
AFRL-RY-WP-TR-2019-0115

CASUAL, ADAPTIVE, DISTRIBUTED, AND EFFICIENT
TRACING SYSTEM (CADETS)
Amanda Strnad and Quy Messiter

BAE Systems

Robert Watson and Lucian Carata

University of Cambridge

Jonathan Anderson and Brian Kidney

Memorial University of Newfoundland

SEPTEMBER 2019
Final Report

Approved for public release; distribution is unlimited.

See additional restrictions described on inside pages

STINFO COPY

AIR FORCE RESEARCH LABORATORY
SENSORS DIRECTORATE

WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320
AIR FORCE MATERIEL COMMAND

UNITED STATES AIR FORCE

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or permission to
manufacture, use, or sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs
security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09. This report is available to the general
public, including foreign nationals.

Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RY-WP-TR-2019-0115 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

*//Signature// //Signature//
TOD J. REINHART DAVE G. HAGSTROM, Chief
Program Manager Resilient and Agile Avionics Branch
Resilient and Agile Avionics Branch Spectrum Warfare Division
Spectrum Warfare Division

//Signature//
NEERAJ PUJARA
Spectrum Warfare Division
Sensors Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

*Disseminated copies will show “//Signature//” stamped or typed above the signature blocks.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a
collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

September 2019 Final 9 June 2015 – 5 June 2019
4. TITLE AND SUBTITLE

CASUAL, ADAPTIVE, DISTRIBUTED, AND EFFICIENT TRACING
SYSTEM (CADETS)

5a. CONTRACT NUMBER
FA8650-15-C-7558

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
N/A

6. AUTHOR(S)

Amanda Strnad and Quy Messiter (BAE Systems)
Robert Watson and Lucian Carata (University of Cambridge)
Jonathan Anderson and Brian Kidney (Memorial University of
Newfoundland)

5d. PROJECT NUMBER
DARPA

5e. TASK NUMBER
N/A

5f. WORK UNIT NUMBER
 Y1AY

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
 REPORT NUMBER

BAE Systems
600 District Ave.
Burlington, MA 01803

University of Cambridge

Memorial University of
Newfoundland

AFRL-RY-WP-TR-2019-0115

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
 AGENCY ACRONYM(S)

Air Force Research Laboratory
Sensors Directorate
Wright-Patterson Air Force Base, OH 45433-
7320
Air Force Materiel Command
United States Air Force

Defense Advanced
Research Projects
Agency (DARPA/I2O)
675 North Randolph St.
Arlington, VA 22203

AFRL/RYWA
11. SPONSORING/MONITORING
 AGENCY REPORT NUMBER(S)

AFRL-RY-WP-TR-2019-0115

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
The U.S. Government has for itself and others acting on its behalf an unlimited, paid-up, nonexclusive,
irrevocable worldwide license to use, modify, reproduce, release, perform, display, or disclose the work by or
on behalf of the U.S. Government. Report contains color.

14. ABSTRACT
CADETS unifies kernel and userspace tracing to provide provenance information that interconnects events
across multiple nodes in a distributed system. CADETS combines and improves on the FreeBSD Audit and
DTrace subsystems, and extends the original DTrace design to support distributed tracing across multiple
hosts. Its Loom and LLVM-prov frameworks leverage the LLVM compiler for software instrumentation and
for bridging userspace and kernel space information flow with precision.

15. SUBJECT TERMS
software instrumentation, provenance, information flow, FreeBSD, DTrace, LLVM, hypervisor

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT:

SAR

8. NUMBER OF
PAGES
 57

19a. NAME OF RESPONSIBLE PERSON (Monitor)
a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

 Tod Reinhart
19b. TELEPHONE NUMBER (Include Area Code)

N/A
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39-18

i
Distribution Statement A: Approved for public release: distribution is unlimited.

TABLE OF CONTENTS
List of Figures ... iii
List of Tables .. iii

1 SUMMARY .. 1

2 INTRODUCTION ... 2

2.1 Problem Description .. 2

2.2 Research Goals ... 2

2.3 Evolution of Approach ... 3
2.3.1. EQ Simplified to D Language Improvements .. 4
2.3.2. WATCHMAN Replaced by DTrace and Loom/LLVM-Prov 4
2.3.3. DEQUE Redefined as DDTrace ... 5

2.4 System Overview ... 5
2.4.1. FreeBSD Audit ... 6
2.4.2. Audit DTrace Provider .. 6
2.4.3. DTrace.. 7
2.4.4. Hypervisor Tracing ... 7
2.4.5. DDTrace ... 7
2.4.6. Loom .. 7
2.4.7. LLVM-Prov ... 7
2.4.8. CDM Translator .. 8
2.4.9. LibPVM ... 8
2.4.10. Neo4j Database Optimization ... 8
2.4.11. User Interface (UI) .. 8

2.5 Upstreaming and Transition .. 9

3 METHODS, ASSUMPTIONS, AND PROCEDURES 10

3.1 Tracing User Space ... 10
3.1.1. Loom .. 11
3.1.2. LLVM-Prov ... 15

3.2 Tracing Kernel Space .. 18
3.2.1. Integrating FreeBSD Audit and DTrace .. 18
3.2.2. A Transparent Operating-System Design ... 19
3.2.3. Distributed DTrace ... 19

3.3 CDM Translator ... 22

3.4 LibPVM .. 23
3.4.1. The PVM Model .. 24
3.4.2. The libPVM Implementation ... 26

ii
Distribution Statement A: Approved for public release: distribution is unlimited.

3 METHODS, ASSUMPTIONS, AND PROCEDURES 10

3.5 Neo4j Database Optimization .. 27

3.6 User Interface .. 28

4 RESULTS AND DISCUSSION .. 31

4.1 Engagement 1 (E1) ... 31
4.1.1. New Features ... 31
4.1.2. Results ... 31

4.2 Engagement 2 (E2) ... 31
4.2.1. New Features ... 31
4.2.2. Results ... 31

4.3 Engagement 3 (E3) ... 32
4.3.1. New Features ... 32
4.3.2. Results ... 32

4.4 Engagement 4 (E4) ... 32
4.4.1. New Features ... 32
4.4.2. Results ... 33

4.5 Engagement 5 (E5) ... 34

4.6 Userspace Tracing .. 35
4.6.1. Loom .. 35
4.6.2. LLVM-Prov ... 36

4.7 Kernel Tracing ... 37
4.7.1. FreeBSD Audit and the DTrace Audit Provider 37
4.7.2. Distributed DTrace ... 38

4.8 Performance Overhead ... 40

4.9 LibPVM .. 42

4.10 Neo4J Database Optimization ... 43

4.11 UI ... 46

5 CONCLUSIONS .. 47

6 REFERENCES .. 49

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 50

iii
Distribution Statement A: Approved for public release: distribution is unlimited.

List of Figures

Figure Page
Figure 1 The CADETS workflow .. 4
Figure 2 Overview of the CADETS data-gathering pipeline 6
Figure 3 Loom/LLVM-prov Overview .. 11
Figure 4 LLVM Compilation Flow ... 12
Figure 5 MetaIO Instrumentation Example ... 17
Figure 6 High-level View of DDTrace ... 21
Figure 7 DDTrace Overview ... 22
Figure 8 libPVM Overview .. 24
Figure 9 PTTY Mapping to PVM Example .. 25
Figure 10 exec Syscall Mapping to PVM Example ... 25
Figure 11 Neo4j Optimized Design... 28
Figure 12 CADETS UI Focused on a Single Node ... 29
Figure 13 Activity on E3 Kafka Topics .. 32
Figure 14 Activity on E4 Kafka Topics .. 33
Figure 15: Activity on E5 Kafka Topics ... 35
Figure 16 Varying Levels of Granularity for Different Traces 41
Figure 17 Comparison of Time Required to Compile FreeBSD While Tracing 42
Figure 18 libPVM performance by trace size .. 43
Figure 19 Performance of Different Transaction Engines for Neo4j 44
Figure 20 Comparison of Ingestion Speed ... 45
Figure 21 Storage Needed Per Edge in Graph .. 46

List of Tables

Table Page
Table 1 List of Fully-instrumented Binaries .. 36
Table 2 List of Partially-instrumented Binaries ... 37

1
Distribution Statement A: Approved for public release: distribution is unlimited.

1 SUMMARY

Computers today face sophisticated attacks, which can remain hidden on the
compromised machine for long periods of time, slowly gathering information to
exfiltrate. Some spread from machine to machine across the network. Unfortunately,
over the past 30 years, tools haven’t changed enough to keep up with the
innovations in attacks.

As part of the DARPA Transparent Computing (TC) program, we created a Causal,
Adaptive, Distributed, and Efficient Tracing System (CADETS). CADETS improves
on existing audit and information flow tracking systems that exist today, and brings
them into the 21st century.

Initially, CADETS worked to improve the tracing available on FreeBSD. We did this
by expanding the sources of information available to DTrace to include data from
audit, a security logging program that meets the Common Criteria (CC) Common
Access Protection Profile (CAPP), along with adding persistent universally unique
identifiers (UUIDs) to kernel objects.

CADETS has greatly improved the capability of FreeBSD to produce detailed traces
across machines. We have learned first-hand the difficulties of tracing distributed
systems and started work to allow distributed tracing across heterogeneous
machines in our Distributed DTrace (DDTrace) capability.

Application developers are focused on the interesting behavior of their own
programs. While they may add debugging features to help debug their program,
these may not be the same information useful for understanding compromised
systems. By modifying the LLVM compiler, we were able to add information including
provenance data to traces without manually making changes to each individual
application. This is accomplished using our Loom/LLVM-Prov frameworks.

2
Distribution Statement A: Approved for public release: distribution is unlimited.

2 INTRODUCTION

2.1 Problem Description

Contemporary computer systems face attackers who are sophisticated, pervasive,
and persistent, and who are also able to exploit information asymmetries that allow
them to “hide in plain sight” due to the opacity of current software designs. Security
and systems researchers have little to boast about; current auditing and forensic
tools are trapped in the 1980s and 1990s as: (1) they focus on symptomatic events
that are easy to log (e.g., system calls that were the focus of the Orange Book or
Common Criteria) rather than causal relationships (e.g., relating application-internal
security behavior to system-wide events); (2) they remain fundamentally local as our
most critical systems (and hence attacks on them) have become distributed, scaling
poorly with respect to both performance and analysis capabilities; (3) they are
unresponsive to changes in analyst requirements, especially as forensic
investigators shift their focus within live systems; and (4) they fail to support a
virtuous cycle in which analysts and software authors improve the self-descriptive
capabilities of deployed systems as experience is gained, to make them more
responsive to analysis over time.

2.2 Research Goals

To address flaws in current systems, we developed CADETS, a solution grounded in
fundamental improvements in dynamic instrumentation, scalable distributed tracing,
and programming-language support for compiler driven instrumentation. CADETS
enables analysts to explore both historic and live events by providing provenance
data well suited for causal backtracking and temporal pattern matching. To support
the causal analyses required for in-field forensics, CADETS introduces local and
distributed information-flow to be accomplished through new static and dynamic
software instrumentation techniques and a distributed tracing model. Local and
distributed information flow tracking provides fine-grained inspection of local systems
as well as holistic visibility into and correlation of suspicious activities across nodes
in a network. New static analyses are needed to automate instrumentation of
userspace applications without requiring modification of source code. Furthermore,
static interprocedural analysis helps to define precise source/sink relationships,
avoiding data explosion in provenance tracking. New dynamic software
instrumentation techniques are required to extend the types of events and data that
can be captured in a consistent and reliable manner. Finally, a distributed tracing
model offers a cohesive and scalable information tracking solution that spans
multiple systems. Our target platform is FreeBSD, although many of the technologies
we will be using and developing could apply to other deployed systems. Intrinsic to
the CADETS design is consideration that performance is a critical aspect with goals
to minimize memory, compute, and network overhead.

The instrumentation of userspace software without modifying the source code allows
for many parts of the operating system to be instrumented with minimal intervention
by the end user. DTrace provided some of this functionality through DTrace
providers (e.g. function boundary tracing) but instrumentation using these tools often
lacked semantics. In a previous DARPA project, CRASH, members of the CADETS
team had developed a tool for verifying temporal assertions in software called

3
Distribution Statement A: Approved for public release: distribution is unlimited.

Temporally-Enhanced Security Logic Assertions (TESLA). It was recognized that the
static analysis and instrumentation portion of this tool could be extracted and
modified to be used as a general instrumentation framework. The results of this work
is Loom. In order to maintain the same level of visibility as information flows from
userspace to the operating system (OS) kernel, advancement in the integration of
userspace and kernel space tracing is required. LLVM-Prov leverages Loom to
address this need and explores static analysis methods to enhance provenance
tracking.

CADETS exploits recent advances in OS and compiler instrumentation and tracing
technologies that offer new insight into whole-system behavior. Part of our work is
refocusing existing frameworks for forensic investigation rather than debugging or
performance measurement – among other things, improving integrity, confidentiality,
and reliability, namely with the FreeBSD Audit and DTrace systems. In addition, we
also introduced support for distributed causal analysis at scale through the
development of DDTrace which leverages DTrace to provide tracing across nodes
networked together as part of a distributed system. We also implemented a
hypervisor tracing capability called HyperTrace that allows tracing of guest virtual
machines (VMs) from a single host.

While DTrace and Loom/LLVM-Prov are the crux of our research, we’ve also
explored other research areas to bolster the operation use of our system. This
includes new graph data format specifications and graph database optimizations.

2.3 Evolution of Approach

Initially, we sought to achieve our research goals based on the concept of the
following components:

 Event Query (EQ) is a query and instrumentation language for use by both
human analysts and automated systems. It would allow analysts to specify
queries that would direct instrumentation across local and distributed systems.

 WATCHMAN is a framework to instrument and trace operating system and
application behavior within local systems. It is responsible for taking queries
from the EQ front end and compiling to a variety of tracing, temporal tracking,
and information flow back ends.

 DEQUE: DISTRIBUTED EVENT QUERIES FOR EQ links both a front-end
analytics system fielding EQ with WATCHMAN agents on nodes across the
heterogeneous distributed system, and coordinates tracing between nodes in
the system.

Figure 1 depicts these concepts.

4
Distribution Statement A: Approved for public release: distribution is unlimited.

Figure 1 The CADETS workflow

This first design revolved around the idea of enabling an adaptive instrumentation
approach where the CADETS system can adjust to selective levels of data focus or
resolution. However, early achievements in DTrace and Loom/LLVM-Prov
development, as well as the impracticality of that approach during live engagements
where multiple TA2 performers are supported, lead to a different architecture.

2.3.1. EQ Simplified to D Language Improvements

In our initial efforts towards the development of an EQ language (that borrows syntax
from the D language and TESLA’s C-based temporal assertions), we found that the
natural and pragmatic approach was to reuse the D language itself to specify the
type and granularity of tracing across programs that run on one or more hosts. Only
small changes were made to the D language, allowing us to avoid alienating core
users from the open source community while also providing the necessary
instrumentation granularity.

Furthermore, to provide higher level semantics, we have adapted the Observed
Provenance in User Space (OPUS) system to allow TA2 teams or analysts to
answer provenance and trust questions (e.g. what was the sequence of steps that
resulted in the creation of this graph node?). OPUS uses a Portable Operating
System Interface (POSIX) compliant Provenance and Versioning Model (PVM).
While useful, this model is too tightly coupled to the POSIX semantics. Thus, we
updated the PVM model to a second version (PVMv2) to allow us to express and
explore other non-POSIX compliant models. This version is implemented in the
libPVM library.

2.3.2. WATCHMAN Replaced by DTrace and Loom/LLVM-Prov

The original goal was to design and implement a framework to instrument and trace
OS and application behavior within both local and distributed systems. Leveraging

5
Distribution Statement A: Approved for public release: distribution is unlimited.

existing instrumentation mechanisms, CADETS proposed to develop new techniques
such as just-in-time re-instrumentation based on “fat binaries” -where LLVM
intermediate representation (IR) is stored along with the native instruction stream-,
extend DTrace to support information flow and temporal expressions, develop new
instrumentation agents, add information flow through OS and across programs, link
automata to information flow tags, and address implicit flows.

However, early successes achieved with DTrace and Loom/LLVM-Prov technologies
lead to the abandonment of the WATCHMAN implementation. We instead rely on
DTrace (in the kernel space) and Loom/LLVM-Prov (in the userspace) frameworks to
perform instrumentation and tracing at both the local and distributed level. Our
approach to implementing the instrumentation agents is motivated by the need to
provide transparency which in turn facilitates not only provenance analysis, but also
debugging and performance analysis. To this extent, our audit provider (dtaudit)
bridges the gap between debugging and auditing. In addition to creating new
providers for DTrace (i.e. dtaudit, mbuf), we have also fixed bugs and made
improvements to the framework. Our changes have been upstreamed to FreeBSD
and are being used by the open source community.

In the userspace, Loom/LLVM-Prov performs instrumentation and tracing. Loom
automatically weaves into programs a new system call (dt_probe) that reports arbitrary
event data. LLVM-Prov, an instrumentation framework based on LLVM, provides
provenance tracking by performing automatic intra- and inter-procedure analysis
without modifying the source code. LLVM-Prov also provides support for MetaIO by
augmenting system calls to track UUID. Furthermore, to enable analysis and
instrumentation across entire programs, we have provided support for LLVM IR fat
libraries (i.e. all the FreeBSD libraries are compiled this way).

2.3.3. DEQUE Redefined as DDTrace

As EQ and WATCHMAN were reconceptualized, DEQUE’s role, originally to
distribute EQ event queries to WATCHMAN nodes, was also redefined. However, its
overall goal of providing a distributed tracing framework that reconciles the trace
data across layers and nodes is served by DDTrace.

2.4 System Overview

DTrace technology and the Loom/LLVM-Prov framework form the basis of
instrumentation for the current CADETS system. At the kernel level, existing and
new CADETS DTrace probes record an expanded set of system behaviors. For
userspace applications, Loom user-defined policy files are used to establish the
instrumentation points for target applications and libraries as well as throughout the
FreeBSD OS. In addition, enhanced kernel data flow tracking is provided by LLVM-
Prov. These technologies are integrated to achieve whole system information
tracking across multiple hosts. While DTrace and the Loom/LLVM-Prov framework
are the key components of CADETS instrumentation, the system is supported by
other components that contributed to the operation and workflow of CADETS as
illustrated in Figure 2. A description of each component in CADETS is provided
below. For more detailed information regarding the implementation of each
component, please consult our Software Subsystem Design Document (SSDD).

6
Distribution Statement A: Approved for public release: distribution is unlimited.

Figure 2 Overview of the CADETS data-gathering pipeline

2.4.1. FreeBSD Audit

The FreeBSD audit implementation targets the Common Criteria (CC) Controlled
Access Protection Profile (CAPP), which mandates logging of security-critical system
events. We have extended the audit implementation as follows to take into account
the specific requirements of the DARPA Transparent Computing program, including
capturing new events, associating UUIDs with key subjects and objects in the kernel,
adding Message IDs to Inter-Process Communication (IPC) and network packets,
and capturing additional contextual information such as system-call arguments.
Many of these features have been upstreamed to FreeBSD, appearing in FreeBSD
11.x and 12.0.

2.4.2. Audit DTrace Provider

We have implemented a new Audit DTrace Provider (dtaudit) that allows DTrace to
directly instrument and capture audit events. The DTrace provider observes the set
of audit events available in the system, gathered at boot from the system audit
configuration, and as required after boot by the audit daemon (auditd). Two DTrace
probes are exposed for each possible event: a probe that fires when a record is
committed on system-call completion, and later when the record is converted to
basic security module (BSM) to be written to disk. DTrace scripts can specify a set of
audit events to instrument, and gain access to the in-kernel data structure—and, in
the case of the BSM hook, also the associated BSM-formatted record. We have
upstreamed this support to FreeBSD, appearing in FreeBSD 12.0.

7
Distribution Statement A: Approved for public release: distribution is unlimited.

2.4.3. DTrace

Dynamic Tracing, or DTrace, is an operating-system tracing facility that allows
programmer or administrator-provided D-language scripts to instrument system
behavior, process results in kernel, and log them. We employ a CADETS-specific
audit.d script that instruments key audit events using the Audit Provider, and then logs
them in a JavaScript object notation (JSON) format to DTrace output.

In earlier program engagement events, we sent the JSON output to DTrace stdout,
from which it was converted to the Transparent Computing Common Data Model
(CDM), and then sent over Kafka. In the final two engagements, DDTrace has been
integrated directly into the in-kernel DTrace implementation and is used instead.

2.4.4. Hypervisor Tracing

Hypervisor tracing allows DTrace in a FreeBSD bhyve hypervisor host to instrument
DTrace probes in bhyve guests, permitting a single D script to instrument and
process data from the host and multiple virtual machines. This work consists of
several parts, including VirtIO drivers allowing the host and guest to asynchronously
exchange probe information, a new hypercall to allow the guest to synchronously
notify the host DTrace instance of probes firing, and modest DTrace extensions to
allow selection between guest and host probes when writing a script.

2.4.5. DDTrace

Distributed DTrace allows DTrace output gathered on one system to be forwarded,
via dlog, a reliable distributed queue based on the Kafka protocol, to other systems in
a wider distributed system. dlog has multiple parts to its implementation, including a
kernel component allowing DTrace to feed output into the log, and dlogd, which
reliably streams logs over the network to a Kafka server. It also addresses
heterogeneity issues arising from differences in instrumented nodes—e.g., as may
arise due to different underlying architecture, kernel modules loaded, or operating-
system version—by transmitting DTrace state such as data types over the same
queue. Some further changes were also made to DTrace to permit reliable tracing
during early boot and shutdown.

2.4.6. Loom

Loom is a general-purpose library for adding instrumentation to software in the LLVM
IR format. It is currently capable of generating static instrumentation points that
expose values (e.g., function parameters and return values) to software-defined
instrumentation functions. Loom is used to add additional instrumentation to userland
binaries, both programs and libraries, in FreeBSD. The resulting data is passed into
DTrace to be collected into the CADETS trace.

2.4.7. LLVM-Prov

Using Loom, LLVM-Prov adds to the instrumentation by propagating precise user-
space provenance. It does this with the support of new kernel system calls via a

8
Distribution Statement A: Approved for public release: distribution is unlimited.

mechanism called MetaIO. By providing insight into source-to-sink information flow
at the kernel level, LLVM-Prov helps to avoid the provenance path explosion
problem that occurs when the lack of visibility results in inferences about the causal
dependencies of data sources/sinks.

2.4.8. CDM Translator

The CDM Translator is a program which converts the CADETS traces from the
JSON format generated by the DTrace scripts to the CDM format. CDM is the
standard format for all TA1s on TC to produce.

The CADETS JSON data is event-based, while CDM uses additional objects in
addition to events. The CDM Translator uses semantic knowledge of the events on a
CADETS system to create the objects, such as FileObjects or NetFlowObjects, as
reliably as possible.

2.4.9. LibPVM

LibPVM is a library enabling the CADETS output data to be transformed from a
linear system log to a provenance graph on the TA1-side. This provides a graph
model of the data which accurately reflects the semantics of the underlying trace,
irrespective of the final serialization format such as PVM-graph, CDM, comma-
separated values (CSV). The library includes functionality for data ingestion, on-the-
fly graph generation, and limited querying capabilities.

The library leverages work done on provenance modelling (PVM, the Provenance
Versioning Model) and has its own serialization format (PVM-graph).

LibPVM was used as a data quality control component in CADETS, playing the role
of an in-house TA2 for the purposes of understanding what information is missing
from the trace and whether attack components have been captured.

2.4.10. Neo4j Database Optimization

LibPVM uses the Neo4j graph database for storing and querying the PVM-graph
serialization of the data. Especially when used for real-time ingestion, the quantity of
data places a significant stress on the database backend, which is not designed for
write-heavy workloads.

As both libPVM and other TA2 performers were using Neo4j as a backend for their
data, we have created a new storage backend for Neo4j that is optimised for the
provenance-ingestion usecase (better write-concurrency support, better on-disk
layout).

2.4.11. User Interface (UI)

While Neo4j is a graph visualization tool, it is not designed as an interactive tool for
investigating a security attack. The CADETS UI offers practical search panes and
views to enable analysts to inspect individual nodes (representing processes and I/O
objects etc.) and explore PVM data to build attack graphs.

9
Distribution Statement A: Approved for public release: distribution is unlimited.

2.5 Upstreaming and Transition

Throughout the CADETS project, our goal has been to upstream improvements to
open-source software, increasing the chances of industrial adoption. This has
included:

 Upstreamed improvements to the FreeBSD audit implementation, appearing
in FreeBSD 11.0 and later.

 The FreeBSD DTrace Audit Provider, appearing in FreeBSD 12.0 and later.

 A variety of audit-event additions and other audit-framework improvements
appearing in the OpenBSM open-source GitHub repository.

We have created a new OpenDTrace distribution of DTrace, based on the FreeBSD
and Mac OS X implementations, which has now been adopted by Microsoft in their
Windows implementation of DTrace.

10
Distribution Statement A: Approved for public release: distribution is unlimited.

3 METHODS, ASSUMPTIONS, AND PROCEDURES

3.1 Tracing User Space

User-space tracing evolved over the life of the CADETS project, beginning with
infrastructure for pure user-space tracing, evolving into a set of tools that empower
better kernel-space tracing and finally growing into tools that provide both user- and
kernel-space inputs into CADETS traces.

Loom was developed as a generalized instrumentation framework, based on
previous work under the DARPA CRASH program called TESLA. That work, which is
a part of the Clean Slate Trustworthy Secure Research and Development (CTSRD)
project, used LLVM to instrument software for dynamic validation of temporal
security properties. TESLA provided two forms of inspiration for the CADETS project:
its temporal assertion language inspired our initial thoughts on the EQ language and
its instrumentation library inspired the development of Loom.

Loom is a general-purpose framework for instrumenting any program that is
expressed in the LLVM IR. Unlike the TESLA instrumentation code that was
interwoven with the semantics of temporal assertion checking, Loom can be used to
add arbitrary instrumentation driven by either a policy file or by direct application
programming interface (API) interaction. These interfaces evolved throughout the
course of the CADETS project.

The policy file interface was added to Loom at the very beginning of the CADETS
project, even before any instrumentation code had been written. Our original vision
for user-space tracing was that instrumented code would submit trace events to a
user-space service (WATCHMAN) that would aggregate traces from multiple
sources on a host and forward them along to higher-level aggregators elsewhere in
the network. Over the first year of the project we developed the basic framework,
added multiple forms of logging output and implemented machine-readable output
via libxo.

In the second year of the project, we began to focus on the API-driven use case for
Loom as we started the development of LLVM-Prov. The LLVM-Prov use case was
the primary driver for Loom in the second and third years of the project, but in the
fourth year of the CADETS project we renewed our efforts to use Loom as a
standalone source of trace events. Figure 3 provides a high-level overview of
Loom/LLVM-prov.

11
Distribution Statement A: Approved for public release: distribution is unlimited.

Figure 3 Loom/LLVM-prov Overview

3.1.1. Loom

Loom leverages the LLVM compiler tool change to do much of the mechanical work
for instrumenting source code. LLVM compiler front-ends parse and compile the
original source code to form of high level assembly code known as LLVM IR. Next,
LLVM employs multiple optimization and transformation passes known as opt
passes before the final machine code is produced to be run on the target platform.
This workflow is shown in Figure 4. Loom is implemented as an LLVM opt pass.

In order to use Loom, the end user must provide an instrumentation policy. This
policy defines the parts of the code to be instrumented and how to output the
instrumentation results. This configuration is specified in a Yet-Another-Markup-
Language (YAML) file, the details of which are discussed in a later section.

Using this policy, the Loom opt pass runs in two phases: instrumentation point
identification; and instrumentation insertion. During the first phase static analysis is
done to determine all of the points of interest within the code base. Once this list is
gathered, the second phase adds the required instrumentation code to each
instrumentation point.

12
Distribution Statement A: Approved for public release: distribution is unlimited.

Figure 4 LLVM Compilation Flow

3.1.1.1. Initial Loom Functionality

The initial Loom implementation was limited to the functionality of instrumentation
available in TESLA. This code formed the foundation upon which a general purpose
tool was built. From TESLA, Loom inherited the static analysis code used to identify
a limited set of instrumentation points. Additional development was required to add
the policy file interface and the logging infrastructure to output results.

The initial implementation of Loom had a limited set of possible instrumentation
points. It could instrument function calls either from the caller or the callee context.
When instrumenting these calls, Loom had access to the call parameters.
Additionally, Loom could instrument structures. For all structures it was possible to
instrument reads and/or writes of each individual field.

To allow the user to define the instrumentation points and configure the output, a
policy file was defined in YAML and parser for the file added to the tool. Using the
policy file, the end user could define the functions and fields to instrument by name.
Additionally, the conditions under which they should be instrumented could be
defined (caller/callee for functions, and read/write for fields). The general
configuration of Loom, including choice of logger, could also be specified. More
details on the policy file format and options can be found in the CADETS SSDD.

13
Distribution Statement A: Approved for public release: distribution is unlimited.

The final piece to be added to produce a general purpose instrumentation framework
was output handling. To do this, Loom defined not just a single logging output, but
instead an API upon which many loggers could be defined. Initially it was possible to
log the instrumentation results using simple text, extensible markup language (XML),
JSON and through the FreeBSD kernel tracing tool ktrace(1). However, by defining an
API for adding other loggers in the future, CADETS could use the tool as is for
testing and defer selecting the appropriate output until better equipped to decide.

3.1.1.2. Userland Tracing with DTrace

From early on in the project, CADETS decided to use DTrace as the cornerstone of
our tracing system. DTrace was already tightly integrated into FreeBSD, satisfying a
large portion of the project’s tracing requirements within the kernel. In areas where
the functionality was lacking, DTrace allowed for it to be added through existing
APIs. In userspace however, DTrace did not provide a mechanism to easily
instrument code. This type of instrumentation was what Loom was designed to
provide, but the CADETS team had to develop a mechanism to get Loom outputs
into the DTrace framework.

Initially the team investigated DTrace’s own mechanism for userspace tracing,
Userland Statically Defined Tracing (USDT). One of the problems with using USDT
directly was it required modification of the original source code. It was deemed
infeasible to have to modify large amounts of userspace code, both from the initial
coding effort and future maintenance cost.

Using the mechanisms employed by USDT directly in Loom was the first option
investigated for the Loom/DTrace integration. However, it was quickly determined
this would not be possible due to the technical limitations of Loom. USDT uses
custom Executable and Linkable Format (ELF) sections that are added to a binary to
define instrumentation points and the code to be run. These sections are added to a
binary upon linking, in the final stage in the compiler chain. Loom runs before the
linking stage and therefore does not have the ability to add ELF sections.

In rethinking the DTrace integration problem, it was decided that Loom could use
Statically Defined Tracing (SDT) probes that exist in the kernel. These probes are
usually used to add additional tracing point in kernel code and do not rely on the
mechanisms used in USDT. In order to pass data from userspace to the kernel a
system call, dt_probe(2), was added to FreeBSD.

3.1.1.3. dt_probe(2) System Call

When instrumenting software with Loom and DTrace, Loom adds calls to
the dt_probe(2) system call. dt_probe(2) is a simple system call implemented in the
CADETS fork of FreeBSD that takes pointers to userspace data and passes them to
the DTrace kernel module with a SDT(...) function provided by the DTrace SDT
provider. These pointers can then be used to access the data values for inclusion in
the CADETS trace.

14
Distribution Statement A: Approved for public release: distribution is unlimited.

Since its initial implementation for the project, the system call definition
for dt_probe(2) has not changed but its semantics have. Initially, the call parameters
were expected to be up to six pointers to data that was being instrumented.
However, due to how DTrace probes are identified, using the SDT provider did not
allow for unique identification of the problem site.

To solve this issue, it was decided to use the first parameter of dt_probe(2) as an
identifier, leaving the other five parameters for instrumentation data. This design
change required the addition of metadata to the Loom policy file. In the new policy
format, the end user could specify a metadata id for each instrumentation point
making them uniquely distinguishable.

3.1.1.4. Loom Extensions

Additional functionality was added to Loom throughout the project to extend its
capabilities and ease of instrumentation. The ability to add instrument points to
global variables and variadic functions was added. However, variadic function
instrumentation is limited and can only be instrumented on the caller side where the
number of arguments to the function is known.

As part of their Transparent Computing project, the Tracking and Analysis of
Causality at Enterprise level (TRACE) team also used Loom to instrument software.
They added the functionality to instrument pointers as needed for their work. This
code was provided to the CADETS team and integrated into the main Loom
repository.

Parameters were added to the Loom policy files to help identify instrumentation sites.
Wildcards were added to allow matching against multiple named arguments. The
ability to limit the scope of instrumentation to a single file was also added. This is
useful in projects with large amounts of variable name reuse.

3.1.1.5. Data Transformation

Since the Transparent Computing CDM relies heavily on UUIDs, it was necessary to
transform some userspace values before adding them to the CADETS trace. A
proof-of-concept transforms framework was added to Loom for this purpose. The
framework allows arbitrary functions to be defined and called using instrumented
variables, logging the result. The policy file syntax was updated to allow for the
specification of transforms to be performed in individual variables. The initial version
of this functionality includes the necessary function to retrieve UUIDs for file or
process descriptors in FreeBSD. This performs as expected but the mechanism for
adding functions remains a bit cumbersome. Future work will be done to make the
addition of arbitrary functions more seamless.

3.1.1.6. Build System Integration

Finally, in order to automate the use of Loom within FreeBSD, the operating
system’s build system was modified to allow for instrumentation. Rules were added
to build LLVM intermediate representation for programs and libraries to make it

15
Distribution Statement A: Approved for public release: distribution is unlimited.

easier for testing on individual parts of the OS. Policy files can also be defined for the
entire operating system and passed into the full build process.

3.1.2. LLVM-Prov

LLVM-Prov was developed to address the n × m problem: the explosion of
complexity that provenance algorithms face when presented with nodes that contain
many sources and many sinks with many possible provenance paths. The
development of LLVM-Prov began midway through the second year of the CADETS
project. At that time, we identified two complementary needs within the program:

1. the need for userspace and kernel tracing to refer to the same objects with
identifiers that are not subject to data races (e.g., file descriptors), and

2. the need for kernel-based tracing to have increased visibility into userspace

information flows to avoid a combinatorial explosion in provenance-graph
processing (the n × m problem).

We designed the MetaIO mechanism to address these two needs. We then spent
the remainder of the program improving the mechanism and its static information-
flow analyses, to improve trace results. We also invested significant effort in
integration activities to ensure that both our team and the BBN team would be able
to automatically build our LLVM-based toolchain, use that toolchain to build the
CADETS variant of FreeBSD, build CADETS FreeBSD images and then test or run
those images. Compiler modifications are high-risk activities in the context of a large
project, so we invested very significant amounts of time in continuous integration (CI)
development before engagements and then, sometimes, in CI debugging in the lead-
up to engagements.

3.1.2.1. Key Hypothesis

The central hypothesis of our LLVM-Prov work was that the fusion of user- and
kernel-space provenance information via the system-call layer can provide
provenance information that is more reliable than pure userspace tracing and more
precise than pure kernel-space. We explored this hypothesis by:

 developing compiler-based tools to analyze information flow within userspace
software (see Tools for Information Flow Analysis section),

 augmenting the FreeBSD system call interface to pass provenance
information (“MetaIO”) across system calls without data races (see MetaIO
section),

 developing a Loom-based transformation to translate applications’ use of
POSIX system calls into MetaIO calls (see Loom-based MetaIO
transformation section) and

 augmenting the Transparent Computer Common Data Model (CDM) to
carry Provenance Assertions derived from userspace-supplied MetaIO
information (see CDM Augmentation section).

16
Distribution Statement A: Approved for public release: distribution is unlimited.

3.1.2.2. Tools for Information Flow Analysis

We developed several tools for analyzing information flows within userspace
software during the course of this program. We began by adding pure LLVM operand
flow tracking within LLVM-Prov. This tracking used LLVM’s existing API for exposing
value/instruction operands to build up use–def chains from information flow sources
(e.g., read(2)) to information flow sinks (e.g., write(2)) within a single procedure. We
began by hard-coding the set of I/O source and sink system calls within LLVM-Prov,
then developed software that would allow C-language annotations to be applied to
the header files containing I/O source and sink declarations. We improved our
approach to information-flow analysis by adding memory-based data dependencies
using LLVM’s MemorySSA framework. This API provides the ability to augment the
use–def graph with mod–ref edges based on an analysis of instructions and
functions that are available in the LLVM intermediate representation (IR). For
example, a function that can be proved to only read from memory can only act as a
sink, whereas functions with unknown memory access patterns could potentially
write to arbitrary memory. Analysis precision is improved through the use of alias
analysis in conjunction with MemorySSA, but this analysis is still entirely confined to
a single procedure.

We took several approaches to the discovery of interprocedural information flows
during the program. First, we build software to export use–def chains into a form that
could be read by external graph computation tools. We built a tool called py-
cdg (Python Call and Data Graph) that could ingest this information and expose it to
standard graph analyses provided by the Python NetworkX library. After adding
mod–ref information, however, naming the various memory states in a manner that is
portable across the LLVM passes and the external Python tool became impractical.
We then turned to evaluating the suitable of the Static Value–Flow (SVF)
interprocedural analysis in our environment.

SVF analysis is a technique and set of software tools for building interprocedural
information-flow graphs in LLVM IR bitcode. We explored the approach as potentially
providing additional information to enhance LLVM-Prov–based instrumentation, but
its license, GNU General Public License version 3 (GPLv3) was problematic for the
CADETS project. Towards the end of the program we were starting to explore
mechanisms for running external SVF tools on uninstrumented binaries, capturing
information-flow information from their output and bringing that information back into
our LLVM-Prov library, under the University of Illinois (UIUC)/National Center for
Supercomputing Applications (NCSA) Open Source License). This work remains
exploratory at the conclusion of the program.

3.1.2.3. MetaIO

The MetaIO mechanism allows user- and kernel-space tracing mechanisms to
reliably name objects consistently without races. Existing naming mechanisms such
as file descriptors are inherently racy: it is possible for one userspace thread to begin
a system call with respect to a particular file descriptor number while another thread
replaces that descriptor with another descriptor — leading to confusion about which
file is actually being accessed — or for a userspace trace record to use a file
descriptor number to refer to a different file than the corresponding kernel trace

17
Distribution Statement A: Approved for public release: distribution is unlimited.

record if a file has been closed and a new file opened. The MetaIO mechanism
prevents such confusion by adding a new set of system calls that either emit or
accept more explicit naming information, e.g., UUIDs for files or lightweight message
IDs for inter-process communication. Information about which file is being read from,
for example, comes not from the system-call interface layer but from the deeper
kernel layer that is actually performing the I/O. This information can then be copied
into userspace in the case of I/O sources; information can then be passed through
user space and back into the kernel when an I/O sink system call is invoked. This
explicit passing of I/O metadata allows tracing information from both user- and
kernel-space to synchronize their naming of files and other relevant kernel objects.

3.1.2.4. Loom-based MetaIO transformation

Given the availability of information-flow analysis, LLVM-Prov is able to detect
information flows from I/O sources to I/O sinks. In order to address the n × m
problem, these sources and sinks must be adapted to use their MetaIO counterparts
and the program must be modified to pass I/O metadata along the same paths as
the data flowing through the program. LLVM-Prov uses the Loom instrumentation
framework (see Loom section) to perform this modification, using Loom’s external
API to augment the relevant system calls to take a pointer to a MetaIO structure, and
ensuring that memory for the MetaIO structure is allocated in a place that will allow
the information to be preserved from source to sink. Figure 5 shows an example of
how code is instrumented for MetaIO.

Figure 5 MetaIO Instrumentation Example

3.1.2.5. CDM Augmentation

In order to propagate MetaIO information to TA2 groups, we proposed additions to
the CDM. These additions added a new type, ProvenanceAssertion, which asserts that
the data it is attached to was derived from a specific source (identified by UUID). The
CDM Value type was modified to accept an optional ProvenanceAssertion field, allowing

18
Distribution Statement A: Approved for public release: distribution is unlimited.

any Value received by a system call to be annotated with provenance information
supplied by instrumented userspace software. Since this assertion comes from
potentially untrusted sources (userspace programs), a ProvenanceAssertion can itself
include a ProvenanceAssertion about its own provenance, e.g., “this host says that the
kernel says that this program says that the data came from this specific file”.

3.2 Tracing Kernel Space

Kernel tracing serves a number of key functions:

 Many security-essential events are implemented within the kernel, including
file, network, and IPC events.

 The kernel is key part of the Trusted Computing Base (TCB) for the operating
system.

 The kernel can provide strong security and reliability guarantees for trace
capture and storage.

However, the existing kernel tracing mechanisms, Audit, which implements Common
Criteria security-event auditing, and DTrace, which provides highly configurable
implementation-oriented tracing, fail to provide the detailed events required by
CADETS, nor a suitable framework in which to capture and distribute them. To this
end, we have implemented a number of new components, in both userspace and
kernel, to address these gaps:

 FreeBSD Audit has been extended to capture Transparent Computing-
relevant events, arguments, and return values beyond those specified by the
Common Criteria.

 The kernel has been extended to associate UUIDs and Message IDs with key
kernel subjects, objects, and IPC messages.

 A new DTrace Audit Provider has been implemented, providing configurable
access to audit events from within the DTrace implementation.

 New guest-from-host/hypervisor tracing support has been added to DTrace to
allow the hypervisor (host) operating system to instrument guest virtual
machines.

 The new DDTrace implementation allows logs to be reliably stored to disk by
the kernel, and then be shipped securely and reliably over the network to a
distributed Kafka message queue.

 Significant improvements have been made to the reliability and completeness
of Audit and DTrace to allow capture of early boot, steady state, late
shutdown events without loss.

3.2.1. Integrating FreeBSD Audit and DTrace

One of our key hypotheses was that we could integrate previously entirely
independent approaches to CAPP security event auditing and tracing designed for
debugging. Security event auditing, as embodied by OpenBSM, has historically
focused on secure, accurate, and reliable capture of security-critical events such as

19
Distribution Statement A: Approved for public release: distribution is unlimited.

file-access system calls—at the cost of significantly impacting performance,
excluding support for other operation types, and accepting a fail-stop approach to
reliability. Debugging and tracing mechanisms have instead been focused on
performance analysis and optimization, accepting unreliable behavior in return for
continued system optimization, and likewise potentially inaccurate access to data
(e.g., due to race conditions) rather than interfering with kernel implementation. They
have also provided much deeper opportunity to access and trace the implementation
rather than well-defined specified interfaces. We believe that combining these
approaches—in particular, utilizing audit to capture security-critical events, but
DTrace’s mechanisms for data representation and capture, as well as greater access
to implementation where required, will better meet the goals of the Transparent
Computing.

3.2.2. A Transparent Operating-System Design

Another key hypothesis was the notion that an operating system can be (re-
)designed to be a transparent operating system: i.e., to inherently integrate a number
of features that make detailed security tracing more natural to its structure. We have
focused in particular on making key operating-system objects reliably identifiable in
traces by providing UUIDs on subjects and objects, and Message IDs on ephemeral
messages, allowing tools consuming traces to identify system elements and
communications between them more explicitly. For example, Message IDs will allow
datagrams transmitted over the loopback network interface, or over the distributed
systems, to be tagged and directly correlated, rather than having to infer them from
their side effects, timestamps, and so on.

3.2.3. Distributed DTrace

We have engaged with distributed tracing in two phases: first, an investigation into a
more limited form of distributed tracing across a set of virtual machines on the same
physical host; and second, true distributed tracing across a disjoint set of hosts. A
number of key distributed-system challenges necessarily apply:

 The system must tolerate node and edge reboot and failure, requiring careful
management of persistency and, as needed, retransmission.

 The consistency of replicated data must be explicitly managed.
 Where ordering is depended on, it must be explicitly tracked.
 Where timestamps are to be compared, time must be explicitly synchronized.
 Nodes may be significantly heterogeneous: different computer architectures,

operating-system versions, different applications, and eventually different
operating systems.

 Latency between nodes eliminates the opportunity to use synchronous
communication, instead requiring asynchronous communication, mitigation of
latency through batching, and at times, distributed computation models.

As part of this work, we have also developed a formal model of the DTrace Interface
Format (DIF) and its container formats, which describe executable DTrace scripts.
This has not only allowed us to identify and fix several bugs in the DTrace

20
Distribution Statement A: Approved for public release: distribution is unlimited.

implementation, but also explore the semantics of distributed DTrace execution,
evaluating a broad corpus of current scripts for potential bugs when executed in a
distributed environment. In the future, we hope to use these formal semantics to
automatically distribute work using a partial compute model, permitting more
distributed script execution.

3.2.3.1. HyperTrace: Guest-from-Host Tracing

Guest-from-host, or hypervisor tracing, allows a single DTrace script installed in a
host VM to be applied across a set of guest VMs. HyperTrace executes the DTrace
script in the host DTrace interpreter, but accepts probes and argument data provided
by the guest VM’s DTrace implementation via a new DTrace hypercall. New front-
end and back-end VirtIO drivers allow the host DTrace instance to control
instrumentation in the guest. The host and guests can be configured to tag network
packets distributed via VirtIO networking with host and message information so that
events can be correlated across multiple nodes.

This approach offers significant ease of use, and takes advantage of a number of
non-distributed behaviors to improve performance and semantics: there is a single
time domain (no clock drift between nodes), affordable synchronous traps, high-
performance VirtIO communication channels, reliable detection of guest failure, and
a single executing instance of the DTrace interpreter avoids the need for work
distribution and consistency management for the script itself. This environment offers
the potential to explore issues such as heterogeneity and distributed semantics
without taking on the full challenge of a networked distributed system. However, a
number of challenges arise—not least, as the host executes the script, it must
access guest memory, which requires the HyperTrace implementation to implement
a manual nested page-table walk, and lacks the stronger host-kernel reliability
guarantees for memory access usually present with DTrace.

We are also interested in using HyperTrace to improve TCB security for guest
tracing: while a compromised guest may choose not to trace events it wishes to omit,
or to provide falsified information, strong non-repudiation can be achieved by storing
log data in the host rather than the guest. Deploying this model, an attacker must
compromise the host operating system to make retrospective changes to captured
traces.

3.2.3.2. Distributed DTrace

Full Distributed DTrace operates over a set of nodes connected only by a network,
rather than being able to assume access to a hypercall. Unlike HyperTrace, due to
high network latency, it cannot utilize a single executing instance of the DTrace
interpreter, as kernel and userspace execution cannot be halted awaiting
synchronous replies from a central instance. Distributed DTrace must also tolerate a
variety of host and network failures, as well as address heterogeneity.

To this end, we have utilized the Kafka distributed message protocol and server
implementation to reliably stream trace records from distributed nodes back to a
central tracing system (tracing source), as shown in Figure 6. DTrace scripts execute
on each individual traced node, capturing data and computing based on local state.

21
Distribution Statement A: Approved for public release: distribution is unlimited.

The command-line DDTrace client accepts a stream of DTrace trace records
aggregated from multiple tracing nodes and delivered by Kafka, converting them to
human- or machine-readable output as specified by the script. CADETS end hosts
can be configured to carry host and message information via IP options, in a manner
similar to VirtIO packet tagging in the HyperTrace DTrace, allowing scripts on
different nodes to describe common events.

Figure 6 High-level View of DDTrace

Each traced node implements the Kafka protocol via dlog, which persists traces to
disk reliably for eventual network transmission via Kafka, tolerating node reboots and
network failures. A new kernel module, ddtrace, manages DTrace trace buffers to
prevent record loss from full buffers. The new trace handling has required significant
changes to the trace output path for DTrace: a new dlogd userspace daemon
configures distributed scripts, and directs the kernel DTrace implementation to send
output into dlog, a kernel subsystem that reliably writes records to on-disk logs, which
can then be streamed over the network by dlogd. dlog provides an upper bound on
loss in the event of a node failure. The mechanism is robust in the presence of
system reboot, and dlogd implements the Kafka protocol allowing reliable persistent
distribution to the DDTrace client. Figure 7 shows the new components of DDTrace
(in green) and their relationships with the original DTrace components (blue).

22
Distribution Statement A: Approved for public release: distribution is unlimited.

Figure 7 DDTrace Overview

Distributed-system heterogeneity is addressed at a basic level by having individual
traced nodes submit type information required to interpret trace entries to Kafka as
well; this allows the client to present trace records using type information from the
traced node that generated it.

It remains a challenge to the DTrace script programmer, and hence future work, to
address other forms of heterogeneity, and there remain unanswered questions about
network event ordering and distributed compute. We anticipate future Distributed
DTrace features to allow compute requested by the script to have its execution split
between distributed nodes (with access to local information) or the central node (with
a global view).

3.3 CDM Translator

The goal of the CDM Translator is to quickly and faithfully convert the CADETS
JSON traces to the CDM used by the TC program. It can read data from a file or
Kafka, and output to a file or Kafka. This flexibility makes testing and debugging
simpler, as most tests don’t require a full Kafka setup. For the first few engagements,
CADETS traces were saved to disk, and the translator read from those files. For the
last two engagements, the translator both read and wrote to Kafka. In order to
support translation of MetaIO data to CDM, a new event type, ProvenanceAssertion was
added (see CDM Augmentation section).

Other than producing CDM for the other teams, the priorities in implementation of the
translator were that it should be able to keep up with the traces as they were
generated, and that it should be able to run for weeks at a time without issue. For
this reason, the translator keeps minimal state. The only state the translator keeps is

23
Distribution Statement A: Approved for public release: distribution is unlimited.

a list the UUIDs of objects that have been sent in CDM. This prevents it from doing
things like repeatedly sending file objects every time a file is mentioned.

This choice of priorities had an effect on the CDM traces generated, as it prevented
compiling information from multiple events to generate a more complete record when
defining files or other objects.

Along with the CDM translator, there is a separate, but related Python program. This
is the correlator. The correlator takes the CADETS trace and looks for events that
can be correlated between CADETS machines. Currently, this is limited to identifying
network connections. Information about these correlations is added to the CADETS
trace for the CDM Translator to use.

3.4 LibPVM

The hypothesis behind libPVM is that TA2 algorithms should not reconstruct or infer
the semantics of TA1-produced graphs by just applying learning on the data. Such a
model-less approach would be prone to miss the subtle semantic guarantees that
can be made about the trace data, which can differ from one TA1 to another,
depending on the types of instrumentation employed, the location where it is
captured, resistance to adversaries, etc.

Instead, libPVM proposes an underlying semantic model on the data, where a clear
mapping exists between the data captured for every entity in the system (e.g. system
call) and the changes that are made to the provenance graph as a consequence of
having observed the corresponding data.

The second hypotheses of libPVM is that relying on the model, transformations can
be applied to the graph that preserve the correctness of the result (even if they, for
example, change the abstraction level of the representation). Such transformations
should help machine learning algorithms in ignoring noise, possibly intentionally
introduced in the system by adversaries in order to distract from attack identification.

As part of CADETS, libPVM was used as a data quality control tool, trying to identify
in-house whether there are sufficient details in the tracing data for producing
meaningful provenance graphs.

On the implementation side, libPVM makes the assumption that provenance graphs
represent an index over the persistent, distributed log containing raw capture data.
As a side effect of this, it allows for the exploration of analysis and pattern matching
over dynamic graphs: graphs that can be re-created and expanded to contain more
detail in regions where that is needed, or contracted to get a higher-level view of
system activity. This means that local subgraphs may be re-created starting from the
raw data, following rules that are user-driven (i.e for process with PID X, create a
graph with detailed versioning on every read and write, in order to make an analysis
of cross-process data visibility).

This has also informed a more nuanced position on the model generating the graph:
it is acceptable for it not to make all data fully accessible for analysis in the default
view, and it gives the model the freedom to make some information harder to reach

24
Distribution Statement A: Approved for public release: distribution is unlimited.

(motivated, for example, by the fact that the information cannot be always correctly
collected by the OS-level tools). This translates to some graph queries that are
simple and fast (common queries about processes and files), while others are
allowed to be slower and multi-step (path-dependent queries, fine-grained data
visibility queries).

The end result, as shown in Figure 8, is an ingestion pipeline which implements the
semantic model (PVM) and pushed the resulting graph into a Neo4j database.
Optimizations on this pipeline were performed in order to be able to cope with high
event rates (with the goal being to keep up with system generated events).

Figure 8 libPVM Overview

3.4.1. The PVM Model

The model itself makes the assumption that any system trace (irrespective of its
granularity) can be de-composed into datatypes that are subtypes of four main
abstract entities: Actors, Objects, Stores and ChannelEP (Channel End Points).
Versioning rules are defined for those entities, in order to represent changes over
time and to track their provenance. The abstract entities form a shallow hierarchy,
with Stores and ChannelEP being Objects.

The model assumes that the high-level properties of the abstract entities are
sufficient for declaring dependencies between concrete subtypes and maintaining
consistent semantics in a provenance graph, across multiple types of data sources:

25
Distribution Statement A: Approved for public release: distribution is unlimited.

 Actors are entities that perform actions; generally they represent processing
units such as UNIX processes, even though they can also represent more
abstract notions of processing (central processing units, accelerators,
program functions). They may act upon objects or other actors.

 Objects are data-carrying entities, used and acted-upon by actors. Currently,
two abstract object subtypes exist:

o Stores are an object type storing data internally. Under the model, such
objects version on first write and on last concurrent write. The libPVM
implementation uses a concrete Store subclass called EditSession to
represent intervals where a Store is concurrently modified by multiple
users, without asserting precise data visibility rules. If thread or process
interleaving of data within an EditSession is important, one needs to
explore the original events trace and its guarantees about such matters
on captured data.

o ChannelEPs are an object type through which data flows, without internal
storage (or for which any ephemeral internal storage is side-effect free
in terms of the provenance graph). Those objects do not version.

For each type of trace that needs to be processed, one needs to define a mapping
from events in that trace to a series of verbs existent in the PVM model. As part of
this mapping, developers of the tracing system would also define concrete entity
subtypes, by specifying a schema, in the form of key-value pairs that should be
expected as properties of each concrete subtype.

Figure 9 shows as an example, under the CADETS mapping of raw data, pseudo
teletypes (PTTYs) are defined as subtypes of Conduits:

Figure 9 PTTY Mapping to PVM Example

Similarly, the exec system call is mapped to the following series of PVM verbs, as
shown in Figure 10:

Figure 10 exec Syscall Mapping to PVM Example

26
Distribution Statement A: Approved for public release: distribution is unlimited.

Together, the verb mapping and the concrete subtypes allow implementations of the
PVM model to take events in a trace and an existing output graph (possibly empty)
and have a well-defined specification for what transformations should be applied to
the output graph as a response. Those transformations are well-known side effects
of “applying” each PVM verb to an existent graph.

The following verbs exist:

 declare(concrete_type, uuid) -> entity_handle e This declares the existence of an
entity of the given concrete type, with the given unique identifier. As a side
effect, this forces the creation of entity e with the given UUID, if it doesn’t
already exist. Either the newly created graph entity or the one existing with the
same UUID is returned.

 sink(src:Actor, dst:Entity) This declares that the src actor has transferred
information into the dst entity, as an atomic operation (verbs which are not
atomic, for example sink_start and sink_end also exist). Depending on the
destination Entity, this can trigger versioning (for example, if it is the first sink
for an entity that is a subtype of Store)

 source(src:Entity, dst:Actor) The reverse of sink, this declares that the
corresponding data/information was obtained by the dst actor from the src
entity.

 connect(ep1:ChannelEP, ep2:ChannelEP, direction) This declares that two channel
nodes have connected to each other, and data can flow between them. The
direction argument indicates the direction of flow, either mono (ep1-> ep2) or bi-
directional (ep1 <-> ep2).

 mention(e:Entity, n:Name) This declares that at this point, entity e has been
referred to using the name n. If it doesn’t already exist, this will generate a
new node for the name, and then link e to it using a “NAMED” relation. In
PVM, non-UUID names are considered non-reliable and temporary.

 unlink(e:Entity, n:Name) This declares that at this point, the entity e has been
disassociated from the name n. A historic record about this fact is recorded in
the graph, without removing previously existing links (data is just added to a
provenance graph, never removed).

 property(e:Entity, key:str, value:str) Set the given key to the corresponding value for
entity e. The key/value pair should have been defined as part of the type of e.

The assumption is that those limited verbs take the role of a DSL for specifying how
provenance graphs can be created in response to events from system-level traces.

3.4.2. The libPVM Implementation

The implementation assumes that it is possible to create a data ingestion/
transformation pipeline that takes system trace events as they are produced and
transforms them into the corresponding provenance graph, at a rate which keeps up
with the frequency of input. For ingesting CADETS data, this meant significant
optimizations and parallelization for JSON parsing and for the storage backend
(Neo4j).

27
Distribution Statement A: Approved for public release: distribution is unlimited.

The assumption is also that libPVM can be linked with a wide variety of applications
in order to allow them to either ingest provenance data, transform it (through plugin
filters and views) and query it.

3.5 Neo4j Database Optimization

Motivated by the identification of Neo4j as one of the major bottlenecks in our
LibPVM data ingestion pipeline, we have proposed that additional work was
necessary to improve Neo4j data ingestion characteristics for write-heavy workloads.

In particular, the workloads generated by the fine-grained provenance-capturing
mechanisms of TA1s are quite different from traditional workloads for which graph
databases are currently optimized for. At the same time, storing the collected data
and performing provenance analysis is most naturally done on backends supporting
a graph data model.

We have characterized the workload generated by system level-provenance capture
to graph database backends as producing a high number of concurrent writes, and
triggering updates to a limited number of elements (nodes) compared to the size of
the entire graph (write-heavy, contention-heavy). This is a direct consequence of
new nodes and edges in the graph attaching predominantly to an existing “boundary”
of nodes as determined by the set of active applications and services running on the
underlying system. More concretely, when compared to other graph structures, such
as the ones generated by social-network use cases, the probability of attaching new
edges to existing nodes in the graph is not uniform, with most nodes in large
provenance graphs being effectively “frozen”. For such nodes, our optimization
target moved from improving the latency and throughput of concurrent writes to one
of not penalizing reads (a balance which is difficult to achieve for arbitrary
workloads).

We have tested our assumptions using the CADETS TA1 and libPVM as an entity
generating graphs from distributed provenance logs, but we believe that
improvements are generalizable to other TA1 performers. This means optimizations
were done for the type of data produced by provenance loggers rather than being
libPVM-specific.

Furthermore, our optimization work does not assume that all captured data will end
up in graph databases (with some information being more naturally stored in key-
value stores or relational databases), which allows for even more flexibility in terms
of design choices for optimization (we focus optimization on common graph cases
and access patterns, without trying to improve things across the board). However,
not all our optimizations are specific to provenance data and could also improve
other write-heavy workloads which share some of the same underlying
characteristics.

Two primary targets of optimization were identified: the transactional engine of Neo4j
(which effectively serializes updates for the type of workload considered) and the
storage layer (space inefficient and tightly coupled to the transactional engine). A
third major bottleneck, the Neo4j query planner, was also identified but we have

28
Distribution Statement A: Approved for public release: distribution is unlimited.

decided not to focus optimizations efforts on it as in the absence of a clear algebraic
model for graph queries it is significantly less tractable in terms of possible
improvements. Furthermore, we have assessed that it can be easily bypassed by
writing the queries directly in a lower-level Neo4j API with more direct access to the
underlying storage.

Figure 11 shows changes to Neo4j in red:

Figure 11 Neo4j Optimized Design

A new storage backend was built, offering both space-savings and allowing for faster
lookups and concurrent updates without penalizing reads. It is optimized for a
transaction layer implementing a form of SSI (Serializable Snapshot Isolation), a
transaction isolation level that guarantees that the result of executing multiple
transactions in parallel is identical to at least one serial execution of the same
transactions. For optimizing information lookups during writes (a read-amplification
factor exists due to the need for finding existent nodes and edges), the edge store is
physically split into core edge data and metadata used for lookup (used as an
efficient index for lookups and finding insert positions).

The existent transaction components have been modified in order to work with the
new storage backend, allowing more concurrency during updates but maintaining
Atomicity, Consistency, Isolation, Durability (ACID) properties.

A new write-through caching layer was overlaid on top of the existing transaction
engine, to reduce read-write conflicts and allow higher concurrency in writes at the
storage-engine level.

3.6 User Interface

The CADETS user interface was initially developed to support the demonstration we
performed in July 2017. Although the CADETS project does not interface directly

29
Distribution Statement A: Approved for public release: distribution is unlimited.

with end users, we realized that an adequate demonstration of our data collection
and correlation required visualization. The visualization capabilities built into Neo4j
are helpful for viewing sets of nodes, but not for the iterative sense making process
that a security analysis might use when developing a hypothesis about an attack
using CADETS. As a result, we developed our UI to simulate activities that an
analyst might need to do while investigating an attack: inspect individual nodes (files,
pipes, processes, sockets, etc.) and build up a graph that represents a working
hypothesis of how an attack proceeded. Figure 12 shows an example view of the UI.

Figure 12 CADETS UI Focused on a Single Node

The initial UI was developed as a research prototype without the level of rigor and
software engineering that has been applied to other aspects of the CADETS project.
As our team had little experience with JavaScript-based user interfaces, we
developed a tool that worked for the demonstration but was difficult to maintain over
the longer term. After the initial demonstration, we brought in undergraduate
research assistants to help restructure code and package dependencies to increase
reproducibility and maintainability. We then switched much of the core UI
infrastructure away from ad hoc JavaScript and towards mature.

30
Distribution Statement A: Approved for public release: distribution is unlimited.

Throughout the design and implementation process for the user interface, we used
our understanding of analysts’ needs and workflow — based on limited engagement
with a Global Security Operations Center’s (GSOC) employees — to drive design
decisions. We also employed the UI to a limited extent internally, to view data from
engagements.

31
Distribution Statement A: Approved for public release: distribution is unlimited.

4 RESULTS AND DISCUSSION

4.1 Engagement 1 (E1)

4.1.1. New Features

The first engagement took place September 6-9, 2016. We started with DTrace and
FreeBSD 11.0-RC2 and added some features. FreeBSD comes with support for
security event auditing. We modified this system, which provides detailed information
about syscalls, to make the information accessible from DTrace. A feature available
on Solaris, but not FreeBSD was the ability to print some file path information when
tracing read and write events. We ported this feature to FreeBSD. While file paths
are very human friendly to look at, they are not actually reliable identifiers for files. To
that end, we modified FreeBSD to have UUIDs associated with many kernel objects.
Files, sockets, and even processes have intrinsic UUIDs. These are meant to be
more reliable than the identifiers typically used on a system. While other identifiers,
such as file paths, inodes, or pids, may be reused over time on a running system, the
UUIDs will not. For E1, we produced CDM13 for the other teams to consume.

4.1.2. Results

CADETS had no stability issues during E1. CADETS generated approximately 25-30
CADETS records per second during E1. For the Bovia and Pandex attack scenarios
combined, CADETS generated approximately 8 million events. In CDM format, this
was represented by about 10 million nodes and 15 million edges.

Our data was used by all TA2s. Feedback indicated that all TA2s were able to make
good use of the data and had good accuracy finding attacks. The tracing also did not
interfere with system performance.

4.2 Engagement 2 (E2)

4.2.1. New Features

The second engagement took place May 5-23, 2017. Along with bug fixes, we added
information about memory map events allowing slightly more information to be
provided for in-memory attacks. MetaIO provenance information was added, but was
not seen in the engagement. CADETS produced CDMv14 for the other teams to
consume.

4.2.2. Results

CADETS had no stability issues during E2. As different attacks were used on
different TA1 systems, it is hard to directly compare performance between TA1
systems. Nevertheless, CADETS did well, and the majority of attacks were identified.
Attacks using the network or file system were generally identified, while attacks fully
in memory or making use of custom syscalls installed via a new kernel module left
fewer tracks and were mostly missed.

32
Distribution Statement A: Approved for public release: distribution is unlimited.

4.3 Engagement 3 (E3)

4.3.1. New Features

The third engagement took place April 6-13, 2018. CADETS was run for the length of
the engagement. For E3, we began adding features that would be more important
once Distributed DTrace was implemented. The traces included more details about
the machine being traced, and additional networking information was added to help
reconcile network events across hosts. Lastly, MetaIO integration was completed,
and we generated provenance information for some executables.

4.3.2. Results

The CADETS system had minor stability issues during E3 (see gaps in E3 data
streams, as shown in Figure 13), but not caused by instability in CADETS itself. Any
APTs interacting with the kernel risk causing instability in the underlying system.
There were numerous attacks against CADETS. Overall, the accuracy for the three
TA2s was 8%, 46%, and 75%. Overall, the traces had the same weaknesses as
during E2, and while MetaIO events were found in the trace, the events were not key
to identifying attacks. Despite these observations, CADETS was the only TA1
system named as one of the best TA1/TA2 combinations for each of the TA2
performers.

Figure 13 Activity on E3 Kafka Topics

4.4 Engagement 4 (E4)

4.4.1. New Features

The fourth engagement took place November 8-21, 2018. CADETS was run on
November 14th and 21st, for a total of about 12 hours.

33
Distribution Statement A: Approved for public release: distribution is unlimited.

For E4, we moved from a basis of FreeBSD 11 to FreeBSD 12. We also moved from
using the slightly modified version of DTrace that we had used in previous
engagements to Distributed DTrace. Distributed DTrace still makes use of much of
the underlying DTrace code, but is run in multiple parts, on multiple machines. This
allowed us to move some trace processing off of the machine being traced.

One of the advantages of Distributed DTrace is that we were able to expand our
tracing to include part of the tracing system itself. While this added a large number of
events that were not directly useful for TA2s in this engagement, these events could
provide additional events if an attacker was trying to interfere with tracing. Also, due
to the fact that intermediate traces are stored in Kafka rather than on the local file
system, the attacker would need to compromise multiple systems to remove their
actions from the log.

4.4.2. Results

CADETS had no stability issues during the run of E4, but did have issues keeping up
with real-time. Figure 14 indicates that overall, we generated approximately 1700
records per second over two machines. For E4, there were 4 attacks against
CADETS. Due to performance issues, the 4th attack of the day did not make it into
the traces available to the TA2s. Given the 3 remaining attacks, the accuracy for the
three TA2s was 9%, 25%, and 65%, with 2 attacks almost entirely identified by one
TA2.

Figure 14 Activity on E4 Kafka Topics

34
Distribution Statement A: Approved for public release: distribution is unlimited.

4.5 Engagement 5 (E5)

4.5.1.1. New Features

The fifth engagement took place May 6-17, 2019. Like other TA1s, CADETS was run
from the 7th through the 17th. For E5, our code was based off of FreeBSD 13.0. We
removed the file path information from some events in the traces. Events with more
reliable file information continue to report it, they were excluded from events where
the file paths may be relative or incomplete was it removed. More information (e.g.
initial sequence numbers) was added to the network events to improve tracing cross-
host interactions.

4.5.1.2. Results

There were two hurdles to CADETS stability in E5. While unfortunate, the bugs were
located such that there was minimal, if any, data lost. One of our components, dlogd,
had a memory leak. As it took time to start back up, this was handled by restarting it
intentionally outside of TA5.1’s attack hours to reduce impact. Later in the
engagement, a fix was pushed to speed up restart time. The amount of data being
generated during this engagement revealed a bug in the CDM Translator where the
CDM Translator enqueued data to send to Kafka faster than it could be sent. This
caused the program to crash. Once this bug was identified, a fix was implemented
and provided to deploy in case of another crash.

The other components, the ddtrace_producer and ddtrace_consumer, remained stable
throughout the engagement.

After approximately 11 days running, CADETS trace generation was still keeping up
with real-time. While there were lags when a component needed to be restarted, the
system caught up each time.

As in E4, CADETS generated much more data than it did in the first few
engagements. While the data rate did not change significantly for E5, due to the fact
that E5 was set up to run data generation 24 hours a day for the entire engagement
and on an increased number of hosts, a much higher quantity of data was
generated. Overall, we generated approximately 1250 records per second over three
machines, as shown in Figure 15. At the time of this writing, attack detection results
have not yet been evaluated.

35
Distribution Statement A: Approved for public release: distribution is unlimited.

Figure 15: Activity on E5 Kafka Topics

4.6 Userspace Tracing

4.6.1. Loom

Loom was initially envisioned to help provide additional trace data and corresponding
semantics to user space applications on FreeBSD. Although DTrace could
instrument applications, its components to do so were coarse and did not provide
much context to the data. Loom was implemented as a framework to provide
additional instrumentation in user space application and libraries to better
understand their data flows.

The initial functionality provided by Loom allowed for instrumentation of function calls
and data structure accesses and modifications. This was enough functionality to
support the development of LLVM-Prov, which used to provide data provenance in
FreeBSD applications. The result for LLVM-Prov within the project are discussion in
section LLVM-Prov.

Loom development continued independently of LLVM-Prov to provide a general
purpose instrumentation tool. Loom functionality was expanded to allow it to provide
instrumentation of both FreeBSD applications and libraries. Modifications were also
made to the FreeBSD build system to allow for instrumentation during the build
process for the operating system.

Although the final Loom improvements did not align with the E5 schedule (fixed after
the feature freeze), internal testing showed promising results. With a small of amount
of instrumentation added to the Pluggable Authentication Module (PAM) user space
library, we were able to capture authentication events and associated data across all
applications using PAM.

36
Distribution Statement A: Approved for public release: distribution is unlimited.

To get to the point where Loom was able to instrument both programs and libraries
many avenues were explored, creating enhancement ideas for the framework.
Future plans for expansion of the framework includes the addition of a runtime
component, allowing for additional logic to be applied to instrumentation data before
incurring the expensive cost of submitting it to kernel space frameworks. Additionally,
there is ongoing research to expand the language used to define instrumentation
points, allowing for more complex logic (include temporal logic) to be applied to the
decision of what to trace.

4.6.2. LLVM-Prov

LLVM-prov was applied to 368 binaries that are a part of the FreeBSD base system.
By the final engagement, LLVM-Prov was able to add MetaIO instrumentation to 93
binaries in the CADETS FreeBSD base system. MetaIO would not be applicable to a
further 95 binaries, as they act as either sources or sinks from an information-flow
perspective but not both. A further 180 binaries could not be automatically
instrumented for MetaIO. Further development or integration of interprocedural
information-flow analysis would allow additional binaries to be automatically
instrumented.

4.6.2.1. Fully-instrumented Binaries

Table 1 lists binaries that were fully instrumented for MetaIO, i.e., all instances of
source and sink system calls were converted into their MetaIO equivalents.

Table 1 List of Fully-instrumented Binaries

Binaries
/bin/cp /bin/mv
/sbin/fsirand /sbin/ggated
/sbin/ggatel /sbin/newfs_msdos
/sbin/nos-tun /sbin/recoverdisk-
/usr/bin/brandelf /usr/bin/bspatch
/usr/bin/ctfdump /usr/bin/dpv
/usr/bin/elf2aout /usr/bin/indent
/usr/bin/reset /usr/bin/tee
/usr/bin/tset /usr/sbin/dtrace
/usr/sbin/nfsd /usr/sbin/tzsetup
/usr/sbin/watch

4.6.2.2. Partially-instrumented Binaries

Table 2 lists binaries that were partially instrumented for MetaIO, i.e., LLVM-Prov
was able to find some information flows and instrument them but other flows were
opaque to LLVM-Prov.

37
Distribution Statement A: Approved for public release: distribution is unlimited.

Table 2 List of Partially-instrumented Binaries

Binaries
/bin/dd /bin/pax
/sbin/decryptcore /sbin/fsck_msdosfs
/sbin/gbde /sbin/gcache
/sbin/gconcat /sbin/geli
/sbin/geom /sbin/gjournal
/sbin/glabel /sbin/gmirror
/sbin/gmountver /sbin/gmultipath
/sbin/gnop /sbin/gpart
/sbin/graid3 /sbin/graid
/sbin/gsched /sbin/gshsec
/sbin/gstripe /sbin/gvirstor
/sbin/hastd /sbin/natd
/sbin/ping6 /sbin/ping
/sbin/restore /sbin/rrestore
/sbin/savecore /usr/bin/calendar
/usr/bin/cu /usr/bin/diff
/usr/bin/gunzip /usr/bin/gzcat
/usr/bin/gzip /usr/bin/ibv_rc_pingpong
/usr/bin/ibv_uc_pingpong /usr/bin/ibv_ud_pingpong
/usr/bin/install /usr/bin/lpr
/usr/bin/patch /usr/bin/script
/usr/bin/sdiff /usr/bin/split
/usr/bin/tcopy /usr/bin/tip
/usr/bin/zcat /usr/sbin/acpidb
/usr/sbin/bcmfw /usr/sbin/bhyve
/usr/sbin/ctladm /usr/sbin/fwcontrol
/usr/sbin/hostapd /usr/sbin/hv_kvp_daemon
/usr/sbin/inetd /usr/sbin/ipfwpcap
/usr/sbin/lpd /usr/sbin/nghook
/usr/sbin/ntpd /usr/sbin/ppp
/usr/sbin/pppctl /usr/sbin/pw
/usr/sbin/rarpd /usr/sbin/rmt
/usr/sbin/rpc.statd /usr/sbin/rwhod
/usr/sbin/sshd /usr/sbin/timed
/usr/sbin/timedc /usr/sbin/uathload
/usr/sbin/wpa_cli /usr/sbin/wpa_supplicant

4.7 Kernel Tracing

4.7.1. FreeBSD Audit and the DTrace Audit Provider

The key hypothesis of this work was that conventional security event auditing and
debugging mechanisms such as DTrace could be converged to offer the benefits of
both in the Transparent Computing environment. An additional hypothesis was that
modest kernel extensions to introduce unique identifiers for key kernel data
structures would better support the Transparent Computing use case. We explored
this hypothesis through substantive engineering and experimental activities,
including:

38
Distribution Statement A: Approved for public release: distribution is unlimited.

 Significant extensions to the baseline FreeBSD audit implementation to

capture non-CAPP events and additional context relevant to Transparent
Computing.

 Introducing new UUIDs and Message ID to allow explicit event linkage rather
than relying on statistical correlation techniques.

 Integrated audit and DTrace via the implementation of an Audit DTrace
Provider that allows DTrace scripts to control audit event capture and
processing.

These changes were present across multiple adversarial engagements, although
additional refinements were made as the program progressed (e.g., to add additional
events and context, as well as to fix bugs). UUIDs were used by TA2 teams to
reliably identify a variety of subject and object types in the system, including
processes, IPC sockets, and files. While we provided unique Message IDs for
datagram sockets (e.g., loopback UDP, UNIX domain sockets), we are not aware
that TA2s made use of this data. We did not provide access to Message IDs on
stream sockets as part of the adversarial engagement, and this would be a natural
next direction. We found that the DTrace Audit provider provided substantially
higher-quality trace data and more maintainable tracing scripts than using DTrace’s
existing providers.

We have upstreamed support for audit improvements, excluding UUIDs and
Message IDs, as well as the DTrace Audit Provider, to FreeBSD, accomplishing
successful open-source transition. To further transition UUID and Message ID
support, additional performance characterization and use-case exploration would be
required—e.g., by seeing similar successful transition and adoption of TA2
technologies able to consume this additional OS metadata.

4.7.2. Distributed DTrace

The key hypotheses in this work were that inherent distributed-system problems
relating to security, reliability, performance, timing, event correlation, and
heterogeneity could be overcome in adapting DTrace for both multi-VM and wider
distributed-system environments. We explored these hypotheses through
substantive engineering and experimental activities, including:

 Introduced DTrace support for reliably tracing early boot and through
shutdown.

 Introduced the dlog reliable persistent logging facility to improve DTrace
reliability, and to distribute trace data across multiple hosts, even in the event
of network or server outages. dlog is encrypted using TLS on the wire.

 Introduced dlog compression support and other efficiency improvements to
allow DTrace to be used efficiently in a persistent network environment.

 Adapted DTrace to ship event and type metadata, not just trace data, over
dlog, to account for host heterogeneity.

39
Distribution Statement A: Approved for public release: distribution is unlimited.

 Introduced IP-option-based packet tagging to carry message and host IDs
between supporting IPv4 nodes, allowing distributed events to be correlated.

Distributed DTrace, as with all distributed systems, is a complex engineering artifact.
We stepped towards full DDTrace support over several engagements, initially using
off-the-shelf Kafka submission components to pipe local DTrace tracing on each
individual nodes into Kafka. In this approach, conversion to the final CDM format
occurs on individual tracing nodes, with DTrace controlling only local processing.

In the fourth adversarial engagement, we introduced dlog support, allowing
separation of DTrace data capture, on tracing nodes, and presentation and
conversion, on a central node, with the Kafka broker in between. dlog provides much
stronger local and end-to-end reliability guarantees, including placing a strict bound
on potential record loss when a tracing node crashes. dlog is integrated into the
kernel, avoiding unbounded userspace buffering (as is present if the DTrace
command-line tool is used), and ensures that records are synchronized to the
filesystem in a controlled manner. The dlogd daemon is then responsible for reliably
shipping data over the network, protected by TLS, recovering from a variety of failure
modes including its own node crash, Kafka server unreachability, and Kafka server
crash.

Deploying in the fourth engagement was bumpy: with network and workload
conditions substantially different from our testing environment, and a late-binding
request to add TLS support despite the risks involved, we had to debug a number of
in-field issues relating to performance and connection reliability. In addition, while
dlogd performed well respect to its specified and documented configuration, a number
of in-field configuration changes were made during the engagement that reduced is
reliability by taking it outside of its specified use—for example, by making
configuration changes without fully restarting the system during deployment. Our
experience gained was primarily operational: improved debug logging and tools, as
well as configuration simplification, where necessary. We also discovered that
DTrace made extremely inefficient use of storage with our audit.d script, causing
performance issues in the field. After pre-engagement debugging and working
through configuration issues, the system was stable, albeit slow during E4.

In the fifth engagement, we deployed a substantially improved prototype, which
included improved monitoring tools, better crash recovery and misconfiguration
detection, and compression support to reduce log size.

At the end of the program, our Distributed DTrace prototype is able to reliably
instrument multiple hosts, dealing with moderate host heterogeneity (e.g., differing
OS revisions), and addressing a variety of host and network failure modes. The
prototype is not yet in a production-ready state for transition, requiring substantial
further research and engineering. In particular, we have identified that modest
DTrace language extensions would substantially improve usability, as well as better
integrating support for event correlation. We hope also to pursue a more mature
partial-compute model, in which portions of scripts run on tracing nodes (as is the
case today), while other portions run centrally offering post-reconciliation processing
of data originating from multiple nodes.

40
Distribution Statement A: Approved for public release: distribution is unlimited.

While Distributed DTrace has served the Transparent Computing use case well, it is
easy to see it also addressing widespread problems with distributed performance
analysis—e.g., with applications running on multiple nodes using distributed file
systems. We have begun to engage with a number of vendors of such systems,
including NetApp, Apple, and others, to understand their related use cases and
potential transition challenges better.

4.7.2.1. HyperTrace

To implement HyperTrace, we:

 Added support for guest-from-host tracing via new front-end and back-end
VirtIO drivers allowing the host to configure guest DTrace, and for the guest to
issue hypercalls to the host DTrace engine to process firing probes.

 Add VirtIO message tagging to allow messages passing between guest VMs
and the host, and between multiple guest VMs, can be linked.

We were not able to deploy HyperTrace in the final engagement, despite a strong
desire to do so.

4.7.2.2. Distributed DTrace

On the whole, our implementation has validated our hypotheses, providing
increasing levels of event tracking, reliability, and distributed correlation with
escalating adversarial engagements. Further work will be required to address known
limitations of the prototype:

 Introduce automatic distribution of Distributed DTrace configuration, including
scripts.

 Support the dynamic updating of in-execution scripts, allowing them to be
adapted to system-wide changes, or to increase or decrease data gathering.

 Explicitly address time synchronization requirements of scripts utilizing time—
e.g., to measure latency.

 Introduce better language-level support for managing and analyzing
distributed events.

4.8 Performance Overhead

An important concern of the TC program is minimizing performance overhead.
Instrumentation overhead is dependent on the application that is being instrumented
and the type of information that is being traced (i.e. system calls, function
entries/exits) as well as its granularity. While CPU, network, disk IO performance are
reasonable metrics, a baseline needed to be established.Due to the unavailability of
an engagement baseline, we have provided time overheads on limited scenarios.

Post E4, we performed benchmarking of time overhead. Our internal testing showed
a 17.7% time overhead when tracing is turned on using the same tracing script (

41
Distribution Statement A: Approved for public release: distribution is unlimited.

audit.d) that was used in E4 (although without DDTrace) when building the FreeBSD
kernel. This was on a bhyve VM with 4 CPUs and 16G RAM.

We also measured the time to compile the FreeBSD kernel under 3 conditions:

 no tracing turned on
 tracing with HyperTrace enabled, and
 tracing from the guest only

Figure 16 below provides examples of different levels of granularity possible when
tracing. The overhead of compiling FreeBSD on a guest VM with these respective
levels of tracing is shown in Figure 17. The results in Figure 17 show an average
time overhead of:

• 28% when compiling the FreeBSD kernel on a guest and tracing a wide
variety of info with different granularities. This is the average additional
overhead when “Traced inside the guest” compared to the “No tracing”.

• 110% when compiling the FreeBSD kernel on a guest and tracing, from the
host, a wide variety of info with different granularities. This is the average
additional overhead when “Traced using DTrace-virt” compared to the “No
tracing”. Please note that DTrace-virt was the former name of HyperTrace.

Figure 16 Varying Levels of Granularity for Different Traces

42
Distribution Statement A: Approved for public release: distribution is unlimited.

Figure 17 Comparison of Time Required to Compile FreeBSD While Tracing

4.9 LibPVM

LibPVM and its previous prototypes have been used on data resulting from
engagements since E3 in order to:

 tune the ingestion pipeline
 characterize system provenance workloads
 debug missing data issues, test new types of provided data

Since E4, libPVM has also been capable of outputting a CDM serialization of graphs
that have PVM semantics. libPVM has run on-line during E5, on a VM not part of the
engagement.

Below we show that the resulting pipeline is capable of easily sustaining data
production rates such as the ones produced during engagements; This also
suggests that raw trace data coming from multiple hosts (10-100) could be
processed by a single PVM instance, depending on the per-host data rates. In
production scenarios beyond 100 hosts or that have high levels of per-host activity,
libPVM’s current design would also support working in a fully distributed environment
with multiple libPVM producers sending data to a distributed store. However, truly
distributed graph databases are yet in their infancy, with few products mature
enough and able to sustain the type of write throughputs required.

In terms of scaling performance, libPVM shows almost perfect linear characteristics
for the range of trace sizes analysed, as evidenced in Figure 18. The data points are
taken by ingesting events produced during E3 and E4 (covering the Bovia and
Pandex attack scenarios) as quickly as possible.

43
Distribution Statement A: Approved for public release: distribution is unlimited.

Figure 18 libPVM performance by trace size

4.10 Neo4J Database Optimization

Early on in the work, when profiling existing Neo4J bottlenecks, we have determined
that for typical libPVM ingestion workloads, 80% of the time was spent in the
transaction manager, with little parallelism being used because of coarse-grained
locking. In particular, adding multiple edges to a single “source” node was serialized
despite no real underlying data conflicts between transactions. We have determined
that in such cases, a node and its corresponding edge-list can be treated as
separate entities, with the possibility of implementing the edge list as a structure
allowing high-concurrency on additions (for example, using lock-free data structures
and optimizing for particular hardware architectures such as x86).

A second element of concern beyond the granularity of the locking was the way the
locks themselves were managed, with all active locks stored in a HashMap with poor
scalability (look-ups in this HashMap represented 14% of the total time).

This was despite significant improvements to the write throughput made in upstream
Neo4j since 2.2 (by replacing two-phase commit with a unified transaction log). The
identified cause was the fact that the provenance ingestion workload represents a
pathological case for the existent Neo4J transaction/storage architecture.

In our aim to increase parallelism while maintaining transactional ACID properties,
we have proposed to improve the on-disk format of the data. In particular, we have
set to create an on-disk format that allows us to experiment with different transaction
engines, and in particular ones implementing SSI, In terms of the consistency model,
serializability means that the effect of executing multiple transactions concurrently is
equivalent to the effect of executing the transactions in some serial order. This
choice was made based on the assessment that such engines would behave
significantly better for the given TC workloads.

44
Distribution Statement A: Approved for public release: distribution is unlimited.

Indeed, when creating and obtaining measurements from a non-Neo4j based
prototype, we have observed the on-disk layout as able to scale better than even the
batch-importing ingestion of Neo4j (which was previously the fastest available
method for data ingestion, albeit not transactional or appropriate for on-line data
ingestion). This is shown in the Figure 19 below, where our non-Neo4j proof-of-
concept prototype (graph-ssi) is compared against standard Neo4j 3.2.2, as well as
its batch-ingestion mode (graph-batch). Llama, a different, in-memory graph engine
that is non-transactional is also shown for comparison.

This validates our assumptions about the suitability of our graph on-disk format and
SSI transaction engine for TC workloads. Following from this, the prototype was
integrated in the Neo4j ingestion pipeline.

Figure 19 Performance of Different Transaction Engines for Neo4j

Notably, the performance of the integrated prototype considering all improvements
(Neo4j-Modified-Cached) is worse than the batch insert from a CSV file (Neo4j-csv),
as shown in Figure 20. This is because of all the overheads imposed by layers
above the transaction layer (Frontend protocols, Query processing and optimization).
Those were not present in the non-integrated prototype and represent separate
optimization targets. However, it is worth noting that Neo4j-CSV is a non-
transactional, batch-import mode not suitable for real-time ingestion. This shows that
the bottleneck has shifted from the Neo4j backend to the frontend. Even so, we do
observe an average improvement of 10% when compared to stock Neo4j.

45
Distribution Statement A: Approved for public release: distribution is unlimited.

Figure 20 Comparison of Ingestion Speed

In terms of the new storage engine, Figure 21 shows how we have also managed to
reduce edge storage requirements, with reductions between 25% (worst case) and
40% (best). Despite fixed records for edges, the information stored for a given edge
can vary depending on the amount of information stored in indexes for finding that
edge.

46
Distribution Statement A: Approved for public release: distribution is unlimited.

Figure 21 Storage Needed Per Edge in Graph

4.11 UI

We accomplished the primary objective for the CADETS user interface: supporting
the demonstration at the July 2017 PI meeting. We also used it internally to view
PVM data that flowed out of engagements, supporting our own team in a limited way.

47
Distribution Statement A: Approved for public release: distribution is unlimited.

5 CONCLUSIONS

CADETS unifies kernel and userspace tracing to provide provenance information
that interconnects events across multiple nodes in a distributed system. Our system
combines and improves on the security-event auditing provided by FreeBSD Audit
and the dynamic and configurable debugging capability provided by DTrace tracing.
The FreeBSD Audit system has been expanded to assign UUIDs to subjects and
objects and Message IDs to ephemeral messages, to allow for reliable tracking of
their flow. The types of events as well as the details of those events have been
augmented to enhance contextual awareness. A new DTrace Audit Provider allows
the triggering of such capture in a way that avoids potential race conditions and
simplifies configuration. This integration of FreeBSD Audit and DTrace brings
together two historically distinct subsystems to provide reliable information flow data.

To advance our instrumentation to a distributed environment, CADETS has extended
the original DTrace design with Distributed DTrace (DDTrace) to support distributed
tracing across multiple hosts. DDTrace offers fully distributed tracing with built-in
functionality that takes advantage of the Kafka message broker to address complex
issues in consistency, persistence, time synchronicity, and latency. In addition,
HyperTrace is a separate and “simplified” variation of distributed tracing, whereby
instrumentation is coordinated among a single host VM and multiple guest VMs.
DDTrace offers potential for an enterprise solution while HyperTrace offers an
approach that is suitable for a more scoped exploration and perhaps a more secured
model to perform the exploration under.

While DTrace can be used for userspace tracing, it requires modification to the
source code, a requirement that does not scale well. We have implemented Loom
technology which leverages the LLVM compiler for software instrumentation that is
free from this intrusive caveat. Loom’s instrumentation is specified by either a policy
file or via use of its API, allowing for flexibility in determining what is instrumented
and how to output the results. Once the Loom framework was built, information flow
was further enhanced and integrated with kernel tracing with the development of
LLVM-prov. LLVM-prov builds on Loom’s transformation to map normal syscalls to
MetaIO calls that facilitate the passing of provenance information. Various static
analysis tools and techniques have been explored to improve LLVM-prov’s precision,
allowing it to address the n x m problem of a combinatorial explosion in provenance
propagation.

Our instrumentation technology have been deployed to the TC engagement
environments with the exception of HyperTrace, which is currently still undergoing
testing. Despite the complexity in the deployment of DDTrace, we were able to
achieve stability during the live portion of its first engagement (E4). By the last
engagement (E5) of the program, our system was proven capable of handling
generation of 1250 records per second with data incoming from 3 hosts. Although we
were not able to maintain continuous uptime for the full 11 days of data generation,
the engagement helped define the improvements that are needed to further
operational use. Overall, CADETS data was able to be used to identify the majority
of attacks during the engagements.

48
Distribution Statement A: Approved for public release: distribution is unlimited.

Downstream, other components contribute to the practical use of CADETS’
instrumentation output. The CDM Translator converts CADETS trace data to TC
CDM semantics for TA2 consumption. The libPVM library provides a model that
avoids misinterpretation of the CADETS data. It enforces a clear semantic model
while also offering layers of data abstraction that strives to improve on the signal-to-
noise ratio as well as flexible context viewing. Our Neo4j optimization work considers
the write-heavy characteristics of TC workloads and addresses the shortcomings. It
introduces a new storage engine optimized for serializable snapshot isolation
support and the addition of a caching layer to the transactional engine to realize
efficiency. Finally, a UI provides end users with an interactive tool to investigate and
build provenance graphs of system activities using CADETS data.

CADETS enables whole system inspection and reliable provenance tracking across
networked hosts. While the advancement of userspace and kernel space
instrumentation were the cornerstone of our research, we’ve also built out our
system to include tools that transform trace data to a pragmatic model, optimize data
storage, and enhance user experience.

49
Distribution Statement A: Approved for public release: distribution is unlimited.

6 REFERENCES

[1] Stolfa, Domagoj, “Tracing Virtual Machines in Real-Time”, Final Year,
University of Rijeka, Faculty of Engineering, 2017.
https://urn.nsk.hr/urn:nbn:hr:190:120631

50
Distribution Statement A: Approved for public release: distribution is unlimited.

List of Symbols, Abbreviations, and Acronyms

Acronym Description
ACID Atomicity, Consistency, Isolation, Durability
API application programming interface
BSD Berkeley Software Distribution
BSM Sun Basic Security Module
CADETS Casual, Adaptive, Distributed, and Efficient Tracing

System
CAPP Common Access Protection Profile
CC Common Criteria
CDM Common Data Model
CI continuous integration
CRASH Clean-Slate Resilient Adaptive Secure Hosts
CSV comma-separated values
CTSRD Clean Slate Trustworthy Secure Research and

Development
DARPA Defense Advanced Research Projects Agency
DDTrace Distributed DTrace
DEQUE Distributed Event Queries for EQ
DIF DTrace Interface Format
DTrace Sun’s Dynamic Tracing system
E1, E2, E3, E4, E5 Engagement 1, 2, 3, 4, 5
ELF Executable and Linkable Format
EQ Event Query
GPLv3 GNU General Public License version 3
GSOC Global Security Operations Center
IPC inter-process communication
IR intermediate representation
JSON JavaScript Object Notation
NCSA National Center for Supercomputing Applications
OpenBSM Open-source Basic Security Module
OPUS Observed Provenance in User Space
OS operating system
POSIX Portable Operating System Interface
PTTY pseudo teletype
PVM Provenance and Versioning Model
PVMv2 PVM version 2
py-cdg Python Call and Data Graph
SDT Statically defined tracing
SSDD System and subsystem design document
SSI Serializable Snapshot Isolation
SVF Static Value–Flow

51
Distribution Statement A: Approved for public release: distribution is unlimited.

Acronym Description
TC Transparent Computing
TCB Trusted Computing Base
TESLA Temporally-Enhanced Security Logic Assertions
TRACE Tracking and Analysis of Causality at Enterprise

level
UFS Unix file system
UI user interface
UIUC University of Illinois at Urbana-Champaign
USDT Userland Statically Defined Tracing (USDT)
UUID universally unique identifier
VM virtual machine
XML Extensible markup language
YAML Yet-Another-Markup-Language

