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1. PROJECT OBJECTIVES 

This report details our work under DARPA’s Big Mechanism program, which pursued 

automated methods for the creation and extension of sophisticated mechanistic models through 

the ingestion of textual information.  Under Big Mechanism, this problem was factored into three 

topic areas:  reading, or the automated conversion of human-language text to structured semantic 

form; assembly, or the incorporation of reading outputs into working mechanistic models; and 

explanation, or the use of these enhanced models to solve problems or provide insights to 

humans.  The program nominated a challenging problem domain, the cellular signaling pathways 

associated with a critical protein family called Ras, the malfunction of which is implicated in a 

number of types of cancer.  This problem domain has a number of characteristics that made it 

useful to the program: the relevant mechanisms are poorly understood, the pathways in question 

are large, textual material treating these pathways are voluminous, and any successes in meeting 

the program’s challenge would potentially yield immediate medical benefit. 

Together with its partner, the University of Wisconsin, SRI addressed all three topic areas, 

seeking to assemble an end-to-end system that extracts pertinent information from the biological 

literature, updates a high-fidelity executable model of the relevant pathways, and uses this model 

to explain clinical outcomes, such as the observed effect of drugs on cellular system (e.g., an 

increase in the production of a particular protein).  Our work was predicated on Pathway Logic 

(PL), an approach to modeling cellular pathways under development at SRI for the past two 

decades.  Among other things, the PL project had already produced large, high-fidelity 

mechanistic models of the pathways of interest to Big Mechanism.  Because human knowledge 

of these pathways is incomplete and human capacity for model curation finite, the relevant PL 

models are necessarily imperfect, affording an almost ideal starting point for a program pursuing 

automated model improvement. 

PL implements a rewriting logic with temporal semantics.  The elements of a PL model are 

“rules,” each rule pairing one or more preconditions with one or more postconditions.  

Informally, a rule is a statement saying that if a particular configuration of factors holds at some 

time, and effect is observed that produces a new configuration of factors.  In models of cellular 

signaling, the factors involved in a rule typically express information about particular proteins in 

the cellular environment, their location, their state of modification, their conformation with other 

nearby proteins, etc.  The “firing” of a rule may effect a change of state that satisfies the 

preconditions of another rule, which may fire in its turn, etc.  Through these rule execution 

cascades, PL simulates the series of reactions that constitute cellular signals.  PL models are 

ideal for answering the “what if” questions that underlie the design of modern cancer treatment 

drugs, enabling the designer to experiment with interventions considerably upstream of the 

change in cell state most directly tied to the development of cancer. 

In addition to curating the rules that implement models, the PL project has systematically 

formalized the biological experiments that provide evidence for these rules.  Each record of these 

experiments, called datums1, records detailed information about a specific experiment described 

                                                 
1 We use the non-standard plural in referring to these records to distinguish them from generic 

data. 



 

 

somewhere in the biological literature.  The database of these records easily constitutes the 

largest data resource of the PL project, containing some 70,000 records by the end of our Big 

Mechanism effort.  This database provided critical to our project on several fronts, enabling us to 

substantiate a key insight: that automated model enhancement requires attention to hard 

evidence if the resulting systems are expected to be predictive of real-world phenomena.  The 

datum database essentially provides evidential guardrails that benefit the model optimization 

process, which otherwise might suffer significant degradation through the incorporation of 

erroneous or underspecified information. 

This key insight became an organizing principle for our effort.  Our research on reading focused 

primarily on the automated acquisition of evidence through the automated extraction of 

simplified datums.  The algorithms we proposed for assembly employed objective functions 

based on level of agreement with the datum database.  And explanation in the PLEIADES 

project almost always meant accounting for a specific evidential outcome and the identification 

of the narrow pathway neighborhoods most responsible for a particular observation. 

As we drew near the end of the project, we were ready to show that these principles are more 

general than biology, that they should apply in other domains having features similar to the Big 

Mechanism challenge problem—abundant technical literature, a source of structured evidence, 

and need for explanations in the form of series of discrete events.  We therefore proposed to 

demonstrate the application of these techniques to a problem domain of more immediate interest 

to DARPA’s sponsors, accounting for geopolitical interactions in “gray zones.”  We were 

granted a modest amount of funding to pursue this research.  This report also summarizes the 

lessons learned in this exercise in domain transfer. 

2. TECHNICAL WORK PERFORMED 

In what follows, we have organized our reporting into four topics:  Reading for Evidence, 

Amplifying Human Effort, High-fidelity Biological Models, and Automated Model Extension.  

This organization combines closely related tasks from our statement of work (which were 

slightly more numerous) for the sake of clarity.   

This topical organization of material is orthogonal to the report structure required by our contact, 

which calls for a presentation of the technical work, followed by a summary of the results 

obtained.  We therefore adopt a parallel topical structure in the section on results that follows this 

section. 

2.1. READING FOR EVIDENCE 

Our work on reading in this project had a specific end use:  We sought to construct a machine 

representation of the experiments described in a given paper on cell biology, hypothesizing that 

the experimental evidence this affords will provide important constraints on the assembly of 

biologically realistic mechanistic models.  This focus posed challenges not confronted by other 

machine reading performers in the program.  Whereas the objective of most relation extraction is 

the faithful capture of certain kinds of statements from individual sentences, we observe that an 

experiment’s key details must often be assembled from multiple sentences.  And whereas the 

conventional reader passes the responsibility of synthesizing the information it extracts to 



 

 

downstream processes, we have no such luxury.  The experimental details are not of interest in 

isolation, and can only confirm or refute mechanistic assertions when considered in combination. 

Experiment Extraction 

In pursuit of “experiment extraction” we had the advantage of a large amount of inadvertent data 

annotation.  The Pathway Logic project, which provided our team with the modeling 

infrastructure upon which our efforts are centered, had created thousands of machine-readable 

“datums,” each describing some experiment culled from the literature, and each retaining a 

pointer to a paper figure.  A core hypothesis we sought to validate is that this alignment between 

datums and the literature provides a form of distant supervision we can exploit to realize our 

experiment extraction goals. 

A first critical step in validating this hypothesis was to simplify the reading problem to a form 

that is both tractable and biologically informative.  Biological assays involve many details of 

interest to the human scientist, and the structure of a typical datum reflects this abundance of 

detail.  However, our primary interest within the Big Mechanism program was to provide 

evidence for or against mechanistic assertions.  To this end, we narrowed our focus to four key 

fields that most datums provide: 

 Assay.  A categorical field that records the type of experiment conducted.  For example, 

the type “phos” indicates a phosphorylation assay, one seeking to determine whether one 

biological entity causes or is instrumental in the phosphorylation of another. 

 Change.  A categorical field that ranges over a small number of possible experimental 

outcomes, such as “increased” and “detected”.  There are perhaps half a dozen such 

values, which partly depend on the type of assay. 

 Subject.  The biological entity (typically a protein) whose change is being measured.  

Note that, in contrast with assay and change, subject belongs to a class that is open in 

practice, as we cannot assume that we have seen all possible assay subjects. 

 Treatment.  The biological entity that is introduced into the cellular environment in 

order to assess its effect on the subject.  Like subject, treatment is open-class. 

As this list implies, our reading challenge in its initial formulation was to accept a paper and 

output a set of quadruples, each capturing the key aspects of some experiment described in the 

paper.  The objective of this task (Task 2) is to assemble the raw ingredients out of which such 

quadruples can be constructed, and to note pairwise field correspondences that might inform 

such construction. 

Corroborative Reading 

In an initial attack on this challenge, we authored an extensive set of extraction rules for the four 

properties listed above, using University of Arizona’s REACH extraction engine as the rule 

interpreter.  The effort to produce these rules was part of our effort to implement the Evidence 

Expert, a proof-of-concept software component for validating mechanistic assertions with 

extracted experiments that was part of the FRIES consortium’s offering at the first program 

evaluation. FRIES was a consortium of several performers, including SRI, CMU, University of 

Arizona, ISI, Leidos, and Elsevier, formed to combine complementary technical strengths in 

pursuit of a complete offering. 



 

 

 

Figure 1: Evidence Expert concept of operations. 

The role of our reading system in the overall FRIES architecture is illustrated in Figure 1, 

specifically the box labeled “Reading for Evidence.”  As the figure shows, the Evidence Expert 

accepts biological “facts” (typically low-cardinality relations or events) extracted from sentence-

level expressions by other consortium groups focusing on reading.  It then compares these facts 

(called “index cards” in the parlance of the Phase 1 evaluation) with experiments extracted from 

the same paper, assigning each card on of four labels reflecting the card’s level of substantiation:  

 Not supported.  Support for the type of relation asserted by the index card has not been 

added to the Evidence Expert yet. 

 Fully substantiated.  A datum was constructed that represents the right kind of assay to 

substantiate the asserted interaction. 

 Partially substantiated.  A datum was constructed that agrees in certain key features 

with the asserted interaction (i.e., shares some entities or represents the right kind of 

experimental assay), but not all. 

 Not substantiated.  As far as the Evidence Expert can tell, no appropriate assay was 

conducted in the paper to substantiate the asserted interaction. 

As the figure indicates, this level of corroboration is then used to inform decisions about which 

new facts warrant inclusion in a pathway model. 

Finding Experiment Elements 

As mentioned, the Evidence Expert relies on hand-authored rules in the syntax used by UA’s 

REACH system.  It is very difficult when creating such rules to assess their accuracy or 

coverage.  We compensated for this difficulty by creating a dashboard that showed the number of 

matches for a given rule, measured its accuracy against known datum elements (e.g., the 



 

 

“subject” field of one or more datums that point to a paper), and provided a sample of matching 

sentences.  Even with such a facility, creating extraction rules like this and applying them to a 

large corpus is a hit-or-miss exercise.  One never knows whether a given rule is good enough, or 

whether further tweaks will yield improved performance. 

Consequently, we devised an algorithm to learn such rules or patterns directly from the 

alignment between datums and papers.  We treated the problem of learning extraction patterns as 

one of sentence classification, where the representation of a sentence is its dependency parse 

tree.  Let us suppose that we wish to learn extraction patterns for the treatment used in an assay.  

The fact that datums refer to the subfigures in a paper in which an experiment is presented, 

combined with a simple ability to recognize subfigure references in the text, enable us to harvest 

treatment-expressing sentences (more generally, sentences expressing any of the above four 

properties) in sufficient volumes for pattern learning.  We simply posit that any sentence that (1) 

refers to the same subfigure as a datum, and (2) mentions the biological entity in the treatment 

role in that datum, is a member of the class “expresses experiment treatment.”  Sentences outside 

this class are sampled randomly from among all other corpus sentences and used as negative 

examples. 

Given this binary partition of sentences, we seek to learn a set of patterns that accounts for the 

set of positive sentences against the backdrop of negative sentences.  As documented in Freitag 

& Niekrasz (2016), the learning procedure is an instance of top-down set covering, a well-tested 

paradigm in symbolic machine learning, but the pattern representation and search procedure 

contains some novel elements.  Like a parse, a pattern is a tree, the elements of which must be 

aligned one-to-one with a subset of parse elements in order for the pattern to be said to “match” 

the parse.  However, pattern nodes and arcs admit several dimensions of generalization that 

allow for an interesting and powerful mixture of matching constraints.  For example, a node may 

require that a particular word be present, that it have a particular part of speech, that it be tagged 

as a protein, etc.  In addition, the pattern language provides what we call “kleene” edges, any one 

of which matches zero or more parse edges in sequence up or down the tree.  Such edges enable 

concise capture of long-distance relationships, at some increased expense in search during 

pattern growth.  The growth of an individual pattern always starts with a single wildcard node 

that matches any word in a sentence.  We then specialize this pattern step by step, adding edges 

and imposing node and edge constraints to decrease the number of negative examples matched 

by the pattern while retaining as many positive examples as possible. 

By default, this matching procedure only identifies sentences that may contain target 

information.  For example, it can indicate that a given sentence expresses the subject of an 

experiment, but provides no information about which phrase corresponds to the subject.  With a 

small enhancement to the procedure, we were able to implement this missing extractive 

functionality.  By constraining the root node to match the target phrase during training, we grow 

patterns with known focus on the key information.  Extraction then involves returning the 

phrases aligned to the root node in any matches. 

Datum Assembly 

When applied to any given paper, rules for the four canonical datum fields derived from the 

datum database yield a wealth of fragmentary information about biological experiments 

described in the paper.  It remains to assemble this information into the simplified experiment 

representations described above, and to use these representations to assess statements about the 



 

 

mechanistic relations involved in signaling pathways.  This is a task that is more difficult than 

might be initially apparent.  Recall that all four elements of a datum need not be expressed in a 

single sentence.  One sentence may say that Protein A was applied to a cellular environment (i.e., 

was the “treatment”).  The next sentence may list several variants of Protein B that were studied 

(each the “subject” of a separate datum).  The following sentences may discuss observed 

outcomes, etc.  Thus, the initial single protein mention is a legitimate field value for multiple 

datums.  Its candidacy as a field value must somehow be retained by an extraction process that 

continues to read further sentences until it has enough to populate one or more datums.   

 

Figure 2: Overview of the empirical datum synthesis machine. 

In implementing the Evidence Expert we implemented a procedure that stitched together 

element-level extractions presenting in this way, but subsequent tests shows that its accuracy was 

quite low.  And it is at least as hard to optimize an assembly procedure like this as to improve 

manually written rules.  Consequently, as with the rules for individual elements, we sought to 

learn the best assembly procedure from annotations.  We approached this problem as one of 

structured classification, through an instantiation of the SEARN paradigm that has proven 

effective for comparable problems (Freitag, et al, 2017).  Note that the problem and our approach 

to it have some distinctly novel features.  Whereas most structured classification problems 

motivated by natural language processing adopt a word-level representation, here we range over 

sentences and the wealth of potentially important information they contain.  Thus, a critical 

challenge is to manage a potentially huge feature space while maintaining efficiency during 

training. 

As shown in the figure, we are modeling the problem of datum assembly as one of structured 

classification over biological articles.  We want to train a system to accept an article and emit a 

sequence of instructions to a virtual datum assembly machine.  We imagine that the machine 

iterates over the input document, making decisions at each sentence about what to do with any 

information present.  Thus, the machine learning model maps from machine state (a combination 

of internal registers and location in the document) to next instruction. 



 

 

 

Figure 3: The virtual datum assembly machine. 

Figure 3 provides a little bit more detail about the assembly machine.  We imagine a machine 

capable of performing three kinds of actions:  movement across an input article (represented as 

two distinct sentence sequences, corresponding to the contents of captions and the body proper); 

changes to its internal registers, one for each of the four key fields we seek to extract; and datum 

extraction, a process that reads the contents of registers and produces simplified datums. 

Table 1: Features used in training the assembly machine. 

 



 

 

At any given point in document traversal, the assembly machine has potential access to a wealth 

of contextual information, which, in order to apply machine learning, must be represented as 

features.  Thus, success in datum assembly essentially hinges on feature engineering.  In order 

for the empirical datum assembler to perform well, relevant aspects of its state must be made 

visible to the empirical model.  Table 1 summarizes the features used in our experiments to train 

this model.   

We also implemented a conceptually straightforward alternative approach, which we call the 

frame classifier.  This approach two of the four fields in a simplified datum are extracted from 

the text (subject and treatment), while the other two involve classification into a small fixed 

vocabulary (assay and change).  In other words, the subject of a datum is almost always a protein 

referenced by name in the text (e.g., “K-Ras”).  In contrast, there is a fixed number of assay 

types recognized in Pathway Logic (with labels such as “phos” and “cooptby”) and an even 

smaller number of possible outcomes (“increased”, “decreased”, “unchanged”). 

2.2. AMPLIFYING HUMAN EFFORT 

One major focus of our research has been to investigate the question of how limited user 

intervention can be coupled with a distant supervision approach to learn more accurate 

information-extraction models than distant supervision alone can provide. Our project sought to 

exploit the Pathway Logic Knowledge Base as a rich resource for training information-extraction 

models.  Given that the Pathway Logic Knowledge Base contains structured information 

characterizing thousands of experimental results, we have employed it as a source of distant 

supervision to learn models to extract predicates that describe various aspects of protein 

signaling experiments.  The specific predicates that we have extracted specify such conditions as 

whether a protein or small molecule was suppressed via RNA interference, a knockout, or an 

omission, and whether a given protein was found to be required or not required for each 

experimental result. 

The principal advantage of the distant supervision approach is that it enables existing 

knowledge-base resources to be used to automatically label a text corpus, thus obviating 

expensive manual labeling.  The key limitation of distant supervision, however, is that it may 

provide noisy labels for training.  An underlying hypothesis of much of our work is that limited 

user intervention can be coupled with a distant supervision approach in order to learn more 

accurate information-extraction models than distant supervision alone. 

We investigated several ways in which user interaction can be interleaved into a distant 

supervision setting.  One approach we devised is based on using a human expert to identify 

words and phrases, which we refer to as trigger words, that are associated with actual positive 

instances of a target predicate.  Our approach involves (1) ranking words and phrases according 

to their statistical association with instances which have been labeled as positive by distant 

supervision, (2) presenting these words to a user and asking them to identify which are truly 

semantically linked to positive instances, (3) and using the expert-identified words either as 

additional features or to change the labels of training instances.   



 

 

 
Figure 4: A screenshot of the interface we developed to enable a user to selective revise the labelings provided by distant 

supervision. 

A second approach we explored involved developing a user interface that allows an expert user 

to selectively relabel some articles that have been labeled via distant supervision. The interface 

enables a user to (1) browse a distantly labeled corpus seeing the instances of each predicate that 

have been labeled in each article, (2) browse an article seeing the highlighted mentions of 

proteins of interest along with occurrences of trigger words, (3) mark the passages of text that are 

relevant to the predicate of interest. Figure 4 shows one mode of the interface in which a specific 

article has been selected for user annotation.  The annotations mark relevant passages for the 

predicate in selected articles and are intended to provide more informative training data when 

learning via distant supervision.  Our experiments have shown that most articles can be 

annotated in five minutes or less, but that the incorporation these articles into the training set 

does not have a consistently large effect on predictive accuracy across predicates. 

Another line of investigation we pursued was to couple multiple-instance learning approaches 

with distantly labeled training data.  The rationale for this approach is as follows: Because we are 

learning via distant supervision, our training data is not labeled at the right level of granularity.  

For a given article in the training set, we know which predicates should be extracted from it, but 

we don’t know which passages in the article support each extraction.  By using a multiple-

instance approach, we can train a model using the (high-accuracy) article-level labels instead of 

having to use them to derive (low-accuracy) passage-level labels.  We investigated various 

neural-net based multiple-instance architectures and found that, for most predicates, we are able 

to learn more accurate models when using a multiple-instance approach. 



 

 

We also conducted a study in which we explored how literature-extracted information can be 

used to more accurately infer the subnetworks involved in specific biological processes of 

interest.  Many biological studies involve either (i) manipulating some aspect of a cell or its 

environment and then simultaneously measuring the effect on thousands of genes, or (ii) 

systematically manipulating each gene and then measuring the effect on some response of 

interest. A common challenge that arises in these studies is to explain how genes identified as 

relevant in the given experiment are organized into a subnetwork that accounts for the response 

of interest. The task of inferring a subnetwork is typically dependent on the information available 

in publicly available, structured databases, which suffer from incompleteness. However, a wealth 

of potentially relevant information resides in the scientific literature, such as information about 

genes associated with certain concepts of interest, as well as interactions that occur among 

various biological entities. We contend that by exploiting this information, we can improve the 

explanatory power and accuracy of subnetwork inference in multiple applications. We proposed 

and investigated several ways in which information extracted from the scientific literature can be 

used to augment subnetwork inference.  

2.3. HIGH-FIDELITY BIOLOGICAL MODELS 

The objective of this focus area was to formalize the meaning of experimental findings as they 

relate to signaling reactions (represented as rewrite rules) and provide insights about how cells 

work. Specifically, we want to infer the most detailed description of a signaling event supported 

by given experimental evidence. Furthermore, we want to assemble models for specific questions 

from a collection of rules. This will require sometimes abstracting from details. 

Our starting point is a formal representation of the experiments that yield the evidence upon 

which biological insights are predicated, which our Pathway Logic (PL) project calls a “datum.”  

Datums provide a computable representation of experimental results using a controlled 

vocabulary.2 To formalize what datums mean, we first map a set of datums to a set of logical 

assertions formalizing what was done and what was observed. Logical axioms relate these 

ground facts to constraints on rule schemas. Constraint solving then gives possible models of the 

facts and axioms (values of the schema variables) from which rules can be extracted. 

As a result of a discussion with Paul Cohen about how PL can make more contact and be more 

relevant to the BigMechanism program this task was expanded to include developing a 

BioCommonSense component, including background knowledge and rules for use. The target 

application is to be able to check reader output (index cards) for errors or unlikely statements to 

be further checked. It is synergystic with the PL assembly work since both efforts need to have 

more background knowledge formalized along with rules for using that knowledge. This task 

was further adapted to include some support for evaluation exercises.   

PL models, including the rules that formalize the changes in cellular state that constitute 

signaling and the datums from which they were derived, were at the heart of the SRI team’s 

contributions to program evaluations.  These models were not only the most detailed accounts of 

the specific mechanisms associated with Ras-driven cancer in humans, they were executable, a 

feature that some of the other models proposed by performers in the program lacked.  One could 

prime the model with a particular state representing some cellular environment, emulate the 

                                                 
2 We use the unconventional plural “datums” to distinguish these formal objects from generic 

data. 



 

 

intervention applied in some assay, and ask the model to show why some downstream effect was 

observed.  Thus, PL models directly address on of the cardinal objectives of the Big Mechanism 

program: explanation of large, partially opaque real-world mechanisms.  In cases where a model 

was insufficient to reproduce an experimental result, we developed methods to extend it 

automatically to increase its coverage of biological phenomena, as described below in Section 

2.4. 

Assembly. 

We investigated the use of abductive reasoning to infer pathways explaining effects of drug 

treatment. A mapping from PL models (dishnets) to input for the DLV reasoner was defined. 

This included a small number of model-independent assertions reflecting the underlying 

semantics. Also, several query patterns were defined. Preliminary experiments indicate that this 

scales and produces plausible explanations. What remains is to automate the extraction of useful 

explanations from the models generated by DLV. 

Towards automated assembly of rules from datums, assertions have been redesigned to capture 

more information, such as details of mutations and modifications of proteins. The assertion 

generator that maps datum collections to input for an answer set reasoner was extended to extract 

information from extras and to reason about the meaning of mutations. For example, if mutating 

a serine site on the subject of a phosphorylation assay decreases the measured phosphorylation 

(inhibits the reaction), then hypothesize that the mutated site is one of the sites modified. Dually, 

if mutating a phosphorylation site of a treatment protein decreases the response to a treatment 

then hypothesize that the treatment protein needs to be phosphorylated to enable the response. 

We refactored the inference of PL rules from datums to avoid producing lists of inhibitedby 

extras when they can be directly reduced to requirements, since reasoning about the lists caused 

combinatorial explosion in the logical reasoner. This required modifying the assertion generator 

to implement reasoning about inhibition. We introduced the concept of weak rule -- one with 

only partial evidence. The set of fuzzy matching rules for assembling connected networks was 

expanded to include lifting modification rules to complexes, inclusion of weak rules by need, and 

abstraction to families and composites. 

We advanced the experiment to use abductive reasoning to explain cellular responses. The core 

logic was modified to generate accurate pathways. We verified that abductive reasoning scales, 

at least to the level of the SKMEL133 model. We began defining query templates to facilitate 

analysis, for example: If B and C are both reachable, how can you reach a state where B holds 

and not C. 

This task involved advancing Pathway Logic in support of Big Mechanism efforts, as well as 

providing resources including data and models, and biological expertise. The Pathway Logic 

Assistant was improved to support visualization and interaction with the much larger models in 

the current STM knowledge base. This involved interaction with the maintainers of the Graphviz 

dot graph layout algorithm resulting in reducing a 3.5 hr layout time to about 5 minutes for our 

benchmark. The handling of graphics in PLA was also improved to make the system responsive 

to user gestures when working with large models. 

The SKMEL 33 model (see Task 5.) has been published as part of the PL collection of models. 

In addition to the model itself, documentation has been prepared that describes the model and 

provides a guided tour -- ways to explore and analyze the model. In particular, the user can 



 

 

reproduce our explanation of the RPPA data. The SKMELL133 model is part of the PLA Online 

suite (available at pl.csl.sri.com/online.html) and also directly downloadable (available at 

pl.csl.sri.com/download.html) for those who have installed PLA locally. The guided tour is 

available directly at pl.csl.sri.com/skmel133-guide.html or as a link from the PLA Online 

Launcher. 

The PL datum collection and rule KB were extended to include information for additional 

phosphorylation events and rules explaining changes in protein expression to expand the 

coverage of response to drug treatment. Specifically, 6 new kinases were added to the model and 

9 new rules, based on curated experimental evidence. The datum knowledge base was 

correspondingly extended. 

We expanded the PL controlled vocabulary to allow for representing non-human proteins and 

their interactions with human cells. This allows modeling response to pathogenic infections as 

well as to drugs. 

A new datum parser was completed, with the following features: 

 

 An order of magnitude faster. 

 Easier to install (only depends on Java, not Ruby, which required dependencies that could 

break at any time). 

 More in-depth sanity checks (biological type checks). 

 Sanity checking is extensible, readily accommodating new experimental information and 

constraints. 

 More useful error messages and output. 

 Easier to update and maintain, thanks to simpler semantics and a consistent internal 

representation of datums. 

 Lays groundwork for building other tools that use it, such as a datum query language. 

The parser development version is on github. The packaged jar will be available as part of the PL 

distribution in the future, being self-contained and easy to use. This opens the opportunity for 

new forms of reasoning within the PL system by combining information from both the datum 

and rules knowledge bases. 

We developed a query language and web interface to make the information contained in the 

datum knowledge base (which currently contains more than 70,000 datums) accessible to a 

broader community. Documentation is available online at pl.csl.sri.com/datumkb.html, and the 

query interface is available at datum.csl.sri.com. 

We developed a tool to mine the Phosphosite database for pubmed ids of papers containing 

evidence of phosphorylation reactions, and added new kinase rules to STM Common Rules 

based on these papers. 

2.4. AUTOMATED MODEL EXTENSION 

From the outset, we have approached “explanation” not only as an end in itself, but also as a 

provider of high-level “sense-making” feedback to assembly and reading.  We believe that this 

interplay between bottom-up and top-down reasoning is essential to the scientific process, and 

makes reading onto a mechanistic model far more promising than either machine reading or 

modeling in isolation. 



 

 

We began our work by formalizing this concept mathematically in terms of Bayesian machine 

learning concepts.  This was set out in our working paper “Sketch of a meta-model for co-

evaluation of theories and data credibility” (explModel.pdf), later updated to “Design of a 

reasoning engine and associated credibility model” (explModel2.pdf).  In this framework, the role 

of a trainable model is played by a knowledge base containing rules that describe reaction steps 

in cellular signaling processes, and the role of training data is played by the results of laboratory 

experiments.  A Bayesian prior is introduced to express a preference for concise rule sets that 

explain relatively many experiments (which can only be accomplished by introducing underlying 

mechanisms) over verbose rule sets that offer little mechanistic insight beyond restatement of the 

data.  Aside from the rather unusual treatment of a knowledge base as a model, our framework 

allows the data, as well as the knowledge base, to be treated as uncertain.  In this way we can 

capture some of the tension that exists in the scientific process, as practiced, between revising a 

heretofore successful theory and accepting new experimental data that contradicts it.  We believe 

this capability will also be important for robust performance in the face of machine reading 

errors.  This feature can also be used to express relative prior certainty about a rule by 

introducing an artificial data point that asserts the rule itself. 

The treatment of a knowledge base as a model was motivated in part by the availability of the 

Pathway Logic knowledgebase and other bio-chemical knowledge bases as a starting point, and 

in part by the preponderance of machine reading output in the form of assertions that are more 

amenable to interpretation as discrete rules than as components of process models expressed over 

real-valued time and concentration variables.  Our initial plan was to use the Pathway Logic 

reasoning engine as the executable model, but found that for our particular purposes we obtained 

much faster execution with less software integration overhead by writing our own reasoning 

engine using sparse matrix routines in Python.  (We checked for agreement with the Pathway 

Logic reasoner.)  To keep it fast and simple, we restricted the functionality to propositional 

reasoning rather than write a first-order reasoner.  In practical terms, this means that one must 

decide in advance the set of variables to be used in the simulations, and the rules that will operate 

over them.  This information is “compiled” into a sparse matrix representation of a dynamical 

system operating over a “state space” consisting of a set of Boolean variables, each of which 

asserts the presence or absence of a particular chemical entity.  Rules can be turned on and off 

(or to some extent, modified) without re-compiling, but re-compilation is necessary when new 

variables are introduced.  The reasoning engine supports negation, so it is possible to assert that a 

reactant is removed, or that a result requires the absence of a reactant. 

Capabilities were added to the reasoning engine during the course of the project.  The first 

implementation had no support for negation, making it impossible to assert that a result requires 

the absence of an entity, or that an entity becomes depleted.  Such assertions are important for 

inferring causality, so one of our first improvements was to support negation.  This was easily 

accommodated with minor modifications to the sparse matrix algebra.  We also wanted to be 

able to control the level of specificity or generality with which rules and data points were 

asserted, partly because assertions in the literature vary widely in their specification of, for 

example, specific proteins as opposed to protein families, or the details of protein modifications.  

We also wanted to be able to adjust expression of generality in order to support searching for the 

most general rules that support all the given data; more specific rules being unjustifiably 

complex, given the experimental evidence.  (As mentioned above, prior knowledge that is not 

implied by the experimental evidence can be supplied using artificial data that directly asserts the 

validity of particular rules.  We have not had an occasion to exercise capability, however.)  We 



 

 

therefore introduced support for “ontological rules” stating that instances of a specific category 

are also instances of a more general category.  We then started calling the ordinary rules that 

describe reaction steps “dynamical rules”.  The inference engine treats the ontological rules and 

the “dynamical rules” identically, except that the ontological rules are iterated to convergence, 

so that all generalizations are inferred, between each application of the dynamical rules. 

As discussed in the section on Task 8, we eventually deemed the ontological rules to be an 

inadequate solution.  The entities involved in the dynamical rules have hierarchical structure, 

some parts of which vary in ontological generality.  Realizing that trying to describe this 

situation in terms of an ontology at the level of complex structures is a seriously flawed 

approach, we migrated from a representation with one Boolean variable per entity to using 

multiple variables per entity so that both structural and ontological variants could be readily 

represented. 

An initial state must be supplied in order to run a simulation.  Pathway Logic provides a 

selection of initial conditions appropriate to various classes of experiments, from which we have 

chosen a common one for experiments involving treatment with Egf, called EgfDish.  This a 

temporary expedient.  Experiments are described in terms of entities such as growth medium, 

cell line and treatment.  Therefore the inference chain should begin with these types of entities, 

and rules asserting that particular growth media and certain cell lines contain certain reactants.  

We created a rule of this form, calling it an “initialization rule”, that produces the contents of 

EgfDish from any medium.  This is merely a placeholder.  Our intention is to develop more 

realistic initialization rules for various cell lines, and perhaps to subject them to Bayesian 

optimization, just like the other dynamical rules, thereby using experimental evidence to infer 

how one cell line differs from another. 

Similarly, we must introduce rules that connect the final state of the dynamical system to the 

type of assertions made about experimental outcomes.  (Here we assume convergence; we 

discuss non-trivial limit cycles in the section on Task 8.)  Experiments are described in terms of 

the measurement procedure, or assay that is performed, a particular reactant, the subject, of the 

assay, and an outcome such as whether the subject increased or decreased in quantity, or neither.  

We therefore introduced another class of dynamical rules we call “observation rules” to describe 

how the state, assay and subject are related to outcomes.  To determine whether or not a 

simulation agrees with a data point, we compare the simulated and reported outcomes.  We have 

written observation rules covering several common types of assay, but still better coverage 

would be desirable. 

We have described the use of Bayesian principles to provide a score function for sets of rules.  

To find highly explanatory sets of rules, it is also necessary to generate candidate rule sets that 

are likely to score well.  The candidates can be derived by varying the contents of existing 

knowledge bases such as Pathway Logic, from automation of the manual process of inferring 

rules from data such as described in the section on Task 5, and from machine reading.  As 

described above, and under Task 8, we have created an infrastructure that enables us to explore 

structural and ontological variants of the entities appearing in rules in an existing knowledge 

base.  In order to make use of the output of machine reading or the output of automated rule 

inference algorithms, it is necessary to introduce processing that transforms their fragmentary 

and incomplete output into plausible, well-formed rules.  We engaged in two lines of effort to 

support this objective.  In one, we carried out clustering experiments on STM7 to find groups of 

similar rules that can be used to define plausibility metrics describing whether a nominated rule 



 

 

“looks like” a rule that would not be out of place in STM7.  In the other, we developed various 

heuristics to assemble multiple incomplete rules into single well-formed rules. 

In order to actually generate explanations, it is necessary to examine the execution traces of the 

inference engine.  We created visualization software to assist with this, and also to help with 

debugging and checking that the system works as expected.   

We restructured the code to improve management of adding new data sources (readers or 

knowledge bases) to the sense-making layer, to define and manage experiments involving 

combinations of data sources, and to archive the pre-processing and the results reproducibly.  

Having moved from a local to a distributed representation of the interacting reactants, graph 

matching became involved in aligning rules onto the state, which increased our computation 

requirements.  Therefore we parallelized the stochastic search for optimal rule combinations over 

a cluster of 7 multi-core machines, with 8 processes per machine, giving us a speed-up of about 

50X.   

Several experiments were carried out aiming to demonstrate that readers could improve the 

curated STM7 knowledgebase.  It was found that adding rules produced by readers did enable 

the knowledgebase to explain more experiments, but for the spurious reason that the reader rules 

are overly simplistic, which makes them fire to easily, leading to overproduction of reactants, 

often including the one the assay tested for.  Control experiments would penalize the 

overproduction, but our data has too few of these.  Therefore we realized that other methods 

would need to be devised to eliminate overly simplistic rules.  This led us to develop two 

methods that incorporate common-sense knowledge into rules obtained from readers. 

Upon examination of FRIES reader failures in a Mitre evaluation, we noticed that in many cases, 

the entities and structural components required to produce a correct reading were successfully 

found by REACH, but the relationships between these entities were either missed or incorrectly 

labeled.    We therefore ignored the assembly attempts made by the reader and took an 

exhaustive combinatorial approach to assembly, starting directly from the entity extractions.  

Sentence by sentence, we collected all the extracted actions, proteins, modifications, sites, 

locations, etc., and assembled them into one or more molecular structures in all possible ways 

(typically hundreds or a few thousand).  These structures were then assembled into rules in all 

possible ways.  Every such assembled rule was added to the knowledgebase in turn, and 

evaluated against experimental data to determine which assemblies were more plausible than 

which.  To limit the combinatorial search, we codified expert prior knowledge into a bio-

common-sense module and supplemented this with a simple statistical model of the likely 

structure of reactants based on those appearing in STM7.  The model computes a score as 

weighted mean of log probabilities of occurrence and co-occurrence probabilities between 

proteins, modifications, sites and locations, and structure size.  These scores were used to define 

rule scores by averaging over the reactants appearing in the antecedents and consequents of the 

rules that were generated combinatorically for the Mitre evaluation post analysis.  This, finally, 

led to obtaining useful results from reading. 

We studied linking up CMU's DySE model with Pathway Logic (PL).  The DySE model is 

broadly similar to our SAMM model, both being Boolean dynamical simulations.  The DySE 

model starts from a manually constructed core of about 300 rules, and adds read rules to this core 

in various ways.  It operates at a lower level of chemical detail than PL, but has broader 

coverage, including inter-cellular and phenomenological behavior.  DySE is trained on about 20 



 

 

desired properties of the execution traces, whereas SAMM is normally trained on larger numbers 

of experiment descriptions.  While DySE operates at a coarser level of both mechanistic and 

representational detail, there is a large enough of overlap between the base elements used in both 

frameworks to draw alignments between them.  Out of 309 distinct rules in DySE, we found 66 

that could be accounted for by PL.  82 additional rules have one element aligned with an element 

in PL, but have their other element remaining unmapped.  For each combination of the initial and 

final entities in an alignable DySE rule, we can obtain the sequence of PL rules and proteins 

activated in a traversal between them. 

During the final year of the project, including the no-cost extension, we include several novel 

innovations on top of the previously derived explanation platforms. The key improvements 

included a closed-loop reading model, a Markov Chain Monte Carlo (MCMC) rules testing 

system, and the ability to work with multiple cell lines simultaneously (extending the previous 

STM7 focused work).  

Closed-loop reading shifted the paradigm from the readers feeding the explanation platform a 

slew of poorly curated results, to the explanation platform querying readers for specifically 

relevant explanation. The explanation platform would identify gaps within the current knowdelge 

base, based on identifying specific protein modifications that were missing explanations. For 

example, if an assay said Raptor-phos!S792 was observed but no current system rules were 

available to produce it this would generate a query specifically looking for suggestions from 

automated readers that could fill this gap. This shift in approach allowed a more principled 

review of the literature, and more closely matched the human process used in extending the 

Pathway Logic model.  

The queries generated by the 

explanation platform would 

be used to either search 

through a database of read 

results or directly fed to a 

reader through a web based 

interface, allowing the reader 

to use the context to search 

for all relevant extracts. Once 

the response was received 

the system would search 

through the set of responses, 

and gather evidence for the 

proposed rule (or rules). This 

would entail construction of 

a set of candidate rules that 

could fill the gap, including specification of optional modifications such as specific 

phosphorylation sites and compounds. Each candidate rule would then be scored based on a set 

of criteria including the number of reading extracts that supported the rule, the specificity with 

which those extracts supported the rule, and the agreement with biological common sense. The 

first two used straightforward metrics (number of mentions in different papers, number of 

mentions of the specific phosphorylation site, etc.) while biological common sense was evaluated 

against a statistical common sense module that was trained through machine learning. 

Figure 5. Closed loop reading procedure, that identifies gaps in the explanation 

model, uses machine reading to propose new rules, checks rules against the 

experimental evidence, and updates the cell state to based on statistical tests. 



 

 

The statistical common sense module was trained based on the existing pathway logic rules. 

Each protein (and modification) was characterized by a set of keywords curated from Uniprot. 

The types of reactions that each protein participated in were also characterized (including 

whether it was a control in the interaction or if it was itself modified). The machine learning 

model then evaluated the likelihood of a rule given the keywords associated with its constituents. 

For example, the system learned that phosphorylation reactions were likely to be performed by 

proteins with the keyword “kinase”.  

The closed loop reading results were fed into the existing explanation platform, and compared to 

observed experimental results (either using the STM7 model, or later using the MCMC based 

multi-cell line model). Accepted rules would be used to extend the model, providing a better 

explanation of previously unexplained observations. The process would then be repeated with 

the new model generating additional queries to fill newly revealed gaps until convergence. 

Markov Chain Monte Carlo (MCMC) sampling was used to extend the previous stochastic 

search algorithms used in the STM7 model to support a more targeted search of the rule space, 

and to eventually support more complex multi-cell line rule sampling. The MCMC system 

considered a set of rules simultaneously and asked the question, “Which subset of the proposed 

rules best explains experimental observations.” This compares to the previous STM7 model 

which focused on single rule extensions of the system, or stochastic search over multiple 

extensions. 

The MCMC model extended evaluation to include all experimental results, including increase, 

decrease and unchanged. The last result was particularly critical in removing over-explanations 

that would add rules that would result in incorrect reactions. A regularization term was used in 

the MCMC method to ensure parsimony, penalizing the overall agreement score based on the 

number of additional rules and additional proteins added to the model. Together these 

mechanisms restrained the complexity of the model extensions, allowing search for single rules 

that explained the most experiments. This procedure also combatted the tendency of the system 

to create long jump rules that explained novel biological observations through a single rule 

connecting the inputs to the outputs. In practice these rules are not useful, as they short circuit 

the explanation system. The combination of curating rules for biological common sense and of 

selecting for rules that provide partial explanations for multiple results disfavors such long jumps 

and improves the quality of the overall explanation system. 

The MCMC system was integrated 

with the closed-loop reading 

system providing evaluation of 

candidate rules. Initially only high 

quality rule candidates were fed to 

the MCMC evaluation system, 

however, we realized that some 

useful rules were being discarded 

early due to not having much 

support in the literature. We then 

shifted to a late decision paradigm, 

where the closed-loop reading rule 

evaluation resulted in a score that 

was incorporated into the MCMC 

Figure 6. MCMC sampling procedure for evaluating rule utility based on 

experimental agreement, biological plausibility, reader agreement and 

parsimony. 



 

 

procedure as a prior for each proposed rule. The prior was combined with a likelihood based on 

experimental agreement to produce a posterior that was used to drive MCMC sampling as shown 

in Figure 2. The MCMC system allowed us to both evaluate a best coherent rule system, as well 

as evaluating the probability that a given proposed rule was used in any of the MCMC sampled 

explanation systems. 

Multi-cell line explanation was the final major change introduced to the explanation system. 

Where previously we focused on a single (STM7) cell line, we extended the platform to allow 

for multi-cell line testing in support of the later evaluations and to make use of additional 

Pathway Logic curated data for experimental verification. To derive the STM7 model human 

curators selected a set of proteins present in the initial system state, and customized general rules 

to connect to these proteins and reproduce the experiments. Previously, we had started from this 

post-curation model, and used stochastic search with the explanation platform to vet new rules 

and to measure recovery of ablated rules. The multi-cell line extension pushed us further 

backwards, automating the manual model customization process. Here the system would 

automatically propose an initial protein state for each cell line, while simultaneously testing new 

rules and connecting existing generic rules together to create a cell line specific model. The 

explanation system would then suggest new generic rules that worked across cell lines using the 

MCMC rule selection procedure described above. 

To extend the MCMC system to multiple cell lines we simultaneously searched over generally 

applicable rules and cell line specific initial states. A single MCMC sample consisted of 

proposed initial state for each tested cell line and a subset of the rule candidates. The overall 

explanatory power of this set was evaluated, including the prior based on biological common 

sense and machine reading and the likelihood of all experimental observations curation in the 

Pathyway Logic Database for all tested cell lines. After completion we would have a best ruleset 

that applied across all cell lines, the likely initial cell line states, and the rules that are active for 

any given cell line. In particular, the MCMC approach allowed us to identify rules critical for 

explanation across multiple experiments, and how likely particular proteins were to be present in 

different cell lines based on the MCMC sampling across explanations. 

3. RESULTS 

In this section, we briefly summarize the salient experimental results we obtained under the three 

top-level tasks our project comprised:  Reading for Evidence, Amplifying Human Effort, High-

fidelity Biological Models, and Automated Model Extension.  Please refer to Section 2 for a 

description of the technical approaches underlying these results.   

3.1. READING FOR EVIDENCE 

The Value Proposition 

When considering the prospect of extracting information such as experiment frames from 

biological articles, as opposed to the more general factual information that is typically the focus 

of biological extraction, it is important to ask whether it is worth the trouble.  Extracting these 

frames is much more difficult than generic extraction for three reasons:  they have more fields 

than typical factoids, which are binary relations; the information out of which they are 



 

 

constituted is, in general, distributed over multiple sentences; and we lack phrase-level 

annotations for these pieces of information.  What justifies the effort of extracting these frames? 

We analyzed the results of the first program evaluation and were able to show that experiment 

frame extraction provides an important corroborative signal, enabling us to filter generic 

extracted facts. The analysis looked at the “index cards” produced by the system submitted by 

the FRIES consortium, of which we were part.  Index cards were essentially the program’s 

formalization of individual extractions output by program readers. The key insight is that some 

of these extractions cover types of interactions directly related to the assays we attempted to 

recognize.  If, for example, a paper states that Protein A phosphorylates Protein B, it is 

reasonable to look for an assay that looks for phosphorylations and in which Protein A and 

Protein B are the treatment and subject, respectively.  Extraction of such an assay can be taken as 

corroboration that the relation in question actually holds.  We deployed an “Evidence Expert” 

that processed facts extracted by other readers and attempted to align them to extracted 

experiment frames in this fashion.  Of the approximately 21K index cards FRIES readers 

produced, 47% involved interaction types that the component supported.  Of these, 36% were 

deemed to be fully substantiated by extracted datums, 29% partially substantiated, and 33% were 

discarded as having no experimental support. 

Table 2: Index card precision as a function of corroboration level.   

Degree of 

substantiation 

Fraction of FRIES 

index cards 

Strict Precision 

(Info) over MITRE-

graded cards 

All cards 100% 50% 

Unsupported 53% N/A 

None 17% 43% 

Partial 13% 60% 

Full 17% 80% 

 

The key question is whether corroborated index cards are actually more likely to be correct, 

according to human experts.  Table 2 presents the result of this analysis, showing the value of 

“strict information precision” of subsets of these cards grouped by corroboration level.  As the 

table indicates, the baseline precision of FRIES readers was about 50%.  It also appears to be the 

case that the stricter the level of experimental corroboration we required of a card, the higher its 

precision, with full corroboration corresponding to roughly 80% precision.  Because the number 

of cards graded in this way was small, caution is required in the use of these results.  However, 

we assessed the statistical significance of some of the observed improvements and found, for 

example, that the improvement of “Full” over “None” is significant at the 95% level.  

These results gave us confidence that the task of extracting experiment frames was both feasible 

and relevant to program objectives, but the work was far from complete.  The coverage of the 



 

 

Evidence Expert was modest in terms of both the number of reader assertions it could assess and 

the number of salient assay types it supported.  Only five types were implemented for this 

analysis, out of perhaps a dozen types that are frequent in the datum knowledge base. 

Table 3: Accuracy of the Evidence Expert in detecting manually created datums. 

# Matching 

Elements Precision Recall F1 

1 0.189 0.901 0.223 

2 0.095 0.604 0.128 

3 0.018 0.151 0.026 

4 0.001 0.014 0.002 

 

More critically, there was evidence that the implementation of the Evidence Expert, which 

involved the heuristic assembly of frames (4-tuples) from elements matched by hand-authored 

extraction rules, left much room for improvement.  As summarized in Table 3, we evaluated the 

Evidence Expert’s ability to recover the key details of experiments (specifically, the four datum 

fields it targets) by comparing its extractions from papers for which datums have been created.  

As the table suggests, while it was modestly successful at recovering individual properties, 

complete agreement with respect to all four required fields posed a stiff challenge.  Note that 

care must be taken in interpreting these numbers, as there is no guarantee that a given datum is 

described in the text (it may be communicated only in a figure), nor that all experiments 

described in a paper have been captured in a datum.  Nevertheless, it appeared safe to conclude 

that more research was warranted. 

 

Finding Experiment Elements 

The validation we received from the analysis described above motivated us to replace the 

laboriously created extraction rules of the Evidence Expert with rules learned directly from the 

data, in the hope of obtaining better scalability, recall, and precision.  As detailed in Freitag and 

Niekrasz, 2016, we developed an approach that automatically produced extraction rules against 

dependency parses, based on a simple binary separation of sample sentences into those that 

express a certain kind of information and those that do not. 

Table 4: Performance of automatically learned extraction patterns. 

Assay Role Learned Written Baseline 

phos subject 0.48/0.62/0.54 0.32/0.45/0.37 0.17/1.0/0.29 

treatment 0.46/0.51/0.48 0.41/0.32/0.35 0.17/1.0/0.29 



 

 

ubiq subject 0.57/0.50/0.53 0.38/0.43/0.41 0.01/1.0/0.02 

treatment 0.26/0.32/0.29 0.50/0.11/0.17 0.004/1.0/0.01 

GTP-association subject 0.56/0.65/0.60 0.17/0.25/0.20 0.005/1.0/0.01 

treatment 0.21/0.67/0.32 0.08/0.03/0.05 0.005/1.0/0.01 

Any subject 0.38/0.83/0.52 0.12/0.36/0.18 0.17/1.0/0.29 

treatment 0.48/0.64/0.55 0.18/0.38/0.24 0.17/1.0/0.29 

 

The Value Proposition 

When considering the prospect of extracting information such as experiment frames from 

biological articles, as opposed to the more general factual information that is typically the focus 

of biological extraction, it is important to ask whether it is worth the trouble.  Extracting these 

frames is much more difficult than generic extraction for three reasons:  they have more fields 

than typical factoids, which are binary relations; the information out of which they are 

constituted is, in general, distributed over multiple sentences; and we lack phrase-level 

annotations for these pieces of information.  What justifies the effort of extracting these frames? 

We analyzed the results of the first program evaluation and were able to show that experiment 

frame extraction provides an important corroborative signal, enabling us to filter generic 

extracted facts. The analysis looked at the “index cards” produced by the system submitted by 

the FRIES consortium, of which we were part.  Index cards were essentially the program’s 

formalization of individual extractions output by program readers. The key insight is that some 

of these extractions cover types of interactions directly related to the assays we attempted to 

recognize.  If, for example, a paper states that Protein A phosphorylates Protein B, it is 

reasonable to look for an assay that looks for phosphorylations and in which Protein A and 

Protein B are the treatment and subject, respectively.  Extraction of such an assay can be taken as 

corroboration that the relation in question actually holds.  We deployed an “Evidence Expert” 

that processed facts extracted by other readers and attempted to align them to extracted 

experiment frames in this fashion.  Of the approximately 21K index cards FRIES readers 

produced, 47% involved interaction types that the component supported.  Of these, 36% were 

deemed to be fully substantiated by extracted datums, 29% partially substantiated, and 33% were 

discarded as having no experimental support. 

Table 2: Index card precision as a function of corroboration level.   

Degree of 

substantiation 

Fraction of FRIES 

index cards 

Strict Precision 

(Info) over MITRE-

graded cards 

All cards 100% 50% 



 

 

Unsupported 53% N/A 

None 17% 43% 

Partial 13% 60% 

Full 17% 80% 

 

The key question is whether corroborated index cards are actually more likely to be correct, 

according to human experts.  Table 2 presents the result of this analysis, showing the value of 

“strict information precision” of subsets of these cards grouped by corroboration level.  As the 

table indicates, the baseline precision of FRIES readers was about 50%.  It also appears to be the 

case that the stricter the level of experimental corroboration we required of a card, the higher its 

precision, with full corroboration corresponding to roughly 80% precision.  Because the number 

of cards graded in this way was small, caution is required in the use of these results.  However, 

we assessed the statistical significance of some of the observed improvements and found, for 

example, that the improvement of “Full” over “None” is significant at the 95% level.  

These results gave us confidence that the task of extracting experiment frames was both feasible 

and relevant to program objectives, but the work was far from complete.  The coverage of the 

Evidence Expert was modest in terms of both the number of reader assertions it could assess and 

the number of salient assay types it supported.  Only five types were implemented for this 

analysis, out of perhaps a dozen types that are frequent in the datum knowledge base. 

Table 3: Accuracy of the Evidence Expert in detecting manually created datums. 

# Matching 

Elements Precision Recall F1 

1 0.189 0.901 0.223 

2 0.095 0.604 0.128 

3 0.018 0.151 0.026 

4 0.001 0.014 0.002 

 

More critically, there was evidence that the implementation of the Evidence Expert, which 

involved the heuristic assembly of frames (4-tuples) from elements matched by hand-authored 

extraction rules, left much room for improvement.  As summarized in Table 3, we evaluated the 

Evidence Expert’s ability to recover the key details of experiments (specifically, the four datum 

fields it targets) by comparing its extractions from papers for which datums have been created.  

As the table suggests, while it was modestly successful at recovering individual properties, 

complete agreement with respect to all four required fields posed a stiff challenge.  Note that 

care must be taken in interpreting these numbers, as there is no guarantee that a given datum is 



 

 

described in the text (it may be communicated only in a figure), nor that all experiments 

described in a paper have been captured in a datum.  Nevertheless, it appeared safe to conclude 

that more research was warranted. 

 

Finding Experiment Elements 

The validation we received from the analysis described above motivated us to replace the 

laboriously created extraction rules of the Evidence Expert with rules learned directly from the 

data, in the hope of obtaining better scalability, recall, and precision.  As detailed in Freitag and 

Niekrasz, 2016, we developed an approach that automatically produced extraction rules against 

dependency parses, based on a simple binary separation of sample sentences into those that 

express a certain kind of information and those that do not. 

Table 4 compares these automatically learned patterns with the rules we created for the Evidence 

Expert.  Performance is shown for rules targeting subject and treatment across three frequent and 

important assay types, as well as rules that are agnostic to assay type. Each entry lists the 

precision, recall, and F1 of the corresponding classifier (which is typically a collection of rules or 

patterns), with the bolded values showing the highest F1 score achieved.  The Learned column 

presents the performance of the patterns derived as described above, Written the performance of 

the rules making up the Evidence Expert, and Baseline the performance of a simple default rule 

that says all sentences are a member of the target class.   

It will quickly be observed that the learned patterns dominate the hand-written ones in terms of 

F1 (and almost every other measurement)—despite the fact that the hand-written rules were not 

intended as a straw man, and were implemented with full access to our experimental corpus 

(whereas the learned rules were subjected to a strict separation among training, validation, and 

test sentences).  

This approach to extraction is quite general.  To show this, we applied the same approach to 

extracting information from the “BEL corpus,” a dataset that pairs sentences pulled from the 

literature with formal statements representing key information content in those sentences.  We 

were able to exploit this pairing to train rule sets that recognize various abstractions of the formal 

statements. 



 

 

 

Figure 1: Sentence identification F1 as a function of statement type frequency. 

 

As shown in Figure 1, the rule sets learned by our system are able to outperform, on average, a 

simple baseline classifier that marks all sentences as an instance of the target class.  Here, the 

class represents some aspect of biological meaning, such as “the sentence expresses a 

phosphorylation interaction.”  The strong performance of the baseline with increasing positive 

training examples is due to dataset exhaustion.  Essentially, as we move toward the right, we 

encounter statements for which it is increasingly true, in the BEL corpus, that every sentence 

expresses the statement.  Each point in the plot represents performance on a different type of 

extraction problem.  The extent to which a point falls above the baseline curve corresponds to the 

“lift” we experience with the induced rules.  We observe this lift on problems with various 

degrees of representation in the data, but particularly encouraging is the significant lift we see on 

fairly rare types of information (e.g., on the order of 200 training exemplars).  Note also that the 

correspondence between text samples and BEL statements and the corresponds fact 

formalizations is very loose.  Often, an example comprises a paragraph of text and several BEL 

statements.  Our method successfully localizes the particular expressions that correspond to each 

type of statement.  
 

Datum Assembly 

Due to the difficulties of assembling multi-part extractions, which are illustrated starkly by Table 

3, we did not expect the performance numbers we observed in extracting individual frame 

elements to extend to the extraction of full frames.  Note that our metric of performance is the 

same for both individual elements and frames.  Any deviation from the ground truth is recorded 

as an error.  Consequently, frame extraction can never be more accurate than the extraction of a 

frame’s most difficult slot, and each slot that must be populated represents another opportunity to 

make an error.  Errors tend to compound under this strict correctness criterion. 

 



 

 

Table 5: Performance of two approaches to datum extraction. 

 

Nevertheless, over the course of our efforts in Big Mechanism, we gradually improved on 

performance levels with single-digit accuracies.  As shown in Table 5, varies approximately with 

the representation of a particular type of frame in the data.  Frames with assay type “phos” 

(representing experiments designed to detect phosphorylation, an important chemical reaction in 

cellular signaling pathways) with a positive outcome are the most frequent type in our data.  

Consequently, performance of both our approaches to datum extraction is highest on such 

frames.  However, it is clear that even our best performance is below what would be reasonably 

be required for general utility. 

The comparison between the two approaches yields no clear winner, but interestingly different 

behavioral profiles.  The Frame Classifier is clearly biased in favor of recall, preferring to see 

many juxtapositions of proteins as underlying experiment frames.  The Register Machine is 

much more selective, and is therefore unable to match the Frame Classifier’s recall on any task.  

This complementarity seems to promise that some simple approach to ensembling the two 

methods would yield performance superior to either.  Such an experiment remains as future 

work. 

However, we did investigate an approach to incorporating the multi-instance learning (MIL) 

models for predicate detection described in Section 2.2.  Consider the problem of determining 

whether a particular protein mention (e.g., of “ATF-2”) should be taken as evidence that it’s the 

subject of a “phos” assay.  The MIL approach considers this question at the document level, 

combining evidence from all mentions of ATF-2, whereas the Frame Classifier makes this 

judgment based on evidence local to the mention.  We showed that by incorporating the MIL 

assessment as an additional feature when training the Frame Classifier, we were able to boost F1 

by 5-10 points over the assay types presented in Table 5. 



 

 

3.2. AMPLIFYING HUMAN EFFORT 

 
Figure 7.  Precision-recall curves for two predicates when trigger words are used as features (blue) or to refine the 

labeling of instances (green),  versus the baseline learner (red). 

Above, we presented a simple method for eliciting human review and correction of “trigger” 

words, words deemed indicative of the presence of particular predicates in a text sample, and 

derived through statistical association with labels assigned through distant supervision.  This 

procedure is extremely lightweight.  The expert reader spends perhaps 5-10 minutes reviewing 

and selecting the words automatically determined to be indicative of a particular predicate.  As 

shown in Figure 7, when these human-vetted indicators are used to change the training label of 

sentences, the resulting models recognize predicate mentions with increased precision.   

We were similarly successful in our attempts to infer subnetworks associated with specific 

processes by augmenting existing structured databases with information automatically extracted 

from the biological literature.  We showed that we can use literature-extracted information to (i) 

augment the set of entities identified as being relevant in a subnetwork inference task, (ii) 

augment the set of interactions used in the process, and (iii) support targeted browsing of a large 

inferred subnetwork by identifying entities and interactions that are closely related to concepts of 

interest. We used this approach to uncover the pathways involved in interactions between the 

HIV-1 virus and a host cell, and the pathways that are regulated by a transcription factor 

associated with breast cancer.  A paper on this work is in press at PLoS Computational Biology. 

3.3. HIGH-FIDELITY BIOLOGICAL MODELS 

Explaining Drug Response. 

We provided a human derived model and explanation for the Dry Run phase of the Phase 3 

evaluation. 42 out of 86 measurements with sufficient grounding were explained by the PL 

model. The model was derived from the existing PL rule knowledge base using what is known 

about SKMEL133 cells to specify an initial state, and using the Pathway Logic Assistant (PLA) 

tool, a visualization interface to PL models, to collect the reachable rules. This required some 

iteration to reformulate some rules to obtain a connected network. This process is currently being 

automated. Briefly, down regulation of a phosphorylation state was explained by showing that 

the drug in question blocked the known pathways to that state. Up regulation of protein 

expression was explained by showing that the degradation pathway was blocked. Down 

regulation of a modified state was explained by showing that an alternative pathway was 

blocked, thus likely increasing the flow through the pathway leading to the modification. As a 



 

 

consequence of the model derivation and analysis two lists of questions to be used for targeted 

reading by the automated FRIES pipeline were prepared. 

For the evaluation second round: 1. We analyzed the Raw Protein Data from the Korkut paper, 

and came to the conclusion that because the variance across techical replicates was greater than 

across biological replicates and the number of technical replicates used was not consistent, the 

raw data didn't give more information than was in the original fold change summary. 2. The 

human derived Phase III model was revised to meet the latest MITRE specifications. 3. The 

FRIES reading results were searched by hand to look for information related to the Phase III data 

that was grounded correctly, and reaction properly typed. One relevant assertion was found, the 

Phase III model was augmented with a corresponding rule, and analyzed to see what changed (or 

did not). 

We prepared a presentation of the SKMEL133 model and the PL method for explaining RPPA 

drug response data. This included annotated versions of visual representations produced by the 

Pathway Logic Assistant. A reduced version was presented at the April, 2017 Big Mechanism PI 

meeting. 

A paper titled "Explaining response to drugs using Pathway Logic" was presented at 

Computational Methods in Systems Biology 2017 (Talcott & Knapp, 2017). The paper extends 

the drug explanations with a section on generating hypotheses concerning the action of unknown 

drugs. 

Assembly. 

We extensively investigated the use of PL models to explain the “Fallahi dataset,” a set of drug 

treatment outcomes published by Fallahi et al, and used by Big Mechanism in its evaluation of 

methods for automated assembly.  We explained two of the findings using the human-derived 

STM model. The explanation included a model of the observed part of the cellular behavior 

(called the FallahiDish) and subnetworks of this model giving possible mechanistic explanations 

of the stated findings.  

The explanation of Finding 1 (decrease in Rps6 phosphorylation on S235/S236 in 5 cell lines for 

all drugs) was based the PL STM model of BrafV600E signaling, including the rules involved 

and a diagram of the subnet involved. For Finding 2 (a decrease in Histone H3 phosphorylation 

in LOXIMVI cells when treated with AZ628), we hypothesized an explanation based on AZ628 

inhibition of VegfR2, using the knowledge that the growth medium contains a VegfR2 ligand, 

Vegfa. The STM model of the Fallahi data was extended to include VegfR2 rules. This allowed 

us to explain the decrease in histone phosphorylation, but left other observations unexplained. 

The STM derived model was provided to the machine learning team those working on automated 

model extension in our team. We provided performers working on automated machine reading 

(“readers”) with information needed to fill the gaps in the STM Vegf network. We also provided 

the readers with search terms for the drugs used in the Fallahi dataset. We checked statements 

and papers found by the readers for validity and relevance. We also provided some explanation 

of how to interpret the data taking into account the different seeding and growth conditions, 

different drug sensitivities, and different methods for determining significant change. 

To help define the last evaluation, we provided statistics on the Pathway Logic datum and STM 

rule knowledge bases: 

 number of datums using a given cell line, with/without mutations 



 

 

 identified datums that have not been used in STM rules 

 provided information on putative targets (i.e. what the authors said they were  using the 

chemicals for) for chemicals used as treatments in 431 datums. 

 

During January and February 2017 we hosted Beatriz Santos Buitrago, a Spanish student 

working on her Masters in Bioinformatics in Seoul So. Korea (Korean schools have a long 

winter break). For her project, she mapped a data table from Boersema, 2010, onto the PL Egf 

model. The paper, found by Leora, reports phosphoproteomics response of HELA cells treated 

with Egf at 10 and 30 minutes. 

The mapping process (reading to a model by human) involved 4 steps. 

1. The table entries were converted to the PL controlled vocabulary (a) associating Uniprot 

identifiers to each protein (the table used IPI accession numbers, which are no longer 

readily available), and looking up the PL name; and (b) converting phosphorylation 

positions to use the PL numbering system which is based on the Uniprot canonical 

sequence (splice variant 1) for the protein. This was facilitated by the fact that the table 

included the peptide containing the site. 

2. For each measure phosphoprotein, look for rules in the Egf model that produce it (or a 

more general form).  This required mapping proteins to families in some cases, such as 

Erk2. 

3. For phosphoprotein's with no associated rule, look in the datum kb and the common rules 

for evidence that could be used to make a rule. 

4. Make datums from the table, using a pattern based on the material and methods. 

 

The data set mentioned 54 proteins. 44 appear in the PL Egf model in some form and there are 

rules for 16 of proteins. 2 more proteins are covered in the common rules, but do not connect to 

the Egf model. Our knowledge base of datums contained evidence for 9 more rules. A little 

network was made of the 16 rules and used to check consistency, in that a control for a rule 

mapping to an increase in the data set that is also in the data set should also increase. The 

missing rules suggest directions to grow our Egf model as data becomes available. 

3.4. AUTOMATED MODEL EXTENSION 

We carried out several experiments to validate the approach.  These all used the Pathway Logic 

Signal Transduction Model 7 (STM7) to supply an initial set of 1581 rules involving 1251 

entities, as well as a set of lab-bench experiment descriptors called “datums”.  A single Pathway 

Logic datum typically describes multiple related experiments that demonstrate the dependence of 

a response on various conditions, so we wrote pre-processing code to break each datum into 

individual experimental data points.  Although Pathway Logic has about 40,000 datums, we 

restricted attention to a subset of about 450 datums that pertain to pathways involving Hras.  

These expand to about 2300 individual data points.  Each data point asserts that if a simulation is 

started with a particular initial condition, then it will reach a final state that does or does not 

contain particular entities. 

In early experiments, we demonstrated that the machine learning principles we wished to employ 

can be applied as intended.  The likelihood function is essentially the number of experiments 

“proved”; i.e., explained by a simulation generated by the inference engine.  We experimented 

with various priors, starting with a simple expedient based on counting the number of rules.  To 



 

 

account for the varying complexity of different individual rules, we generalized this prior to 

depend on the total number of antecedents and consequents.  We found that results did not 

depend very strongly on the details of the prior.  As long as it mildly penalizes rules in general, 

redundant or irrelevant rules that do not contribute to explaining experiments get weeded out.  

The simplest type of experiment to do is greedy iterative rule deletion.  We demonstrated that 

this is an effective way to post-process rules generated automatically from datums using an 

Answer Set Programming (ASP) algorithm.  The ASP algorithm tends to over-generate.  We 

carried out an experiment in which a set of 16 related rules related to Hras activation were 

deleted from STM7, the ASP algorithm was applied to auto-generate rules from the datums 

supporting the deleted rules, these auto-generated rules were added back to STM7, and greedy 

iterative rule deletion was applied until a local minimum in the regularized likelihood was 

reached.  Our biologists judged the results to be broadly sensible.  We were also able to control 

the severity of rule trimming by varying a parameter controlling the strength of the prior. 

We also verified that placing priors on data points works as expected.  The simulations with 

STM7 were normally run from an initial state containing 127 of its 1251 entities.  By assigning 

high confidence to data points that say other entities are produced eventually, we found that rule 

sets score more highly if they result in production of more final products.  

One of our earliest experiments involving input from machine reading used output from the 

University of Arizona’s REACH system.  REACH extracted entities and relations 

(automatically) that were translated (manually) into 50 Pathway Logic entities and 35 rules so 

that they could be augmented onto STM7.  Two things were done with the augmented rules: (a) 

they were assigned prior probabilities; and (b) the posterior probabilities of the augmented 

models created using subsets of the extracted rules were computed.  The priors (a) were obtained 

by checking whether they “looked like” rules already in the heavily curated STM7.  To define 

“looked like”, the entities in the rules of STM7 were backed off to more generic ontological 

categories; e.g., proteinName-modification@location became proteinGeneric-modification@locationAny.  

Statistics were gathered from STM7 at this backed-off level, the extracted rules were similarly 

backed off and matched to the backed-off STM7 rules, and were then assigned probabilities 

based on the number of occurrences in STM7.  This gave results that roughly agreed with curator 

opinion. The first step in computing the theory posteriors (b) was to make an extended STM7 

model by inserting the 35 extracted rules.  We then checked how this impacted proofs of 

plausible data that could be made with the augmented model.  Variants of the augmented model 

were generated by deleting augmented rules one by one, and these were evaluated with a 

complexity prior that favored smaller sets of rules.  The outcome was somewhat disappointing:  

The rules imported from machine reading did not enable any more data points to be explained 

than could be explained with STM7 alone.  This was because, of the 50 entities in the augmented 

rules, only 5 were in STM7 and these did not impact any of the relevant inference chains.  So 

while successful as a demonstration of ingestion of input from machine reading, the main lessons 

were that more effort needs to be applied to ontological alignment between data sources, and that 

it is not trivial to improve on an already highly-curated knowledgebase. 

In our first significant exercise with the re-organized sense-making software, we combined the 

1581 rules from the Pathway Logic STM7 knowledge base with 5159 rules from the UA 

REACH reader and 322 rules from the Leidos table reader.  We also added a few manually 

modified Pathway Logic rules.  We then applied the sense-making layer to score the ability of 

the combined rules to explain 339 datums from Pathway Logic that pertain to Hras.  Many 



 

 

datums describe multiple experiments, some descriptions have multiple interpretations, and some 

interpretations can be mapped onto the simulation state space in multiple ways, so the 339 

datums expand into 548 experiment descriptions with 1414 interpretations, 705 of which could 

be mapped onto the simulation state space forming 2325 formalized experimental data points.  

The maximum possible score (experiments explained) was therefore 2325, and the actual score 

was 1146. 

We evaluated the importance of every (interpreted) rule by deleting one rule in all possible ways 

and re-computing the score.  Only 29 rules had any impact, ranging from -204 for deleting the 

rule that binds Egf to its receptor, the initial step of a major pathway, to +4 for one of the 

manually altered rules.  All but one of the impactful rules came from Pathway Logic, the 

remaining rule coming from REACH.  However, the REACH rule was deemed to be a 

misreading of the text that luckily contributed to some explanations, but in an implausible way.  

At this point, reading was not improving the curated model. 

We then took another approach, asking whether reader output could be used to recover 

knowledge ablated from an STM7.  We used a collection of 1320 of the 1581 STM7 signaling 

rules, 3831 relevant datums (each of which describes one or more related experiments), and UAZ 

REACH extractions from papers indicated as supporting the rules.  The difficulties with the 261 

omitted rules were mostly due to PDF extraction problems.  The unaltered knowledgebase of 

1320 rules explains 846 experimental results.  Each rule was deleted, one at a time, noting the 

change in the number of experiments explained.  For 1246 of the rules, there was no effect.  

There were 63 rules whose ablation resulted in a loss of roughly 70 explained experiments, and 

11 that resulted, unexpectedly, in a gain of about 100 explained experiments.  After ablating a 

rule, new rules were assembled from extracts read from the relevant papers and added to the 

knowledgebase, and the change in the number of experiments explained was noted again.  This 

almost always had a substantial and seemingly beneficial effect.  There were only 78 rules for 

which reading produced no improvement after ablation, 58 for which reading resulted in a loss of 

roughly 25 explained experiments, but 1184 that resulted in a gain of around 350 explained 

experiments.  This appears to show that reading produces great value. 

However, a deeper assessment found that most of the beneficial reader rules went directly from 

the starting condition to the outcome conditions for the data points, i.e., essentially stated a direct 

connection between the treatment and subject of an experiment, and therefore provided little 

explanatory value.  We carried out a hitting time analysis, in which we kept track of the number 

of time steps between the initial setup of a simulation and its production of the result predicted 

by the experiment description.  With the unperturbed knowledgebase and the ablated 

knowledgebases, this almost always takes at least 2 time steps, but with rules added by reading, 1 

time step often becomes sufficient.  This corroborates the thesis that the read rules fire too 

readily. 

Inspecting some of the rules led to a fairly clear explanation of this behavior.  Rules obtained 

from reading tend to be much less detailed than the ablated rules they are hoped to recover, 

lacking location information and many structural details about the interacting entities. The 

omission of details makes the antecedent conditions of the rules easier to meet, so they are more 

likely to fire, resulting in the creation of more products than are produced in reality.  With a more 

balanced suite of experiment descriptions, rich in control experiments providing evidence 

against the creation of most of these products, the overly permissive rules would contradict 



 

 

many of the controls, more than compensating for their simplistic and most likely spurious 

explanation of extra positive results.   

This led us to develop the combinatorial approach to entity and rule assembly described above, 

generating all possible rules from the entities reported by a reader, filtering them through a 

common sense evaluation module, and checking agreement with data. The experimental data was 

extracted manually by our curator from the papers used in a Mitre evaluation, following her 

routine methodology.  They should eventually be extracted automatically by our Evidence 

Expert.  The data set was small, but the results were very encouraging, with recall improving 

from 35% to 48%, and when restricted to the interactions we have had time to support, 65%.   

We first tested the closed loop reading using the previously existing platform. This procedure 

started with the pathway logic model and attempted to extend the model using closed loop 

reading to explain the results observed in Korkut et al, 2015. This data looked at drug treatment 

and corresponding measured changes in phosphorylation, across multiple drugs and assays in a 

single cell line. The initial human curated pathway logic system could explain 3/66 of the rules 

out of the box (using manual definition of the initial stat and rule customization to the cell line). 

The automated system processed 22k citations and proposed 7k rules, of which 330 passed the 

common sense filter, and 8 were ultimately accepted by the system. The 8 new rules allowed the 

system to explain 44/66 of the observed experimental data points. Note that this did not use the 

subsequently developed MCMC system so that only parsimony was used to control rule growth, 

rather than the more effective measures introduced later. 

The system was extended to apply to multiple cell line for the phase 3 evaluation Fallahi dataset. 

For the phase 3 evaluation we implemented the following procedure: 

1. Extract experimental data, and convert to probability of change  

2. Attempt automated extraction of drug targets (not integrated in further processing yet) 

3. Automatically work backwards from measurements to determine rules relevant to 

producing observed outcomes (backwards collection) 

4. Create candidates for the initial dish based on required proteins for rules identified in step 

3 

5. Construct all paths through rules from the initial dish that can produce a measured outcome 

6. Identify paths that intersect drug targets, as paths relevant for predicting the observed 

experimental results 

7. Create 3 matrices needed to simulate the experiments: 

a. Pathway matrix indicating rules and initial proteins needed for each path 

b. Measurement matrix indicating which experiments are predicted by each path 

c. Score matrix corresponding to probabilistic score for each measurement base on the 

observed experimental results 



 

 

8. Using these three matrices we rapidly simulate many initial states and rulesets for each cell 

line, currently selecting the networks that maximize agreement with experiment 

9. Use the optimal networks to explain or refute 

the observed findings 

After the phase 3 evaluation we switched to the 

MCMC approach for multi-cell line simultaneous 

processing on the general pathway logic rules. This 

updated system was run against 4 cell lines from 

the Pathway logic database (mEFs, Hek293, HELA, 

Hek293T) with the largest number of data points. 

We compared the predicted results to post-hoc 

biologist evaluations of all proposed new rules. The 

results are shown in Figure 3. 

In the figure we see that use of multiple cell lines 

increases the ability of the system to distinguish 

which rules are most useful for explanation, based 

on expert annotation. Additionally, we see that 

inclusion of reader information from the closed-

loop reader process substantially enhances 

performance, and further inclusion of statistical 

common sense information improves performance 

yet again. 

The system attempted explained 48 previously 

unexplained experiments, using 77 new rules. Of 

these new rules 48 were evaluated as correct by an 

expert, while 19 were evaluated as incorrect.  

We explored the application of automated model extension to Gray Zone problems. Specifically, 

we attempted to automatically create a ruleset that applied to the Ukraine Crisis over the past 

eight years. We started by curating potential rules from the relevant literature including 

contemporary news articles, retrospective reports, and transcripts of round tables discussing the 

crisis. A typical example of a rule generating statement is “Without meaningful Western military 

aid, Ukrainian President Petro Poroshenko acceded to unreasonable demands from Russian 

President Vladimir Putin.” 

A statement would be manually decomposed into three rule components: context, control and 

assay. This structure parallels the structure used in PL biological rules, where the “consumed”, 

“control” and “produced” protein occurrences played similar roles. For the above text extract, we 

identified the rule: 

 Context: Demand by aggressor 

 Control: Military aid provided by USA 

 Assay: Reduced probability of acceding to demands 

We explored matching each rule to data from the Global Database of Events, Language and Tone 

(GDELT). We downloaded all GDELT events from GDELT 1.0 from 2013 until the present. We 

Figure 8. Receive Operating Characteristic (ROC) 

for automatically generated rules against expert 

human curation. a) trained using only the Hek293 

data b) trained using data from 4 independent cell 

lines (mEFs, Hek293, Hek293T, HELA). Different 

colors indicate use of different prior information in 

selecting rules. 



 

 

selected events with at least one relevant location in the Ukraine. Each article for the identified 

events was downloaded and parsed to extract relevant keywords. Each event was then 

represented by the GDELT event type as well as the set of keywords extracted from the article. 

We then created a neural network representation of each rule. The network was built using SRI’s 

Deep Adaptive Semantic Logic (DASL) python package. Events were binned into two-week 

slices, and each component of a rule (Context, Control, Assay) was implemented as a neural 

network (multi-layer perceptron). The components were temporally tied together with Context 

and Control being measured at each time step, and the Assay being measured for the subsequent 

time step. We vectorized the event data to form the network input. 

Both GDELT event types and keywords were placed within a vector embedding. For the GDELT 

event types we defined a similarity score between events types based on the CAMEO code 

hierarchy, along with the overall four-bin CAMEO code. A singular value decomposition was 

then used to create 30 dimensional vectors that accurately reproduced the distance metric (30 

selected based on a principal component analysis). The pre-trained (300 dimensional) word2vec 

word embedding, trained on the google news corpus, was used to encode keywords as vectors. 

Each two-week interval was represented as a bag of events, with each event represented as a 

paired Cameo event code vector and key word vector. The full set of events was sub-selected to 

those relevant to each rule component (Context, Control or Assay), based on distance from the 

event code and keyword manually identified for each rule component. For example, the above 

rule for the context “demand by aggressor” used the CAMEO code for “Demand” along with the 

keyword “russia” (all keywords were lowercase to align with word2vec standards). After sub-

selection DASL was used to construct a theory that tested for the presence of the purported event 

in each time interval. 

Each multi-layer perceptron was trained using stochastic gradient descent to identify rule 

components that maximized a rule’s predictive accuracy based on a training set consisting of the 

first few years of the Ukraine conflict. The rules were then tested on more recent data (last 2 

years). The metric chosen was the number of predicted counter-factual events, i.e., the number of 

observed time periods for which the rule correctly predicts the outcome when the control is true 

versus minus the expected number if the control was false. For example, in the above this 

corresponds to the number of additional times that the Ukraine acceded to Russian demands 

when the United States provided aid versus a baseline when no aid was provided, conditioned on 

a Russian demand being made. This metric provides an operationally sound way of comparing 

probabilistic rules, as it puts highly predictive rules that trigger with low probability on the same 

footing as less accurate rules that can be applied often. 

The result is a system that can rapidly customize rules to specific situations. We manually 

extracted 50 candidate rules from the literature, of which 29 could be effectively implemented. 

Of these 6 were detected as significant and consistent across time. The verified rules (with the 

predicted probability of the rule influencing the assayed event) are: 

 16% Threats to escalate conflict decrease adversary activity 

 11% Building local support decreases future conflict 

 13% Support for border infrastructure decreases adversary activity 

 7% Support for accountability decreases adversary activity 



 

 

 8% If aggressor sharply expands aggression during a ceasefire sanctions will not be 

increased 

 5% Threats to use force during negotiations make them more likely to succeed 

Overall the system performed at about the level we expect from our previous Big Mechanism 

results, as most of the extracted rules tend not to be correct. The main thing is that automated 

reading allowed us to test thousands of rule candidates versus the few we obtained from purely 

manual extraction for the Gray Zone study. 

The largest challenge was the limited amount of data available in this study to verify each rule. 

In trying to interpret the rules, the system was clearly over-training, as the training set would 

predict a much higher number of counterfactual examples than were observed in the test set. We 

used regularization to limit the overtraining but the ultimate issue was the limited amount of 

training data obtained by focusing on a single conflict. The best methods to address this would 

be to train rules across multiple conflicts and to break conflicts down into smaller pieces (e.g. by 

geographical area / theater) allowing more precise training over more examples. 

Several of the rules looked like their behavior was inconsistent over time. Specifically, the rule 

“Ending politicization of multi-national trade groups boosts trade” was true in the initial part of 

the conflict, but later was incorrect (i.e. the rule reversed). This likely has to do with unmodeled 

temporal dynamics related to oil production and sanctions. 

Assembling a complex mechanism in the same way as Big Mechanism biological data was 

infeasible due to limited rule coverage and lack of sufficient data to test the long causal chains. 

The most critical piece needed to assemble an effective mechanism is to have the rules overlap 

such that the Control component of rule A connects to Assay component of rule B. At the purely 

textual level this connection works, as many rules mention the same entities (trade, force, 

demands, etc.). Unfortunately, the neural network customization gives differing interpretations to 

these rules, in that the specifically detected events differ due to the different neural network 

representations. DASL allows us to constrain the interpretations to overlap; however, with 

limited data we were unable to construct a sufficiently complicated connected ruleset due to the 

poor statistical evidence and overtraining issues. 

4. TECHNICAL FEASIBILITY 

Targeted machine reading for factual information, by which we mean the extraction of entities 

or relations fulfilling specific roles (e.g., the subject of an assay), is indeed feasible in some 

cases, but certain forms of the problem remain beyond the practical reach of the state of the art.  

It is possible to detect such roles based on the evidence in a single sentence, and we developed 

new methods to detect relevant mentions based on noisy distant supervision, methods capable of 

localizing the particular sub-sentence expressions used to express a particular role. 

The feasibility of this problem decreases in proportion to two complicating factors.  First, as the 

arity of a target relation increases, the opportunities for “getting it wrong” by incorrectly 

populating a “slot” also increase.  In our experiments, we sought to populate 4-tuples, and were 

only beginning to see marginally practical accuracies by the end of our effort.  The difficulty of 

this task was increased by the presence of the second complicating factor: noise in the training 

data.  In contrast with much of the work on information extraction, our annotations were at the 



 

 

sentence level and we arrived at them through a heuristic alignment between figure references in 

datum records and sentences.  There are several points at which this alignment can fail, and any 

failure yields an incorrect label, with corresponding degradation in the resulting models.   

In a sense, this is the problem that our attempts to amplify human effort are intended to address. 

We derived ample evidence that modest human intervention increases the accuracy of models 

subject to noisy training data.  The trick is in how information is presented to human experts and 

how feedback is captured.  We showed, for example, that just having the expert filter a set of 

words automatically determined to correlate with predicate mentions—a task that typically takes 

only minutes to perform—yields statistically significant improvements in detection models.  Our 

efforts to provide for finer-grained control by the expert, through the highlighting of particular 

phrases in the input, remain somewhat more speculative.  It is important that the expert not be 

reduced to reading large sections of text, as this impedes scaling and is not consistent with the 

goals of automated information extraction.  We continue to believe that an efficient 

communication of estimated salience, e.g., through the automated highlighting of key phrases by 

the system, is critical.  Moreover, we believe that it would be promising to explore user 

interfaces that enable the expert to provide multiple forms of feedback in a given session, such as 

adding trigger words, highlighting key passages, and indicating links between predicates that 

pertain to the same frame. 

We established that our basic concept for automated model extension is workable.  We can use a 

layer of explanatory reasoning to merge machine learning output into a knowledgebase in a 

sensible way.  We can blend fragmentary rules from readers or automated rule-generating 

algorithms into well-formed hypothetical rules and evaluate those rules in the context of existing 

knowledge.   

We have demonstrated the utility of our closed loop reading and MCMC approaches in 

supporting automated extension of an existing biological cell signaling model (Pathway Logic). 

We have demonstrated the ability to combine information extracted from automated reading with 

machine learning for statistical common sense and experimental verification using an MCMC 

search procedure.  

We have tested the applicability of our model extension system to a novel gray zone context, 

where experimental evidence is replaced by evidence curated from historical examples (quasi-

experiments). In this case the rules are less precise, requiring context-specific interpretation (e.g. 

a rule that states “Trade decreased” requires interpretation in the specific context of the local 

conflict to identify the party, and to detect events indicative of trade decrease). We have 

demonstrated the ability of neural networks to perform this interpretation automatically by 

optimizing a rule quality function over automated text extracts curated from GDELT. The key 

challenge is collecting a wide enough set of data to allow confident rule interpretation without 

overtraining. For our demonstration we manually extracted the rules rather than use machine 

reading, meaning that a human was required to identify the passages that corresponded to 

potential rules, and to extract the key components of the potential rules (context, control, assay). 

The rule structure paralleled the biological rules in our Big Mechanism work, implying that we 

can apply similar techniques for automated reading to extract potential rules from text, assuming 

one were to customize the Big Mechanism machine readers to the gray zone context. Automated 

model assembly proved more challenging in the Gray Zone context than in the biological context 

as a consistent grounding similar to biological protein occurrences was not available, so rules 

were even more challenging to connect together. Additionally, the primary evidence for Gray 



 

 

Zone data was directly applicable to single rules, while the probabilistic nature of the data made 

testing a rule chain impractical (and statistically unsupportable). Together these effects meant 

that the overall rule compilation engine was under constrained. Overall the clear lesson is that we 

need to simultaneously interpret rules across a large number of Gray Zone conflicts to both get a 

large enough training dataset and to ensure that rules will generalize across locations and times. 

We did not produce sufficient evidence to indicate that construction of large mechanisms that 

explain complex chains of events is possible due to the rarity of observing complex chains 

(versus in the biological context where single experiments often observe such chains).  

We made progress in inferring mechanistic cell signaling rules directly from datums. We were 

able to replicate the human-curated Hras network. A key challenge is assembling rules into 

executable PL models where rule outputs exactly match inputs to rules for subsequent steps. 

Inferred rules capture the level of detail provided by experimental assays, which differ in 

specificity. The matching problem was solved by adding less precise instances of each rule. This 

does not scale well. In an ongoing collaboration, we are exploring fuzzy matching to solve the 

scaling problem and extending the reasoning tools to a “soft logic.” 

PL executable models succeeded in providing mechanistic explanations of observations from 

experimental data where cells were treated with drugs inhibiting steps in different signaling 

pathways. We also succeeded in one exercise in extending a model with information requested 

from readers to fill a gap in the model. The extended model was then able to explain additional 

observations. Although some human effort is needed to bridge the reading-to-model gap, this 

indicates promising potential synergy between human and automated curation. The explanatory 

potential of PL knowledge bases and models is more general than explaining the effects of drugs. 

We have been extending the scope to modeling host pathogen interactions and protective 

immune response. One application is using the resulting models to identify novel pathogen attack 

points/surfaces. 
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