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1.0 SUMMARY 
Project Goal We propose to develop Trails, a novel architecture for efficiently performing 
dynamic data-flow tracking through hardware-assisted parallelization. Our goal is to create an 
execution environment that provides low-overhead, fine-grained, dynamic data-flow tracking 
(DDFT) as a utility for security, privacy, and other applications. We envision an architecture 
where spare processor cores or specialized application processors transparently track data as  
they are processed by executing applications. Developers will be able to use the architecture to 
build security applications that employ DDFT as a primitive. For example, by exploiting the data 
provenance information offered by DDFT, we can prevent software exploitation and information 
leakage, we can also improve forensic analysis of compromised or malfunctioning systems, and 
generally shed light to the origin of data and how systems use them. Trails will provide a modular 
design that can be applied to existing processors with tracing facilities for debugging. It will also 
enable new systems on chip (SoC) with DDFT capabilites that do not require changes to the core 
design of modern processors, such as ARM, but utilize their debugging interfaces. Our proposal 
is within the thrust area that aims to “Guarantee trustworthy computing and information”. 
Current Approaches and Limitations A large group of previous approaches relied on record- 
ing execution and applying DFT during the replay. These solutions are not appropriate for pre- 
ventive applications and require significant resources to reconstruct execution with DFT. Other 
approaches use speculative execution to run application code instrumented with DFT operations 
in multiple threads running in parallel. These solutions do not actually decouple DFT, but con- 
currently explore multiple execution paths. Hence, they also sacrifice significant resources, since 
many threads need to be discarded during execution. Current approaches that actually decouple 
and run DFT in parallel are more efficient, but in practice they have not been able to deliver the 
expected performance gains, due to the cost of collecting and communicating run-time informa- 
tion to the threads or processes performing DFT. In the past, we have also seen many proposals of 
new hardware designs that include DFT. However, these solutions demand sometimes extensive 
changes to current processors and as a result have not seen adoption by vendors. In contrast, our 
approach will employ existing hardware capabilities to reduce the overhead of decoupling DFT. 
Project Contributions Towards achieving our goal, we have investigated how execution trac- 
ing technologies can be utilized for decoupling DDFT from application code and running it in 
parallel. Such technologies can be found in Intel and ARM processors, and they are commonly 
used for assisting in debugging. We have built a system, named JITrace, that employs Intel’s 
Processor Trace technology to reconstruct the control-flow of an application running on a virtual 
machine employing just-in-time translation. JITrace is the basis for a decoupled DDFT system, 
like ShadowReplica that was previously developed with the help of the PI for the STONESOUP 
project. JITrace has been developed for Linux and the Pin virtual machine. The performance 
of the prototype is currently comparable to that of a software-only implementation, however,  
we are confident that, if our efforts are continued, its performance can significantly improve, 
through the use of optimized algorithms and programmable hardware (i.e., an FPGA). We have 
also conducted a preliminary investigation in using the complete execution traces provided by 
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some ARM processors towards the same goal. Our investigation revealed that significant more ef- 
fort would be required to develop such a solution, due to limitations of the hardware. Finally, we 
have begun developing a framework, VEX2TRACK, that will automatically generate optimized 
code that implements DDFT logic for binary applications, independently of their architecture 
(i.e., instruction-set of the target architecture). This framework would allow us to completely 
replace the previously used system, ShadowReplica, that is limited to 32-bit systems and custom 
optimizations. 
Impact Our work has shown that hardware-based tracing on Intel processors has similar over- 
head to a software-only approach, which is attributed to the large volume of data produced by the 
hardware that requires decoding. Additional research is required to develop more optimized algo- 
rithms and to utilize programmable hardware for resolving the decoding bottleneck. Additional 
work is also required to develop prototypes for ARM processors and to achieve our long term 
goal of a system-on-chip design that performs DDFT with negligible overhead. 
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2.0 INTRODUCTION 
2.1 Motivation 
Dynamic data flow tracking (DFT) is being used extensively in security research for protecting 
software [9, 24], analyzing malware [19, 35], discovering bugs [7, 23], reverse engineering [30], 
information flow control [37], etc. However, dynamically applying DFT tends to significantly 
slow down the target application, specially when a virtualization framework [5, 21] is used to 
apply it on binary-only software. Overheads can range from a significant percentage over native 
execution to several orders of magnitude, depending on the framework used and particular traits 
of the implementation [18]. When performance is not an issue, the overhead can still be problem- 
atic: (a) if it changes the behavior of the application (e.g., when network connections timeout or 
the analysis is no longer transparent), or (b) when computational cycles are scarce or CPU energy 
consumption needs to be kept to a minimum, like in mobile devices. 
2.2 Goals 
The goal of this project is to develop and experimentally evaluate technologies that will enable 
low-overhead, fine-grained, data-flow tracking (DFT) capabilities for the development of security, 
privacy, and other applications. To achieve our goal, we developed technologies that take ad- 
vantage of debugging features found in modern CPUs to efficiently decouple dynamic data-flow 
tracking (DFT) from application code and run it in parallel. 
Our approach for efficiently decoupling DFT involves: (i) performing static and dynamic analysis 
to extract DFT semantics from binaries, (ii) generating code that implements those semantics,  
and (iii) instrumenting the application to communicate any run-time information required by (ii). 
DFT can be executed in parallel with the running process, either in software, or hardware. In 
current approaches, the major challenge in terms of performance is step (iii). To tackle this chal- 
lenge, we propose using branch and execution tracing facilities in modern Intel and ARM CPUs 
to obtain the run-time information required by the now decoupled DFT, thus greatly reducing the 
overhead imposed on applications. We plan to leverage two debugging facilities: branch tracing, 
available on Intel CPUs, and branch and data tracing available on ARM CPUs. Our first task, is 
to use branch tracing to reduce the software instrumentation on the process, leveraging prior work 
that focuses on decoupling DFT in software only [16, 17]. Second, we will use branch and data 
tracing on ARM CPUs to rely entirely on hardware for providing the necessary information. 
2.3 Summary of Contributions 
During this project, we have accomplished the following: 

We have built a new system, coined JITrace, that utilizes Intel PT data to reconstruct the 
control flow of an application running on top of a VM that employs just-in-time transla- 
tion (JIT), such as Pin. JITrace can reduce the dependency on instrumentation and has the 
potential to accelerate DDFT systems. 

We have begun investigating utilizing execution tracing, as implemented by certain ARM 
processors, for completely removing the need for a middle layer like Pin. 

• 

• 
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We have begun developing a new framework, coined VEX2TRACK, for generating code 
for decoupled, parallelized DDFT systems independently from the instruction-set of the 
targeted platform. 

2.4 Background 
2.4.1. Decoupling DDFT from Execution 
Decoupling analysis from execution to run it in parallel is by no means a novel concept [6, 8, 13, 
25, 28, 33, 36]. Previous approaches can be classified into three categories. The first is based on 
recording execution and replaying while applying DFT on a remote host, or simply a different 
CPU [6, 8, 28]. These are geared toward offline DFT-based applications and can greatly reduce 
the overhead they impose on the application. However, the speed of DFT itself is not improved, 
since execution needs to be replayed and instrumented with inline DFT code. These solutions 
essentially hide the overhead from the application, by sacrificing computational resources at the 
replica. Due to their design, they are not a good fit for applying preventive security measures, 
even though they can be used for post-fact identification of an intrusion. 
The second category uses speculative execution to run application code including inlined DFT   
in multiple threads running in parallel [25, 33]. While strictly speaking the analysis is not decou- 
pled, it is parallelized. These approaches sacrifice significant processing power to achieve speed 
up, as at least two additional threads need to be used for any performance gain, and the results of 
some of the threads may be discarded. Furthermore, handling multi-threaded applications without 
hardware support remains a challenge. 
The third category aims at offloading the DFT to another execution thread [13, 36]. These in- 
strument the application to collect all the information required to run the analysis independently, 
and communicate the information to a thread running the analysis logic alone. In principle, these 
approaches are more efficient, since the application code only runs once. However, in practice, 
they have not been able to deliver the expected performance gains, due to inefficiently collect- 
ing information from the application and the high overhead of communicating it to the analysis 
thread. 
Our approach is inspired by the third category of systems, which means that it exploits the par- 
allelism available in modern architectures to improve DFT performance without the demand for 
more resources than the ones required to apply it inline with the application. The reason for this  
is conceptually shown in Fig. 1. DFT involves accurately tracking selected data of interest as they 
propagate during program execution. Applying it dynamically on binaries usually involves the 
use of dynamic binary instrumentation (DBI) frameworks or virtual machine monitors (VMM) 
that transparently extend the program being analyzed. Such frameworks retrofit DFT in binaries 
by interleaving framework and DFT code with application code, as shown in Fig.1 (b). The total 
overhead is then a compound of the overhead imposed by the instrumentation framework and   
the DFT logic injected in the application. In past work, we demonstrated that we can greatly ac- 
celerate DFT by instrumenting in the application to extract the run-time information required to 
independently apply DFT and running it in parallel. As shown in Fig. 1 (c), this provides a signif- 
icant impact in performance. Our experiments showed that the total run time is reduced to half 

• 
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Figure 1: Benefits of Trails and Decoupling DFT from Application 

 
compared with inlining DFT, while concurrently using less CPU cycles. Trails will further reduce 
overhead by using hardware to obtain the data required by the DFT logic. Performance benefits 
will be gained first by using hardware to obtain run-time control-flow information (Fig. 1 (d)) 
and, second, by using hardware to obtain all the run-time information (Fig. 1 (e)), hence, requir- 
ing zero or very little instrumentation of the application. Compared with previous proposals for 
implementing DFT in hardware [10, 11, 12, 27, 31, 32], Trails is actually building on facilities 
available on modern, popular processors. 
2.4.2. Intel’s Pin Dynamic Binary Instrumentation (DBI) Tool 
Pin [21] enables the development of tools that can augment, modify, or simply monitor a binary’s 
execution at the instruction level. It provides a rich API that can be used by developers of tools 
(Pintools) to install callbacks to inspect a program’s instructions and routines, as well as inter- 
cept system calls and signals. In Pin’s terms, it allows the instrumentation of the application. 
Additionally, instrumentation routines can modify original code by removing instructions or by 
more frequently adding new code, referred to as analysis code. The instrumented application ex- 
ecutes on top of Pin’s virtual machine (VM) runtime, which essentially consists of a just-in-time 
(JIT) compiler that combines the original and analysis instructions, and places the produced code 
blocks into a code cache, where the application executes from. 

reduction 

reduction 
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Figure 2: Intel Processor Trace Components 

(This picture is property of Intel corporation.) 
 

2.4.3. Intel Processor Trace 
Intel Processor Trace [15] (PT), shown in Fig. 2 enables the recording of branch outcomes with 
low overhead. The processor can be configured to generate a stream of data packets that include 
information such as the type of branch instruction executed, whether it was taken for conditional 
branches, its target address, and even includes packets for asynchronous control-flow events (e.g., 
signals and exceptions). The data are stored directly to physical memory using multiple buffers, 
which can be mapped into the application, and the process raises an interrupt when the buffer 
it was using becomes full and continues by using the next buffer. The data stream produced by 
the processor is also highly compressed. For instance, only a single bit is used to indicate the 
direction of a conditional branch, while the target of a return instruction is omitted, when the 
information was previously recorded in the stream due to a call instruction. Moreover, higher 
bytes of addresses are omitted, when they are the same as previously logged ones. 
PT Packets There are a lot of different Intel PT packets, each one associated with a different 
control flow tracing attribute. The main types of packets are the following: 

PGE or Packet Generation Enable packets provide the IP at which the tracing of the pro- 
gram begins. 

• PGD or Packet Generation Disable packets mark the end of a program’s tracing. 

TIP or Target IP packets are the packets that are created when the program’s execution 
reaches an indirect call, a return, an exception or an interrupt. They record the target IP of 
indirect branches, exceptions, interrupts, and other branches or events. These packets can 
contain the IP, although that IP value may be compressed by eliminating upper bytes that 
match the last IP. 

• 

• 



7 
Approved for public release; Distribution is unlimited 

 

TNT packets track the direction of up to 6 conditional branches, containing information 
about whether that conditional branch was taken or not taken. 

FUP or Flow Update packets: provide the source address for asynchronous events (inter- 
rupts and exceptions). 

PSB or Packet Stream Boundary packets: are unique patterns in the output log to serve as 
sync points for software decoders. 

OVF or Overflow packets: are sent when the processor experiences an internal buffer over- 
flow, resulting in packets being dropped. This packet notifies the decoder of the loss and 
can help the decoder to respond to this situation. 

TSC or Time-Stamp Counter packets: aid in tracking wall-clock time, and contain some 
portion of the software-visible time-stamp counter. 

Filtering PT includes various facilities for filtering packets, before they are logged. The most 
interesting ones include filtering based on the special register CR3, which essentially configures 
PT to only log packets for a specific virtual address space, i.e., a specific process. Moreover, it is 
possible to set two virtual address ranges of interest, which cause PT to automatically activate or 
deactivate, upon entry and exit of execution into those ranges, respectively. 
2.4.4. ARM CoreSight 
The ARM CoreSight architecture [4], depicted in Fig. 3, is an infrastructure for facilitating real- 
time debugging and tracing on ARM processors. A variety of modules, referred to as macrocells, 
are available providing different capabilities. Processor vendors can select which modules to 
incorporate in their processors based on their requirements. Macrocells are can be configured and 
activated programmatically from a program running on-chip by setting its coprocessor registers 
using instructions MRC and MCR. In recent version, these registers can be also memory mapped, 
while more conventional external interfaces, like JTAG, can also be used. Here, we present some 
of the CoreSight components that we plan to make use of. 
Program Trace Macrocell (PTM) ARM’s PTM is similar in many ways to Intel’s PT. It en- 
ables control-flow tracing by generating a stream of packets that encode the result of control-flow 
instructions. We can use this stream in a similar way to reconstruct control-flow and perform 
DDFT in-parallel with an application. The module also provides filtering capabilities to only 
activate program tracing for a range of instruction addresses. 
Embedded Trace Macrocell (ETM) ARM’s ETM is a more advanced debug module that pro- 
vides execution and data tracing. Similarly to the PTM it produces a highly-compressed stream 
of packets that contain information like the instruction addresses executing and the addresses 
of data being read/written. Address and data comparators may also be available to filter the in- 
structions that will produce tracing data based on the address of the instruction, the value of the 
data being accessed, etc. Instruction tracing is actually similar to PTM, since it involves tracing 

• 

• 

• 

• 

• 
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Figure 3: ARM CoreSight Architecture Intellectual Property (IP) 

(This picture is property of ARM ltd.) 

 
branch instructions whose outcome cannot be statically determined (i.e., indirect and conditional 
control-flow instructions). It also involves recording context changes in the executing process 
and tracking the execution of individual Java instructions, as ARM processors are able to directly 
execute certain Java bytecodes. Data tracing involves recording the memory address involved in 
the executing instruction. If for some reason the ETM cannot immediately record addresses, it 
can also record it out-of-band, while it also generates the appropriate packet to notify the stream 
reader of that event. If an instruction is actually using multiple memory addresses, only the first 
address is recorded. 
System Trace Macrocell (STM) The STM [3] is designed for enabling instrumentation of an 
application. Applications developers can define templates of trace statements that contain place- 
holders for run-time data variables. At run time, the STM will use these templates to produce 
tracing packets based on the template and the values observed, attaching cycle accurate times- 
tamps at the same time. The STM can be stacked with other debugging modules, such as the 
PTM and ETM, to timestamp their trace data. 
Capturing Trace Data through the TPIU The above components are connected on the AMBA 
AXI interconnect bus, which provides fast connectivity between cores and coprocessors on ARM 
chips. The trace data are written on the advanced trace bus (ATB), which provides various op- 
tions for capturing them. Older ARM chips typically route the trace data to a debug access port 
(DAP), which can be captured by an external debugger through an interface like JTAG.  They  
can be also stored in a small on-chip buffer, the embedded trace buffer (ETB), which can also be 
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accessed only though the JTAG interface. However, ARM CoreSight also provides alternatives; 
trace data can be routed to a trace port using the trace port interface unit (TPIU). A trace port   
can lead to off-chip pins where an external trace port analyzer (TPA) can capture them, or can   
be routed on on-chip ports leading to a coprocessor hosted on the same chip. Such coprocessors 
need to be designed-in by the vendor. Prototyping such system-on-chip designs is also possible 
using development boards that combine an ARM processor with a field-programmable gate array 
(FPGA) [2, 20, 22, 34]. 
Capturing Trace Data through the TMC The trace memory controller (TMC) [3], included 
in designs with an STM, is a successor to the CoreSight (ETB). It extends the capture of trace 
streams to system memory, through the embedded trace router (ETR), or to a dedicated embed- 
ded trace FIFO (ETF) on chip. As a result, processors with STM and TMC can capture data from 
PTM and ETM on system memory, where they can be decoded and analyzed by another core. 
TMC essentially enables the use of trace data without slow off-chip peripherals or custom on- 
chip coprocessors. Moreover, it is also transparently stalls the processor, if new data are going to 
overwrite existing data, i.e., when data are produced much faster than they are consumed. 
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3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 
3.1 Decoupling Dynamic DFT from Application Execution with ShadowReplica 
DDFT techniques track the flow of data throughout the execution of a program by propagating 
tags, also referred to as labels, that have been associated with particular data. Decoupling DDFT 
from the core executing the application and running it on another core, in parallel, requires ac- 
cess to the instructions being executed, as well as certain run-time information, like computed 
memory addresses used in read and write operations. For example, the semantics of the x86 
instruction mov eax, ebx mandate that a tag should be propagated between two registers, 
when it executes, while no run-time information is required. However, when an instruction like 
mov eax, [ecx+ebp*4] executes, DDFT must propagate a tag between a memory location 
and a register, requiring the address computed by ecx+ebp*4 at run time. 
The major challenge in decoupling DDFT is efficiently obtaining this kind of run-time informa- 
tion from the application. The data required are: (i) tag propagation semantics based on program 
instructions, (ii) addresses used in memory access instructions that are generated at run-time and 
cannot be inferred, and (iii) control-flow decisions like conditional branches and indirect control- 
flow transfers. With this information, we can track data independently of the DFT “flavor” we are 
interested in. For example, we can track data at different granularity, track only explicit or also 
implicit dependencies, apply a variety of security policies, etc. 
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In previous work [16], the PI developed an architecture based on Pin to decouple DDFT and run 
it in parallel to the application, which this project enhances. An overview of ShadowReplica is 
depicted in Fig. 4(b). For each thread of an application, a shadow thread is spawned to perform 
the necessary DDFT computations. Pin is used to instrument the target application with logic 

DBI 

 

 

 

Dynamic 
 profiler 

 

ShadowReplica tool 



11 
Approved for public release; Distribution is unlimited 

 

 
l: pop eax 
2: pop ebx 
3: mov eax f-- [eax + ebx + l00] 
4: mov [eax + ebx ] f-- ebx 
5: add edi f-- [ebx] 
6: mov ecx f-- [ecx + 2 x ebx + 200] 

 
(a) x86 instruction 

 
l: T(eaxl) = T([esp0]) 
2: T(ebxl) = T([esp0 + 4]) 
3: T(eax2) = T([eaxl + ebxl + l00] ) 
4: T( [eax2 + ebxl] ) = T(ebxl) 
5: T(edil) I= T([ebxl]) 
6: T(ecxl) = T([eax2 + 2 x ebxl + 200]) 

 
(b) DFT representation 

 
l: ea0 := esp0 
2: eal := esp0 + 4 
3: ea2 :=eaxl + ebxl + l00 
4: ea3 := eax2 + ebxl 
5: ea4 := ebxl 
6: ea5 := eax2 + 2 x ebxl + 200 

 
(c) Distinct EAs 

l: void PROP(ea0, ea3, ea5) { 
2: REG(EBX) = MEM_E(ea0 + 4); 
3: . 
4: REG(EDI) I= MEM_E(ea5 - ea3 -200); 
5: REG(ECX) = MEM_E(ea5); 
6: } 

 
(d) Propagation body 

Figure 5: BBL Transformation Example During Code Analysis 

 
that extracts and transmits the addresses used in memory access instructions and control-flow 
decisions to the shadow thread, so that it can propagate tags and apply policy decisions. 
To operate efficiently ShadowReplica builds on information extracted during an offline analysis 
stage, which is sketched in Fig. 4(a). This phase begins by disassembling a binary application to 
extract its basic blocks (BBL), that is, blocks of instructions terminated by a control-flow tran- 
sition, as well as a partial control-flow graph (CFG) that shows how some of these basic blocks 
are connected. To extract this information we can utilize tools static tools, like the IDA pro disas- 
sembler [14], and dynamic tools, like Intel’s Pin framework [21]. We analyze this information to 
generate optimized code for the DFT logic (i.e., for propagating tags) in the shadow process and 
for enqueueing and dequeuing the data necessary. Note, however, that we do not require that this 
analysis is perfect, as we can also analyze the application just-in-time. 
3.1.1. Control Flow Recording 
The most straightforward approach to replicate control flow involves enqueueing a unique basic 
block id (BBID) for every BBL being executed. Unfortunately, simply doing this is too costly. 
Control-flow transitions in x86 architectures can be classified in three categories: (a) direct jumps, 
(b) direct branches, and (c) indirect jumps. For direct jumps, BBIDs for successor BBLs can be 
excluded from logging, since there is only a single, fixed exit once execution enters into BBL0. 
Direct branches can have two outcomes.  They are either taken, or fall through where execu- 
tion continues at the next instruction. We exploit this property to only enqueue a BBID, when 
the least frequent outcome, according to our dynamic profiling, occurs. We use the absence of 
BBL3’s id to signify that BBL4 followed as expected. Note that if a BBL has two predecessors 
and it is the most frequent path for only one of them, we log its BBID. Last, for indirect jumps 
we always record the BBID following them, since they are hard to predict. Fortunately, the num- 
ber of such jumps are less compared to direct transfers. 
3.1.2. Recording Effective Addresses 
A naive approach to obtain the memory addresses accessed by the application in the shadow 
process involves recording all of them. However, as such operations are very common, we can 
exploit locality in memory accesses to minimize the amount of information that needs to be 
exchanged. For this, we intend to build on prior work [16, 17]. 
We begin by extracting data dependency semantics from basic blocks during offline analysis, 
which allow us to identify the memory locations of interest. In Fig. 5, we show an example, 
where we extract the data-tracking semantics (b) from a block of x86 instructions (a). Each reg- 
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ister is treated like a versioned variable and any update operation causes the creation of a new 
version, e.g., the POP instruction generates eax1 in line 1. The function T() corresponds to the 
tag for a particular register or memory location, which, for simplicity, we assume to be a binary 
tag in this example.  For example, in lines 1 to 4 and 6 of Fig. 5 (b) a tag is copied, while in line  
5 two tags are combined using the OR ( ) operator. When looking at the effective addresses (EA) 
used in this representation, Fig. 5 (c), we see that initially we would have to transfer six of them 
to the analysis thread. We can perform the following optimizations to reduce this number. 
Intra-block Optimization Within a basic block, we search for effective addresses that correlate 
with each other to identify the minimum set required that would correctly restore all of them in 
the analysis thread. For instance, we only need to enqueue one of [esp0] or [esp0 + 4] 
from Fig. 5 (b), as one can be derived from the other by adding/subtracting a constant offset. 
DFT Optimization This optimization identifies instructions, and consequently memory operands, 
which are not going to be used by the DFT logic in the shadow process, by applying compiler 
optimizations, such as dead-code elimination and data-flow analysis, against our DFT-specific 
representation of code. For instance, in Fig. 5 (b) we determine that the propagation in line 1 is 
redundant, as its destination operand (eax1) is overwritten later in line 3, before being referred 
by any other instruction. This allows us to ignore its memory operand [esp0]. In our example, 
this reduces the number of memory addresses from six to three, see Fig. 5 (d). 
Inter-block Optimization We extend the scope of the intra-block optimization to cover mul- 
tiple blocks connected by control transfers. This implements backward data-flow analysis [1] 
with the partial CFG gathered during profiling. We begin by defining the input and output vari- 
ables for each basic block. We then produce a list of input and output memory operands which 
are live before entering and when leaving a basic block. Using our representation, input mem- 
ory operands are the ones with all of its constituent register variables in version 0, and output 
memory operands are the ones that have all of its constituent register variables at their maximum 
version. In our example in Fig. 5, the inputs list consists of [esp0], and the outputs list includes 
[esp0], [ebx1], [eax2 + ebx1], and [eax2 + 2 ebx1 + 200]. If all the prede- 
cessor basic blocks in the CFG contain [esp0] in their outputs list, the block can harmlessly 
exclude it from logging because its previous value is still valid. The optimization has greater 
effect as more inputs are found on the outputs lists of a block’s predecessors. 
Since we only have a partial CFG of the application, it is possible that at runtime we identify new 
execution paths that invalidate the backwards data-flow analysis. To tackle this issue we make 
inter-block optimization more conservative using two heuristics. First, if we find any indirect 
jumps to a basic block, we assume that others may also exist and exclude it from optimization. 
Second, we assume that function entry point, may be reachable by other, unknown indirect calls, 
and we also exclude them. We consider these measures to be enough to cover most legitimate 
executions, but they are not formally complete, and as such may not cover applications that are 
buggy or malicious, in which case this optimization can be disabled.  Note that with the latter,  
we are not referring to vulnerable applications that may be compromised, an event that can be 
prevented by DTA, but malicious software that one may wish to analyze. 
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3.1.3. Ring Buffer 
ShadowReplica uses an N-way buffering scheme [36], where the application and shadow process 
share the buffers, to transfer data efficiently. In this scheme, a ring buffer is divided into N sepa- 
rate sub-buffers, and the application and shadow processes work on different sub-buffers at any 
point of time, maintaining a distance of least as much as the size of a single sub-buffer. Also, as 
part of enqueueing in the ring buffer, we need to check whether space is available. We eliminate 
some of these checks to further reduce overhead. During the static analysis of an application we 
identify chains of basic blocks, where we can deterministically establish their length, to collapse 
multiple checks to a single one, performed when entering a chain. For this approach to be ef- 
fective we also need to identify and avoid over-optimizing loops, while, we can also allocate a 
write-protected memory page at the end of the ring buffer that will generate a page fault, which 
can be intercepted and handled, to safeguard from errors. 
3.1.4. Recording System Calls 
System calls are used to read and write data from the operating system. As such, they play an 
important role in DFT, as they signify points where data may need to be tagged and policies 
enforced. Based on the analysis being applied, we can enqueue system call arguments and return 
values along with memory addresses. For instance, opening and reading from a sensitive file 
needs to be communicated to tag the correct number of bytes with the appropriate tag. 
3.1.5. DFT Logic 
During offline analysis, we generate tag propagation code blocks for each of application’s basic 
blocks. Each of these, consumes the effective address produced by the instrumented application 
to propagate tags. The DFT logic will be generated based on the methodology introduced in one 
of the PI’s previous works [17]. Briefly, this involves extracting tag propagation semantics and 
representing them in a DFT-specific form, which is susceptible to multiple compiler-inspired opti- 
mizations that aim at removing propagation instructions that have no practical effect or cancel out 
each other, as well as reducing the number of instructions required for propagation by grouping 
them together. At the end of each block and after filtering Pin-related control-flow transfers, we 
use the Intel PT data stream to decide which block to execute next. 
Generic Block Handler Application code that was not identified offline will be processed by a 
generic handler. In this case, we disassemble the newly discovered code and analyze it on-the-fly. 
The newly found code blocks are cached, so this process needs to be run only once. 
3.1.6. Multithreaded Applications 
For multithreaded applications, the shadow process will spawn one thread for each corresponding 
application thread. Similarly to control-flow data, we can use a separate data structure for each 
thread to record memory-address data, so no demultiplexing is necessary. To correctly handle 
critical sections, where only one thread can be active at a given time, we rely on existing locking 
facilities used by threads. For example, a POSIX thread can use a mutex to ensure exclusive 
access to a critical section. We record the order by which threads obtain this lock and enter the 
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Figure 6: JITrace Architecture 

 
critical region, by wrapping lock-handling functions, so that we can replicate the locking order 
in the shadow process. This strategy enables us to maintain the correctness of tag propagation, 
assuming that the tracked application correctly uses locks to access shared data. 
3.2 DDFT Acceleration using Intel PT 
We developed a new system, coined JITrace, that utilizes Intel’s Processor Trace (PT) technol- 
ogy to reduce the overhead of DDFT architectures, such as ShadowReplica, described above. 
Applications running on top of Pin execute as just-in-time (JIT) generated code, cached within  
a code cache. JITrace uses the data produced by Intel PT, which correspond to Pin’s and code- 
cache code execution, to reconstruct the original control-flow of the application, as if Pin was 
not present. By offloading control-flow recording to the hardware, JITrace reduces the amount 
of data that need to be transferred through Pin-based instrumentation to the shadow process for 
performing DDFT. 
Figure 6 illustrates the architecture of JITrace.  A kernel module is employed to manage Intel   
PT, which is a privileged hardware feature, and to efficiently expose PT-generated data to user 
space. The kernel module is controlled by a shadow process, which also collects PT data and 
reconstructs application control flow. This process is launched along side the Pin-hosted applica- 
tion and is responsible for initializing the PT-based tracing of the Pin process.  The CPU writes 
PT data directly to a set of buffers, which are also mapped into the shadow process. After initial- 
ization, the shadow process receives notifications from the kernel module, whenever a buffer has 
been filled by the CPU, and proceeds to decode the data contained within. 
The data obtained from PT does not describe the execution of the application, but that of Pin and 
its code cache. JITrace maps the execution trace described by PT data to the actual application 
running on top of Pin. We utilize Pin’s code cache APIs to analyze the code generated by Pin and 
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map code blocks to that of the applications. We encode these mappings into a control-flow table 
(CFT) that is shared between shadow process and Pin. Using the CFT and decoded PT packets, 
the shadow process is able to successfully reconstruct the execution of the application. Finally, an 
auxiliary channel between the shadow and Pin processes is used to transfer low-frequency data, 
such as notifications that the execution has entered/exited the code cache. Below we describe the 
various components of JITrace in more detail. 
3.2.1. Mapping Pin’s Code Cache to Application Code 
To create these mappings, we need to examine all of the code entered in the code cache by Pin, 
before it is executed. Fortunately, Pin provides various APIs for monitoring the code cache.1 In 
particular, we use the CODECACHE AddTraceInsertedFunction() API to be notified 
whenever a new trace is inserted in the cache. The trace can be disassembled using another Pin 
API, INS Disassemble(). Note that the traces being inserted in the cache, include both appli- 
cation code, as well as any other instrumentation that has been injected using Pin. For example, 
the instrumentation required by ShadowReplica to send memory addresses to the shadow pro- 
cess. This fact, along with the certain Pin limitations and optimizations, complicate the mapping 
process, which we describe below. 
Every trace inserted in the code cache is composed of one or more BBLs. In the simplest case, 
we can rely on Pin APIs to resolve if a code cache basic block BBLCC corresponds to an appli- 
cation basic block BBLAPP. For example, CODECACHE OriginalAddress() returns the 
original address of a code-cache instruction. With this information, we can match BBLCC and 
BBLAPP, since it will fail for instructions that were added by Pin (e.g., due to instrumentation). 
Each BBLCC  can correspond to only one BBLAPP, as there can be no control-flow within a BBL 
by definition. However, the opposite is possible, one BBLAPP can be split in two BBLCC, because 
of instrumentation. We easily handled this case by ignoring the second BBLCC match. 
BBLCC that contain a single instruction, which by definition will be a conditional branch, require 
special handling, as they do not contain any original application instruction. This is because Pin 
replaces the target of the branch with an appropriate value pointing in the code cache. To identify 
the BBLAPP for these blocks, we also disassemble and analyze all application code, as it is dis- 
covered by Pin. We use TRACE AddInstrumentFunction(), which installs a callback that 
saves each trace of the original application TRACEAPP, before it is inserted in the code cache. We 
match single-instruction BBLCC by looking at the opcode used in the conditional branch and its 
relative position in the trace and compare them to unmatched BBLAPP in the trace. We also use 
the saved traces to confirm that the mappings we calculated are correct, by checking that no block 
was left unmapped. 
BBLAPP that include instructions with the prefix REP also require special handling. This prefix 
executes an instruction multiple times, based on the value of a register. Pin expands such instruc- 
tions into a loop, implemented by multiple BBLCC in two traces. First, the code of the BBLAPP it- 
self is split in two blocks, the first (block1) containing all the instructions before the REP-prefixed 
instruction, and the second (block2) containing the REP-prefixed instruction (without its prefix) 

1The API was deprecated after Pin 3.2. 
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that ends the BBL. The loop is actually implemented in a different trace, while block2 seems to 
be an optimization for loops that will execute only once. When a REP-prefixed instruction is the 
only instruction in the BBL, a mapping is created for both BBLCC pointing to the same BBLAPP. 
Pin also splits others instructions, like CPUID and POPF, into multiple BBLCC. 
3.2.2. Populating the Control-flow Table 
The control-flow table (CFT) needs to contain sufficient information for: (a) reconstructing the 
control-flow of Pin’s code cache, and (b) translating that to the control-flow of the application run 
over Pin. The first requirement mandates that we populate the CFT with information about every- 
thing that executes in the code cache, not just the BBLs mapped to application BBLs. Hence, we 
insert an entry in the table for every BBL in the code cache. To then map code-cache to applica- 
tion execution, for each BBLCC that has been mapped to a BBLAPP, we additionally include the 
latter’s information (e.g., its address). 
Figure 7 shows the format of a CFT entry. The following information is stored in each entry: 

CODE CACHE ADDRESS This field holds the address of the branch instruction that ends 
the BBLCC. 

ORIGINAL BBL ADDRESS If this BBLs has been mapped to a BBLAPP, this field con- 
tains its address, or -1 otherwise. 

CONDITIONAL This flag indicates of the BBL ends in an conditional branch (TRUE) or 
an a direct/indirect branch. 

TARGET ENTRY This fields points to a target entry in the CFT. If the exiting branch of the 
BBL was a conditional, this points to the entry where execution is transfer if the branch is 
taken. The entry below corresponds to the BBL that will execute if the branch is not taken. 
For BBLs that are end in a direct branch, this field points to the BBL where control will be 
transferred. The field is -1 for blocks that end with an indirect-transfer. 

Entries for Pin Trampolines/Glue Code Pin owes its performance to hot trace linking, an 
optimization that targets frequent transitions between traces, usually when indirect transfers (e.g., 
through the RET instruction) are involved. When a specific address is repeatedly targeted, Pin 
updates the code cache with a check and direct jump to the target trace, instead of actually exiting 
the code cache, verifying that the target code has been already translated, etc. Linking introduces 
new code in the code cache, which is treated specially by Pin and is opaque to the developer. 

• 

• 

• 

• 
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We analyzed this glue code and identified that it comprises small trampolines pieces of code, 
which are both used for trace linking and to efficiently instrument the application.  To handle 
these trampolines for each BBLCC that ends with a conditional or direct branch, we attempt to 
disassemble the target address, if it is within the memory ranges that Pin uses for the code cache. 
If we find valid code that ends in a direct JMP or RET instruction, we generate a CFT entry for 
the (previously unknown) block. 
Oftentimes, Pin enters the code cache directly in such trampolines or glue code. We can only 
discover such code by monitoring where the code cache is entered and looking for unknown code 
chunks. We use Pin’s CODECACHE AddCodeCacheEnteredFunction API to monitor 
entries to the code cache. If BBLCC had not been previously inserted at that address, we jump in 
and disassemble the code found there before allowing the code cache to execute. 
Pin Backpatching/Trace Linking In order to reduce the number of accesses to the code cache, 
Pin backpatches traces that are connected. In particular, links are created to and from other traces, 
mainly based on their relationship in the original code. For example, traces are linked when they 
are one after another in the program. The links are created by overwriting the exit instruction of 
the source trace with a conditional or direct jump to the destination trace. This kind of linking 
is available to the developer, through the CODECACHE AddTraceLinkedFunction() API. 
We  initially handled these kind of links by storing them in queue and applying them updates   
on the CFT in batch to avoid using stale entries during the reconstruction.  However, now we  
are experimenting with a new design, where updates are made directly on the CFT and we take 
advantage of the characteristics of traces before linking (e.g., they lead to an exit from the code 
cache) to avoid concurrency issues. 
3.2.3. Setting up and Using Intel PT 
The shadow process is responsible for setting up PT, reading, and processing PT data, always 
through the kernel module. Initialization, involves starting PT and configuring it, so it only tracks 
the Pin process and to filter out any data that do not correspond to the memory area that can host 
code-cache blocks. After setup, the shadow process issues an mmap() system call to the kernel 
module to map the pages that will contain PT data, as they are produced by the CPU. Data decod- 
ing occurs in a loop, where an ioctl() system call is used to signal that the process is ready  
to process data. Whenever one of the pages assigned to PT are filled, the module receives an in- 
terrupt, which it uses to “return” the given page, through the ioctl(), to the shadow process 
for decoding. The kernel module ensures that the processor never overwrites data that have not 
been processed by user space. It keeps track of the page being currently processed and where the 
processor is writing, and ensures that a few pages are always available between the two.  If not,  
it stops the Pin process by issuing a SIGSTOP signal. Pin is resumed, when more pages have 
finished processing and are made available. 

3.2.4. Control-flow Reconstruction 
The shadow process models Pin’s execution state as IN or OUT of the code cache.  Pin enters 
the code cache and begins executing using and indirect control-flow transfer. We have observed 
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that on 64-bit systems this occurs through an indirect jump from Pin into the trace to be executed, 
while on 32-bit systems the indirect jump is to a trampoline in the code cache that directly jumps 
to the targeted trace. This trampoline is updated at code cache entry.  In both cases, this causes 
the generation of target IP (TIP) packet.  TIP packets are generated when an indirect control- 
flow transfer occurs and we use, when the state is OUT , them to identify an entry in the code 
cache, switch to IN state, and begin reconstruction. Exits from the code cache result in a Packet 
Generation Disable (PGD) packet, because of the way we configured Intel PT. We use this packet 
to toggle execution state. 
Whenever we enter the code cache, or when we have to deal with an indirect or asynchronous 
(e.g., signal) transfer, we use the targeted address to lookup the corresponding entry in the CFT. 
That entry corresponds to the BBLCC that executed on the Pin process.  To perform the lookup, 
we utilize a hash table for mapping code cache traces to CFT entries. Each time a new trace is 
identified an entry is created in this hash table, along with all the other entries created in the 
CFT. To keep track of the current CFT entry corresponding to the Pin’s execution in the code 
cache, we maintain a cursor, CURCFT , to the active entry. Once the code cache is entered, we 
follow the meta data stored within to determine our next action. For entries that correspond to 
block ending with direct transfers (CONDITIONAL = 0 TARGET ENTRY = 1), we just 
update the CURCFT to point to TARGET ENTRY . For blocks ending with a conditional branch 
(CONDITIONAL = 1 ), we use PT data, part of the a TNT packet, to determine the next CFT entry, 
which is other the next entry or TARGET ENTRY . For indirect transfers (CONDITIONAL = 
0 TARGET ENTRY = 1, we perform a lookup, as stated earlier. 
As we traverse the CFT with the help of PT data, for every entry touched that corresponds to    
a BBLAPP (ORIGINAL BBL = 1), we discover an application BBL that executed, essentially, 
reconstructing the original control flow. 
3.2.5. Support for Multi-threaded Applications 
JITrace includes preliminary support for threads. In particular, we have implementing an exten- 
sion to the kernel module, which hooks the context-switching routines to be notified whenever 
a thread is scheduled to run on a core. The module then ensures to activate and deactivate PT, 
whenever a traced thread is scheduled to run. It also ensures that each core uses a separate set of 
pages for writing PT packets. This process involves saving and restoring the Machine Specific 
Registers (MSR) on the CPU, across context switches. The principle is the same as saving and 
restoring general purpose registers across context switches. Further work is required to expose 
and use this functionality in the shadow process. 
3.3 DDFT Acceleration using ARM ETM 
Hardware-enabled execution tracing, offered by components such as ARM’s ETM, can help re- 
duce the overhead of DDFT in two ways by offloading both control flow and memory access 
reconstruction to the hardware. We have performed an initial investigation using the i.MX51 eval- 
uation toolkit [26], which features an ARM A8 core, towards achieving this goal. A8 processors 
contain an embedded trace macrocell (ETM) provides a stream that includes the compressed 
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addresses of executed instructions, so it is similar in this fashion to Intel PT. Additionally, it can 
trace memory accesses by logging the address of the data accessed by instructions (e.g., the ad- 
dress read or written). Hence, the ETM enables us to obtain the effective address of memory 
operations from the shadow process with close to zero overhead. 
Execution Trace Storage Unlike Intel PT, A8 processors only support storing trace data in  
an onboard buffer of 4KB. To make things worse, when the buffers is full, the processor simply 
wraps around and overwrites previously stored data, while there is not mechanism to filter the 
data, that are going to be stored. That is, all processor instructions are logged, not just that ones 
of an application of interest. We are investigating an approach for mitigating these limitations. In 
particular, we are looking into using performance counters to trigger an interrupt after a certain 
number of instructions execute. The goal is to use this interrupt to check the status of the trace 
buffer and copy its contents to memory, before they are overwritten. Additional research in this 
direction is required. 
3.4 Generating DFT Logic 
We have made some preliminary work on a framework that will automatically generate DFT logic 
in an instruction-set independent manner. The framework, named VEX2TRACK, defines data-
flow tracking semantics for basic blocks expressed in VEX intermediate representation (IR). 
Existing tools [29] can translate a variety of instruction sets, including x86, x86-64, and ARM, to 
VEX IR allowing us to easily port our approach to other architectures. 
VEX2TRACK uses defines data-flow tracking semantics per VEX instruction and generates 
LLVM IR instructions that implement the tag propagation. These instructions are compiled us- 
ing LLVM, applying common compiler optimization to improve tag-propagation performance. 
We are currently representing registers and memory tags (shadow memory) as fixed size arrays. 
To apply generated code in decoupled manner, as in ShadowReplica, we also need to calculate 
the addresses used in memory access operations. The approach we are currently exploring is 
transferring register values whenever they are loaded from memory, and generating instructions 
for propagating their values. We rely on compiler optimizations to eliminate some of the latter, 
when the values generated are not used as memory addresses. Further research is required in this 
direction. 
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4.0 RESULTS AND DISCUSSIONS 
4.1 JITrace 
We measured the performance of JITrace using the 32-bit SPEC CINT2006 benchmark suite. Ex- 
periments were run on x86-64 Linux v4.15.0, on an Intel(R) Xeon(R) CPU E3-1225 v5 3.30GHz 
CPU and 32GB of RAM. Our goal is to establish, if using Intel PT to obtain the control flow of 
the application is faster, than doing it through Pin (using instrumentation). Table 1 shows the 
overhead of JITrace, normalized using two baselines: Pin without any tool and Pin with a tool re- 
constructing the control flow of the application. The numbers shown are the average after running 
each benchmarks twice. We find that on average, JITrace is 1.68 times slower, than using instru- 
mentation to obtain the control flow of the application. While in some benchmarks, like 401.bzip, 
JITrace is faster, it is almost three times slower in in 464.h264ref. We have been investigating the 
cause of the overhead, and we have identified that the enormous number of PT packets generated 
and the overhead associated with traversing the CFT are the biggest contributors. Additional re- 
search is required in exploiting common patterns in PT data and producing a highly optimized 
decoder and CFT. Another promising direction is using an FPGA to decode the packets. 
Correctness We established the correctness of the traces produced by JITrace, by comparing 
them with the ones produced using a Pin tool. We found that for all benchmarks, we are able to 
correctly reconstruct the control flow. However, we have detected cases where JITrace occasion- 
ally reports one extra BBL when running 400.perlbench. We are still investigating this bug. 

Table 1: Normalized Overhead of JITrace with SPEC CINT2006 Benchmark 
 

Benchmark  Baseline 
 Pin Pin-based 
 no tool reconstruction 

400.perlbench 3.90 1.15 
401.bzip 2.09 0.79 
403.gcc 8.23 2.75 
429.mcf 2.09 1.07 
445.gobmk 5.42 1.85 
456.hmmer 2.12 0.97 
458.sjeng 8.91 2.39 
462.libquantum 5.33 2.37 
464.h264ref 5.37 2.87 
471.omnetpp 3.57 1.57 
473.astar 2.96 1.38 
483.xalancbmk 3.61 1.03 

Average 4.47 1.68 
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5.0 CONCLUSIONS 
In this project we developed new technologies that will enable low-overhead, fine-grained, dy- 
namic data-flow tracking (DFT) capabilities for the development of security, privacy, and other 
applications.  Our focus was on taking advantage of debugging features found in modern CPUs 
to improve the efficiency of decoupling dynamic data-flow tracking (DFT) from application code 
and running it in parallel. 
We have developed a new system, called JITrace, that utilizes HW data to reconstruct the control 
flow of applications running on Pin, a DBI framework employing JIT. JITrace can work together 
with systems, like ShadowReplica, which were developed in previous projects, to transfer part   
of the control flow reconstruction functionality from software to hardware. Our findings indicate 
that additional work is required for developing systems that can efficiently consume the massive 
amounts of data produced by the hardware, by using novel designs and programmable hardware, 
such as FPGAs. Both Intel and ARM have released processors with on-board FPGAs, which can 
be used to prototype such designs, that could lead to new system-on-chip designs further in the 
future. 
We have also conducted research in using more extensive hardware tracking, like the execution 
tracing offered by some ARM processors. While this feature is powerful, these processors are 
more prevalent in embedded systems and are, hence, more lightweight and with less resources. 
Additional research is required to investigate efficient ways to overcome the resource limitations 
in such architectures. 
Finally, we have begun developing a framework that can generate the necessary logic for im- 
plementing DDFT applications quickly. Our approach, takes advantage of tools that translate 
architecture-specific code into an intermediate representation and works with them, so applica- 
tions can be ported with little effort. Moreover, the generated code is friendly to compiler-based 
optimizations, which greatly reduce the number of instructions required for the DDFT applica- 
tions. Additional research is required in smoothly integrating the application into frameworks like 
JITrace to facilitate deployment. 
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LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS 
Acronyms and Abbreviations 
IP – Intellectual Property 
DFT – Data Flow Tracking 
DDFT – Dynamic Data Flow Tracking 
PT – Processor Trace 
DBI – Dynamic Binary Instrumentation 
VM – Virtual Machine 
VMM – Virtual Machine Monitor 
AP – Application Processor 
JIT – Just-in-Time 
PTM – Program Trace Macrocell 
ETM – Embedded Trace Macrocell 
STM – System Trace Macrocell 
ATB – Advanced Trace Bus 
ETB – Embedded Trace Buffer 
DAP – Debug Access Port 
TPIU – Trace Port Interface Unit 
TPA – Trace Port Analyzer 
FPGA – Field-Programmable Gate Array 
TMC – Trace Memory Controller 
ETR – Embedded Trace Router 
ETF – Embedded Trace FIFO 
CFT – Control-Flow Table 
BBL – Basic Block 
BBID – Basic Block ID 
CC – Code Cache 
TIP – Target IP 
PGD – Packet Generation Disable 
PGE – Packet Generation Enable 
TNT – Taken-not-Taken 
SoC – System on Chip 
IR – Intermediate Representation 
EA – Effective Address 
Symbols 
BBLAPP – Application Basic Block 
BBLCC – Code cache Basic Block 
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