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A STUDY ON LIDAR DATA FORENSICS

Kanchan Bahirat, Balakrishnan Prabhakaran

The University of Texas at Dallas
Kanchan.Bahirat@utdallas.edu, bprabhakaran@utdallas.edu

ABSTRACT

3D LiDAR (Light Imaging Detection and Ranging) data has
recently been used in a wide range of applications such as
vehicle automation and crime scene reconstruction. Decision
making in such applications is highly dependent on LiDAR
data. Thus, it becomes crucial to authenticate the data be-
fore using it. Though authentication of 2D digital images and
video has been widely studied, the area of 3D data forensic
is relatively unexplored. In this paper, we investigate and
identify three possible attacks on the LiDAR data. We also
propose two novel forensic approaches as a countermeasure
for such attacks and study their effectiveness. The first foren-
sic approach utilises the density consistency check while the
second method leverages the occlusion effect for revealing
the forgery. Experimental results demonstrate the effective-
ness of the proposed forgery attacks and raise the awareness
against unauthenticated use of LiDAR data. The performance
analyses of the proposed forensic approaches indicate that the
proposed methods are very efficient and provide the detection
accuracy of more than 95% for certain kinds of forgery at-
tacks. While the forensic approach is unable to handle all
forgery attacks, the study motivates to explore more sophisti-
cated forensic methods for LiDAR data.

Index Terms— 3D surveillance, 3D Forensic, LiDAR

1. INTRODUCTION

With recent advances in the depth sensing technology, it has
become possible to quickly generate a complete 3D recon-
struction of an object or an entire scene. Various depth sensors
such as LiDAR are widely available in the market which can
be used to scan indoor and outdoor scenes. Due to low cost,
millimeter precision and ease of operation, the 3D scanned
data obtained using the LiDAR sensors finds application in
diverse areas [1, 2]. Benedek [1] demonstrates the capability
of rotating multi-beam LiDAR as a future surveillance cam-
era for a real-time 3D people surveillance. Various studies
performed [2] encourage to use LiDAR data for damage de-
tection in case of large deformed structures such as bridges,
roofs. 3D laser scanning has become a powerful tool to col-
lect the crime scene and civil accident data and bring it to
the courtroom for legal investigation or insurance settlement

Fig. 1: Original LiDAR scan (left) and forged LiDAR scan (right)

[3, 4]. This technology allows for a collection of 3D data of
the scene where the civil or criminal incident took place and
to create the same scene graphically in a courtroom. Further,
LiDAR has been successfully employed in autonomous auto-
mated vehicles such as Google Driverless Car [5], for detect-
ing obstacles and re-planning the mission/path accordingly.

In this context, the genuineness of the 3D LiDAR data is a
critical factor which further motivates to determine the possi-
bility of forgery attacks on it. Any attack that manipulates the
LiDAR data can be very harmful in the above applications.
For example, in the case of autonomous automated vehicles,
a false indication of an obstacle can cause a wrong driving
decision and can potentially lead to an accident. Hence, it is
important to address following two questions:
• Is the LiDAR data vulnerable to forgery attacks?
• Is it possible to detect such forgery attacks on the Li-

DAR data if there exists any?

In this paper, we address these questions as follows:
• We identify three possible approaches for attacks on

the LiDAR data that do not need additional commod-
ity hardware. Experimental results show the successful
blinding due to proposed attacks. Figure 11 shows orig-
inal and forged LiDAR data.
• We also present two novel algorithms for detecting such

forgeries in LiDAR data and provide a detailed perfor-
mance analysis of the proposed algorithms in case of
different types of attacks.

Principal Contributions: This paper provides a detailed
study of possible forgery attacks on LiDAR data. It out-
lines two novel forensic approaches for LiDAR data (As per
our knowledge, this is the first attempt to address LiDAR
forensics). Though the forensic algorithms are effective for

1Note, all the images in this paper are better visualized in color.
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specific types of forgeries, a forensic approach handling the
wide spectrum of forgeries is necessitated. This work creates
awareness about avoiding the blind usage of LiDAR data in
critical applications and motivates to explore forensic of Li-
DAR data as an emerging research area.

Related Work: Forgery detection in images/videos has
been a very well researched area. Two excellent surveys
[6, 7] provide a list of current state-of-the-art methods in im-
age/video forensics and highlight their features. On the other
hand, forensics for 3D data is a relatively less explored area.
As per our knowledge, no forensic method has been proposed
to detect forgery in 3D data except the method proposed in
[8]. Raghuraman et al. [8] propose a framework to capture
and manipulate the live RGB-D data stream to create an il-
lusion of an individual performing activities which they did
not actually do. Authors also suggest a noise analysis based
forgery detection for depth images which is incapable of de-
tecting forgeries in all cases and unsuitable for LiDAR data.

In literature [9, 10], a verity of methods based on digi-
tal watermarking are explored. Most of these methods can
be broadly classified as: robust and fragile methods. Robust
methods [9] are constructed with the aim of providing owner-
ship protection and distribution channel tracking. While frag-
ile methods such as [11] are designed for authentication ap-
plications. As these methods require the connectivity infor-
mation, they are not suitable for LiDAR data.

The resilience of a LiDAR against attacks has been stud-
ied concerning the security analysis of an automotive system
[12, 13]. Petit et.al. suggest a use of a smart surface which
is absorbent or reflective to manipulate the data sensed by the
LiDAR in [13]. Relaying and spoofing attacks on LiDAR sen-
sor with the aim of generating fake echoes and fake objects
have been proposed in [12]. In ‘relaying’ attack, the original
signal sent from the LiDAR is relayed from the other posi-
tion to create fake echoes with additional two transceivers.
A ‘spoofing’ attack is made by sending a counterfeit pulse
during a listening interval of 1.44 microseconds of LiDAR to
create an illusion of point being further away. Most of the
work aim at studying possible attacks on the LiDAR sensor
and hence require additional hardware. We differentiate from
the previous work by developing attacks on the 3D LiDAR
data that do not need extra commodity hardware.

2. ANTI-FORENSIC FRAMEWORK

To evaluate the vulnerability of the LiDAR data, we propose
a novel anti-forensic framework that utilises basic computer
graphic techniques to create forged LiDAR data. Adopting
the attacker model used in [12], we assume that the attacker
has limited resources regarding the type of LiDAR sensors,
processing power and has the intention to disrupt the data un-
noticeably. The proposed anti-forensic framework is designed
to create three types of attacks on the LiDAR data. Figure 2
shows the pipeline for different types of attacks.

Additive Approaches: In additive approaches, an object

Fig. 2: Pipeline for different types of attacks on 3D LiDAR data

is added and placed in the original scene such that viewer or
automotive system perceives the object being actually present
in the scene. Taking inspiration from the copy-paste forgery
in digital images [6], we designed two additive attacks:

Copy-Transform-Paste (CTP): Similar to the copy-paste
forgery attacks on images, to add a hoax object in a scene,
one can copy the set of points corresponding to the object and
add it to the list of points corresponding to the scene. But this
naive approach may not create an impactful illusion due to:
• Due to the limited resource availability to the attacker,

we can assume, that the attacker may have a different
sensor than the one used for scanning the scene. As two
different sensors may utilize different metric for mea-
surement, a range of coordinate values of hoax object
may be significantly different than that of the scene.
• 3D coordinates of object points are defined with respect

to it’s local coordinate system which may be different
from that of sensor used for scanning the scene.
• The orientation of the object’s local coordinate system

may differ from its orientation in the target scene.
To handle the issues as mentioned earlier, we incorporate an
additional step of ‘Transform’ before pasting the points of a
forged object into the scene. It consists of following steps:

Scaling: Scaling helps to resolve the disparity in metrics
used by different sensors for measurement. The scaling fac-
tor can be computed based on the knowledge of metrics em-
ployed by sensors or based on the range of values for the co-
ordinate of points representing the scene and object.

Translation and Rotation: Object’s points are first re-
quired to be translated into the local coordinate system of the
scene followed by a translation needed to place it in the cor-
rect position in the scene. The cumulative amount of required
translation t can be computed as t = Pobject − (oscene −
oobject), where oscene and oobject are centroids of the scene
and the object respectively and Pobject is the position of the
object in the scene. Further, to correctly orient the object in
the scene, each point of the object is multiplied by the rotation



matrix. Note that, rotation required is decided by the attacker
based on how the object is supposed to be placed.

Copy-Re-sample-Transform-Paste (CRTP): The second
attack is designed based on the fact that two sensors may
have different resolution as per the underneath hardware. In
CRTP forgery, we included additional ‘Re-sampling’ step be-
fore the ‘Transform’ step. In this step, the forged object is
‘re-sampled’ (downsampled or upsampled) to match the res-
olution of the sensor used to scan the scene. Downsampling
can be achieved by employing any of the point cloud sam-
pling methods such as uniform sampling. Upsampling can
be accomplished by performing interpolation of the current
samples. Next, we defined the minimum inter-point distance
(MID) which is the minimum Euclidean distance between
the point and it’s nearest neighbor. The factor of re-sampling
is defined as:γ = MIDo

MIDs
, whereMIDo andMIDs areMID

between object points and scene points respectively. The ‘Re-
sampling’ eliminates the inconsistency occurring in sampling
density due to insertion of a hoax object.

Subtractive Approaches In subtractive forgery, to con-
ceal the presence of an object in the original scene, the set
of points representing the object are removed from LiDAR
data. Due to the unstructured nature of LiDAR data, identify-
ing points belonging to an object is a nontrivial task. Iden-
tification of the objects can be made manually by select-
ing a bounding cube around it with the help of visualisation
toolkit or by performing a point cloud segmentation using the
method such as [14]. Segmentation provides the labelling for
each object in the scene. Hence, points having the same label
can be eliminated from the original scene to perform subtrac-
tive forgeries. On the other hand, given the spread of a bound-
ing cube, an algorithm determines the set of points inside the
bounding cube and removes them. It should be noted that
the segmentation will significantly increase the complexity of
attack regarding the time and efforts needed.

Deforming Approaches In deforming approaches, the
point representing the portion of the object are displaced from
their original position. This type of forgery can be used to cre-
ate a fake dent on the object’s surface. The identification of
the object to be deformed can be performed using either man-
ual selection of bounding cube or the point cloud segmenta-
tion. As deforming attacks mainly target the data used in the
visualization based applications and complexity involved in
achieving realistic forgery make this attack more intricate.

System Overview The proposed system allows user to
select the type of attack. If the additive attack is selected,
the user needs to provide a 3D model of the hoax object, po-
sition and orientation of the object in the scene. Based on
the required position and orientation, the parameters needed
for ‘Transform’ step such as rotation matrix and translation
vectors are computed only once. Further, if a user selects to
re-sample the data, the factor of re-sampling is obtained as
suggested previously. For subtractive and deforming attacks,
the user needs to provide a bounding box indicating the tar-

geted area and deformation scale. For example, the user can
decide to remove any object at the distance d in front of the
car with length l, width w, and height h. Using these input
parameters, the system can generate a selected attack.

3. FORENSIC EVALUATION

The detailed analysis of the possible attacks on LiDAR data
motivates to design an algorithm to validate LiDAR data. We
now describe two preliminary forensic algorithms for additive
attacks. Due to the page limit, we restrict ourselves to forensic
evaluation of additive attacks only.

Density Variation Based Forensic Algorithm I: As the
resolution varies across sensors, the discrete point clouds of
an object obtained using different sensors will have differ-
ent sampling densities. Further, due to perspective projec-
tion based design of depth sensors, the sampling density of
an object also depends on its distance from the sensor. For
example, objects near the sensor will have a higher sampling
density compare to objects away from the sensor. Moreover,
the objects at the same distance from the sensors must have
approximately similar sampling density.
Algorithm 1 IsDensityConsistent

1: for each point p ∈ P do
2: Compute nearest neighbor p′

3: Compute mind(p) = d(p, p′)
4: end for
5: Sort points in the increasing order of z values.
6: Quantize z values to set of discrete levels Z
7: for each discrete level z1 ∈ Z do
8: Consider set of point Q at distance z1
9: Compute MINipd(z1) = mean(mind(p)) for all p

∈ Q
10: end for
11: Compute Moving average of the signal MINipd(z)
12: if sudden rise or the fall in the averagedMINipd(z) then
13: Declare “Forgery Detected”
14: end if

Assuming that the additive attack is created using differ-
ent sensors with different resolution, the forged object will
have a different sampling density compare to another object
in the scene at the same distance from a sensor. Hence, for
the unaltered data, if we compute an MID (Minimum Inter-
point Distance) at different values of z (the distance from the
sensor), it will increase as we move away from the sensor. On
the other hand, if suddenly there is a continual rise or drop
in MID for the range of depth values, then we can consider
it as a forged data. Figure 5 a illustrates the sudden varia-
tion in the MID in the case of forged scene. It can be seen
that inter-point distance corresponding to bunny is very high
compared to other parts of the scene. Based on these observa-
tions, we formulate the algorithm IsDensityConsistent (I) that
checks the consistency of sampling density. Here, P is the
point cloud of original scene, d(p, p′) is Euclidean distance



Fig. 3: Pipeline of IsOcclusionConsistent (forensic algorithm II). In this example, the input is the forged point cloud obtained by adding Stanford Bunny scan
into the LiDAR scanned outdoor scene.

between p and p′ and z represents Z-coordinate of p.
Multi-projection Based Forensic Algorithm II: Gen-

erally, due to the occlusion effect, objects which are behind
another object may not be entirely or partially visible to the
sensor. It can be observed from Figure 3 that the portion of
the taller building is occluded by the front building and no
points are measured by the LiDAR sensor in the occluded re-
gion. On the contrary, when the hoax object is inserted into
the scene with additive attacks, the forged data will not exhibit
such occlusion effect. Hence, points behind the hoax object
still exist causing inconsistency in the occlusion effect.

Inspired by this idea, we propose a multi-projection
based forensic algorithm, IsOcclusionConsistent (II) that de-
termines the validity of the 3D LiDAR data by checking con-
gruity in the occlusion effect. Figure 3 illustrates the pipeline
of the proposed forensic algorithm II that includes:

Equi-rectangular Projection: For the unaltered LiDAR
data, when all 3D points are projected on the 2D image plane,
each point will be mapped to a distinct image pixel based on
the selected image resolution. On the other hand, when a
hoax object is inserted into the scene, there might be multiple
points getting mapped to a single image pixel. We leverage
this fact to determine any inconsistency in the occlusion effect
by checking if there is a point behind the current point.

To obtain the projection of the scanned 3D data on a 2D
image plane, we first convert each 3D point (x, y, z) in the
Cartesian co-ordinate system to the corresponding (r, θ, φ) in
the cylindrical co-ordinate system. Next, we apply a equirect-
angular projection [15] that relate the 2D image coordinates
(i, j) linearly to θ and φ i.e. i = θ and j = φ. The resolution
of the image is determined by the vertical and horizontal an-
gle resolution of the LiDAR sensor. Figure 3 shows the depth
map generated using the equi-rectangular projection.

Multi-projection Detection: To determine if multiple
points are getting mapped to a single image pixel, we main-
tain a 2D ‘Accumulator’. If the 2D projection of the current
point p is already occupied by another point q, we compute
the distance between these point along the projection line as
|rp − rq| and store it in the ‘Accumulator’ at their common
2D projection (i, j). The accumulator populated using the
proposed multi-projection detection is shown in the Figure 3.
It can be seen that the bunny shape region has higher accu-
mulation density. Therefore, the existence of multiple points
behind the bunny in the scanned data evidences the forgery.

Forged Region Extraction: Though, the ‘Accumulator’
captures inconsistency in the occlusion effect, it also consists
of few artifacts due to a slight mismatch between the image
resolution, the resolution of the LiDAR sensor and the reso-
lution of the forged object. The top, right box in the accumu-
lator shown in Figure 3 describes such noisy points. While,
bottom-left box shows the sparse bunny image. If we estimate
connected components in the accumulator, the results may not
accurately represent the forged region. To annihilate above
mentioned issues, we apply post-processing to ‘Accumulator’
that includes morphological closing and median filtering fol-
lowed by connected component estimation. The presence of
a connected component with the area greater than the empiri-
cally defined threshold Ath is considered as a forgery.

4. EXPERIMENTAL RESULTS
In this section, we demonstrate the effectiveness and effi-
ciency of the proposed attacks and the proposed forensic eval-
uation algorithm. All attacks and algorithms are implemented
in MATLAB and experiments are run on a CPU with Intel (R)
Core (TM) i7-5820K with 3.30GHz speed and 32GB RAM.

We utilized LiDAR scans provided at Robotic 3D repos-
itory [16] along with Bunny and Dragon models from the
Stanford Dataset as hoax objects. Robotic 3D repository in-
cludes indoor and outdoor scenes which are scanned using
Riegl VS-400 and Optris PI IR camera. For our experiments,
we considered indoor scenes which are taken at a residen-
tial house in Germany and outdoor scenes which are taken at
downtown Bremen. From this dataset, we randomly selected
44 scenes which consist of 27 outdoor scenes and 17 indoor
scenes. We createed 42 CTP type forgeries by adding Bunny
and Dragon models in 13 different outdoor scenes and 8 in-
door scenes each. Next, we create 24 CRTP types of forgeries
by inserting re-sampled Bunny and Dragon models in 7 out-
door scenes and 5 indoor scenes. We also create 10 subtrac-
tive and deforming forgeries by identifying the object using
MATLAB visualization tool. Figures 4 and 6 show visualiza-
tions of CTP, CRTP type forgeries and subtractive, deform-
ing forgeries respectively for different scenes. This exercise
demonstrates that the LiDAR data can be easily manipulated
to deceive algorithms. All types of forgery attacks on differ-
ent datasets are provided in the supplementary material.

Next, we apply forensic algorithms IsDensityConsistent
(I) and IsOcclusionConsistent (II) to 44 original scans and 66
forged scans. For algorithm IsOcclusionConsistent, we used



(a) (b) (c) (d) (e)
Fig. 4: For LiDAR scan of the indoor scene 1 a) Original, b) CTP forged data, and c) CRTP forged data; Indoor scene 2 d) Original, and e) subtractive forgery.

(a) (b) (c) (d)

Fig. 5: Illustration of variation in sampling density based on distance from sensor a) top view of forged scene; b) MINipd(z), c) Moving average of signal
MINipd(z), and d) Abnormalities/sudden changes in signal MINipd(z).

0.06 resolution factor for both θ and φ based on angle reso-
lution of Riegl VS-400 and Ath = 20. As the forensic algo-
rithms are designed focusing on additive attacks, we evaluate
their performance on CTP and CRTP type forgeries only. Ta-
bles 1, 2 enlist the performance of the proposed forensic algo-
rithms on the above mentioned dataset. It can be seen that the
algorithm IsDensityConsistent works well for the CTP type
forgeries, but most of the CRTP type of forgeries remain un-
detected. It can be observed from Figure 5 that, the MID
increases as the distance from the sensor increases for orig-
inal data. But the insertion of the high-density hoax object
in the scene causes a sudden, persistent drop in it. Whereas
re-sampling the hoax object to match the sampling density in
the original scene before inserting it into the scene does not
alter the MID distance and hence, remains undetected. On
the other hand, the algorithm IsOcclusionConsistent performs
well for both CTP and CRTP types of forgeries. As the algo-
rithm IsOcclusionConsistent is independent of density, it even
detects CRTP types forgeries with significantly high accuracy.

5. DISCUSSION

Some observations made during the study include:
Implementation Complexity: The complexity of the at-

tack highly depends on whether the data is utilized by an al-
gorithm or a human user. For example, for an automotive
vehicle, a mere presence of hoax object alters the decision
of algorithm. Hence, we mainly considered attacks on the
LiDAR data that is used by algorithms. Among the attacks
outlined here, additive attacks are easy to implement as they
only require the forged object and it’s desired placement in
the scene. On the other hand, subtractive and deforming at-
tacks need an additional understanding of the scene. Though,

point cloud segmentation can be used to identify the object of
interest, it increases the complexity of the attack significantly.
However, given the required parameters, all types of forgeries
can be created approximately in less than 50 milliseconds.

Effectiveness of Attacks: When data is visualized by a
human user, a more rigorous user study is needed to evaluate
the effectiveness of attacks. As we only focus on applications
that utilize raw LiDAR data, the effectiveness of attack is de-
termined solely based on the possibility to perform it.

Limitations of the Forensic Approach: The proposed
algorithm IsDensityConsistent is effective in the case of CTP
type of forgeries whereas the algorithm IsOcclusionConsis-
tent is efficient for both CTP and CRTP types of forgeries ob-
tained using a single scan. But, if the LiDAR data is obtained
by fusing multiple scans, these approaches may not be useful
for detecting forgery in such cases. More sophisticated foren-
sic methods need to be investigated to detect the extensive set
of forgeries including subtractive and deforming forgeries.

Conclusions: An experimental study done in this paper
opens up a new research area of forensic for LiDAR data. We
have analyzed and identified possible attacks on the LiDAR
data, which do not need additional hardware. Given the pa-
rameters for the modifications, these attacks can be carried
out in real-time. We have also proposed two novel foren-
sic approaches based on minimum inter-point distance and
occlusion consistency for detecting additive forgery attacks.
The analysis raises awareness to address possible threats to
LiDAR data and to develop sophisticated forensic approaches
for LiDAR data. Proposed attacks and forensic algorithm are
also applicable to 3D point cloud data generated using other
depth sensors as well. In future, we plan to exploit intrinsic
properties of LiDAR data such as perspective projection to



(a) (b) (c) (d) (e)
Fig. 6: For LiDAR scan of the outdoor scene 1 a) Original, b) CTP forged data, and c) CRTP forged data; Side view of d) Original, and e) Deforming Forgery.

Outdoor
Scenes

# of
Scenes

Detected as Original Detected as Forged

I II I II
Original 27 25 26 2 1
CTP 26 1 0 25 26
CRTP 14 13 1 1 13
Indoor
Scenes

# of
Scenes

Detected as Original Detected as Forged

I II I II
Original 17 16 16 1 1
CTP 16 0 0 16 16
CRTP 10 9 0 1 10

Table 1: Performance of IsDensityConsistent and IsOcclusionConsistent on
the experimental dataset

Original CTP CRTP Overall
I II I II I II I II

Accuracy
(in %)

93.18 95.45 97.62 100.00 8.33 95.83 76.36 97.27

Table 2: Classification accuracies of IsDensityConsistent and IsOcclusion-
Consistent on the experimental dataset

build a generic forensic algorithm to validate LiDAR data.
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