
AFRL-RY-WP-TR-2019-0115

CASUAL, ADAPTIVE, DISTRIBUTED, AND EFFICIENT 
TRACING SYSTEM (CADETS)
Amanda Strnad and Quy Messiter

BAE Systems

Robert Watson and Lucian Carata

University of Cambridge

Jonathan Anderson and Brian Kidney

Memorial University of Newfoundland

SEPTEMBER 2019
Final Report 

Approved for public release; distribution is unlimited.

See additional restrictions described on inside pages

STINFO COPY

AIR FORCE RESEARCH LABORATORY
SENSORS DIRECTORATE

WRIGHT-PATTERSON AIR FORCE BASE, OH  45433-7320
AIR FORCE MATERIEL COMMAND

UNITED STATES AIR FORCE



 
NOTICE AND SIGNATURE PAGE 

 
 
 
Using Government drawings, specifications, or other data included in this document for any 
purpose other than Government procurement does not in any way obligate the U.S. Government. 
The fact that the Government formulated or supplied the drawings, specifications, or other data 
does not license the holder or any other person or corporation; or convey any rights or permission to 
manufacture, use, or sell any patented invention that may relate to them.  
 
This report is the result of contracted fundamental research deemed exempt from public affairs 
security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and 
AFRL/CA policy clarification memorandum dated 16 Jan 09.  This report is available to the general 
public, including foreign nationals.  
 
Copies may be obtained from the Defense Technical Information Center (DTIC) 
(http://www.dtic.mil).   
 
AFRL-RY-WP-TR-2019-0115 HAS BEEN REVIEWED AND IS APPROVED FOR 
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT. 
 
 
 
 
*//Signature//      //Signature//  
TOD J. REINHART DAVE G. HAGSTROM, Chief 
Program Manager  Resilient and Agile Avionics Branch 
Resilient and Agile Avionics Branch  Spectrum Warfare Division 
Spectrum Warfare Division  
 
 
 
 
 
//Signature//  
NEERAJ PUJARA 
Spectrum Warfare Division 
Sensors Directorate 
 
 
 
 
This report is published in the interest of scientific and technical information exchange, and its 
publication does not constitute the Government’s approval or disapproval of its ideas or findings. 
 
*Disseminated copies will show “//Signature//” stamped or typed above the signature blocks. 



 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data 
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of 
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a 
collection of information if it does not display a currently valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1.  REPORT DATE  (DD-MM-YY) 2.  REPORT TYPE 3.  DATES COVERED (From - To) 

September 2019 Final 9 June 2015 – 5 June 2019 
4.  TITLE AND SUBTITLE 

CASUAL, ADAPTIVE, DISTRIBUTED, AND EFFICIENT TRACING 
SYSTEM (CADETS) 

5a.  CONTRACT NUMBER 
FA8650-15-C-7558 

5b.  GRANT NUMBER  

5c.  PROGRAM ELEMENT NUMBER 
N/A 

6.  AUTHOR(S) 

Amanda Strnad and Quy Messiter (BAE Systems) 
Robert Watson and Lucian Carata (University of Cambridge) 
Jonathan Anderson and Brian Kidney (Memorial University of 
Newfoundland) 

5d.  PROJECT NUMBER 
DARPA 

5e.  TASK NUMBER 
N/A 

5f.  WORK UNIT NUMBER 
 Y1AY 

7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8.  PERFORMING ORGANIZATION 
     REPORT NUMBER 

BAE Systems 
600 District Ave. 
Burlington, MA 01803 

University of Cambridge 
 

Memorial University of 
Newfoundland 

AFRL-RY-WP-TR-2019-0115 

9.   SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10.  SPONSORING/MONITORING 
       AGENCY ACRONYM(S) 

Air Force Research Laboratory 
Sensors Directorate 
Wright-Patterson Air Force Base, OH 45433-
7320 
Air Force Materiel Command 
United States Air Force 

Defense Advanced 
Research Projects 
Agency (DARPA/I2O) 
675 North Randolph St. 
Arlington, VA 22203 

AFRL/RYWA 
11.  SPONSORING/MONITORING 
       AGENCY REPORT NUMBER(S) 

AFRL-RY-WP-TR-2019-0115 

12.  DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution is unlimited. 

13.  SUPPLEMENTARY NOTES 
The U.S. Government has for itself and others acting on its behalf an unlimited, paid-up, nonexclusive, 
irrevocable worldwide license to use, modify, reproduce, release, perform, display, or disclose the work by or 
on behalf of the U.S. Government. Report contains color.  

14.  ABSTRACT 
CADETS unifies kernel and userspace tracing to provide provenance information that interconnects events 
across multiple nodes in a distributed system. CADETS combines and improves on the FreeBSD Audit and 
DTrace subsystems, and extends the original DTrace design to support distributed tracing across multiple 
hosts. Its Loom and LLVM-prov frameworks leverage the LLVM compiler for software instrumentation and 
for bridging userspace and kernel space information flow with precision. 

15.  SUBJECT TERMS  
software instrumentation, provenance, information flow, FreeBSD, DTrace, LLVM, hypervisor 

16.  SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT: 

SAR 

8.  NUMBER OF 
PAGES 
   57 

19a.  NAME OF RESPONSIBLE PERSON (Monitor) 
a.  REPORT 
Unclassified 

b. ABSTRACT 
Unclassified 

c. THIS PAGE 
Unclassified 

       Tod Reinhart 
19b.  TELEPHONE NUMBER (Include Area Code) 

N/A 
 Standard Form 298 (Rev. 8-98)         

Prescribed by ANSI Std. Z39-18 

 



i 
Distribution Statement A: Approved for public release: distribution is unlimited. 

TABLE OF CONTENTS 
List of Figures ............................................................................................................. iii 
List of Tables .............................................................................................................. iii 

1 SUMMARY ........................................................................................ 1 

2 INTRODUCTION ............................................................................... 2 

2.1 Problem Description ........................................................................................ 2 

2.2 Research Goals ............................................................................................... 2 

2.3 Evolution of Approach ..................................................................................... 3 
2.3.1. EQ Simplified to D Language Improvements ............................................ 4 
2.3.2. WATCHMAN Replaced by DTrace and Loom/LLVM-Prov ....................... 4 
2.3.3. DEQUE Redefined as DDTrace ............................................................... 5 

2.4 System Overview ............................................................................................. 5 
2.4.1. FreeBSD Audit ......................................................................................... 6 
2.4.2. Audit DTrace Provider .............................................................................. 6 
2.4.3. DTrace...................................................................................................... 7 
2.4.4. Hypervisor Tracing ................................................................................... 7 
2.4.5. DDTrace ................................................................................................... 7 
2.4.6. Loom ........................................................................................................ 7 
2.4.7. LLVM-Prov ............................................................................................... 7 
2.4.8. CDM Translator ........................................................................................ 8 
2.4.9. LibPVM ..................................................................................................... 8 
2.4.10. Neo4j Database Optimization ................................................................... 8 
2.4.11. User Interface (UI) .................................................................................... 8 

2.5 Upstreaming and Transition ............................................................................ 9 

3 METHODS, ASSUMPTIONS, AND PROCEDURES ....................... 10 

3.1 Tracing User Space ....................................................................................... 10 
3.1.1. Loom ...................................................................................................... 11 
3.1.2. LLVM-Prov ............................................................................................. 15 

3.2 Tracing Kernel Space .................................................................................... 18 
3.2.1. Integrating FreeBSD Audit and DTrace .................................................. 18 
3.2.2. A Transparent Operating-System Design ............................................... 19 
3.2.3. Distributed DTrace ................................................................................. 19 

3.3 CDM Translator ............................................................................................. 22 

3.4 LibPVM .......................................................................................................... 23 
3.4.1. The PVM Model ...................................................................................... 24 
3.4.2. The libPVM Implementation ................................................................... 26 



ii 
Distribution Statement A: Approved for public release: distribution is unlimited. 

3 METHODS, ASSUMPTIONS, AND PROCEDURES ....................... 10 

3.5 Neo4j Database Optimization ........................................................................ 27 

3.6 User Interface ................................................................................................ 28 

4 RESULTS AND DISCUSSION ........................................................ 31 

4.1 Engagement 1 (E1) ....................................................................................... 31 
4.1.1. New Features ......................................................................................... 31 
4.1.2. Results ................................................................................................... 31 

4.2 Engagement 2 (E2) ....................................................................................... 31 
4.2.1. New Features ......................................................................................... 31 
4.2.2. Results ................................................................................................... 31 

4.3 Engagement 3 (E3) ....................................................................................... 32 
4.3.1. New Features ......................................................................................... 32 
4.3.2. Results ................................................................................................... 32 

4.4 Engagement 4 (E4) ....................................................................................... 32 
4.4.1. New Features ......................................................................................... 32 
4.4.2. Results ................................................................................................... 33 

4.5 Engagement 5 (E5) ....................................................................................... 34 

4.6 Userspace Tracing ........................................................................................ 35 
4.6.1. Loom ...................................................................................................... 35 
4.6.2. LLVM-Prov ............................................................................................. 36 

4.7 Kernel Tracing ............................................................................................... 37 
4.7.1. FreeBSD Audit and the DTrace Audit Provider ...................................... 37 
4.7.2. Distributed DTrace ................................................................................. 38 

4.8 Performance Overhead ................................................................................. 40 

4.9 LibPVM .......................................................................................................... 42 

4.10 Neo4J Database Optimization ....................................................................... 43 

4.11 UI ................................................................................................................... 46 

5 CONCLUSIONS .............................................................................. 47 

6 REFERENCES ................................................................................ 49 

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS ................ 50 
 
  



iii 
Distribution Statement A: Approved for public release: distribution is unlimited. 

List of Figures 
 
Figure Page
Figure 1 The CADETS workflow ................................................................................ 4 
Figure 2 Overview of the CADETS data-gathering pipeline ....................................... 6 
Figure 3 Loom/LLVM-prov Overview ........................................................................ 11 
Figure 4 LLVM Compilation Flow ............................................................................. 12 
Figure 5 MetaIO Instrumentation Example ............................................................... 17 
Figure 6 High-level View of DDTrace ....................................................................... 21 
Figure 7 DDTrace Overview ..................................................................................... 22 
Figure 8 libPVM Overview ........................................................................................ 24 
Figure 9 PTTY Mapping to PVM Example ................................................................ 25 
Figure 10 exec Syscall Mapping to PVM Example ................................................... 25 
Figure 11 Neo4j Optimized Design........................................................................... 28 
Figure 12 CADETS UI Focused on a Single Node ................................................... 29 
Figure 13 Activity on E3 Kafka Topics ...................................................................... 32 
Figure 14 Activity on E4 Kafka Topics ...................................................................... 33 
Figure 15: Activity on E5 Kafka Topics ..................................................................... 35 
Figure 16 Varying Levels of Granularity for Different Traces .................................... 41 
Figure 17 Comparison of Time Required to Compile FreeBSD While Tracing ......... 42 
Figure 18 libPVM performance by trace size ............................................................ 43 
Figure 19 Performance of Different Transaction Engines for Neo4j ......................... 44 
Figure 20 Comparison of Ingestion Speed ............................................................... 45 
Figure 21 Storage Needed Per Edge in Graph ........................................................ 46 
 
 
List of Tables 
 
Table Page
Table 1 List of Fully-instrumented Binaries .............................................................. 36 
Table 2 List of Partially-instrumented Binaries ......................................................... 37 



1 
Distribution Statement A: Approved for public release: distribution is unlimited. 

1   SUMMARY 
 
Computers today face sophisticated attacks, which can remain hidden on the 
compromised machine for long periods of time, slowly gathering information to 
exfiltrate. Some spread from machine to machine across the network. Unfortunately, 
over the past 30 years, tools haven’t changed enough to keep up with the 
innovations in attacks. 
 
As part of the DARPA Transparent Computing (TC) program, we created a Causal, 
Adaptive, Distributed, and Efficient Tracing System (CADETS). CADETS improves 
on existing audit and information flow tracking systems that exist today, and brings 
them into the 21st century. 
 
Initially, CADETS worked to improve the tracing available on FreeBSD. We did this 
by expanding the sources of information available to DTrace to include data from 
audit, a security logging program that meets the Common Criteria (CC) Common 
Access Protection Profile (CAPP), along with adding persistent universally unique 
identifiers (UUIDs) to kernel objects. 
 
CADETS has greatly improved the capability of FreeBSD to produce detailed traces 
across machines. We have learned first-hand the difficulties of tracing distributed 
systems and started work to allow distributed tracing across heterogeneous 
machines in our Distributed DTrace (DDTrace) capability. 
 
Application developers are focused on the interesting behavior of their own 
programs. While they may add debugging features to help debug their program, 
these may not be the same information useful for understanding compromised 
systems. By modifying the LLVM compiler, we were able to add information including 
provenance data to traces without manually making changes to each individual 
application. This is accomplished using our Loom/LLVM-Prov frameworks. 
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2   INTRODUCTION 
 
2.1   Problem Description 
 
Contemporary computer systems face attackers who are sophisticated, pervasive, 
and persistent, and who are also able to exploit information asymmetries that allow 
them to “hide in plain sight” due to the opacity of current software designs. Security 
and systems researchers have little to boast about; current auditing and forensic 
tools are trapped in the 1980s and 1990s as: (1) they focus on symptomatic events 
that are easy to log (e.g., system calls that were the focus of the Orange Book or 
Common Criteria) rather than causal relationships (e.g., relating application-internal 
security behavior to system-wide events); (2) they remain fundamentally local as our 
most critical systems (and hence attacks on them) have become distributed, scaling 
poorly with respect to both performance and analysis capabilities; (3) they are 
unresponsive to changes in analyst requirements, especially as forensic 
investigators shift their focus within live systems; and (4) they fail to support a 
virtuous cycle in which analysts and software authors improve the self-descriptive 
capabilities of deployed systems as experience is gained, to make them more 
responsive to analysis over time. 
 
2.2   Research Goals 
 
To address flaws in current systems, we developed CADETS, a solution grounded in 
fundamental improvements in dynamic instrumentation, scalable distributed tracing, 
and programming-language support for compiler driven instrumentation. CADETS 
enables analysts to explore both historic and live events by providing provenance 
data well suited for causal backtracking and temporal pattern matching. To support 
the causal analyses required for in-field forensics, CADETS introduces local and 
distributed information-flow to be accomplished through new static and dynamic 
software instrumentation techniques and a distributed tracing model. Local and 
distributed information flow tracking provides fine-grained inspection of local systems 
as well as holistic visibility into and correlation of suspicious activities across nodes 
in a network. New static analyses are needed to automate instrumentation of 
userspace applications without requiring modification of source code. Furthermore, 
static interprocedural analysis helps to define precise source/sink relationships, 
avoiding data explosion in provenance tracking. New dynamic software 
instrumentation techniques are required to extend the types of events and data that 
can be captured in a consistent and reliable manner. Finally, a distributed tracing 
model offers a cohesive and scalable information tracking solution that spans 
multiple systems. Our target platform is FreeBSD, although many of the technologies 
we will be using and developing could apply to other deployed systems. Intrinsic to 
the CADETS design is consideration that performance is a critical aspect with goals 
to minimize memory, compute, and network overhead. 
 
The instrumentation of userspace software without modifying the source code allows 
for many parts of the operating system to be instrumented with minimal intervention 
by the end user. DTrace provided some of this functionality through DTrace 
providers (e.g. function boundary tracing) but instrumentation using these tools often 
lacked semantics. In a previous DARPA project, CRASH, members of the CADETS 
team had developed a tool for verifying temporal assertions in software called 
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Temporally-Enhanced Security Logic Assertions (TESLA). It was recognized that the 
static analysis and instrumentation portion of this tool could be extracted and 
modified to be used as a general instrumentation framework. The results of this work 
is Loom. In order to maintain the same level of visibility as information flows from 
userspace to the operating system (OS) kernel, advancement in the integration of 
userspace and kernel space tracing is required. LLVM-Prov leverages Loom to 
address this need and explores static analysis methods to enhance provenance 
tracking. 
 
CADETS exploits recent advances in OS and compiler instrumentation and tracing 
technologies that offer new insight into whole-system behavior. Part of our work is 
refocusing existing frameworks for forensic investigation rather than debugging or 
performance measurement – among other things, improving integrity, confidentiality, 
and reliability, namely with the FreeBSD Audit and DTrace systems. In addition, we 
also introduced support for distributed causal analysis at scale through the 
development of DDTrace which leverages DTrace to provide tracing across nodes 
networked together as part of a distributed system. We also implemented a 
hypervisor tracing capability called HyperTrace that allows tracing of guest virtual 
machines (VMs) from a single host. 
 
While DTrace and Loom/LLVM-Prov are the crux of our research, we’ve also 
explored other research areas to bolster the operation use of our system.  This 
includes new graph data format specifications and graph database optimizations. 
 
2.3   Evolution of Approach 
 
Initially, we sought to achieve our research goals based on the concept of the 
following components: 
 

 Event Query (EQ) is a query and instrumentation language for use by both 
human analysts and automated systems. It would allow analysts to specify 
queries that would direct instrumentation across local and distributed systems. 

 WATCHMAN is a framework to instrument and trace operating system and 
application behavior within local systems. It is responsible for taking queries 
from the EQ front end and compiling to a variety of tracing, temporal tracking, 
and information flow back ends. 

 DEQUE: DISTRIBUTED EVENT QUERIES FOR EQ links both a front-end 
analytics system fielding EQ with WATCHMAN agents on nodes across the 
heterogeneous distributed system, and coordinates tracing between nodes in 
the system. 

 
Figure 1 depicts these concepts. 
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Figure 1 The CADETS workflow 

This first design revolved around the idea of enabling an adaptive instrumentation 
approach where the CADETS system can adjust to selective levels of data focus or 
resolution. However, early achievements in DTrace and Loom/LLVM-Prov 
development, as well as the impracticality of that approach during live engagements 
where multiple TA2 performers are supported, lead to a different architecture. 

2.3.1.   EQ Simplified to D Language Improvements

In our initial efforts towards the development of an EQ language (that borrows syntax 
from the D language and TESLA’s C-based temporal assertions), we found that the 
natural and pragmatic approach was to reuse the D language itself to specify the 
type and granularity of tracing across programs that run on one or more hosts. Only 
small changes were made to the D language, allowing us to avoid alienating core 
users from the open source community while also providing the necessary 
instrumentation granularity. 

Furthermore, to provide higher level semantics, we have adapted the Observed 
Provenance in User Space (OPUS) system to allow TA2 teams or analysts to 
answer provenance and trust questions (e.g. what was the sequence of steps that 
resulted in the creation of this graph node?). OPUS uses a Portable Operating 
System Interface (POSIX) compliant Provenance and Versioning Model (PVM). 
While useful, this model is too tightly coupled to the POSIX semantics. Thus, we 
updated the PVM model to a second version (PVMv2) to allow us to express and 
explore other non-POSIX compliant models. This version is implemented in the 
libPVM library.

2.3.2.   WATCHMAN Replaced by DTrace and Loom/LLVM-Prov 

The original goal was to design and implement a framework to instrument and trace 
OS and application behavior within both local and distributed systems. Leveraging 
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existing instrumentation mechanisms, CADETS proposed to develop new techniques 
such as just-in-time re-instrumentation based on “fat binaries” -where LLVM 
intermediate representation (IR) is stored along with the native instruction stream-, 
extend DTrace to support information flow and temporal expressions, develop new 
instrumentation agents, add information flow through OS and across programs, link 
automata to information flow tags, and address implicit flows. 
 
However, early successes achieved with DTrace and Loom/LLVM-Prov technologies 
lead to the abandonment of the WATCHMAN implementation. We instead rely on 
DTrace (in the kernel space) and Loom/LLVM-Prov (in the userspace) frameworks to 
perform instrumentation and tracing at both the local and distributed level. Our 
approach to implementing the instrumentation agents is motivated by the need to 
provide transparency which in turn facilitates not only provenance analysis, but also 
debugging and performance analysis. To this extent, our audit provider (dtaudit) 
bridges the gap between debugging and auditing. In addition to creating new 
providers for DTrace (i.e. dtaudit, mbuf), we have also fixed bugs and made 
improvements to the framework. Our changes have been upstreamed to FreeBSD 
and are being used by the open source community. 
 
In the userspace, Loom/LLVM-Prov performs instrumentation and tracing. Loom 
automatically weaves into programs a new system call (dt_probe) that reports arbitrary 
event data. LLVM-Prov, an instrumentation framework based on LLVM, provides 
provenance tracking by performing automatic intra- and inter-procedure analysis 
without modifying the source code. LLVM-Prov also provides support for MetaIO by 
augmenting system calls to track UUID. Furthermore, to enable analysis and 
instrumentation across entire programs, we have provided support for LLVM IR fat 
libraries (i.e. all the FreeBSD libraries are compiled this way). 
 
2.3.3.   DEQUE Redefined as DDTrace 
 
As EQ and WATCHMAN were reconceptualized, DEQUE’s role, originally to 
distribute EQ event queries to WATCHMAN nodes, was also redefined. However, its 
overall goal of providing a distributed tracing framework that reconciles the trace 
data across layers and nodes is served by DDTrace. 
 
2.4   System Overview 
 
DTrace technology and the Loom/LLVM-Prov framework form the basis of 
instrumentation for the current CADETS system. At the kernel level, existing and 
new CADETS DTrace probes record an expanded set of system behaviors. For 
userspace applications, Loom user-defined policy files are used to establish the 
instrumentation points for target applications and libraries as well as throughout the 
FreeBSD OS. In addition, enhanced kernel data flow tracking is provided by LLVM-
Prov.  These technologies are integrated to achieve whole system information 
tracking across multiple hosts.  While DTrace and the Loom/LLVM-Prov framework 
are the key components of CADETS instrumentation, the system is supported by 
other components that contributed to the operation and workflow of CADETS as 
illustrated in Figure 2.  A description of each component in CADETS is provided 
below.  For more detailed information regarding the implementation of each 
component, please consult our Software Subsystem Design Document (SSDD). 



6 
Distribution Statement A: Approved for public release: distribution is unlimited. 

 
 

 
Figure 2 Overview of the CADETS data-gathering pipeline 

 
 
2.4.1.   FreeBSD Audit 
 
The FreeBSD audit implementation targets the Common Criteria (CC) Controlled 
Access Protection Profile (CAPP), which mandates logging of security-critical system 
events. We have extended the audit implementation as follows to take into account 
the specific requirements of the DARPA Transparent Computing program, including 
capturing new events, associating UUIDs with key subjects and objects in the kernel, 
adding Message IDs to Inter-Process Communication (IPC) and network packets, 
and capturing additional contextual information such as system-call arguments. 
Many of these features have been upstreamed to FreeBSD, appearing in FreeBSD 
11.x and 12.0. 
 
2.4.2.   Audit DTrace Provider 
 
We have implemented a new Audit DTrace Provider (dtaudit) that allows DTrace to 
directly instrument and capture audit events. The DTrace provider observes the set 
of audit events available in the system, gathered at boot from the system audit 
configuration, and as required after boot by the audit daemon (auditd). Two DTrace 
probes are exposed for each possible event: a probe that fires when a record is 
committed on system-call completion, and later when the record is converted to 
basic security module (BSM) to be written to disk. DTrace scripts can specify a set of 
audit events to instrument, and gain access to the in-kernel data structure—and, in 
the case of the BSM hook, also the associated BSM-formatted record. We have 
upstreamed this support to FreeBSD, appearing in FreeBSD 12.0. 
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2.4.3.   DTrace 
 
Dynamic Tracing, or DTrace, is an operating-system tracing facility that allows 
programmer or administrator-provided D-language scripts to instrument system 
behavior, process results in kernel, and log them. We employ a CADETS-specific 
audit.d script that instruments key audit events using the Audit Provider, and then logs 
them in a JavaScript object notation (JSON) format to DTrace output.  
 
In earlier program engagement events, we sent the JSON output to DTrace stdout, 
from which it was converted to the Transparent Computing Common Data Model 
(CDM), and then sent over Kafka. In the final two engagements, DDTrace has been 
integrated directly into the in-kernel DTrace implementation and is used instead. 
 
2.4.4.   Hypervisor Tracing 
 
Hypervisor tracing allows DTrace in a FreeBSD bhyve hypervisor host to instrument 
DTrace probes in bhyve guests, permitting a single D script to instrument and 
process data from the host and multiple virtual machines. This work consists of 
several parts, including VirtIO drivers allowing the host and guest to asynchronously 
exchange probe information, a new hypercall to allow the guest to synchronously 
notify the host DTrace instance of probes firing, and modest DTrace extensions to 
allow selection between guest and host probes when writing a script. 
 
2.4.5.   DDTrace 
 
Distributed DTrace allows DTrace output gathered on one system to be forwarded, 
via dlog, a reliable distributed queue based on the Kafka protocol, to other systems in 
a wider distributed system. dlog has multiple parts to its implementation, including a 
kernel component allowing DTrace to feed output into the log, and dlogd, which 
reliably streams logs over the network to a Kafka server. It also addresses 
heterogeneity issues arising from differences in instrumented nodes—e.g., as may 
arise due to different underlying architecture, kernel modules loaded, or operating-
system version—by transmitting DTrace state such as data types over the same 
queue. Some further changes were also made to DTrace to permit reliable tracing 
during early boot and shutdown. 
 
2.4.6.   Loom 
 
Loom is a general-purpose library for adding instrumentation to software in the LLVM 
IR format. It is currently capable of generating static instrumentation points that 
expose values (e.g., function parameters and return values) to software-defined 
instrumentation functions. Loom is used to add additional instrumentation to userland 
binaries, both programs and libraries, in FreeBSD. The resulting data is passed into 
DTrace to be collected into the CADETS trace. 
 
2.4.7.   LLVM-Prov 
 
Using Loom, LLVM-Prov adds to the instrumentation by propagating precise user-
space provenance. It does this with the support of new kernel system calls via a 
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mechanism called MetaIO. By providing insight into source-to-sink information flow 
at the kernel level, LLVM-Prov helps to avoid the provenance path explosion 
problem that occurs when the lack of visibility results in inferences about the causal 
dependencies of data sources/sinks. 
 
2.4.8.   CDM Translator 
 
The CDM Translator is a program which converts the CADETS traces from the 
JSON format generated by the DTrace scripts to the CDM format. CDM is the 
standard format for all TA1s on TC to produce. 
 
The CADETS JSON data is event-based, while CDM uses additional objects in 
addition to events. The CDM Translator uses semantic knowledge of the events on a 
CADETS system to create the objects, such as FileObjects or NetFlowObjects, as 
reliably as possible. 
 
2.4.9.   LibPVM 
 
LibPVM is a library enabling the CADETS output data to be transformed from a 
linear system log to a provenance graph on the TA1-side. This provides a graph 
model of the data which accurately reflects the semantics of the underlying trace, 
irrespective of the final serialization format such as PVM-graph, CDM, comma-
separated values (CSV). The library includes functionality for data ingestion, on-the-
fly graph generation, and limited querying capabilities. 
 
The library leverages work done on provenance modelling (PVM, the Provenance 
Versioning Model) and has its own serialization format (PVM-graph). 
 
LibPVM was used as a data quality control component in CADETS, playing the role 
of an in-house TA2 for the purposes of understanding what information is missing 
from the trace and whether attack components have been captured. 
 
2.4.10.   Neo4j Database Optimization 
 
LibPVM uses the Neo4j graph database for storing and querying the PVM-graph 
serialization of the data. Especially when used for real-time ingestion, the quantity of 
data places a significant stress on the database backend, which is not designed for 
write-heavy workloads. 
 
As both libPVM and other TA2 performers were using Neo4j as a backend for their 
data, we have created a new storage backend for Neo4j that is optimised for the 
provenance-ingestion usecase (better write-concurrency support, better on-disk 
layout). 
 
2.4.11.   User Interface (UI) 
 
While Neo4j is a graph visualization tool, it is not designed as an interactive tool for 
investigating a security attack. The CADETS UI offers practical search panes and 
views to enable analysts to inspect individual nodes (representing processes and I/O 
objects etc.) and explore PVM data to build attack graphs.  
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2.5   Upstreaming and Transition 
 
Throughout the CADETS project, our goal has been to upstream improvements to 
open-source software, increasing the chances of industrial adoption. This has 
included: 
 

 Upstreamed improvements to the FreeBSD audit implementation, appearing 
in FreeBSD 11.0 and later. 

 The FreeBSD DTrace Audit Provider, appearing in FreeBSD 12.0 and later. 

 A variety of audit-event additions and other audit-framework improvements 
appearing in the OpenBSM open-source GitHub repository. 
 

We have created a new OpenDTrace distribution of DTrace, based on the FreeBSD 
and Mac OS X implementations, which has now been adopted by Microsoft in their 
Windows implementation of DTrace. 
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3   METHODS, ASSUMPTIONS, AND PROCEDURES 
 
3.1   Tracing User Space 
 
User-space tracing evolved over the life of the CADETS project, beginning with 
infrastructure for pure user-space tracing, evolving into a set of tools that empower 
better kernel-space tracing and finally growing into tools that provide both user- and 
kernel-space inputs into CADETS traces. 
 
Loom was developed as a generalized instrumentation framework, based on 
previous work under the DARPA CRASH program called TESLA. That work, which is 
a part of the Clean Slate Trustworthy Secure Research and Development (CTSRD) 
project, used LLVM to instrument software for dynamic validation of temporal 
security properties. TESLA provided two forms of inspiration for the CADETS project: 
its temporal assertion language inspired our initial thoughts on the EQ language and 
its instrumentation library inspired the development of Loom. 
 
Loom is a general-purpose framework for instrumenting any program that is 
expressed in the LLVM IR. Unlike the TESLA instrumentation code that was 
interwoven with the semantics of temporal assertion checking, Loom can be used to 
add arbitrary instrumentation driven by either a policy file or by direct application 
programming interface (API) interaction. These interfaces evolved throughout the 
course of the CADETS project. 
 
The policy file interface was added to Loom at the very beginning of the CADETS 
project, even before any instrumentation code had been written. Our original vision 
for user-space tracing was that instrumented code would submit trace events to a 
user-space service (WATCHMAN) that would aggregate traces from multiple 
sources on a host and forward them along to higher-level aggregators elsewhere in 
the network. Over the first year of the project we developed the basic framework, 
added multiple forms of logging output and implemented machine-readable output 
via libxo. 
 
In the second year of the project, we began to focus on the API-driven use case for 
Loom as we started the development of LLVM-Prov. The LLVM-Prov use case was 
the primary driver for Loom in the second and third years of the project, but in the 
fourth year of the CADETS project we renewed our efforts to use Loom as a 
standalone source of trace events. Figure 3 provides a high-level overview of 
Loom/LLVM-prov. 
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Figure 3 Loom/LLVM-prov Overview 

 
 
3.1.1.   Loom 
 
Loom leverages the LLVM compiler tool change to do much of the mechanical work 
for instrumenting source code. LLVM compiler front-ends parse and compile the 
original source code to form of high level assembly code known as LLVM IR. Next, 
LLVM employs multiple optimization and transformation passes known as opt 
passes before the final machine code is produced to be run on the target platform. 
This workflow is shown in Figure 4. Loom is implemented as an LLVM opt pass. 
 
In order to use Loom, the end user must provide an instrumentation policy. This 
policy defines the parts of the code to be instrumented and how to output the 
instrumentation results. This configuration is specified in a Yet-Another-Markup-
Language (YAML) file, the details of which are discussed in a later section. 
 
Using this policy, the Loom opt pass runs in two phases: instrumentation point 
identification; and instrumentation insertion. During the first phase static analysis is 
done to determine all of the points of interest within the code base. Once this list is 
gathered, the second phase adds the required instrumentation code to each 
instrumentation point. 
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Figure 4 LLVM Compilation Flow 

3.1.1.1.   Initial Loom Functionality 

The initial Loom implementation was limited to the functionality of instrumentation 
available in TESLA. This code formed the foundation upon which a general purpose 
tool was built. From TESLA, Loom inherited the static analysis code used to identify 
a limited set of instrumentation points. Additional development was required to add 
the policy file interface and the logging infrastructure to output results. 

The initial implementation of Loom had a limited set of possible instrumentation 
points. It could instrument function calls either from the caller or the callee context. 
When instrumenting these calls, Loom had access to the call parameters. 
Additionally, Loom could instrument structures. For all structures it was possible to 
instrument reads and/or writes of each individual field. 

To allow the user to define the instrumentation points and configure the output, a 
policy file was defined in YAML and parser for the file added to the tool. Using the 
policy file, the end user could define the functions and fields to instrument by name. 
Additionally, the conditions under which they should be instrumented could be 
defined (caller/callee for functions, and read/write for fields). The general 
configuration of Loom, including choice of logger, could also be specified. More 
details on the policy file format and options can be found in the CADETS SSDD. 
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The final piece to be added to produce a general purpose instrumentation framework 
was output handling. To do this, Loom defined not just a single logging output, but 
instead an API upon which many loggers could be defined. Initially it was possible to 
log the instrumentation results using simple text, extensible markup language (XML), 
JSON and through the FreeBSD kernel tracing tool ktrace(1). However, by defining an 
API for adding other loggers in the future, CADETS could use the tool as is for 
testing and defer selecting the appropriate output until better equipped to decide. 
 
3.1.1.2.   Userland Tracing with DTrace 
 
From early on in the project, CADETS decided to use DTrace as the cornerstone of 
our tracing system. DTrace was already tightly integrated into FreeBSD, satisfying a 
large portion of the project’s tracing requirements within the kernel. In areas where 
the functionality was lacking, DTrace allowed for it to be added through existing 
APIs. In userspace however, DTrace did not provide a mechanism to easily 
instrument code. This type of instrumentation was what Loom was designed to 
provide, but the CADETS team had to develop a mechanism to get Loom outputs 
into the DTrace framework. 
 
Initially the team investigated DTrace’s own mechanism for userspace tracing, 
Userland Statically Defined Tracing (USDT). One of the problems with using USDT 
directly was it required modification of the original source code. It was deemed 
infeasible to have to modify large amounts of userspace code, both from the initial 
coding effort and future maintenance cost. 
 
Using the mechanisms employed by USDT directly in Loom was the first option 
investigated for the Loom/DTrace integration. However, it was quickly determined 
this would not be possible due to the technical limitations of Loom. USDT uses 
custom Executable and Linkable Format (ELF) sections that are added to a binary to 
define instrumentation points and the code to be run. These sections are added to a 
binary upon linking, in the final stage in the compiler chain. Loom runs before the 
linking stage and therefore does not have the ability to add ELF sections. 
 
In rethinking the DTrace integration problem, it was decided that Loom could use 
Statically Defined Tracing (SDT) probes that exist in the kernel. These probes are 
usually used to add additional tracing point in kernel code and do not rely on the 
mechanisms used in USDT. In order to pass data from userspace to the kernel a 
system call, dt_probe(2), was added to FreeBSD. 
 
3.1.1.3.   dt_probe(2) System Call 
 
When instrumenting software with Loom and DTrace, Loom adds calls to 
the dt_probe(2) system call. dt_probe(2) is a simple system call implemented in the 
CADETS fork of FreeBSD that takes pointers to userspace data and passes them to 
the DTrace kernel module with a SDT(...) function provided by the DTrace SDT 
provider. These pointers can then be used to access the data values for inclusion in 
the CADETS trace. 
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Since its initial implementation for the project, the system call definition 
for dt_probe(2) has not changed but its semantics have. Initially, the call parameters 
were expected to be up to six pointers to data that was being instrumented. 
However, due to how DTrace probes are identified, using the SDT provider did not 
allow for unique identification of the problem site. 
 
To solve this issue, it was decided to use the first parameter of dt_probe(2) as an 
identifier, leaving the other five parameters for instrumentation data. This design 
change required the addition of metadata to the Loom policy file. In the new policy 
format, the end user could specify a metadata id for each instrumentation point 
making them uniquely distinguishable. 
 
3.1.1.4.   Loom Extensions 
 
Additional functionality was added to Loom throughout the project to extend its 
capabilities and ease of instrumentation. The ability to add instrument points to 
global variables and variadic functions was added. However, variadic function 
instrumentation is limited and can only be instrumented on the caller side where the 
number of arguments to the function is known. 
 
As part of their Transparent Computing project, the Tracking and Analysis of 
Causality at Enterprise level (TRACE) team also used Loom to instrument software. 
They added the functionality to instrument pointers as needed for their work. This 
code was provided to the CADETS team and integrated into the main Loom 
repository. 
 
Parameters were added to the Loom policy files to help identify instrumentation sites. 
Wildcards were added to allow matching against multiple named arguments. The 
ability to limit the scope of instrumentation to a single file was also added. This is 
useful in projects with large amounts of variable name reuse. 
 
3.1.1.5.   Data Transformation 
 
Since the Transparent Computing CDM relies heavily on UUIDs, it was necessary to 
transform some userspace values before adding them to the CADETS trace. A 
proof-of-concept transforms framework was added to Loom for this purpose. The 
framework allows arbitrary functions to be defined and called using instrumented 
variables, logging the result. The policy file syntax was updated to allow for the 
specification of transforms to be performed in individual variables. The initial version 
of this functionality includes the necessary function to retrieve UUIDs for file or 
process descriptors in FreeBSD. This performs as expected but the mechanism for 
adding functions remains a bit cumbersome. Future work will be done to make the 
addition of arbitrary functions more seamless. 
 
3.1.1.6.   Build System Integration 
 
Finally, in order to automate the use of Loom within FreeBSD, the operating 
system’s build system was modified to allow for instrumentation. Rules were added 
to build LLVM intermediate representation for programs and libraries to make it 
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easier for testing on individual parts of the OS. Policy files can also be defined for the 
entire operating system and passed into the full build process. 
 
3.1.2.   LLVM-Prov 
 
LLVM-Prov was developed to address the n × m problem: the explosion of 
complexity that provenance algorithms face when presented with nodes that contain 
many sources and many sinks with many possible provenance paths. The 
development of LLVM-Prov began midway through the second year of the CADETS 
project. At that time, we identified two complementary needs within the program: 
 

1. the need for userspace and kernel tracing to refer to the same objects with 
identifiers that are not subject to data races (e.g., file descriptors), and 

 
2. the need for kernel-based tracing to have increased visibility into userspace 

information flows to avoid a combinatorial explosion in provenance-graph 
processing (the n × m problem). 

 
We designed the MetaIO mechanism to address these two needs. We then spent 
the remainder of the program improving the mechanism and its static information-
flow analyses, to improve trace results. We also invested significant effort in 
integration activities to ensure that both our team and the BBN team would be able 
to automatically build our LLVM-based toolchain, use that toolchain to build the 
CADETS variant of FreeBSD, build CADETS FreeBSD images and then test or run 
those images. Compiler modifications are high-risk activities in the context of a large 
project, so we invested very significant amounts of time in continuous integration (CI) 
development before engagements and then, sometimes, in CI debugging in the lead-
up to engagements. 
 
3.1.2.1.   Key Hypothesis 
 
The central hypothesis of our LLVM-Prov work was that the fusion of user- and 
kernel-space provenance information via the system-call layer can provide 
provenance information that is more reliable than pure userspace tracing and more 
precise than pure kernel-space. We explored this hypothesis by: 
 

 developing compiler-based tools to analyze information flow within userspace 
software (see Tools for Information Flow Analysis section), 

 augmenting the FreeBSD system call interface to pass provenance 
information (“MetaIO”) across system calls without data races (see MetaIO 
section), 

 developing a Loom-based transformation to translate applications’ use of 
POSIX system calls into MetaIO calls (see Loom-based MetaIO 
transformation section) and 

 augmenting the Transparent Computer Common Data Model (CDM) to 
carry Provenance Assertions derived from userspace-supplied MetaIO 
information (see CDM Augmentation section). 
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3.1.2.2.   Tools for Information Flow Analysis 
 
We developed several tools for analyzing information flows within userspace 
software during the course of this program. We began by adding pure LLVM operand 
flow tracking within LLVM-Prov. This tracking used LLVM’s existing API for exposing 
value/instruction operands to build up use–def chains from information flow sources 
(e.g., read(2)) to information flow sinks (e.g., write(2)) within a single procedure. We 
began by hard-coding the set of I/O source and sink system calls within LLVM-Prov, 
then developed software that would allow C-language annotations to be applied to 
the header files containing I/O source and sink declarations. We improved our 
approach to information-flow analysis by adding memory-based data dependencies 
using LLVM’s MemorySSA framework. This API provides the ability to augment the 
use–def graph with mod–ref edges based on an analysis of instructions and 
functions that are available in the LLVM intermediate representation (IR). For 
example, a function that can be proved to only read from memory can only act as a 
sink, whereas functions with unknown memory access patterns could potentially 
write to arbitrary memory. Analysis precision is improved through the use of alias 
analysis in conjunction with MemorySSA, but this analysis is still entirely confined to 
a single procedure. 
 
We took several approaches to the discovery of interprocedural information flows 
during the program. First, we build software to export use–def chains into a form that 
could be read by external graph computation tools. We built a tool called py-
cdg (Python Call and Data Graph) that could ingest this information and expose it to 
standard graph analyses provided by the Python NetworkX library. After adding 
mod–ref information, however, naming the various memory states in a manner that is 
portable across the LLVM passes and the external Python tool became impractical. 
We then turned to evaluating the suitable of the Static Value–Flow (SVF) 
interprocedural analysis in our environment. 
 
SVF analysis is a technique and set of software tools for building interprocedural 
information-flow graphs in LLVM IR bitcode. We explored the approach as potentially 
providing additional information to enhance LLVM-Prov–based instrumentation, but 
its license, GNU General Public License version 3 (GPLv3) was problematic for the 
CADETS project. Towards the end of the program we were starting to explore 
mechanisms for running external SVF tools on uninstrumented binaries, capturing 
information-flow information from their output and bringing that information back into 
our LLVM-Prov library, under the University of Illinois (UIUC)/National Center for 
Supercomputing Applications (NCSA) Open Source License). This work remains 
exploratory at the conclusion of the program. 
 
3.1.2.3.   MetaIO 
 
The MetaIO mechanism allows user- and kernel-space tracing mechanisms to 
reliably name objects consistently without races. Existing naming mechanisms such 
as file descriptors are inherently racy: it is possible for one userspace thread to begin 
a system call with respect to a particular file descriptor number while another thread 
replaces that descriptor with another descriptor — leading to confusion about which 
file is actually being accessed — or for a userspace trace record to use a file 
descriptor number to refer to a different file than the corresponding kernel trace 
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record if a file has been closed and a new file opened. The MetaIO mechanism 
prevents such confusion by adding a new set of system calls that either emit or 
accept more explicit naming information, e.g., UUIDs for files or lightweight message 
IDs for inter-process communication. Information about which file is being read from, 
for example, comes not from the system-call interface layer but from the deeper 
kernel layer that is actually performing the I/O. This information can then be copied 
into userspace in the case of I/O sources; information can then be passed through 
user space and back into the kernel when an I/O sink system call is invoked. This 
explicit passing of I/O metadata allows tracing information from both user- and 
kernel-space to synchronize their naming of files and other relevant kernel objects. 
 
3.1.2.4.   Loom-based MetaIO transformation 
 
Given the availability of information-flow analysis, LLVM-Prov is able to detect 
information flows from I/O sources to I/O sinks. In order to address the n × m 
problem, these sources and sinks must be adapted to use their MetaIO counterparts 
and the program must be modified to pass I/O metadata along the same paths as 
the data flowing through the program. LLVM-Prov uses the Loom instrumentation 
framework (see Loom section) to perform this modification, using Loom’s external 
API to augment the relevant system calls to take a pointer to a MetaIO structure, and 
ensuring that memory for the MetaIO structure is allocated in a place that will allow 
the information to be preserved from source to sink. Figure 5 shows an example of 
how code is instrumented for MetaIO. 
 

 
Figure 5 MetaIO Instrumentation Example 

 
 
3.1.2.5.   CDM Augmentation  
  
In order to propagate MetaIO information to TA2 groups, we proposed additions to 
the CDM. These additions added a new type, ProvenanceAssertion, which asserts that 
the data it is attached to was derived from a specific source (identified by UUID). The 
CDM Value type was modified to accept an optional ProvenanceAssertion field, allowing 
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any Value received by a system call to be annotated with provenance information 
supplied by instrumented userspace software. Since this assertion comes from 
potentially untrusted sources (userspace programs), a ProvenanceAssertion can itself 
include a ProvenanceAssertion about its own provenance, e.g., “this host says that the 
kernel says that this program says that the data came from this specific file”. 
 
3.2   Tracing Kernel Space 
 
Kernel tracing serves a number of key functions: 
 

 Many security-essential events are implemented within the kernel, including 
file, network, and IPC events. 

 The kernel is key part of the Trusted Computing Base (TCB) for the operating 
system. 

 The kernel can provide strong security and reliability guarantees for trace 
capture and storage. 

 
However, the existing kernel tracing mechanisms, Audit, which implements Common 
Criteria security-event auditing, and DTrace, which provides highly configurable 
implementation-oriented tracing, fail to provide the detailed events required by 
CADETS, nor a suitable framework in which to capture and distribute them. To this 
end, we have implemented a number of new components, in both userspace and 
kernel, to address these gaps: 
 

 FreeBSD Audit has been extended to capture Transparent Computing-
relevant events, arguments, and return values beyond those specified by the 
Common Criteria. 

 The kernel has been extended to associate UUIDs and Message IDs with key 
kernel subjects, objects, and IPC messages. 

 A new DTrace Audit Provider has been implemented, providing configurable 
access to audit events from within the DTrace implementation. 

 New guest-from-host/hypervisor tracing support has been added to DTrace to 
allow the hypervisor (host) operating system to instrument guest virtual 
machines. 

 The new DDTrace implementation allows logs to be reliably stored to disk by 
the kernel, and then be shipped securely and reliably over the network to a 
distributed Kafka message queue. 

 Significant improvements have been made to the reliability and completeness 
of Audit and DTrace to allow capture of early boot, steady state, late 
shutdown events without loss. 
 

3.2.1.   Integrating FreeBSD Audit and DTrace 
 
One of our key hypotheses was that we could integrate previously entirely 
independent approaches to CAPP security event auditing and tracing designed for 
debugging. Security event auditing, as embodied by OpenBSM, has historically 
focused on secure, accurate, and reliable capture of security-critical events such as 
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file-access system calls—at the cost of significantly impacting performance, 
excluding support for other operation types, and accepting a fail-stop approach to 
reliability. Debugging and tracing mechanisms have instead been focused on 
performance analysis and optimization, accepting unreliable behavior in return for 
continued system optimization, and likewise potentially inaccurate access to data 
(e.g., due to race conditions) rather than interfering with kernel implementation. They 
have also provided much deeper opportunity to access and trace the implementation 
rather than well-defined specified interfaces. We believe that combining these 
approaches—in particular, utilizing audit to capture security-critical events, but 
DTrace’s mechanisms for data representation and capture, as well as greater access 
to implementation where required, will better meet the goals of the Transparent 
Computing. 
 
3.2.2.   A Transparent Operating-System Design 
 
Another key hypothesis was the notion that an operating system can be (re-
)designed to be a transparent operating system: i.e., to inherently integrate a number 
of features that make detailed security tracing more natural to its structure. We have 
focused in particular on making key operating-system objects reliably identifiable in 
traces by providing UUIDs on subjects and objects, and Message IDs on ephemeral 
messages, allowing tools consuming traces to identify system elements and 
communications between them more explicitly. For example, Message IDs will allow 
datagrams transmitted over the loopback network interface, or over the distributed 
systems, to be tagged and directly correlated, rather than having to infer them from 
their side effects, timestamps, and so on. 
 
3.2.3.   Distributed DTrace 
 
We have engaged with distributed tracing in two phases: first, an investigation into a 
more limited form of distributed tracing across a set of virtual machines on the same 
physical host; and second, true distributed tracing across a disjoint set of hosts. A 
number of key distributed-system challenges necessarily apply: 
 

 The system must tolerate node and edge reboot and failure, requiring careful 
management of persistency and, as needed, retransmission. 

 The consistency of replicated data must be explicitly managed. 
 Where ordering is depended on, it must be explicitly tracked. 
 Where timestamps are to be compared, time must be explicitly synchronized. 
 Nodes may be significantly heterogeneous: different computer architectures, 

operating-system versions, different applications, and eventually different 
operating systems. 

 Latency between nodes eliminates the opportunity to use synchronous 
communication, instead requiring asynchronous communication, mitigation of 
latency through batching, and at times, distributed computation models. 

 
As part of this work, we have also developed a formal model of the DTrace Interface 
Format (DIF) and its container formats, which describe executable DTrace scripts. 
This has not only allowed us to identify and fix several bugs in the DTrace 
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implementation, but also explore the semantics of distributed DTrace execution, 
evaluating a broad corpus of current scripts for potential bugs when executed in a 
distributed environment. In the future, we hope to use these formal semantics to 
automatically distribute work using a partial compute model, permitting more 
distributed script execution. 
 
3.2.3.1.   HyperTrace: Guest-from-Host Tracing 
 
Guest-from-host, or hypervisor tracing, allows a single DTrace script installed in a 
host VM to be applied across a set of guest VMs. HyperTrace executes the DTrace 
script in the host DTrace interpreter, but accepts probes and argument data provided 
by the guest VM’s DTrace implementation via a new DTrace hypercall. New front-
end and back-end VirtIO drivers allow the host DTrace instance to control 
instrumentation in the guest. The host and guests can be configured to tag network 
packets distributed via VirtIO networking with host and message information so that 
events can be correlated across multiple nodes. 
 
This approach offers significant ease of use, and takes advantage of a number of 
non-distributed behaviors to improve performance and semantics: there is a single 
time domain (no clock drift between nodes), affordable synchronous traps, high-
performance VirtIO communication channels, reliable detection of guest failure, and 
a single executing instance of the DTrace interpreter avoids the need for work 
distribution and consistency management for the script itself. This environment offers 
the potential to explore issues such as heterogeneity and distributed semantics 
without taking on the full challenge of a networked distributed system. However, a 
number of challenges arise—not least, as the host executes the script, it must 
access guest memory, which requires the HyperTrace implementation to implement 
a manual nested page-table walk, and lacks the stronger host-kernel reliability 
guarantees for memory access usually present with DTrace. 
 
We are also interested in using HyperTrace to improve TCB security for guest 
tracing: while a compromised guest may choose not to trace events it wishes to omit, 
or to provide falsified information, strong non-repudiation can be achieved by storing 
log data in the host rather than the guest. Deploying this model, an attacker must 
compromise the host operating system to make retrospective changes to captured 
traces. 
 
3.2.3.2.   Distributed DTrace 
 
Full Distributed DTrace operates over a set of nodes connected only by a network, 
rather than being able to assume access to a hypercall. Unlike HyperTrace, due to 
high network latency, it cannot utilize a single executing instance of the DTrace 
interpreter, as kernel and userspace execution cannot be halted awaiting 
synchronous replies from a central instance. Distributed DTrace must also tolerate a 
variety of host and network failures, as well as address heterogeneity. 
 
To this end, we have utilized the Kafka distributed message protocol and server 
implementation to reliably stream trace records from distributed nodes back to a 
central tracing system (tracing source), as shown in Figure 6. DTrace scripts execute 
on each individual traced node, capturing data and computing based on local state. 
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The command-line DDTrace client accepts a stream of DTrace trace records 
aggregated from multiple tracing nodes and delivered by Kafka, converting them to 
human- or machine-readable output as specified by the script. CADETS end hosts 
can be configured to carry host and message information via IP options, in a manner 
similar to VirtIO packet tagging in the HyperTrace DTrace, allowing scripts on 
different nodes to describe common events. 
 

 
Figure 6 High-level View of DDTrace 

 
 
Each traced node implements the Kafka protocol via dlog, which persists traces to 
disk reliably for eventual network transmission via Kafka, tolerating node reboots and 
network failures. A new kernel module, ddtrace, manages DTrace trace buffers to 
prevent record loss from full buffers. The new trace handling has required significant 
changes to the trace output path for DTrace: a new dlogd userspace daemon 
configures distributed scripts, and directs the kernel DTrace implementation to send 
output into dlog, a kernel subsystem that reliably writes records to on-disk logs, which 
can then be streamed over the network by dlogd. dlog provides an upper bound on 
loss in the event of a node failure. The mechanism is robust in the presence of 
system reboot, and dlogd implements the Kafka protocol allowing reliable persistent 
distribution to the DDTrace client. Figure 7 shows the new components of DDTrace 
(in green) and their relationships with the original DTrace components (blue). 
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Figure 7 DDTrace Overview 

Distributed-system heterogeneity is addressed at a basic level by having individual 
traced nodes submit type information required to interpret trace entries to Kafka as 
well; this allows the client to present trace records using type information from the 
traced node that generated it. 

It remains a challenge to the DTrace script programmer, and hence future work, to 
address other forms of heterogeneity, and there remain unanswered questions about 
network event ordering and distributed compute. We anticipate future Distributed 
DTrace features to allow compute requested by the script to have its execution split 
between distributed nodes (with access to local information) or the central node (with 
a global view). 

3.3   CDM Translator 

The goal of the CDM Translator is to quickly and faithfully convert the CADETS 
JSON traces to the CDM used by the TC program. It can read data from a file or 
Kafka, and output to a file or Kafka. This flexibility makes testing and debugging 
simpler, as most tests don’t require a full Kafka setup. For the first few engagements, 
CADETS traces were saved to disk, and the translator read from those files. For the 
last two engagements, the translator both read and wrote to Kafka. In order to 
support translation of MetaIO data to CDM, a new event type, ProvenanceAssertion was 
added (see CDM Augmentation section). 

Other than producing CDM for the other teams, the priorities in implementation of the 
translator were that it should be able to keep up with the traces as they were 
generated, and that it should be able to run for weeks at a time without issue. For 
this reason, the translator keeps minimal state. The only state the translator keeps is 
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a list the UUIDs of objects that have been sent in CDM. This prevents it from doing 
things like repeatedly sending file objects every time a file is mentioned. 
 
This choice of priorities had an effect on the CDM traces generated, as it prevented 
compiling information from multiple events to generate a more complete record when 
defining files or other objects. 
 
Along with the CDM translator, there is a separate, but related Python program. This 
is the correlator. The correlator takes the CADETS trace and looks for events that 
can be correlated between CADETS machines. Currently, this is limited to identifying 
network connections. Information about these correlations is added to the CADETS 
trace for the CDM Translator to use. 
 
3.4   LibPVM 
 
The hypothesis behind libPVM is that TA2 algorithms should not reconstruct or infer 
the semantics of TA1-produced graphs by just applying learning on the data. Such a 
model-less approach would be prone to miss the subtle semantic guarantees that 
can be made about the trace data, which can differ from one TA1 to another, 
depending on the types of instrumentation employed, the location where it is 
captured, resistance to adversaries, etc. 
 
Instead, libPVM proposes an underlying semantic model on the data, where a clear 
mapping exists between the data captured for every entity in the system (e.g. system 
call) and the changes that are made to the provenance graph as a consequence of 
having observed the corresponding data. 
 
The second hypotheses of libPVM is that relying on the model, transformations can 
be applied to the graph that preserve the correctness of the result (even if they, for 
example, change the abstraction level of the representation). Such transformations 
should help machine learning algorithms in ignoring noise, possibly intentionally 
introduced in the system by adversaries in order to distract from attack identification. 
 
As part of CADETS, libPVM was used as a data quality control tool, trying to identify 
in-house whether there are sufficient details in the tracing data for producing 
meaningful provenance graphs. 
 
On the implementation side, libPVM makes the assumption that provenance graphs 
represent an index over the persistent, distributed log containing raw capture data. 
As a side effect of this, it allows for the exploration of analysis and pattern matching 
over dynamic graphs: graphs that can be re-created and expanded to contain more 
detail in regions where that is needed, or contracted to get a higher-level view of 
system activity. This means that local subgraphs may be re-created starting from the 
raw data, following rules that are user-driven (i.e for process with PID X, create a 
graph with detailed versioning on every read and write, in order to make an analysis 
of cross-process data visibility). 
 
This has also informed a more nuanced position on the model generating the graph: 
it is acceptable for it not to make all data fully accessible for analysis in the default 
view, and it gives the model the freedom to make some information harder to reach 
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(motivated, for example, by the fact that the information cannot be always correctly 
collected by the OS-level tools). This translates to some graph queries that are 
simple and fast (common queries about processes and files), while others are 
allowed to be slower and multi-step (path-dependent queries, fine-grained data 
visibility queries). 

The end result, as shown in Figure 8, is an ingestion pipeline which implements the 
semantic model (PVM) and pushed the resulting graph into a Neo4j database. 
Optimizations on this pipeline were performed in order to be able to cope with high 
event rates (with the goal being to keep up with system generated events). 

 
Figure 8 libPVM Overview 

3.4.1.   The PVM Model 

The model itself makes the assumption that any system trace (irrespective of its 
granularity) can be de-composed into datatypes that are subtypes of four main 
abstract entities: Actors, Objects, Stores and ChannelEP (Channel End Points). 
Versioning rules are defined for those entities, in order to represent changes over 
time and to track their provenance. The abstract entities form a shallow hierarchy, 
with Stores and ChannelEP being Objects. 

The model assumes that the high-level properties of the abstract entities are 
sufficient for declaring dependencies between concrete subtypes and maintaining 
consistent semantics in a provenance graph, across multiple types of data sources: 
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 Actors are entities that perform actions; generally they represent processing 
units such as UNIX processes, even though they can also represent more 
abstract notions of processing (central processing units, accelerators, 
program functions). They may act upon objects or other actors. 

 Objects are data-carrying entities, used and acted-upon by actors. Currently, 
two abstract object subtypes exist: 

o Stores are an object type storing data internally. Under the model, such 
objects version on first write and on last concurrent write. The libPVM 
implementation uses a concrete Store subclass called EditSession to 
represent intervals where a Store is concurrently modified by multiple 
users, without asserting precise data visibility rules. If thread or process 
interleaving of data within an EditSession is important, one needs to 
explore the original events trace and its guarantees about such matters 
on captured data. 

o ChannelEPs are an object type through which data flows, without internal 
storage (or for which any ephemeral internal storage is side-effect free 
in terms of the provenance graph). Those objects do not version. 

 
For each type of trace that needs to be processed, one needs to define a mapping 
from events in that trace to a series of verbs existent in the PVM model. As part of 
this mapping, developers of the tracing system would also define concrete entity 
subtypes, by specifying a schema, in the form of key-value pairs that should be 
expected as properties of each concrete subtype. 
 
Figure 9 shows as an example, under the CADETS mapping of raw data, pseudo 
teletypes (PTTYs) are defined as subtypes of Conduits: 
 
 

 
Figure 9 PTTY Mapping to PVM Example 

 
 
Similarly, the exec system call is mapped to the following series of PVM verbs, as 
shown in Figure 10: 
 

 
Figure 10 exec Syscall Mapping to PVM Example 
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Together, the verb mapping and the concrete subtypes allow implementations of the 
PVM model to take events in a trace and an existing output graph (possibly empty) 
and have a well-defined specification for what transformations should be applied to 
the output graph as a response. Those transformations are well-known side effects 
of “applying” each PVM verb to an existent graph. 
 
The following verbs exist: 
 

 declare(concrete_type, uuid) -> entity_handle e This declares the existence of an 
entity of the given concrete type, with the given unique identifier. As a side 
effect, this forces the creation of entity e with the given UUID, if it doesn’t 
already exist. Either the newly created graph entity or the one existing with the 
same UUID is returned. 

 sink(src:Actor, dst:Entity) This declares that the src actor has transferred 
information into the dst entity, as an atomic operation (verbs which are not 
atomic, for example sink_start and sink_end also exist). Depending on the 
destination Entity, this can trigger versioning (for example, if it is the first sink 
for an entity that is a subtype of Store) 

 source(src:Entity, dst:Actor) The reverse of sink, this declares that the 
corresponding data/information was obtained by the dst actor from the src 
entity. 

 connect(ep1:ChannelEP, ep2:ChannelEP, direction) This declares that two channel 
nodes have connected to each other, and data can flow between them. The 
direction argument indicates the direction of flow, either mono (ep1-> ep2) or bi-
directional (ep1 <-> ep2). 

 mention(e:Entity, n:Name) This declares that at this point, entity e has been 
referred to using the name n. If it doesn’t already exist, this will generate a 
new node for the name, and then link e to it using a “NAMED” relation. In 
PVM, non-UUID names are considered non-reliable and temporary. 

 unlink(e:Entity, n:Name)  This declares that at this point, the entity e has been 
disassociated from the name n. A historic record about this fact is recorded in 
the graph, without removing previously existing links (data is just added to a 
provenance graph, never removed). 

 property(e:Entity, key:str, value:str) Set the given key to the corresponding value for 
entity e. The key/value pair should have been defined as part of the type of e. 
 

The assumption is that those limited verbs take the role of a DSL for specifying how 
provenance graphs can be created in response to events from system-level traces. 
 
3.4.2.   The libPVM Implementation 
 
The implementation assumes that it is possible to create a data ingestion/ 
transformation pipeline that takes system trace events as they are produced and 
transforms them into the corresponding provenance graph, at a rate which keeps up 
with the frequency of input. For ingesting CADETS data, this meant significant 
optimizations and parallelization for JSON parsing and for the storage backend 
(Neo4j). 
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The assumption is also that libPVM can be linked with a wide variety of applications 
in order to allow them to either ingest provenance data, transform it (through plugin 
filters and views) and query it. 
 
3.5   Neo4j Database Optimization 
 
Motivated by the identification of Neo4j as one of the major bottlenecks in our 
LibPVM data ingestion pipeline, we have proposed that additional work was 
necessary to improve Neo4j data ingestion characteristics for write-heavy workloads. 
 
In particular, the workloads generated by the fine-grained provenance-capturing 
mechanisms of TA1s are quite different from traditional workloads for which graph 
databases are currently optimized for. At the same time, storing the collected data 
and performing provenance analysis is most naturally done on backends supporting 
a graph data model. 
 
We have characterized the workload generated by system level-provenance capture 
to graph database backends as producing a high number of concurrent writes, and 
triggering updates to a limited number of elements (nodes) compared to the size of 
the entire graph (write-heavy, contention-heavy). This is a direct consequence of 
new nodes and edges in the graph attaching predominantly to an existing “boundary” 
of nodes as determined by the set of active applications and services running on the 
underlying system. More concretely, when compared to other graph structures, such 
as the ones generated by social-network use cases, the probability of attaching new 
edges to existing nodes in the graph is not uniform, with most nodes in large 
provenance graphs being effectively “frozen”. For such nodes, our optimization 
target moved from improving the latency and throughput of concurrent writes to one 
of not penalizing reads (a balance which is difficult to achieve for arbitrary 
workloads). 
 
We have tested our assumptions using the CADETS TA1 and libPVM as an entity 
generating graphs from distributed provenance logs, but we believe that 
improvements are generalizable to other TA1 performers. This means optimizations 
were done for the type of data produced by provenance loggers rather than being 
libPVM-specific. 
 
Furthermore, our optimization work does not assume that all captured data will end 
up in graph databases (with some information being more naturally stored in key-
value stores or relational databases), which allows for even more flexibility in terms 
of design choices for optimization (we focus optimization on common graph cases 
and access patterns, without trying to improve things across the board). However, 
not all our optimizations are specific to provenance data and could also improve 
other write-heavy workloads which share some of the same underlying 
characteristics. 
 
Two primary targets of optimization were identified: the transactional engine of Neo4j 
(which effectively serializes updates for the type of workload considered) and the 
storage layer (space inefficient and tightly coupled to the transactional engine). A 
third major bottleneck, the Neo4j query planner, was also identified but we have 
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decided not to focus optimizations efforts on it as in the absence of a clear algebraic 
model for graph queries it is significantly less tractable in terms of possible 
improvements. Furthermore, we have assessed that it can be easily bypassed by 
writing the queries directly in a lower-level Neo4j API with more direct access to the 
underlying storage. 

Figure 11 shows changes to Neo4j in red: 

 
Figure 11 Neo4j Optimized Design 

 

A new storage backend was built, offering both space-savings and allowing for faster 
lookups and concurrent updates without penalizing reads. It is optimized for a 
transaction layer implementing a form of SSI (Serializable Snapshot Isolation), a 
transaction isolation level that guarantees that the result of executing multiple 
transactions in parallel is identical to at least one serial execution of the same 
transactions. For optimizing information lookups during writes (a read-amplification 
factor exists due to the need for finding existent nodes and edges), the edge store is 
physically split into core edge data and metadata used for lookup (used as an 
efficient index for lookups and finding insert positions). 

The existent transaction components have been modified in order to work with the 
new storage backend, allowing more concurrency during updates but maintaining 
Atomicity, Consistency, Isolation, Durability (ACID) properties. 

A new write-through caching layer was overlaid on top of the existing transaction 
engine, to reduce read-write conflicts and allow higher concurrency in writes at the 
storage-engine level. 

3.6   User Interface 

The CADETS user interface was initially developed to support the demonstration we 
performed in July 2017. Although the CADETS project does not interface directly 
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with end users, we realized that an adequate demonstration of our data collection 
and correlation required visualization. The visualization capabilities built into Neo4j 
are helpful for viewing sets of nodes, but not for the iterative sense making process 
that a security analysis might use when developing a hypothesis about an attack 
using CADETS. As a result, we developed our UI to simulate activities that an 
analyst might need to do while investigating an attack: inspect individual nodes (files, 
pipes, processes, sockets, etc.) and build up a graph that represents a working 
hypothesis of how an attack proceeded. Figure 12 shows an example view of the UI. 
 
 

 
Figure 12 CADETS UI Focused on a Single Node 

 
 
The initial UI was developed as a research prototype without the level of rigor and 
software engineering that has been applied to other aspects of the CADETS project. 
As our team had little experience with JavaScript-based user interfaces, we 
developed a tool that worked for the demonstration but was difficult to maintain over 
the longer term. After the initial demonstration, we brought in undergraduate 
research assistants to help restructure code and package dependencies to increase 
reproducibility and maintainability. We then switched much of the core UI 
infrastructure away from ad hoc JavaScript and towards mature. 
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Throughout the design and implementation process for the user interface, we used 
our understanding of analysts’ needs and workflow — based on limited engagement 
with a Global Security Operations Center’s (GSOC) employees — to drive design 
decisions. We also employed the UI to a limited extent internally, to view data from 
engagements. 
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4   RESULTS AND DISCUSSION 
 
4.1   Engagement 1 (E1) 
 
4.1.1.   New Features 
 
The first engagement took place September 6-9, 2016. We started with DTrace and 
FreeBSD 11.0-RC2 and added some features. FreeBSD comes with support for 
security event auditing. We modified this system, which provides detailed information 
about syscalls, to make the information accessible from DTrace. A feature available 
on Solaris, but not FreeBSD was the ability to print some file path information when 
tracing read and write events. We ported this feature to FreeBSD. While file paths 
are very human friendly to look at, they are not actually reliable identifiers for files. To 
that end, we modified FreeBSD to have UUIDs associated with many kernel objects. 
Files, sockets, and even processes have intrinsic UUIDs. These are meant to be 
more reliable than the identifiers typically used on a system. While other identifiers, 
such as file paths, inodes, or pids, may be reused over time on a running system, the 
UUIDs will not. For E1, we produced CDM13 for the other teams to consume. 
 
4.1.2.   Results 
 
CADETS had no stability issues during E1. CADETS generated approximately 25-30 
CADETS records per second during E1. For the Bovia and Pandex attack scenarios 
combined, CADETS generated approximately 8 million events. In CDM format, this 
was represented by about 10 million nodes and 15 million edges. 
 
Our data was used by all TA2s. Feedback indicated that all TA2s were able to make 
good use of the data and had good accuracy finding attacks. The tracing also did not 
interfere with system performance. 
 
4.2   Engagement 2 (E2) 
 
4.2.1.   New Features 
 
The second engagement took place May 5-23, 2017. Along with bug fixes, we added 
information about memory map events allowing slightly more information to be 
provided for in-memory attacks. MetaIO provenance information was added, but was 
not seen in the engagement. CADETS produced CDMv14 for the other teams to 
consume. 
 
4.2.2.   Results 
 
CADETS had no stability issues during E2. As different attacks were used on 
different TA1 systems, it is hard to directly compare performance between TA1 
systems. Nevertheless, CADETS did well, and the majority of attacks were identified. 
Attacks using the network or file system were generally identified, while attacks fully 
in memory or making use of custom syscalls installed via a new kernel module left 
fewer tracks and were mostly missed. 
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4.3   Engagement 3 (E3) 
 
4.3.1.   New Features 
 
The third engagement took place April 6-13, 2018. CADETS was run for the length of 
the engagement. For E3, we began adding features that would be more important 
once Distributed DTrace was implemented. The traces included more details about 
the machine being traced, and additional networking information was added to help 
reconcile network events across hosts. Lastly, MetaIO integration was completed, 
and we generated provenance information for some executables. 
 
4.3.2.   Results 
 
The CADETS system had minor stability issues during E3 (see gaps in E3 data 
streams, as shown in Figure 13), but not caused by instability in CADETS itself. Any 
APTs interacting with the kernel risk causing instability in the underlying system. 
There were numerous attacks against CADETS. Overall, the accuracy for the three 
TA2s was 8%, 46%, and 75%. Overall, the traces had the same weaknesses as 
during E2, and while MetaIO events were found in the trace, the events were not key 
to identifying attacks. Despite these observations, CADETS was the only TA1 
system named as one of the best TA1/TA2 combinations for each of the TA2 
performers. 
 
 

 
Figure 13 Activity on E3 Kafka Topics 

 
 
4.4   Engagement 4 (E4) 
 
4.4.1.   New Features 
 
The fourth engagement took place November 8-21, 2018. CADETS was run on 
November 14th and 21st, for a total of about 12 hours. 
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For E4, we moved from a basis of FreeBSD 11 to FreeBSD 12. We also moved from 
using the slightly modified version of DTrace that we had used in previous 
engagements to Distributed DTrace. Distributed DTrace still makes use of much of 
the underlying DTrace code, but is run in multiple parts, on multiple machines. This 
allowed us to move some trace processing off of the machine being traced. 
 
One of the advantages of Distributed DTrace is that we were able to expand our 
tracing to include part of the tracing system itself. While this added a large number of 
events that were not directly useful for TA2s in this engagement, these events could 
provide additional events if an attacker was trying to interfere with tracing. Also, due 
to the fact that intermediate traces are stored in Kafka rather than on the local file 
system, the attacker would need to compromise multiple systems to remove their 
actions from the log. 
 
4.4.2.   Results 
 
CADETS had no stability issues during the run of E4, but did have issues keeping up 
with real-time. Figure 14 indicates that overall, we generated approximately 1700 
records per second over two machines. For E4, there were 4 attacks against 
CADETS. Due to performance issues, the 4th attack of the day did not make it into 
the traces available to the TA2s. Given the 3 remaining attacks, the accuracy for the 
three TA2s was 9%, 25%, and 65%, with 2 attacks almost entirely identified by one 
TA2. 
 
 

 
Figure 14 Activity on E4 Kafka Topics 
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4.5   Engagement 5 (E5) 
 
4.5.1.1.   New Features 
 
The fifth engagement took place May 6-17, 2019. Like other TA1s, CADETS was run 
from the 7th through the 17th. For E5, our code was based off of FreeBSD 13.0. We 
removed the file path information from some events in the traces. Events with more 
reliable file information continue to report it, they were excluded from events where 
the file paths may be relative or incomplete was it removed. More information (e.g. 
initial sequence numbers) was added to the network events to improve tracing cross-
host interactions. 
 
4.5.1.2.   Results 
 
There were two hurdles to CADETS stability in E5. While unfortunate, the bugs were 
located such that there was minimal, if any, data lost. One of our components, dlogd, 
had a memory leak. As it took time to start back up, this was handled by restarting it 
intentionally outside of TA5.1’s attack hours to reduce impact. Later in the 
engagement, a fix was pushed to speed up restart time. The amount of data being 
generated during this engagement revealed a bug in the CDM Translator where the 
CDM Translator enqueued data to send to Kafka faster than it could be sent. This 
caused the program to crash. Once this bug was identified, a fix was implemented 
and provided to deploy in case of another crash. 
 
The other components, the ddtrace_producer and ddtrace_consumer, remained stable 
throughout the engagement. 
 
After approximately 11 days running, CADETS trace generation was still keeping up 
with real-time. While there were lags when a component needed to be restarted, the 
system caught up each time. 
 
As in E4, CADETS generated much more data than it did in the first few 
engagements. While the data rate did not change significantly for E5, due to the fact 
that E5 was set up to run data generation 24 hours a day for the entire engagement 
and on an increased number of hosts, a much higher quantity of data was 
generated. Overall, we generated approximately 1250 records per second over three 
machines, as shown in Figure 15. At the time of this writing, attack detection results 
have not yet been evaluated. 
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Figure 15: Activity on E5 Kafka Topics 

 
 
4.6   Userspace Tracing 
 
4.6.1.   Loom 
 
Loom was initially envisioned to help provide additional trace data and corresponding 
semantics to user space applications on FreeBSD. Although DTrace could 
instrument applications, its components to do so were coarse and did not provide 
much context to the data. Loom was implemented as a framework to provide 
additional instrumentation in user space application and libraries to better 
understand their data flows. 
 
The initial functionality provided by Loom allowed for instrumentation of function calls 
and data structure accesses and modifications. This was enough functionality to 
support the development of LLVM-Prov, which used to provide data provenance in 
FreeBSD applications. The result for LLVM-Prov within the project are discussion in 
section LLVM-Prov. 
 
Loom development continued independently of LLVM-Prov to provide a general 
purpose instrumentation tool. Loom functionality was expanded to allow it to provide 
instrumentation of both FreeBSD applications and libraries. Modifications were also 
made to the FreeBSD build system to allow for instrumentation during the build 
process for the operating system. 
 
Although the final Loom improvements did not align with the E5 schedule (fixed after 
the feature freeze), internal testing showed promising results. With a small of amount 
of instrumentation added to the Pluggable Authentication Module (PAM) user space 
library, we were able to capture authentication events and associated data across all 
applications using PAM. 
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To get to the point where Loom was able to instrument both programs and libraries 
many avenues were explored, creating enhancement ideas for the framework. 
Future plans for expansion of the framework includes the addition of a runtime 
component, allowing for additional logic to be applied to instrumentation data before 
incurring the expensive cost of submitting it to kernel space frameworks. Additionally, 
there is ongoing research to expand the language used to define instrumentation 
points, allowing for more complex logic (include temporal logic) to be applied to the 
decision of what to trace. 
 
4.6.2.   LLVM-Prov 
 
LLVM-prov was applied to 368 binaries that are a part of the FreeBSD base system. 
By the final engagement, LLVM-Prov was able to add MetaIO instrumentation to 93 
binaries in the CADETS FreeBSD base system. MetaIO would not be applicable to a 
further 95 binaries, as they act as either sources or sinks from an information-flow 
perspective but not both. A further 180 binaries could not be automatically 
instrumented for MetaIO. Further development or integration of interprocedural 
information-flow analysis would allow additional binaries to be automatically 
instrumented. 
 
4.6.2.1.   Fully-instrumented Binaries 
 
Table 1 lists binaries that were fully instrumented for MetaIO, i.e., all instances of 
source and sink system calls were converted into their MetaIO equivalents. 
 

Table 1 List of Fully-instrumented Binaries 

Binaries 
/bin/cp /bin/mv 
/sbin/fsirand /sbin/ggated 
/sbin/ggatel /sbin/newfs_msdos 
/sbin/nos-tun /sbin/recoverdisk- 
/usr/bin/brandelf /usr/bin/bspatch 
/usr/bin/ctfdump /usr/bin/dpv 
/usr/bin/elf2aout /usr/bin/indent 
/usr/bin/reset /usr/bin/tee 
/usr/bin/tset /usr/sbin/dtrace 
/usr/sbin/nfsd /usr/sbin/tzsetup 
/usr/sbin/watch 

 

 
 
4.6.2.2.   Partially-instrumented Binaries 
 
Table 2 lists binaries that were partially instrumented for MetaIO, i.e., LLVM-Prov 
was able to find some information flows and instrument them but other flows were 
opaque to LLVM-Prov. 
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Table 2 List of Partially-instrumented Binaries 

Binaries 
/bin/dd /bin/pax 
/sbin/decryptcore /sbin/fsck_msdosfs 
/sbin/gbde /sbin/gcache 
/sbin/gconcat /sbin/geli 
/sbin/geom /sbin/gjournal 
/sbin/glabel /sbin/gmirror 
/sbin/gmountver /sbin/gmultipath 
/sbin/gnop /sbin/gpart 
/sbin/graid3 /sbin/graid 
/sbin/gsched /sbin/gshsec 
/sbin/gstripe /sbin/gvirstor 
/sbin/hastd /sbin/natd 
/sbin/ping6 /sbin/ping 
/sbin/restore /sbin/rrestore 
/sbin/savecore /usr/bin/calendar 
/usr/bin/cu /usr/bin/diff 
/usr/bin/gunzip /usr/bin/gzcat 
/usr/bin/gzip /usr/bin/ibv_rc_pingpong 
/usr/bin/ibv_uc_pingpong /usr/bin/ibv_ud_pingpong 
/usr/bin/install /usr/bin/lpr 
/usr/bin/patch /usr/bin/script 
/usr/bin/sdiff /usr/bin/split 
/usr/bin/tcopy /usr/bin/tip 
/usr/bin/zcat /usr/sbin/acpidb 
/usr/sbin/bcmfw /usr/sbin/bhyve 
/usr/sbin/ctladm /usr/sbin/fwcontrol 
/usr/sbin/hostapd /usr/sbin/hv_kvp_daemon 
/usr/sbin/inetd /usr/sbin/ipfwpcap 
/usr/sbin/lpd /usr/sbin/nghook 
/usr/sbin/ntpd /usr/sbin/ppp 
/usr/sbin/pppctl /usr/sbin/pw 
/usr/sbin/rarpd /usr/sbin/rmt 
/usr/sbin/rpc.statd /usr/sbin/rwhod 
/usr/sbin/sshd /usr/sbin/timed 
/usr/sbin/timedc /usr/sbin/uathload 
/usr/sbin/wpa_cli /usr/sbin/wpa_supplicant 

 
 
4.7   Kernel Tracing 
 
4.7.1.   FreeBSD Audit and the DTrace Audit Provider 
 
The key hypothesis of this work was that conventional security event auditing and 
debugging mechanisms such as DTrace could be converged to offer the benefits of 
both in the Transparent Computing environment. An additional hypothesis was that 
modest kernel extensions to introduce unique identifiers for key kernel data 
structures would better support the Transparent Computing use case. We explored 
this hypothesis through substantive engineering and experimental activities, 
including: 
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 Significant extensions to the baseline FreeBSD audit implementation to 

capture non-CAPP events and additional context relevant to Transparent 
Computing. 

 Introducing new UUIDs and Message ID to allow explicit event linkage rather 
than relying on statistical correlation techniques. 

 Integrated audit and DTrace via the implementation of an Audit DTrace 
Provider that allows DTrace scripts to control audit event capture and 
processing. 

 
These changes were present across multiple adversarial engagements, although 
additional refinements were made as the program progressed (e.g., to add additional 
events and context, as well as to fix bugs). UUIDs were used by TA2 teams to 
reliably identify a variety of subject and object types in the system, including 
processes, IPC sockets, and files. While we provided unique Message IDs for 
datagram sockets (e.g., loopback UDP, UNIX domain sockets), we are not aware 
that TA2s made use of this data. We did not provide access to Message IDs on 
stream sockets as part of the adversarial engagement, and this would be a natural 
next direction. We found that the DTrace Audit provider provided substantially 
higher-quality trace data and more maintainable tracing scripts than using DTrace’s 
existing providers. 
 
We have upstreamed support for audit improvements, excluding UUIDs and 
Message IDs, as well as the DTrace Audit Provider, to FreeBSD, accomplishing 
successful open-source transition. To further transition UUID and Message ID 
support, additional performance characterization and use-case exploration would be 
required—e.g., by seeing similar successful transition and adoption of TA2 
technologies able to consume this additional OS metadata. 
 
4.7.2.   Distributed DTrace 
 
The key hypotheses in this work were that inherent distributed-system problems 
relating to security, reliability, performance, timing, event correlation, and 
heterogeneity could be overcome in adapting DTrace for both multi-VM and wider 
distributed-system environments. We explored these hypotheses through 
substantive engineering and experimental activities, including: 
 

 Introduced DTrace support for reliably tracing early boot and through 
shutdown. 

 Introduced the dlog reliable persistent logging facility to improve DTrace 
reliability, and to distribute trace data across multiple hosts, even in the event 
of network or server outages. dlog is encrypted using TLS on the wire. 

 Introduced dlog compression support and other efficiency improvements to 
allow DTrace to be used efficiently in a persistent network environment. 

 Adapted DTrace to ship event and type metadata, not just trace data, over 
dlog, to account for host heterogeneity. 
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 Introduced IP-option-based packet tagging to carry message and host IDs 
between supporting IPv4 nodes, allowing distributed events to be correlated. 

 
Distributed DTrace, as with all distributed systems, is a complex engineering artifact. 
We stepped towards full DDTrace support over several engagements, initially using 
off-the-shelf Kafka submission components to pipe local DTrace tracing on each 
individual nodes into Kafka. In this approach, conversion to the final CDM format 
occurs on individual tracing nodes, with DTrace controlling only local processing. 
 
In the fourth adversarial engagement, we introduced dlog support, allowing 
separation of DTrace data capture, on tracing nodes, and presentation and 
conversion, on a central node, with the Kafka broker in between. dlog provides much 
stronger local and end-to-end reliability guarantees, including placing a strict bound 
on potential record loss when a tracing node crashes. dlog is integrated into the 
kernel, avoiding unbounded userspace buffering (as is present if the DTrace 
command-line tool is used), and ensures that records are synchronized to the 
filesystem in a controlled manner. The dlogd daemon is then responsible for reliably 
shipping data over the network, protected by TLS, recovering from a variety of failure 
modes including its own node crash, Kafka server unreachability, and Kafka server 
crash. 
 
Deploying in the fourth engagement was bumpy: with network and workload 
conditions substantially different from our testing environment, and a late-binding 
request to add TLS support despite the risks involved, we had to debug a number of 
in-field issues relating to performance and connection reliability. In addition, while 
dlogd performed well respect to its specified and documented configuration, a number 
of in-field configuration changes were made during the engagement that reduced is 
reliability by taking it outside of its specified use—for example, by making 
configuration changes without fully restarting the system during deployment. Our 
experience gained was primarily operational: improved debug logging and tools, as 
well as configuration simplification, where necessary. We also discovered that 
DTrace made extremely inefficient use of storage with our audit.d script, causing 
performance issues in the field. After pre-engagement debugging and working 
through configuration issues, the system was stable, albeit slow during E4.  
 
In the fifth engagement, we deployed a substantially improved prototype, which 
included improved monitoring tools, better crash recovery and misconfiguration 
detection, and compression support to reduce log size.  
 
At the end of the program, our Distributed DTrace prototype is able to reliably 
instrument multiple hosts, dealing with moderate host heterogeneity (e.g., differing 
OS revisions), and addressing a variety of host and network failure modes. The 
prototype is not yet in a production-ready state for transition, requiring substantial 
further research and engineering. In particular, we have identified that modest 
DTrace language extensions would substantially improve usability, as well as better 
integrating support for event correlation. We hope also to pursue a more mature 
partial-compute model, in which portions of scripts run on tracing nodes (as is the 
case today), while other portions run centrally offering post-reconciliation processing 
of data originating from multiple nodes. 
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While Distributed DTrace has served the Transparent Computing use case well, it is 
easy to see it also addressing widespread problems with distributed performance 
analysis—e.g., with applications running on multiple nodes using distributed file 
systems. We have begun to engage with a number of vendors of such systems, 
including NetApp, Apple, and others, to understand their related use cases and 
potential transition challenges better. 
 
4.7.2.1.   HyperTrace 
 
To implement HyperTrace, we: 
 

 Added support for guest-from-host tracing via new front-end and back-end 
VirtIO drivers allowing the host to configure guest DTrace, and for the guest to 
issue hypercalls to the host DTrace engine to process firing probes. 

 Add VirtIO message tagging to allow messages passing between guest VMs 
and the host, and between multiple guest VMs, can be linked. 

 
We were not able to deploy HyperTrace in the final engagement, despite a strong 
desire to do so. 
 
4.7.2.2.   Distributed DTrace 
 
On the whole, our implementation has validated our hypotheses, providing 
increasing levels of event tracking, reliability, and distributed correlation with 
escalating adversarial engagements. Further work will be required to address known 
limitations of the prototype: 
 

 Introduce automatic distribution of Distributed DTrace configuration, including 
scripts. 

 Support the dynamic updating of in-execution scripts, allowing them to be 
adapted to system-wide changes, or to increase or decrease data gathering. 

 Explicitly address time synchronization requirements of scripts utilizing time—
e.g., to measure latency. 

 Introduce better language-level support for managing and analyzing 
distributed events. 

 
4.8   Performance Overhead 
 
An important concern of the TC program is minimizing performance overhead. 
Instrumentation overhead is dependent on the application that is being instrumented 
and the type of information that is being traced (i.e. system calls, function 
entries/exits) as well as its granularity. While CPU, network, disk IO performance are 
reasonable metrics, a baseline needed to be established.Due to the unavailability of 
an engagement baseline, we have provided time overheads on limited scenarios.   
 
Post E4, we performed benchmarking of time overhead. Our internal testing showed 
a 17.7% time overhead when tracing is turned on using the same tracing script ( 
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audit.d) that was used in E4 (although without DDTrace) when building the FreeBSD 
kernel. This was on a bhyve VM with 4 CPUs and 16G RAM. 
 
We also measured the time to compile the FreeBSD kernel under 3 conditions:  
 

 no tracing turned on 
 tracing with HyperTrace enabled, and  
 tracing from the guest only 

 
Figure 16 below provides examples of different levels of granularity possible when 
tracing. The overhead of compiling FreeBSD on a guest VM with these respective 
levels of tracing is shown in Figure 17. The results in Figure 17 show an average 
time overhead of: 
 

• 28% when compiling the FreeBSD kernel on a guest and tracing a wide 
variety of info with different granularities. This is the average additional 
overhead when “Traced inside the guest” compared to the “No tracing”. 

• 110% when compiling the FreeBSD kernel on a guest and tracing, from the 
host, a wide variety of info with different granularities. This is the average 
additional overhead when “Traced using DTrace-virt” compared to the “No 
tracing”. Please note that DTrace-virt was the former name of HyperTrace. 

 
 

 
Figure 16 Varying Levels of Granularity for Different Traces 
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Figure 17 Comparison of Time Required to Compile FreeBSD While Tracing 

4.9   LibPVM

LibPVM and its previous prototypes have been used on data resulting from 
engagements since E3 in order to: 

 tune the ingestion pipeline 
 characterize system provenance workloads 
 debug missing data issues, test new types of provided data 

Since E4, libPVM has also been capable of outputting a CDM serialization of graphs 
that have PVM semantics. libPVM has run on-line during E5, on a VM not part of the 
engagement. 

Below we show that the resulting pipeline is capable of easily sustaining data 
production rates such as the ones produced during engagements; This also 
suggests that raw trace data coming from multiple hosts (10-100) could be 
processed by a single PVM instance, depending on the per-host data rates. In 
production scenarios beyond 100 hosts or that have high levels of per-host activity, 
libPVM’s current design would also support working in a fully distributed environment 
with multiple libPVM producers sending data to a distributed store. However, truly 
distributed graph databases are yet in their infancy, with few products mature 
enough and able to sustain the type of write throughputs required. 

In terms of scaling performance, libPVM shows almost perfect linear characteristics 
for the range of trace sizes analysed, as evidenced in Figure 18. The data points are 
taken by ingesting events produced during E3 and E4 (covering the Bovia and 
Pandex attack scenarios) as quickly as possible. 
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Figure 18 libPVM performance by trace size 
 

4.10   Neo4J Database Optimization 

Early on in the work, when profiling existing Neo4J bottlenecks, we have determined 
that for typical libPVM ingestion workloads, 80% of the time was spent in the 
transaction manager, with little parallelism being used because of coarse-grained 
locking. In particular, adding multiple edges to a single “source” node was serialized 
despite no real underlying data conflicts between transactions. We have determined 
that in such cases, a node and its corresponding edge-list can be treated as 
separate entities, with the possibility of implementing the edge list as a structure 
allowing high-concurrency on additions (for example, using lock-free data structures 
and optimizing for particular hardware architectures such as x86). 

A second element of concern beyond the granularity of the locking was the way the 
locks themselves were managed, with all active locks stored in a HashMap with poor 
scalability (look-ups in this HashMap represented 14% of the total time). 

This was despite significant improvements to the write throughput made in upstream 
Neo4j since 2.2 (by replacing two-phase commit with a unified transaction log). The 
identified cause was the fact that the provenance ingestion workload represents a 
pathological case for the existent Neo4J transaction/storage architecture. 

In our aim to increase parallelism while maintaining transactional ACID properties, 
we have proposed to improve the on-disk format of the data. In particular, we have 
set to create an on-disk format that allows us to experiment with different transaction 
engines, and in particular ones implementing SSI, In terms of the consistency model, 
serializability means that the effect of executing multiple transactions concurrently is 
equivalent to the effect of executing the transactions in some serial order. This 
choice was made based on the assessment that such engines would behave 
significantly better for the given TC workloads. 
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Indeed, when creating and obtaining measurements from a non-Neo4j based 
prototype, we have observed the on-disk layout as able to scale better than even the 
batch-importing ingestion of Neo4j (which was previously the fastest available 
method for data ingestion, albeit not transactional or appropriate for on-line data 
ingestion). This is shown in the Figure 19 below, where our non-Neo4j proof-of-
concept prototype (graph-ssi) is compared against standard Neo4j 3.2.2, as well as 
its batch-ingestion mode (graph-batch). Llama, a different, in-memory graph engine 
that is non-transactional is also shown for comparison. 

This validates our assumptions about the suitability of our graph on-disk format and 
SSI transaction engine for TC workloads. Following from this, the prototype was 
integrated in the Neo4j ingestion pipeline. 

 
Figure 19 Performance of Different Transaction Engines for Neo4j 

Notably, the performance of the integrated prototype considering all improvements 
(Neo4j-Modified-Cached) is worse than the batch insert from a CSV file (Neo4j-csv), 
as shown in Figure 20. This is because of all the overheads imposed by layers 
above the transaction layer (Frontend protocols, Query processing and optimization). 
Those were not present in the non-integrated prototype and represent separate 
optimization targets. However, it is worth noting that Neo4j-CSV is a non-
transactional, batch-import mode not suitable for real-time ingestion. This shows that 
the bottleneck has shifted from the Neo4j backend to the frontend. Even so, we do 
observe an average improvement of 10% when compared to stock Neo4j.  
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Figure 20 Comparison of Ingestion Speed 

 
 
In terms of the new storage engine, Figure 21 shows how we have also managed to 
reduce edge storage requirements, with reductions between 25% (worst case) and 
40% (best). Despite fixed records for edges, the information stored for a given edge 
can vary depending on the amount of information stored in indexes for finding that 
edge. 
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Figure 21 Storage Needed Per Edge in Graph 

 
 
4.11   UI 
 
We accomplished the primary objective for the CADETS user interface: supporting 
the demonstration at the July 2017 PI meeting. We also used it internally to view 
PVM data that flowed out of engagements, supporting our own team in a limited way. 
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5   CONCLUSIONS 
 
CADETS unifies kernel and userspace tracing to provide provenance information 
that interconnects events across multiple nodes in a distributed system. Our system 
combines and improves on the security-event auditing provided by FreeBSD Audit 
and the dynamic and configurable debugging capability provided by DTrace tracing. 
The FreeBSD Audit system has been expanded to assign UUIDs to subjects and 
objects and Message IDs to ephemeral messages, to allow for reliable tracking of 
their flow. The types of events as well as the details of those events have been 
augmented to enhance contextual awareness. A new DTrace Audit Provider allows 
the triggering of such capture in a way that avoids potential race conditions and 
simplifies configuration. This integration of FreeBSD Audit and DTrace brings 
together two historically distinct subsystems to provide reliable information flow data. 
 
To advance our instrumentation to a distributed environment, CADETS has extended 
the original DTrace design with Distributed DTrace (DDTrace) to support distributed 
tracing across multiple hosts. DDTrace offers fully distributed tracing with built-in 
functionality that takes advantage of the Kafka message broker to address complex 
issues in consistency, persistence, time synchronicity, and latency. In addition, 
HyperTrace is a separate and “simplified” variation of distributed tracing, whereby 
instrumentation is coordinated among a single host VM and multiple guest VMs. 
DDTrace offers potential for an enterprise solution while HyperTrace offers an 
approach that is suitable for a more scoped exploration and perhaps a more secured 
model to perform the exploration under. 
 
While DTrace can be used for userspace tracing, it requires modification to the 
source code, a requirement that does not scale well. We have implemented Loom 
technology which leverages the LLVM compiler for software instrumentation that is 
free from this intrusive caveat. Loom’s instrumentation is specified by either a policy 
file or via use of its API, allowing for flexibility in determining what is instrumented 
and how to output the results. Once the Loom framework was built, information flow 
was further enhanced and integrated with kernel tracing with the development of 
LLVM-prov. LLVM-prov builds on Loom’s transformation to map normal syscalls to 
MetaIO calls that facilitate the passing of provenance information. Various static 
analysis tools and techniques have been explored to improve LLVM-prov’s precision, 
allowing it to address the n x m problem of a combinatorial explosion in provenance 
propagation. 
 
Our instrumentation technology have been deployed to the TC engagement 
environments with the exception of HyperTrace, which is currently still undergoing 
testing. Despite the complexity in the deployment of DDTrace, we were able to 
achieve stability during the live portion of its first engagement (E4). By the last 
engagement (E5) of the program, our system was proven capable of handling 
generation of 1250 records per second with data incoming from 3 hosts. Although we 
were not able to maintain continuous uptime for the full 11 days of data generation, 
the engagement helped define the improvements that are needed to further 
operational use. Overall, CADETS data was able to be used to identify the majority 
of attacks during the engagements. 
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Downstream, other components contribute to the practical use of CADETS’ 
instrumentation output. The CDM Translator converts CADETS trace data to TC 
CDM semantics for TA2 consumption. The libPVM library provides a model that 
avoids misinterpretation of the CADETS data. It enforces a clear semantic model 
while also offering layers of data abstraction that strives to improve on the signal-to-
noise ratio as well as flexible context viewing. Our Neo4j optimization work considers 
the write-heavy characteristics of TC workloads and addresses the shortcomings.  It 
introduces a new storage engine optimized for serializable snapshot isolation 
support and the addition of a caching layer to the transactional engine to realize 
efficiency. Finally, a UI provides end users with an interactive tool to investigate and 
build provenance graphs of system activities using CADETS data. 
 
CADETS enables whole system inspection and reliable provenance tracking across 
networked hosts. While the advancement of userspace and kernel space 
instrumentation were the cornerstone of our research, we’ve also built out our 
system to include tools that transform trace data to a pragmatic model, optimize data 
storage, and enhance user experience. 
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List of Symbols, Abbreviations, and Acronyms 
 
Acronym Description 
ACID Atomicity, Consistency, Isolation, Durability 
API application programming interface 
BSD Berkeley Software Distribution 
BSM Sun Basic Security Module 
CADETS Casual, Adaptive, Distributed, and Efficient Tracing 

System 
CAPP  Common Access Protection Profile 
CC  Common Criteria 
CDM Common Data Model 
CI continuous integration 
CRASH Clean-Slate Resilient Adaptive Secure Hosts 
CSV comma-separated values 
CTSRD Clean Slate Trustworthy Secure Research and 

Development 
DARPA Defense Advanced Research Projects Agency 
DDTrace Distributed DTrace 
DEQUE Distributed Event Queries for EQ 
DIF DTrace Interface Format 
DTrace Sun’s Dynamic Tracing system 
E1, E2, E3, E4, E5 Engagement 1, 2, 3, 4, 5 
ELF Executable and Linkable Format 
EQ Event Query 
GPLv3 GNU General Public License version 3 
GSOC Global Security Operations Center 
IPC inter-process communication 
IR intermediate representation 
JSON JavaScript Object Notation 
NCSA National Center for Supercomputing Applications 
OpenBSM Open-source Basic Security Module 
OPUS Observed Provenance in User Space 
OS operating system 
POSIX Portable Operating System Interface 
PTTY pseudo teletype 
PVM Provenance and Versioning Model 
PVMv2 PVM version 2 
py-cdg Python Call and Data Graph  
SDT Statically defined tracing 
SSDD System and subsystem design document 
SSI Serializable Snapshot Isolation  
SVF Static Value–Flow 
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Acronym Description 
TC  Transparent Computing 
TCB Trusted Computing Base  
TESLA Temporally-Enhanced Security Logic Assertions 
TRACE Tracking and Analysis of Causality at Enterprise 

level 
UFS Unix file system 
UI  user interface 
UIUC University of Illinois at Urbana-Champaign 
USDT Userland Statically Defined Tracing (USDT) 
UUID universally unique identifier 
VM virtual machine 
XML Extensible markup language 
YAML Yet-Another-Markup-Language 

 


