“sep = ","” argument indicates that the column entries are separated by, of
course, commas. Because the simulated stress data are supposed to be in mega-
pascals, the specific heat values need to be in compatible units. Accordingly, the
second column of c_data, which contains these values, is modified as follows:

Conversion factor from MPa to Pa

MPa_to_Pa <- 1e6

c_data[,2] <- c_data[,2]/MPa_to_Pa

After this is done, a function that estimates the specific heat as a function of tem-
perature can be generated as follows:

c_func <- approxfun(c_data, rule = 2)

The previous function c_func linearly interpolates the specific heat data from
c_data. In the unlikely event that extrapolation from the data is needed, the ar-
gument “rule = 2” allows for this, so that if the temperature is greater than
max(c_data[,1]), then c_func returns max(c_data[,2]). The function
gen_lin_interp_func from bayes-stress-strain-utils.R in Ap-
pendix C encapsulates most of the previous steps used to obtain c_func and is
used for obtaining such a function in later parts of this report.

To create simulated data for the Johnson-Cook model, one needs an R function
specifying this model. However, rather than rewrite this function from scratch, one
can use the function expose_stan_functions to reuse the jc function that
is already in the specification file jc.stan. Since expose_stan_functions
is from RStan, the RStan package must be loaded:

library(rstan)

19

The function expose_stan_functions needs the stanmodel object cre-
ated from the file jc.stan. Since this object has already been saved to the file
jc.rds in the directory compiled_stan_models, it can be brought back to
the R session as follows:

jc_model <- readRDS(file.path("compiled_stan_models", "jc.rds"))

At this point, the function expose_stan_functions can now be used:

expose_stan_functions(jc_model)

Now there is a function jc in the R session that is essentially a copy of the one
specified in jc.stan.

To generate the data for several simulated stress-strain curves, the func-
tion simulate_data (shown in Appendix C within the R source file
bayes-stress-strain-utils.R) is used. It needs a function that not only
represents the strength model but has certain arguments in a certain order. Since
the jc function does not have these arguments in just the right form, it needs to be
accessed indirectly, via a wrapper function:

sigma_model_func <- function(epsilon_p,

epsilon_p_dot,

temperature,

theta_model) {

log_epsilon_p_dot <-

log(epsilon_p_dot/theta_model[["epsilon_p_dot_0"]])

return (jc(

epsilon_p,

log_epsilon_p_dot,

(temperature - theta_model[["T_room"]])/

(theta_model[["T_melt"]] - theta_model[["T_room"]]),

theta_model[["A"]],

theta_model[["B"]],

theta_model[["n"]],

theta_model[["C"]],

theta_model[["m"]]

))

}

The model parameters needed by sigma_model_func are shown:

theta_model <- list(

A = 780.0, # MPa

B = 780.0, # MPa

n = 0.106,

20

C = 0.004,

m = 1.0,

T_melt = 1783.0, # Kelvin

T_room = 298.0, # Kelvin

epsilon_p_dot_0 = 1.0 # per s

)

The values of these parameters happen to be from Meyer and Kleponis,26 but in
principle, they could be set to any plausible values.

At this point, nearly all the information needed for simulate_data has been
input to an R session. Just before generating the simulated data, the seed for the
random number generator is set, so that the pseudorandom simulated data to be
generated are reproducible:

set.seed(12345)

The maximum value for εp and values for SDσ,1 and SDσ,2 should be set at this
point as well:

epsilon_p_max <- 0.2

sd_sigma <- c(1.0, 10.0)

Finally, the simulated data can be generated as follows. Here, beta_TQ, the Taylor-
Quinney coefficient, is set to zero for low strain rates to simulate the lack of a tem-
perature rise at those rates. Similarly, curr_sd_sigma is either SDσ,1 or SDσ,2,
depending on the strain rate.

source("bayes-stress-strain-utils.R")

Initializing to empty lists

sigma <- list()

epsilon_p <- list()

temperature <- list()

min_curve_size <- 40

max_curve_size <- 50

for (i in 1:length(epsilon_p_dot)) {

if (epsilon_p_dot[i] <= 1.0) {

beta_TQ <- 0.0

curr_sd_sigma <- sd_sigma[1]

} else {

beta_TQ <- 0.9

curr_sd_sigma <- sd_sigma[2]

}

21

Sets curve_size to a random integer between min_curve_size

and max_curve_size

curve_size <- sample(min_curve_size:max_curve_size, 1)

curr_data <- simulate_data(

sigma_model_func,

epsilon_p_max,

epsilon_p_dot[i],

T_init[i],

theta_model,

beta_TQ,

rho,

c_func,

curve_size

)

sigma[[i]] <- rnorm(n = curve_size,

mean = curr_data[["sigma"]],

sd = curr_sd_sigma)

epsilon_p[[i]] <- curr_data[["epsilon_p"]]

temperature[[i]] <- curr_data[["T"]]

}

Here, sigma, epsilon_p, and temperature are lists of vectors, and
sigma[[i]] and epsilon_p[[i]] are the stresses and strains for stress-strain
curve i. Furthermore, temperature[[i]] is a vector of temperatures, such
that temperature[[i]][j] is the temperature for data point j of stress-strain
curve i. The function rnorm is used to set sigma[[i]] to a vector of normally
distributed random values, such that element j of the resulting vector has mean
curr_data[["sigma"]][j] and standard deviation curr_sd_sigma.

As a sanity check, one may plot the simulated data to a “.pdf” file (in the directory
plot_files) with the function plot_stress_strain_curves (also from
bayes-stress-strain-utils.R in Appendix C). An example usage of this
function is shown:

plot_stress_strain_curves(file.path("plot_files",

"jc_simulated_data.pdf"),

epsilon_p_dot,

T_init,

epsilon_p, sigma,

space_for_legend = 0.0)

The resulting plot of the simulated data is in Fig. 9.

22

0.00 0.05 0.10 0.15 0.20

60
0

80
0

10
00

12
00

14
00

Tinit = 298 K, ε⋅p = 0.001/s
Tinit = 298 K, ε⋅p = 0.1/s
Tinit = 298 K, ε⋅p = 3500/s

Tinit = 298 K, ε⋅p = 7000/s
Tinit = 473 K, ε⋅p = 3000/s
Tinit = 673 K, ε⋅p = 3000/s

εp

σ
(M

P
a)

Fig. 9 Plot of simulated data used to test the Johnson-Cook RStan model

The simulated data can be saved to an RDS file in the directory
rds_data_files, as shown. These data are saved as a list that can be
used by the sampling function in RStan. Accordingly, variables pertaining to the
priors, that is, A_guess_mean, n_alpha, and so on, are included in these data,
using the JSON file JC_priors.json discussed in Section 4.

library(jsonlite)

save_to_rds(

c(

list(

num_curves = length(epsilon_p_dot),

curve_sizes = sapply(sigma, length),

epsilon_p_dot = epsilon_p_dot,

epsilon_p = unlist(epsilon_p),

sigma = unlist(sigma),

T = unlist(temperature),

23

T_melt = theta_model[["T_melt"]],

T_room = theta_model[["T_room"]],

epsilon_p_dot_0 = theta_model[["epsilon_p_dot_0"]]

),

read_json(file.path(parent_dir, "Other_data", "JC_priors.json"),

simplifyVector = TRUE)

),

file.path("rds_data_files", "jc_simulated_data.rds")

)

The first argument to save_to_rds is an R list with named elements, where
the name of each component corresponds to the name of a variable declared in
the data program block of jc.stan. This list is a concatenation of two lists.
In the second element of the first list, the function sapply applies the function
length to each component of the list sigma. This is used to set the element
named curve_sizes to a vector, such that curve_sizes[1] is the number of
data points in the first stress-strain curve, curve_sizes[2] is the number of data
points in the second stress-strain curve, and so on. The function unlist takes a list
of vectors and returns one long vector, such that the first length(sigma[[1]])
elements of unlist(sigma) are the elements of sigma[[1]], the next
length(sigma[[2]]) elements of unlist(sigma) are the elements of
sigma[[2]], and so on.1 This is done to accord with how data storage for
stresses, strains, and temperatures is specified in the file jc.stan, as illustrated in
Fig. 10, to workaround Stan’s lack of support for ragged arrays.27 The second list
is returned by a call to the function read_json from the jsonlite package.*

For the JSON files discussed in Section 4, this function returns a list with named
elements, where the names are the keys in the JSON files, and the values associ-
ated with those names are the values associated with the corresponding keys in the
JSON files. The argument “simplifyVector = TRUE” ensures that the brack-
eted sequences of numbers in the JSON file are translated into vectors in R, rather
than lists. This argument is needed because RStan requires that vector variables in
a Stan specification file be specified with R vectors.

To run MCMC, one loads the rstan package, if one has not already done so,
and then sets the mc.cores option so that chains can be generated in parallel as
follows:

library(rstan)

*If R has been installed according to the advice in Section 2, then the jsonlite package
should already be installed. Otherwise, it may be installed via R’s install.packages function.

24

...epsilon_p

Strains for
curve 1

Strains for
curve 2

...

Strains for
curve 3

Strains for curve
num_curves

...sigma

Stresses
for curve 1

Stresses
for curve 2

...

Stresses
for curve 3

Stresses for curve
num_curves

...T

Temperatures
for curve 1

Temperatures
for curve 2

...

Temperatures
for curve 3

Temperatures for
curve num_curves

...curve_sizes

Num. data pts.
in curve 1

Num. data pts.
in curve 2

Num. data pts.
in curve 3

Num. data pts.
in curve
num_curves

Fig. 10 Storage of data for stress-strain curves in the Stan vectors epsilon_p, sigma, T,
and curve_sizes

25

options(mc.cores = parallel::detectCores())

At this point, the Johnson-Cook model may be loaded into the R session, if it has
not been loaded already, and the simulated data may be loaded as well:

jc_model <- readRDS(file.path("compiled_stan_models", "jc.rds"))

my_data <- readRDS(file.path("rds_data_files",

"jc_simulated_data.rds"))

Finally, one fits the model to the simulated data via the sampling function of
RStan, as shown. For the sake of reproducibility, the seed for random number gen-
eration is set via the seed argument of the sampling function.

jc_fit <- sampling(jc_model,

data = my_data,

seed = 12345)

The MCMC results have been captured in a stanfit object named jc_fit. One
may obtain summary statistics from this object as follows:

print(jc_fit, digits_summary = 6)

The value of digits_summary in the arguments of the above print function
call indicates the number of digits shown after the decimal point in the printed
statistics. The following is the output:

Inference for Stan model: jc.

4 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 25% 50%

A 781.150694 0.012297 0.777720 779.696602 780.629309 781.151375

B 779.601746 0.014175 0.896483 777.921287 778.998131 779.582458

n 0.106358 0.000005 0.000297 0.105769 0.106162 0.106355

C 0.004041 0.000001 0.000034 0.003972 0.004019 0.004043

m 0.997633 0.000048 0.002614 0.992519 0.995850 0.997607

sd_sigma[1] 1.137823 0.001965 0.086759 0.982855 1.075615 1.131809

sd_sigma[2] 9.663087 0.010650 0.497499 8.748877 9.310305 9.652242

lp__ -605.183301 0.050386 1.873687 -609.733557 -606.238056 -604.852660

75% 97.5% n_eff Rhat

A 781.653711 782.687873 4000 0.999645

B 780.196032 781.367302 4000 0.999574

n 0.106561 0.106942 3320 0.999728

C 0.004065 0.004106 2021 1.000398

m 0.999389 1.002844 2950 0.999645

sd_sigma[1] 1.194667 1.314741 1950 0.999858

sd_sigma[2] 9.985599 10.678908 2182 0.999745

26

lp__ -603.821104 -602.500861 1383 1.003835

Samples were drawn using NUTS(diag_e) at Wed Aug 1 09:55:27 2018.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

As one can see, the mean values of the parameters from the model fit are nearly the
same as the parameter values in the list theta_model that produced the simulated
data. There are also other things worth noting. First, by default, RStan generates
four chains, each with 2000 samples total, the first 1000 of which are discarded
as “warmup” samples. This warmup is present because the first several samples in
a chain may be a poor representation of the posterior distribution. Second, there
is an additional “parameter” lp__, which is not really a parameter, but rather the
natural logarithm of the posterior probability density.27 Third, there are a couple
diagnostics printed. One is the effective sample size (n_eff), which indicates how
effectively the posterior has been sampled. The values of this range from about
1000 to 4000, which is reasonable. The other is the potential scale reduction factor
(Rhat), which indicates if the distribution from which the samples are taken is
close enough to the actual posterior distribution. Here, the diagnostics indicate that
the MCMC sampling went well.

RStan may or may not print the time elapsed during MCMC sampling. If it has
been run from a R command prompt or RStudio, it should print it. If run from a
Jupyter notebook, it probably will not. If need be, the elapsed time in seconds can
be obtained as follows:

get_elapsed_time(jc_fit)

The output from the previous statement is as follows:

warmup sample

chain:1 9.28 7.34

chain:2 8.92 7.83

chain:3 8.69 7.32

chain:4 10.21 7.18

One should note that the elapsed time may be affected by processes running in the
background that do not relate to MCMC sampling.

27

5.3 Testing Zerilli-Armstrong (BCC) Model with Simulated Data
The process for compiling the Zerilli-Armstrong (BCC) model is nearly the same
as the corresponding one for the Johnson-Cook model. One loads the RStan pack-
age, compiles the appropriate Stan specification file (i.e., za_bcc.stan) into a
stanmodel object, and then saves the resulting object to an RDS file. All this is
shown in the following code:

library(rstan)

source("bayes-stress-strain-utils.R")

parent_dir <- dirname(getwd())

za_bcc_model <- stan_model(file.path(parent_dir,

"stan_model_specs",

"za_bcc.stan"))

save_to_rds(za_bcc_model,

file.path("compiled_stan_models", "za_bcc.rds"))

Again, the RDS file for a stanmodel object (here za_bcc.rds) only works
with R sessions done on the same system used to generate the RDS file, or at least
a system that is nearly identical.

Simulated stress-strain curves are to be created for several combinations of plastic
strain rate (epsilon_p_dot) and initial sample temperature (T_init), such as
those in the R vectors presented:

epsilon_p_dot <- c(2500.0, 0.001, 0.001, 0.1, 3500.0, 7000.0,

3000.0, 3000.0, 3500.0)

T_init <- c(77.0, 77.0, 298.0, 298.0, 298.0, 298.0,

473.0, 673.0, 873.0)

The values used are taken from Gray et al.8 They are in units of 1/s and
Kelvin, respectively. As with the Johnson-Cook model, to account for the tem-
perature rise during deformation of the sample, the sample density ρ and the
specific heat as a function of temperature c(T) are needed. Density ρ is again
trivially represented by the R variable rho as follows. This time, the specific
heat function is generated with the R function gen_lin_interp_func from
bayes-stress-strain-utils.R in Appendix C.

source("bayes-stress-strain-utils.R")

rho <- 7840.0 # kg/m^3

Parent directory

28

parent_dir <- dirname(getwd())

Conversion factor from MPa to Pa

MPa_to_Pa <- 1e6

c_func <- gen_lin_interp_func(

file.path(parent_dir, "Other_data",

"Austin_Specific_Heat_BCC_Iron.csv"),

conv_func_y = function(y) {y/MPa_to_Pa},

sep = ","

)

The function gen_lin_interp_func encapsulates most of the previous steps
used to obtain c_func in Section 5.2. To account for the simulated data being in
units of megapascals, the argument conv_func_y is used to divide the second
column of data in Austin_Specific_Heat_BCC_Iron.csv by the conver-
sion factor from megapascals to pascals, 106. The argument “sep = ","” ac-
counts for the specific heat data file being in CSV format and corresponds to the
argument “sep = ","” in the call to the read.table function in Section 5.2.*

To create simulated data for the Zerilli-Armstrong (BCC) model, one needs an
R function specifying this model. Rather than rewrite this function from scratch,
the RStan function expose_stan_functions is again employed, this time to
reuse the za_bcc function that is already in the specification file za_bcc.stan:

library(rstan)

za_bcc_model <- readRDS(file.path("compiled_stan_models", "za_bcc.rds"))

expose_stan_functions(za_bcc_model)

As has been done with the Johnson-Cook model, a wrapper function is used as the
first argument to the function simulate_data:

sigma_model_func <- function(epsilon_p,

epsilon_p_dot,

temperature,

theta_model) {

log_epsilon_p_dot <-

log(epsilon_p_dot)

return (za_bcc(

epsilon_p,

log_epsilon_p_dot,

temperature,

theta_model[["C0"]],

*The function gen_lin_interp_func actually passes “sep = ","” to the
read.table function.

29

theta_model[["C1"]],

theta_model[["C3"]],

theta_model[["C4"]],

theta_model[["C5"]],

theta_model[["n"]]

))

}

The model parameters needed by sigma_model_func are as follows:

theta_model <- list(

C0 = 50.0, # MPa

C1 = 1800.0, # MPa

C3 = 0.0015,

C4 = 0.000045,

C5 = 1200.0, # MPa

n = 0.62

)

The values of these parameters happen to be from Gray et al.,8 but in principle, they
could be set to any plausible values. At this point, nearly all the information needed
for simulate_data has been input to an R session. Just before generating the
simulated data, the seed for the random number generator is set, so that the pseudo-
random simulated data to be generated are reproducible. Also, the maximum value
for εp and values for SDσ,1 and SDσ,2 are set as well.

set.seed(12345)

epsilon_p_max <- 0.2

sd_sigma <- c(1.0, 10.0)

Finally, the simulated data can be generated as follows. Again, beta_TQ, the
Taylor-Quinney coefficient, is set to zero for low strain rates to simulate the lack
of a temperature rise at those rates. Similarly, curr_sd_sigma is either SDσ,1 or
SDσ,2, depending on the strain rate. Also, the function rnorm is again used to add
normally distributed noise to the simulated data.

Initializing to empty lists

sigma <- list()

epsilon_p <- list()

temperature <- list()

min_curve_size <- 40

max_curve_size <- 50

for (i in 1:length(epsilon_p_dot)) {

30

if (epsilon_p_dot[i] <= 1.0) {

beta_TQ <- 0.0

curr_sd_sigma <- sd_sigma[1]

} else {

beta_TQ <- 0.9

curr_sd_sigma <- sd_sigma[2]

}

Sets curve_size to a random integer between min_curve_size

and max_curve_size

curve_size <- sample(min_curve_size:max_curve_size, 1)

curr_data <- simulate_data(

sigma_model_func,

epsilon_p_max,

epsilon_p_dot[i],

T_init[i],

theta_model,

beta_TQ,

rho,

c_func,

curve_size

)

sigma[[i]] <- rnorm(n = curve_size,

mean = curr_data[["sigma"]],

sd = curr_sd_sigma)

epsilon_p[[i]] <- curr_data[["epsilon_p"]]

temperature[[i]] <- curr_data[["T"]]

}

Again, the simulated data is plotted to a “.pdf” file as a sanity check (via the function
plot_stress_strain_curves), and a plot of the simulated data is shown in
Fig. 11.

The simulated data are saved to an RDS file in the directory rds_data_files.
As with the simulated data for the Johnson-Cook model, these data are saved as a
list that can be used by the sampling function in RStan, so variables pertaining to
the priors, that is, C0_guess_mean, n_alpha, and so on, are included in these
data, using the JSON file ZA_BCC_priors.json discussed in Section 4:

library(jsonlite)

save_to_rds(

c(

list(

num_curves = length(epsilon_p_dot),

curve_sizes = sapply(sigma, length),

epsilon_p_dot = epsilon_p_dot,

31

0.00 0.05 0.10 0.15 0.20

50
0

10
00

15
00

20
00

Tinit = 77 K, ε⋅p = 2500/s
Tinit = 77 K, ε⋅p = 0.001/s
Tinit = 298 K, ε⋅p = 0.001/s
Tinit = 298 K, ε⋅p = 0.1/s
Tinit = 298 K, ε⋅p = 3500/s

Tinit = 298 K, ε⋅p = 7000/s
Tinit = 473 K, ε⋅p = 3000/s
Tinit = 673 K, ε⋅p = 3000/s
Tinit = 873 K, ε⋅p = 3500/s

εp

σ
(M

P
a)

Fig. 11 Plot of simulated data used to test the Zerilli-Armstrong (BCC) RStan model

epsilon_p = unlist(epsilon_p),

sigma = unlist(sigma),

T = unlist(temperature)

),

read_json(file.path(parent_dir, "Other_data",

"ZA_BCC_priors.json"),

simplifyVector = TRUE)

),

file.path("rds_data_files", "za_bcc_simulated_data.rds")

)

Again, to run MCMC, one loads the rstan package if one has not already done so,
and then sets the mc.cores option so that chains can be generated in parallel. If
it has not been loaded already, the Zerilli-Armstrong (BCC) model may be loaded
into the R session, and the simulated data may be loaded as well:

library(rstan)

32

options(mc.cores = parallel::detectCores())

za_bcc_model <- readRDS(file.path("compiled_stan_models", "za_bcc.rds"))

my_data <- readRDS(file.path("rds_data_files",

"za_bcc_simulated_data.rds"))

Much as with the Johnson-Cook model, one fits the current model to the simulated
data via the sampling function of RStan and prints summary statistics from the
fit. Again, for the sake of reproducibility, the seed for random number generation is
set via the seed argument of the sampling function:

za_bcc_fit <- sampling(za_bcc_model,

data = my_data,

seed = 9001)

print(za_bcc_fit, digits_summary = 6)

The following are the warnings and summary statistics from the MCMC run:

Warning message:

“There were 395 divergent transitions after warmup. Increasing adapt_delta above 0.8 may

help. See

http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup”Warning message:

“There were 33 transitions after warmup that exceeded the maximum treedepth. Increase

max_treedepth above 10. See

http://mc-stan.org/misc/warnings.html#maximum-treedepth-exceeded”Warning message:

“There were 1 chains where the estimated Bayesian Fraction of Missing Information was low.

See

http://mc-stan.org/misc/warnings.html#bfmi-low”Warning message:

“Examine the pairs() plot to diagnose sampling problems

”

Inference for Stan model: za_bcc.

4 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 25%

C0 3.583294e+01 1.479663e+01 2.198848e+01 1.36878e-01 1.487251e+01

C1 1.352065e+03 5.518025e+02 7.805874e+02 2.76663e-01 1.332188e+03

C3 2.640730e-01 3.215470e-01 4.548490e-01 1.47900e-03 1.494000e-03

C4 3.558200e-02 4.351900e-02 6.156100e-02 4.40000e-05 4.500000e-05

C5 9.031110e+02 3.685885e+02 5.213954e+02 1.45693e-01 8.973687e+02

n 5.992710e-01 2.754600e-02 3.897800e-02 5.31797e-01 5.960140e-01

sd_sigma[1] 9.087730e-01 1.198420e-01 1.761600e-01 6.18715e-01 7.688540e-01

sd_sigma[2] 7.827480e+00 2.988042e+00 4.239705e+00 5.14714e-01 6.772682e+00

lp__ -2.774392e+84 3.279273e+84 6.857107e+84 -1.31634e+85 -1.597769e+84

50% 75% 97.5% n_eff Rhat

C0 43.991020 51.617534 64.112842 2 3.062880

C1 1798.972054 1806.255105 1818.237184 2 114.887451

33

C3 0.001503 0.264056 1.051832 2 29198.996483

C4 0.000045 0.035578 0.142215 2 7363.027577

C5 1203.235637 1204.932522 1207.826432 2 318.693626

n 0.621200 0.622333 0.624177 2 36.369721

sd_sigma[1] 0.976000 1.031423 1.130384 2 3.428795

sd_sigma[2] 10.059199 10.433392 11.109830 2 11.902843

lp__ -886.240714 -884.554105 -882.828240 4 1.643783

Samples were drawn using NUTS(diag_e) at Thu Aug 2 15:14:02 2018.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

Obviously, these results are poor. The mean values of most of the parameters are
nowhere near what they should be, and the potential scale reduction factor indicates
a lack of convergence to the correct posterior. While the warnings suggest increas-
ing adapt_delta, the low effective sample size suggests a different approach to
correct these bad results. The effective sample size indicates that the posterior is
hardly even sampled, which suggests a bad starting point for the sampling. Accord-
ingly, the fix is to start the sampling from some reasonable initial values, such as
the mean values of the priors shown in the following R list:

init_values <- list(

C0 = my_data[["C0_guess_mean"]],

C1 = my_data[["C1_guess_mean"]],

C3 = my_data[["C3_guess_mean"]],

C4 = my_data[["C4_guess_mean"]],

C5 = my_data[["C5_guess_mean"]],

n = my_data[["n_alpha"]]/

(my_data[["n_alpha"]] + my_data[["n_beta"]])

)

However, if one looks at the reference documentation for RStan,2 it says that the
initial values should be either a list of lists, where each element in the outer list is
a list of initial values for a chain, or a function that returns a list of initial values.
Here, the first option is taken, but it is not as straightforward as it may first appear.
The following is the first attempt to create the list of lists:

num_chains <- 4

init_values_list <- rep(init_values, num_chains)

print(init_values_list[[1]])

The output from printing the first element of init_values_list is as follows:

[1] 100

34

Clearly, the first element of this new list is not a list of initial values. Instead, the
first argument to rep has to be list(init_values):

init_values_list <- rep(list(init_values), num_chains)

print(init_values_list[[1]])

The output from printing the first element of init_values_list is now a list
of Zerilli-Armstrong coefficients, as it should be:

$C0

[1] 100

$C1

[1] 1000

$C3

[1] 0.001

$C4

[1] 1e-05

$C5

[1] 1000

$n

[1] 0.5

MCMC can now be rerun with initial values as follows. The number of chains is
explicitly set to the length of init_values_list for the sake of consistency:

za_bcc_fit <- sampling(za_bcc_model,

data = my_data,

init = init_values_list,

chains = length(init_values_list),

seed = 9001)

print(za_bcc_fit, digits_summary = 6)

The output and summary statistics from the new MCMC run are presented:

Warning message:

“There were 55 transitions after warmup that exceeded the maximum treedepth. Increase

max_treedepth above 10. See

http://mc-stan.org/misc/warnings.html#maximum-treedepth-exceeded”Warning message:

“Examine the pairs() plot to diagnose sampling problems

”

35

Inference for Stan model: za_bcc.

4 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 25% 50%

C0 48.137154 0.270503 8.789566 31.206072 42.146419 48.080893

C1 1802.272924 0.258247 8.380777 1786.019051 1796.643816 1802.352187

C3 0.001499 0.000000 0.000010 0.001479 0.001492 0.001499

C4 0.000045 0.000000 0.000000 0.000044 0.000045 0.000045

C5 1204.088827 0.039429 2.027830 1200.133062 1202.705399 1204.083906

n 0.621760 0.000027 0.001336 0.619190 0.620868 0.621754

sd_sigma[1] 1.007106 0.001283 0.060465 0.897269 0.965042 1.003927

sd_sigma[2] 10.290742 0.009084 0.456301 9.469835 9.962251 10.261916

lp__ -885.726952 0.053781 2.033308 -890.579398 -886.847923 -885.372098

75% 97.5% n_eff Rhat

C0 54.066546 65.211423 1056 1.000579

C1 1807.972009 1818.807290 1053 1.000578

C3 0.001506 0.001519 1056 1.000601

C4 0.000045 0.000045 1100 1.000547

C5 1205.449726 1208.058938 2645 0.999622

n 0.622680 0.624378 2418 0.999543

sd_sigma[1] 1.045130 1.134473 2222 1.000572

sd_sigma[2] 10.595305 11.225621 2523 1.001849

lp__ -884.248241 -882.764371 1429 1.004564

Samples were drawn using NUTS(diag_e) at Thu Aug 2 15:15:32 2018.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

As one can see, the mean values of the parameters from the model fit are nearly the
same as the parameter values (in the list theta_model) that produced the simu-
lated data, and the effective sample sizes and potential scale reduction factors are
reasonable. However, there is a warning about the maximum treedepth and advice
on how fix the issue by increasing the parameter max_treedepth. This advice is
followed by using the control argument of the sampling function:

za_bcc_fit <- sampling(za_bcc_model,

data = my_data,

init = init_values_list,

chains = length(init_values_list),

control = list(max_treedepth = 15),

seed = 9001)

print(za_bcc_fit, digits_summary = 6)

The following are the summary statistics from the MCMC run:

Inference for Stan model: za_bcc.

36

4 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 25% 50%

C0 47.378450 0.263997 8.827383 29.559070 41.576275 47.698178

C1 1803.004392 0.251489 8.413823 1786.766744 1797.322923 1802.711040

C3 0.001498 0.000000 0.000010 0.001477 0.001491 0.001498

C4 0.000045 0.000000 0.000000 0.000044 0.000045 0.000045

C5 1204.103150 0.037836 2.015789 1200.211823 1202.737726 1204.067380

n 0.621778 0.000025 0.001314 0.619135 0.620932 0.621770

sd_sigma[1] 1.006778 0.001233 0.062590 0.890767 0.964071 1.003357

sd_sigma[2] 10.265720 0.008421 0.446539 9.437021 9.956084 10.243541

lp__ -885.755071 0.055410 2.104803 -890.815405 -886.870992 -885.381233

75% 97.5% n_eff Rhat

C0 53.361982 64.166921 1118 1.000861

C1 1808.435729 1819.902520 1119 1.000945

C3 0.001505 0.001518 1126 1.000854

C4 0.000045 0.000045 1166 1.001249

C5 1205.435721 1208.151237 2838 1.000438

n 0.622646 0.624372 2767 1.000655

sd_sigma[1] 1.045253 1.136896 2577 1.001333

sd_sigma[2] 10.551918 11.211138 2812 1.000345

lp__ -884.248920 -882.755629 1443 1.000669

Samples were drawn using NUTS(diag_e) at Thu Aug 2 15:17:03 2018.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

RStan no longer produces the warning that it did before, and the mean values of
the parameters, effective sample sizes, and potential scale reduction factors are still
reasonable.

As with the Johnson-Cook model, the elapsed time in seconds can be obtained as
follows:

get_elapsed_time(za_bcc_fit)

The output from the previous statement is as follows:

warmup sample

chain:1 42.83 48.11

chain:2 35.15 47.57

chain:3 41.29 43.79

chain:4 36.59 45.41

37

6. Fitting Strength Models to Experimental Data
6.1 Functions for Fitting Models
Some of the custom functions in Section 5.1 are also used in the process of fitting
models, in particular, gen_lin_interp_func and save_to_rds. In addition
to these are save_stan_fit_to_csv, a function that saves the summary statis-
tics and MCMC samples from a stanfit object to CSV files, and calc_temps,
a function for estimating the temperatures at the points of a stress-strain curve. The
former function involves details pertaining to the functionality of RStan, while the
latter pertains to the physics of the sample problem. Accordingly, both of these func-
tions are examined in more detail. The arguments to save_stan_fit_to_csv
are as follows:

• fit, a stanfit object,

• summary_csv_filename, the name of CSV file to which summary statis-
tics are written, and

• samples_csv_filename, the name of CSV file to which MCMC sam-
ples are written. If the file ends in “.gz”, it is Gzip-compressed.28

The first two statements in the body of this function simply ensure that any direc-
tories in the paths summary_csv_filename and samples_csv_filename
actually exist and creates them if they do not already exist:

ensure_path_to_file_exists(summary_csv_filename)

ensure_path_to_file_exists(samples_csv_filename)

The function used in the previous statements, ensure_path_to_file_exists,
is defined in bayes-stress-strain-utils.R. The details of it may be mainly
of interest to readers who are looking for example code to use as a reference.

The next R statement writes the summary statistics to the file named
summary_csv_filename as follows:

write.csv(summary(fit)[["summary"]], summary_csv_filename)

The R expression summary(fit) yields a list with two named elements. One
of these, named c_summary, is a 3-D array that contains summary statistics for

38

each of the chains from an MCMC run, while the element simply named summary
is a matrix (i.e., a 2-D array) that has statistics for all the chains merged together.
The latter is what is of interest here. This matrix object contains the row labels and
column headers seen in the summary statistics that have been shown so far (e.g.,
“mean”, “sd”, parameter names, and so on) and these are in the CSV file as well.

The next part of the function indicates whether to compress the file used to save
the MCMC samples, since that file can potentially be quite large. The variable
out_file is to be an object representing a file. If gzfile(...) is assigned
to it, then it represents a Gzip-compressed28 file. Otherwise, it represents an ordi-
nary text file. The function on.exit is used to ensure that out_file is closed
when the function save_stan_fit_to_csv finishes running, even if it finishes
abnormally due to some problem in writing the samples to a file (such as running
out of disk space).

if (endsWith(samples_csv_filename, ".gz")) {

out_file <- gzfile(samples_csv_filename, "w")

} else {

out_file <- file(samples_csv_filename, "w")

}

Makes sure that out_file is closed, even if something goes wrong

in write.csv.

on.exit(close(out_file))

Finally, the samples are written to a file as follows:

write.csv(as.matrix(fit), out_file, row.names = FALSE)

Here, the function as.matrix returns a matrix where each column is a sequence
of MCMC samples for a model parameter. This matrix object contains the names
of the columns, which correspond to the parameter names shown in the summary
statistics output from print(fit, ...), such as A, B, and so on, for the Johnson-
Cook model, or C0, C1, and so on, for the Zerilli-Armstrong (BCC) model, as
well as nuisance parameters sd_sigma[1] and sd_sigma[2] and the pseu-
doparameter lp__. These column names are to be the headers of the columns
in the CSV file containing the MCMC samples. The argument “row.names =

FALSE” means that there is not to be an unnecessary additional column that num-
bers the rows in the CSV file.

The arguments to calc_temps are as follows:

39

• T_init, the initial temperature of the sample

• epsilon_p, a vector containing the sequence of plastic strains in a given
stress-strain curve

• sigma, a vector containing the sequence of stresses in from the same stress-
strain curve

• f_area, the parameter farea from Eq. 2

• beta_TQ, the Taylor-Quinney coefficient

• rho, the density of the sample

• specific_heat_func, a function that returns the specific heat
for a given temperature (which can and later on is generated using
gen_lin_interp_func)

The first few lines of the body of this function are the following:

curve_size <- length(epsilon_p)

temperature <- numeric(curve_size)

temperature[1] <- T_init + beta_TQ*f_area*sigma[1]*epsilon_p[1]/

(rho*specific_heat_func(T_init))

The first statement simply sets a descriptively named variable, curve_size, to
the length of the vector epsilon_p, which is the number of data points in the
stress-strain curve under consideration. The next statement initializes the vector of
temperatures so that it has the correct length. The last statement corresponds to
Eq. 2, but with T ic

init (i.e., T_init) moved to the right-hand side. (No variable cor-
responding to index ic appears in calc_temps, since the value of ic is effectively
fixed by the choice of epsilon_p and sigma.)

The rest of the function body is as follows:

for (i in 2:curve_size) {

Using trapezoid rule to estimate area under stress-strain

curve over interval [epsilon_p[i-1], epsilon_p[i]].

area_under_curve <- 0.5*(sigma[i-1] + sigma[i])*
(epsilon_p[i] - epsilon_p[i-1])

T_rise <- beta_TQ*area_under_curve/

40

(rho*specific_heat_func(temperature[i-1]))

temperature[i] = temperature[i-1] + T_rise

}

return (temperature)

The body of the previous for loop corresponds to Eq. 1. The first statement esti-
mates the integral in that equation (i.e., area_under_curve) via the trapezoid
rule of numerical integration.29 Once this integral is calculated, the temperature
rise T ic

j − T ic
j−1 (or T_rise) may be determined. The temperature of the current

data point T ic
j (or temperature[i], where i corresponds to index j in Eq. 1) is

then the sum of the temperature rise and the temperature of the previous data point
T ic

j−1 (or temperature[i-1]).

The very last line of the function body, of course, returns the vector of temperatures
from the function.

6.2 Preprocessing Experimental Data
Several of the data files from Section 4 are to be read into R and then processed into
RDS files that are to be used in later analyses. First, the MIDAS data files are read
in as follows:

T_init_str <- c("77", "77", "298", "298", "298", "298",

"473", "673", "873")

epsilon_p_dot_str <- c("0.001", "2500", "0.001", "0.1", "3500", "7000",

"3000", "3000", "3500")

epsilon_p <- list()

sigma <- list()

parent_dir <- dirname(getwd())

for (i in 1:length(T_init_str)) {

csv_filename <- sprintf("T%sK_edot%s_per_s.csv",

T_init_str[i],

epsilon_p_dot_str[i])

out_data <- read.csv(

file.path(parent_dir, "MIDAS_data", csv_filename),

header = FALSE

)

The first column of out_data is the strain.

epsilon_p[[i]] <- out_data[,1]

41

The second column of out_data is the stress.

sigma[[i]] <- out_data[,2]

}

The previous R code is somewhat similar to the code used to generate simulated
data in that initial temperatures and strain rates are specified, and lists of vectors
containing strains and stresses are built up. Of course, in place of the call to the
function simulate_data is a call to read.csv, which reads experimental data
from a CSV file. The argument “header = FALSE” in the call to read.csv

prevents R from mistaking the first line of the CSV file for column headers.

To calculate temperatures, the density ρ, specific heat c(T), Taylor-Quinney coeffi-
cient βTQ, and farea are needed. The first two of these are determined from known
data and can be specified as follows:

source("bayes-stress-strain-utils.R")

rho <- 7840.0 # kg/m^3

MPa_to_Pa <- 1e6

c_func <- gen_lin_interp_func(

file.path(parent_dir, "Other_data",

"Austin_Specific_Heat_BCC_Iron.csv"),

conv_func_y = function(y) {y/MPa_to_Pa},

sep = ","

)

As pointed out in Section 1, the next two quantities are more uncertain, so temper-
ature calculations are done for a few combinations of reasonable estimates of βTQ

and farea (shown in Table 1):

temperature <- list()

beta_TQ_f_area_strs <- list(

c("0.9", "0.75"),

c("0.9", "0.55"),

c("0.6", "0.55"),

c("0.9", "0.95"),

c("0.6", "0.95")

)

epsilon_p_dot <- as.numeric(epsilon_p_dot_str)

T_init <- as.numeric(T_init_str)

for (bTQ_fA in beta_TQ_f_area_strs) {

bTQ_fA_str <- paste(bTQ_fA[1], bTQ_fA[2], sep = ",")

42

temperature[[bTQ_fA_str]] <- list()

beta_TQ <- as.numeric(bTQ_fA[1])

f_area <- as.numeric(bTQ_fA[2])

for (i in 1:length(epsilon_p_dot)) {

if (epsilon_p_dot[i] > 1.0) {

temperature[[bTQ_fA_str]][[i]] <-

calc_temps(T_init[i], epsilon_p[[i]], sigma[[i]],

f_area, beta_TQ, rho, c_func)

} else {

curve_size <- length(sigma[[i]])

temperature[[bTQ_fA_str]][[i]] <- rep(T_init[i], curve_size)

}

}

}

(For those unfamiliar with R, the function as.numeric converts its arguments
to numeric values, so it converts a string to its corresponding number [e.g., the
string "0.9" becomes the number 0.9] and converts a vector of strings to a vec-
tor of numbers [e.g., c("1", "2") becomes c(1, 2)]. The function paste

concatenates its string arguments, separating each string token by the argument
sep. For example, paste("0.9", "0.75", sep = ",") returns the string
"0.9,0.75".)

The variable temperature here is a list of named elements. The name of each
element is a string such as "0.9,0.75", where the part of the string before the
comma is a value of βTQ and the part after the comma is a value of farea. Each
element itself is a list of vectors of temperatures, with vector i corresponding to
a strain rate epsilon_p_dot[i] and initial sample temperature T_init[i].
For high strain rates, these vectors of temperatures are calculated by the function
calc_temps that is in bayes-stress-strain-utils.R in Appendix C
and discussed in Section 6.1. For low strain rates, the stress-strain curves are taken
to be isothermal, and the temperature for all data points in the curve is the initial
sample temperature.

Plots of the calculated temperatures are shown in Fig. 12. For reference, the code
for generating them is shown:

line_types <- rep(1:6, length.out = length(beta_TQ_f_area_strs))

color_vals <- rep(palette(), length.out = length(beta_TQ_f_area_strs))

legend_labels <- rep(NA, length(beta_TQ_f_area_strs))

43

for (i in 1:length(beta_TQ_f_area_strs)) {

bTQ_fA <- beta_TQ_f_area_strs[[i]]

legend_labels[i] <- parse(

text = sprintf("paste(beta[TQ], ' = ', %s, ', ', f[area], ' = ', %s)",

bTQ_fA[1], bTQ_fA[2])

)

}

for (i in 1:length(epsilon_p_dot)) {

if (epsilon_p_dot[i] > 1.0) {

out_file <- sprintf("temps_for_T_init%sK_edot%s_per_s.pdf",

T_init_str[i], epsilon_p_dot_str[i])

pdf(file = file.path("plot_files", out_file),

title = out_file,

pointsize = 10,

width = 3.5, height = 4)

xlim <- range(epsilon_p[[i]])

ylim <- NULL

for (bTQ_fA in beta_TQ_f_area_strs) {

bTQ_fA_str <- paste(bTQ_fA[1], bTQ_fA[2], sep = ",")

ylim <- range(

c(ylim, range(temperature[[bTQ_fA_str]][[i]]))

)

}

ylim[2] <- ylim[2] + 0.4*(ylim[2] - ylim[1])

This function is from bayes-stress-strain-utils.R

make_empty_xy_plot(xlim, ylim)

for (j in 1:length(beta_TQ_f_area_strs)) {

bTQ_fA <- beta_TQ_f_area_strs[[j]]

bTQ_fA_str <- paste(bTQ_fA[1], bTQ_fA[2], sep = ",")

lines(epsilon_p[[i]],

temperature[[bTQ_fA_str]][[i]],

lty = line_types[j],

col = color_vals[j])

}

legend("topleft",

legend = legend_labels,

lty = line_types,

col = color_vals)

title(xlab = expression(epsilon[p]), ylab = "Temperature (K)")

44

dev.off()

}

}

0.02 0.06 0.10 0.14

10
0

14
0

18
0

22
0 βTQ = 0.9, farea = 0.75

βTQ = 0.9, farea = 0.55
βTQ = 0.6, farea = 0.55
βTQ = 0.9, farea = 0.95
βTQ = 0.6, farea = 0.95

εp

Te
m

pe
ra

tu
re

 (
K

)

0.05 0.10 0.15

30
0

32
0

34
0

36
0

38
0 βTQ = 0.9, farea = 0.75

βTQ = 0.9, farea = 0.55
βTQ = 0.6, farea = 0.55
βTQ = 0.9, farea = 0.95
βTQ = 0.6, farea = 0.95

εp
Te

m
pe

ra
tu

re
 (

K
)

0.05 0.10 0.15

30
0

32
0

34
0

36
0

38
0

βTQ = 0.9, farea = 0.75
βTQ = 0.9, farea = 0.55
βTQ = 0.6, farea = 0.55
βTQ = 0.9, farea = 0.95
βTQ = 0.6, farea = 0.95

εp

Te
m

pe
ra

tu
re

 (
K

)

(a) 77 K, 2500/s (b) 298 K, 3500/s (c) 298 K, 7000/s

0.05 0.10 0.15

48
0

49
0

50
0

51
0

52
0

53
0

54
0

βTQ = 0.9, farea = 0.75
βTQ = 0.9, farea = 0.55
βTQ = 0.6, farea = 0.55
βTQ = 0.9, farea = 0.95
βTQ = 0.6, farea = 0.95

εp

Te
m

pe
ra

tu
re

 (
K

)

0.05 0.10 0.15

68
0

69
0

70
0

71
0

72
0

βTQ = 0.9, farea = 0.75
βTQ = 0.9, farea = 0.55
βTQ = 0.6, farea = 0.55
βTQ = 0.9, farea = 0.95
βTQ = 0.6, farea = 0.95

εp

Te
m

pe
ra

tu
re

 (
K

)

0.05 0.10 0.15
87

5
88

0
88

5
89

0
89

5
90

0
90

5

βTQ = 0.9, farea = 0.75
βTQ = 0.9, farea = 0.55
βTQ = 0.6, farea = 0.55
βTQ = 0.9, farea = 0.95
βTQ = 0.6, farea = 0.95

εp

Te
m

pe
ra

tu
re

 (
K

)

(c) 473 K, 3000/s (d) 673 K, 3000/s (e) 873 K, 3500/s

Fig. 12 Temperatures as estimated in R along stress-strain curves with the initial temperatures
and strain rates shown, given the values of βTQ and farea in Table 1

RDS files to be used in fitting the Johnson-Cook model are saved as shown:

library(jsonlite)

JC_other_data <- read_json(file.path(parent_dir,

"Other_data", "JC_other_data.json"))

logical_inds_JC <- (T_init >= JC_other_data[["T_room"]])

save_to_rds(

c(

list(

num_curves = length(epsilon_p_dot[logical_inds_JC]),

curve_sizes = sapply(sigma[logical_inds_JC], length),

epsilon_p_dot = epsilon_p_dot[logical_inds_JC],

epsilon_p = unlist(epsilon_p[logical_inds_JC]),

sigma = unlist(sigma[logical_inds_JC])

),

read_json(file.path(parent_dir, "Other_data", "JC_priors.json"),

45

simplifyVector = TRUE),

JC_other_data

),

file.path("rds_data_files", "Main_data_for_JC.rds")

)

for (bTQ_fA in beta_TQ_f_area_strs) {

bTQ_fA_str <- paste(bTQ_fA[1], bTQ_fA[2], sep = ",")

save_to_rds(unlist(temperature[[bTQ_fA_str]][logical_inds_JC]),

file.path("rds_data_files",

sprintf("T_beta%s_farea%s_JC.rds",

bTQ_fA[1], bTQ_fA[2])))

}

Despite appearances, this R code is still fairly similar to the code used to save the
simulated data for testing the Johnson-Cook model, but there are, of course, some
significant differences:

• The use of so-called logical indices, which are stored in the vector variable
logical_inds_JC. These indices are used to select the components of
vectors and lists that correspond to initial temperatures no less than Troom,
since the Johnson-Cook model cannot be used with such temperatures.

• Whereas the RDS file for the simulated data includes the temperatures for
points along the stress-strain curve, here the calculated temperatures are saved
to separate RDS files. The reason for this is that different fits are to be done for
the different combinations of βTQ and farea in Table 1, so each fit combines
data from Main_data_for_JC.rds and the RDS file that corresponds to
temperatures calculated for a particular combination of βTQ and farea.

Similarly, RDS files to be used in fitting the Zerilli-Armstrong (BCC) model are
saved as follows. Since the Zerilli-Armstrong model can accept any absolute tem-
perature, logical indices are not needed.

save_to_rds(

c(

list(

num_curves = length(epsilon_p_dot),

curve_sizes = sapply(sigma, length),

epsilon_p_dot = epsilon_p_dot,

epsilon_p = unlist(epsilon_p),

sigma = unlist(sigma)

),

read_json(file.path(parent_dir, "Other_data", "ZA_BCC_priors.json"),

46

simplifyVector = TRUE)

),

file.path("rds_data_files", "Main_data_for_ZA_BCC.rds")

)

for (bTQ_fA in beta_TQ_f_area_strs) {

bTQ_fA_str <- paste(bTQ_fA[1], bTQ_fA[2], sep = ",")

save_to_rds(unlist(temperature[[bTQ_fA_str]]),

file.path("rds_data_files",

sprintf("T_beta%s_farea%s_ZA_BCC.rds",

bTQ_fA[1], bTQ_fA[2])))

}

6.3 Fitting Johnson-Cook Model to Experimental Data
After the RStan package is loaded and the mc.cores option is set to allow chains
to be generated in parallel, the needed data for the βTQ = 0.9 and farea = 0.75 case,
along with the Johnson-Cook RStan model that has been saved to an RDS file in
Section 5.2, is read in as follows:

library(rstan)

options(mc.cores = parallel::detectCores())

my_data <- readRDS(file.path("rds_data_files",

"Main_data_for_JC.rds"))

my_data[["T"]] <- readRDS(file.path("rds_data_files",

"T_beta0.9_farea0.75_JC.rds"))

jc_model <- readRDS(file.path("compiled_stan_models", "jc.rds"))

At this point, MCMC is attempted as shown in the following R code. For the sake
of reproducibility, the seed for random number generation is set.

jc_fit <- sampling(jc_model, data = my_data, seed = 12345)

print(jc_fit, digits_summary = 6)

get_elapsed_time(jc_fit)

The output from this, including both summary statistics and elapsed time, is as
follows:

Warning message:

“There were 469 transitions after warmup that exceeded the maximum treedepth. Increase

max_treedepth above 10. See

http://mc-stan.org/misc/warnings.html#maximum-treedepth-exceeded”Warning message:

“Examine the pairs() plot to diagnose sampling problems

”

47

Inference for Stan model: jc.

4 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 25%

A 571.672303 1.700301 56.159711 452.989203 535.131006

B 987.192605 1.620632 53.618838 894.481225 948.319195

n 0.076875 0.000173 0.005837 0.065780 0.072850

C 0.004512 0.000002 0.000079 0.004356 0.004459

m 1.048372 0.000081 0.003614 1.041409 1.045925

sd_sigma[1] 9.367243 0.007857 0.354569 8.712622 9.121096

sd_sigma[2] 32.600706 0.014175 0.669696 31.305457 32.140418

lp__ -6807.307686 0.047835 1.919428 -6811.714616 -6808.402032

50% 75% 97.5% n_eff Rhat

A 575.401206 612.454193 668.537215 1091 1.006253

B 983.440584 1021.819655 1100.312303 1095 1.006327

n 0.076763 0.080982 0.088171 1137 1.005693

C 0.004511 0.004564 0.004665 1721 1.000290

m 1.048356 1.050768 1.055583 1996 1.000536

sd_sigma[1] 9.352832 9.602424 10.090325 2037 1.000072

sd_sigma[2] 32.600814 33.058144 33.875576 2232 0.999796

lp__ -6806.967914 -6805.884931 -6804.557093 1610 1.000887

Samples were drawn using NUTS(diag_e) at Wed May 16 14:47:45 2018.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

warmup sample

chain:1 330.49 379.11

chain:2 249.28 374.93

chain:3 304.57 337.48

chain:4 366.20 346.89

Here, MCMC has run significantly longer than in the testing run in Section 5.2,
about 10 to 12 min. The potential scale reduction factors (i.e., Rhat) look rea-
sonable, but there are warnings about tree depth, so MCMC is run again with
max_treedepth set to a higher value:

jc_fit <- sampling(jc_model, data = my_data, seed = 12345,

control = list(max_treedepth = 15))

print(jc_fit, digits_summary = 6)

get_elapsed_time(jc_fit)

The following is the output for this new MCMC run:

Inference for Stan model: jc.

4 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=4000.

48

mean se_mean sd 2.5% 25%

A 576.572779 1.524483 52.744813 464.548325 541.974215

B 982.583681 1.449278 50.288671 890.056310 947.580622

n 0.077363 0.000163 0.005634 0.066654 0.073417

C 0.004519 0.000002 0.000080 0.004363 0.004464

m 1.048066 0.000076 0.003670 1.040758 1.045618

sd_sigma[1] 9.388639 0.007881 0.355841 8.716975 9.139065

sd_sigma[2] 32.563166 0.014049 0.657904 31.272480 32.127749

lp__ -6807.241852 0.046621 1.842613 -6811.520050 -6808.258301

50% 75% 97.5% n_eff Rhat

A 578.755978 613.313848 674.609965 1197 1.001171

B 980.227301 1015.351992 1089.617743 1204 1.001106

n 0.077211 0.081126 0.089123 1199 1.001481

C 0.004519 0.004574 0.004669 1804 1.000601

m 1.048030 1.050534 1.055540 2338 0.999288

sd_sigma[1] 9.384069 9.618061 10.101541 2039 1.000250

sd_sigma[2] 32.558932 32.996678 33.878466 2193 1.002835

lp__ -6806.930344 -6805.880135 -6804.572277 1562 1.000945

Samples were drawn using NUTS(diag_e) at Wed May 16 15:04:50 2018.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

warmup sample

chain:1 570.52 355.95

chain:2 300.54 316.61

chain:3 307.61 364.35

chain:4 530.86 295.82

The output shows no further warnings, and both the effective sample sizes and po-
tential scale reduction factors still look reasonable. However, the mean value of A,
which is supposed to be approximately the yield stress,6 appears slightly low for
RHA.

Nonetheless, the samples and summary from the MCMC run are saved for future
examination, using the convenience function save_stan_fit_to_csv from
the R source file bayes-stress-strain-utils.R in Appendix C. To save
disk space, the samples are saved to a Gzip-compressed28 CSV file:

source("bayes-stress-strain-utils.R")

save_stan_fit_to_csv(

jc_fit,

file.path("summaries",

"jc_MIDAS_rstan_summary_weak_prior_bTQ09_fA075.csv"),

file.path("samples",

49

"jc_MIDAS_rstan_samples_weak_prior_bTQ09_fA075.csv.gz"))

The string “weak_prior” in the names of the CSV files indicates that these
MCMC results are obtained with weakly informative priors. The string “bTQ09”
indicates that βTQ is 0.9 (with “bTQ” referring to βTQ and “09” referring to 0.9),
while “fA075” indicates that farea (“fA”) is 0.75 (“075”).

At this point, MCMC is about to be run with the strongly informative prior for A.
If one starts from the same R session used for the MCMC runs with the weak prior,
then only a small change to the my_data variable is needed:

library(jsonlite)

new_RHA_priors <- read_json(file.path(parent_dir,

"Other_data",

"JC_prior_A_Benck.json"))

my_data[["A_guess_mean"]] <- new_RHA_priors[["A_guess_mean"]]

my_data[["A_guess_sd"]] <- new_RHA_priors[["A_guess_sd"]]

MCMC is then run just as before, with both the same seed and max_treedepth
values. The following is the output from this run:

Inference for Stan model: jc.

4 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 25%

A 699.842690 0.265203 10.100359 680.444423 692.684045

B 866.224370 0.246305 9.544459 847.425110 859.631635

n 0.092704 0.000043 0.001700 0.089416 0.091528

C 0.004542 0.000002 0.000081 0.004384 0.004486

m 1.047197 0.000073 0.003576 1.040321 1.044715

sd_sigma[1] 9.645859 0.007541 0.361472 8.958504 9.403342

sd_sigma[2] 32.346724 0.013953 0.665879 31.058152 31.886120

lp__ -6810.113182 0.045844 1.856475 -6814.504070 -6811.167520

50% 75% 97.5% n_eff Rhat

A 699.903023 706.618845 719.906336 1450 1.000388

B 866.206256 872.897205 884.762912 1502 1.000436

n 0.092673 0.093788 0.096188 1589 1.000101

C 0.004543 0.004597 0.004697 2035 1.000408

m 1.047209 1.049601 1.054355 2390 1.000364

sd_sigma[1] 9.634547 9.883966 10.375682 2298 1.000577

sd_sigma[2] 32.342439 32.791396 33.659544 2278 1.000314

lp__ -6809.777220 -6808.744612 -6807.425879 1640 1.001625

Samples were drawn using NUTS(diag_e) at Wed May 30 14:37:06 2018.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

50

convergence, Rhat=1).

warmup sample

chain:1 614.65 59.46

chain:2 93.05 62.07

chain:3 141.20 60.01

chain:4 58.93 54.01

Both the effective sample sizes and potential scale reduction factors still look rea-
sonable, and at this point, the mean of parameter A looks reasonable as well. The
elapsed times are mostly shorter as well, though the warmup time for the first chain
is substantially longer than it is for the other chains. At this point, the results need
to be saved for further analysis. The samples and summary from MCMC may be
saved as follows:

save_stan_fit_to_csv(

jc_fit,

file.path("summaries",

"jc_MIDAS_rstan_summary_strong_prior_on_A_bTQ09_fA075.csv"),

file.path("samples",

"jc_MIDAS_rstan_samples_strong_prior_on_A_bTQ09_fA075.csv.gz"))

Here, the string “strong_prior_on_A” indicates that a strongly informative
prior is used for A.

Fits for the Johnson-Cook model have been done for the rest of the combinations
of βTQ and farea in Table 1, for both strong and weak priors. Loading of the data
for these fits proceeds much as before, with T_beta0.9_farea0.75_JC.rds
replaced with the file for a different pair of βTQ and farea values, such as
T_beta0.6_farea0.95_JC.rds for βTQ = 0.6 and farea = 0.95. The means
and standard deviations of the resulting fitted parameters are in Ramsey.3

6.4 Fitting Zerilli-Armstrong (BCC) Model to Experimental Data
Much as with the Johnson-Cook model, after the RStan package has been loaded
and the mc.cores option is set to allow chains to be generated in parallel, the
needed data for the βTQ = 0.9 and farea = 0.75 case, along with the Zerilli-
Armstrong (BCC) RStan model that has been saved to an RDS file in Section 5.3,
are read in as follows:

library(rstan)

51

options(mc.cores = parallel::detectCores())

my_data <- readRDS(file.path("rds_data_files",

"Main_data_for_ZA_BCC.rds"))

my_data[["T"]] <- readRDS(file.path("rds_data_files",

"T_beta0.9_farea0.75_ZA_BCC.rds"))

za_bcc_model <- readRDS(file.path("compiled_stan_models", "za_bcc.rds"))

As the testing of the Zerilli-Armstrong model has showed, initial values for the
model parameters are needed as well, and these are set to the means of the priors.

init_vals <- list(

C0 = my_data[["C0_guess_mean"]],

C1 = my_data[["C1_guess_mean"]],

C3 = my_data[["C3_guess_mean"]],

C4 = my_data[["C4_guess_mean"]],

C5 = my_data[["C5_guess_mean"]],

n = my_data[["n_alpha"]]/(my_data[["n_alpha"]] +

my_data[["n_beta"]])

)

At this point, MCMC is about to be attempted. For the sake of reproducibility, the
seed for random number generation is set. Also, this time, the initial values are set
with a function rather than a list of lists.

za_bcc_fit <- sampling(za_bcc_model,

data = my_data,

init = function() {init_vals},

seed = 9001)

print(za_bcc_fit, digits_summary = 6)

get_elapsed_time(za_bcc_fit)

The output from the previous code is shown. It shows no warnings from RStan, and
the effective samples sizes and potential scale reduction factors are reasonable:

Inference for Stan model: za_bcc.

4 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 25%

C0 107.709018 0.685993 25.574969 55.699931 90.337474

C1 1529.202699 0.195793 8.735439 1512.606233 1523.212847

C3 0.002190 0.000001 0.000032 0.002127 0.002170

C4 0.000041 0.000000 0.000001 0.000040 0.000041

C5 749.830746 0.608239 22.101167 708.437283 734.614539

n 0.158095 0.000260 0.009704 0.140086 0.151324

sd_sigma[1] 31.615321 0.018083 0.933597 29.879019 30.980362

sd_sigma[2] 47.472144 0.015622 0.854084 45.812047 46.892056

52

lp__ -9766.210035 0.054921 2.070180 -9771.147556 -9767.387094

50% 75% 97.5% n_eff Rhat

C0 108.296876 125.361864 155.587964 1390 1.003307

C1 1528.928584 1534.829723 1546.922057 1991 1.000043

C3 0.002191 0.002211 0.002249 1715 0.999676

C4 0.000041 0.000042 0.000042 2480 1.000537

C5 749.101197 764.353075 794.479695 1320 1.002503

n 0.157975 0.164579 0.177945 1394 1.002920

sd_sigma[1] 31.593983 32.211505 33.508287 2666 1.000347

sd_sigma[2] 47.475156 48.049962 49.139706 2989 0.999948

lp__ -9765.860023 -9764.699110 -9763.200214 1421 1.000447

Samples were drawn using NUTS(diag_e) at Mon May 21 08:41:24 2018.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

warmup sample

chain:1 63.76 76.19

chain:2 69.72 92.71

chain:3 68.68 75.47

chain:4 74.56 105.52

The samples and summary from the MCMC run are saved for future examination
via the same save_stan_fit_to_csv function used to save the results of the
Johnson-Cook model:

source("bayes-stress-strain-utils.R")

save_stan_fit_to_csv(

za_bcc_fit,

file.path("summaries",

"za_bcc_MIDAS_rstan_summary_bTQ09_fA075.csv"),

file.path("samples",

"za_bcc_MIDAS_rstan_samples_bTQ09_fA075.csv.gz"))

In the previous fit for the Zerilli-Armstrong model, one may have observed that the
SDσ,1 is only slightly less than SDσ,2, whereas with the Johnson-Cook model, the
former is about three times less than the latter. To see if this is due to the Zerilli-
Armstrong model being fit to data not used in the fit for the Johnson-Cook model, a
new fit is done, using only the data used in the latter fit. If one starts from the same
R session used for the previous fit, then an MCMC run with the new data can be
done:

JC_main_data <- readRDS(file.path("rds_data_files",

"Main_data_for_JC.rds"))

53

my_data[["num_curves"]] <- JC_main_data[["num_curves"]]

my_data[["curve_sizes"]] <- JC_main_data[["curve_sizes"]]

my_data[["epsilon_p_dot"]] <- JC_main_data[["epsilon_p_dot"]]

my_data[["epsilon_p"]] <- JC_main_data[["epsilon_p"]]

my_data[["sigma"]] <- JC_main_data[["sigma"]]

my_data[["T"]] <- readRDS(file.path("rds_data_files",

"T_beta0.9_farea0.75_JC.rds"))

za_bcc_fit <- sampling(za_bcc_model,

data = my_data,

init = function() {init_vals},

seed = 9001)

print(za_bcc_fit, digits_summary = 6)

get_elapsed_time(za_bcc_fit)

The following are the results from the MCMC run:

Warning message:

“There were 1 divergent transitions after warmup. Increasing adapt_delta above 0.8 may

help. See

http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup”Warning message:

“Examine the pairs() plot to diagnose sampling problems

”

Inference for Stan model: za_bcc.

4 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 25%

C0 1.856426 0.031029 1.827228 0.037432 0.518705

C1 1535.847623 0.343556 12.511540 1510.965623 1527.169404

C3 0.001399 0.000001 0.000022 0.001355 0.001384

C4 0.000026 0.000000 0.000001 0.000025 0.000026

C5 590.453587 0.299558 10.601781 569.280401 583.063049

n 0.178590 0.000224 0.007616 0.164242 0.173269

sd_sigma[1] 13.912729 0.013934 0.600692 12.782011 13.507633

sd_sigma[2] 43.241397 0.017583 0.905223 41.529256 42.615206

lp__ -7348.632008 0.052106 2.064795 -7353.435594 -7349.825247

50% 75% 97.5% n_eff Rhat

C0 1.335665 2.592077 6.868329 3468 1.000775

C1 1535.833308 1544.301900 1560.242546 1326 1.002346

C3 0.001399 0.001414 0.001444 1178 0.999900

C4 0.000026 0.000027 0.000028 1701 0.999989

C5 590.286775 597.801277 611.037302 1253 1.001070

n 0.178315 0.183478 0.194600 1152 1.000960

sd_sigma[1] 13.883629 14.324345 15.133365 1858 1.003091

sd_sigma[2] 43.220078 43.839171 45.089457 2651 1.000596

lp__ -7348.307074 -7347.073831 -7345.609035 1570 1.000680

Samples were drawn using NUTS(diag_e) at Fri Aug 3 10:05:17 2018.

For each parameter, n_eff is a crude measure of effective sample size,

54

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

warmup sample

chain:1 44.01 46.59

chain:2 51.34 45.75

chain:3 46.18 40.33

chain:4 49.64 45.41

There is a warning about divergent transitions similar to the one seen in the initial
test of the Zerilli-Armstrong (BCC) model in Section 5.3. However, that initial test
also produced poor values for the effective sample sizes and potential scale reduc-
tion factors, something not seen in these results. Because the warning about diver-
gences is not accompanied by indications of other problems, it is dealt with by sim-
ply following the advice shown in the warning, that is, increasing adapt_delta,
as shown in the following R code:

za_bcc_fit <- sampling(za_bcc_model,

data = my_data,

init = function() {init_vals},

control = list(adapt_delta = 0.9),

seed = 9001)

print(za_bcc_fit, digits_summary = 6)

get_elapsed_time(za_bcc_fit)

The following are the results from the MCMC run with an increased adapt_delta
value:

Inference for Stan model: za_bcc.

4 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 25%

C0 1.838311 0.032837 1.852660 0.047391 0.526852

C1 1535.879297 0.347084 12.595803 1510.485234 1527.432886

C3 0.001398 0.000001 0.000023 0.001354 0.001383

C4 0.000026 0.000000 0.000001 0.000025 0.000026

C5 590.188913 0.310604 10.787786 568.976240 582.941115

n 0.178752 0.000229 0.007809 0.163999 0.173488

sd_sigma[1] 13.927820 0.013741 0.604718 12.786078 13.516595

sd_sigma[2] 43.257861 0.018189 0.880064 41.578456 42.678689

lp__ -7348.529108 0.049524 2.010771 -7353.231987 -7349.676342

50% 75% 97.5% n_eff Rhat

C0 1.267023 2.536462 6.963349 3183 1.000211

C1 1535.957295 1544.542748 1559.960558 1317 1.001718

C3 0.001397 0.001413 0.001445 972 1.000675

C4 0.000026 0.000027 0.000027 1762 1.000205

55

C5 589.872530 597.304725 612.356929 1206 1.001071

n 0.178528 0.183905 0.195041 1159 1.001854

sd_sigma[1] 13.909507 14.338809 15.164395 1937 1.002238

sd_sigma[2] 43.238246 43.810689 45.077101 2341 1.001283

lp__ -7348.221335 -7347.047432 -7345.618649 1649 1.002222

Samples were drawn using NUTS(diag_e) at Fri Aug 3 10:07:09 2018.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

warmup sample

chain:1 51.60 47.91

chain:2 44.17 42.49

chain:3 56.44 48.90

chain:4 56.78 52.11

The relationship of SDσ,1 to SDσ,2 is now similar to what it is for the Johnson-
Cook model. The samples and summary from this MCMC run are saved for future
examination:

save_stan_fit_to_csv(

za_bcc_fit,

file.path("summaries",

"za_bcc_MIDAS_rstan_summary_JC_data_bTQ09_fA075.csv"),

file.path("samples",

"za_bcc_MIDAS_rstan_samples_JC_data_bTQ09_fA075.csv.gz"))

Fits for the Zerilli-Armstrong (BCC) model have been done for the rest of the com-
binations of βTQ and farea in Table 1, for both the case where all MIDAS data are
included and the case where only the MIDAS data used to fit the Johnson-Cook
model are included. The means and standard deviations of the resulting fitted pa-
rameters are in Ramsey.3

6.5 Applying Approximate Interval Predictor Model Approach
To do the constrained optimization for the IPM to find parameter bounds for the
Johnson-Cook model, one needs to load not only the function specifying the flow
stress according to that model, but also its gradient, which here is specified via the
function jc_grad:

Loading the jc function

library(rstan)

jc_model <- readRDS(file.path("compiled_stan_models", "jc.rds"))

expose_stan_functions(jc_model)

56

Definining the gradient

jc_grad <- function(epsilon_p, log_epsilon_p_dot, T_star,

A, B, n, C, m) {

dJCdA <- (-T_star^m + 1)*(C*log_epsilon_p_dot + 1.0)

dJCdB <- epsilon_p^n*(-T_star^m + 1)*(C*log_epsilon_p_dot + 1.0)

dJCdn <- ifelse(epsilon_p == 0,

rep(0, length(epsilon_p)),

B*(epsilon_p^n)*(-T_star^m + 1)*
(C*log_epsilon_p_dot + 1.0)*
log(epsilon_p))

dJCdC <- log_epsilon_p_dot*(A + B*epsilon_p^n)*(-T_star^m + 1)

dJCdm <- ifelse(T_star == 0,

rep(0, length(T_star)),

-T_star^m*(A + B*epsilon_p^n)*(C*log_epsilon_p_dot + 1.0)*
log(T_star))

return (rbind(dJCdA, dJCdB, dJCdn, dJCdC, dJCdm))

}

The derivatives in the function jc_grad are calculated with the aid of a symbolic
computation package (in this case, SymPy30). However, blindly using the derivative
expressions from a symbolic computation would be a problem, since the expres-
sions for the derivatives with respect to parameters n and m are undefined where εp

or T∗ are zero, because of the presence of the factors εn
p ln εp and (T∗)m lnT∗, respec-

tively, in those expressions. Mathematically, though, as εp → 0 and T∗ → 0, these
factors approach zero, and the numerical calculation of the derivatives reflects that.
Also, to allow the R variables epsilon_p and T_star to be arrays, ifelse is
used rather than a raw if statement.

At this point, one can load in the needed data, as well as temperature data for βTQ =

0.9 and farea = 0.75:

my_data <- readRDS(file.path("rds_data_files", "Main_data_for_JC.rds"))

my_data[["T"]] = readRDS(

file.path("rds_data_files","T_beta0.9_farea0.75_JC.rds"))

epsilon_p <- my_data[["epsilon_p"]]

epsilon_p_dot <- my_data[["epsilon_p_dot"]]

log_ep_dot <- log(epsilon_p_dot/my_data[["epsilon_p_dot_0"]])

T_room <- my_data[["T_room"]]

T_star <- (my_data[["T"]] - T_room)/(my_data[["T_melt"]] - T_room)

57

curve_sizes <- my_data[["curve_sizes"]]

To make the constrained optimization more tractable, the flow stresses are converted
from units of megapascals to gigapascals:

MPa_to_GPa <- 1e-3

sigma <- my_data[["sigma"]]*MPa_to_GPa

For the sake of array calculations that are to be needed, log_ep_dot_vec is
created from log_ep_dot as follows:

log_ep_dot_vec <- NULL

for (i in 1:length(curve_sizes)) {

log_ep_dot_vec <- c(

log_ep_dot_vec,

rep(log_ep_dot[i], curve_sizes[i])

)

}

To estimate θ0 for the Johnson-Cook model, the mean of the MCMC samples from
the fit with a strong prior on A (again, for βTQ = 0.9 and farea = 0.75) is used:

summary <- read.csv(

file.path("summaries",

"jc_MIDAS_rstan_summary_strong_prior_on_A_bTQ09_fA075.csv"),

row.names = 1

)

theta_0 <- c(summary["A", "mean"]*MPa_to_GPa,

summary["B", "mean"]*MPa_to_GPa,

summary["n", "mean"],

summary["C", "mean"],

summary["m", "mean"])

At this point, one can begin to construct the inputs that will be needed for con-
strained minimization with the function lp from the lpSolve R package.31 These
inputs consist of (1) a vector whose elements are the coefficients of the elements of
∆θ′min and ∆θ′max in Eq. 14 and (2) a combination of an array and 2 vectors that to-
gether characterizes the inequalities in Eq. 11. To construct these inputs, first gσmdl

from Eq. 14 is evaluated for θ0 and the strains, strain rates, and temperatures from
my_data:

g_sigma_mdl = jc_grad(epsilon_p, log_ep_dot_vec, T_star,

theta_0[1], theta_0[2], theta_0[3],

theta_0[4], theta_0[5])

58

The columns of the array g_sigma_mdl are gradient vectors, each evaluated at a
given strain, strain rate, and temperature. To find the aforementioned coefficients of
the elements of ∆θ′min and ∆θ′max , one needs the sum of the elementwise absolute
values of these vectors, which can be done as shown:

g_sigma_mdl_abs <- abs(g_sigma_mdl)

g_sigma_mdl_abs_sum <- rowSums(g_sigma_mdl_abs)

The vector of coefficients, then is as follows:

coefficients <- c(g_sigma_mdl_abs_sum, g_sigma_mdl_abs_sum)

The first half of the vector coefficients is the coefficients for the elements
of ∆θ′min, while the second half is the coefficients for the elements of ∆θ′max . In
principle, since Eq. 14 is a function to be minimized, it can be multiplied by any
nonzero prefactor without affecting the minimization. In practice, however, dividing
it by the number of data points makes the numerical minimization more tractable.
Accordingly,

num_data_pts <- length(epsilon_p)

coefficients <- coefficients/num_data_pts

The inequalities in Eq. 14 need to be rearranged to fit the form needed by the func-
tion lp, that is, Au cmp b. Here, u is a vector consisting of the elements of ∆θmin

followed by the elements of ∆θmax , and A is a matrix whose rows are coefficients
of the elements of u. b is a vector with the same number of rows as A. The operator
cmp is really a vector of operators, one for each row of A and its corresponding
element in b. Each element of cmp is one of <, ≤, =, ≥, or >. To fit this format,
Eq. 14 can be combined with Eqs. 12 and 13 and rearranged to obtain

−
1
2

(
gσmdl

(eic
j) + |gσmdl

(eic
j)|

)T
∆θmin

+
1
2

(
gσmdl

(eic
j) − |gσmdl

(eic
j)|

)T
∆θmax ≤ σ

ic
j − σmdl(eic

j ,θ0)

(15)

−
1
2

(
gσmdl

(eic
j) − |gσmdl

(eic
j)|

)T
∆θmin

+
1
2

(
gσmdl

(eic
j) + |gσmdl

(eic
j)|

)T
∆θmax ≥ σ

ic
j − σmdl(eic

j ,θ0)

(16)

Accordingly, then, the matrix A and vectors b and cmp can be constructed in R as
follows:

59

num_data_pts2 <- 2*num_data_pts

num_data_pts_p1 <- num_data_pts + 1

num_coeffs = length(coefficients)

A_mat <- matrix(nrow = num_data_pts2,

ncol = num_coeffs)

b_vec <- rep(NA, 2*num_data_pts)

g_gabs_half_sumT <- t(0.5*(g_sigma_mdl + g_sigma_mdl_abs))

g_gabs_half_diffT <- t(0.5*(g_sigma_mdl - g_sigma_mdl_abs))

half_num_coeffs <- num_coeffs/2

half_num_coeffs_p1 <- half_num_coeffs + 1

Because jc is generated from expose_stan_functions, it doesn't

vectorize, hence the need for mapply.

sigma_mdl <- mapply(jc, epsilon_p, log_ep_dot_vec, T_star,

MoreArgs = list(theta_0[1], theta_0[2], theta_0[3],

theta_0[4], theta_0[5]))

sigma_minus_sigma_mdl <- sigma - sigma_mdl

A_mat[1:num_data_pts, 1:half_num_coeffs] <- -g_gabs_half_sumT

A_mat[1:num_data_pts, half_num_coeffs_p1:num_coeffs] <- g_gabs_half_diffT

cmp_vec <- rep("<=", num_data_pts)

b_vec[1:num_data_pts] <- sigma_minus_sigma_mdl

A_mat[num_data_pts_p1:num_data_pts2, 1:half_num_coeffs] <- -g_gabs_half_diffT

A_mat[num_data_pts_p1:num_data_pts2, half_num_coeffs_p1:num_coeffs] <-

g_gabs_half_sumT

cmp_vec <- c(cmp_vec, rep(">=", num_data_pts))

b_vec[num_data_pts_p1:num_data_pts2] <- sigma_minus_sigma_mdl

At this point, the minimization can proceed:

library(lpSolve)

result <- lp(objective.in = coefficients,

const.mat = A_mat,

const.dir = cmp_vec,

const.rhs = b_vec)

cat(sprintf("result[[\"status\"]] = %d (0 indicates success)\n",

result[["status"]]))

Delta_theta_min <- result[["solution"]][1:half_num_coeffs]

Delta_theta_max <- result[["solution"]][half_num_coeffs_p1:num_coeffs]

60

JC_param_lb <- theta_0 - Delta_theta_min

JC_param_ub <- theta_0 + Delta_theta_max

cat(sprintf("Est. spread for A = (%g, %g)\n", JC_param_lb[1]/MPa_to_GPa,

JC_param_ub[1]/MPa_to_GPa))

cat(sprintf("Est. spread for B = (%g, %g)\n", JC_param_lb[2]/MPa_to_GPa,

JC_param_ub[2]/MPa_to_GPa))

cat(sprintf("Est. spread for n = (%g, %g)\n", JC_param_lb[3], JC_param_ub[3]))

cat(sprintf("Est. spread for C = (%g, %g)\n", JC_param_lb[4], JC_param_ub[4]))

cat(sprintf("Est. spread for m = (%g, %g)\n", JC_param_lb[5], JC_param_ub[5]))

The output of the minimization is as follows:

result[["status"]] = 0 (0 indicates success)

Est. spread for A = (699.843, 699.843)

Est. spread for B = (866.224, 866.224)

Est. spread for n = (0.0719028, 0.123226)

Est. spread for C = (0.0045419, 0.00710257)

Est. spread for m = (0.874261, 1.05123)

The resulting upper and lower bounds for the Johnson-Cook parameters (stored
in the vectors JC_param_lb and JC_param_ub, respectively) have been es-
timated using a Taylor approximation. To see if these bounds are reasonable, the
set Θ will be taken to be the hyperrectangle with the corners JC_param_lb and
JC_param_ub, and σmin and σmax will be estimated using Eqs. 8 and 9 (rather
than the approximations in Eqs. 12 and 13). One can then determine how much of
the flow stress data is actually bounded by σmin and σmax .

To do this, one first needs to create wrappers around the jc and jc_grad functions
that will work as objective and gradient functions for the optim function of R:

jc_for_min <- function(ABnCm, ep, l_epdot, T_s) {

return (jc(ep, l_epdot, T_s,

ABnCm[1], ABnCm[2], ABnCm[3], ABnCm[4], ABnCm[5]))

}

jc_for_max <- function(ABnCm, ep, l_epdot, T_s) {

return (-jc_for_min(ABnCm, ep, l_epdot, T_s))

}

jc_grad_for_min <- function(ABnCm, ep, l_epdot, T_s) {

return (as.vector(jc_grad(ep, l_epdot, T_s,

ABnCm[1], ABnCm[2], ABnCm[3],

ABnCm[4], ABnCm[5])))

}

jc_grad_for_max <- function(ABnCm, ep, l_epdot, T_s) {

61

return (-as.vector(jc_grad(ep, l_epdot, T_s,

ABnCm[1], ABnCm[2], ABnCm[3],

ABnCm[4], ABnCm[5])))

}

Since a minimization routine is used to find σmax , jc_for_max is the negative
of the Johnson-Cook flow stress. (Maximizing an objective function is the same as
minimizing the negative of that function.)

One can then use the following for loop to generate estimates of σmin and σmax

for each set of strain, strain rate, and temperature inputs, check how much of the
data is within bounds, and then save the bounds to a RDS file (which can used to
generate plots showing how much of the data are within bounds, such as those in
Ramsey3):

num_data_pts_in_bounds <- 0

sigma_min <- rep(NA, num_data_pts)

sigma_max <- rep(NA, num_data_pts)

for (i in 1:num_data_pts) {

result_min <- optim(theta_0, jc_for_min,

gr = jc_grad_for_min,

epsilon_p[i], log_ep_dot_vec[i], T_star[i],

method = "L-BFGS-B",

lower = JC_param_lb,

upper = JC_param_ub)

if (result_min[["convergence"]] != 0) {

cat(sprintf("Cannot find sigma_min for data point %s!", i))

}

result_max <- optim(theta_0, jc_for_max,

gr = jc_grad_for_max,

epsilon_p[i], log_ep_dot_vec[i], T_star[i],

method = "L-BFGS-B",

lower = JC_param_lb,

upper = JC_param_ub)

if (result_max[["convergence"]] != 0) {

cat(sprintf("Cannot find sigma_max for data point %s!", i))

}

sigma_min[i] = result_min[["value"]]

sigma_max[i] = -result_max[["value"]]

num_data_pts_in_bounds <- num_data_pts_in_bounds +

as.numeric((sigma_min[i] <= sigma[i]) &&

(sigma[i] <= sigma_max[i]))

62

}

cat(sprintf("Fraction of data points in bounds = %g",

num_data_pts_in_bounds/num_data_pts))

saveRDS(

list(

sigma_min = sigma_min/MPa_to_GPa,

sigma_max = sigma_max/MPa_to_GPa

),

file.path(

"rds_data_files",

"jc_MIDAS_rstan_IPM_sigma_bounds_strong_prior_on_A_beta0.9_farea0.75.rds"

)

)

The resulting text output is as follows:

Fraction of data points in bounds = 0.999455

Almost 100% of the data points are within the bounds.

Similar constrained optimizations to estimate bounds of parameters in the Johnson-
Cook have been done for the rest of the combinations of βTQ and farea in Table 1,
all for the case with a strong prior on A. Bounds have also been estimated for the
parameters of the Zerilli-Armstrong (BCC) model, for the case where only the MI-
DAS data used to fit the Johnson-Cook model are included. Results for these cases
are in Ramsey.3

7. Postprocessing of Model Fits
7.1 Plotting Priors with Posteriors
As a sanity check, one may compare the priors for the model parameters to their
corresponding posteriors. If a posterior largely resembles its corresponding prior,
this suggests that the posterior has been largely determined by the prior rather than
the likelihood, which is a problem if a prior is only weakly informative and little
more than an educated guess.

First, one needs to read in the samples of the posterior from an MCMC run, such
as samples in the CSV file from the MCMC run of the Johnson-Cook model with
βTQ = 0.9, farea = 0.75 and weakly informative priors. This is done as follows,
with the contents of the file being stored in the data frame jc_samples:

63

jc_samples <- read.csv(

file.path("samples",

"jc_MIDAS_rstan_samples_weak_prior_bTQ09_fA075.csv.gz"))

The CSV file named previously has column headers corresponding to the
names of model parameters ("A", "B", etc.), so the values in columns
of this CSV file, which contain the MCMC samples for those parame-
ters, can be accessed as jc_samples[["A"]], jc_samples[["B"]],
and so on. However, the vector of samples for model parameter SDσ,1 (or
sd_sigma[1]) is jc_samples[["sd_sigma.1."]], with a period (“.”)
replacing the opening and closing brackets in the parameter name, or alternatively,
jc_samples[[make.names("sd_sigma[1]")]].

At this point, one may compute histograms that approximate the marginal PDFs of
the parameters as follows:

jc_hists <- list()

for (param in names(jc_samples)) {

jc_hists[[param]] <- hist(jc_samples[[param]],

breaks = "FD",

plot = FALSE)

}

The function call names(jc_samples) returns a vector of the names of
the columns in the data frame jc_samples. The argument “breaks =

"FD"” causes R to use the Freedman-Diaconis algorithm to determine the
number of bins in the histogram. The argument “plot = FALSE” prevents
R from actually plotting the histograms, since this is to be done in later
steps. Instead, the boundaries of the bins in each histogram are stored in the
vector jc_hists[[param]][["breaks"]], the number of samples in
each bin is stored in the vector jc_hists[[param]][["counts"]],
and jc_hists[[param]][["density"]] is the result of dividing
jc_hists[[param]][["counts"]] by a normalizing factor such that
the total area under the histogram is 1. A normalized histogram is more readily
compared with a PDF, since the area under the whole PDF curve is also 1.

The R code for calculating the prior PDFs is shown:

library(jsonlite)

parent_dir <- dirname(getwd())

64

JC_priors <- read_json(file.path(parent_dir,

"Other_data", "JC_priors.json"),

simplifyVector = TRUE)

prior_curves <- list()

for (param in names(jc_samples)) {

if (param == "n") {

Parameter "n" has a beta distribution for a prior

prior_x <- seq(0, 1, length.out = 100)

prior_curves[[param]] <- list(

x = prior_x,

y = dbeta(prior_x,

JC_priors[["n_alpha"]], JC_priors[["n_beta"]])

)

} else if (param != "lp__") {

All other priors have an approximately normal distribution.

(It's approximate because it is truncated near zero.)

if (param == "sd_sigma.1.") {

guess_mean <- JC_priors[["sd_sigma_guess_mean"]][1]

guess_sd <- JC_priors[["sd_sigma_guess_sd"]][1]

} else if (param == "sd_sigma.2.") {

guess_mean <- JC_priors[["sd_sigma_guess_mean"]][2]

guess_sd <- JC_priors[["sd_sigma_guess_sd"]][2]

} else {

guess_mean <- JC_priors[[sprintf("%s_guess_mean", param)]]

guess_sd <- JC_priors[[sprintf("%s_guess_sd", param)]]

}

hist_x <- jc_hists[[param]][["breaks"]]

prior_x_min <- min(guess_mean - 3*guess_sd, hist_x[1])

prior_x_max <- max(guess_mean + 3*guess_sd, hist_x[length(hist_x)])

prior_x <- seq(prior_x_min, prior_x_max, length.out = 100)

prior_curves[[param]] <- list(

x = prior_x,

y = dnorm(prior_x, guess_mean, guess_sd)

)

}

}

In this code, the function dbeta calculates the probability density for a beta distri-
bution. Its first argument is a vector of values for which the probability density is to
be calculated, and the next two arguments are the α and β parameters of the distri-
bution. The dnorm function is similar, except it calculates the probability density
for a normal distribution, and its second and third arguments are the mean and stan-

65

dard deviation of the distribution. The list prior_curves is used to store the x-
and y- coordinates of points along the probability density curve for each parameter.

The following code plots the histograms for the marginal posterior PDFs of the
Johnson-Cook model parameters and nuisance parameters SDσ,1 and SDσ,2, along
with their corresponding priors (after setting up the labels for the x-axes and other
details of the plots’ appearance). In this code, the argument “freq = FALSE” is
passed to the plot function so that the counts in the histogram bins are normalized
such that the area under the histogram is 1. The resulting plots are shown in Fig. 13.

Setting default values for x-axis labels and legend locations

x_labels <- list()

legend_locations <- list()

for (param in names(jc_samples)) {

x_labels[[param]] <- param

legend_locations[[param]] <- "topright"

}

Modifying x-axis labels

for (param in c("A", "B")) {

x_labels[[param]] <- sprintf("%s (MPa)", param)

}

x_labels[["sd_sigma.1."]] <- expression(paste(SD[list(sigma,1)], " (MPa)"))

x_labels[["sd_sigma.2."]] <- expression(paste(SD[list(sigma,2)], " (MPa)"))

Changing legend position of parameter "C"

legend_locations[["C"]] <- "topleft"

Setting up line types and colors for the histogram

and prior

hist_lty <- 0

hist_col <- "blue"

prior_lty <- 1

prior_col <- "black"

Plotting histograms with their associated priors

for (param in names(jc_samples)) {

if (param != "lp__") {

prior_x <- prior_curves[[param]][["x"]]

prior_y <- prior_curves[[param]][["y"]]

posterior_hist <- jc_hists[[param]]

out_pdf_name <- sprintf(

"jc_prior_vs_marg_posterior_for_%s_weak_prior_bTQ09_fA075.pdf",

param)

66

A (MPa)

P
ro

ba
bi

lit
y

de
ns

ity

0 500 1000 1500 2000

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

Post.
Pri.

B (MPa)

P
ro

ba
bi

lit
y

de
ns

ity

0 500 1000 1500 2000

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8 Post.
Pri.

(a) (b)

n

P
ro

ba
bi

lit
y

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80

Post.
Pri.

C

P
ro

ba
bi

lit
y

de
ns

ity

0.000 0.002 0.004

0
10

00
20

00
30

00
40

00
50

00 Post.
Pri.

m

P
ro

ba
bi

lit
y

de
ns

ity

0.0 0.5 1.0 1.5 2.0
0

20
40

60
80

10
0

12
0

Post.
Pri.

(c) (d) (e)

SDσ, 1 (MPa)

P
ro

ba
bi

lit
y

de
ns

ity

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2 Post.

Pri.

SDσ, 2 (MPa)

P
ro

ba
bi

lit
y

de
ns

ity

0 50 100 150 200

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6 Post.

Pri.

(f) (g)

Fig. 13 Histograms approximating the posterior marginal PDFs of Johnson-Cook model pa-
rameters and nuisance parameters SDσ,1 and SDσ,2. These are generated from samples of an
RStan MCMC run with βTQ = 0.9, farea = 0.75, and weakly informative priors. Priors are
superimposed over the histograms.

67

Open ".pdf" file for plotting

pdf(file = file.path("plot_files", out_pdf_name),

title = out_pdf_name,

pointsize = 10,

width = 3, height = 3.5)

Margin adjustments

par(mar = c(4,5,0.7,0.7), oma = c(0,0,0,0))

plot(posterior_hist,

freq = FALSE,

xlim = range(c(prior_x, posterior_hist[["breaks"]])),

ylim = range(c(prior_y, posterior_hist[["density"]])),

xlab = x_labels[[param]],

ylab = "Probability density",

main = NULL,

lty = hist_lty,

col = hist_col)

lines(prior_x, prior_y, lty = prior_lty, col = prior_col)

The use of "pch" here allow a colored box to be used

in the legend to indicate the histogram, while a line

indicates the prior.

legend(legend_locations[[param]],

legend = c("Post.", "Pri."),

lty = c(hist_lty, prior_lty),

col = c(hist_col, prior_col),

pch = c(15, NA), pt.cex = 2)

dev.off() # Close ".pdf" file

}

}

Further histograms of the marginal posteriors of the Johnson-Cook model parame-
ters and nuisance parameters SDσ,1 and SDσ,2, as well their corresponding priors,
for the case of a strongly informative prior on A, are shown in Ramsey.3 Similar his-
tograms are also presented in Ramsey3 for the parameters of the Zerilli-Armstrong
(BCC) model (and associated nuisance parameters), for both the fit to all available
MIDAS data and the fit to the data used to fit the Johnson-Cook model.

68

7.2 Plotting Posteriors for Different Values of βTQ and farea

To crudely attempt to quantify the uncertainty due to variations in βTQ and farea, the
marginal posterior PDFs determined for different values of βTQ and farea are com-
pared. First, MCMC samples associated with these values are read in as follows.
These samples are for Johnson-Cook model fits with weakly informative priors.

bTQ_fA_strs <- list(

c("0.9", "0.75"), c("0.9", "0.55"), c("0.9", "0.95"),

c("0.6", "0.55"), c("0.6", "0.95")

)

jc_samples <- list()

for (bTQ_fA in bTQ_fA_strs) {

bTQ <- bTQ_fA[1]

fA <- bTQ_fA[2]

Removing the decimal points from bTQ and fA, i.e.

0.9 and 0.75 become 09 and 075

bTQ_no_decimal <- sub(".", "", bTQ, fixed = TRUE)

fA_no_decimal <- sub(".", "", fA, fixed = TRUE)

csv_file_name <- sprintf(

"jc_MIDAS_rstan_samples_weak_prior_bTQ%s_fA%s.csv.gz",

bTQ_no_decimal, fA_no_decimal)

jc_samples[[paste(bTQ, fA, sep = ",")]] <-

read.csv(file.path("samples", csv_file_name))

}

Here, jc_samples is a list of data frames, where each frame is associated with a
pair of βTQ and farea values. Next, histograms are computed. Again, the argument
“breaks = "FD"” causes R to use the Freedman-Diaconis algorithm to deter-
mine the number of bins in the histogram, while the argument “plot = FALSE”
prevents R from actually plotting the histograms:

jc_hists <- list()

for (bTQ_fA_str in names(jc_samples)) {

curr_jc_samples <- jc_samples[[bTQ_fA_str]]

hist_list <- list()

for (param in names(curr_jc_samples)) {

if (param != "lp__") {

hist_list[[param]] <- hist(curr_jc_samples[[param]],

breaks = "FD", plot = FALSE)

}

69

}

jc_hists[[bTQ_fA_str]] <- hist_list

}

Here, the histograms are stored in a list of lists named hist_list, where each
element of the outer list is a list of histograms that has one histogram for each
parameter. Each element of the outer list is associated with a pair of βTQ and farea

values. These histograms are plotted as shown in the following R code. Since these
histograms are to be overlapped, all but the ones for βTQ = 0.9 and farea = 0.75 are
plotted not as bar charts, but rather as lines that show the outlines of the bars, via
the hist_outline function from the R source file bayes-stress-strain-
utils.R in Appendix C. The resulting plots are shown in Fig. 14.

source("bayes-stress-strain-utils.R")

Setting up x-axis labels, the line types and colors, and legend labels

used in the plot.

params <- names(jc_hists[[1]])

x_labels <- list()

for (param in params) {

x_labels[[param]] <- param

}

for (param in c("A", "B")) {

x_labels[[param]] <- sprintf("%s (MPa)", param)

}

for (i in 1:2) {

x_labels[[sprintf("sd_sigma.%d.",i)]] <- parse(

text = sprintf("paste(SD[list(sigma,%d)], ' (MPa)')", i)

)

}

line_types <- 2:5

hist_col = "gray"

line_cols <- c("black", "red", "blue", "purple")

legend_labels <- rep(NA, length(bTQ_fA_strs))

for (i in 1:length(bTQ_fA_strs)) {

legend_labels[i] <- parse(

text = sprintf("paste(beta[TQ], ' = %s, ', f[area], ' = %s')",

bTQ_fA_strs[[i]][1], bTQ_fA_strs[[i]][2]))

}

Plotting the actual superimposed histograms

for (param in params) {

out_pdf_name <- sprintf("jc_hists_for_%s_weak_prior.pdf",

70

A (MPa)

P
ro

ba
bi

lit
y

de
ns

ity

300 400 500 600 700

0.
00

0
0.

00
4

0.
00

8
0.

01
2

βTQ = 0.9, farea = 0.75
βTQ = 0.9, farea = 0.55
βTQ = 0.9, farea = 0.95
βTQ = 0.6, farea = 0.55
βTQ = 0.6, farea = 0.95

B (MPa)

P
ro

ba
bi

lit
y

de
ns

ity

900 1000 1200

0.
00

0
0.

00
4

0.
00

8
0.

01
2 βTQ = 0.9, farea = 0.75

βTQ = 0.9, farea = 0.55
βTQ = 0.9, farea = 0.95
βTQ = 0.6, farea = 0.55
βTQ = 0.6, farea = 0.95

(a) (b)

n

P
ro

ba
bi

lit
y

de
ns

ity

0.06 0.07 0.08 0.09 0.10

0
20

40
60

80
10

0
12

0 βTQ = 0.9, farea = 0.75
βTQ = 0.9, farea = 0.55
βTQ = 0.9, farea = 0.95
βTQ = 0.6, farea = 0.55
βTQ = 0.6, farea = 0.95

C

P
ro

ba
bi

lit
y

de
ns

ity

0.0040 0.0044 0.0048

0
20

00
40

00
60

00
80

00

βTQ = 0.9, farea = 0.75
βTQ = 0.9, farea = 0.55
βTQ = 0.9, farea = 0.95
βTQ = 0.6, farea = 0.55
βTQ = 0.6, farea = 0.95

m

P
ro

ba
bi

lit
y

de
ns

ity

1.030 1.040 1.050 1.060
0

50
10

0
15

0

βTQ = 0.9, farea = 0.75
βTQ = 0.9, farea = 0.55
βTQ = 0.9, farea = 0.95
βTQ = 0.6, farea = 0.55
βTQ = 0.6, farea = 0.95

(c) (d) (e)

SDσ, 1 (MPa)

P
ro

ba
bi

lit
y

de
ns

ity

8.0 9.0 10.0 11.0

0.
0

0.
5

1.
0

1.
5

2.
0 βTQ = 0.9, farea = 0.75

βTQ = 0.9, farea = 0.55
βTQ = 0.9, farea = 0.95
βTQ = 0.6, farea = 0.55
βTQ = 0.6, farea = 0.95

SDσ, 2 (MPa)

P
ro

ba
bi

lit
y

de
ns

ity

30 31 32 33 34 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

βTQ = 0.9, farea = 0.75
βTQ = 0.9, farea = 0.55
βTQ = 0.9, farea = 0.95
βTQ = 0.6, farea = 0.55
βTQ = 0.6, farea = 0.95

(f) (g)

Fig. 14 Histograms approximating the posterior marginal PDFs of Johnson-Cook model pa-
rameters and nuisance parameters SDσ,1 and SDσ,2. These are generated from samples of
RStan MCMC runs with the values of βTQ and farea in Table 1, and weakly informative pri-
ors.

71

param)

pdf(file = file.path("plot_files", out_pdf_name),

title = out_pdf_name,

pointsize = 10,

width = 3, height = 3.5)

Finding the range of x- and y-values to be shown in the plot

xlim <- NULL

ylim <- NULL

for (i in 1:length(bTQ_fA_strs)) {

curr_hist <- jc_hists[[i]][[param]]

xlim <- range(c(xlim, range(curr_hist[["breaks"]])))

ylim <- range(c(ylim, range(curr_hist[["density"]])))

}

ylim[2] <- ylim[2] + 0.5*(ylim[2] - ylim[1])

Margin adjustments

par(mar = c(4,5,0.7,0.7), oma = c(0,0,0,0))

plot(jc_hists[[1]][[param]],

freq = FALSE,

xlab = x_labels[[param]],

ylab = "Probability density",

main = NULL,

xlim = xlim,

ylim = ylim,

lty = 0,

col = hist_col

)

Adding histograms to plot

for (i in 2:length(bTQ_fA_strs)) {

hist_outline(jc_hists[[i]][[param]],

lty = line_types[i-1], col = line_cols[i-1])

}

Adding legend to plot

legend("topright",

legend = legend_labels,

lty = c(0,line_types),

col = c(hist_col, line_cols),

pch = c(15, rep(NA, length(line_types))),

pt.cex = 2,

y.intersp = 0.9)

dev.off() # Closing plot window

}

Further histograms of the marginal posteriors of the Johnson-Cook model param-
eters and nuisance parameters SDσ,1 and SDσ,2, for the case of a strongly infor-

72

mative prior on A, are shown in Ramsey.3 Similar histograms are also presented in
Ramsey3 for the parameters of the Zerilli-Armstrong (BCC) model (and associated
nuisance parameters), for both the fits to all available MIDAS data and the fits to
only the data used to fit the Johnson-Cook model.

7.3 Plotting PPDs and PFPs with Experimental Data
To generate PPDs and PFPs for the Johnson-Cook model, one needs the samples
from an MCMC fit of the model. Accordingly, samples from the Johnson-Cook fits
with weakly informative priors are to be loaded, as in Section 7.2, into a list of data
frames named jc_samples, where each frame is associated with a string such
as "0.9,0.75", which represents a pair of βTQ and farea values. One also needs
the data and model used with the MCMC run that generated the samples. The data
used to fit the Johnson-Cook model have been stored in RDS files (as discussed in
Section 6.2), and these are loaded again as shown, with bTQ_fA_strs defined as
in Section 7.2:

main_data <- readRDS(file.path("rds_data_files",

"Main_data_for_JC.rds"))

temp_data <- list()

for (bTQ_fA in bTQ_fA_strs) {

bTQ <- bTQ_fA[1]

fA <- bTQ_fA[2]

temp_data[[paste(bTQ, fA, sep = ",")]] <- readRDS(

file.path("rds_data_files",

sprintf("T_beta%s_farea%s_JC.rds", bTQ, fA)))

}

Again, the function expose_stan_functions from RStan is used to load
a function jc representing the Johnson-Cook model into an R session. How-
ever, so that the procedure for generating PPDs and PFPs is nearly identical for
both the Johnson-Cook and Zerilli-Armstrong models, a wrapper function named
sigma_model_func is used, rather than directly using the jc and za_bcc

functions from their corresponding Stan models. In contrast to the previous instance
of sigma_model_func from Section 5.2, where the strain is a vector and the
model parameters are scalars, here the strain is a scalar, and the MCMC samples
for each model parameter are passed as vectors:

library(rstan)

jc_model <- readRDS(file.path("compiled_stan_models", "jc.rds"))

expose_stan_functions(jc_model)

73

sigma_model_func <- function(epsilon_p,

epsilon_p_dot,

temperature,

theta_model) {

log_epsilon_p_dot <-

log(epsilon_p_dot/theta_model[["epsilon_p_dot_0"]])

T_star <- (temperature - theta_model[["T_room"]])/

(theta_model[["T_melt"]] - theta_model[["T_room"]])

A <- theta_model[["A"]]

B <- theta_model[["B"]]

n <- theta_model[["n"]]

C <- theta_model[["C"]]

m <- theta_model[["m"]]

sigma_samples <- numeric(length(A))

A "for" loop is needed because expose_stan_functions

generates the "jc" function in such a way that it cannot

accept vectors for the model parameter arguments A, B, n,

C, and m.

for (i in 1:length(A)) {

sigma_samples[i] <- jc(epsilon_p, log_epsilon_p_dot,

T_star,

A[i], B[i], n[i], C[i], m[i])

}

return (sigma_samples)

}

Since the MCMC samples differ for different values of βTQ and farea, different
values of theta_model are needed for those values, so a list of the needed values
is created. A list of samples of SDσ,1 and SDσ,2 is generated as well for those values
of βTQ and farea:

theta_model_list <- list()

sd_sigma_list <- list()

for (bTQ_fA in bTQ_fA_strs) {

bTQ <- bTQ_fA[1]

fA <- bTQ_fA[2]

bTQ_fA_str <- paste(bTQ, fA, sep = ",")

curr_samples <- jc_samples[[bTQ_fA_str]]

theta_model_list[[bTQ_fA_str]] <- list(

A = curr_samples[["A"]],

B = curr_samples[["B"]],

n = curr_samples[["n"]],

C = curr_samples[["C"]],

74

m = curr_samples[["m"]],

epsilon_p_dot_0 = main_data[["epsilon_p_dot_0"]],

T_room = main_data[["T_room"]],

T_melt = main_data[["T_melt"]]

)

sd_sigma_list[[bTQ_fA_str]] <- list(

curr_samples[["sd_sigma.1."]],

curr_samples[["sd_sigma.2."]]

)

}

At this point, one may proceed to generate samples of PPDs and PFPs with a loop
that partly resembles the main loop in the model block of Stan specification file for
the Johnson-Cook model, jc.stan.9 However, rather than store the samples from
all the PPDs and PFPs, which could use a significant amount of memory since there
are 4000 samples for each of the roughly 2000 data points that make up the stress-
strain curve data, select statistics from the PPDs and PFPs are kept instead. For each
PPD, these statistics are the mean and the bounds of the 95% highest density interval
(HDI), which is the interval such that 1) the probability that a value is in this interval
is 95% and 2) the values within this interval all have higher probability densities
than values outside of it.11 The statistics of the PPDs are stored in lists of vectors
ppd_mean, ppd_hdi_min, and ppd_hdi_max. For each PFP, the bounds of
the 95% HDI are computed and stored in the lists of vectors pfp_hdi_min and
pfp_hdi_max. These lists of vectors are created via the following R code:

library(HDInterval)

ppd_mean <- list()

ppd_hdi_min <- list()

ppd_hdi_max <- list()

pfp_hdi_min <- list()

pfp_hdi_max <- list()

num_curves <- main_data[["num_curves"]]

curve_sizes <- main_data[["curve_sizes"]]

epsilon_p <- main_data[["epsilon_p"]]

epsilon_p_dot <- main_data[["epsilon_p_dot"]]

for (bTQ_fA in bTQ_fA_strs) {

bTQ <- bTQ_fA[1]

fA <- bTQ_fA[2]

bTQ_fA_str <- paste(bTQ, fA, sep = ",")

temperature <- temp_data[[bTQ_fA_str]]

75

theta_model <- theta_model_list[[bTQ_fA_str]]

sd_sigma <- sd_sigma_list[[bTQ_fA_str]]

curr_ppd_mean <- numeric(sum(curve_sizes))

curr_ppd_hdi_min <- numeric(sum(curve_sizes))

curr_ppd_hdi_max <- numeric(sum(curve_sizes))

curr_pfp_hdi_min <- numeric(sum(curve_sizes))

curr_pfp_hdi_max <- numeric(sum(curve_sizes))

start_ind <- 1

for (curve_ind in 1:num_curves) {

end_ind <- start_ind + curve_sizes[curve_ind] - 1

if (epsilon_p_dot[curve_ind] <= 1.0) {

curr_sd_sigma <- sd_sigma[[1]]

} else {

curr_sd_sigma <- sd_sigma[[2]]

}

for (i in start_ind:end_ind) {

curr_pfp <-

sigma_model_func(epsilon_p[i],

epsilon_p_dot[curve_ind],

temperature[i],

theta_model)

curr_ppd <- rnorm(length(curr_pfp),

curr_pfp, curr_sd_sigma)

curr_ppd_mean[i] <- mean(curr_ppd)

By default, the hdi function computes the bounds

of the 95% HDI.

curr_ppd_hdi_range <- hdi(curr_ppd)

curr_ppd_hdi_min[i] <- curr_ppd_hdi_range[1]

curr_ppd_hdi_max[i] <- curr_ppd_hdi_range[2]

curr_pfp_hdi_range <- hdi(curr_pfp)

curr_pfp_hdi_min[i] <- curr_pfp_hdi_range[1]

curr_pfp_hdi_max[i] <- curr_pfp_hdi_range[2]

}

start_ind <- end_ind + 1

}

ppd_mean[[bTQ_fA_str]] <- curr_ppd_mean

ppd_hdi_min[[bTQ_fA_str]] <- curr_ppd_hdi_min

ppd_hdi_max[[bTQ_fA_str]] <- curr_ppd_hdi_max

pfp_hdi_min[[bTQ_fA_str]] <- curr_pfp_hdi_min

pfp_hdi_max[[bTQ_fA_str]] <- curr_pfp_hdi_max

}

76

The variable curr_ppd shown previously is a vector of samples of the
PPD associated with the strain and temperature values epsilon_p[i] and
temperature[i]. Each element of curr_ppd corresponds to a value of
σ

ic,pred
j (ε ic

j , Ûε
ic
p ,T

ic
j) from Eq. 6, where ic and j are fixed for all of the elements

of curr_ppd. Element curr_ppd[q] is determined from the qth MCMC
sample of the model parameters. Each sample curr_ppd[q] of the PPD is
also drawn from a normal distribution. Here, the function rnorm performs such
draws. Its first argument is the number of draws, and the remaining arguments
are such that draw q comes from a distribution with mean curr_pfp[q]

and standard deviation curr_sd_sigma[q]. Element curr_pfp[q] is,
of course, a sample of the PFP determined from the qth MCMC sample of
the model parameters. Given the previous code, provided that βTQ = 0.9
and farea = 0.75, the R expression ppd_mean[["0.9,0.75"]][i] in-
dicates the mean of the PPD of where the plastic strain is epsilon_p[i],
the temperature is temperature[i], and the plastic strain rate is
epsilon_p_dot[curve_ind], where curve_ind determines the range of
values for i. The R expressions ppd_hdi_min[["0.9,0.75"]][i] and
ppd_hdi_max[["0.9,0.75"]][i] indicate the bounds of the 95% HDI
of that PPD. The hdi function from the R package HDInterval* is used to
estimate the HDIs.

The code for plotting the means and 95% HDI bounds along with the experimental
data is as follows:

source("bayes-stress-strain-utils.R")

T_init_str <- c("298", "298", "298", "298", "473", "673", "873")

sigma <- main_data[["sigma"]]

Setting up line types and colors

For beta_TQ = 0.9, f_area = 0.75

line_type_mean_only <- 1

col_val_hdi_only <- "skyblue"

col_val_mean_only <- "purple"

For other beta_TQ and f_area pairs

line_types_mean_and_hdi <- 2:5

col_vals_mean_and_hdi <- c("red", "brown", "green", "blue")

*If the advice in Section 2 has been followed, then this package should already have been in-
stalled.

77

For experimental data

col_val_data <- "black"

Setting up legend labels

bTQ_fA_legend_paste_strs <- sapply(bTQ_fA_strs,

function(bTQ_fA) {

sprintf("beta[TQ], ' = %s, ', f[area], ' = %s'",

bTQ_fA[1], bTQ_fA[2])

})

legend_labels <- c(

parse(text = sprintf("paste('95%% HDI, ', %s)",

bTQ_fA_legend_paste_strs[1])),

parse(text = sprintf("paste('Mean, ', %s)",

bTQ_fA_legend_paste_strs[1])),

sapply(bTQ_fA_legend_paste_strs[2:length(bTQ_fA_legend_paste_strs)],

function(bTQ_fA_lgd_str) {

parse(text = sprintf("paste('Mean & 95%% HDI, ', %s)",

bTQ_fA_lgd_str))

}),

"Exp. Data"

)

No extra space needed for the legend for low strain rates, only

for plots with high-strain-rate data

space_for_legend <- c(rep(0.0, times = 2), rep(0.5, times = 5))

Plotting HDI of PPDs

start_ind <- 1

for (curve_ind in 1:num_curves) {

end_ind <- start_ind + curve_sizes[curve_ind] - 1

out_pdf_name <- sprintf("jc_hdi_edot%g_T%s_weak_prior.pdf",

epsilon_p_dot[curve_ind],

T_init_str[curve_ind])

pdf(file = file.path("plot_files", out_pdf_name),

title = out_pdf_name,

pointsize = 10,

width = 4, height = 4)

curr_epsilon_p <- epsilon_p[start_ind:end_ind]

curr_sigma <- sigma[start_ind:end_ind]

curr_hdi_min <- list()

curr_hdi_max <- list()

for (i in 1:length(bTQ_fA_strs)) {

curr_hdi_min[[i]] <- ppd_hdi_min[[i]][start_ind:end_ind]

curr_hdi_max[[i]] <- ppd_hdi_max[[i]][start_ind:end_ind]

}

ymin <- min(unlist(curr_hdi_min), curr_sigma)

ymax <- max(unlist(curr_hdi_max), curr_sigma)

78

ymin <- ymin - space_for_legend[curve_ind]*(ymax - ymin)

par(mar = c(4,4,2,0.7), oma = c(0,0,0,0))

make_empty_xy_plot(range(curr_epsilon_p), c(ymin, ymax))

Plot 95% HDI for beta_TQ = 0.9, f_area = 0.75 as shaded region

fill_between_curves(curr_epsilon_p,

curr_hdi_min[[1]], curr_hdi_max[[1]],

col = col_val_hdi_only)

Plot mean for beta_TQ = 0.9, f_area = 0.75 as lines

lines(curr_epsilon_p, ppd_mean[[1]][start_ind:end_ind],

lty = line_type_mean_only,

col = col_val_mean_only)

Plot mean and bounds of 95% HDI as lines

for (i in 2:length(bTQ_fA_strs)) {

lines(curr_epsilon_p, curr_hdi_min[[i]],

lty = line_types_mean_and_hdi[i-1],

col = col_vals_mean_and_hdi[i-1])

lines(curr_epsilon_p, ppd_mean[[i]][start_ind:end_ind],

lty = line_types_mean_and_hdi[i-1],

col = col_vals_mean_and_hdi[i-1])

lines(curr_epsilon_p, curr_hdi_max[[i]],

lty = line_types_mean_and_hdi[i-1],

col = col_vals_mean_and_hdi[i-1])

}

Plot experimental data

pt_type_data <- 46

points(curr_epsilon_p, curr_sigma,

col = col_val_data,

pch = pt_type_data)

title(xlab = expression(epsilon[p]),

ylab = expression(paste(sigma, " (MPa)")),

main = sprintf("%s K, %g/s",

T_init_str[curve_ind],

epsilon_p_dot[curve_ind]))

legend("bottomright",

legend = legend_labels,

lty = c(0,

line_type_mean_only,

line_types_mean_and_hdi,

0),

col = c(col_val_hdi_only,

col_val_mean_only,

col_vals_mean_and_hdi,

col_val_data),

pch = c(15,

79

rep(NA, 1 + length(line_types_mean_and_hdi)),

pt_type_data),

pt.cex = 2,

y.intersp = 0.9)

dev.off()

start_ind <- end_ind + 1

}

This code employs two functions from the R source file bayes-stress-

strain-utils.R. One of these is make_empty_xy_plot, which creates an
empty plot window with given ranges for the x- and y-coordinates. The other is
fill_between_curves, which plots a shaded region between two curves. The
resulting plots are shown in Figs. 15 and 16. Plots showing the 95% HDI bounds
of the PFPs are shown in Figs. 17 and 18. The code to generate these plots is very
similar to the code that plots the statistics of the PPDs, so it is not shown.

Estimates for the mean and bounds of the 95% HDIs of the PPDs and PFPs have
also been done for the Johnson-Cook model with a strong prior on A and for the
Zerilli-Armstrong (BCC) model fitted to all MIDAS data and the MIDAS data used
to fit the Johnson-Cook model. These are shown in Ramsey.3

7.4 Determining Correlation Matrices
In addition to statistics for the marginal PDFs of the model parameters, one may
also need information on how the PDFs of these parameters are correlated, espe-
cially if one intends to use these PDFs as input to uncertainty propagation analyses.
For example, when the software Dakota is used for such analyses, it takes as input
either a correlation or rank correlation matrix, depending on the method of uncer-
tainty propagation used.32 Both of these are fairly simple to calculate in R. For the
Johnson-Cook model with weakly informative priors, βTQ = 0.9, and farea = 0.75,
the correlation matrix may be evaluated as follows:

jc_samples <- read.csv(

file.path("samples",

"jc_MIDAS_rstan_samples_weak_prior_bTQ09_fA075.csv.gz"))

corr_mat_jc <- cor(jc_samples)

print(corr_mat_jc)

The following is the printed matrix:

80

0.00 0.05 0.10 0.15

10
00

11
00

12
00

13
00

14
00

298 K, 0.001/s

εp

σ
(M

P
a)

95% HDI, βTQ = 0.9, farea = 0.75
Mean, βTQ = 0.9, farea = 0.75
Mean & 95% HDI, βTQ = 0.9, farea = 0.55
Mean & 95% HDI, βTQ = 0.9, farea = 0.95
Mean & 95% HDI, βTQ = 0.6, farea = 0.55
Mean & 95% HDI, βTQ = 0.6, farea = 0.95
Exp. Data

0.00 0.05 0.10 0.15

11
00

12
00

13
00

14
00

298 K, 0.1/s

εp

σ
(M

P
a)

95% HDI, βTQ = 0.9, farea = 0.75
Mean, βTQ = 0.9, farea = 0.75
Mean & 95% HDI, βTQ = 0.9, farea = 0.55
Mean & 95% HDI, βTQ = 0.9, farea = 0.95
Mean & 95% HDI, βTQ = 0.6, farea = 0.55
Mean & 95% HDI, βTQ = 0.6, farea = 0.95
Exp. Data

(a) (b)

0.05 0.10 0.15

12
00

13
00

14
00

15
00

298 K, 3500/s

εp

σ
(M

P
a)

95% HDI, βTQ = 0.9, farea = 0.75
Mean, βTQ = 0.9, farea = 0.75
Mean & 95% HDI, βTQ = 0.9, farea = 0.55
Mean & 95% HDI, βTQ = 0.9, farea = 0.95
Mean & 95% HDI, βTQ = 0.6, farea = 0.55
Mean & 95% HDI, βTQ = 0.6, farea = 0.95
Exp. Data

0.05 0.10 0.15

12
50

13
00

13
50

14
00

14
50

15
00

298 K, 7000/s

εp

σ
(M

P
a)

95% HDI, βTQ = 0.9, farea = 0.75
Mean, βTQ = 0.9, farea = 0.75
Mean & 95% HDI, βTQ = 0.9, farea = 0.55
Mean & 95% HDI, βTQ = 0.9, farea = 0.95
Mean & 95% HDI, βTQ = 0.6, farea = 0.55
Mean & 95% HDI, βTQ = 0.6, farea = 0.95
Exp. Data

(c) (d)

Fig. 15 Stress-strain data for initial sample temperatures of 298 K, along with estimates of
the mean and the 95% HDI for PPDs generated from samples of RStan MCMC runs for
the Johnson-Cook model with weakly informative priors. The 95% HDI for βTQ = 0.9 and
farea = 0.75 is plotted as a shaded region between the minimum and maximum of the HDI.

81

0.05 0.10 0.15

10
50

11
00

11
50

12
00

12
50

13
00

13
50

473 K, 3000/s

εp

σ
(M

P
a)

95% HDI, βTQ = 0.9, farea = 0.75
Mean, βTQ = 0.9, farea = 0.75
Mean & 95% HDI, βTQ = 0.9, farea = 0.55
Mean & 95% HDI, βTQ = 0.9, farea = 0.95
Mean & 95% HDI, βTQ = 0.6, farea = 0.55
Mean & 95% HDI, βTQ = 0.6, farea = 0.95
Exp. Data

0.05 0.10 0.15

85
0

90
0

95
0

10
00

10
50

11
00

11
50

673 K, 3000/s

εp

σ
(M

P
a)

95% HDI, βTQ = 0.9, farea = 0.75
Mean, βTQ = 0.9, farea = 0.75
Mean & 95% HDI, βTQ = 0.9, farea = 0.55
Mean & 95% HDI, βTQ = 0.9, farea = 0.95
Mean & 95% HDI, βTQ = 0.6, farea = 0.55
Mean & 95% HDI, βTQ = 0.6, farea = 0.95
Exp. Data

(a) (b)

0.05 0.10 0.15

60
0

70
0

80
0

90
0

10
00

873 K, 3500/s

εp

σ
(M

P
a)

95% HDI, βTQ = 0.9, farea = 0.75
Mean, βTQ = 0.9, farea = 0.75
Mean & 95% HDI, βTQ = 0.9, farea = 0.55
Mean & 95% HDI, βTQ = 0.9, farea = 0.95
Mean & 95% HDI, βTQ = 0.6, farea = 0.55
Mean & 95% HDI, βTQ = 0.6, farea = 0.95
Exp. Data

(c)

Fig. 16 Stress-strain data for high initial sample temperatures along with estimates of the mean
and the 95% HDI for PPDs generated from samples of RStan MCMC runs for the Johnson-
Cook model with weakly informative priors. The 95% HDI for βTQ = 0.9 and farea = 0.75 is
plotted as a shaded region between the minimum and maximum of the HDI.

82

0.00 0.05 0.10 0.15

10
00

11
00

12
00

13
00

14
00

298 K, 0.001/s

εp

σ
(M

P
a)

95% HDI, βTQ = 0.9, farea = 0.75
95% HDI, βTQ = 0.9, farea = 0.55
95% HDI, βTQ = 0.9, farea = 0.95
95% HDI, βTQ = 0.6, farea = 0.55
95% HDI, βTQ = 0.6, farea = 0.95
Exp. Data

0.00 0.05 0.10 0.15

11
00

12
00

13
00

14
00

298 K, 0.1/s

εp

σ
(M

P
a)

95% HDI, βTQ = 0.9, farea = 0.75
95% HDI, βTQ = 0.9, farea = 0.55
95% HDI, βTQ = 0.9, farea = 0.95
95% HDI, βTQ = 0.6, farea = 0.55
95% HDI, βTQ = 0.6, farea = 0.95
Exp. Data

(a) (b)

0.05 0.10 0.15

12
00

12
50

13
00

13
50

14
00

14
50

298 K, 3500/s

εp

σ
(M

P
a)

95% HDI, βTQ = 0.9, farea = 0.75
95% HDI, βTQ = 0.9, farea = 0.55
95% HDI, βTQ = 0.9, farea = 0.95
95% HDI, βTQ = 0.6, farea = 0.55
95% HDI, βTQ = 0.6, farea = 0.95
Exp. Data

0.05 0.10 0.15

13
00

13
50

14
00

14
50

15
00

298 K, 7000/s

εp

σ
(M

P
a)

95% HDI, βTQ = 0.9, farea = 0.75
95% HDI, βTQ = 0.9, farea = 0.55
95% HDI, βTQ = 0.9, farea = 0.95
95% HDI, βTQ = 0.6, farea = 0.55
95% HDI, βTQ = 0.6, farea = 0.95
Exp. Data

(c) (d)

Fig. 17 Stress-strain data for initial sample temperatures of 298 K, along with estimates of
the 95% HDI for PFPs generated from samples of RStan MCMC runs for the Johnson-Cook
model with weakly informative priors. The 95% HDI for βTQ = 0.9 and farea = 0.75 is plotted
as a shaded region between the minimum and maximum of the HDI.

83

0.05 0.10 0.15

11
50

12
00

12
50

13
00

473 K, 3000/s

εp

σ
(M

P
a)

95% HDI, βTQ = 0.9, farea = 0.75
95% HDI, βTQ = 0.9, farea = 0.55
95% HDI, βTQ = 0.9, farea = 0.95
95% HDI, βTQ = 0.6, farea = 0.55
95% HDI, βTQ = 0.6, farea = 0.95
Exp. Data

0.05 0.10 0.15

95
0

10
00

10
50

11
00

11
50

673 K, 3000/s

εp

σ
(M

P
a)

95% HDI, βTQ = 0.9, farea = 0.75
95% HDI, βTQ = 0.9, farea = 0.55
95% HDI, βTQ = 0.9, farea = 0.95
95% HDI, βTQ = 0.6, farea = 0.55
95% HDI, βTQ = 0.6, farea = 0.95
Exp. Data

(a) (b)

0.05 0.10 0.15

65
0

70
0

75
0

80
0

85
0

90
0

873 K, 3500/s

εp

σ
(M

P
a)

95% HDI, βTQ = 0.9, farea = 0.75
95% HDI, βTQ = 0.9, farea = 0.55
95% HDI, βTQ = 0.9, farea = 0.95
95% HDI, βTQ = 0.6, farea = 0.55
95% HDI, βTQ = 0.6, farea = 0.95
Exp. Data

(c)

Fig. 18 Stress-strain data for high initial sample temperatures along with estimates of the 95%
HDI for PFPs generated from samples of RStan MCMC runs for the Johnson-Cook model
with weakly informative priors. The 95% HDI for βTQ = 0.9 and farea = 0.75 is plotted as a
shaded region between the minimum and maximum of the HDI.

84

A B n C m

A 1.00000000 -0.99942647 0.98978369 0.06072992 -0.05456907

B -0.99942647 1.00000000 -0.98561331 -0.04984533 0.04182829

n 0.98978369 -0.98561331 1.00000000 0.06632394 -0.06734621

C 0.06072992 -0.04984533 0.06632394 1.00000000 -0.68925783

m -0.05456907 0.04182829 -0.06734621 -0.68925783 1.00000000

sd_sigma.1. 0.21133969 -0.19916422 0.24040565 0.29599499 -0.25753647

sd_sigma.2. -0.11503380 0.10758398 -0.12803428 -0.25490191 0.21244271

lp__ 0.07519178 -0.07739372 0.04003585 -0.01119199 0.02399214

sd_sigma.1. sd_sigma.2. lp__

A 0.2113397 -0.11503380 0.07519178

B -0.1991642 0.10758398 -0.07739372

n 0.2404056 -0.12803428 0.04003585

C 0.2959950 -0.25490191 -0.01119199

m -0.2575365 0.21244271 0.02399214

sd_sigma.1. 1.0000000 -0.13027907 -0.10100763

sd_sigma.2. -0.1302791 1.00000000 -0.01832615

lp__ -0.1010076 -0.01832615 1.00000000

The function cor calculates the correlation coefficient for each pair of columns
in the data frame jc_samples, and it returns a square matrix where each el-
ement is the correlation coefficient for each column pair. Since each column in
jc_samples (except for the column for lp__) is a sequence of MCMC sam-
ples for each model parameter, each entry in the matrix represents the correlation
between the random distributions of a pair of parameters.

The calculation of the rank correlation matrix is similarly trivial:

rcorr_mat_jc <- cor(jc_samples, method = "spearman")

print(rcorr_mat_jc)

The printed rank corrrelation matrix is as follows:

A B n C m

A 1.00000000 -0.99935909 0.99420649 0.06798517 -0.06174925

B -0.99935909 1.00000000 -0.99021729 -0.05803258 0.05000496

n 0.99420649 -0.99021729 1.00000000 0.06811196 -0.06898967

C 0.06798517 -0.05803258 0.06811196 1.00000000 -0.67384094

m -0.06174925 0.05000496 -0.06898967 -0.67384094 1.00000000

sd_sigma.1. 0.20380761 -0.19250742 0.22506036 0.28823035 -0.25392727

sd_sigma.2. -0.10558684 0.09837810 -0.11759043 -0.24229028 0.20593518

lp__ 0.03728332 -0.03789549 0.03514480 -0.01715314 0.02674573

sd_sigma.1. sd_sigma.2. lp__

A 0.20380761 -0.10558684 0.03728332

B -0.19250742 0.09837810 -0.03789549

n 0.22506036 -0.11759043 0.03514480

C 0.28823035 -0.24229028 -0.01715314

m -0.25392727 0.20593518 0.02674573

85

sd_sigma.1. 1.00000000 -0.11990047 -0.09483783

sd_sigma.2. -0.11990047 1.00000000 -0.01039431

lp__ -0.09483783 -0.01039431 1.00000000

Again, the function cor is used. However, when the argument “method =

"spearman"” is used, for each element of a column in jc_samples, it as-
signs a rank, such that the lowest rank, 1, is assigned to the smallest number in the
column, the rank of 2 to the next smallest number in the column, and so on. Each
column, then, is associated with a sequence of integer ranks. When the Spearman
rank correlation coefficient is applied to a pair of columns, it replaces each column
with its corresponding sequence of ranks, and then applies the Pearson correlation
coefficient to the sequences of ranks.1

Both the correlation matrix corr_mat_jc and the rank correlation matrix
rcorr_mat_jc may be saved to CSV files using the write.csv function.

8. Conclusions
This report describes a workflow, based on RStan, lpSolve, and the R scripting
language, that has been used to obtain information on strength model parameters in
RHA that can be used in uncertainty propagation analyses. This workflow covers
several issues:

• testing Bayesian models, which can uncover potential problems such as the
need to provide explicit initial values in some cases (e.g., the Zerilli-Armstrong
[BCC] model);

• approximating the temperature rise in the samples being deformed in stress-
strain experiments, noting how some of the assumptions in the approxima-
tions may affect the estimated marginal PDFs of the model parameters;

• keeping track of warning messages and other diagnostics from RStan, noting
what to do to address them;

• estimating bounds on model parameters via an approximate IPM approach;

• generating samples of a PPD or PFP, noting how to plot statistics of them in
a way that can be used to evaluate the fit of a strength model to experimental
data; and

86

• accounting for correlations in the random distributions of model parameters,
especially in a form that can be used as input for software tools that do un-
certainty propagation, such as Dakota.32

It is hoped that this workflow may serve as a source of example code for other ARL
researchers who wish to obtain results that facilitate uncertainty quantification.

87

9. References

1. R Core Team. R: a language and environment for statistical computing—
reference index. c2018 [accessed 2018 May]. https://cran.r-

project.org/doc/manuals/r-release/fullrefman.pdf.

2. Guo J, Gabry J, Goodrich B, Lee D, Sakrejda K, Trustees of Columbia
University, Sklyar O, The R Core Team, Oehlschlaegel-Akiyoshi J, Wick-
ham H, de Guzman J, Fletcher J, Heller T, Niebler E. Package "rstan".
c2018 [accessed 2018 Mar]. https://cran.r-project.org/web/
packages/rstan/rstan.pdf.

3. Ramsey JJ. Quantifying uncertainties in parameterizations of strength mod-
els of rolled homogeneous armor: part 1, overview. Aberdeen Proving Ground
(MD): Army Research Laboratory (US); 2019 Sep. Report No.: ARL-TR-8826.

4. Benck RF. Quasi-static tensile stress strain curves: II, rolled homogeneous ar-
mor. Aberdeen Proving Ground (MD): Ballistic Research Laboratories (US);
1976 Nov. Report No.: 2703.

5. Rittel D, Zhang LH, Osovski S. The dependence of the Taylor-Quinney coef-
ficient on the dynamic loading mode. Journal of the Mechanics and Physics of
Solids. 2017;107:96–114.

6. Johnson GR, Cook WH. A constitutive model and data for metals subjected to
large strains, high strain rates and high temperatures. In: Seventh international
symposium on ballistics: Proceedings; 1983 Apr; The Hague (Netherlands).
American Defense Preparedness Association; 1983. p. 541–547.

7. Zerilli FJ, Armstrong RW. Dislocation-mechanics-based constitutive re-
lations for material dynamics calculations. Journal of Applied Physics.
1987;61(5):1816–1825.

8. Gray GT III, Chen SR, Wright W, Lopez MF. Constitutive equations for an-
nealed metals under compression at high strain rates and high temperatures.
Los Alamos (NM): Los Alamos National Laboratory; 1994 Jan. Report No.:
LA-12669-MS.

9. Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB. Bayesian
data analysis. 3rd ed. Boca Raton (FL): CRC Press; 2013.

88

https://cran.r-project.org/doc/manuals/r-release/fullrefman.pdf
https://cran.r-project.org/doc/manuals/r-release/fullrefman.pdf
https://cran.r-project.org/web/packages/rstan/rstan.pdf
https://cran.r-project.org/web/packages/rstan/rstan.pdf

10. Chowdhary K, Najm HN. Data free inference with processed data products.
Statistics and Computing. 2016;26(1):149–169.

11. Kruschke JK. Doing Bayesian data analysis: a tutorial with R, JAGS, and Stan.
2nd ed. Waltham (MA): Academic Press; 2015.

12. Betancourt M. A conceptual introduction to Hamiltonian Monte Carlo. c2017
[accessed 2018 Mar]. https://arxiv.org/abs/1701.02434.

13. Hoffman MD, Gelman A. The no-U-turn sampler: adaptively setting path
lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research.
2014;15(1).

14. Crespo LG, Kenny SP, Giesy DP. Calibration of predictor models using multi-
ple validation experiments. In: 17th AIAA Non-Deterministic Approaches Con-
ference; (AIAA SciTech Forum; no. AIAA 2015-0659) American Institute of
Aeronautics and Astronautics; 2015.

15. Crespo LG, Kenny SP, Giesy DP. Interval predictor models with a linear pa-
rameter dependency. Journal of Verification, Validation and Uncertainty Quan-
tification. 2016;1(2):021007.

16. Goodrich B. RStan: Getting started. c2018 [accessed 2018 Mar].
https://github.com/stan-dev/rstan/wiki/RStan-

Getting-Started.

17. Anaconda, Inc. Anaconda. c2018 [accessed 2018 Mar]. https://

anaconda.com.

18. Goodrich B. R session aborted. c2019 May [accessed 2019 Sep]. https:
//discourse.mc-stan.org/t/r-session-aborted/6655/12.

19. Anaconda, Inc. Anaconda installation. c2018 [accessed 2018 Mar]. https:
//docs.anaconda.com/anaconda/install/.

20. Anaconda, Inc. Getting started with Navigator. c2018 [accessed 2018
Mar]. https://docs.anaconda.com/anaconda/navigator/

getting-started.

21. Project Jupyter. Project Jupyter. c2018 [accessed 2018 Mar]. http://
jupyter.org/.

89

https://arxiv.org/abs/1701.02434
https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started
https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started
https://anaconda.com
https://anaconda.com
https://discourse.mc-stan.org/t/r-session-aborted/6655/12
https://discourse.mc-stan.org/t/r-session-aborted/6655/12
https://docs.anaconda.com/anaconda/install/
https://docs.anaconda.com/anaconda/install/
https://docs.anaconda.com/anaconda/navigator/getting-started
https://docs.anaconda.com/anaconda/navigator/getting-started
http://jupyter.org/
http://jupyter.org/

22. RStudio. RStudio: Open source and enterprise-ready professional software for
R. c2018 [accessed 2018 Mar]. https://www.rstudio.com/.

23. Stan Development Team. Emacs support for Stan. c2017 [accessed 2018 Mar].
https://github.com/stan-dev/stan-mode.

24. Lerch M. mc-stan.vim. c2015 [accessed 2018 Mar]. https://github.
com/mdlerch/mc-stan.vim.

25. Ramsey JJ. Quantifying uncertainties in parameterizations of strength models
of rolled homogeneous armor: part 3, Python-based workflow. Aberdeen Prov-
ing Ground (MD): Army Research Laboratory (US); 2019 Sep. Report No.:
ARL-TR-8828.

26. Hubert W. Meyer J, Kleponis DS. An analysis of parameters for the Johnson-
Cook strength model for 2-in-thick rolled homogeneous armor. Aberdeen Prov-
ing Ground (MD): Army Research Laboratory (US); 2001 June. Report No.:
ARL-TR-2528.

27. Stan Development Team. Stan modeling language user’s guide and reference
manual. 2017 Dec.

28. Free Software Foundation. GNU gzip. c2018 [accessed 2018 May]. https:
//www.gnu.org/software/gzip/.

29. Mathews JH, Fink KD. Numerical methods using Matlab. 4th ed. Upper Sad-
dle River (NJ): Pearson Prentice Hall; 2004.

30. SymPy development team. SymPy. c2018 [accessed 2019 Mar]. http://
www.sympy.org/.

31. Berkelaar M et al. lpSolve: Interface to ’Lp_solve’ v. 5.5 to solve linear/inte-
ger programs. 2015 [accessed 2019 Mar]. https://cran.r-project.
org/package=lpSolve.

32. Adams BM et al. Dakota, a multilevel parallel object-oriented framework for
design optimization, parameter estimation, uncertainty quantification, and sen-
sitivity analysis: Version 6.8 reference manual. Albuquerque (NM): Sandia
National Laboratories; 2018 May.

90

https://www.rstudio.com/
https://github.com/stan-dev/stan-mode
https://github.com/mdlerch/mc-stan.vim
https://github.com/mdlerch/mc-stan.vim
https://www.gnu.org/software/gzip/
https://www.gnu.org/software/gzip/
http://www.sympy.org/
http://www.sympy.org/
https://cran.r-project.org/package=lpSolve
https://cran.r-project.org/package=lpSolve

Appendix A. Data Tables

91

These are tables of the data that have been used in Bayesian analyses of strength
models of rolled homogeneous armor (RHA). Table A-1 contains values for the
specific heat of body-centered cubic (BCC) iron—which is assumed to approximate
the specific heat of RHA—as a function of temperature. In this table, the specific
heat values are for constant volume, except for values for temperatures above 773
K, where only values for constant pressure are available. The specific heat values
are converted from molar heat capacity values from Austin1 using the molar mass
of iron taken from the CRC Handbook,2 55.845 g/mol. Tables A-2 through A-10
contain the stress-strain data for RHA that comes from the Material Implementa-
tion, Database, and Analysis Source (MIDAS).3 The original source for these data
is Gray et al.,4 who have obtained high-strain-rate data with a split Hopkinson pres-
sure bar and low-strain-rate data (where the plastic strain rate is no greater than 1/s)
with “either an Instron or an MTS testing system”. However, the original published
data are engineering stress and strain, while in the MIDAS database, it has been
corrected to true stress and true plastic strain.5

Table A-1 Specific heat of BCC iron versus temperature

Temp. Spec. heat Temp. Spec. heat Temp. Spec. heat Temp. Spec. heat Temp. Spec. heat
(K) (J/kg ·K) (K) (J/kg ·K) (K) (J/kg ·K) (K) (J/kg ·K) (K) (J/kg ·K)

20 4.123 200 382.356 323 454.329 573 565.287 1023 1154.566
30 11.246 225 400.349 333 457.328 623 583.281 1033 1341.245
40 27.515 250 419.092 343 459.577 673 602.773 1073 877.170
50 53.230 273.1 430.338 353 461.826 723 623.016 1123 812.694
75 134.949 283 436.336 363 464.825 773 647.756 1173 778.957

100 212.920 293 442.334 373 470.823 823 718.230
125 272.148 298 444.583 423 494.814 873 790.203
150 322.379 303 447.582 473 519.555 923 871.172
175 356.866 313 451.330 523 541.296 973 962.638

1Austin JB. Heat capacity of iron: a review. Industrial & Engineering Chemistry.
1932;24(11):1225–1235.

2Rumble J, editor. CRC handbook of chemistry and physics. 98th ed. Boca Raton (FL): CRC
Press; 2017.

3Lawrence Livermore National Laboratory. MIDAS: Material implementation,
database, and analysis source. c2018 [accessed 2018 Mar]. https://pls.llnl.

gov/people/divisions/physics-division/condensed-matter-science-

section/eos-and-materials-theory-group/projects/midas-material-

implementation-database-and-analysis-source.
4Gray GT III, Chen SR, Wright W, Lopez MF. Constitutive equations for annealed metals under

compression at high strain rates and high temperatures. Los Alamos (NM): Los Alamos National
Laboratory; 1994 Jan. Report No.: LA-12669-MS.

5Florando J. Lawrence Livermore National Laboratory, Livermore, CA. Personal communica-
tion, 2017.

92

https://pls.llnl.gov/people/divisions/physics-division/condensed-matter-science-section/eos-and-materials-theory-group/projects/midas-material-implementation-database-and-analysis-source
https://pls.llnl.gov/people/divisions/physics-division/condensed-matter-science-section/eos-and-materials-theory-group/projects/midas-material-implementation-database-and-analysis-source
https://pls.llnl.gov/people/divisions/physics-division/condensed-matter-science-section/eos-and-materials-theory-group/projects/midas-material-implementation-database-and-analysis-source
https://pls.llnl.gov/people/divisions/physics-division/condensed-matter-science-section/eos-and-materials-theory-group/projects/midas-material-implementation-database-and-analysis-source

Table A-2 Flow stress versus plastic strain of RHA for initial temperature 77 K and plastic
strain rate 0.001/s

Strain Stress Strain Stress Strain Stress Strain Stress Strain Stress
(MPa) (MPa) (MPa) (MPa) (MPa)

0.000062 1552.7 0.032648 1764.6 0.067995 1854.4 0.104813 1930 0.143498 1986.7
0.00022 1566.5 0.033594 1765 0.068757 1855.3 0.105444 1931.3 0.144944 1987.5
0.000535 1582.5 0.034303 1768 0.069571 1857.4 0.107179 1930.5 0.145548 1989.3
0.000903 1597.1 0.035066 1770.6 0.070412 1857.9 0.108177 1933.9 0.146337 1989.3
0.001376 1609.2 0.035828 1771.9 0.071385 1859.2 0.109045 1934.4 0.147125 1991
0.001875 1621.7 0.036563 1774.1 0.072199 1862.2 0.109912 1938.7 0.147835 1991.4
0.002453 1631.6 0.037483 1776.2 0.072856 1864.3 0.110779 1940.8 0.149359 1994.5
0.003294 1642.4 0.039034 1779.7 0.07375 1865.2 0.111699 1943 0.150568 1995.8
0.003872 1650.2 0.03977 1781 0.074486 1867.4 0.112881 1944.3 0.151093 1995.8
0.004712 1659.2 0.040427 1782.7 0.075248 1870 0.113565 1945.2 0.151882 1996.6
0.005475 1664 0.041136 1785.3 0.076036 1872.1 0.114669 1946 0.152749 1997.9
0.006184 1669.2 0.041872 1787 0.076956 1875.1 0.115378 1946.9 0.153643 2000.5
0.007209 1676.5 0.042818 1790.1 0.077928 1875.1 0.116456 1948.6 0.15451 2001
0.008076 1681.7 0.043659 1793.5 0.079295 1876.9 0.117402 1949.1 0.155666 2002.3
0.00897 1685.1 0.044605 1794.4 0.080057 1879.5 0.118505 1951.2 0.156428 2003.1
0.009889 1689.4 0.045315 1795.7 0.08074 1881.6 0.119268 1952.1 0.157296 2003.1
0.010835 1693.8 0.046445 1800 0.081529 1882.9 0.120266 1953.4 0.158373 2004
0.011808 1698.5 0.047338 1800.9 0.08237 1884.7 0.121081 1954.2 0.159477 2006.6
0.012675 1702.4 0.048048 1803 0.083316 1887.2 0.122237 1956.8 0.16087 2007.9
0.013437 1705.8 0.048941 1805.6 0.084446 1889.8 0.123341 1958.1 0.162 2010.5
0.014199 1709.7 0.049756 1807.3 0.085287 1891.6 0.124471 1958.6 0.162604 2010.5
0.014961 1713.6 0.050492 1808.6 0.086128 1893.7 0.12526 1960.3 0.163971 2010.5
0.01575 1715.3 0.051569 1810.4 0.0876 1897.2 0.126232 1961.6 0.164838 2011.3
0.01638 1716.2 0.052332 1812.5 0.088335 1898.9 0.127204 1962.5 0.165863 2012.2
0.017064 1717.9 0.053173 1816 0.08936 1900.2 0.128098 1963.8 0.167361 2013.9
0.017852 1722.3 0.05383 1817.7 0.090438 1902.8 0.129202 1965.5 0.168255 2013.5
0.019114 1725.3 0.054618 1820.7 0.090858 1903.7 0.130279 1967.2 0.169306 2015.2
0.020086 1727.4 0.055748 1825 0.091726 1905 0.13091 1968.9 0.170252 2016.5
0.020874 1730.5 0.056799 1825.9 0.092619 1905.8 0.131725 1971.1 0.171067 2018.3
0.021584 1733.5 0.057456 1826.8 0.093513 1906.7 0.132618 1972.4 0.171881 2020.4
0.022504 1736.5 0.05835 1828.5 0.094538 1908.4 0.133538 1974.6 0.172591 2020.4
0.023266 1739.5 0.059086 1831.1 0.095773 1911.9 0.134353 1974.6 0.173564 2020
0.024159 1741.7 0.060137 1833.2 0.097218 1914 0.135167 1975.9 0.174378 2020.9
0.024869 1743.8 0.061057 1835 0.097823 1914.9 0.136035 1975.9 0.175745 2022.2
0.026051 1747.7 0.06195 1836.7 0.098795 1917.9 0.136797 1978 0.176691 2022.2
0.027234 1750.3 0.062712 1838.9 0.09961 1920.1 0.138216 1980.6 0.177479 2023.9
0.027996 1752 0.063842 1841 0.100398 1924.4 0.139083 1981.9 0.178136 2024.3
0.028653 1755.1 0.064815 1844.9 0.101292 1924.8 0.13995 1982.8 0.178583 2024.3
0.029678 1757.2 0.065524 1847.9 0.102054 1925.7 0.140844 1983.2
0.030466 1759 0.066181 1849.7 0.102816 1926.1 0.141659 1984.9
0.031229 1762 0.067154 1852.2 0.103657 1926.6 0.142631 1985.8

93

Table A-3 Flow stress versus plastic strain of RHA for initial temperature 77 K and plastic
strain rate 2500/s

Strain Stress Strain Stress Strain Stress Strain Stress Strain Stress
(MPa) (MPa) (MPa) (MPa) (MPa)

0.019951 1791.9 0.042917 1817.4 0.065427 1787.8 0.088992 1780.1 0.116886 1739.6
0.020109 1794.6 0.043495 1816.8 0.065901 1789.4 0.089491 1778.7 0.117385 1738.7
0.02032 1797.1 0.043915 1816.8 0.066295 1789.4 0.090043 1777 0.117884 1737.8
0.020504 1801 0.044336 1816.9 0.066663 1790.8 0.090673 1775 0.118331 1737
0.020742 1805.7 0.044808 1813.9 0.066873 1791.2 0.091224 1774.4 0.118804 1737
0.021005 1809.9 0.045176 1812.8 0.067188 1790.2 0.091776 1772.6 0.119277 1736.9
0.021242 1813.7 0.045517 1810.5 0.067477 1788.1 0.092301 1769.7 0.119881 1737
0.021505 1817.4 0.045937 1808.5 0.068002 1785.1 0.092957 1768.1 0.120432 1734.1
0.021664 1820.1 0.046436 1806.3 0.06829 1783.8 0.093561 1767.4 0.12101 1731.9
0.021979 1823.8 0.046829 1801.9 0.068605 1782.4 0.094271 1768.1 0.121587 1730.9
0.022426 1824.6 0.047249 1797.4 0.069156 1778.5 0.09477 1769.2 0.122086 1729.2
0.022768 1824.8 0.047747 1792.4 0.069603 1777.3 0.095401 1769.2 0.122428 1728.2
0.023162 1826.6 0.048245 1788.5 0.070049 1774.9 0.0959 1771.1 0.123347 1727.4
0.02353 1826.4 0.048665 1784.9 0.070469 1774.9 0.096347 1772.6 0.123872 1726.4
0.024055 1827.1 0.049085 1780.8 0.070864 1775.8 0.097109 1773.6 0.124608 1725.5
0.024529 1828.3 0.049557 1777.1 0.071232 1776.8 0.097793 1773.9 0.125238 1726.3
0.024949 1828.4 0.050003 1773.8 0.071626 1778.9 0.098475 1772.3 0.125817 1727.2
0.025868 1827.9 0.050476 1772.1 0.0721 1782.1 0.099105 1768.8 0.126237 1728
0.026341 1828.7 0.051053 1769.8 0.072441 1783.1 0.099683 1767.3 0.126736 1728.6
0.026893 1827.7 0.051474 1769.1 0.072993 1785.7 0.100155 1764.9 0.127393 1727.5
0.027629 1828 0.051841 1769.6 0.073309 1788.7 0.100759 1763.1 0.127944 1726.1
0.028207 1827.7 0.052262 1769.3 0.073625 1791.4 0.101022 1762.2 0.128496 1722.9
0.028653 1827.3 0.052709 1771.8 0.073862 1792.5 0.101758 1762.4 0.129046 1718.8
0.029231 1827.1 0.053129 1773.5 0.074282 1793.4 0.102152 1763.3 0.129414 1715.9
0.02973 1826.6 0.053445 1774.9 0.074781 1794.1 0.102651 1764.7 0.129886 1711.3
0.030177 1825.7 0.053787 1777.2 0.075202 1794.5 0.103151 1765.4 0.130647 1707.3
0.030702 1823.9 0.054155 1780.2 0.075911 1794.4 0.103703 1768.3 0.131145 1703.4
0.031174 1821.4 0.05455 1784.4 0.076226 1793.4 0.104019 1770.5 0.131644 1701.4
0.031699 1819.5 0.054919 1788.3 0.077014 1792 0.104308 1771.5 0.132117 1701.3
0.032198 1818.2 0.055129 1789.9 0.077618 1790.5 0.104834 1774.8 0.132432 1700.4
0.032645 1818.6 0.055629 1793.9 0.078091 1790 0.105044 1775.6 0.1328 1699.7
0.03346 1819.2 0.056076 1797.6 0.078511 1789.2 0.105465 1778.4 0.133168 1699.9
0.033985 1822 0.056497 1800.9 0.079089 1788.2 0.105964 1779.8 0.133509 1699.6
0.034327 1824.3 0.056813 1803.2 0.079483 1787.9 0.10649 1780 0.133982 1700.3
0.034748 1827.3 0.057207 1806.2 0.079877 1787.1 0.107015 1778.3 0.134376 1701.2
0.035169 1829.8 0.057707 1808.9 0.080507 1785.6 0.107724 1775.8 0.134666 1701.8
0.035537 1831.6 0.058154 1809.7 0.081111 1784.5 0.108117 1773.2 0.13506 1702.2
0.035905 1833.5 0.058627 1808.9 0.081611 1784 0.108564 1771.2 0.1359 1701.5
0.036273 1834.9 0.059047 1807.7 0.082057 1783.9 0.109194 1767.3 0.136504 1697.8
0.036667 1833.7 0.059388 1806.2 0.082556 1783.4 0.109482 1764.9 0.137081 1692.7
0.037087 1832.5 0.059755 1803.5 0.08295 1783.5 0.109928 1760.2 0.137553 1687.3
0.03756 1830.8 0.06028 1800.5 0.083633 1783.1 0.110295 1756.4 0.137841 1681.6
0.038137 1827.2 0.060727 1798.5 0.084264 1782.7 0.110846 1751.9 0.138102 1675.8
0.03861 1824.6 0.061304 1794.1 0.084711 1783.5 0.111476 1748.1 0.138548 1669.8
0.039161 1822.3 0.06175 1791.3 0.08521 1783 0.112342 1746.2 0.139072 1662.8
0.039686 1818.9 0.062406 1787.6 0.085551 1783.5 0.112972 1743.5 0.139386 1658.2
0.040185 1817.9 0.063063 1786 0.086287 1784.2 0.11397 1741.7 0.139911 1652.8
0.040632 1817.5 0.06343 1786.2 0.086839 1783.2 0.114364 1741.4 0.140409 1648.5
0.041236 1818.1 0.063851 1787 0.087285 1783.2 0.115126 1741.2
0.041682 1816.8 0.064403 1786.4 0.087889 1782.1 0.115573 1740.4
0.042208 1816.3 0.065007 1786.9 0.088441 1781.1 0.116387 1739.7

94

Table A-4 Flow stress versus plastic strain of RHA for initial temperature 298 K and plastic
strain rate 0.001/s

Strain Stress Strain Stress Strain Stress Strain Stress Strain Stress
(MPa) (MPa) (MPa) (MPa) (MPa)

0.000028 1064.6 0.031693 1298.4 0.068066 1346 0.103861 1362.6 0.1416 1374.4
0.000291 1081 0.032377 1299.3 0.069038 1346 0.104307 1362.6 0.142573 1375.7
0.000527 1094.4 0.033612 1302.3 0.069774 1346.9 0.105017 1362.2 0.144018 1375.7
0.000816 1107.3 0.034321 1304.1 0.070379 1346.5 0.105621 1361.7 0.144649 1375.3
0.001105 1120.7 0.035084 1305.8 0.071062 1346.9 0.1062 1361.7 0.145542 1375.3
0.001525 1135.3 0.03603 1307.1 0.071955 1347.3 0.106936 1362.2 0.14641 1374.4
0.001946 1140.9 0.036713 1309.3 0.072639 1346.9 0.107592 1362.2 0.147172 1376.6
0.00276 1152.2 0.037317 1310.1 0.073401 1348.2 0.108696 1362.6 0.148039 1376.6
0.003338 1159.5 0.038027 1311.8 0.073953 1348.2 0.109406 1363 0.148959 1376.6
0.00389 1166.4 0.03871 1312.3 0.074715 1347.4 0.110299 1363.9 0.149984 1378.3
0.004415 1173.3 0.039472 1313.1 0.075477 1348.7 0.110983 1365.6 0.150799 1379.2
0.005072 1180.2 0.040208 1314.4 0.076265 1350.4 0.111587 1365.2 0.151377 1378.7
0.005729 1185.8 0.041207 1317.9 0.077606 1350.4 0.112323 1364.8 0.153032 1377.4
0.00636 1192.3 0.041864 1317.5 0.078421 1350.4 0.113033 1364.8 0.154189 1376.2
0.007148 1197.4 0.042784 1319.2 0.079104 1350 0.113663 1365.2 0.154846 1377
0.007858 1203.1 0.04352 1321.4 0.079629 1350.8 0.114452 1365.6 0.155582 1377.5
0.008462 1206.5 0.044203 1320.9 0.080418 1351.3 0.115661 1364.4 0.156554 1377.5
0.009014 1210.8 0.044755 1320.9 0.081233 1351.7 0.116791 1365.7 0.157264 1378.3
0.009592 1215.6 0.045543 1323.1 0.081679 1352.6 0.117658 1365.2 0.158236 1379.2
0.010197 1218.2 0.046594 1325.7 0.082415 1352.6 0.118447 1365.2 0.159103 1378.8
0.010749 1220.7 0.047173 1326.1 0.082993 1353.4 0.119288 1365.7 0.159734 1379.6
0.011353 1225.9 0.048014 1326.5 0.083598 1353 0.119997 1366.5 0.160654 1378.8
0.011957 1228.9 0.048986 1328.3 0.084202 1354.3 0.120733 1368.3 0.161732 1378.3
0.012641 1232 0.049879 1329.1 0.085122 1354.7 0.121653 1368.7 0.162625 1378.4
0.013376 1236.3 0.050747 1330.9 0.086095 1354.7 0.122573 1367 0.163335 1378.4
0.014664 1241 0.05164 1332.2 0.086699 1355.6 0.124255 1367.4 0.164255 1380.1
0.015426 1246.6 0.052297 1331.7 0.08754 1356 0.124938 1366.5 0.165201 1381.4
0.016346 1249.7 0.052954 1332.2 0.088145 1356.5 0.125937 1365.3 0.165936 1381.8
0.016977 1252.3 0.053717 1331.7 0.088959 1356.9 0.126489 1365.7 0.166593 1381.8
0.017581 1254.8 0.054531 1332.6 0.089721 1358.6 0.127119 1366.1 0.167303 1380.5
0.018317 1258.3 0.055293 1333 0.090352 1359.1 0.127855 1366.1 0.169169 1381
0.019158 1260.9 0.056187 1334.8 0.091167 1358.2 0.12867 1367.9 0.169958 1381
0.019841 1263.9 0.056713 1334.3 0.091666 1359.1 0.129038 1367.9 0.170825 1381.4
0.02063 1265.6 0.057527 1335.6 0.092849 1358.6 0.129406 1368.3 0.171587 1381
0.021365 1269.1 0.058684 1337.4 0.09348 1357.4 0.130352 1369.2 0.172375 1381.4
0.022338 1271.2 0.05963 1339.1 0.094531 1358.7 0.131035 1369.6 0.173348 1382.3
0.023179 1274.3 0.060392 1338.7 0.095319 1356.9 0.132165 1370.5 0.17453 1382.3
0.023941 1277.3 0.061233 1339.1 0.096187 1359.5 0.133138 1370.9 0.175582 1381.4
0.025018 1281.2 0.061916 1340 0.097317 1359.1 0.134793 1371.8 0.176607 1383.2
0.025938 1283.8 0.062442 1340 0.098552 1359.5 0.135687 1371.3 0.177421 1383.2
0.026726 1285.5 0.063178 1340.4 0.099656 1360 0.136922 1372.2 0.178262 1384
0.027567 1287.2 0.063913 1341.3 0.100628 1360 0.1375 1373.5 0.179182 1384.5
0.028697 1291.5 0.064754 1341.7 0.10097 1360 0.138446 1373.5 0.180023 1384.5
0.029696 1293.3 0.065517 1341.7 0.101732 1360.4 0.139314 1373.5
0.030511 1295.4 0.066226 1342.6 0.102468 1360.8 0.140155 1374.4
0.031089 1297.6 0.066857 1342.2 0.103177 1362.1 0.140786 1374.8

95

Table A-5 Flow stress versus plastic strain of RHA for initial temperature 298 K and plastic
strain rate 0.1/s

Strain Stress Strain Stress Strain Stress Strain Stress Strain Stress
(MPa) (MPa) (MPa) (MPa) (MPa)

0.000212 1068.9 0.028986 1310.9 0.067382 1363.7 0.104517 1381.6 0.14499 1398.1
0.000475 1087.9 0.029801 1310.9 0.06825 1364.1 0.105017 1382 0.145489 1397.7
0.000606 1099.5 0.030458 1312.7 0.069196 1365 0.106173 1383.7 0.146698 1397.7
0.000842 1116.4 0.031036 1315.3 0.070037 1366.3 0.106856 1383.7 0.147723 1398.1
0.000973 1133.2 0.031824 1316.6 0.07093 1368.5 0.107592 1383.7 0.148275 1398.6
0.001315 1149.1 0.032955 1319.2 0.071771 1368.5 0.108617 1384.2 0.148827 1399
0.001604 1159.9 0.033769 1320 0.072744 1369.3 0.109905 1384.6 0.149642 1400.3
0.001945 1171.6 0.034453 1320.9 0.073795 1370.2 0.111035 1385.5 0.150351 1398.6
0.002339 1178.9 0.035819 1324.3 0.074741 1370.2 0.111692 1384.2 0.151587 1399
0.002681 1185.4 0.036397 1324.3 0.07574 1371.1 0.112481 1385 0.152769 1398.1
0.003259 1193.1 0.036897 1326.1 0.076502 1372.4 0.113348 1385.9 0.153715 1398.1
0.0036 1195.7 0.038184 1330.4 0.077605 1373.7 0.114268 1386.8 0.154609 1399
0.004415 1206.5 0.039183 1333.4 0.078499 1373.2 0.115082 1387.2 0.155135 1399
0.005151 1211.2 0.039787 1333.8 0.079445 1373.7 0.116055 1388.1 0.155897 1399.5
0.005703 1216.8 0.040523 1335.1 0.080286 1373.3 0.116817 1387.6 0.156344 1400.3
0.006281 1221.2 0.0421 1336.9 0.08118 1374.1 0.117842 1388.5 0.157447 1399.9
0.006754 1224.6 0.043046 1337.7 0.082205 1375.8 0.118551 1387.2 0.158499 1401.2
0.007411 1230.2 0.043624 1339 0.083177 1374.6 0.119471 1387.2 0.158919 1400.8
0.00791 1234.1 0.044571 1340.3 0.084176 1374.6 0.120391 1386.4 0.159313 1400.3
0.008567 1238.4 0.04599 1341.2 0.085017 1375.4 0.121127 1385.5 0.160916 1400.3
0.009119 1243.2 0.046515 1340.8 0.0857 1376.3 0.121863 1387.2 0.16181 1401.2
0.009671 1246.2 0.047251 1342.5 0.086462 1376.3 0.122861 1386.8 0.162414 1401.6
0.010222 1250.1 0.047856 1342.5 0.087145 1376.7 0.124018 1386.4 0.163623 1402.9
0.011431 1254.8 0.048539 1344.7 0.087934 1376.7 0.124649 1388.5 0.164517 1402.5
0.012299 1257.8 0.049722 1345.5 0.088775 1377.2 0.125411 1388.5 0.165595 1402.5
0.012982 1261.3 0.050352 1346.8 0.089642 1376.7 0.126698 1390.7 0.166383 1402.9
0.013691 1263.4 0.051272 1349.4 0.090142 1377.2 0.127671 1389.8 0.167355 1403.4
0.014322 1265.6 0.051903 1349.4 0.091061 1378.5 0.128459 1390.7 0.168223 1404.2
0.01511 1266.9 0.052639 1351.1 0.091902 1379.3 0.129484 1391.6 0.169195 1403.8
0.01603 1270.8 0.053427 1350.7 0.092796 1378.5 0.130772 1391.6 0.169931 1403.8
0.016766 1273.8 0.054216 1352.9 0.093689 1378.9 0.131193 1391.6 0.17093 1403.8
0.017528 1277.7 0.055162 1352.4 0.094636 1378.5 0.132112 1392.4 0.172007 1404.3
0.018763 1282 0.056029 1355.5 0.095214 1378.9 0.132848 1392.9 0.172795 1405.1
0.019815 1285 0.056686 1356.8 0.095897 1378.5 0.134451 1393.8 0.173558 1404.3
0.020393 1286.8 0.057947 1357.6 0.096659 1378.9 0.135292 1393.3 0.174372 1404.7
0.021391 1287.6 0.058736 1359.4 0.097264 1380.2 0.136659 1395.1 0.175318 1405.1
0.022311 1291.9 0.059656 1359.4 0.098026 1380.2 0.13771 1394.2 0.175897 1405.6
0.023231 1296.3 0.060549 1360.2 0.099209 1382 0.13863 1394.6 0.17679 1406.4
0.023967 1298.8 0.061679 1359.8 0.100102 1379.4 0.13955 1395.1 0.177657 1406
0.024703 1298.9 0.062573 1360.7 0.100864 1380.2 0.140259 1395.5 0.178446 1406.4
0.025859 1302.3 0.063519 1359.8 0.101889 1381.1 0.141153 1395.9 0.179155 1406.9
0.026595 1304.5 0.064307 1362.8 0.102599 1382 0.142204 1397.2 0.179786 1406.9
0.027672 1306.2 0.065332 1363.7 0.103282 1381.1 0.142809 1396.8 0.180233 1408.2
0.028277 1310.1 0.066278 1362.8 0.103887 1380.7 0.144149 1397.7

96

Table A-6 Flow stress versus plastic strain of RHA for initial temperature 298 K and plastic
strain rate 3500/s

Strain Stress Strain Stress Strain Stress Strain Stress Strain Stress
(MPa) (MPa) (MPa) (MPa) (MPa)

0.028009 1290.9 0.057762 1379.4 0.093368 1429.5 0.123083 1441.7 0.158363 1430.6
0.02843 1295 0.058157 1380.5 0.09371 1429.8 0.123398 1442.7 0.158626 1433.9
0.028772 1298.3 0.05863 1381.4 0.094235 1431 0.123793 1444.4 0.158916 1437.9
0.029141 1302.1 0.059024 1382.1 0.094787 1432.6 0.124187 1445.8 0.1591 1439.5
0.02943 1305.9 0.059418 1383.6 0.095339 1434.1 0.125448 1444.6 0.159521 1443.7
0.029694 1309.3 0.059944 1386.1 0.096023 1436.3 0.125868 1445.9 0.159916 1446.8
0.030088 1310.4 0.060759 1389 0.096469 1436.4 0.127365 1442.9 0.160232 1448.5
0.030535 1311.5 0.061573 1389.1 0.097389 1438.6 0.127733 1441.6 0.160941 1451.2
0.031112 1309.5 0.062204 1389.4 0.098335 1438.7 0.128337 1439.2 0.161441 1452.3
0.03148 1307.7 0.063386 1390.1 0.098676 1437.8 0.129098 1436.2 0.161887 1451.2
0.0319 1307.2 0.063885 1389.8 0.099307 1437.3 0.129702 1435.3 0.162517 1448.1
0.03232 1306.6 0.064279 1390.5 0.099753 1435.1 0.130227 1433 0.163147 1444.2
0.032662 1306.1 0.064936 1390.4 0.100278 1432.7 0.130962 1430.8 0.163567 1440.7
0.033318 1306.9 0.06554 1390.7 0.100803 1429.2 0.131382 1429 0.164039 1436.3
0.033765 1306.7 0.066355 1390.8 0.101721 1420.8 0.131986 1427.4 0.164327 1432.5
0.034264 1308.2 0.067143 1391.3 0.10193 1418.6 0.132459 1426.3 0.164825 1428.9
0.034659 1308.9 0.067695 1390.9 0.10235 1414.8 0.133693 1421.5 0.165324 1425.6
0.035079 1310 0.068457 1391.4 0.102874 1409.4 0.134796 1422.5 0.165822 1422.3
0.035447 1311.2 0.069087 1391.7 0.10332 1404 0.135716 1425.3 0.166295 1421.9
0.035868 1312.3 0.069639 1392.5 0.103845 1399.8 0.136505 1428.3 0.16682 1420.8
0.036577 1313.8 0.070375 1393.9 0.104396 1398.6 0.136926 1430.7 0.167346 1419.7
0.037181 1313.4 0.0709 1395.2 0.105027 1401.2 0.137294 1434 0.168055 1419.4
0.037864 1313.7 0.071347 1396.1 0.1055 1402.8 0.137557 1436.2 0.16858 1420.1
0.038469 1314.6 0.072083 1397.5 0.105764 1406.7 0.138004 1439.3 0.168948 1420.3
0.039126 1315.8 0.07274 1398.6 0.106264 1413 0.138504 1443.1 0.1695 1420.9
0.039625 1315.9 0.07337 1398.9 0.10658 1416.9 0.138689 1444.7 0.17021 1422.1
0.04015 1316.4 0.074054 1400.3 0.106896 1421.8 0.138925 1447 0.170709 1423.2
0.040728 1316.9 0.074527 1400.4 0.107476 1430.7 0.139372 1449.8 0.171549 1422
0.041096 1318.5 0.075105 1402 0.107634 1432.8 0.139767 1451.4 0.171917 1422.5
0.0422 1321.6 0.075736 1403.9 0.107818 1435.7 0.140293 1454 0.172364 1421.9
0.04249 1323.7 0.076156 1404.1 0.108003 1438.9 0.14116 1457.2 0.172915 1418.9
0.042937 1325.5 0.076603 1405.4 0.108292 1442.4 0.142184 1453.8 0.173308 1416.1
0.043331 1328.3 0.077102 1407.1 0.108845 1447.4 0.142815 1452.9 0.173728 1413
0.043778 1331.4 0.077628 1408 0.109108 1450.9 0.143287 1449.2 0.174306 1410.7
0.044146 1333.4 0.078337 1408.9 0.109714 1456.6 0.14368 1447.5 0.174726 1409.7
0.044646 1335.2 0.078811 1410.7 0.110029 1459.6 0.1441 1443.5 0.175172 1409
0.045145 1337.8 0.079047 1411.9 0.110371 1460.6 0.144651 1439.7 0.175698 1411.2
0.045593 1341.4 0.079416 1415 0.111028 1462.7 0.145229 1437.7 0.175909 1412.3
0.046223 1343.8 0.079705 1417.4 0.111527 1460.8 0.145649 1435.9 0.176356 1415.3
0.046539 1346.3 0.080152 1420.7 0.11221 1459.4 0.146174 1433.7 0.17654 1418
0.046934 1349 0.080547 1422.9 0.112656 1455.6 0.146646 1431.8 0.176777 1420.5
0.047407 1351.2 0.080994 1424.7 0.113128 1450.7 0.147093 1431.6 0.177041 1427
0.047985 1354.2 0.081493 1427.5 0.113521 1446.2 0.148353 1429 0.177226 1431.8
0.048275 1357.1 0.081861 1429 0.114019 1439.3 0.149246 1426.2 0.177411 1435.9
0.048722 1359.7 0.082361 1430.7 0.114465 1435.2 0.150244 1425.1 0.177753 1441.6
0.049011 1361.8 0.082939 1432.2 0.114937 1430.6 0.150822 1423.5 0.178043 1445.5
0.04951 1362.3 0.083938 1433.9 0.115435 1425.6 0.151321 1421.6 0.178307 1449.5
0.050088 1362.8 0.084647 1433.3 0.115881 1421.5 0.152029 1419.9 0.178518 1452.8
0.05043 1365.2 0.085303 1432.3 0.116327 1417.4 0.152135 1420.1 0.178597 1454.8
0.050877 1366.2 0.085934 1432.6 0.117298 1412.5 0.153263 1414 0.178887 1459.1
0.051403 1369.6 0.086669 1430.7 0.118348 1412.1 0.153867 1411.6 0.179308 1465.7
0.052191 1369.7 0.087352 1430.5 0.118769 1413 0.154392 1410.5 0.179624 1468.5
0.052822 1370.4 0.087851 1430.5 0.119426 1415.6 0.154838 1408 0.180255 1470.4
0.053374 1372.1 0.088508 1429.2 0.119768 1418.1 0.155574 1408.8 0.180676 1472
0.053847 1372.7 0.089007 1428.8 0.120031 1419.7 0.155784 1409.6 0.18107 1472.1
0.054477 1372.6 0.090031 1428.1 0.120558 1424.7 0.15631 1411.4 0.1817 1469.7
0.054977 1373.5 0.090793 1427.8 0.121057 1427.4 0.156494 1412.6 0.182277 1466.3
0.055423 1374.5 0.09145 1427.6 0.121426 1430.3 0.157125 1415.8 0.182775 1460.5
0.055975 1375.8 0.091739 1428.4 0.121899 1433.4 0.157467 1418.6 0.183116 1456.8
0.056737 1376 0.092265 1428.8 0.122346 1436.6 0.157783 1421.8 0.183351 1448.8
0.057263 1377.3 0.092921 1428.6 0.122846 1440.5 0.157941 1423.8 0.183586 1443.4

97

Table A-7 Flow stress versus plastic strain of RHA for initial temperature 298 K and plastic
strain rate 7000/s

Strain Stress Strain Stress Strain Stress Strain Stress Strain Stress
(MPa) (MPa) (MPa) (MPa) (MPa)

0.03648 1359 0.058189 1417.2 0.08481 1462.9 0.116208 1484.7 0.154932 1485
0.036769 1360.7 0.058662 1417.8 0.08531 1465.7 0.116418 1485.5 0.155746 1483
0.037032 1364.1 0.058925 1416.6 0.085862 1468.5 0.117022 1485.7 0.156297 1479.6
0.037427 1366.5 0.059424 1416.2 0.086177 1470.4 0.117601 1486 0.157164 1477.6
0.037821 1369.3 0.059975 1415.4 0.086546 1472.6 0.118179 1487.8 0.157689 1477.5
0.038216 1372.5 0.060474 1414.7 0.087072 1476.6 0.119362 1491.8 0.158293 1477.7
0.03869 1377.2 0.061079 1414.2 0.087466 1479.1 0.119913 1491.3 0.159003 1477.4
0.039111 1380.4 0.061499 1413.2 0.087861 1480.9 0.120334 1491.8 0.159397 1477.1
0.039532 1383.9 0.061945 1412.6 0.088124 1482.9 0.120991 1492.4 0.159764 1477.7
0.039874 1387.2 0.062313 1412.4 0.088623 1484.9 0.121516 1493.1 0.16029 1479.1
0.040268 1390.4 0.063154 1411.6 0.089359 1488.5 0.121989 1493.5 0.160869 1481.5
0.040715 1393.9 0.06381 1412.7 0.0902 1490.4 0.122646 1494.4 0.161184 1482.2
0.041136 1396.6 0.064284 1414 0.090779 1491.9 0.123356 1494.5 0.16171 1483.9
0.0414 1400.4 0.065046 1415.8 0.091567 1492.7 0.124643 1494.4 0.162183 1485.4
0.041715 1404.1 0.06544 1417.2 0.091882 1491.8 0.125588 1492.6 0.162788 1487.8
0.042005 1407.4 0.065808 1419.5 0.092565 1491.5 0.126376 1492.9 0.163602 1489.2
0.042347 1411.1 0.06615 1420.7 0.093011 1489.3 0.126954 1492.4 0.164181 1490.5
0.042742 1413 0.066518 1421.7 0.093458 1487.8 0.127453 1491.3 0.164943 1491.2
0.043084 1415.4 0.066807 1422.5 0.093983 1485.8 0.128267 1490.4 0.166178 1493.7
0.043636 1420.4 0.067307 1425 0.094586 1483.7 0.128767 1490.8 0.166414 1492.2
0.044031 1424 0.068043 1428 0.095059 1482.6 0.129213 1489.7 0.167228 1491.3
0.044768 1432 0.068437 1429.9 0.095374 1480.2 0.129844 1489.9 0.16778 1489.8
0.045215 1434.6 0.0687 1431.1 0.095794 1477.5 0.13079 1490.7 0.168699 1490.2
0.045557 1437.9 0.069147 1432.9 0.096476 1474.9 0.13121 1491.6 0.169198 1488.3
0.045899 1440.3 0.069462 1434 0.097054 1472.1 0.13234 1493.3 0.169933 1486.1
0.046267 1441.4 0.069857 1435.9 0.097868 1468.5 0.133812 1494.8 0.170458 1484.2
0.046766 1443.9 0.070199 1437 0.098419 1466.9 0.1346 1494.7 0.171246 1480.4
0.047134 1444.2 0.070593 1438 0.098682 1466.1 0.135204 1493.4 0.171824 1479.6
0.047554 1443.2 0.071066 1439.3 0.09918 1463.4 0.135651 1494.3 0.172296 1477
0.048105 1439.9 0.071749 1440.7 0.099758 1462.5 0.136202 1493.8 0.172847 1474.4
0.048499 1437.2 0.072143 1440.9 0.100467 1462.2 0.136727 1493.4 0.173451 1471.3
0.048761 1432.7 0.072853 1441.9 0.100887 1462 0.137253 1493 0.174028 1468.6
0.049207 1428.3 0.073457 1441.4 0.101387 1460.9 0.137831 1493.6 0.174632 1466.9
0.049548 1424.5 0.074271 1440.2 0.101859 1461.3 0.139013 1493.6 0.175183 1464.7
0.049888 1420.3 0.074718 1439.5 0.102622 1462.1 0.139407 1493.8 0.175866 1464.4
0.050203 1416.6 0.075742 1438 0.103383 1461.8 0.140432 1493.4 0.176864 1462.1
0.050544 1412.4 0.076267 1437.2 0.104119 1463.8 0.141193 1492.2 0.177521 1461.9
0.050832 1408.2 0.076687 1436.6 0.104513 1464 0.141771 1490.6 0.177915 1460.9
0.051173 1403.6 0.077265 1436.2 0.105722 1465.7 0.142349 1490.4 0.178466 1459.4
0.051671 1398.8 0.078027 1435.8 0.10609 1465.9 0.142848 1491.5 0.178887 1459.1
0.052091 1397.4 0.078579 1435.4 0.106537 1466 0.143505 1490.5 0.179464 1458.6
0.052537 1395.9 0.078841 1435.4 0.107299 1466.4 0.144372 1489.6 0.180147 1457.2
0.053089 1394.3 0.079314 1435.1 0.107588 1466.7 0.145423 1490.6 0.18104 1453.4
0.053457 1394.6 0.079761 1436.5 0.108113 1467.5 0.146158 1490.6 0.181512 1450.8
0.053904 1396.4 0.080024 1437.3 0.108691 1468.6 0.146605 1490.3 0.182115 1446.3
0.054193 1398.9 0.080313 1437.7 0.1099 1471 0.147735 1491.5 0.182798 1442.8
0.054798 1401.3 0.080707 1438.7 0.1104 1473 0.148444 1492.3 0.183349 1439.5
0.055166 1404 0.080996 1440.3 0.111451 1474.9 0.149101 1493.2 0.183899 1433.6
0.055482 1406 0.081549 1444.6 0.112371 1475.8 0.149758 1492.2 0.184476 1428.8
0.055823 1408.4 0.082154 1446.5 0.11287 1477 0.150415 1492.3 0.184975 1424.8
0.056244 1410.2 0.082863 1449.9 0.113527 1477.5 0.151439 1492.6 0.185578 1420.3
0.056665 1411.7 0.083153 1451.8 0.114 1479.1 0.151912 1491.5
0.057059 1413.6 0.083495 1453.7 0.114526 1480.7 0.152779 1489.4
0.057453 1415 0.083968 1458.2 0.11513 1482.1 0.153619 1487.4
0.057795 1416.6 0.084494 1460.6 0.115525 1483 0.15417 1486.2

98

Table A-8 Flow stress versus plastic strain of RHA for initial temperature 473 K and plastic
strain rate 3000/s

Strain Stress Strain Stress Strain Stress Strain Stress Strain Stress
(MPa) (MPa) (MPa) (MPa) (MPa)

0.030984 1177.8 0.05687 1235.8 0.087142 1287 0.118271 1280.2 0.148874 1270.6
0.031406 1185.6 0.057501 1237.4 0.087667 1286.7 0.118928 1280.9 0.149452 1271.4
0.031722 1192 0.058105 1240.3 0.088193 1286.4 0.119769 1281.7 0.149873 1272.3
0.032065 1200.8 0.05871 1244.5 0.088718 1285.3 0.120347 1282.4 0.150503 1272.6
0.03246 1205.3 0.058974 1247 0.089243 1285 0.120846 1281.8 0.150871 1274
0.032829 1209 0.0595 1251.6 0.089742 1281.6 0.121424 1281.8 0.151581 1276
0.033407 1211.7 0.059895 1256 0.091055 1278.7 0.122028 1282.5 0.151897 1276.7
0.033986 1214.7 0.060421 1259 0.092158 1277.2 0.122501 1283.1 0.152265 1277.7
0.034328 1217.6 0.060841 1262.1 0.092579 1279 0.123132 1284.5 0.152843 1280.3
0.034774 1219.6 0.061367 1265.1 0.093472 1281.8 0.1235 1285.2 0.153737 1283.2
0.0353 1221.8 0.062392 1265.8 0.094051 1283.8 0.124315 1287.5 0.154736 1286
0.035852 1224.1 0.06276 1266.9 0.09476 1285.6 0.124788 1289.2 0.155708 1287.3
0.036509 1226.2 0.063102 1267.3 0.09497 1286.1 0.124867 1289.1 0.155997 1287.7
0.037088 1227.5 0.063889 1266.3 0.095707 1289.5 0.125366 1290.7 0.156444 1287.8
0.037744 1228.8 0.064625 1265.3 0.096259 1290.7 0.126206 1284.6 0.156785 1287.7
0.038165 1229.9 0.065097 1263.5 0.096653 1292.1 0.126888 1281.5 0.157573 1286.7
0.038717 1230.9 0.065754 1262.2 0.097047 1292.4 0.127492 1278.4 0.158203 1284.4
0.039479 1233.6 0.066279 1261.5 0.097546 1291 0.128043 1277.3 0.158833 1281.7
0.040031 1233.4 0.066647 1260.2 0.098203 1290.9 0.128831 1275.5 0.159463 1279.8
0.04053 1234.8 0.067251 1260.2 0.098597 1291.5 0.129356 1274.8 0.159988 1276.5
0.04103 1237.5 0.067671 1259.7 0.099306 1289.4 0.129645 1274.8 0.16046 1272.9
0.041529 1238.9 0.068302 1261.3 0.100172 1288.2 0.130355 1275.7 0.160854 1270.9
0.042081 1240.7 0.068722 1262.4 0.101196 1286.1 0.130749 1276 0.161457 1266.4
0.042686 1243.3 0.069143 1264.3 0.102405 1285.7 0.131143 1276.2 0.162034 1263.8
0.043264 1245 0.069643 1267.2 0.10293 1285.8 0.131458 1277.3 0.162612 1261.3
0.043764 1248.1 0.070563 1269.7 0.103298 1285.3 0.132247 1281.2 0.163085 1260.3
0.044316 1250.7 0.070799 1271 0.103902 1285.2 0.132589 1282.3 0.163767 1259.4
0.044999 1252.7 0.071641 1274.7 0.104375 1284.2 0.133062 1285.8 0.16424 1260.2
0.045525 1254.9 0.072114 1277.7 0.104821 1284 0.133404 1288 0.165134 1261.6
0.046103 1256.2 0.072482 1278.8 0.105373 1284.1 0.133851 1289.3 0.166081 1267.4
0.046734 1257.5 0.073113 1281.6 0.10582 1283.9 0.134456 1291.2 0.166712 1270.6
0.047076 1259.1 0.073586 1283.4 0.106266 1284.8 0.13527 1290.1 0.16758 1274.2
0.047523 1261.8 0.073928 1283.8 0.106897 1286.7 0.135953 1290.3 0.167921 1276
0.047943 1263.8 0.074821 1285.8 0.107187 1287.9 0.137004 1289.7 0.16829 1278.1
0.048364 1265.3 0.075767 1287 0.10766 1291.2 0.137686 1285.4 0.169131 1283.2
0.048837 1267.1 0.076686 1284.9 0.107923 1292.8 0.138421 1284 0.169446 1283.1
0.049284 1268.2 0.077737 1283.9 0.108528 1295.5 0.139209 1283 0.170103 1284.1
0.049809 1269.6 0.078341 1282.7 0.109867 1292.1 0.13976 1280.8 0.170629 1283.4
0.050283 1271.8 0.078787 1280.5 0.110261 1290.4 0.140469 1279.8 0.171548 1280.3
0.050598 1272.7 0.079575 1279.5 0.110812 1288.1 0.140942 1278.1 0.172545 1277.9
0.051071 1272.4 0.080284 1277.8 0.111337 1285.1 0.14152 1276.9 0.172992 1276.6
0.051622 1270.5 0.080993 1276.4 0.112072 1283 0.141888 1277.2 0.173516 1273
0.052147 1266.9 0.08165 1275.2 0.112518 1282 0.14257 1275.9 0.174199 1269.9
0.05275 1260.4 0.082044 1275.1 0.113227 1279.1 0.14328 1275.7 0.175354 1264.4
0.053301 1257.2 0.082858 1275.2 0.113936 1279.4 0.143726 1275.2 0.17601 1260.3
0.053878 1251.9 0.083515 1276.3 0.114436 1279.9 0.144304 1274 0.176901 1253.3
0.05435 1246.4 0.084172 1277.4 0.114882 1280.8 0.145013 1272.3 0.177478 1246.1
0.054795 1240.1 0.084671 1280 0.115539 1280.7 0.146116 1272.4 0.178002 1239.2
0.055215 1236.7 0.085592 1285.1 0.11588 1279.9 0.146878 1271.8 0.178657 1232.2
0.05574 1234.8 0.086433 1286.4 0.116695 1280.3 0.147535 1271.3 0.179181 1224
0.056344 1234.8 0.086853 1287 0.117457 1279.3 0.148139 1270.9

99

Table A-9 Flow stress versus plastic strain of RHA for initial temperature 673 K and plastic
strain rate 3000/s

Strain Stress Strain Stress Strain Stress Strain Stress Strain Stress
(MPa) (MPa) (MPa) (MPa) (MPa)

0.020894 1007.3 0.045945 1103.7 0.077839 1123.5 0.117924 1113.9 0.155884 1111.3
0.021262 1009.8 0.046575 1102.6 0.07868 1124.1 0.118791 1112.9 0.156435 1112.2
0.021499 1013 0.047126 1100.3 0.079547 1126.3 0.119579 1110.1 0.156961 1112.7
0.021736 1016.6 0.047625 1099.3 0.079757 1126 0.120261 1108.5 0.157512 1112.1
0.022052 1020.5 0.048124 1098.8 0.080755 1123.7 0.120944 1107 0.158064 1111.4
0.022395 1025.2 0.048571 1099.5 0.081596 1122.7 0.121496 1107.9 0.158616 1111.9
0.02271 1028.2 0.049176 1102.1 0.082541 1120.4 0.1221 1108.3 0.159535 1110.9
0.023078 1030.8 0.049754 1102.3 0.082961 1120.3 0.122915 1109.7 0.160506 1108.3
0.02342 1032.1 0.050463 1103.1 0.083355 1118.3 0.123572 1110.5 0.160717 1108.4
0.023788 1033 0.050963 1105.4 0.084012 1118.3 0.123888 1112.8 0.16119 1109.3
0.024234 1031.7 0.051752 1111.5 0.085824 1116.6 0.124282 1114.6 0.161716 1112.4
0.024812 1028.1 0.05212 1113.5 0.086849 1121 0.125097 1118.7 0.162137 1116.7
0.025258 1023.8 0.052619 1114.2 0.087427 1119.5 0.12557 1120.4 0.162953 1125
0.025808 1017.7 0.053145 1116.1 0.08811 1121.9 0.126517 1123.9 0.163295 1128.2
0.026333 1012.1 0.053618 1117.2 0.088925 1125.3 0.127016 1126 0.163716 1132.9
0.026857 1007.3 0.054038 1118.7 0.089293 1125.7 0.128014 1126.3 0.164163 1136.1
0.027461 1002.5 0.054853 1119.8 0.089635 1126.4 0.128881 1126.8 0.164873 1139.6
0.027933 1000.7 0.05551 1120.3 0.090134 1128.2 0.129564 1123 0.165713 1135.3
0.02838 1002.8 0.056166 1119.1 0.09087 1130.1 0.130115 1119.3 0.166369 1130.2
0.028748 1004.9 0.056797 1118 0.091475 1132.2 0.130771 1116.7 0.166815 1125.2
0.029116 1008.3 0.057506 1115.9 0.092132 1135.8 0.131453 1113.6 0.167313 1119.9
0.029485 1013.8 0.058136 1113.6 0.092894 1135.7 0.132136 1112.4 0.167574 1111.9
0.029933 1018.8 0.058713 1110.9 0.093997 1133.2 0.132582 1111.2 0.168229 1102.4
0.030117 1023.3 0.059107 1107.9 0.094968 1128.5 0.133108 1111.7 0.168648 1096.8
0.030328 1028.5 0.059657 1103.6 0.095466 1125.6 0.133712 1113.3 0.169146 1091.4
0.030592 1033.7 0.060104 1101.9 0.096149 1121.2 0.134212 1115.7 0.169828 1087.7
0.030829 1038.9 0.060944 1098.9 0.096778 1117 0.134554 1117.6 0.170484 1086.3
0.03104 1042 0.061363 1095.6 0.097618 1114.4 0.135027 1120.5 0.171089 1088.9
0.031356 1047.5 0.062046 1092.8 0.098301 1113.6 0.135816 1121.8 0.171563 1092.7
0.031724 1051.3 0.062781 1091.5 0.098958 1115.6 0.136525 1124.4 0.172168 1099.7
0.03204 1054.8 0.063333 1089.3 0.099589 1118.8 0.137314 1126.9 0.172617 1108.3
0.032382 1059 0.063779 1088.4 0.100326 1121.9 0.137865 1125.1 0.172775 1111.8
0.032724 1062 0.064173 1088.3 0.100826 1126.8 0.138574 1122.4 0.173355 1122
0.033093 1064.1 0.064856 1087.9 0.101326 1132.1 0.139545 1118.2 0.174119 1134.6
0.033644 1064.7 0.065408 1089.4 0.101852 1136.1 0.140227 1111.1 0.174383 1138.3
0.034275 1065.7 0.065671 1090.7 0.102561 1136.5 0.141171 1105.1 0.175146 1146.1
0.034853 1066.3 0.066302 1094 0.103192 1138.5 0.141828 1103.9 0.17533 1145.9
0.035405 1067.8 0.066538 1095 0.104085 1139 0.142458 1103.6 0.176144 1144.6
0.035904 1068.1 0.066801 1096.7 0.10482 1135.8 0.142879 1105 0.176878 1133.9
0.036482 1070.8 0.067327 1099.3 0.105608 1133.3 0.143668 1109 0.177244 1125.9
0.037139 1071.7 0.067774 1101.7 0.106106 1130.7 0.14422 1112.1 0.177558 1119.7
0.037691 1072.8 0.068142 1102.9 0.106788 1124.1 0.144957 1118.7 0.178108 1110.7
0.038033 1074.5 0.068484 1103.7 0.107418 1117.9 0.145352 1122.8 0.178553 1103.3
0.038533 1077.7 0.068825 1104.1 0.108205 1112.4 0.145799 1126 0.179156 1097.9
0.03898 1080.9 0.069903 1106.5 0.108861 1110.8 0.14643 1130.5 0.179733 1094
0.039401 1084.2 0.070848 1105.4 0.109491 1109.7 0.146956 1132.9 0.180206 1093.9
0.0399 1087 0.07203 1104.9 0.110148 1109.7 0.147612 1129.9 0.180758 1095.8
0.040216 1089.9 0.072556 1103.9 0.11091 1110.4 0.148584 1128.4 0.1811 1097.5
0.040742 1093.5 0.073107 1103.6 0.111436 1112.1 0.149266 1122.7 0.181495 1101.8
0.041163 1096.8 0.073449 1103.6 0.11183 1113.6 0.149764 1118.4 0.18189 1107.1
0.041504 1097.6 0.074079 1104.5 0.112698 1117.6 0.150367 1114 0.182232 1113.2
0.041846 1099.7 0.074657 1105.9 0.113276 1119.3 0.150945 1110.3 0.182522 1117.2
0.042293 1101.7 0.074999 1107.9 0.113959 1121.2 0.151863 1105.6 0.182917 1122.9
0.042661 1103 0.075394 1109.5 0.114406 1121.8 0.152414 1102.3 0.183154 1123.7
0.043161 1104.5 0.075815 1112.6 0.115036 1121.1 0.153124 1103 0.183521 1122.2
0.04366 1106 0.076682 1116.4 0.115798 1120.2 0.153912 1104.3 0.184125 1118.3
0.044212 1107 0.07684 1117 0.116244 1119.7 0.154228 1106.2 0.184623 1110.8
0.044816 1107.5 0.077313 1120.1 0.116822 1117.9 0.154911 1108 0.184937 1105.8
0.04542 1105.6 0.077497 1120.7 0.117531 1115.1 0.15541 1110.4

100

Table A-10 Flow stress versus plastic strain of RHA for initial temperature 873 K and plastic
strain rate 3500/s

Strain Stress Strain Stress Strain Stress Strain Stress Strain Stress
(MPa) (MPa) (MPa) (MPa) (MPa)

0.024813 728.8 0.048262 834.8 0.08079 880.2 0.116274 859.3 0.151119 925.7
0.025024 734.6 0.048892 833.8 0.081551 879.5 0.116852 861.1 0.151592 926.4
0.025314 737.7 0.049286 833.9 0.08205 876.3 0.117694 864.2 0.152643 928.7
0.025577 740.5 0.04989 833.8 0.082496 874.7 0.118299 869 0.153405 927.3
0.025761 744.6 0.050573 833.2 0.083179 870.9 0.118746 872.5 0.154376 926.3
0.026051 749 0.051151 831.4 0.084071 866.1 0.119325 876.2 0.155112 924.5
0.026341 753.8 0.051597 831 0.084938 865.7 0.120219 881.5 0.155978 922.6
0.026604 757.4 0.052595 830.2 0.085831 864.9 0.120587 885 0.156503 921.7
0.02692 760.5 0.053121 830.1 0.086566 866.2 0.121455 892.6 0.157291 920.5
0.02742 764.3 0.053594 830.1 0.087328 867.5 0.121876 895.3 0.157685 920.2
0.027709 768.3 0.05425 830.8 0.08788 868.2 0.122323 898.7 0.158499 917.9
0.027946 771.9 0.054828 830.7 0.088958 871.6 0.122876 904 0.159103 917.3
0.028262 775 0.055196 831.6 0.089693 873.3 0.123192 906.4 0.159734 917.5
0.028499 777.8 0.055853 832.3 0.09014 873.2 0.123902 913 0.160496 919.3
0.028893 780.8 0.056431 833.4 0.090692 874.7 0.124823 919 0.161021 918.8
0.029235 782.7 0.056852 834.7 0.09148 877.2 0.125664 919.7 0.161941 920.5
0.029577 782.8 0.057351 836.3 0.092085 879.8 0.126189 919.9 0.162545 920.3
0.030023 781.6 0.057693 836.8 0.0929 880.6 0.127003 916.9 0.163438 921.7
0.030443 779.1 0.058611 833.5 0.093425 882.1 0.127895 914.9 0.163911 922.3
0.030968 778.3 0.059294 831.7 0.094108 881.9 0.128762 912.5 0.164568 922.8
0.031651 775.6 0.059819 829.6 0.09466 882.9 0.129497 908.8 0.16533 923.2
0.032123 773.1 0.060213 828 0.095475 885.3 0.130442 906.7 0.16596 923.6
0.032543 771.1 0.061237 825.5 0.095895 885.7 0.131125 905.7 0.166512 923.1
0.033147 769.8 0.062234 823.4 0.096394 887.2 0.131597 905.3 0.167011 922.6
0.033541 769.5 0.062944 825.3 0.096946 888.3 0.132307 905 0.16772 922
0.033987 769.9 0.06368 827.9 0.097577 890.1 0.132727 906.1 0.168245 921.5
0.034461 773.7 0.063995 828.8 0.098312 888.2 0.133515 906.9 0.169033 920
0.034777 776.8 0.064548 833.2 0.098916 885.3 0.133909 906.1 0.169663 918.6
0.035119 780.7 0.064969 836.1 0.099598 882.3 0.134698 909.2 0.170189 918.5
0.035409 785.9 0.065416 840.2 0.100044 878.7 0.135434 910.4 0.170609 917.7
0.035751 792.3 0.06589 845.4 0.100621 875.5 0.135933 910.6 0.17116 917.9
0.036093 796.2 0.066442 850.2 0.101356 870.9 0.136432 912.4 0.172369 919.3
0.036383 799.7 0.066942 855.4 0.10196 867.2 0.137195 915.9 0.173341 918.4
0.036962 806.8 0.067152 856.5 0.102721 864.2 0.137799 916 0.173604 918.5
0.037225 809.9 0.067757 860 0.103482 861.5 0.138351 916.3 0.174418 918.8
0.03762 813.3 0.068335 860.6 0.104165 860.9 0.139402 920.5 0.175048 918.6
0.037909 816 0.06915 864.8 0.104875 864.2 0.139848 919 0.175652 917.6
0.038225 818.6 0.070359 868.9 0.1054 864.5 0.140321 918.9 0.17623 916
0.038488 821.3 0.071279 868.1 0.106005 868.6 0.141215 923.7 0.17686 915.8
0.038883 824.3 0.071725 867.3 0.106689 875.4 0.142108 920.2 0.177754 917.4
0.039303 826.4 0.072277 868 0.107058 877.8 0.142843 919.1 0.178253 918.1
0.03975 827.7 0.073144 868 0.107215 878 0.143394 917.8 0.179015 920.2
0.040276 828.5 0.073538 867.6 0.107847 882.9 0.144051 918 0.179646 922.2
0.040906 829.6 0.073984 868.4 0.108635 882.1 0.144813 918.7 0.180198 923.8
0.041642 830.2 0.074615 868.7 0.10937 880.7 0.145443 918.5 0.18075 925.8
0.04222 830.6 0.074851 869.3 0.109895 878.7 0.146153 918.2 0.181223 927.2
0.042798 831.3 0.075771 871.2 0.110787 876.3 0.146547 917.4 0.181985 929.3
0.04356 831.9 0.076244 872.4 0.11147 872.9 0.14744 917.7 0.182589 928
0.044269 832.9 0.076796 873.1 0.112336 867.9 0.147912 916.9 0.183352 930.1
0.045162 833 0.077532 874.8 0.11307 863.7 0.148649 919.5 0.184402 930.6
0.045793 833.7 0.078215 876.2 0.113701 862.8 0.149358 921.5
0.046265 832.8 0.079082 877.8 0.114252 860 0.149726 923
0.046659 833.7 0.079345 878.8 0.115066 858.1 0.149936 923.5
0.047343 834.4 0.079949 880.2 0.11588 857.7 0.150567 924.8

101

Appendix B. Brief Introduction to R

102

R is the name of a software suite used for statistics and data analysis, as well as the
name of the scripting language that underlies that suite.1 A few of its key features
are discussed.

B.1 Basic Syntax
The basic arithmetic operators used in R are typical of most scripting and program-
ming languages, so “+” and “-” are of course used for addition and subtraction, and
“*” and “/” are used for multiplication and division. The exponentiation operator
is “^”. The default precedence of these arithmetic operations also follows the con-
ventions typical in both mathematical notation and other programming languages,
that is, exponentiation is done before multiplication and division, which are in turn
done before addition and subtraction. Parentheses are used for grouping operations
together.

Identifiers in R, such as variables and function names, consist of a combination of
letters, numbers, underscores (“_”), and—unlike most programming languages—
also periods (“.”). Identifiers, though, cannot start with a number or underscore,
nor can they be certain keywords in R, such as if, while, and so on.

Numbers in R are represented mostly straightforwardly, such that, for example, 2.3
represents the number 2.3, and either 1 or 1.0 represents the number 1. Scientific
notation is represented such that 1.23456e7means 1.23456×107. Complex num-
bers can be represented as well; the complex number 1.3+ 2.1i is expressed simply
as 1.3 + 2.1i. (However, the imaginary unit i is represented as 1i, not i. The
latter is just a variable name.) Whereas some other programming languages would
treat 1 or 1.0 differently, with the former being treated as an integer and the latter
as a floating-point number,2 both are treated as floating-point numbers in R. If one
must indicate an integer literal specifically, one can use the suffix L (e.g., 1L for the
integer 1); this is seldom needed, though.

Other literal quantities in R are character strings and Boolean values. Character
strings in R are delimited by either single or double quotes. For example, either 'a

1R Foundation. R: The R project for statistical computing. c2018 [accessed 2018 May].
https://www.r-project.org/.

2In many programming languages, real numbers are represented approximately via floating-
point numbers; see Goldberg D. What every computer scientist should know about floating-point
arithmetic. ACM Comput. Surv. 1991;23(1):5–48.

103

https://www.r-project.org/

string' or "a string" represents a string consisting of the characters “a”, a
space, “s”, “t”, “r”, “i”, “n”, and “g”. Certain sequences in strings that begin with
a backslash (“\”) are interpreted specially. In particular, "\n" indicates a newline,
and "\\" indicates a literal backslash. There are two Boolean values, TRUE or
FALSE, which are keywords in R. R also predefines two variables T and F, which
by default have the values TRUE and FALSE, respectively. However, unlike the
keywords TRUE and FALSE, variables T and F can be set to other values, though
doing so may cause confusion in practice.

R has a few other special characters and character sequences. One of these is the
character “#”, which indicates the start of comment text. Everything from this char-
acter to the end of the line is ignored by the R language interpreter. Another is the
operator “<-”, which is used to assign values to variables, much in the same way
that other programming languages use “=”. The following are examples of assign-
ment statements, with comments indicating what the assignment statement is doing:

x <- 1 # Assigning 1 to the variable x

y <- 2e5 # Assigning 200000 to the variable y

z <- 6.3e-2 # Assigning 0.063 to the variable z

In general, statements in R are terminated at the end of a line, provided that they

are complete statements. For example,

a <- x + y + z

is a complete statement on a single line that adds the variables x, y, and z together
and assigns the resulting sum to a, while

a <- x + y +

is not complete. However, the R interpreter does not treat the previous statement
as an error. Rather it looks to subsequent lines to try to complete the statement.
Accordingly, the following R code is correct:

a <- x + y +

z

The following is also correct:

a <-

x + y + z

104

Relational and logical operators are usually used with the control structures dis-
cussed in Section B.7. The relational operators “<”, “>”, “<=”, “>=”, “==”, and
“!=” mean what they do in most programming languages, so for example, the ex-
pression “x < y” tests if x is less than y, “x >= y” tests if x is greater than or
equal to y, “x == y” tests if x equals y, and “x != y” tests if x is not equal to
y. The logical operator “!” indicates negation, so that !TRUE is FALSE and vice
versa. The logical operators “&” and “&&” both represent a Boolean “and” opera-
tion (i.e., x & y is TRUE only if both x and y are TRUE), but they are not entirely
synonymous. Unlike the “&” operator, “&&” short-circuits; if its first operand eval-
uates to FALSE, the second operand is never evaluated. Short-circuiting, though,
does not work with vectors or arrays (data structures discussed in more detail in
Sections B.5.1 and B.5.3). The logical operators “|” and “||”, which both rep-
resent a Boolean “or” operation (i.e., x | y is FALSE only if both x and y are
FALSE), work similarly. The operator “||” short-circuits (only evaluating its sec-
ond operand if its first operand is FALSE), and “|” is to be used with vectors and
arrays.

B.2 Format Strings with sprintf
Format strings are a kind of template. They contain placeholders that begin with
“%” and end with a character, such as “%s”, which can be substituted by other
expressions. An example format string would be "Real part of z = %g,

imaginary part of z = %g". To use a format string, one uses the sprintf
function, as shown in the following example code:

z <- 2e6 + 3.2i

out_string <- sprintf("Real part of z = %g, imaginary part of z = % g\n",

Re(z), Im(z))

cat(out_string)

The function sprintf creates the string “Real part of z = 2e+06,

imaginary part of z = 3.2\n.” This string is then assigned to the vari-
able out_string. and the function cat prints out_string. The string “%g”
is a placeholder for a real number that may cause the number to be displayed in
scientific notation (using the “1.23e4” syntax discussed in Section B.1) if it is
large enough. Other placeholders include “%d”, for integers, and “%s”, for strings.
The function sprintf replaces the doubled percent sign (“%%”) in a format string
with a literal “%”.

105

B.3 Function Definition and Invocation
In R, functions take arguments, perform some sequence of operations with those
arguments, and return a value. In some case, such as with functions that plot graphs
or write to files, the return value is immaterial and usually ignored, but is techni-
cally always there. R has several built-in functions, and users can define their own
functions as well. A somewhat contrived example of this is shown:

qd_formula <- function(a, b = 0, c = 0) {

sqrt_b2_minus_4ac <- sqrt(as.complex(b^2 - 4*a*c))

two_a <- 2*a

x <- c((-b - sqrt_b2_minus_4ac)/two_a,

(-b + sqrt_b2_minus_4ac)/two_a)

return(x)

}

This creates a function named qd_formula, which implements the quadratic for-
mula x = (−b ±

√
b2 − 4ac)/2a. The built-in R function sqrt implements the

square root. The function as.complex ensures that the value of its argument is
treated as a complex number, so that sqrt returns an imaginary value if b^2 -

4*a*c is negative. The variable x is set to a vector whose two elements are the
two possible values of the quadratic formula. (More about vectors and the function
c that creates them is discussed in Section B.5.) Finally, the value of x is returned
by the function. Strictly speaking, a return statement is not needed. The function
could have been written as

qd_formula <- function(a, b = 0, c = 0) {

sqrt_b2_minus_4ac <- sqrt(as.complex(b^2 - 4*a*c))

two_a <- 2*a

c((-b - sqrt_b2_minus_4ac)/two_a,

(-b + sqrt_b2_minus_4ac)/two_a)

}

and the last line of the function would have caused the same values to be returned.
However, for functions that consist of more than a single statement, a return

statement is usually more readable.

This function can be invoked several different ways. For example, it could be in-
voked simply as qd_formula(1,2,2), which returns the complex values −1±i.
It could also be invoked as qd_formula(a = 1, b = 2, c = 2) or even

106

qd_formula(b = 2, c = 2, a = 1), and the same result would be ob-
tained. These latter ways of invoking the function involve so-called keyword ar-

guments. This function also has default values for arguments b and c, so that
arguments that are not explicitly passed are assigned these values. For exam-
ple, qd_formula(1,2) means the same thing as qd_formula(1,2,0), and
qd_formula(1,c = 2) means the same thing as qd_formula(1,0,c =

2) or qd_formula(1,0,2). While this example is contrived, the use of key-
word and default arguments is not. Several built-in R functions have a large number
of arguments, and to make that large number of arguments manageable, most of
these argument have default values. The few arguments that need to be supplied
explicitly are then usually supplied by keyword for the sake of readability.

B.4 Cross-platform File Path Functions
R runs on several platforms, including Windows, MacOS, and Linux. In general,
various platforms have different ways of specifying paths to files. For example,
on Windows, typically a path to a file is specified as path\to\file, while on
MacOS and Linux, it is specified as path/to/file. Now, technically, on Win-
dows, path/to/file works as well, at least for use in R. However, to ensure
portability to any platform, it is best to specify the file path in R as file.path(
"path", "to", "file").

There are a few other R functions that pertain to file paths. One of them is getwd,
which takes no arguments and returns the current working directory as an absolute
path. Any relative paths used in R are interpreted with respect to this directory, so
that, for example, the path file.path("path", "to", "file") is taken
to be within this directory. Two other functions are basename and dirname.
The first function returns the final component of a path, so basename("path/
to/file") returns "file". The other function returns the directory that con-
tains the final component of the path, so dirname("path/to/file") returns
"path/to". These functions can be used, for example, to obtain the parent of the
current working directory as follows:

parent_dir <- dirname(getwd())

107

B.5 Data Structures
In practical cases, variables in R often refer to more than just ordinary numbers, and
are often used to store sometimes complicated data structures. Some of the common
data structures are discussed in this section.

B.5.1 Vectors
The simplest data structure in R is a vector, which is a sequence of values. For
example, a vector named x, with the elements 130.7, 4, 3 × 102, 7.1, 2.4 × 103, and
1.2 × 10−5, may be created as follows:

x <- c(130.7, 4, 3e2, 7.1, 2.4e3, 1.2e-5)

One can loosely describe c(x1,x2,...) as a notation for expressing a vector
that has the elements x1, x2, and so on. However, technically what is happening
here is that the function c is returning a value that is a concatenation of all its ar-
guments, where the type of value it returns depends on the type of its arguments. In
the previous R code, the arguments of c are actually vectors—since in R, numbers
are just numeric vectors with only one element—so what the function c returns is
another vector. In the following code,

y <- c(x, c(5,4))

the function c creates a new vector (assigned to y) whose elements are 130.7, 4,
3 × 102, 7.1, 2.4 × 103, 1.2 × 10−5, 5, and 4, where all but the last two elements are
the same as the elements of x.

To access parts of a vector, one may use the “[...]” operator. For example, x[3]
is the third element of x, 3 × 102. Here, the value of 3 between the “[” and “]” is
called an index. The expression x[2:4] is a vector containing the second through
the fourth elements, that is, 4, 3 × 102, and 7.1. Vectors can be accessed by more
than just numeric indices. For example, if one executes the following R statement,

names(x) <- c("one", "two", "fish", "A", "B", "C")

then one can use x["fish"] access the third element of x. The previous R state-
ment also showcases an instance where the elements of a vector are character strings
rather than numbers. In general, the only restriction on the types of elements in a
vector is that they be all of the same type.

108

Also, if one creates the following vector of Boolean values

logical_inds <- c(TRUE, TRUE, FALSE, FALSE, FALSE, TRUE)

then x[logical_inds] is a vector consisting of the first, second, and last
elements x, that is, the elements of x that correspond to the elements of
logical_inds that are TRUE. This is called logical indexing. Typically, log-
ical indices are created with relational and/or logical operators. For example, if
logical_inds2 is defined such that

logical_inds2 <- (x > 100) & (x < 1000)

then logical_inds2 is the vector c(TRUE, FALSE, TRUE, FALSE,

FALSE, FALSE), and x[logical_inds2] returns a vector of the elements
of x that are greater than 100 and less than 1000. When defining logical in-
dices, the short-circuiting logical operators (“&&” and “||”) tend to produce
wrong results. For example, if the operator “&&” were used instead of “&” in
the previous R code, then logical_inds2 would just be the value TRUE, and
x[logical_inds2] would return all the elements of x, which is unlikely to be
what one intended.

Arithmetic operations done on vectors typically operate elementwise, so for exam-
ple, c(a,b)*c(d,e) is the same as c(a*d, b*e). They also work in cases
where one operand is a vector and the other operand is an ordinary number, so
that, for example c(a,b) + d is c(a+d, b+d), and c(a,b)^d is c(a^d,
b^d). These arithmetic operators even return values in cases where the vector
operands are of different sizes, although the results may not be mathematically
useful. The logical operators “&” and “|” also operate elementwise on vectors.
Functions that are built into R often operate elementwise on vectors as well. For
example, log(c(a,b)) is equivalent to c(log(a), log(b)).

There are a few functions that are used to get properties of vectors. One of them,
the names, has been shown before. In the use shown previously, one adds labels to
a vector x by assigning to names(x). However, in the reverse case, where

names_x <- names(x)

the function names is used to retrieve the labels of x and store them (as a vector of
strings) in the variable names_x. Another function, and one far more commonly

109

used, is length, which returns the number of elements in a vector.

There are also functions and expressions that can be used to create certain kinds of
vectors. For example, in the expression seq(x_start, x_end, length.out

= 100), the function seq creates a vector with 100 elements, where the first el-
ement is x_start, the last element is x_end, and the rest of the elements are
evenly spaced between those two values, that is, the difference between successive
elements is (x_end - x_start)/(100 - 1). The expression seq(1,10,2)
creates a sequence of integers that starts at 1 and continues in increments of 2 until it
reaches the largest possible number that is no greater than 10 (i.e., the odd numbers
1, 3, 5, 7, and 9). The expression i_start:i_end, where i_start and i_end
are integer values, is the sequence of integers from i_start through i_end. For
example, 2:5 is the sequence 2, 3, 4, and 5. Such an expression is often used in the
for loops described in Section B.7.

B.5.2 Lists
Whereas the elements of vectors must all be of the same type, the elements of lists
can be different types of objects. A simple example of this is

simple_list <- list("XXX", c(3.2, 7.1, 9), 42i)

where the elements are, of course, the string "XXX", the vector c(3.2, 7.1,

9), and the imaginary number 42i. The elements of lists can be named as well, as
in the following example:

my_list <- list(x = "XXX", y = c(3.2, 7.1, 9), z = 42i)

The components of this list can be accessed by numeric index or name. The first ele-
ment my_list[[1]] (i.e., “"XXX"”) can also be accessed as my_list[["x"]].
Here, double brackets rather than single brackets are used instead. This is because
single brackets can result in unexpected results when used with lists. For example,
if one were to execute the following statement,

my_list[1] <- c(3,4,5)

this would produce the warning message “number of items to replace

is not a multiple of replacement length” and replace the first el-
ement of my_list with 3, not the vector c(3,4,5). In contrast,

my_list[[1]] <- c(3,4,5)

110

would do the intended operation of assigning the first element of my_list to the
intended replacement value of c(3,4,5).

One can use assignment to add elements to a list. For example,

new_list <- list()

new_list[[1]] <- 5

new_list[[2]] <- "trout"

creates a list with the elements 5 and "trout".

Logical indexing can also be applied to lists. For example, my_list[c(FALSE,
TRUE, TRUE)], where my_list is as previously defined, returns a list contain-
ing the second and third elements of my_list. Double brackets do not work with
logical indices, however; single brackets must be used.

The function c also works on lists as well as vectors. As mentioned before, this
function returns a value that is a concatenation of all its arguments, with the type of
value it returns depending on the type of its arguments. If the arguments are lists,
then the return value is a list. For example, given the following R statements,

list1 <- list(x = 42, y = c(1,3,2))

list2 <- list(abc = 123)

the expression c(list1, list2) is a list equivalent to the expression list(x
= 42, y = c(1,3,2), abc = 123).

There are a few functions that are used to get properties of lists. The function
names is used to retrieve the labels of a list. For example, names(my_list),
where my_list is as previously defined, returns c("x", "y", "z"). The
function length returns the number of elements in a list. Other functions are used
to invoke other functions on the elements of lists. For example, lapply(my_list,
length) applies the function length to the elements of my_list, returning the
list list(x = 1, y = 3, z = 1), where the labels are the same as those of
my_list, and the values associated with those labels are the lengths of the corre-
sponding components of my_list. The function sapply operates similarly, but
sapply(my_list, length) returns a vector rather than a list. The elements
of this vector, of course, are still the lengths of the corresponding components of
my_list, and the labels of that vector are the same as those of my_list.

111

B.5.3 Arrays
An array in R may be considered a generalization of a vector in some sense. Whereas
a vector contains a sequence of values, an array contains an n-dimensional grid of
values. The values in an array must all have the same type. A 2-D array that repre-
sents a 2 × 3 grid of values may be constructed as follows:

A <- array(c(1,2,3,4,5,6), dim = c(2,3))

The second argument of the array function, dim, indicates the dimensions of this
array, which is 2 × 3. The first argument indicates the values stored in the array,
which may be visually represented as the following table of values:

1 3 5
2 4 6

Accessing elements of an array is similar to accessing elements of a vector. For
example, A[1,2] is the element in the first row and second column in the pre-
vious arrangement of numbers (i.e., 3). The expression A[2,2:3] indicates the
second and third elements of the second row (i.e., 4 and 6). Also, A[2,] is the
whole second row (i.e., 2, 4, and 6), and A[,3] is the third column (i.e., 5 and 6).
Like vectors, array elements may be accessed via string labels. For example, if one
executes the following R statement,

dimnames(A) <- list(c("one", "two"), c("A", "B", "C"))

then the rows and columns of the above table of values are labeled as follows:

"A" "B" "C"

"one" 1 3 5
"two" 2 4 6

Accordingly, A["one", "B"] is the same as A[1,2], and A[,"C"] is the
same as A[,3].

Logical indexing applies to arrays as well. For example, A[c(TRUE, FALSE),

c(TRUE, TRUE, FALSE)] returns the first and second elements of the first
row (1 and 3). This is because the logical index vector for the rows, c(TRUE,
FALSE), marks the first row as TRUE, while the logical index vector for the columns,
c(TRUE, TRUE, FALSE), has the first and second columns marked as TRUE.

112

Again, usually logical indexing is used with relational and/or logical operators. For
example, the expression A[1, A[1,] > 2] returns the elements from the first
row that are greater than 2.

Arithmetic operators also work with arrays mostly as they do with vectors. For ex-
ample, if A1 and A2 both have dimensions n1 × n2 × n3, then A1*A2 is such that its
elements are A1[1,1,1]*A2[1,1,1], A1[1,1,2]*A2[1,1,2], and so on.
If b is an ordinary number, then A1^b is such that its elements are A1[1,1,1]^b,
A1[1,1,2]^b, and so on. The logical operators “&” and “|” also operate ele-
mentwise on arrays. Functions that are built into R often operate elementwise on
arrays as well, just as they do on vectors.

There are a few functions that are used to get properties of arrays. One of them, the
dimnames, has been shown before. In the use shown previously, one adds labels
to an array A by assigning to dimnames(A). However, in the reverse case, where

dimnames_A <- dimnames(A)

the function dimnames is used to retrieve the labels of A and store them in the
variable dimnames_A. The function dim obtains the size and shape of an array.
For example dim(A), where A is defined as shown previously, returns c(2,3).
For 2-D arrays (which in R are also called matrices), the functions nrow and ncol
return the number of rows and columns, respectively, and the functions rownames
and colnames return the labels of rows and columns, respectively, as vectors of
character strings.

B.5.4 Data Frames
Data frames are table-like data structures. The data in a given column of a data
frame must be of the same type, but different columns may have different types of
data. Often, data frames are created by reading in external data. For example, given
a CSV file named my_data.csv with the following contents,

AA, BB, Test

1.8, 2, 44.5

3.1, 2, 32.1

0.5, 1, 55.3

0.4, 6, 66.3

a data frame may be created as follows:

113

df <- read.table("my_data.csv", sep = ",", header = TRUE)

Here, the argument “sep = ","” indicates that a comma should be taken as the
separator between two elements of a row, and “header = TRUE” indicates that
the first line of the file represents column headers. Equivalently, the data frame may
be read in the following way:

df <- read.csv("my_data.csv")

The elements in a data frame can be accessed using the same indexing methods
used for 2-D arrays shown in Section B.5.3. Columns of a data frame can also be
accessed much like the named elements of a list. For example, df[["AA"]] is a
vector with the components 1.8, 3.1, 0.5, and 0.4.

There are a few functions that are used to get properties of data frames, and many
of these are effectively the same as those used on 2-D arrays, such as dimnames,
dim, nrow, ncol, rownames, and colnames. For data frames—but not arrays—
the function names does the same thing as colnames.

B.6 Plotting Basics
The capabilities and limitations of R’s plotting functionality may be shown with
some simple examples. Suppose, for instance, that one wished to plot the following
variables:

x <- 1:10

x_sq <- x^2

This may be done simply with the following R code:

pdf(file = file.path("plot_files", "plot_example1.pdf"),

title = "Example plot 1", width = 3.0, height = 3.0,

pointsize = 10)

plot(x, x_sq, xlab = "x", ylab = expression(x^2),

type = "l", lty = 1, col = "blue")

dev.off()

The function pdf opens the “.pdf” file to which the plot is to be written. The file
argument specifies the name of the file. (In the previous example, the directory
plot_files is assumed to already exist.) The title argument specifies the
title string that is embedded in the resulting “.pdf” file. While this string is mostly

114

arbitrary, it is often shown in the titlebar of the window showing the “.pdf” file. The
width and height arguments set the width and height of the plot to 3 inches,
and the pointsize argument sets the default font size of the text in the plot to 10
points. In the call to the plot function, the xlab and ylab arguments indicate the
labels for the x- and y-axes, and ylab is set to an R expression rather than a string
in order to allow the y-axis label to have a superscript. The argument “type =

"l"” indicates that a line rather than points are plotted; the argument “lty = 1”
indicates that the line is solid (as opposed to dashed or dotted), and the argument
“col = "blue"” indicates that the line is colored blue. Finally dev.off()

closes the “.pdf” file. The resulting plot is shown in Fig. B-1a.

Suppose one wishes to plot the following variable as well:

two_x_sq <- 2*x_sq

One might first attempt to plot two_x_sq and the previous variables x and x_sq
on the same graph as follows:

pdf(file = file.path("plot_files", "plot_example2.pdf"),

title = "Example plot 2", width = 3.0, height = 3.0,

pointsize = 10)

plot(x, x_sq, xlab = "x", ylab = expression(paste(x^2, ",", 2*x^2)),

type = "l", lty = 1, col = "blue")

lines(x, two_x_sq, lty = 2, col = "red")

dev.off()

Here, the function lines is used to add an additional curve to the plot. The argu-
ment “lty = 2” indicates that this curve is plotted as a dashed line, and "col =

"red" indicates that the color of this curve is red. In the plot function, the ylab
argument has become more complicated, with the paste function used to present
the expressions xˆ2 and 2*xˆ2 side-by-side, separated by a comma.

The resulting plot, shown in Fig. B-1b, has a couple problems. First, it is not clear
which line belongs to which variable. Second, not all of the second line is plotted.
The limits of the y-axis are based only on the range of x_sq, and are not readjusted
when new curves are added to the plot. To fix the first problem, a legend is added
in the following example. To fix the second problem, the limits of the y-axis are
explicitly supplied:

115

2 4 6 8 10

0
20

40
60

80

x

x2

2 4 6 8 10

0
20

40
60

80

x
x2 ,2

x2

(a) (b)

2 4 6 8 10

0
50

10
0

20
0

x

y

x2

2x2

(c)

Fig. B-1 Example plots used to illustrate the plotting features of R

116

pdf(file = file.path("plot_files", "plot_example3.pdf"),

title = "Example plot 3", width = 3.0, height = 3.0,

pointsize = 10)

line_types <- 1:2

line_colors <- c("blue", "red")

plot(x, x_sq,

xlab = "x", ylab = "y", type = "l",

lty = line_types[1], col = line_colors[1],

ylim = range(c(x_sq, two_x_sq)))

lines(x, two_x_sq, lty = line_types[2], col = line_colors[2])

legend("topleft",

legend = c(expression(x^2), expression(2*x^2)),

lty = line_types, col = line_colors)

dev.off()

There are a couple things to note about the previous code, which results in the plot
shown in Fig. B-1c. First, the limits for the y-axis are set with the ylim argument of
the plot function. These limits are found via the function range, which returns
a vector containing the minimum and maximum elements of its argument. Here,
this argument is simply the concatenation of x_sq and two_x_sq. Second, the
legend function has to have the line types and colors explicitly supplied to it,
unlike the corresponding functions in MATLAB3 and Matplotlib.4

B.7 Control Structures
Control structures allow for more complicated logic to be used in R scripts. A few
of these structures are shown in this section.

B.7.1 Branching: if and else
The if/else structure is as follows:

if (condition) {

Statements executed if condition is TRUE

} else if (other_condition) {

Statements executed if other_condition is TRUE

} else {

Statements executed if none of the conditions are true

}

3MathWorks, Inc. c2018 [accessed 2018 May]. https://www.mathworks.com/

products/matlab.html.
4Matplotlib development team. c2018 [accessed 2018 May]. https://matplotlib.org/.

117

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://matplotlib.org/

Here, the comments substitute for statements that would be used in an if/else
structure in practice. The variables condition and other_condition stand
in for expressions that may evaluate to either TRUE or FALSE, such as, for exam-
ple, x <= x_threshold. Both the “else if (...) {...}” and “else
{...}” clauses are optional. However, if either clause is used, then the closing
brace “}” must precede the keyword else, or else R produces the error message
“unexpected ’else’ in "else"”.

B.7.2 Iteration: while and for
The while loop is as follows:

while (condition) {

Statements executed so long as condition is TRUE

}

Here, the comment substitutes for statements that would be used in a practical
while loop, and the variable condition stands in for an expression that may
evaluate to either TRUE or FALSE, such as err > threshold. The statements
in the brackets after while(...) are iterated (i.e., repeatedly executed) until
condition becomes FALSE, so these statements should include some statement
that would alter condition, or else the while loop iterates forever (or more
realistically, until someone kills or interrupts the R session). A trivial example of a
terminating while loop (i.e., one that stops iterating eventually) is as follows:

x <- 10

while (x > 0) {

x <- x - 1

}

Since the body of the while loop keeps decrementing x by 1, the loop condi-
tion x > 0 eventually becomes false. One may also force a while loop to stop
iterating after a fixed number of iterations as follows:

threshold <- 1e-6

err <- 2*threshold

i <- 0

while (err > threshold) {

estimate_and_err <- do_estimate(A,B,C)

err <- estimate_and_err[2]

i <- i + 1

if (i > 1000) {

break

118

}

}

The break statement causes the loop to terminate once i exceeds 1000, even if
the condition err > threshold has not yet been reached. This might be done,
for example, in case the (made up) function do_estimate does not successfully
reduce err as much as it should.

Alternatively, the logic of the above while loop can be rewritten with a for loop:

threshold <- 1e-6

for (i in 1:1000) {

estimate_and_err <- do_estimate(A,B,C)

err <- estimate_and_err[2]

if (err <= threshold) {

break

}

}

A for loop is largely intended to execute a fixed number of iterations. Provided that
err always exceeds threshold, this loop iterates 1000 times. Of course, here the
break statement can cause the for loop to terminate before 1000 iterations have
completed, provided that the condition err <= threshold is reached. Also, at
each iteration of the loop, the loop variable i takes on a different value, 1 for the
first iteration, 2 for the second, and so on, until i reaches the value of 1000. Since
the value of i is not used in the body of this particular loop, the change in its value
does not appear to matter, but in a loop such as the following,

for (i in 1:length(vec1)) {

vec2[i] <- do_something(vec1[i])

}

the loop variable i is used to access successive values of the vectors vec1 and
vec2.

A for loop does not necessarily have to involve an expression such as 1:1000
or 1:length(vec1). Indeed, as indicated in Section B.5.1, 1:1000 is simply
a vector consisting of the integers from 1 to 1000. Rather, one may iterate over any
vector. For example, the following R code,

list_abD <- list(a = 2, b = 5, D = 7)

for (curr_name in names(list_abD)) {

119

print(curr_name)

}

simply prints out the labels of the elements of list_abD, that is, "a", "b", and
"D".

B.8 External Sources and Packages
Suppose that one has written an R script with a set of functions that one would like
to use in another script. The simplest solution, aside from just copying and pasting
those functions into the next script, is to cut and paste those functions into a new file
called, for example, my-functions.R, and then in both the old and new scripts,
use the following statement,

source("my-functions.R")

in place of where those functions would be defined. This allows both scripts to use
those functions, provided that they are in the same directory as my-functions.R.

Other developers and researchers have created suites of R functions to be used by
other people, but rather than put them in an R file to be read in by the source
function, these suites are organized into R packages. Several of these packages are
available through Anaconda5 or through the package manager of a Linux distribu-
tion. Most of these packages are also available via the Comprehensive R Archive
Network (CRAN).6 To install a package from CRAN, one may execute the state-
ment

install.packages("name_of_package")

where "name_of_package" is a string with the name of the package. Once the
package is loaded, it may be loaded with the following statement,

library(name_of_package)

In practice, R packages often not only contain R code but also code in compiled
languages, such as C, C++, or Fortran, that is used internally by the R functions in
the package. This code is compiled when the install.packages is used.

5Anaconda, Inc. Anaconda. c2018 [accessed 2018 Mar]. https://anaconda.com.
6R Foundation. Comprehensive R Archive Network. c2018 [accessed 2018 May]. https://

cran.r-project.org/

120

https://anaconda.com
https://cran.r-project.org/
https://cran.r-project.org/

B.9 Saving R Objects to Files
An object in R, such as one of the data structures described in Section B.5, can often
be saved to a special file, called an R Data Serialization (RDS) file, that can be used
to read in the object into another R session. The following code shows an example
of saving an object:

xyz <- list(x = c(3,4,2), y = 3 + 2i, z = "string_val")

saveRDS(xyz, "xyz.rds")

The function saveRDS saves the list xyz to a file named xyz.rds. In another R
session, the list can be read in with the readRDS function and printed as follows:

xyz_take_2 <- readRDS("xyz.rds")

print(xyz_take_2[["x"]])

print(xyz_take_2[["y"]])

print(xyz_take_2[["z"]])

As can be seen from the previous example, when an object is read from a file and
stored in a variable, this variable need not have the same name as the variable that
stored the object in a previous session.

If the type of an object is part of the base R language, then the object can generally
be saved to an RDS file. However, this is not necessarily true of objects whose types
are defined in external packages. For example, if one attempts to save an object of
the type big.matrix from the bigmemory package, the resulting RDS file just
contains a pointer to the memory used by the big.matrix object, rather than the
contents of that memory. The pointer becomes invalid once the R session ends, so
the RDS file is useless.7 Objects whose types are defined in other packages may
have different limitations on whether they can be successfully stored in RDS files.

Also, in general, RDS files are meant for short-term storage, since there is no guar-
antee that the internal format of the RDS file will stay the same from one version of
R to the next.

7How can I save and load a bigmemory::big.matrix object in R? c2015 [ac-
cessed 2018 May]. https://stackoverflow.com/questions/32873859/how-can-
i-save-and-load-a-bigmemorybig-matrix-object-in-r

121

https://stackoverflow.com/questions/32873859/how-can-i-save-and-load-a-bigmemorybig-matrix-object-in-r
https://stackoverflow.com/questions/32873859/how-can-i-save-and-load-a-bigmemorybig-matrix-object-in-r

Appendix C. R Code for Bayesian Analysis

122

The following is the contents of bayes-stress-strain-utils.R, a source
file containing R functions that have been written for Bayesian analyses of strength
models. Comments in the file of the form #!{...} can be ignored, since they are
meant to be read by tools that extract source code fragments. Documentation of the
parameters and return values of functions follows the guidelines of the tidyverse
style guide.1

#' Ensures that path to a file exists, and if not creates it.

#'

#' @param file_name String containing name of file

#' @return file_name, invisibly

ensure_path_to_file_exists <- function(file_name) {

file_dir <- dirname(file_name)

Creating the directory that will contain the file, if that

directory does not yet exist.

if (!dir.exists(file_dir)) {

If "recursive = TRUE" were not used here, dir.create would only

attempt to create the last directory component of file_dir.

dir.create(file_dir, recursive = TRUE)

}

invisible(file_name)

}

#' Create simulated data to test a flow stress model

#'

#' This function creates data points for a stress-strain curve while

#' accounting for the temperature rise as the strain increases.

#'

#' @param sigma_model_func Function representing a strength model that

#' returns the flow stress and takes four arguments: plastic strain,

#' plastic strain rate, temperature, and some data structure

#' containing the model parameters (such as an R list with named

#' components)

#' @param epsilon_p_max Largest plastic strain for which stresses will

#' be calculated

#' @param epsilon_p_dot Plastic strain rate

#' @param T_init Initial temperature of the sample being deformed

#' @param theta_model Model parameters of the strength model

#' @param beta_TQ Taylor-Quinney coefficient

#' @param rho Density of sample being deformed

#' @param specific_heat_func Function that returns the specific heat

#' for a given temperature

#' @param curve_size Number of data points in the

#' stress-strain curve

#' @return A list with the following named components:

#'

1Wickham H. The tidyverse style guide: code documentation. c2018 [accessed 2018 May].
http://style.tidyverse.org/code-documentation.html

123

http://style.tidyverse.org/code-documentation.html

#' * `T`, a vector of the temperatures for the data points in the

#' stress-strain curve

#'

#' * `epsilon_p`, the plastic strains for the data points in the

#' stress-strain curve

#'

#' * `sigma`, the stresses for the data points in the stress-strain

#' curve

#'

simulate_data <- function(sigma_model_func,

epsilon_p_max,

epsilon_p_dot,

T_init,

theta_model,

beta_TQ,

rho,

specific_heat_func,

curve_size) {

#!{sndepstart}

epsilon_p <- seq(0.0, epsilon_p_max, length.out = curve_size)

#!{sndepend}

#!{sndinitzerostart}

temperature <- numeric(curve_size)

sigma <- numeric(curve_size)

#!{sndinitzeroend}

#!{sndsetfirstelemstart}

temperature[1] <- T_init

sigma[1] <- sigma_model_func(

epsilon_p[1],

epsilon_p_dot,

temperature[1],

theta_model

)

#!{sndsetfirstelemend}

#!{sndsetotherelemsstart}

for (i in 2:curve_size) {

Estimate of area under stress-strain curve from

epsilon_p[i-1] to epsilon_p[i].

area_under_curve <- sigma[i-1]*(epsilon_p[i] - epsilon_p[i-1])

temp_rise <- beta_TQ*area_under_curve/

(rho*specific_heat_func(temperature[i-1]))

temperature[i] <- temperature[i-1] + temp_rise

sigma[i] <- sigma_model_func(

epsilon_p[i],

epsilon_p_dot,

temperature[i],

124

theta_model

)

}

#!{sndsetotherelemsend}

#!{sndreturnstart}

return (list(

T = temperature,

epsilon_p = epsilon_p,

sigma = sigma

))

#!{sndreturnend}

}

#' Make an empty plot with x and y axes

#'

#' This generates an empty plot window that can be drawn upon by

#' commands such as `lines()`, `points()`, etc. This is useful if

#' there are multiple superimposed plots.

#'

#' @param xlim Two-element numeric vector with the minimum and maximum

#' of x values in plot

#' @param ylim Two-element numeric vector with the minimum and maximum

#' of y values in plot

#'

make_empty_xy_plot <- function(xlim, ylim) {

plot.new() # This creates an empty plot "window". If the plot is

not being written to a file, this creates an actual

window in a graphical user interface.

This sets the ranges of x- and y-values shown in the plot.

plot.window(xlim = xlim, ylim = ylim)

axis(1) # Adding x-axis

axis(2) # Adding y-axis

box() # Adding a box that contains the actual contents of the plot

}

#' Plots stress-strain curves

#'

#' @param output_pdf String containing the name of the ".pdf" file

#' containing the plots

#'

#' @param epsilon_p_dot Vector where element `i` contains the strain

#' rate for curve `i`

#'

#' @param T_init Vector of where element `i` contains the initial

#' sample temperature for curve `i`, must have same length as

#' `epsilon_p_dot`

#'

#' @param epsilon_p List of vectors of strain values for all curves,

#' where `epsilon_p[[1]]` contains the strain values for the first

#' curve, `epsilon_p[[2]]` contains the strain values for the second

125

#' curve, etc.

#'

#' @param sigma List of vectors of stress values for all curves, where

#' `sigma[[1]]` contains the stress values for the first curve,

#' `sigma[[2]]` contains the stress values for the second curve,

#' etc.

#'

#' @param space_for_legend Number between zero and one indicating the

#' amount of space in the plot for the legend, such that, for

#' example, space_for_legend = 0.2 increases the vertical size of

#' the plot by 20%

#'

#' @param point_period integer value indicating what data points will

#' be plotted. If the data points are so densely spaced as to

#' overlap with each other, then one may wish to set `point_period`

#' to a value larger than 1 in order to reduce the number of points

#' shown.

#'

#' @param sigma_unit String specifying the units of stress, e.g.,

#' "MPa"

#'

#' @param epsilon_p_dot_time_unit String (to be converted to R

#' expression) specifying the units of time used in the strain rate,

#' e.g., "s" or "sec" for a strain per second.

#'

#' @param T_init_unit String (to be converted to R expression)

#' specifying the units of the initial sample temperature, e.g., "K"

#' for Kelvin

#'

#' @param epsilon_p_label String (to be converted to R expression)

#' specifying symbol used for strain

#'

#' @param sigma_label String (to be converted to R expression)

#' specifying symbol used for stress

#'

#' @param epsilon_p_dot_label String (to be converted to R expression)

#' specifying symbol used for strain rate

#'

#' @param T_init_label String (to be converted to R expression)

#' specifying symbol used for temperature

#'

#' @return The string `output_pdf`, invisibly

plot_stress_strain_curves <- function(output_pdf,

epsilon_p_dot,

T_init,

epsilon_p, sigma,

space_for_legend = 0.2,

point_period = 1,

sigma_unit = "MPa",

epsilon_p_dot_time_unit = "s",

T_init_unit = "K",

epsilon_p_label = "epsilon[p]",

sigma_label = "sigma",

epsilon_p_dot_label = "dot(epsilon)[p]",

126

T_init_label = "T[init]") {

The number of stress-strain curves, num_curves, should be the

same as the number of elements in epsilon_p_dot.

num_curves <- length(epsilon_p_dot)

Setting up line types, point types, color --------------------

values and legend labels to be used in the -------------------

actual plot. ---

R has six possible line types, numbered 1 to 6. (There is also a

"invisible" line type, i.e. no line at all, numbered as 0, but it's

not used here.)

poss_line_types <- 1:6

These are the line types used. Note that if num_curves is greater

than max(poss_line_types), some line types will be recycled.

line_types <- rep(poss_line_types, length.out = num_curves)

R has several numbered point types. Here, point types 0 through 20

are used. NA is the invisible point type, i.e., no point plotted.

poss_pt_types <- c(NA, 0:20)

#

(Note: numbered point types 21 through 25 aren't used here because

they are nearly identical to some of the previous point types, but

require an additional plotting parameter to set their color.)

This tiles the possible point types in a particular

fashion. First, the first point type (i.e., NA) is repeated up to

the number of possible line types, then the second point type

(i.e., 0) is repeated up to the number of possible line types,

etc., until a vector of length num_curves is created.

pt_types <- rep(

poss_pt_types,

each = length(poss_line_types),

length.out = num_curves

)

This creates a vector of length num_curves, containing color

values from the current palette.

color_vals <- rep(palette(), length.out = num_curves)

This initializes the vector that will contain the text and math

expressions in the legend. Each element of this vector contains

the label for each curve in the legend.

legend_labels <- rep(NA, num_curves)

Creating the actual plots ------------------------------------

ensure_path_to_file_exists(output_pdf)

This causes the plots to be written to a ".pdf" file.

pdf(

file = output_pdf, # This indicates that the name of the ".pdf"

127

file will be "output_pdf".

title = basename(output_pdf) # This indicates the title that

will be embedded in the resulting

".pdf" file. While this is mostly

arbitrary, the title will often

be shown in the titlebar of the

window showing the ".pdf" file.

)

The variables xrange and yrange will be used to set the ranges of

x- and y-values shown in the plot. The function "unlist" takes a

list of vectors and returns one long vector containing all the

elements of the vectors in the list. The function "range" returns

the minimum and maximum elements of its vector argument.

xrange <- range(unlist(epsilon_p))

yrange <- range(unlist(sigma))

Making room for the legend at the bottom of the plot

yrange[1] <- yrange[1] - space_for_legend*(yrange[2] - yrange[1])

Initializing the plot window --------------------------------

make_empty_xy_plot(xrange, yrange)

Adding line plots to the plot window -------------------------

for (curve_ind in 1:num_curves) {

This adds a stress-strain curve to the plot with the line type

indicated by "lty" and the color indicated by "col".

lines(

epsilon_p[[curve_ind]],

sigma[[curve_ind]],

lty = line_types[curve_ind],

col = color_vals[curve_ind]

)

This causes a point to be printed every "point_period" along the

stress-strain curve, with point style pt_types[curve_ind] and

color color_vals[curve_ind]. If there are so many data points

that the points would overlap if point_period = 1, then

point_period can be set to a higher value to reduce the number

of points printed.

curve_size <- length(epsilon_p[[curve_ind]])

points(

epsilon_p[[curve_ind]][seq(1, curve_size, point_period)],

sigma[[curve_ind]][seq(1, curve_size, point_period)],

pch = pt_types[curve_ind],

col = color_vals[curve_ind]

)

This creates a label to be used in the legend for this curve.

legend_labels[curve_ind] <- parse(# For what "parse" means, see

the comment below.

128

text = sprintf(

"paste(%s, ' = %g ', %s, ', ', %s, ' = %g/', %s)",

T_init_label,

T_init[curve_ind], T_init_unit,

epsilon_p_dot_label,

epsilon_p_dot[curve_ind], epsilon_p_dot_time_unit

)

)

The function "parse" used above actually creates an R

expression. The content of this R expression follows a syntax

that is found in the section "Mathematical Annotation in R" of

the R reference documentation. Type "help(plotmath)" without the

quotes to see this documentation.

}

Adding the legend and title ----------------------------------

This addes the legend to the plot. The first argument to this

function is the position of the legend in the plot. Next to the

label legend_labels[i] in the legend will be a segment of the line

with line type line_types[i], with a point of type pt_types[i],

and color color_vals[i].

legend(

"bottomright",

legend = legend_labels,

lty = line_types,

pch = pt_types,

col = color_vals,

ncol = ifelse(num_curves > 4, 2, 1) # This indicates that the

legend will be shown with

two columns if there are

more than four stress-strain

curves.

)

This adds labels to the x- and y- axes.

title(

xlab = parse(text = epsilon_p_label),

ylab = parse(# For what "parse" means, see the comment below.

text = sprintf("paste(%s, ' (%s)')", sigma_label, sigma_unit)

)

)

The function "parse" used above actually creates an R

expression. The content of this R expression follows a syntax that

is found in the section "Mathematical Annotation in R" of the R

reference documentation. Type "help(plotmath)" without the quotes

to see this documentation.

Final "clean up" ---

dev.off() # Closing the plot "window"

This returns the name of the ".pdf" file. Without this, this

function would return the output of "dev.off()", which would be

129

mostly harmless but look wrong, especially in a Jupyter notebook.

invisible(output_pdf)

}

#' Generate a function that linearly interpolates tabular data

#'

#' @param tab_data_file File with tabular data

#' @param x_col Column of the tabular data that contains the x-values,

#' defaults to 1

#' @param y_col Column of the tabular data that contains the y-values,

#' defaults to 2

#' @param conv_func_x Function applied to all x-values in the tabular

#' data, defaults to the identity function

#' @param conv_func_y Function applied to all y-values in the tabular

#' data, defaults to the identity function

#' @param ... Keyword arguments for the `read.table` function, which

#' is used to read the tabular data

#' @return A function that returns a linear interpolation of y-values

#' given an x-value

#'

gen_lin_interp_func <- function(tab_data_file,

x_col = 1,

y_col = 2,

conv_func_x = function(x) {x},

conv_func_y = function(y) {y},

...) {

xydata <- read.table(tab_data_file, ...)

return (approxfun(conv_func_x(xydata[,x_col]),

conv_func_y(xydata[,y_col]), rule = 2))

}

#' Wrapper for saveRDS

#'

#' This wrapper ensures that if there are any directory components in

#' the path to the RDS file to be written, these components will

#' exist. If they do not yet exist, they will be created.

#'

#' @param obj Object to be written to an RDS file

#' @param rds_file_name Path of the RDS file to be written

#' @return `NULL`, invisibly

#'

save_to_rds <- function(obj, rds_file_name) {

ensure_path_to_file_exists(rds_file_name)

saveRDS(obj, rds_file_name)

}

#' Save summary statistics and MCMC samples to CSV files

#'

#' @param fit `stanfit` object

#' @param summary_csv_filename Name of CSV file to which summary

#' statistics will be written

#' @param samples_csv_filename Name of CSV file to which MCMC samples

130

#' will be written. If the file ends in ".gz", it will be

#' Gzip-compressed.

#'

save_stan_fit_to_csv <- function(fit,

summary_csv_filename,

samples_csv_filename) {

#!{ssftcpathstart}

ensure_path_to_file_exists(summary_csv_filename)

ensure_path_to_file_exists(samples_csv_filename)

#!{ssftcpathend}

#!{ssftcpathsumwritestart}

write.csv(summary(fit)[["summary"]], summary_csv_filename)

#!{ssftcpathsumwriteend}

#!{ssftcpathgzipstart}

if (endsWith(samples_csv_filename, ".gz")) {

out_file <- gzfile(samples_csv_filename, "w")

} else {

out_file <- file(samples_csv_filename, "w")

}

Makes sure that out_file is closed, even if something goes wrong

in write.csv.

on.exit(close(out_file))

#!{ssftcpathgzipend}

#!{ssftcpathsampwritestart}

write.csv(as.matrix(fit), out_file, row.names = FALSE)

#!{ssftcpathsampwriteend}

}

#' Calculate the temperatures for the data points along a stress-strain curve

#'

#' @param T_init Initial temperature

#' @param epsilon_p Sequence of plastic strains

#' @param sigma Sequence of stresses the same length as epsilon_p

#' @param f_area A fraction such that f_area*sigma[1]*epsilon_p[1] is

#' a reasonable estimate of the area under the missing part of the

#' stress-strain curve over the interval [0, epsilon_p[1]].

#' Generally, f_area should be greater than 0.5, but if epsilon_p[1]

#' is zero, then f_area should be set to zero.

#' @param beta_TQ Taylor-Quinney coefficient

#' @param rho Density of sample being deformed to obtain stress-strain

#' curve

#' @param specific_heat_func A function accepts a temperature and

#' returns a specific heat

#' @return Sequence of temperatures such that T[i] is the temperature

#' for data point (epsilon_p[i], sigma[i])

#'

calc_temps <- function(T_init, epsilon_p, sigma,

f_area, beta_TQ, rho, specific_heat_func) {

131

#!{ctinitstart}

curve_size <- length(epsilon_p)

temperature <- numeric(curve_size)

temperature[1] <- T_init + beta_TQ*f_area*sigma[1]*epsilon_p[1]/

(rho*specific_heat_func(T_init))

#!{ctinitend}

#!{ctcalcstart}

for (i in 2:curve_size) {

Using trapezoid rule to estimate area under stress-strain

curve over interval [epsilon_p[i-1], epsilon_p[i]].

area_under_curve <- 0.5*(sigma[i-1] + sigma[i])*
(epsilon_p[i] - epsilon_p[i-1])

T_rise <- beta_TQ*area_under_curve/

(rho*specific_heat_func(temperature[i-1]))

temperature[i] = temperature[i-1] + T_rise

}

return (temperature)

#!{ctcalcend}

}

#' Plot histogram (on pre-existing plot window) with segments that

#' outline the shapes of the bars that would normally be shown in a

#' histogram

#'

#' @param hist_obj object of class "histogram" returned by `hist()`

#' @param freq Same meaning as the `freq` argument of `hist()`

#' @param ... Keyword arguments passed to `segments` function used to

#' draw steps, such as `col`, `lty`, etc.

#'

#' @examples

#'

#' x_hist <- hist(x, plot = FALSE)

#' make_empty_xy_plot(range(x_hist[["breaks"]]), range(x_hist[["density"]]))

#' hist_outline(x_hist)

hist_outline <- function(hist_obj, freq = FALSE, ...) {

if (freq) {

hist_vals <- hist_obj[["counts"]]

} else {

hist_vals <- hist_obj[["density"]]

}

num_bins <- length(hist_vals)

Horizontal histogram segments

segments(

hist_obj[["breaks"]][1:num_bins],

hist_vals,

hist_obj[["breaks"]][2:(num_bins + 1)],

132

hist_vals,

...

)

Vertical histogram segments

segments(

hist_obj[["breaks"]],

c(0.0, hist_vals),

hist_obj[["breaks"]],

c(hist_vals, 0.0),

...

)

}

#' Plot a region of color betwen two curves

#'

#' @param x x-coordinates of each curve

#' @param y1 y-coordinates of the first curve

#' @param y2 y-coordinates of the second curve

#' @param col Color of filled region

#'

#' @examples

#'

#' x <- 1:9

#' y1 <- x^2

#' y2 <- 2*y1

#' make_empty_xy_plot(range(x), range(c(y1, y2)))

#' fill_between_curves(x, y1, y2)

fill_between_curves <- function(x, y1, y2, col = "gray") {

x_poly <- c(x, rev(x))

y_poly <- c(y1, rev(y2))

polygon(x_poly, y_poly, border = NA, col = col)

}

133

Appendix D. Stan Specification Files

134

These are the Stan specification files that have been used for Bayesian analyses
of the Johnson-Cook1 and the Zerilli-Armstrong model for body-centered cubic
materials.2 Comments in these files of the form //!{...} can be ignored, since
they are meant to be read by tools that extract source code fragments.

D.1 Specification File jc.stan
//!{funcstart}

functions {

vector jc(vector epsilon_p, real log_epsilon_p_dot, vector T_star,

real A, real B, real n, real C, real m) {

int length_epsilon_p = num_elements(epsilon_p);

vector[length_epsilon_p] sigma;

real edot_factor = (1.0 + C*log_epsilon_p_dot);

// The exponentiation operator "^" doesn't vectorize, so I need a

// "for" loop here.

for (i in 1:length_epsilon_p) {

sigma[i] = (A + B*(epsilon_p[i])^n)*edot_factor*
(1.0 - (T_star[i])^m);

}

return sigma;

}

}

//!{funcend}

//!{datastart}

data {

int<lower=1> num_curves;

int<lower=0> curve_sizes[num_curves];

vector[num_curves] epsilon_p_dot;

vector[sum(curve_sizes)] epsilon_p;

vector[sum(curve_sizes)] sigma;

vector[sum(curve_sizes)] T;

real<lower=0.0> T_melt;

real<lower=0.0> T_room;

real<lower=0.0> epsilon_p_dot_0;

1Johnson GR, Cook WH. A constitutive model and data for metals subjected to large strains,
high strain rates and high temperatures. In: Seventh international symposium on ballistics: Proceed-
ings; 1983 Apr; The Hague (Netherlands). American Defense Preparedness Association; 1983. p.
541–547.

2Zerilli FJ, Armstrong RW. Dislocation-mechanics-based constitutive relations for material dy-
namics calculations. Journal of Applied Physics. 1987;61(5):1816–1825.

135

real<lower=0.0> A_guess_mean; real<lower=0.0> A_guess_sd;

real<lower=0.0> B_guess_mean; real<lower=0.0> B_guess_sd;

real<lower=0.0> C_guess_mean; real<lower=0.0> C_guess_sd;

real<lower=0.0> m_guess_mean; real<lower=0.0> m_guess_sd;

real<lower=0.0> n_alpha; real<lower=0.0> n_beta;

vector<lower=0.0>[2] sd_sigma_guess_mean;

vector<lower=0.0>[2] sd_sigma_guess_sd;

}

//!{dataend}

//!{transdatastart}

transformed data {

vector[num_curves] log_epsilon_p_dot = log(epsilon_p_dot/epsilon_p_dot_0);

vector[sum(curve_sizes)] T_star = (T - T_room)/(T_melt - T_room);

}

//!{transdataend}

//!{paramstart}

parameters {

real<lower=0.0> A;

real<lower=0.0> B;

real<lower=0.0, upper=1.0> n;

real<lower=0.0> C;

real<lower=0.0> m;

real<lower=0.0> sd_sigma[2];

}

//!{paramend}

//!{modelstart}

model {

A ~ normal(A_guess_mean, A_guess_sd)T[0.0,];

B ~ normal(B_guess_mean, B_guess_sd)T[0.0,];

n ~ beta(n_alpha, n_beta);

C ~ normal(C_guess_mean, C_guess_sd)T[0.0,];

m ~ normal(m_guess_mean, m_guess_sd)T[0.0,];

for (i in 1:2) {

sd_sigma[i] ~

normal(sd_sigma_guess_mean[i],

sd_sigma_guess_sd[i])T[0.0,];

}

{

int start_ind = 1;

for (curve_ind in 1:num_curves) {

int end_ind = start_ind + curve_sizes[curve_ind] - 1;

real curr_sd_sigma = (epsilon_p_dot[curve_ind] <= 1.0

? sd_sigma[1]

: sd_sigma[2]);

136

sigma[start_ind:end_ind] ~ normal(jc(epsilon_p[start_ind:end_ind],

log_epsilon_p_dot[curve_ind],

T_star[start_ind:end_ind],

A, B, n, C, m),

curr_sd_sigma);

start_ind = end_ind + 1;

}

}

}

//!{modelend}

D.2 Specification File za_bcc.stan
functions {

vector za_bcc(vector epsilon_p, real log_epsilon_p_dot, vector T,

real C0, real C1, real C3, real C4, real C5, real n) {

int length_epsilon_p = num_elements(epsilon_p);

vector[length_epsilon_p] sigma;

real C3_C4_fac = -C3 + C4*log_epsilon_p_dot;

// The exponentiation operator "^" doesn't vectorize, so I need a

// "for" loop here.

for (i in 1:length_epsilon_p) {

sigma[i] = C0 + C1*exp(C3_C4_fac*(T[i])) + C5*(epsilon_p[i])^n;

}

return sigma;

}

}

data {

int<lower=1> num_curves;

int<lower=0> curve_sizes[num_curves];

vector[num_curves] epsilon_p_dot;

vector[sum(curve_sizes)] epsilon_p;

vector[sum(curve_sizes)] sigma;

vector[sum(curve_sizes)] T;

real<lower=0.0> C0_guess_mean;

real<lower=0.0> C0_guess_sd;

real<lower=0.0> C1_guess_mean;

real<lower=0.0> C1_guess_sd;

real<lower=0.0> C3_guess_mean;

real<lower=0.0> C3_guess_sd;

137

real<lower=0.0> C4_guess_mean;

real<lower=0.0> C4_guess_sd;

real<lower=0.0> C5_guess_mean;

real<lower=0.0> C5_guess_sd;

real<lower=0.0> n_alpha;

real<lower=0.0> n_beta;

real<lower=0.0> sd_sigma_guess_mean[2];

real<lower=0.0> sd_sigma_guess_sd[2];

}

transformed data {

vector[num_curves] log_epsilon_p_dot = log(epsilon_p_dot);

}

parameters {

real<lower=0.0> C0;

real<lower=0.0> C1;

real<lower=0.0> C3;

real<lower=0.0> C4;

real<lower=0.0> C5;

real<lower=0.0, upper=1.0> n;

real<lower=0.0> sd_sigma[2];

}

model {

C0 ~ normal(C0_guess_mean, C0_guess_sd)T[0.0,];

C1 ~ normal(C1_guess_mean, C1_guess_sd)T[0.0,];

C3 ~ normal(C3_guess_mean, C3_guess_sd)T[0.0,];

C4 ~ normal(C4_guess_mean, C4_guess_sd)T[0.0,];

C5 ~ normal(C5_guess_mean, C5_guess_sd)T[0.0,];

n ~ beta(n_alpha, n_beta);

for (i in 1:2) {

sd_sigma[i] ~

normal(sd_sigma_guess_mean[i],

sd_sigma_guess_sd[i])T[0.0,];

}

{

int start_ind = 1;

for (curve_ind in 1:num_curves) {

int end_ind = start_ind + curve_sizes[curve_ind] - 1;

real curr_sd_sigma = (epsilon_p_dot[curve_ind] <= 1.0

? sd_sigma[1]

: sd_sigma[2]);

sigma[start_ind:end_ind] ~ normal(za_bcc(epsilon_p[start_ind:end_ind],

log_epsilon_p_dot[curve_ind],

138

T[start_ind:end_ind],

C0, C1, C3, C4, C5, n),

curr_sd_sigma);

start_ind = end_ind + 1;

}

}

}

139

List of Symbols, Abbreviations, and Acronyms
βTQ Taylor-Quinney coefficient

Ûεp plastic strain rate

Ûεp0 reference plastic strain rate, 1/s

εp plastic strain

ρ density

A fitting parameter of Johnson-Cook model that represents yield
strength at reference strain rate and room temperature

B fitting parameter of Johnson-Cook model that represents strain
hardening prefactor at reference strain rate and room temperature

C fitting parameter of Johnson-Cook model that represents strain
hardening effects due to strain rate

c(T) specific heat as function of temperature

Ci fitting parameter of Zerilli-Armstrong (BCC) model, where i ∈

{0,1,3,4,5}

m fitting parameter of Johnson-Cook model that represents thermal
softening exponent

n fitting parameter of Johnson-Cook and Zerilli-Armstrong models
that represents strain hardening exponent

T temperature

T∗ normalized temperature in Johnson-Cook model

Tmelt melting temperature

Troom room temperature

2-D two-dimensional

3-D three-dimensional

140

ARL CCDC Army Research Laboratory

BCC body-centered cubic

CRAN Comprehensive R Archive Network

CSV comma-separated value

HDI highest density interval

IPM interval predictor model

JSON JavaScript Object Notation

MCMC Markov Chain Monte Carlo

MIDAS Material Implementation, Database, and Analysis Source

NUTS no-U-turn sampler

PFP pushed forward posterior

PPD posterior predictive distribution

RDS R Data Serialization

RHA rolled homogeneous armor

141

1
(PDF)

DEFENSE TECHNICAL
INFORMATION CTR
DTIC OCA

1
(PDF)

DIR CCDC ARL
FCDD RLD CL

TECH LIB

1
(PDF)

GOVT PRINTG OFC
A MALHOTRA

142

	List of Figures
	List of Tables
	Introduction
	Obtaining Software Tools
	Working Directories
	Data Files
	Testing Models with Simulated Data
	Functions for Testing Models
	Testing Johnson-Cook Model with Simulated Data
	Testing Zerilli-Armstrong (BCC) Model with Simulated Data

	Fitting Strength Models to Experimental Data
	Functions for Fitting Models
	Preprocessing Experimental Data
	Fitting Johnson-Cook Model to Experimental Data
	Fitting Zerilli-Armstrong (BCC) Model to Experimental Data
	Applying Approximate Interval Predictor Model Approach

	Postprocessing of Model Fits
	Plotting Priors with Posteriors
	Plotting Posteriors for Different Values of TQ and farea
	Plotting PPDs and PFPs with Experimental Data
	Determining Correlation Matrices

	Conclusions
	References
	Appendix A. Data Tables
	Appendix B. Brief Introduction to R
	Appendix C. R Code for Bayesian Analysis
	Appendix D. Stan Specification Files
	List of Symbols, Abbreviations, and Acronyms
	Distribution List

