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ABSTRACT

For unmanned aircraft to share airspace with manned aircraft, extensive test-
ing is first required to ensure that such vehicles can fly safely with manned traffic.
Safe operation includes not only avoiding collisions with other traffic but also com-
plying with the Federal Aviation Regulations to remain well clear of other traffic.
One method for investigating the safety of unmanned aircraft operations is fast-time
Monte Carlo simulation of encounters between unmanned and manned aircraft. As
part of that simulation, one must model how the pilots of unmanned aircraft react to
the encounters. To that end, an empirical, rule-based stochastic model of responses
of unmanned aircraft pilots has been constructed based on data collected from a
succession of human-in-the-loop experiments. This report details the main elements
of that model and demonstrates its use in a safety analysis.
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1. INTRODUCTION

In 2012 Congress mandated that the Federal Aviation Administration establish rules for the
integration of unmanned aircraft into the U.S. National Airspace System (NAS)—allowing them to
operate together with existing manned air traffic [1]. Doing so requires the development of policies,
procedures, and equipment to ensure that operations within the NAS can be conducted safely.
For safety purposes, existing aviation regulations require that aviators “see and avoid” nearby
traffic [2]. Without a pilot in the cockpit, unmanned aircraft rely on electronic surveillance systems
to locate other air traffic and relay this information to the ground control station where the pilot can
observe and act on it. These systems have been called Detect and Avoid (DAA) systems1 and are
the subject of a (forthcoming) Minimum Operational Performance Standard (MOPS) document [3]
developed by RTCA Special Committee 228 (SC-228)2.

The current operational assumptions of the MOPS have a remote pilot responsible for ma-
neuvering the unmanned aircraft away from other air traffic. The question that must be asked,
then, is whether a DAA system, as defined by the MOPS, is adequate to allow that remote pilot
to operate his or her unmanned aircraft in the NAS safely. Safe operation in the NAS includes
avoiding a collision with another aircraft and also maintaining what is considered a safe distance
from other aircraft—well clear in regulatory terms.

The most straightforward way to test this is to build a system, integrate it into an aircraft,
and then run flight tests. This approach, though, would be impractical and potentially dangerous.
Such an approach would only test one implementation of a DAA system, not the requirements in
toto; moreover, it would only test the system for the specific aircraft it was installed on; finally, it is
simply not practical to flight test enough encounters to draw statistically sound conclusions about
safety. Rather than flight testing, then, a standard tool for conducting safety analysis is modeling
and simulation [4]. Specifically, fast-time Monte Carlo simulation facilitates time- and cost-efficient
testing of numerous equipment configurations and encounter types. Whereas a flight test may entail
on the order of one hundred encounters, these simulations typically consider millions of encounters,
thereby allowing any weaknesses of or particular challenges for the system to emerge. The challenge,
though, is since a pilot is responsible for choosing and executing avoidance maneuvers, a model of
that pilot’s choices3 is needed that can realistically emulate how he or she uses the DAA system
and responds when encountering other air traffic.

The model of the pilot is particularly important for analysis of the SC-228 DAA system con-
cept because of the comparatively large role of the pilot. Safety analyses in the past at Lincoln
Laboratory have typically assessed collision avoidance systems that are either directive or auto-
mated involving limited or no pilot interaction and decision-making. Directive systems identify a
specific maneuver that the pilot should execute. The pilot’s contribution to this can be reasonably

1 The term Sense and Avoid (SAA) is also widely used and is synonomous with DAA.
2 RTCA, formerly the Radio Technical Commission for Aeronautics, is a Federal Advisory Committee sponsored by

the the Federal Aviation Administration (FAA) and comprised of government and industry representatives. Through
its Special Committees, RTCA develops guidance for aviation systems to ensure safety and reliability.

3 It is important to emphasize that the model referred to here is not a model of the pilot’s mental processes but
one of the outcome of those processes; throughout this report, the terms “pilot model” and “model of the pilot” are
used to refer to the latter unless otherwise specified.
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modeled as a delay in executing that maneuver—see, for example, the analysis of using TCAS4

for collision avoidance on a Global Hawk unmanned aircraft [5]. Automated systems do not in-
volve a pilot at all in the execution of the maneuver—avoidance maneuvers are determined and
are executed automatically, often with the maneuver being continuously updated as the encounter
situation evolves.

The pilot’s role in the SC-228 DAA system concept is much more considerable: the pilot
must monitor the display, assess the situation, consider the suggestive guidance, and choose when
and how to maneuver. Usually there are many reasonable maneuvers the pilot could choose—
including the choice to not maneuver. The pilot can make multiple maneuvers depending on how
the encounter evolves, but will probably not make as many as an automated system. A model
is needed that encompasses the wide latitude given to the pilot to determine when and how to
maneuver.

Filling that need is the focus of this work. Since the specific purpose of this model is to
determine the adequacy of the DAA requirements in the MOPS, this report begins by reviewing
the context and key human-machine interface requirements of the MOPS. That is followed by a
review of prior approaches to modeling pilots and research on pilot preferences when maneuvering
to avoid other traffic. This section closes with a summary of the approach taken for a pilot model
that will suit the needs of DAA safety analysis. Section 2 describes the data collection experiments
and summarizes some of the main findings, and then the design of the model based on that data is
reviewed in Section 3. The report ends with a discussion of validation activities to show that the
model is indeed realistic and an example of the usage of the model in a safety analysis.

1.1 OPERATIONAL CONTEXT FOR DETECT AND AVOID

It is important to understand the context within which this model must work, some of
which has already been mentioned above. DAA system requirements are identified in a soon-
to-be-published Phase 1 DAA Minimum Operational Performance Standard (MOPS). Some of the
key aspects of the system are as follows:

• Unmanned (remotely piloted) aircraft heavier than 55 pounds

• Speeds exceeding 40 knots

• Instrument Flight Rules (IFR) flight plan and operations

• Transit operations in Class D, E, or G airspace en route to Class A or Special Use Airspace
(SUA)

• On-board ADS-B5, radar, and active (transponder-based) surveillance

• Control station display incorporating DAA alerts and suggestive guidance

4 Traffic Alert and Collision Avoidance System, a collision avoidance system presently in wide use.
5 Automatic Dependent Surveillance – Broadcast, a surveillance system using satellite navigation information that

each aircraft broadcasts to other aircraft in the vicinity.
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• Collision avoidance system (e.g., TCAS) optional

The pilot model described here is applicable specifically to unmanned aircraft operating within this
context. The operating context is expected to change in a future Phase 2 DAA MOPS, and pilot
modeling will need to be readdressed.

As the unmanned aircraft nears another aircraft, the first priority is to stay well clear. For
manned operations, well clear has not been strictly defined, but for unmanned operations staying
well clear means the following condition does not occur:

0 ≤ τmod ≤ τ∗mod ∧HMD ≤ HMD∗ ∧ −h∗ ≤ dh ≤ h∗ (1)

where τ∗mod = 35 seconds, HMD∗ = 4000 feet, and h∗ = 450 feet [6]. The variable τmod is a measure
of the time to closest point of approach adopted from the TCAS logic. HMD is the predicted
horizontal separation at the point of closest approach, and h is the current vertical separation.

That region is difficult to visualize, so the DAA system incorporates alerts to help the pilot
identify other aircraft on the traffic display that may violate the well clear condition if both aircraft
remain on their current course. Alerts are indicated both visually on the traffic display and aurally.
The MOPS defines three levels of severity of alerts. A preventive alert is the lowest alert level,
and it occurs primarily when the aircraft are separated vertically by 450–700 feet; it is intended to
alert the pilot not to maneuver vertically to avoid causing a loss of well clear. The next alert level
is the corrective alert. This alert indicates that a loss of well clear is predicted and maneuver is
deemed necessary; however, there is still sufficient time to coordinate an avoidance maneuver with
Air Traffic Control (ATC) in advance. Finally, a warning alert indicates that a well clear violation
is impending, an immediate avoidance maneuver is necessary, and coordination with ATC before
maneuvering is not required.

Suggestive guidance works in conjunction with the alerts to assist the pilot in choosing a
maneuver that will resolve that alert. When a nearby aircraft causes an alert, the suggestive
guidance identifies maneuvers that will prevent loss of well clear by indicating where it is safe to
fly horizontally and vertically. The suggestive guidance algorithm takes into account the dynamic
capabilities of the ownship aircraft. It is intended to give the pilot a range of choices rather than
the single specific maneuver of a directive system. In the event the well clear violation cannot
be avoided, the system displays recovery guidance that indicates maneuvers that will best resolve
the well clear violation. Suggestive guidance is also displayed for aircraft that are not currently
alerting but will if the ownship maneuvers towards them. The caveat for the pilot using the
suggestive guidance is that the future trajectory of the other aircraft is uncertain but current
implementations assume non-accelerationing flight by the intruder. Depending on what the other
aircraft does, the guidance may change rapidly. Furthermore, even if the other aircraft holds steady,
the guidance does not remain static; a maneuver designated as appropriate to maintain well clear
at one moment is not necessarily still appropriate a few seconds later because the longer the pilot
waits to maneuver, the larger the maneuver needs to be to remain well clear.

3
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1.2 BACKGROUND

Prior to commencing this work, the technical literature was reviewed to determine whether
a model useful for DAA safety analysis purposes already existed in part or in whole. Numerous
types of pilot models were found and are briefly recapped here; none were directly suitable but
some ideas did influence the model as will be noted in subsequent sections.

Broadly, there are two categories of pilot models in the literature. The first category is the
representation of the pilot as a physical (or neuro-physical) system. These models tend to focus on
how well a pilot performs a certain task. A prominent example of this is the McRuer and Krendel
linear controller model and subsequent refinements of it [7]. These models focus on the physical
interaction of the pilot with the aircraft’s flight controls and are intended to inform control system
design (e.g., pilot inputs needed to maintain a level course). Various other aspects of the pilot as
a physical system have also been modeled—e.g., visual detection of targets [8], response time to a
stimulus [9], workload [10], etc. None of these models are appropriate for this work because they
do not address the decision-making aspects of piloting tasks.

The second major category of models, more relevant to this work, represents the pilot as
a cognitive (or psycho-physical) system. Rather than trying to measure how well pilots perform
a specific task, these models tend to focus on what a pilot does. Various approaches have been
proposed, which are broken down here, roughly in order of applicability to this project, into the
following subcategories:

• Intent prediction models

• Aerial combat models

• Delay models

• Regression models

• Bayesian network models

• Heuristic models

Intent prediction models have had a primary goal of understanding the air traffic likely to be
faced, particularly in a terminal-area environment. That is, if you observe another aircraft, you
might be able to infer something about its likely path. As such, this approach is better suited as a
model of the intruder aircraft pilot than the ownship’s. Lowe and How’s work focused on identifying
a Markov model of trajectory changes based on navigational intent [11]. Ogaard and Marsh used
data mining to create a probabilistic model of manned aircraft behavior [12]. These models were
included in this survey on the chance they could shed some light on the ownship pilot’s decision-
making when faced with an intruder with uncertain intentions; however, they are computationally
intensive and hence better suited to refine the trajectory predictions for suggestive or directive
guidance algorithms (to incorporate intruder accelerations, for instance) or for decision-making by
autonomous systems.
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Artificial intelligence (AI) techniques have been used to create models for simulating aerial
combat for training pilots. Ernest et al. used genetic fuzzy trees [13] to create an AI called ALPHA
to fly red-force aircraft in an aerial combat simulator. But their work does not show that the deci-
sions of their AI are similar to human decisions; perhaps part of the challenge for an experienced
fighter pilot of going head-to-head with ALPHA is that it does not behave like a human. A require-
ment of the model of DAA maneuver decisions, though, is that it reflects actual pilot behavior, and
so this machine learning-approach was deemed unsuitable. Another model of air combat maneuver-
ing decisions was developed by Virtanen et al., theirs based on multistage influence diagrams [14].
This approach can be adapted to human-derived preferences, but it is ultimately a deterministic
approach that does not address the variability of responses given the same information about the
conflict traffic.

A very simple model of a pilot that has been used in some studies is a response delay [15,16].
This sort of model is only useful when there is some other source providing the desired maneuver
such as TCAS [17] or the next-generation collision avoidance system under development, ACAS
X [18]. These directive systems give the pilot a specific maneuver that must be executed that is
explicitly coordinated with the other aircraft where possible. The assumption of most delay models
is that the pilot always follows the directed guidance; however, a more complex model presented
by Lividas et al. incorporates the choice of the acceleration applied and permits TCAS advisories
to be ignored [19]. These models fall short because they do not address the choice of maneuver.

Extending on the delay approaches above, Taguchi et al. propose using logistic regression
to model “maneuver” decisions in a different domain: driving [20]. Their model uses data from
a human-in-the-loop experiment (HITL) to simulate a human driver’s decision to make a turn
across crossing traffic. The delay is thus dependent on real-time observed features rather than
an independent distribution. Their approach clearly has parallels to pilot decisions about aircraft
maneuvering. In an early phase of this work, logistic regression with two encounter features—
predicted time to closest approach and horizontal range at closest approach—to model horizontal
maneuver timing was explored and the resulting distribution was found to be unrealistic.

Lee and Wolpert explore modeling pilot decisions in the context of responses to resolution
advisories from TCAS [21]. TCAS assumes that pilots will follow the advisories within five seconds
of issuance, while studies cited by Lee and Wolpert suggest that actual responses vary more widely.
Their model, built on a Bayes network, allows the pilot the choice of whether to maneuver or not
given an RA and observational data. This is a stochastic approach that addresses the variability of
responses but has not addressed how to learn the appropriate parameters to represent actual pilot
preferences, nor is the framework yet available to choose from multiple maneuvers rather than the
single maneuver directed by TCAS.

Heuristic approaches use a set of rules for decision-making; TCAS, in fact, uses a heuristic
algorithm to choose a maneuver. Maki et al. introduced a model of pilots’ horizontal maneuver
decisions using a “dynamic protection zone” for timing and a heuristic based on right-of-way rules
for turn direction [22]. A subsequent live test showed a reasonably good fit between the model’s
predictions and actual pilot decisions. However, this work has several shortcomings. Among those,
variations in maneuver timing are not addressed. In addition, the right-of-way heuristic only ad-
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dresses maneuvers in the horizontal plane—it neither offers a choice between climbing and descend-
ing nor a choice between a horizontal maneuver and a vertical maneuver. Finally, the model does
not adequately address what happens if the first avoidance maneuver is insufficient to achieve the
desired separation since continued reliance on right-of-way rules may lead to unrealistic reversals.

In addition to these models of pilot behavior, there have also been numerous studies character-
izing pilot preferences when in conflict situations with other aircraft [23–26]. These studies typically
entailed some form of human experiment. All (with the exception of the NASA experiments dis-
cussed further below) used pilots of manned aircraft, and the emergent preferences differed from
study to study—perhaps because many of the studies used homogenous subject populations such
as students from a single flight school. Summarizing the reported findings, though, the following
general traffic avoidance preferences (or lack thereof) can be inferred:

• Single-axis vertical or horizontal maneuvers (e.g., climb) are preferred over multi-axis maneu-
vers (e.g., climb and turn together),

• Vertical maneuvers are preferred over horizontal maneuvers,

• No preference between right and left turns regardless of right-of-way rules, and

• Little preference for airspeed maneuvers.

Whether these preferences are also applicable to pilots of unmanned vehicles is an open
question. Manned aircraft pilots generally have a three-dimensional head-on view of the surrounding
airspace, while unmanned aircraft pilots must rely entirely on displays that typically give a two-
dimensional overhead view. To begin to answer this question, studies of the preferences of air traffic
controllers [27, 28], who view the airspace and air traffic from a similar perspective as unmanned
aircraft pilots, were also explored. Those studies suggested that controllers have an even stronger
preference for vertical maneuvers over horizontal maneuvers, postulating that horizontal maneuvers
are more disruptive to the overall air picture. This highlights that while unmanned aircraft pilots
and air traffic controllers may share a similar viewing perspective of the airspace, their overall
priorities are different. Pilots want to steer their aircraft safely around threats while controllers are
trying to organize all of the traffic in a given airspace.

One body of work that does address the maneuvers choices of unmanned aircraft pilots is
a series of experiments conducted by NASA Ames Research Center [29, 30]. Those experiments
were conducted in concert with the drafting of the DAA MOPS and were intended to identify
requirements for the display. Consequently, those experiments explored various display concepts
including information-only displays that showed only the relative location of nearby aircraft and
suggestive displays that showed nearby aircraft and maneuvers that could be selected to stay well
clear of it. Based on pilot response times with the various display concepts, NASA recommended
to SC-228 that a suggestive display be required for DAA. This project began making use of the
data NASA collected; however, purpose-built data collection experiments were ultimately preferred
due to concerns that the flight plans the subject pilots were to fly confounded interpretation of
any maneuvers observed—e.g., if flying a left-handed circuit, a preponderance of left turns may be
attributable to the flight plan rather than an avoidance maneuvering preference.

6
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1.3 MODELING APPROACH

The goal of this work is to model a pilot’s interpretations of a display showing nearby air traffic
and his or her decisions of how to maneuver to avoid that traffic and remain well clear. To achieve
the realism desired, the model is based on observed responses. The literature surveyed earlier
gives a general idea of pilot preferences, but does not address the unique operational context, as
described above, of detect and avoid by unmanned aircraft. Consequently, multiple data collection
experiments have been conducted consistent with that operational context to form the empirical
foundation of the model. Those experiments are described in more detail in the next section.

It is reasonable to expect, and this report will later show, that pilot responses to nearby air
traffic are highly variable. When in an encounter with another aircraft, there are many possible
choices of how to respond; the timing, direction, and size of the maneuver will vary from pilot
to pilot and, possibly, from occasion to occasion for the same pilot. This variability may emerge
from various factors including training, experience, and the pilot’s degree of risk acceptance. The
model addresses this variability with a stochastic formulation whereby decisions at various levels are
based on random draws from probability distributions. This differs from several of the approaches
described above that are inherently deterministic—e.g., in the neural network approach laid out
by Ernest et al., the AI identifies, through training, a function mapping a specific situation to the
single best maneuver option. That work also highlights an important distinction: the model should
represent the actual characteristics of pilot behavior not the desired or possible characteristics (i.e.,
an ideal pilot). Nothing guarantees that the AI will identify a maneuver that a human pilot would
choose.

If the goal of this work is a model of representative and variable maneuver decisions, how can
the decision itself be addressed? Unlike a directive system like TCAS, which provides a specific
maneuver to the pilot who can then be modeled as a simple delay, the DAA operational context
requires the individual pilot to decide when and how to maneuver. The maneuver decision could
be approached through the field of decision theory. That field has a large body of literature, only
some highlights of which will be address here.

Classical decision theory rests on the notion of rational choice, asserting that a rational
decision maker should choose the option that is best for itself, knowing all possible choices and
possessing universal knowledge of the relative efficacy of each [31]. This effectively treats a decision
as a global optimization problem. Decision-making under this paradigm is termed substantive
rationality. Many researchers argue, however, that these assumptions are too broad to accurately
represent human decision-making [31–33]. Pomerol [34] outlines the major objections:

• All possible choices rarely come to mind.

• Knowledge of the consequences of each choice is usually fragmentary.

• It is rarely possible to determine a complete ordering of the consequences of all of the choices.

These objections are reinforced by psychological research demonstrating that human decision-
makers are subject to numerous cognitive biases that influence their choices [35]. To address
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these concerns, researchers have proposed models utilizing so-called bounded rationality [36], e.g.,
satisficing [31], prospect theory [37], fast and frugal heuristics [38], etc.

With any of these methods, detailed modeling of how a pilot interprets and reacts to what
he or she sees on a display is not trivial. The approach taken for this model uses the notion of
bounded rationality but recognizes that the ends do not require modeling of the actual decision-
making process and the cognitive mechanisms employed in that process, only the outcome of this
process. This simplifies the challenges of the model considerably. Insights of cognitive scientists
and psychologists can be used to influence and/or validate the model, but it is not necessary to
accurately determine and represent all the complexity of a pilot’s thought process. The model will
be referred to, then, as a decision model rather than a decision-making model. To model those
decisions, behavioral patterns identified by the data collection experiments are used.

8
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2. DATA COLLECTION

The model was developed iteratively, with its structure and parameters informed by data
collected in a series of three HITL experiments. Table 1 outlines the major features of each experi-
ment, with detail and a summary of the results following. Data provided by NASA Ames Research
Center was also used to build the model, particularly for modeling coordination with Air Traffic
Control.

The trajectory of each aircraft, the alert status, the suggestive guidance being displayed,
and maneuvers commanded by the pilot were recorded in all of the experiments. The first two
experiments also recorded the timing of simulated ATC coordination prior to maneuvering. Subjects
were encouraged to think aloud during the experiment and provide feedback afterward. A catalog
of that feedback and a summary of human factors conclusions drawn from the experiments are
included in Appendix A.

TABLE 1

Summary of HITL Experiments

Experiment 1 Experiment 2 Experiment 3

Guidance Algorithm OmniBands DAIDALUS DAIDALUS

Level of Fidelity Medium Medium Low

Number of Subjects 26 27 50

Number of Encounters 23 18 50

Encounter Duration 4–6 min 3–4 min 50–70 s

Surveillance Perfect Perfect Perfect/Imperfect

2.1 EXPERIMENT 1: NONMANEUVERING INTRUDERS

The first experiment was conducted in July 2015 in cooperation with the Air Force Simulation
and Analysis Facility (SIMAF). Twenty-six UAS pilots from various Air Force and NASA locations
participated as subjects. The unmanned aircraft flying time for this group ranged from 50 to 9000
hours with a median of 800 hours.

The experiment was conducted using a portable aircraft encounter simulator developed by
SIMAF. The pilot workstation comprised two monitors, shown in Figure 1, a keyboard and a
mouse. The left-hand monitor showed a moving map and the Primary Flight Display (PFD) with
the aircraft’s attitude, heading, altitude, and speed. The pilot’s ATC communication controls and
ability to declare all clear (i.e., end the simulation) were also on the PFD. The right-hand monitor,
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the DAA display, showed nearby traffic and suggestive guidance. The traffic’s location on the
display and the guidance computation used perfect surveillance data, i.e., no errors in the traffic’s
position and velocity and no limits on detection.

Figure 1. Experiment 1 pilot workstation displays. The multifunction display on the left includes a moving
map and the PFD. The DAA display is on the right.

One challenge of this project was that the requirements in the MOPS were in flux while
the experiments were on-going. Alerting and guidance for Experiment 1 was consistent with the
then-current draft of the MOPS. The alerting thresholds used are summarized in Table 2. The
OmniBands algorithm from NASA Ames Research Center [30] provided the suggestive guidance
for the display. Suggestive guidance did not include recovery guidance because it had not yet been
introduced as a requirement, which meant that guidance saturated, turning all red, if a loss of well
clear could no longer be avoided.

Maneuvers were commanded by entering the desired heading and/or altitude in text boxes on
the PFD and clicking an ‘execute maneuver’ button. Pilots could choose a horizontal maneuver, a
vertical maneuver, or both simultaneously (a multi-axis or “combo” maneuver) and were permitted
to make as many successive maneuvers as desired. Horizontal maneuvers were executed at 3◦/s and
vertical maneuvers at 500 fpm with a generic ownship dynamic model, consistent with the SC-228
assumptions.

Pilots were trained to coordinate with ATC prior to maneuvering if possible via simulated
ATC interaction. When ready to maneuver, the pilot clicked a button on the PFD, and after a
delay drawn randomly from a gamma distribution with mean 11 seconds (fit to ATC coordination
times from NASA’s PT5 experiment [29]), a message was displayed indicating that the pilot may
proceed. There was no voice communication and all maneuver requests were approved. Flight
controls were not disabled during this delay, so the pilot was able to command maneuvers before
receiving authorization if he or she chose to do so.
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The experiment was conducted one pilot at a time. Each test commenced with a training
briefing to explain the controls, display, operational procedures (e.g., coordinating maneuvers with
ATC), and the objective of avoiding loss of well clear while minimizing course deviations. Af-
ter the training briefing, the pilot was guided through several training encounters for hands-on
familiarization with the displays and controls before beginning the experiment.

In the experiment, each pilot flew a generic UAS ownship (with dynamics consistent with the
minimum aircraft performance defined in the DAA MOPS) in a total of twenty-three single-intruder
encounters. Without intervention from the pilot, the ownship followed a predetermined flight path
(due north). The intruder aircraft and all background traffic followed predetermined trajectories.
The intruder followed a straight-line trajectory in all but three of the encounters; the remaining
three encounters included simple maneuvers by the intruder. All encounters occurred in Class E
airspace below 10,000 feet.

One within-subjects variable was included in the experiment: maneuver protocol. The en-
counters were divided into two sets to explore how responses differed depending how the pilots
were instructed to respond when nearing an intruder. In one set, the pilot was asked to wait for a
DAA alert before commanding any maneuvers, and in the second set, the pilot was permitted to
maneuver at will. The order of the sets, the constituent encounters, and the order of encounters
within the sets were counterbalanced across subjects and were not known to them in advance.

Overall, this experiment is considered to be at a medium level of fidelity for several reasons.
First, the experiment was encounter-centric rather than mission-centric: the simulation stops and
resets after each encounter rather than presenting the pilots with a continuous series of encounters
along a planned flight path as in the higher-fidelity NASA HITLs. In addition, because it was
believed that the encounter-centric approach (with relatively short encounters) made it unnecessary,
the pilots had no secondary tasks to perform. Finally, the intruder aircraft followed scripted
trajectories and did not respond to ownship maneuvers; in NASA’s experiments, on the contrary,
simulation confederates actively flew the intruder aircraft. These choices in the experiment design
were made deliberately under the assertion that they do not fundamentally alter the behavior
under study; because there is less control over the exact encounter conditions in the higher fidelity
simulation, it is harder to compare responses between pilots and to distinguish avoidance maneuvers
from navigation maneuvers.

At completion of the experiment, pilots responded to a brief post-test regarding maneuver
decision-making. The total test time, including training, each block of encounters with a break
in between, and the survey, was approximately 2.5 hours. A demographics survey was completed
separately to record each subject’s flying experience. Kuffner et al. [39] gives more details about
the experimental setup and outcome.

2.2 EXPERIMENT 2: MANEUVERING INTRUDERS

The second experiment was conducted in cooperation with SIMAF with the main goal of
collecting responses to maneuvering intruders using varying ownship dynamic models with an up-
dated interface consistent with the latest MOPS requirements. This included switching to the
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TABLE 2

Experiment 1 Alert Thresholds

Alert Level Lookahead τ∗mod HMD∗ h∗ Aural Alert

Proximate Traffic Advisory 85 s 35 s 1.5 nm 1200 ft None

Preventive Alert 75 s 35 s 1.0 nm 700 ft Tone

Corrective Alert 75 s 35 s 0.75 nm 450 ft Tone

Warning Alert 25 s 35 s 0.75 nm 450 ft Tone

DAIDALUS algorithm from NASA Langley Research Center for DAA alerting and suggestive guid-
ance [40]. Twenty-seven UAS pilot participants completed the experiment in May 2016. The
median unmanned aircraft experience of this group was 500 flight hours. Eight of these pilots
previously participated in Experiment 1.

The pilot workstation again comprised two monitors, shown in Figure 2. The left-hand
monitor was updated from the first experiment to include a system status panel and a chat window.
Those new components were used for the secondary tasks introduced in this experiment. During
an encounter, the pilot periodically received messages via the chat window to perform one of
several system checks (e.g., check and report on fuel level). The pilot’s accuracy on secondary
tasks was not assessed. The DAA display, incorporating a new DAA status panel, appeared on
the right-hand monitor. The suggestive guidance had a similar look to the previous experiment
but some notable differences. Now powered by the DAIDALUS algorithm, the display no longer
differentiated between preventive, corrective, and warning guidance, instead showing any heading
or altitude predicted to lead to a DAA alert in red. The new display also incorporated recovery
guidance, indicating the best headings to regain well clear after it has been lost in dashed green.

Since the first experiment, alerting thresholds in the draft MOPS had been revised. These
revisions included the elimination of the proximate traffic advisory. The thresholds used in Exper-
iment 2, shown in Table 3, were adjusted accordingly.

Several other changes were introduced in this experiment. First, the pilots were instructed to
always wait for an alert before maneuvering. As already noted, secondary tasks were incorporated
to force the pilots to monitor both displays. Finally, an aural notification of ATC’s maneuver
approval was added due to concern that pilots may not immediately see the text-only approval
used in Experiment 1. Again the pilots were instructed that their objective was to avoid a loss of
well clear while minimizing deviations from course.

The experiment consisted of eighteen encounters with a single intruder. As a within-subjects
variable, all pilots flew two types of ownship aircraft in the experiment. Half of the encounters were
flown with the generic UAS ownship from the first experiment, and the other half were flown with a
UAS ownship similar to either a MQ-9 Reaper (referred to as the “MALE” configuration) or a RQ-4
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Global Hawk (referred to as the “HALE” configuration), depending on the pilot’s real-world aircraft
qualifications. Both the MALE and HALE configurations offered greater dynamic capabilities over
the generic ownship. The intruder did not maneuver in seven of the encounters, and the remaining
eleven encounters included varying degrees of intruder maneuvering. The order of the ownship
models and the order of the encounters was counterbalanced over all pilots. Completion of the
experiment, including training and a post-test survey, took about 2 hours.

Figure 2. Experiment 2 pilot workstation displays. The multifunction display on the left includes a moving
map, the PFD, system status indicators, and the chat window. The DAA display is on the right.

TABLE 3

Experiment 2 and 3 Alert Thresholds

Alert Level Lookahead τ∗mod HMD∗ h∗ Aural Alert

Preventive Alert 60 s 35 s 0.9 nm 700 ft “Traffic, Monitor”

Corrective Alert 60 s 35 s 0.9 nm 450 ft “Traffic, Avoid”

Warning Alert 35 s 35 s 0.9 nm 450 ft “Traffic, Maneuver Now”
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2.3 EXPERIMENT 3: MANEUVER UPDATES

The final experiment was conducted at Lincoln Laboratory with an interface consisting of a
single display. The experiment was focused specifically on the timing of maneuver updates. It is
difficult to collect sufficient data on update maneuvers because the need for updates is contingent
on the initial maneuver choice—many times an update maneuver is not necessary. This experiment
aimed to overcome a data gap by having a large pool of subjects complete many short encounters.
The experiment also examined the effect of surveillance error on pilot responses—the previous
experiments used only perfect surveillance. Fifty pilots with time in civil, commercial and/or
military manned aircraft participated in the experiment in May–June 2016. The median flying
experience for this group was 350 hours.

The display for this experiment incorporated the key components of the previous experiments,
the PFD and the DAA display, onto a single screen. The encounters were brief and there was no
specific route to fly, so the map was eliminated. With the brevity of the encounters, the secondary
tasks of Experiment 2 and the associated display components were also eliminated. DAIDALUS
was used for alerting and guidance with the same alerting thresholds as in Experiment 2 (see
Table 3). Figure 3 shows an example of the display.

Each participant completed a total of 50 encounters with an average duration of 60 seconds.
Those encounters were broken down into four segments as summarized in Table 5. The first segment
of ten encounters included a mix of maneuvering and non-maneuvering intruders. The display used
perfect surveillance (no errors or detection limits) for alerting and guidance. Pilots chose initial
and update maneuvers as necessary. The second segment of ten encounters was similar only with
imperfect surveillance approximating the performance of an ADS-B system. For this, the position
and velocity errors were modeled as independent Gauss-Markov processes:

δxk = δxk−1e
−∆t/τ +N (0, σ2(1− e−∆t/τ )) (2)

The parameters used with this model are summarized in Table 4. As surveillance error increases,
the alerting and suggestive guidance can become difficult to use: the alert state can toggle back
and forth and suggested maneuvers can change quickly. The error level for this experiment was
intentionally kept low to avoid causing mistrust of the system.

For the third and fourth segments, a procedural change was introduced. Rather than choosing
their own initial maneuver, the pilots took control only after a prescripted initial maneuver was
started. This procedure was intended to focus more closely on the timing of update maneuvers.
Both segments included fifteen encounters, all with a maneuvering intruder; alerting and guidance
used perfect surveillance in the third segment and imperfect surveillance in the fourth. The low-end
generic UAS ownship was used in all fifty encounters. The pilots were instructed to wait for an alert
before maneuvering in all encounters. There was no coordination with ATC in this experiment. It
took about 90 minutes for each participant to complete the experiment.

There were some risks to the usefulness of this experiment, foremost the use of manned aircraft
pilots. The resulting data was only considered valid and useful if similar features were observed to
the previous two experiments using unmanned aircraft pilots.
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TABLE 4

Gauss-Markov Error Parameters for Experiment 3

State Dimension σ τ ∆t

Position East 300 ft 10 s 1 s

Position North 300 ft 10 s 1 s

Altitude 0 ft 0 s 1 s

Velocity East 12 ft/s 10 s 1 s

Velocity North 12 ft/s 10 s 1 s

Altitude Rate 1 ft/s 10 s 1 s

TABLE 5

Experiment 3 Encounters Segments

No. of Ownship Initial
Segment Encounters Intruder Behavior Surveillance Maneuver

Maneuvering &
1 10 Nonmaneuvering Perfect Pilot Choice

Maneuvering &
2 10 Nonmaneuvering ADS-B Pilot Choice

3 15 Maneuvering Perfect Scripted

4 15 Maneuvering ADS-B Scripted

15

Approved for public release, Case Number 88ABW-2017-1669, 10 Apr 2017



Figure 3. Experiment 3 pilot workstation with PFD and traffic on a single display.

2.4 KEY EXPERIMENTAL FINDINGS

The three experiments yielded 800, 703, and 3299 recorded avoidance maneuvers, respectively.
As expected, the responses were highly variable. Figure 4 shows all of the responses to encounter
1 in Experiment 2—all of which were successful in remaining well clear. Variations in maneuver
timing, direction, and plane are all evident.

Figure 5 shows the overall preferences for maneuver direction. Of note from this first view of
the data is the small number of multi-axis maneuvers that were selected, a result consistent with
the earlier studies mentioned above. Filtering the data yields additional insights. Figure 6 reveals
that pilot behavior was starkly different depending on whether they chose their initial maneuver
before an alert or after an alert. Figure 7 shows that maneuver preferences changed depending
on ownship capabilities. Recall that ownship type was a within-subjects variable—each pilot flew
both the generic ownship and the MALE or HALE ownship.

One question was whether the head-on out-the-window view of a pilot in a cockpit might lead
to different preferences than the overhead view of a pilot operating with a traffic display. Experiment
3 suggests that perspective does matter. As noted above, other researchers have observed a general
preference for vertical maneuvers over horizontal among manned aircraft pilots. Experiment 3
involved mostly manned aircraft pilots operating without a head-on view, just the overhead view
of a DAA display. As Figure 5 shows, there was a strong preference for horizontal maneuvers.
In part, that preference may be that the suggestive guidance showed that vertical maneuvering
would not be effective. However, after filtering out those instances, out of the remaining 1231
instances with both horizontal and vertical suggested maneuvers, 58.8% of the maneuvers were
horizontal, 34.7% were vertical, and 6.5% were multi-axis (a significant preference for horizontal
maneuvers over vertical maneuvers with p < 0.01). So the same type of pilot (manned aircraft) has
different preferences depending on the perspective. It’s possible that the outcome of a horizontal
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maneuver can be more easily visualized on a map-like display (or a vertical maneuver may be
difficult to visualize) while the opposite may be true from a cockpit. That the manned pilots in
Experiment 3 demonstrated similar preferences for maneuver plane to the unmanned pilots in the
other experiments lends support to use of that data for model-building.

Interestingly, the same conclusion cannot be so easily drawn for the unmanned aircraft pilots
in Experiment 2. In that case, the preference for horizontal maneuvers was evident in the trials
conducted with the generic ownship aircraft, but the preference was weakened or reversed when the
pilots flew one of the ownship models similar to their real-world experience. This suggests that the
hypothesis above is subject to various confounding factors. Real-world training may account for
some of the differences as may awareness of the capabilities of the aircraft being flown. A further
confounding factor was suggested by Experiment 1: when pilots were permitted to maneuver before
any DAA alert had occurred, they preferred to maneuver vertically (p < 0.01). It is worth noting
that in this case there was no suggestive guidance on the display (because the intruder was still
too distant) for the pilot to use in decision-making.

The data from all of the experiments indicates that the previously reported preference for
single-axis maneuvers holds here, too. Depending on the experiment and how the data were filtered,
multi-axis maneuvers (horizontal and vertical maneuvers commanded simultaneously) accounted
for 5–20% of all maneuvers. This result is understandable since under time pressure the subjects
may prefer to quickly execute a single-axis maneuver than to spend the extra time deciding on and
entering a desired heading and altitude. The unmanned aircraft pilots in Experiments 1 and 2,
perhaps more familiar with flying their aircraft via keyboard, were somewhat more likely to use
multi-axis maneuvers than the manned aircraft pilots in Experiment 3.

Exploration of response time characteristics revealed that pilots were slower to respond when
the intruder was climbing or descending than when it was level in altitude. This was first identified
in Experiment 1, in which the initial response times (time between first DAA alert and the beginning
of ATC coordination) with a climbing or descending intruder had mean of 8.62 seconds while with
a level intruder the mean was 4.35 seconds. A two-sample t-test indicates this is a significant
difference with p < 0.01. This result was repeated, albeit with closer means, in Experiment 2,
where the mean initial response time with a climbing or descending intruder was 4.5 seconds as
compared to 3.63 seconds with a level intruder (significant with p < 0.04). The difference in
response time is not surprising. Changes in the intruder heading are more salient on the display
than changes in altitude. The pilot is left to mentally determine when and where an intruder’s
vertical trajectory will intersect the ownship’s.

Another response time characteristic was revealed by Experiment 2: responses are quicker
when recovery guidance is displayed (i.e., a loss of well clear has occurred or can’t be avoided).
The average time to maneuver after a DAA warning alert was 14.61 seconds (including initial and
update maneuvers), while the average time to maneuver after the appearance of recovery guidance
was 6.41 seconds. The number of instances of the latter was small (N=34), but the difference is
significant with p < 0.01. Note, however, that these are not always independent events since a
warning alert usually precedes the appearance of recovery guidance. This result is a reassuring one
since the purpose of the recovery guidance is to facilitate regaining well clear as quickly as possible.
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A final observation from Experiment 3 is that the pilot responses were not significantly dif-
ferent between the perfect and imperfect surveillance cases. This result does not suggest that
surveillance noise does not matter. The surveillance errors in the experiment were small, and some
participants mentioned that they hadn’t even noticed the change between perfect and imperfect
surveillance. This suggests that the pilots were easily able to integrate small perturbations on the
display. Further research is needed to determine what level of jitter leads to different response
characteristics.
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3. MODELING

In the operational context of the DAA Phase 1 MOPS, the real-world process of avoiding
traffic that is to be modeled is as follows:

1. Surveillance systems onboard the unmanned aircraft detect nearby aircraft.

2. That information is transmitted to the ground station where it is processed and the traffic is
depicted on a DAA display for the pilot’s situational awareness.

3. When the pilot notices or is alerted to the presence of an intruder aircraft that is on a path
that may lead to a loss of well clear, he or she chooses an avoidance maneuver, using the
suggestive guidance shown on the DAA display as a decision aid if desired.

4. The pilot then contacts ATC to coordinate the desired maneuver.

5. After given authorization for that maneuver, the pilot maneuvers the aircraft.

6. Steps 3 through 5 are repeated until the conflict is resolved.

7. When clear of conflict, the pilot coordinates with ATC to maneuver back to the original
course.

There is one exception to this process: when the DAA system issues a warning alert, the pilot
should take immediate action without contacting ATC first. (In this event, ATC should be advised
after the conflict is resolved.)

For modeling this process, there are two primary decisions the pilot must make: when to
maneuver and how to maneuver. The latter can be decomposed into two subdecisions, which
direction to maneuver and how much to maneuver. The model was designed around each of these
decisions and so is structured around three primary subfunctions: maneuver timing, maneuver
direction, and maneuver magnitude. The latter two elements are referred to collectively as maneuver
selection. Each of these elements are described in detail in the following sections.

Parameter values for each of the elements were derived from the data collected in Experiment
2 unless otherwise noted. Experiment 1 data was used for an initial version of the model, but
with subsequent changes to the alerting requirements and the suggestive guidance algorithm, those
data were not used for the final model parameterization. Experiment 3, with a much larger set
of subjects and encounters at lower fidelity, was intended mainly to confirm any trends observed
in Experiment 2 that had limited supporting data. In the end, sufficient update maneuvers were
observed in Experiment 2 that the Experiment 3 data did not have to be relied upon directly. Also
note that for modeling simplicity not every feature observed in the data was captured in the model.

The resulting overall model architecture is depicted in Figure 8. The model runs continuously
on a 1 Hz cycle. Inputs to the model are the current DAA alert level and the suggestive guidance.
The alert level is both a trigger to activate the model and a decision parameter. The model outputs
appropriately timed maneuver commands.
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Figure 8. Pilot model architecture.

3.1 MANEUVER TIMING

The first subfunction of the model is timing, which is viewed as a delay between some trig-
gering event and a maneuver. The assumed triggering event is the occurrence of a DAA alert. The
first experiment demonstrated that sometimes pilots opt to maneuver before an alert if permit-
ted, but no distinguishing encounter features prompting that early response could be identified.
Instead, the model takes the conservative (and MOPS-consistent) course of assuming avoidance
maneuvering does not commence until an after alert is issued. The alert must still be active for
an initial maneuver to be selected, but after the initial maneuver, additional maneuvers may be
selected in the absence of an ongoing alert.

The total delay is decomposed into several successive delay processes. First is an initial delay
representing the time it takes for the pilot to notice the alert and formulate a plan. Next there is a
coordination delay representing the time it takes to contact ATC and gain approval for the desired
maneuver from an air traffic controller. The maneuver selection processes (described in the next
two sections) are executed at this point and are followed by the execution delay, which represents
the time it takes for the pilot to enter the desired maneuver at the workstation and transmit it to
the aircraft, at which point the aircraft begins executing the commanded maneuver according to its
control system logic. There is one caveat to this succession of delays: if a DAA warning alert occurs,
the model skips the coordination delay or interrupts it if it has already begun. Finally, since a single
maneuver may not be sufficient to resolve the conflict, especially if the intruder is maneuvering,
subsequent maneuvers may be chosen after an update delay. The experimental data were used to
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parameterize probability distributions for each of these delay processes. The distributions for each
of the delays are summarized in Table 6, and the rationale for those model choices are detailed in
the next several paragraphs.

The initial delay is modeled with an exponential probability distribution with mean 5.0 sec-
onds, the approximate average over Experiments 1 and 2. Initial delays were shorter in Experiment
2, with mean 3.9 seconds. There was no difference in alert annunciation or coordination between the
two experiments that would account for the faster response time; in fact, the addition of secondary
tasks in Experiment 2 were expected to have slowed responses. The more conservative 5-second
mean was chosen because of two concerns. First, in the experimental setting with a clear goal
of maneuvering to avoid other air traffic, the pilots may have been primed for a quick response.
Second, since ATC coordination in the experiments was simulated, with no actual interaction with
a controller, the pilots may have learned to initiate the coordination clock while still deciding on a
maneuver. The Experiment 2 data and the modeled initial delay are shown in Figure 9.
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Figure 9. Observed and modeled initial delay (Experiment 2 data).

The coordination delay model is based on data from NASA Ames Research Center’s Part Task
5 experiment, which used live radio communication between each subject-pilot and a confederate
controller [29]. The audio recordings provided by NASA were parsed to find the elapsed time
between the beginning of the pilot’s request and the end of the controller’s response. Those data
were best fit with a gamma-distribution with mean 11.0 seconds. The model skips or interrupts
the coordination delay if the alert is at or increases to the warning level.
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The execution delay is modeled with an exponential distribution with mean 3 seconds. After
observing unreasonably long delays between maneuver approval and maneuver execution in the
first experiment, an aural indication for the pilot to precede with his/her desired maneuver at the
end of the simulated ATC coordination was added for Experiment 2. This is more consistent with
actual communication with a controller.

The update delay, too, is modeled with an exponential distribution, but the parameters of
the distribution are dependent on the current alert level. The initial hypothesis was that the
time between maneuvers would fall as the severity of the alert rose, but in fact no significant
difference between update timing for corrective and warning alerts was observed. Updates did
occur more slowly with a preventive alert or no alert at all. It was previously noted that the
presence of recovery guidance led to the fastest response; this observation was incorporated into
the model by considering the presence of recovery guidance to be an additional (the highest) alert
level. As is evident in Figure 10, the distributions of the actual update times closer in form to a
gamma distribution; however, for modeling convenience the exponential distribution was used for
its memoryless property, which allows the delay to change as the encounter changes. Together with
a minimum delay at the current alert level, the update delay distribution can be sampled at each
simulation time step to determine whether to continue holding or to choose an update maneuver.
Table 6 summarizes the modeled update delays for each alert condition, and Figure 10 compares
the observed time between maneuvers with a corrective or warning alert with the model.

TABLE 6

Pilot Model Maneuver Timing

Delay Type Model

Initial ∆tinit ∼ Exp(5)

Coordination ∆tcoord ∼ Γ(5.5, 2)

Execution ∆texec ∼ Exp(3)

Update ∆tupd ∼


Exp(12) + 12 if no alert,

Exp(6) + 9 if preventive alert,

Exp(3) + 6 if corrective or warning alert,

Exp(3) if recovery guidance

3.2 MANEUVER DIRECTION

The foundation of the model’s maneuver direction choice is observed heuristics. Heuristics
in Kahneman’s sense [35] are cognitive shortcuts that are used, often subconsciously, to expedite
decision-making. The term is used here in a slightly different sense: a heuristic is a modeling
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Figure 10. Observed and modeled update delay for corrective or warning alert (Experiment 2 data), shown
here with the 3-second average execution delay included.

shortcut whereby an input is connected with an output without understanding the real world
happenings in between. Specifically, the model uses binary choice heuristics—e.g., the choice of
a left or a right turn under given conditions. The approach here differs from traditional heuristic
approaches, however, in an important way. Traditionally heuristics define an outcome to certain
conditions deterministically. For example, if encountering a stop sign at a road intersection, then
stop. This is too idealized to truly represent the real world, in which drivers may not stop at a
stop sign for any number of reasons. Acknowledging the unlikelihood of finding a heuristic that
perfectly predicts pilot decisions in all their variety, the model instead establishes fuzzy-logic-like
heuristics, or rules, that are not always followed. Each rule expresses a choice of action that is
paired with a weight value (ranging from 0 to 1) identifying the likelihood it will be followed.

Symbolically, for the set of actions A = {A,B}, conditions (or features) F = {f1, f2, . . . , fn},
and rule weight s ∈ [0, 1], the rule R states:

R(A;F ; s) =

{
A if x ≤ s
B if x > s

(3)

for x ∼ F (x), where F is a probability distribution. A uniform distribution, x ∼ U(0, 1), is used for
all rules in this model. This construct represents tendencies or preferences for particular responses,
so an observation such as 80% of pilots choose a right turn under certain conditions and 20% choose
to turn left can be represented with the rule to turn right with weight 0.8.
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A rule with weight 0.5 is essentially a coin-flip. If the weight is less than 0.5, meaning the
rule is more likely to be not followed than to be followed, the rule can be rewritten in a positive
form as follows:

R(A;F ; s) = R′(A, F ; 1− s) (4)

where R′ is the complement of R:

R′(A;F ; s) =

{
A if x > s

B if x ≤ s
(5)

This quite simply says that, for example, a 20% preference to turn left is equivalent to an 80%
preference to turn right. Finally, if s = 1, the traditional form of the heuristic is restored, where
the conditions deterministically define the outcome.

The model assumes an overall decision space of up, down, right, or left, so A = {up,down, left,
right}—it does not presently permit multi-axis maneuvers. This is consistent with past research
and with this study’s experiments, which showed pilots chose multi-axis maneuvers less than 20%
of the time. The goal of the maneuver direction subfunction is to choose one of these maneu-
ver directions. That decision is broken down into a succession of three binary choices: left
or right (A1 = {left, right}), up or down (A2 = {up, down}), and then horizontal or vertical
(A3 = {horizontal, vertical}). The conditions for each will be addressed separately.

Beginning with the first choice, Maki et al. previously introduced a heuristic, mentioned
above, based on right-of-way rules for the choice between turning left or turning right that was
initially considered for this model. However, when applied to the experimental data, that heuristic
was only about 60% accurate in predicting turn direction. A more accurate heuristic, with about
80% predictive accuracy, was formulated based on the suggestive guidance. This heuristic, referred
to as the minimum-guidance heuristic, predicts that the pilot will turn in the direction in which
the guidance suggests a smaller turn and/or lower alert level. Thus, if the ownship is heading due
north and the guidance suggests either a 45◦ turn to the right or a 10◦ turn to the left, the pilot
will likely turn left. The same heuristic was employed for the choice to descend or climb as it has
even better predictive accuracy of about 90%.

To use this minimum-guidance heuristic, the model ingests the suggestive guidance data
that gives expected alert levels over a range of headings (±135◦ as implementated) and altitude
(+1500/−1000 ft). It pares this continuous data down to four minimum suggestions—the smallest
maneuver in each direction that will achieve the lowest alert level. For the example suggestive
guidance shown in Figure 11, the minimum suggestions are as follows:

• Left turn: 28◦ (heading 332) to no alert

• Right turn: 13◦ (heading 13) to no alert

• Climb: 0 feet (altitude 15,000 feet) to corrective alert
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• Descend: 1000 feet (altitude 14,000 feet) to no alert

In this example, the pilot could choose to turn in either direction or descend to avoid a loss of well
clear. The minimum-guidance heuristic suggests that if a turn is selected, it will probably be to
the right. Because the intruder is descending from above and the ownship’s vertical rate is limited
(500 feet per minute), any climb will result in a loss of well clear; on the other hand, descending
1000 feet will avoid the loss of well clear.

One important note about this methodology: its present implementation is only valid when
there is a single contiguous horizontal threat region spanning the current course. This precludes
use of the model in encounters with more than one intruder. In those cases, the suggestive guidance
will often include multiple threat regions.

Figure 11. Example of suggestive guidance and associated minimum suggestions.

With the four minimum suggestions in hand, the model then uses a binary decision-making
approach referred to as pairwise elimination to choose a maneuver direction. That is, it first
chooses its preferred horizontal maneuver and then its preferred vertical maneuver, reducing the
decision space from a set of four options to two. It then chooses whether to maneuver vertically or
horizontally. Figure 12 illustrates this process.
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Figure 12. Pairwise elimination procedure for choice of maneuver direction.

Each step of the pairwise elimination uses rules that are defined below. The basic procedure
is this:

1. If the two minimum suggestions have different predicted alert levels, choose the maneuver
with the lower alert; if not, continue to the next step.

2. If the suggested maneuver magnitudes are not equal, draw X ∼ U(0, 1) and choose the smaller
maneuver if X ≤ P or the larger maneuver if X > P , where P is a rule weight; otherwise,
continue to the next step.

3. If the suggested maneuver magnitudes are the same, choose the maneuver corresponding to
a random draw against preference Q, where Q is a rule weight.

That procedure can be codified as follows. Each action Ai ∈ A has an associated mini-
mum suggestion, as described above, that can be denoted as a tuple Si = {∆i, ai}, where ∆i is
the magnitude of the minimum maneuver suggestion and ai is the corresponding predicted alert
level. Binary decision-making involves a choice between two actions A = {Ai,Aj} and the two
corresponding minimum suggestions S = {Si,Sj}. The pair of maneuver magnitudes is similarly
denoted as ∆ = {∆i,∆j}, and the pair of alert levels as a = {ai, aj}.

Now the following choice relations can be established:

Si = Sj if (∆i = ∆j ∧ ai = aj) (6)

Si 6= Sj if (∆i 6= ∆j ∨ ai 6= aj) (7)

Si < Sj if (∆i < ∆j ∧ ai = aj) ∨ ai < aj (8)
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If Si 6= Sj , define the function

argmin S =

{
i if Si < Sj
j if Si > Sj

(9)

Using this notation, rules (conditions and associated weights) were derived from the exper-
imental data. For horizontal pairwise elimination, yielding a single turn direction, the rules are
summarized in Table 7.

The experimental data demonstrates that pilots generally prefer to turn in the direction of
the smaller suggested turn—but they sometimes choose the direction of the larger suggested turn.
The model assumes that the degree of preference is the same regardless of encounter conditions and
the associated suggestions. Tests with an initial version of the model revealed that this assumption
could lead to unreasonable responses. Choosing to turn in the direction of the larger suggestion
seems reasonable when the suggested turn magnitudes are similar but less so with highly asymmetric
suggestions. For example, if the guidance were to suggest a left turn of 70◦ and a right turn of 10◦,
it seems unlikely that a pilot would choose to turn left. Indeed, this conclusion is borne out in the
data. To remedy this unreasonable behavior of the model, the conditions in rules 1.2a and 1.2b
were added so that the direction of the minimum suggested turn is always selected if the difference
in magnitudes is greater than 40◦.

The rules for vertical pairwise elimination are summarized in Table 8. One deviation from
the observed behavior has been incorporated. In the experiment, the minimum altitude of any
encounter was 3000 feet. Anticipating the need to apply the model over a wider range of altitudes
than strictly valid, including altitudes down to ground level, logic was incorporated that prevents
the choice of a descent altitude below 500 feet, as dictated by rules 2.1a, 2.1b, 2.2a, and 2.2b.

The final pairwise elimination step is to choose between the preferred turn and the preferred
vertical maneuver. This decision is based on the alert levels for the maneuvers in each plane and the
observed overall preference for horizontal and vertical maneuvers. Table 9 summarizes the rules.

Anecdotal evidence suggested that the preference for horizontal or vertical maneuvers could
vary by pilot population. While professional training may have a role shaping this preference,
it was postulated that preferences are also dependent on the capabilities of the ownship aircraft.
Experiment 2 explored this dependency by having the subjects use various ownship models. In
the resulting data, preferences were identified for horizontal maneuvers over vertical maneuvers for
four categories of ownship aircraft based on achievable turn rate (ψ̇max) and achievable vertical
rate (ḣmax). Table 10 summarizes those categories and the associated rule weights for turning
over vertical maneuvers. These results largely conform to expectations, e.g., when the ownship is
more agile horizontally than vertically, pilots prefer horizontal avoidance maneuvers. With an agile
ownship in both maneuver planes, pilots preferred vertical maneuvers, a finding consistent with
preferences reported in previous studies as described in Section 1.2.

For simplicity, the same rule weights were used in rules 1.2a and 2.2a even though the data
indicated that pilots are more inclined to follow the minimum guidance in their vertical maneuvers

29

Approved for public release, Case Number 88ABW-2017-1669, 10 Apr 2017



TABLE 7

Horizontal Pairwise Elimination Rules for A1 = Turn Left and A2 = Turn Right

Rule Under the conditions Choose Ai, where i = With strength

1.1 a1 6= a2 argmin S 1.0

1.2a S1 6= S2 ∧max ∆−min ∆ ≤ 40◦ argmin S 0.8

1.2b S1 6= S2 ∧max ∆−min ∆ > 40◦ argmin S 1.0

1.3 S1 = S2 1 0.6

TABLE 8

Vertical Pairwise Elimination Rules for A1 = Climb and A2 = Descend and Ownship
Altitude h in Feet

Rule Under the conditions Choose Ai, where i = With strength

2.1a a1 6= a2 ∧ h−∆2 ≥ 500 argmin S 1.0

2.1b a1 6= a2 ∧ h−∆2 < 500 1 1.0

2.2a S1 6= S2 ∧ h−∆2 ≥ 500 argmin S 0.8

2.2b S1 6= S2 ∧ h−∆2 < 500 1 1.0

2.3 S1 = S2 1 0.5

TABLE 9

Maneuver Plane Rules for A1 ∈ {turn left, turn right} and A2 ∈ {climb, descend}

Rule Under the conditions Choose Ai, where i = With strength

3.1 a1 6= a2 argmin a 1.0

3.2 a1 = a2 1 See Table 10
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TABLE 10

Maneuver Plane Selection Rule Weights

ψ̇max ≤ 2◦/s ψ̇max > 2◦/s

ḣmax ≤ 1000 fpm 0.5 0.65

ḣmax > 1000 fpm 0.5 0.4

than for horizontal maneuvering. Furthermore, the model uses the same rules and weights for initial
maneuver decisions and updates despite a much stronger preference for horizontal maneuvers in
the latter case. Both simplifications could be readdressed in subsequent updates of the model.

It is important to reiterate that this decision-making process is not proposed to be that used
by a pilot during decision-making; rather, the weighted rules here describe the outcome of decision-
making. As noted previously, this approach does not explicitly model the decision-making process
but rather the decisions themselves.

3.3 MANEUVER MAGNITUDE

The final subfunction of the model is selection of magnitude of the maneuver—the specific
heading or altitude desired. Examination of the data collected in the HITL experiments revealed
that the maneuver magnitudes selected were well-modeled by a gamma distribution relative to the
minimum suggested maneuver in the direction selected. That is, over all of the recorded right
turns, the magnitude of the turn was gamma-distributed with respect to the displayed suggested
minimum right turn. Moreover, not only were the left turns also gamma-distributed with respect
to the minimum suggested left turn, that distribution was approximately equal to the right turn
distribution. The same trend was observed for vertical maneuvers and is consistent with a hypoth-
esis that pilots would tend to use the maneuver guidance plus some discretionary margin when
deciding upon a maneuver magnitude.

Because gamma distributions have domain x ≥ 0, the distributions were shifted to allow
selection of maneuvers smaller than the minimum suggested, a behavior that appeared in the
experimental data. The suggestive guidance constantly changes as the encounter evolves, and those
cases of the pilot commanding a maneuver smaller than the minimum suggested are attributed to
the pilot’s attention being focused away from the suggestive guidance to entry and execution of the
desired maneuver. The reference guidance for the pilot is some time in the past. It is difficult or
impossible to identify the guidance state at the moment of decision-making, but since this model
is not directly concerned with the actual cognitive processes, referencing the guidance state at the
moment of the maneuver command is acceptable.

Further examination of the maneuver magnitudes in the experimental data revealed one other
phenomenon that was incorporated into the model. The maneuver magnitude distributions differed
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for horizontal maneuvers with direction consistent with the minimum-guidance heuristic (referred
to subsequently as compliant) and those opposite (noncompliant). Compliant maneuvers were
approximately twice as large as noncompliant maneuvers, suggesting that when choosing the di-
rection requiring the larger maneuver the pilots tended to buffer their maneuvers less, perhaps
in an attempt, conscious or unconscious, to comply with their assigned objective of minimizing
deviations from course. This dependency on turn direction is reflected in the model with separate
distributions. The experimental data and the models fit to those data for compliant and noncom-
pliant turns are shown in Figures 13 and 14, respectively. These distributions give average turn
magnitudes of 30.1◦ (compliant) and 15.1◦ (noncompliant) relative to the guidance.
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Figure 13. Observed and modeled turn magnitudes for minimum-guidance compliant maneuvers (Experiment
2 data).

This behavior was not found in the vertical dimension, so the model uses a single distribution
for maneuver magnitudes in that dimension regardless of whether the heuristic was followed or
not. Figure 15 shows the data and model for vertical maneuver magnitude, where the average
altitude change relative to the guidance is 502 feet. Table 11 summarizes the gamma distribution
parameters for each of the maneuver magnitude models.

The output of the model is either a desired heading or desired altitude. This is attained by
drawing a heading change from one of these distributions and adding it to the current heading or
altitude. The resulting desired heading is discretized to 5◦ and desired altitude is discretized to 100
feet—the smallest discretization observed in the data.
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Figure 14. Observed and modeled turn magnitudes for maneuvers not following minimum guidance (Experi-
ment 2 data).
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Figure 15. Observed and modeled climb/descend magnitudes for all vertical maneuvers (Experiment 2 data).
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TABLE 11

Pilot Model Maneuver Magnitude Distributions

Maneuver Type Model

Horizontal (Compliant) ∆ψ ∼ Γ(6.21, 9.67)− 30◦

Horizontal (Noncompliant) ∆ψ ∼ Γ(5.47, 8.25)− 30◦

Vertical ∆h ∼ Γ(9.37, 207.98)− 1500 ft

A few undesirable behaviors (not consistent with the experimental data) emerged after the
initial implementation of these maneuver magnitude distributions. Several overrides were added
to tame those behaviors. First, an altitude floor of 500 feet was imposed to prevent the selection
of clearly unrealistic desired altitudes. In addition, because the distributions are independent of
the magnitude of the suggested guidance and the distributions include negative changes relative
to that guidance, it is possible for the maneuver magnitude drawn to be inconsistent with the
maneuver direction picked per the rules above. For example, a −20◦ maneuver magnitude paired
with a suggested turn 15◦ right would actually yield a left turn. To prevent this, the model bounds
the desired maneuver by the current heading or altitude, so for the previous example, the resulting
maneuver would be a 0◦ “turn”—maintain current heading, in other words. Finally, because altitude
changes often take a long time to complete, the update maneuver timing distributions above can lead
to multiple changes to the desired altitude before the originally desired altitude would have been
reached—a behavior not observed in the experiments. Consequently, vertical maneuver updates
were limited to instances where the suggestive guidance indicates the original maneuver is no
longer sufficient. Turns are usually completed much more quickly, and no modifcation to the basic
structure was needed.

3.4 DETERMINISTIC MODE

The model also includes a deterministic mode that can be selected for analyses in which
variability in the pilot response may obfuscate the effects of other subsystems under test. In this
mode, each probability distribution is replaced with its mean—e.g., a 5-second initial delay in every
instantiation of the model. All rule weights are set to unity. When run in this mode, the model will
always output the same maneuver commands for given alerting, suggestive guidance, and ownship
maneuverability input. If any of those inputs change, the maneuver output may also change.

3.5 ASSUMPTIONS AND LIMITATIONS

It is important to note that the pilot model described here models pilot behavior only under
certain circumstances: when facing a potential loss of well clear with a single intruder aircraft and
flying with a DAA system in the context of the Phase 1 DAA MOPS. The key assumptions and
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limitations of the model that must be considered when using it in a safety analysis are summarized
here.

• The unmanned aircraft is flown by keyboard: that is, to perform a maneuver, the pilot enters
a desired altitude and/or a desired heading at his or her workstation and an on-aircraft
control system actually executes the maneuver rather than directly controlling the aircraft
with a stick and rudder. Operational systems provide examples of both modes of control: the
ground control station for the Predator includes the standard manual flight controls while
the Global Hawk’s ground control station does not. In [25], Thomas and Wickens noted that
the mode of control influenced manned aircraft pilots’ maneuver decisions. The same may be
true for pilots of unmanned aircraft. Further work would be necessary to identify any effect
on the model.

• The model is based on suggestive guidance specifically from the DAIDALUS algorithm. How-
ever, the similarity of the results from Experiment 1, which used the OmniBands algorithm
for suggestive guidance, and Experiment 2, using DAIDALUS, suggests that the model may
be broadly applicable to any band-style suggestive guidance algorithm. It should be used
more cautiously with other suggestive guidance approaches such as shaded keep-out regions
similar to terrain and weather displays.

• Avoidance maneuvering commences only after a DAA alert. As previously noted, during the
experiments, pilots often recognized an impending conflict and maneuvered before an alert if
permitted. In this regard, the model is more conservative than the observed responses.

• All aspects of the maneuver decisions are correlated to the encounter geometry only through
the suggestive guidance. Further, all rule weights are fixed and uncorrelated to the encounter
geometry.

• Update maneuvers are uncorrelated from any previous maneuvers. In fact, the experiments
showed that an initial vertical maneuver was frequently followed by a horizontal maneuver,
which is not currently reflected in the model.

• Each maneuver decision is for a single axis maneuver only. Multi-axis maneuvers were selected
by pilots 5–20% of the time in the experiments, a small but not negligible number. The model
approximates multi-axis maneuvers by independently choosing the maneuver plane in each
successive maneuver decision.

• Suggestive guidance data has been smoothed. Noisy surveillance sources can cause consider-
able jitter in the suggestive guidance. The pilot model uses the guidance only at the current
time step, which may yield unrealistic maneuvers in the presence of jitter. Further work is
necessary to model interpretation of noisy data.

• Maneuver decisions are based on the instantaneous own and intruder states (or state esti-
mates) at the moment of maneuver selection and linear projections of future states. The
DAA MOPS requires that the unmanned aircraft be flying an IFR flight plan, which means
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its route is preplanned. Any intended maneuvers of the ownship to follow that route are not
considered by the model during avoidance maneuvering.

• Maneuvers are always coordinated with ATC unless a warning alert occurs. NASA’s exper-
iments suggest that this is a conservative assumption, as in those experiments pilots coordi-
nated in advance only about 70% of the time [41].

• A hard floor of 500 feet altitude is imposed that the model will not descend below. In cases
when the ownship is already below 500 feet altitude, the model will not permit the ownship
to descend to avoid traffic. The experiments did not explore encounters at very low altitudes
(the lowest was 3000 feet), and this behavior is merely asserted.

• Return-to-course decisions are not modeled, nor does the model provide any indication that
the conflict has been cleared. Returning to course prematurely was a cause of some of the
losses of well clear in NASA’s experiments [29]; in this regard, the model may be considered
slightly optimistic.

• Single intruder encounters. The logic can only interpret suggestive guidance with a single
contiguous band of no-fly headings and altitudes, which frequently is not the case in multi-
intruder encounters. Encounters with multiple intruders are not very likely in the context of
the Phase 1 MOPS, which excludes terminal area operations.

The model’s parameter values, as summarized in Appendix B, are strictly valid only under
these assumptions. However, one of the benefits of this modeling approach is that the model
parameters themselves are meaningful, something not always true for more complex approaches
like neural networks or hidden Markov models. With careful manipulation of the parameters, the
model can be used to explore the effects of changing pilot behavior. For example, one could study
the ramifications of training unmanned aircraft pilots to maneuver primarily in the vertical plane
by adjusting the associated rule weight.
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4. VALIDATION

This model of pilot traffic avoidance maneuver choices has been constructed by breaking those
choices down into subdecisions and extracting data from human-in-the-loop experiments supporting
those subdecisions. The question that remains is whether the behavior that emerges when those
pieces are put back together is anything like the behavior that was originally observed. More
broadly, the model must behave in a way that is representative of pilot behavior in the real world
to be considered valid.

Validating a model like this one is challenging for two main reasons. First, there is no “right”
answer when maneuvering to avoid nearby traffic. There are an infinite number of paths in time
and space that can be followed to remain well clear of another aircraft. Comparison of any one path
generated with the model and any one path observed in an experiment, as in Figure 16, can lend
credence to the model but does not say anything about the model’s overall validity. Instead, the
distributions of paths selected must be compared. But generating an adequately refined distribution
of observed paths is impractical—that’s why the model is needed in the first place.
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Figure 16. One response observed in Experiment 2 (left) and a simulated response (right).

One approach used to validate the model given this challenge is to compare its performance
with observed performance at a higher level. Rather than comparing trajectories, encounter out-
comes are compared: frequency of loss of well clear and frequency of near midair collision. Valida-
tion typically uses a different dataset than was used to build the model to avoid overfitting. Since
as much data as could practically be collected was required to build the model, by necessity the
same dataset had to be used for validation; however, a measure of independence was achieved by
validating with features in the data not used in building the model: loss of well clear and near
midair collision outcomes. Using a Simulink implementation of the model and the MIT Lincoln
Laboratory Collision Avoidance and System Safety Assessment Tool (CASSATT) simulation soft-
ware [42], 1000 trials were executed with the model for each of the 18 encounters from Experiment
2. Normalizing this dataset to the observed results, there were 34.24 losses of well clear (LoWC)
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and 0.14 near midair collisions (NMAC) with the model6. This compares favorably with the 38
losses of well clear and 0 NMACs observed in Experiment 2.

This assessment can be taken a step further by looking at the results for each encounter.
Losses of well clear with the model are compared with the 95% confidence bounds of the observed
results in Figure 17. The model results are within the confidence bounds for most of the encounters.
In two encounters (9 and 12), the model outperforms the pilots; in one encounter (16), the pilots
were better than the model. The nominal trajectories for each of those encounters are shown in
Figures 18–20.
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Figure 17. Comparison of observed and simulated losses of well clear.

The circling intruder in encounter 16 causes two periods of alerts, one early in the encounter
and the second late and nearly coincident with loss of well clear, that reveals a model shortcoming.
If the model maneuvers within the first alert period, approximately 10 seconds long, it is fairly
successful: of the 1000 trials this occurs in 340, and a subsequent loss of occurs in only 17% of
those—within the observed confidence bounds. On the other hand, if an initial maneuver does not
occur within that first alert period, the pilot model is disabled until the second alert period, and in
that case, 80% of the trials result in a loss of well clear. Pilots, on the other hand, were permitted
to execute a maneuver chosen during the first alert period even after the alert ended. This model
shortcoming could potentially be addressed in a future version, and in any case, it makes the model
conservative.

6 The criteria for loss of well clear were defined earlier. A near midair collision is said to have occurred when the
two aircraft approach within 500 feet horizontally and 100 feet vertically of one another [17].
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On the other hand, both encounter 9 and 12 have only a single alert period with the intruder
turning towards the ownship. In these cases, the model outperforms the pilots–substantially in
encounter 9, the encounter most challenging for the pilots. In both of these cases, following the
minimum initial guidance prompts a disadvantageous right-hand turn. What appears to mark the
difference between the pilot responses and the model responses, though, is that the pilots are slower
to command an initial maneuver. In both cases, the initial corrective alert quickly progresses to
a warning alert. In these cases, the pilot model always skips ATC coordination. It is possible
that some pilots waited for ATC approval before maneuvering or found these encounters mentally
challenging. It is worth noting that the intruder in encounter 12 is descending as well as turning,
and it was previously shown that pilots were slower to react to climbing or descending intruders.

Though this assessment has revealed some instances in which the model does not perfectly
mimic actual pilot behavior, the model does generally behave in a manner consistent with pilot
behavior. Further refinement of the model may improve specific cases of model mismatch.
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Figure 18. Experiment 2 encounter #9 trajectories.

Another validation activity that would be valuable but has not been completed is a qualitative
validation approach based on the Turing test [43], wherein a human views a response and is asked
to judge whether that response comes from another human or a machine. A new set of UAS pilot
subjects would view a set of encounters, some of which are as-flown by a human pilot (reused from
the HITL data collection experiments, perhaps) and others artificially generated using the pilot
model. The subjects would be asked to determine which were from the HITL and which from the
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Figure 19. Experiment 2 encounter #12 trajectories.
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Figure 20. Experiment 2 encounter #16 trajectories.
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model. If the subjects are unable to distinguish between the two types of encounter, the model
may be considered valid by this test.

The second validation challenge is that the task being modeled is something that pilots do not
do yet—it is an envisioned world problem [44]. Responses of pilots asked to use a prototype DAA
system to fly an unmanned aircraft in a NAS environment may not be the same as the responses
once a system is actually operational. To mitigate this issue, each pilot was extensively trained
on use of the DAA system prior to participating in the experiments—about a third of the total
time taken with each subject was spent on training. However, it is inevitable that as these systems
are deployed preferences will evolve, and the validity of the model will need to be reexamined
periodically.
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5. SAFETY ANALYSIS EXAMPLE

Validation showed that the model can generate a response similar to a known human response.
The primary utility of the pilot model is to generate responses in large sets of encounters for which
human response are unknown so as to assess the effectiveness of systems and/or procedures for safe
flight. What follows here is a simple example of a safety analysis using this model.

The first step of the analysis is to generate encounters representative of the relevant airspace.
This was done using the MIT Lincoln Laboratory Correlated Encounter Model for encounters in
the NAS [45]. The encounter model produces representative encounters between two aircraft, at
least one of which is receiving separation services from ATC. Rejection sampling was used to build
up a set of one million encounters in which the trajectory of one of the aircraft was consistent with
the following flight dynamics assumptions:

• Maximum turn rate: 3◦/s

• Maximum rate of climb/rate of descent: 3000 fpm

In addition, the sampled initial conditions were propagated backwards to begin approximately 110
seconds from the nominal (unmitigated) closest point of approach so that the resulting trajectories
begin prior to any alert.

Each encounter was simulated in CASSATT. No pilot interaction or any other safety system
was used for this initial run. From the resulting trajectories, any instances of NMAC or LoWC were
identified to establish a baseline, unmitigated probability of NMAC or LoWC given an encounter,
P (NMAC|encounter) and P (LoWC|encounter).

Next, each of the encounters was simulated in CASSATT again, this time with the DAA
system and pilot model in place. This example used a perfect surveillance system (no measurement
error and unlimited detection range), DAIDALUS for alerts and suggestive guidance, and the pilot
model in stochastic mode. Again, after simulating each of the encounters, instances of NMAC and
LoWC were identified to get the mitigated probabilities of NMAC and LoWC.

Safety metrics were then computed from the two data sets, here the risk ratios. The risk
ratio is simply the ratio of the probability of an event in the mitigated case to the probability of
an event in the unmitigated case. NMAC and LoWC risk ratios are defined in Equations 10 and
11, respectively.

RRNMAC =
Pmitigated(NMAC|encounter)

Punmitigated(NMAC|encounter)
(10)

RRLoWC =
Pmitigated(LoWC|encounter)

Punmitigated(LoWC|encounter)
(11)

Use of the ratio eliminates the unknown probability of encounter. In this example, the NMAC risk
ratio was 0.039 and the LoWC risk ratio was 0.132. These results make it evident that under these
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circumstances, the DAA system and pilot are able to substantially reduce the number of NMACs
(by about 95%) and LoWCs (by about 85%) that would otherwise have occurred. Of the NMACs
that occurred with the pilot model, about 44% were induced : the pilot maneuvers caused NMACs
to occur in encounters that would otherwise have been free of NMAC. Absent knowledge of the
intruder aircraft’s future maneuvers, the pilot may choose avoidance maneuvers that are consistent
with the suggestive guidance but that nonetheless lead to conflict.
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6. CONCLUSION

This product of this work is an empirical, rule-based, stochastic model of the maneuvers UAS
pilots choose to remain well clear of other air traffic. Multiple human-in-the-loop experiments were
conducted to explore UAS pilots’ traffic avoidance maneuver decisions when using a DAA display
showing traffic and maneuver recommendations, and the data collected in those experiments formed
the empirical foundation of the model. The model is intended for use in studying the safety of
unmanned aircraft flying in the NAS in the context of the RTCA Phase 1 DAA MOPS, where
safe operation includes not only avoiding collisions with other aircraft but also retaining enough
separation from other aircraft so as to be well clear.

Several generalizations can be drawn from the data collected in the experiments and are
reflected in the model. First, contrary to the preferences of manned aircraft pilots and air traffic
controllers documented in other studies, unmanned pilots often prefer to maneuver in the horizontal
plane. As a caveat, this preference weakens when the unmanned aircraft is highly maneuverable
in the vertical dimension or when the pilot is permitted to maneuver without an alert. Single-axis
maneuvers heavily outnumbered multi-axis maneuvers, behavior possibly driven by the expedience
of choosing and executing a single-axis maneuver. Within each maneuver plane, the preferred
maneuver direction is often consistent with the direction of the smaller maneuver suggested by the
guidance algorithm. It is not certain whether this is because the pilots are relying on the guidance,
either consciously or unconsciously, or because the guidance mirrors the mental processes of the
pilot. This behavior is worth more study, especially if this model were to be extended to situations
without displayed maneuver guidance.

There were several relevant findings relating to the timing of avoidance maneuvers. First, if
permitted to maneuver without an active alert, pilots frequently maneuvered well in advance of the
earliest alert; consequently, the model’s assumption that maneuvering does not begin until an alert
makes it conservative for safety evaluation. In addition, these experiments demonstrated that the
intended effect of recovery guidance, prompt maneuvering, was realized—pilots indeed responded
very quickly after the appearance of recovery guidance. Finally, there was evidence that climbing
or descending intruders caused increased cognitive load for the pilots and led to longer response
times. This may be a result of the overhead perspective of the display that does not explicitly show
the intruder’s vertical trajectory. This final feature was not incorporated into the model but may
be considered for a future version.

Based on characteristics of the data collected, the modeling approach selected first involved
identification of various timing elements, the dependencies of those elements, and their distributions.
Four timing elements emerged: an initial delay, an ATC coordination delay, an execution delay, and
an update delay. These constitute a cycle that permits the model to select succesive maneuvers, as
pilots have been observed to do, until the conflict has been resolved. After establishing the timing
framework, the approach chosen to model the maneuver direction choices was to derive rules from
the data. The rules used by the model include a stochastic element: for each rule, an associated
weight was identified reflecting the frequency it was followed by the pilots in the data collection
experiments. Finally, analysis of the experimental data revealed that maneuver magnitudes, when
considered relative to the suggestive guidance, are well represented by gamma distributions.
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Using that model and the Lincoln Laboratory CASSATT aircraft encounter simulation, it
has been demonstrated, as far as possible, that the model produces responses that are reasonably
representative of observed data. Further, the stochastic nature of the model is consistent with the
reality that there are many effective solutions when deciding how to avoid a nearby aircraft and
that every pilot will likely choose a different one. Finally, application of the model to a simple
safety analysis has been demonstrated, showing that with a DAA system using ideal surveillance
(no errors and no detection constraints), pilots are able to reduce instances of loss of well clear by
about 85% and near-collisions by about 95%.

The model may be used as is for safety analyses of DAA systems and can be readily tuned
to explore minor changes in pilot behavior and operating procedures. Additional work remains to
address the limitations detailed above. Of particular note, further exploration of the dependency
of the pilot’s maneuver choices on the time history of the displayed suggestive guidance is needed;
the model’s present use of only the current guidance may limit its validity in applications with
large surveillance errors. Other useful improvements include modeling a pilot’s decisions about
when and how to return to his or her original course and modeling how intended future course
changes influence traffic avoidance decisions. Additional validation work is also warranted, as well;
in particular, a Turing-like test is recommended to explore whether pilots find the model-generated
responses to be credible.
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APPENDIX A: PILOT FEEDBACK AND HUMAN FACTORS
CONCLUSIONS

After subjects completed Experiments 1 and 2, they were given the opportunity to provide
feedback on their experience via survey. This appendix summarizes the data collected from those
surveys and discusses conclusions drawn relating to human factors.

A.1 EXPERIMENT 1: NONMANEUVERING INTRUDERS

Experiment 1 concluded with a survey intended to collect the participants’ impressions of the
experiment and the displays. Most significantly, we were interested in determining whether any of
the participants had difficulties during the experiment that might be grounds for discarding that
participant’s data. In fact, all participants responded that they felt able to effectively complete the
experiment, and no data was discarded.

One question explored the factors that contributed to the choice of a horizontal maneuver.
Pilots were given a list of factors and asked to identify the most relevant. The results are shown in
Figure A.1. An interesting observation of these responses is that the suggestive guidance (“fly/no
fly bands”) ranked near the bottom.

Figure A.1. Factors contributing to choice of horizontal maneuver in Experiment 1.

Pilots were invited to add comments further clarifying their responses. Verbatim comments
included the following:

• Different situations are dictated by different aspects, such as, have I gathered intel to see if
we are flying in a place with enemy aircraft or am I flying in a place where there are crop
dusters or new pilots flying their Cessna. Also, if I am a slower aircraft and the intruder is
going faster, I would make sure that I have more of a buffer zone, using horizontal deviation.
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As my go to would be to deconflict by altitude well in advance, if they have more speed or
are maneuvering to me, I would definitely be more apt to choose to horizontally maneuver.

• At that altitude, terrain avoidance would be a factor as well. Other traffic in the area would
also be a factor if they are within +/- 5000 ft altitude.

• If I can easily lag him (conflict)[,] I will check turn to avoid the range requirement, that
way I don’t have to get permission to climb/descend as it is almost always harder to get
climbs/descents rather then turns.

• Ownship performance (climb) and uncertainty of strange traffic, intention and performance
(climb, turn).

• If already climbing/descending, considered level off for avoidance first.

• Intruder’s track.

• Ownship vs. intruder speeds are significant factor (and geometry) on whether I will turn
horiz. (my primary pref based on ATC Pref to maintain alt) or if I will climb/desc. Sometimes
it’s better (if mission allows) to maneuver even before bands become a factor, to alleviate
uncertainty of intruder’s intentions. Usually level state “encourages” horizontal maneuver as
my 1st option (in most geometries).

• When a 30 degree or less heading change could cause my aircraft to pass behind the intruder,
that would be my preference. I believe ATC would usually prefer a horizontal maneuver
without altitude change as well. However, on several simulation runs the intruder changed
heading to point at me, so this altered my choices[,] and I chose to use altitude split alone or
in combination with horizontal offset.

• Mission requirements, i.e., priority for staying on track vs[.] on altitude (vs. on speed, if it
could change).

• ATC and mission profile under normal situations would play a major factor.

• Quickest way of deconfliction, often turning towards the tail of merging traffic.

• For the most part, I picked a heading that looked good to me in the green band. Sometimes
it was 20 degree from the yellow, sometimes closer.

• Airspeed and descent rate deltas were the biggest influence on avoidance maneuver. Calcu-
lated closest point of approach.

The factors contributing to a vertical maneuver were explored as well. Figure A.2 summarizes
those responses. Again, the suggestive guidance was ranked low. In this instance, pilots provided
some specific remarks clarifying that ranking. Primarily, the pilots reported that the vertical
guidance’s position on the screen made it hard to pay attention to.

The verbatim free responses are as follows:
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Figure A.2. Factors contributing to choice of vertical maneuver in Experiment 1.

• Didn’t know where climbing/descending to[;] if ATC knows, easier.

• If I had a long time to deconflict and get approval with ATC, I would choose to deconflict by
altitude first before deviating horizontally. Since Global Hawks fly to high altitude, I would
rather do a climb and stay on mission profile, but I would want to make sure that the intruder
is staying on heading/altitude and if not I would add additional layer of safety and deconflict
horizontally.

• If climbing/descending into a flight path, I would hold or reverse altitude to avoid crossing
intruder’s or them crossing [me], especially if horizontal paths were converging too fast.

• Harder to get climbs descents but it is easiest geometry to solve. The biggest problem is
uncertainty of targets a/c maneuver at end game.

• (Possibility of lost link emergency) Didn’t consider this during simulation because it wasn’t
included. This would influence, but would depend on lost link logic of that system.

• Climbing was always preferred to descending[,] especially with low altitudes shown. Other
factors that would have affected decision making would be reasons for being a certain altitude
(wx, terrain, msn requirements).

• Overall [it was] easier to climb/descend for avoidance and minimize the time to get from pt
A to B on mission profile.

• Lack of knowledge of where intruder was leveling off.

• Don’t always know if intruder (climbing/descending) will level off[,] so this factors into Vert
MNVR plan (and the need to possibly add a horizontal MNVR component as well if miss
distance gets too close for comfort). EMER MSN (Lost Link) plan is small factor because
typically encounter is a short event, and it’s (dep. on the type of UAV) simple to adjust the
lost link waypoints to follow the deviation. Vertical MNVR usually my 2nd option in close
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(in the yellow) to increase miss dis, but my 1st option for longer range deconfliction if allowed
(in the green distances).

• If my aircraft was climbing or descending and a level-off could provide altitude separation, that
would be my preference. As noted previously, I tended to choose vertical offsets after several
runs where the intruder turned toward me; in none of the scenarios did the intruders appear
to start a climb or descent partway through the run[,] so altitude off set [sic] seemed more
certain. In general, the Fly/No Fly Bands didn’t offer any useful information (for horizontal
or vertical maneuvers) that couldn’t be determined from the informational displays. The real
question in my mind as I tried to determine an appropriate response was what the intruder
was going to do; if they were going to turn or climb/descend.

• Mission requirements. See comment for Q2 – Mission requirements, i.e., priority for staying
on track vs[.] on altitude (vs. on speed, if it could change).

• I didn’t feel like I noticed the vertical band when I was making a decision to maneuver
vertically.

• I tried to maneuver vertically as a first plan because I didn’t want [to] deviate from flight
plan route, this may be weird assumption but it’s how I would try to prioritize deviations
when able.

Another question asked whether the pilots found any information unnecessary, confusing, or
missing. The verbatim responses are as follows:

• Altitude bands were not utilized due to location on screen. Focus to heading bands is much
easier.

• Target arrow up or arrow down < 500 fpm, trend arrow for target, color code this (trend)—
maybe. Targets > 10K different altitude (unnecessary). When Target tags overlap (confus-
ing).

• I thought this system was easy to use and was easy to learn.

• It seemed pretty clear once getting used to it after a few set ups [sic]. Things began to be
easier to understand with practical use.

• I would like a flight path predictor and a temporal cue for yellow or red traffic for ownship
so maybe a 30 s bubble where they could reach in 30 s the NM rings are nice, but temporal
cues help when closure rates vary. Also I thought altitudes were unrealistically low for this
UAV class. Lost link planning should be included in some way.

• More on instructions or displays. Would have like to see a displayed other aircraft heading
displayed. I also would think Global Hawk pilots would almost never want to descend when
already so low.
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• Waiting for an alert was often unnecessary[,] especially when dealing with co-altitude aircraft.
Early deviations made avoidance easier and allowed a greater buffer of safety for further
maneuvers if non-participating [sic] a/c deviated from fight path/altitude.

• Flight level of conflict aircraft didn’t seem to be at 100 ft increment (i.e., display FL029,
actual 2950); actual altitude would be better (remove FL) background map on DAA was
unnecessary.

• Extended vector line on ownship needed to visualize if current MNVR is “enough.”

• Closest point of approach mark/line would help visualize intruders locations predicted @
passing . . . whether I need to update my MNVR or not.

• All cues/info were useful. I did not use the altitude bands for controlling, but only as feedback,
so it wasn’t as useful or necessary. The heading bands were useful and I relied on them to
minimize changes to aircraft track. With modified TAU in the horizontal plane only, this was
simple. If there was a modified TAU-type of criteria for the vertical as well (altitude)[,] this
would get much more difficult. As it was, the GUI was intuitive, easy to use[,] and I had
plenty of space mental capacity to do other things or handle multiple conflicts.

• Not really for what information was desired.

• No[t] all info and displays were logical and informative.

• I think pilots need a bit of training (obviously) and a procedure for “when you see , do ”.
This made me start to treat this exercise more as science than art. I would tend to forget
what an intruder alt had been then making me unsure if it was climbing or descending or
up or down, an up arrow or down arrow may be helpful to show trend info. Any way the
computer could give me closure speed may make it easier to do pilot math and ensure I can
out climb or descent prior to converging. Good luck with your system development. Keep up
the good work. We need this capability!

• Sometimes aircraft information was obscured by the range rings on the map. An altitude
view/profile view could give pilots better situational awareness with the lateral/overhead
view.

• Miss distance criteria not standard. Instructions as to priorities, minimal deviation of track
vs. miss distance.

• Depiction of flight path and altitude prediction, based on current headings and VVI would
be useful. All my altitude corrections were basically guesses.

A final question explored whether have to wait for an alert before maneuvering caused a
conscious change in strategy. Responses to this question, as shown in Figure A.3, were sharply
divided.
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Figure A.3. Influence of maneuver protocol on maneuver strategy.

A.2 EXPERIMENT 2: MANEUVERING INTRUDERS

As in Experiment 1, Experiment 2 concluded with a survey to collect the participants thoughts
on the experiment. Again, one of the main interests was to ascertain whether any of the pilots
faced difficulties during the experiment that could invalidate his or her data. That was not the
case and no data were discarded.

Questions about factors motivating horizontal and vertical maneuvers were included, with
results shown in Figures A.4 and A.5. Of particular note, the suggestive guidance ranked higher
compared to Experiment 1—despite no change to its appearance on the display. The cause of
this is not known. Perhaps, as some pilots in this experiment also participated in Experiment 1,
familarity with the suggestive guidance improved its usefulness.

Concluding comments (verbatim) made by the pilots after the experiment are as follows:

• With the info that the system provided I would [try] to correct before the ATC clearance
came back.

• Good facsimile of VGCS/OSGCS (Army) GCS command system.

• Seemed to be 30 sec of each run, at the end, that added little value.

• I felt the display gave me good situational awareness and enough information to avoid traffic[.]

52

Approved for public release, Case Number 88ABW-2017-1669, 10 Apr 2017



Figure A.4. Factors contributing to choice of horizontal maneuver in Experiment 2.

Figure A.5. Factors contributing to choice of vertical maneuver in Experiment 2.
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• Small symbols or poor symbology make it hard to identify variations of yellow.

• Recommend adding other colors or changing shapes[.]

• More complex distractions could make the simulation more realistic[.]

• Very good TCAS-like display with great SA. Horizontal banding was great not available in
TCAS II[.]

• Good Sim Representations and Data Collection, Thank you! Good Luck!, Well thought out
+ presented[.]

• It will be even more “fun”/interesting to work multiple conflicting targets.

• Vertical separation predictor requires higher workload in a red warning alert. Needs better
visual cues.

• Not a good simulation for RQ-4 where you primarily minimize time in the terminal environ-
ment and you almost always prefer to climb above conflicts if possible[.]

• Moving map integration would be helpful. Good visual indications of avoidance possibilities
provided by the GUI.

• I felt the A/C w/ degraded performance required more planning as it didn’t turn or climb
well. Sometimes when the A/C info box crossed the mile rings I couldn’t read the info.

• Program was easy to understand and helpful to do the practice exercises first.

• Include abnormal responses to tests (red, failures, abnormal readings)[.]

A.3 EXPERIMENT 3: MANEUVER UPDATES

Experiment 3 did not include a survey. The participants were, however, encouraged to “think
aloud” while completing the experiment. The key points gleaned from those remarks by the test
directors are as follows:

• Many turned behind the intruder when maneuvering horizontally and leveled off for vertical
maneuvers.

• Most thought heading bands were intuitive but altitude bands somewhat misleading.

• Aggressive intruders caused more than typical use of vertical maneuvers.

• Pilots appreciated green heading bands indicating that returning to course would be safe.

• Many learned to wait for the alerts and guidance in making both initial and updated maneu-
vers after observing if the prescripted maneuver was sufficient for safety.

• Some pilots verbally disagreed with type, direction, and magnitude of prescripted maneuvers.
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• Some felt they needed to compensate a bit when surveillance was inaccurate.

• Some encounters were held to be unrealistically challenging with an aggressive intruder “like
a magnet.”

• There was a tendency to maneuver more than necessary, but pilots learned more finesse with
practice.

• Some pilots remarked about unrealistic flying characteristics of intruders and/or encounters.

• Sometimes pilots disagreed with the suggestive guidance bands, feeling that the suggestions
were either unreasonable or lagging.

• Some felt the display encourages horizontal maneuvers even when vertical is preferred.

• Only some pilots considered the right-of-way rules; general aviation pilots were observed to
be the most likely to comply.

• The appearance of recovery bands was generally held to be prominent, and most pilots re-
sponded quickly when recovery guidance appeared.
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APPENDIX B: MODEL PARAMETER SUMMARY

Values for each of the model parameters, as derived from the experimental data, are summa-
rized here.

TABLE B.1

Pilot Model Parameter Values

Parameter Description Stochastic Deterministic

initialDelayMin Minimum time of initial delay from alert to 0.0 5.0
to beginning of ATC coordination. [seconds]

initialDelayMu Mean of exponentially distributed random 5.0 0.0
component of initial delay before beginning
ATC coordination. [seconds]

coordDelayMin Minimum time of delay for coordination 0.0 11.0
with ATC. [seconds]

coordDelayK Shape parameter of gamma distributed 5.5 0.0
random component of ATC delay.

coordDelayTheta Scale parameter of gamma distributed 2.0 0.0
random component of ATC delay.

executionDelayMin Minimum time of execution delay from end 0.0 3.0
of ATC coordination to transmission of
maneuver command to own aircraft.
[seconds]

executionDelayMu Mean of exponentially distributed random 3.0 0.0
component of execution delay. [seconds]

minUpdateTime Minimum time to next maneuver decision [12,12,9,6,6,0] [12,12,9,6,6,0]
by alert level. [seconds]

meanUpdateTime Mean time in addition to minimum to next [12,12,6,3,3,3] [12,12,6,3,3,3]
maneuver decision by alert level. [seconds]

Continued on next page
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TABLE B.1 – continued from previous page

Parameter Description Stochastic Deterministic

probFollowMinDev Preference weight for maneuvering in the 0.8 1.0
direction of the smaller suggestion for each
maneuver plane.

probLeftTurn Preference weight for choosing left turn 0.6 1.0
over right if minimum suggestion is
inconclusive.

maxRelativeHdg Maximum heading difference for which the 40.0 40.0
larger of the heading suggestions may be
selected. [degrees]

probDescend Preference weight for choosing to descend 0.5 0.0
rather than climb if minimum suggestion is
inconclusive.

probTurn Preference weight for choosing to turn [0.5, 1.0, 1.0; [1, 1, 1;
rather than climb or descend as a function 0.0, 0.5, 0.65; 1, 1, 1;
of ownship maneuverability. 0.0, 0.5, 0.4 ] 1, 1, 1]

turnK Shape parameter for gamma distributed 6.21 0.0
horizontal maneuver magnitude relative to
the minimum suggestion when direction
selected complies with the minimum
suggestion heuristic (primary turn
direction).

turnTheta Scale parameter for gamma distributed 9.67 0.0
horizontal maneuver magnitude relative to
the minimum suggestion in the primary
turn direction

turnOffset Offset of turn magnitude gamma -30.0 30.0
distribution for turns in the primary
direction.[degrees]

turnK alt Shape parameter for gamma distributed 5.47 5.0
horizontal maneuver magnitude relative to
the minimum suggestion for turns opposite
the primary direction.

Continued on next page
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TABLE B.1 – continued from previous page

Parameter Description Stochastic Deterministic

turnTheta alt Scale parameter for gamma distributed 8.25 0.0
horizontal maneuver magnitude relative to
the minimum suggestion for turns opposite
the primary direction.

turnOffset alt Offset of turn magnitude gamma -30..0 15.0
distribution for turns in the primary
direction.[degrees]

altitudeK Shape parameter for gamma distributed 9.73 0.0
vertical maneuver magnitude relative to
the minimum suggestion in the selected
direction.

altitudeTheta Scale parameter for gamma distributed 207.98 0.0
vertical maneuver magnitude relative to
the minimum suggestion in the selected
direction.

altitudeOffset Offset of vertical maneuver magnitude -1500.0 0.0
gamma distribution. [feet]
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GLOSSARY

A/C Aircraft

ADS-B Automatic Dependent Surveillance-Broadcast

ATC Air Traffic Control

CASSATT Collision Avoidance System Safety Assessment Tool

DAA Detect and Avoid

FL Flight Level

GUI Graphical User Interface

HALE High Altitude Long Endurance

HITL Human-in-the-Loop

HMD Horizontal Miss Distance

IFR Instrument Flight Rules

LL Lincoln Laboratory

LoWC Loss of Well Clear

MALE Medium Altitude Long Endurance

MFD Multifunction Display

MIT Massachusetts Institute of Technology

MNVR Maneuver

MOPS Minimum Operational Performance Standard

NAS (United States) National Airspace System

NMAC Near Midair Collision

PFD Primary Flight Display

SA Situational Awareness

SAA Sense and Avoid (equivalent to DAA)

TCAS Traffic Alert and Collision Avoidance System

UAS Unmanned Aircraft System

VMD Vertical Miss Distance

VVI Vertical Velocity Indicator
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