

 ARL-SR-0421 ● SEP 2019

Autonomous Intelligent Cyber-defense Agent
(AICA) Reference Architecture
Release 2.0

by Alexander Kott, Paul Théron, Martin Drašar, Edlira Dushku,
Benoît LeBlanc, Paul Losiewicz, Alessandro Guarino,
Luigi V Mancini, Agostino Panico, Mauno Pihelgas, and
Krzysztof Rzadca

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-SR-0421 ● SEP 2019

Autonomous Intelligent Cyber-defense Agent
(AICA) Reference Architecture
Release 2.0

by Alexander Kott, Office of the Director, CCDC Army Research Laboratory,
USA

Paul Théron, Thales, France

Luigi V Mancini, Edlira Dushku, and Agostino Panico, Sapienza Università
di Roma, Italy

Martin Drašar, Masaryk University, Brno, Czech Republic

Benoît LeBlanc, Ecole Nationale Supérieure de Cognitique, Bordeaux, France

Paul Losiewicz, Cybersecurity and Information Systems IAC, USA

Alessandro Guarino, StAG Srl, Italy

Mauno Pihelgas, NATO Cooperative Cyber-defense Centre of Excellence,
Tallinn, Estonia

Krzysztof Rzadca, Institute of Informatics, University of Warsaw, Warsaw,
Poland

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

September 2019
2. REPORT TYPE

Special Report
3. DATES COVERED (From - To)

09 September 2016–31 October 2019
4. TITLE AND SUBTITLE

Autonomous Intelligent Cyber-defense Agent (AICA) Reference Architecture,
Release 2.0

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Alexander Kott, Paul Théron, Martin Drašar, Edlira Dushku, Benoît LeBlanc,
Paul Losiewicz, Alessandro Guarino, Luigi V Mancini, Agostino Panico,
Mauno Pihelgas, and Krzysztof Rzadca

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

CCDC Army Research Laboratory
ATTN: FCDD-RLD
Adelphi, MD 20783-1138

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-SR-0421

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report—a major revision of its previous release—describes a reference architecture for intelligent software agents
performing active, largely autonomous cyber-defense actions on military networks of computing and communicating devices.
The report is produced by the North Atlantic Treaty Organization (NATO) Research Task Group (RTG) IST-152 “Intelligent
Autonomous Agents for Cyber Defense and Resilience”. In a conflict with a technically sophisticated adversary, NATO
military tactical networks will operate in a heavily contested battlefield. Enemy software cyber agents—malware—will
infiltrate friendly networks and attack friendly command, control, communications, computers, intelligence, surveillance, and
reconnaissance and computerized weapon systems. To fight them, NATO needs artificial cyber hunters—intelligent,
autonomous, mobile agents specialized in active cyber defense. With this in mind, in 2016, NATO initiated RTG IST-152. Its
objective has been to help accelerate the development and transition to practice of such software agents by producing a
reference architecture and technical roadmap. This report presents the concept and architecture of an Autonomous Intelligent
Cyber-defense Agent (AICA). We describe the rationale of the AICA concept, explain the methodology and purpose that
drive the definition of the AICA Reference Architecture, and review some of the main features and challenges of AICAs.

15. SUBJECT TERMS

intelligent agent, autonomy, cyber warfare, cyber defense, agent architecture

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

154

19a. NAME OF RESPONSIBLE PERSON

Alexander Kott
a. REPORT

Unclassified
b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(301) 394-1507
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures vii

List of Tables viii

Executive Summary ix

1. Introduction 1

1.1 Objective 1

1.2 Fundamental Choices and Assumptions 2

1.3 Basic Concepts and Terminology 5

1.4 Scope and Selected Requirements for AICA 6

Part A. Presentation of the Architecture 10

2. Rationale of AICA and Scenario 11

2.1 Context 11

2.2 Agent Deployment 13

2.3 Cyber-defense Agent Concept of Operations (CONOPS) 15

2.4 An Attack Example 15

3. Architecture Overview 17

3.1 Sensing and World State Identification 20

3.1.1 Sensing 20

3.1.2 World State Identification 21

3.2 Planning and Action Selection 21

3.2.1 Planning 21

3.2.2 Action Selection 22

3.3 Action Execution 23

3.3.1 Action Activation 23

3.3.2 Execution Monitoring 23

3.3.3 Effects Monitoring 24

3.3.4 Execution Adjustment 24

iv

3.4 Collaboration and Negotiation 24

3.5 Learning 26

3.5.1 Learning 26

3.5.2 Knowledge Improvement 26

3.6 Agents’ Generic Process Flow 27

4. Data Services within Agents 30

4.1 World Model Data Service 31

4.1.1 Definition 31

4.1.2 Inputs 32

4.1.3 Process 33

4.1.4 Outputs 34

4.1.5 Current Issues and Lines of Research 34

4.2 World Current State and History 35

4.2.1 Definition 35

4.2.2 Inputs 35

4.2.3 Process 36

4.2.4 Outputs 36

4.2.5 Current Issues and Lines of Research 36

4.3 World Dynamics Data Service 36

4.3.1 Definition 36

4.3.2 Inputs 37

4.3.3 Process 38

4.3.4 Outputs 38

4.3.5 Current Issues and Lines of Research 38

Part B. Discussion of the Architecture’s Main Functions 39

5. Sensing and World State Identification 40

5.1 Overview 40

5.2 Sensing 40

5.3 Current World State Identification 42

5.4 Anticipation of the Future World State 44

5.5 Use Case 45

v

6. Planning and Action Selection 47

6.1 Overview 47

6.2 Planning 47

6.3 Action Selection 49

6.4 Example 50

6.4.1 A Common Cyberattack 51

6.4.2 An Unexpected Cyberattack 51

6.4.3 Cyber Exploration 51

7. Action Execution 53

7.1 Purpose 53

7.1.1 Action Activation 54

7.1.2 Device System Administration 54

7.1.3 Antivirus Function 55

7.1.4 Integrity Check 55

7.1.5 Active Defense Capabilities 56

7.1.6 Legitimate Services Proxy 56

7.1.7 Execution Monitoring 57

7.1.8 Effects Monitoring 57

7.1.9 Execution Adjustment 57

7.2 Use Cases 58

7.2.1 Anomalous Behavior of a Military Vehicle 58

7.2.2 Battle Management System, Vehicle Management System,
and Communication System Compromised 59

8. Collaboration and Negotiation 60

8.1 Overall Purpose 60

8.2 Architecture of the Collaboration and Negotiation Component 61

8.2.1 Agent Inquiry and Discovery 62

8.2.2 Name Discovery 62

8.2.3 Authentication 62

8.2.4 Service and Capacity Discovery 62

8.2.5 Collaborative Planning 63

8.2.6 Communication Protocols 63

8.3 Collaboration Process 64

vi

8.4 Use Cases 65

8.5 Conclusions 68

9. Learning 69

9.1 Representation of the Agent’s Experience 70

9.2 Approach Example 1: Case-Based Reasoning 71

9.3 Approach Example 2: Deep Neural Network to Learn the Reward for
the Next Action 74

9.4 Approach Example 3: Learning the Reward Function 76

9.5 Always Learning? 77

10. Conclusions 78

11. References 83

12. Bibliography 89

Appendix A. Twenty-Eight Seconds in the Life of an AICA 90

Appendix B. Impact of Agent’s Purpose on its Capabilities 99

Appendix C. “Hello, World” Autonomous Agent 103

Appendix D. The AHEAD Autonomous Agent 109

Appendix E. Autonomous Cyber Deception Based on Malware
Analytics 114

Appendix F. Security and Trust in AICA 125

Appendix G. Deep Decision-Making for AICAs 129

Appendix H. Annotated References from Game Theory Literature 135

List of Symbols, Abbreviations, and Acronyms 140

Distribution List 143

vii

List of Figures

Fig. 1 A possible scope of AICA implementation is illustrated in the context
of a hypothetical UAV ... 6

Fig. 2 Vehicle systems and network structure ... 13

Fig. 3 Centralized agent system .. 14

Fig. 4 Distributed agent CS .. 14

Fig. 5 AICA’s functional architecture, AICARA .. 17

Fig. 6 AICA’s main five high-level functions ... 20

Fig. 7 AICA’s generic process flow .. 27

Fig. 8 General architecture of the data services ... 30

Fig. 9 Sensing component ... 41

Fig. 10 World State Identification component ... 43

Fig. 11 Planning component .. 48

Fig. 12 Action Selection component ... 50

Fig. 13 Overview of the Action Execution functionalities 53

Fig. 14 Anomalous behavior of a military vehicle scenario 58

Fig. 15 BMS, VMS, and COMMS compromised scenario 59

Fig. 16 Architecture overview of the Collaboration and Negotiation
component.. 61

Fig. 17 Process flow in the Collaboration and Negotiation component......... 64

Fig. 18 Flowchart of interaction Agent‒C2 ... 66

Fig. 19 Approach example 1: case-based reasoning 72

Fig. 20 Neural network after it has been trained.. 75

Fig. 21 Approach example 2: deep neural network to learn the reward for the
next action .. 75

Fig. D-1 High-level view of the AHEAD architecture 110

Fig. D-2 Integration of the Pot in the production system. Docker container
technology is used to isolate the Pot from the host 112

Fig. D-3 ADARCH Pot architecture ... 113

Fig. E-1 AMDS architecture .. 116

Fig. E-2 Example of attack behavior model .. 118

Fig. G-1 AICA Reference Architecture (AICARA) 130

Fig. G-2 Decision cycle in Lieutenant A’s episode of experience 132

Fig. G-3 Another decision cycle in Lieutenant A’s episode of experience 132

viii

Fig. G-4 Model of AICAs’ DMA ... 133

List of Tables

Table 1 Classes of AICA components ... 18

Table 2 Measuring the world dynamics data.. 37

Table 3 Components of the world and current state and history models 45

Table 4 AICA research challenges .. 79

Table A-1 Hypothetical timeline of agents’ actions ... 92

Table D-1 Comparison of AICA function and the AHEAD module 111

ix

Executive Summary

The North Atlantic Treaty Organization (NATO) Research Task Group IST-152
developed a concept and a reference architecture for intelligent software agents
performing active, largely autonomous cyber-defense actions on military assets. In
this report, which is an updated and extended version of its previous release, such
an agent is referred to as an Autonomous Intelligent Cyber-defense Agent (AICA).

In a conflict with a technically sophisticated adversary, NATO military networks
will operate in a heavily contested battlefield. Enemy malware will likely infiltrate
and attack friendly networks and systems. Today’s reliance on human cyber
defenders will be untenable on the future battlefield. Instead, artificially intelligent
agents such as AICAs will be necessary to defeat the enemy malware in an
environment of potentially disrupted communications where human intervention
may not be possible.

The IST-152 group identified specific capabilities of AICA. For example, AICA
will have to be capable of autonomous planning and execution of complex multi-
step activities for defeating or degrading sophisticated adversary malware, with
anticipation and minimization of resulting side effects. It will have to be capable of
adversarial reasoning to battle against a thinking, adaptive malware. Crucially,
AICA will have to keep itself and its actions as undetectable as possible, and will
have to use deceptions and camouflage.

The group identified the key functions, components, and their interactions for a
potential reference architecture of such an agent, as well as a tentative roadmap
toward the capabilities of AICA.

NATO should encourage the emerging interest in member nations’ academia,
industry, and governments toward the related research and development. AICAs
are likely to become primary cyber fighters on the future battlefield, and NATO
must not fall behind its adversaries in developing and deploying such technologies.

1

1. Introduction

Authors: Alexander Kott and Guido Gluschke

This report describes a reference architecture for intelligent software agents
performing active, largely autonomous cyber-defense actions on military networks
of computing and communicating devices. The report is produced by the North
Atlantic Treaty Organization (NATO) Research Task Group (RTG) IST-152
“Intelligent Autonomous Agents for Cyber Defense and Resilience”.

1.1 Objective

In a conflict with a technically sophisticated adversary, NATO military tactical
networks will operate in a heavily contested battlefield. Enemy software cyber
agents—malware—will likely infiltrate friendly networks and attack friendly
command, control, communications, computers, intelligence, surveillance, and
reconnaissance (C4ISR) and computerized weapon systems. To fight them, NATO
needs an effective response. Artificial cyber defenders—intelligent, autonomous,
mobile agents specialized in active cyber defense—are one form of adequate and
effective response. The key roles of these agents will be to detect and defeat the
enemy malware that infiltrated friendly systems and networks.

With this in mind, in 2016, NATO initiated RTG IST-152 “Intelligent Autonomous
Agents for Cyber Defense and Resilience”. Its objective is to help accelerate
development and transition to practice of such software agents by producing a
reference architecture and technical roadmap.

If such research is successful, it will lead to technologies that enable the following
vision. Cyber-defense agents will stealthily monitor the networks, detect the enemy
cyber activities while remaining concealed, and then destroy or degrade the enemy
malware. They will do so mostly autonomously, because human cyber experts will
be always scarce on the battlefield. They have to be capable of autonomous learning
because enemy malware is constantly evolving. They have to be stealthy because
the enemy malware will try to find and destroy them. At the time of this writing
and to the best of our knowledge, autonomous agents with such capabilities remain
unavailable. The IST-152 group performed focused technical analysis to produce a
first-ever reference architecture and technical roadmap for autonomous cyber-
defense agents. In addition, the RTG worked to identify selected elements of such
capabilities that are beginning to appear in academic and industrial research.

The output of the RTG is a tangible starting point for acquisition activities by
NATO nations. If based on a common reference architecture, software agents

2

developed or purchased by different nations will be far more likely to be
interoperable. Deployed on NATO networks, the autonomous cyber-defense agents
will become a significant force multiplier: the agents will operate autonomously
when it is necessary to augment the inevitably limited capabilities of human cyber
defenders, and will work under the control of humans when ordered to do so and
when conditions permit such a control.

With the help of autonomous, intelligent cyber-defense agents, NATO C4ISR will
be more likely to survive an encounter with a determined, technically sophisticated
enemy. To acquire and successfully deploy such agents, in an interoperable manner,
NATO nations must have a common technical vision, including a reference
architecture and a roadmap, of which this report is a beginning.

1.2 Fundamental Choices and Assumptions

A key assumption taken by this report is that in a conflict with a technically
sophisticated adversary, NATO military tactical networks will operate in a heavily
contested battlefield. Enemy software cyber agents—malware—will infiltrate
NATO networks and attack NATO C4ISR and computerized weapon systems, with
a significant probability that cannot be ignored.

To focus the attention of our research group, we have chosen to limit the scope of
the problem as follows. We consider a single military platform, such as a vehicle,
a vessel, or an unmanned aerial vehicle (UAV) with one or more computers residing
on the platform, connected to sensors and actuators. Each computer contributes
considerably to the operation of the platform or systems installed on the platform.
One or more computers are assumed to have been compromised, where the
compromise is either established as a fact or is suspected.

Due to the contested nature of the communications environment (e.g., the enemy is
jamming the communications or radio silence is required to avoid detection by the
enemy), communications between the vehicle and other elements of the friendly
force are often limited and intermittent. At certain times and under some conditions,
communications may be entirely impossible.

Given the constraints on communications, conventional centralized cyber defense
(i.e., an architecture where local sensors send cyber-relevant information to a
central location where highly capable cyber-defense systems and human analysts
detect the presence of malware and initiate corrective actions remotely) is often
infeasible. It is also unrealistic to expect that the human warfighters residing on the
platform, for example, a vehicle, will have the necessary skills or time available to

3

perform cyber-defense functions locally on the vehicle, even more so if the vehicle
is unmanned.

Therefore, cyber defense of such a platform, including its computing devices, will
have to be performed by an intelligent, autonomous software agent. The agent (or
multiple agents per platform) will stealthily monitor the networks, detect the enemy
agents while remaining concealed, and then destroy or degrade the enemy malware.
The agent will have to do so mostly autonomously, without support or guidance by
a human expert.

In most discussions in this report, the agent is considered as a monolithic piece of
software. However, depending on the implementation, the agent’s modules can be
distributed over multiple processes or devices, or it could be implemented as a team
of agents or subagents.

To fight the enemy malware that has infiltrated the friendly computer, the agent
may have to take destructive actions, such as deleting or quarantining certain
software. Such destructive actions are carefully controlled by the appropriate rules
of engagement and are allowed only on the computer where the agent resides.

In most cases, the agent will not be able to stop the enemy from penetrating the
platform’s systems. However, it will be able to perform detection of, analysis, and
response to a given threat. The actions of the agent, in general, cannot be guaranteed
to preserve the availability or integrity of the functions and data of friendly
computers. There is a risk that an action of the agent will “break” the friendly
computer, disable important friendly software, or corrupt or delete important data.
Developers of the agent will attempt to design its actions and planning capability
to minimize the risk. This risk, in a military environment, has to be balanced against
the death or destruction caused by the enemy if the agent’s action is not taken.

Provisions will be made to enable a remote controller—human or automated cyber
command and control (C2) node—to fully observe, direct, and modify the actions
of the agent, and even to update the agent’s software as needed. However, it is
recognized that such a remote control is often impossible due to the difficulties of
communicating between the agent and the control node. The agent, therefore,
should be able to plan, analyze, and perform most or all of its actions autonomously.

Similarly, provisions should be made for the agent to collaborate with other agents
(that reside on other computers); however, in many cases, because the
communications are impaired or observed by the enemy, the agent has to eschew
collaboration and operate alone.

The enemy malware, specifically, its capabilities and tactics, techniques, and
procedures (TTPs), evolves rapidly. Therefore, the agent will be capable of

4

autonomous learning. In case the enemy malware knows that the agent exists and
is likely to be present on the computer, the enemy malware will seek to find and
destroy the agent. Therefore, the agent will possess techniques and mechanisms for
maintaining a certain degree of stealth, camouflage, and concealment. More
generally, the agent takes measures that reduce the probability that the enemy
malware will detect the agent. The agent is mindful of the need to exercise self-
preservation and self-defense.

It is assumed here that the agent resides on a computer where it was originally
installed by a human controller or an authorized process. We do envision a
possibility that an agent may move itself (or move a replica of itself) to another
computer. However, such propagation is assumed to occur only under exceptional
and well-specified conditions, and takes place only within a friendly network—
from one friendly computer to another friendly computer.

Here is a good place to mention the controversy about “good viruses”. Such viruses
have been proposed, criticized, and rejected earlier (Muttik 2008). These criticisms
do not apply here. This agent is not a virus because it does not propagate except
under explicit conditions within authorized and cooperative nodes. It is also used
only in military environments, where the concerns listed in Muttik (2016) do not
apply. As mentioned earlier, in a military environment, any drawbacks that might
be associated with operations of an autonomous cyber-defense agent have to be
balanced against the death or destruction caused by the enemy if the agent is not
available.

Discussions of autonomous cyber-defense capabilities bring to mind the Defense
Advanced Research Projects Agency (DARPA) Cyber Grand Challenge and the
products that showed effective performance at that competition (e.g., Avgerinos et
al. [2018]). However, unlike those products, the Autonomous Intelligent Cyber-
defense Agent’s (AICA’s) purpose is not to find and fix vulnerabilities in friendly
software, but rather to find and defeat the adversary’s malware.

The field of collaborative intrusion detection (Zhou et al. 2010) is another topic that
appears to be related to AICA. However, collaborative intrusion detection, while a
possible useful capability for AICA, is not its central purpose. It is possible that
extensive collaboration would not be possible for AICAs due to the need to
maintain stealth.

Other related areas of research include software agents, multiagent systems,
autonomous software, and host-based intrusion detection systems. Each of these
areas is associated with voluminous literature. To our knowledge, an agent with
AICA’s purposes, capabilities, and architecture has not been discussed in the
literature.

5

1.3 Basic Concepts and Terminology

In this report, the term “agent” denotes software or a collection of software that
resides and operates on one or more computing devices, perceives its environment,
and executes purposeful actions on the environment (and on itself) to achieve the
agent’s goals. We use the following acronyms: the agent is AICA and the
architecture is the AICA Reference Architecture (AICARA).

The term “environment” here denotes everything that surrounds the agent and that
the agent can perceive: the computer hardware and software where the agent
operates, the vehicle, the enemy malware, the humans who communicate with the
agent or with surrounding hardware and software, and other agents that this agent
can find and with whom it can communicate.

The term “percept” denotes an element of information that the agent is able to
obtain or receive; the percept reflects an attribute of the environment or a change
in an attribute of the environment. The following are examples of percepts, partly
inspired by De Gaspari et al. (2016):

• Report from Nmap probing

• Observation of a change to the file system

• A signal that someone has interacted with a fake webpage (honeypot page)
or fake service

The term “action” denotes any action that a software agent can execute on its
environment. It can include an impact on other software or data, or a
communication to a human or another agent. The following are examples of actions
(De Gaspari et al. 2016):

• Remap ports

• Check the integrity of the file system

• Create and deploy a fake password file, with an alarm mechanism activated
when the file is accessed

• Create and deploy a fake webpage or web service

• Deposit a file with a “poison pill”

• Identify a suspicious file

• Sandbox a suspicious file

• Analyze the behavior of software in the sandbox

6

Examples of actions and situations in which the agent takes such actions are
described in the Appendices.

The term “state” refers to a collection of values of the environment’s attributes.
Generally, the state is not known either fully or accurately, and the agent must infer
it, at least in part.

The term “plan” here refers to a sequence or a directed graph of actions that the
agent generates in order to transform the current state of the environment into a
different state more desirable by the agent. The plan can be conditional (i.e., it
includes intermediate decisions based on the perceived state) or temporal (i.e., it
includes constraints on when the actions are performed).

1.4 Scope and Selected Requirements for AICA

For the purposes of describing its reference architecture, we assume that AICA
resides on a physical military platform with the scope of ensuring availability and
integrity of all relevant computerized functions of the platform against injected
malicious code in order to ensure the correct behavior of the platform. Detecting
abnormal functional behavior of the physical platform is not within the scope of the
cyber-defense agent. This is assumed to be done by other operational monitor and
control functions, manually or autonomously.

Taking a UAV as an example of a platform, the scope of AICA can be illustrated
as in Fig. 1.

Fig. 1 A possible scope of AICA implementation is illustrated in the context of a
hypothetical UAV

7

In the figure, computing power means the primary computers (one or multiple) that
support the functions of the UAV. Actuators are physical devices for controlling
the physical elements of the UAV. Here these devices are assumed to include
computer processing, can be targets of cyberattacks, and therefore, should be
protected by AICAs. The same argument applies to sensors and communication
components. Therefore, in this example, the elements highlighted in the figure fall
in the scope of AICA’s responsibilities.

The following are some of the key requirements that can be seen as prerequisites
for development of AICA’s architecture:

• The agent shall reside on a military platform in a persistent and stealthy
manner. Here, stealth refers to the agent’s ability to minimize the probability
that the adversary malware will detect and observe the agent’s presence and
activity.

• The agent shall be able to observe the state and activities within the elements
within its scope of responsibilities, detect the enemy malware while
remaining minimally observable to the malware, and destroy or degrade the
enemy malware.

• The agent shall be capable of operating effectively in an environment
compromised by an adversary malware.

• The agent shall be resistant to compromise.

• The agent shall be able to observe and understand the environment in which
it is operating and for that it needs its own world model of the relevant
environment.

• The agent shall be able to observe and influence all computational elements
under its protection, including computational elements of all sensors and
actuators of the platform.

• All relevant communications traffic shall be observable for the agent.

• The agent shall be able to function effectively when communications to
other friendly elements or external controller are limited or unavailable.

• The agent shall function under specific circumstances, such as limited
computing resources (memory, CPU, etc.) and special environmental
conditions (e.g., temperature, air pressure, G-forces, size, and so on.)

• The agent shall function autonomously when necessary, that is, without
depending on support of external friendly elements or an external controller.
This implies that it has to be enabled to interact with all computational

8

components of the platform, including the computational elements of
sensors and actuators in real time; make its own decisions; and take the
necessary actions.

• Provisions shall be made to enable a remote or local human controller to
observe, direct, and modify the actions of the agent, when a need arises and
circumstances permit.

• The agent shall be able to make nontrivial (and nonobvious to the adversary)
plans in order to pursue a given goal and has to be able to execute defined
actions resulted from the plan.

• The agent shall be able to take destructive actions, such as deleting or
quarantining certain software and data, autonomously, while observing the
specified rules of engagement. The agent shall have the means to assess the
risk and benefits involved in such actions, and make its decisions
accordingly.

• The agent should be able to collaborate with other friendly agents when a
need arises and conditions permit. Collaboration schemes and negotiation
mechanisms are needed for that.

• The agent should be able to perform autonomous learning, particularly
regarding the capabilities, techniques, and procedures of the enemy
malware. The learning should occur both offline and online, and the newly
learned knowledge should be able to inform the agent during its operation.

• The agent, whenever requested, shall report data to the external controller
that would enable the controller to make inferences about the
trustworthiness of the agent.

• The agent should be able to self-propagate to a remote, friendly computing
device. Self-propagation shall occur only under exceptional and well-
specified conditions of military necessity.

The remainder of this report describes a proposed architecture that would meet such
requirements.

Part A of the report provides the rationale and concept of operations of AICA, gives
an overview of its architecture, and explains how the necessary data are stored and
managed within the agent.

Part B offers a collection of exploratory discussions of possible approaches to
implementing the key functions of the architecture. In this part, Section 5 describes
how the agent acquires the information about its environment and determines the

9

state of the environment. Section 6 discusses the means by which the agent plans
its actions, including the prediction of actions’ ramifications. Section 7 is about the
ways in which the agent executes the actions it decided upon. Section 8 explains
how the agent may collaborate with other agents. Section 9 outlines possible
approaches to means by which the agent learns from its actions and observations.

10

Part A. Presentation of the Architecture

11

2. Rationale of AICA and Scenario

Authors: Paul Losiewicz, Mauno Pihelgas, and Martin Drašar

2.1 Context

The threat of cyberattack on NATO-member military platforms cannot be
underestimated. As described in a US General Accounting Office Report, GAO-
19-128, Weapon Systems Cybersecurity: DOD Just Beginning to Grapple with
Scale of Vulnerabilities, “Nearly all major acquisition programs that were
operationally tested between 2012 and 2017 had mission-critical cyber
vulnerabilities that adversaries could compromise” (GAO 2018).

In the wider cybersecurity domain, tactical targets for cyberattacks are termed
“cyber–physical systems” (CPSs). The gateways for attacks are often the control
systems (CSs) that manage the guidance and propulsion of a vehicle, the C2 of a
system, or the operations of a system payload, such as weapon systems or
intelligence, surveillance, and reconnaissance (ISR) sensor packages. CSs have
been segregated into either facilities-related control systems (FRCSs) or platform
control systems (often termed platform information technology [PIT]).

In this section, we describe an AICA employment strategy to defend against
cyberattack in a notional platform using realistic threats in the military domain. It
is understood that the modality of the vehicle (ground, aerial, surface, subsurface)
will have different operational impacts in different contexts. In addition the targeted
attacks can occur on the control systems of manned, optionally manned, and
unmanned vehicles. We attempt to generalize as much as possible.

The following notional systems components (represented by boxes) are used in the
vehicle (Fig. 2):

• Bus (BUS): This box describes a component that is able to interconnect
different devices, not relying on a specific technology. It includes all
internal communication systems including intercoms that enable crew
members who are physically separated to communicate within the vehicle,
if the vehicle is crewed. There may be more than one, and busses can be
repeated as needed.

• Payload (PLD): This is a symbolic box for a weapon, electronic warfare,
ISR sensor package, or simply a cargo CS on the vehicle. There may be
more than one, and the designation can be used as needed. The payload may
include manned crew stations.

12

• Communication system (COMMS): This box describes the
communication systems between the vehicle and the external world
(satellite communication, radio communication, etc.). There may be more
than one, and the designation can be used as needed.

• Vehicle Navigation System (VNS): This box describes the internal
position, navigation, and timing (PNT) system of the vehicle. The VNS
receives input from PNT sensors on the vehicle or from offboard. The VNS
provides input to the vehicle CS, either a pilot in case of a manned vehicle
or the autopilot in case of an unmanned system.

• Sensors (SENS): This box represents the systems that can be used to
provide input from the environment. The sensing function may be part of
the VNS, vehicle CS, or a payload.

• Vehicle Management System (VMS): This box indicates the platform
internal CS used to pilot the vehicle. It includes either a pilot in case of a
manned vehicle or an autopilot and a contingency management system in
case of an unmanned vehicle.

• Battle Management System (BMS): This box represents the system that
is used by the operators, either onboard or offboard, to gather and send
information about their tasking, platform status, and situation awareness of
friends or foes. It is primarily used to report systems status and update
mission tasking. It usually includes a bidirectional geo-information system
that relies on information from the vehicle CS and navigation sensors, and
payload sensors. It gets information from either a centralized battle manager
or forms part of a distributed, noncentralized BMS.

13

Onboard BUS
System(s)

Vehicle
Navigation

System

Payload(s)

Battle Management
System

Vehicle
Management System

SensorsComms

Fig. 2 Vehicle systems and network structure

2.2 Agent Deployment

Agents can be deployed in a centralized approach with master and client agents or
as a distributed network of self-organizing agents (dotted lines indicate optional C2
configurations). The AICA we envision monitors internal component operations or
communications bus traffic, which could include sensor readings, control signals,
or TCP-IP packet data. For the autonomous CPS that may be operated remotely or
operate with high degrees of autonomy, the data will consist of machine-to-machine
(M2M) data passed over C2 or platform CS networks, using protocols and busses
such as MIL-STD-1553, BACnet, MODBUS, ZigBee, IEBus, and ANSI/ISA-95.
CSs are rapidly migrating to use of TCP-IP as well.

In a centralized approach, the evaluation of data and subsequent decision making
is delegated to a master agent. The master agent controls the client agents and
commands them to perform actions. The client agents, which have been installed
on subsystem hardware can be very simple (e.g., scripts that send data and execute
commands) or full replicas of the designated master agent that can be activated as
needed.

In Fig. 3, the dotted lines indicate optional AICA communication schemes for either
onboard or offboard C2.

14

Fig. 3 Centralized agent system

A distributed network of self-organizing agents does not employ a centralized
master agent, but uses more of a peer-to-peer (P2P) structure (Fig. 4). In the extreme
case, the autonomous agents have to independently negotiate and coordinate
tasking, attempt to maintain a common situational picture, and decide together
about collaborative goals. This structure eliminates the master agent as a single
point of failure and dramatically increases system resilience. Thus, even isolated or
partitioned agents can continue to protect some portion of the entire system. This
more resilient structure does come at the cost of more complexity in the
maintenance of communications and the coordination of action and deliberation.

Fig. 4 Distributed agent CS

15

2.3 Cyber-defense Agent Concept of Operations (CONOPS)

CPSs operate over sensor or control links that can be degraded, denied, or corrupted
by adversarial action in combat. The standard of performance of a cyber system is
how well the system guarantees confidentiality, integrity, and availability of the
data that are transmitted or stored on the system. For the discussion that follows,
we assume a decentralized command structure of autonomous agents operating to
mitigate interference with a BMS of a military vehicle. We assume use of TCP-IP.
Note that use of a decentralized cyber-defense agent command structure in a vehicle
does not imply that the command structure for the vehicle as a whole is
decentralized.

2.4 An Attack Example

Let us assume a vehicle in laager undergoing routine maintenance. A maintenance
management system is connected to a system bus to record system network traffic
during static pre-operations test procedures.

Stage 0: Primary Infection

Prior to the maintenance procedure, malware is loaded onto the maintenance system
hardware, which has now become the vector for the attack on the vehicle. When
the maintenance hardware is connected to the vehicle, malicious code is allowed to
migrate to the VMS.

However, there is an AICA resident in the VMS, which in this case logs the network
activity under the maintenance procedure, which includes identification and access
management (IDAM), file transfers, and configuration file changes.

Stage 1: Reconnaissance

Once the maintenance hardware is removed, the malware begins to log network
traffic in order to identify the attached subsystems of the vehicle. The location of
the BMS is not known to the malware a priori, so the malware starts probing for
any open ports commonly used by a BMS. Once located, it scans the BMS for
vulnerabilities it can exploit from within the VMS.

The AICA in the VMS detects the scanning activity going out over the network. It
puts AICAs in the target systems on alert following the anomalous activity of an
unanticipated port scan. The VMS is given an alert from its AICA that there is
anomalous activity originating from the VMS. This information is then used in
accordance with platform TTPs to initiate systems diagnostics. Systems diagnostics
notifications are sent offboard via the BMS and COMMS to a C2 node that the
vehicle operational readiness might be degraded.

16

Stage 2: Attack

The malware in the VMS recognizes that VMS diagnostics have started and
commences a lateral movement into the file structures of the BMS. It selects an
appropriate exploit and executes code.

The AICA in the BMS recognizes a subsequent change in a configuration file as a
result of the code execution and that it was updated outside of a scheduled
maintenance period or without system access authorization. That AICA notifies the
BMS to commence systems diagnostics. Another diagnostics alert is sent offboard
to the C2 system. An AICA at the central C2 system recognizes an increased
frequency of diagnostics alerts and sends status queries back to the vehicle system’s
AICAs. The malware now needs to move laterally again due to systems diagnostics
procedures being initiated and selects the COMMS after a port scan. The AICA in
COMMS has already been alerted to anomalous behavior in two other subsystems
and notifies COMMS that no configuration changes are to be accepted without the
elevated privileges required by systems recovery procedures. The malware is now
unable to execute a hijacking of a software-defined radio (SDR) communications
channel and resumes port scanning to seek further lateral movement and further
targets.

Stage 3: Recovery

It is at this point that the AICAs at the various vehicle control subsystems isolate
their systems on the various control busses and initiate automated diagnostics and
recovery procedures. The vehicle maintenance team is alerted and diagnostics and
forensics begins, whereby the malware is discovered, and agent-based examination
of systems logs discovers the chain of events and the likely vector. Luckily, in this
example, our vehicle never made it out of laager before recovery. But we can
envision many other scenarios where we encounter cyber‒physical attacks while
underway, and mitigation and recovery processes have to be carried out during a
mission. In some of these instances, the deliberative actions of the embedded agents
will have to include prosecuting a mission with degraded capabilities or
autonomous recovery of a vehicle with minimal human intervention.

17

3. Architecture Overview

Author: Paul Théron

This section provides an overview of the AICARA. First, it presents the agents’
functional architecture and its components as it is assumed today. Next, it identifies
five high-level functions of agents and, for each of them, details their main features.
Finally, recognizing that the components of the functional architecture will have
dependencies, the last section presents what they are going to be.

Cyber-defense agents considered in the AICARA can essentially do the following:

• They can handle autonomously and in a trustworthy manner the
cyberattacks affecting the perimeter they defend.

• They can cooperate, with one another, a cyber C2 system, or even a human
operator, when and as required and feasible.

Each agent is implemented within or in attachment to one delimited system or
device. Cooperation between agents is achieved through available communication
channels. These communication channels must be as covert as feasible because
agents must be as stealth as possible in order to protect themselves from attacks by
enemy malware.

The AICARA, derived from Russell and Norvig (2010), is assumed to include the
functional components outlined in Fig. 5.

Fig. 5 AICA’s functional architecture, AICARA

State

18

The agents’ functional components belong in three classes as outlined in Table 1.

Table 1 Classes of AICA components

Class of components Functional components
Core components Sensing
 World State Identification
 Planning
 Action Selection
 Action Execution

Support functions Collaboration and Negotiation
 Learning
 Goals management
 Self-assurance
 Stealth and security

Data services World model
 Current state and history
 World dynamics
 Goals

Note that at the time of publication, the AICARA stands as an initial assumption.
It is discussed and exemplified in later sections.

AICAs can be implemented in three different ways, and each option would entail
specific choices both in terms of technology and doctrine of use:

1) A society of specialized agents: This option refers to the distributed
implementation of the reference agent’s functional components (as in
Fig. 5) as a group of specialized agents, each one owning/delivering one of
the functions of the AICA presented, and the sum of the agents delivering
the entire reference agent’s cyber-defense capability. Major questions are
the following: Where should these agents be implemented/located within
the defended system? What happens if one specialist agent is disabled (for
instance, out of an attack directed at it) and thus breaks a functional chain:
would it be replaced, how would its own knowledge/working memory be
preserved, how would the tasks it was performing before being attacked
continue, and so on? Does this option allow or jeopardize agents’ stealth
and can covert communication channels hide a possibly intense traffic
between specialist agents?

2) A multiagent system: This option refers to a swarm or cohort of fully
functional agents the architecture of which would be as in the AICA model
presented previously, each one being capable of executing all AICA
functions, and the swarm as a whole being supposed to deliver a collective
response to a cyberattack. Major questions are the following: What is the

19

collective intelligence of the swarm and how does it emerge? Are
multiagent systems less stealthy than option 1 and option 3?

3) An autonomous collaborative agent: This option refers to a fully
functional agent, capable of performing full cyber-defense duty on its own
territory and capable, when and as needed and circumstances permitting, of
communicating with other agents. Major questions are the following: What
is the purpose of communications/collaborations between agents? Where is
this single agent implemented within a system? How different is this agent
from cyber-detection agents currently under development or already
available?

This report does not advocate any choice of an implementation option. The choice
of an implementation option may be guided by criteria such as, but not limited to,
the following:

• The type and level of classification of systems to defend

• Their architecture and topology

• Their technical capacities (computing power, memory, communications,
etc.)

• Agents’ performance and cost requirements

AICA contributes to the cyber defense of a military system or device through five
main high-level functions (Fig. 6):

1) Sensing and World State Identification

2) Planning and Action Selection

3) Collaboration and Negotiation

4) Action Execution

5) Learning

20

Fig. 6 AICA’s main five high-level functions

3.1 Sensing and World State Identification

Sensing and World State Identification is the AICA high-level function that allows
a cyber-defense agent to acquire data from the environment and systems in which
it operates, as well as from itself, to reach an understanding of the current state of
the world and, should it detect risks in it, trigger the Planning and Action Selection
high-level function.

This high-level function relies upon the world model, current state and history,
sensors, and world state identification components of the assumed functional
architecture.

It includes the following two functions:

• Sensing

• World state identification

3.1.1 Sensing

Sensing operates from two types of data sources:

• External (system/device-related) current world state descriptors

• Internal (agent-related) current state descriptors

Current world state descriptors, both external and internal, are captured on the fly
by the agent’s sensing component. They may be double checked, formatted, or

21

normalized for later use by the world state identification component (to create
processed current state descriptors).

3.1.2 World State Identification

The world state identification function operates from two sources of data:

• Processed current state descriptors

• Learned world state patterns

Learned world state patterns are stored in the agent’s world knowledge repository.
Processed current state descriptors and learned world state patterns are compared
to identify problematic current world state patterns (i.e., presenting an anomaly or
a risk). When identifying a problematic current world state pattern, the world state
identification function triggers the Planning and Action Selection high-level
function.

3.2 Planning and Action Selection

Planning and Action Selection is the AICA high-level function that allows a cyber-
defense agent to elaborate one to several action proposals and propose them to the
action selection function, which decides the action or set of actions to execute to
resolve the problematic world state pattern previously identified by the world state
identification function.

This high-level function relies upon the world dynamics, actions and effects, goals,
the actions’ effect predictor, and action selection components of the assumed
functional architecture.

It includes the following two functions:

• Planning

• Action selection

3.2.1 Planning

The planning function operates on the basis of two data sources:

• Problematic current world state pattern

• Repertoire of actions (response repertoire)

The problematic current world state pattern and repertoire of actions (response
repertoire) are concurrently explored to determine the action or set of actions
(proposed response plan) that can resolve the submitted problematic current world

22

state pattern. The action or set of actions so determined are presented to the action
selection.

It may be possible that the planning function requires some form of cooperation
with other agents or a central cyber C2 to come up with an optimal set of actions
forming a global response strategy. Such cooperation could be to either request
from other agents or the cyber C2 complementary action proposals or delegate to
the cyber C2 the responsibility of coordinating a global set of actions forming the
wider response strategy. This aspect is not yet studied in the present release of the
AICARA.

3.2.2 Action Selection

The action selection function operates on the basis of three data sources:

• Proposed response plans

• Agent’s goals

• Execution constraints and requirements (e.g., environment’s technical
configuration, and so on)

The proposed response plan is analyzed by the action selection function in the light
of the agent’s current goals, and the execution constraints and requirements that
may either be part of the world state descriptors gained through the Sensing and
World State Identification high-level function or be stored in the agent’s data
repository and originated in the Learning high-level function. The proposed
response plan is then trimmed from whatever element does not fit the situation at
hand and augmented by prerequisite, preparatory, precautionary, or postexecution
recommended complementary actions. The action selection thus produces an
executable response plan, which is then submitted to the Action Execution high-
level function.

Like with the planning function, it is possible that the action selection function is
required to liaise with other agents or a central cyber C2 to come up with an optimal
executable response plan forming part of and being in line with a global response
strategy. Such cooperation could be to exchange and consolidate information with
other agents or the central cyber C2, and then agree collectively on the assignment
of responsibilities over the various parts of the execution of the global executable
response plan to specific agents. Alternatively, it could be to delegate to the cyber
C2 the responsibility of elaborating a consolidated executable response plan and
then assign to specific agents the responsibility of executing part(s) of the overall
plan within their dedicated perimeter. This aspect is not yet studied in the present
release of the AICARA.

23

3.3 Action Execution

Action Execution is the AICA high-level function that allows a cyber-defense agent
to effect the action selection function’s decision about an executable response plan
(or the part of a global executable response plan assigned to the agent), monitor its
execution and its effects, and provide friendly agents with the means to adjust the
execution of their own part of the response plan as and when needed.

This high-level function relies upon the goals and actuators components of the
assumed functional architecture.

It includes the following four functions:

• Action activation

• Execution monitoring

• Effects monitoring

• Execution adjustment

3.3.1 Action Activation

The action activation function operates on the basis of two data sources:

• Executable response plan

• Environment’s technical configuration

Taking into account the environment’s technical configuration, the action
activation function executes each planned action in the scheduled order.

3.3.2 Execution Monitoring

The execution monitoring operates on the basis of two data sources:

• Executable response plan

• Plan execution feedback and status

The execution monitoring function should be able to monitor (possibly through the
sensing function) each action’s execution status (for instance, done, not done, or
wrongly done). Any status apart from “done” should trigger the execution
adjustment function.

24

3.3.3 Effects Monitoring

The effects monitoring function operates on the basis of two data sources:

• Executable response plan

• Environment’s change feedback and status

It should be able to capture (possibly through the sensing function) any
modification occurring in the plan execution’s environment. The associated data
set should be analyzed/explored. The result of such data exploration might (should)
provide a positive (satisfactory) or negative (unsatisfactory) environment change
status. Should this status be negative, this should trigger the execution adjustment
function.

3.3.4 Execution Adjustment

The execution adjustment function operates on the basis of three data sources:

• Executable response plan

• Plan execution feedback and status

• Environment’s change feedback and status

The execution adjustment function should explore the correspondence between the
three data sets to find alarming associations between the implementation of the
executable response plan and its effects. Should warning signs be identified, the
execution adjustment function should either adapt the actions’ implementation to
circumstances or trigger a tactical revision/adaptation to the plan.

The update of the response plan in the course of its execution is not studied in the
current release of the AICARA. It presents issues that require further research work
such as the need for collaboration and negotiation between agents. A notion of
tactical superiority can be envisaged but is not studied in this report.

3.4 Collaboration and Negotiation

Collaboration and Negotiation is the AICA high-level function that allows a cyber-
defense agent to 1) exchange information with other agents or a central cyber C2,
or possibly with a human operator, for instance, when one of the agent’s functional
components is not capable on its own of reaching satisfactory conclusions or usable
results; and 2) negotiate with its partners the elaboration of a consolidated
conclusion or result.

25

This high-level function relies upon the collaboration and negotiation component
of the assumed functional architecture.

It includes, at the present stage, one function:

• Collaboration and negotiation

The collaboration and negotiation function operates on the basis of three data
sources:

• Internal, outgoing data sets (i.e., sent to other agents, a cyber C2, or human
operator)

• External, incoming data sets (i.e., received from other agents, a central
cyber C2, or human operator)

• The agents’ own knowledge (i.e., consolidated through the Learning high-
level function).

When an agent’s World State Identification, Planning, or Action Selection high-
level function (or potentially any other functional component) needs it, the agent’s
collaboration and negotiation function is activated. Depending on collaboration
policies memorized in the agent’s stealth and security component, ad hoc data are
sent to authorized agents or a central cyber C2, possibly to a human operator. The
receiver(s) may negotiate with the emitting agent or may not be able to elaborate
further on the basis of the data received through their own collaboration and
negotiation function. When agents (including possibly a central cyber C2 or human
operator) have elaborated and reached shared conclusions, agent(s) will spark the
next function within their own decision-making process.

When the agent’s own security is threatened, the agent’s collaboration and
negotiation function should at least help warn other agents (or a central cyber C2
or possibly a human operator) of this state.

This release of the AICARA does not describe the agent’s security monitoring and
management.

Furthermore, the agent’s collaboration and negotiation function may be used to
receive warnings from other agents that may trigger in the agent a higher state of
alarm.

Finally, the agent’s collaboration and negotiation function should help agents
discover other agents and establish links with them.

26

This release of the AICARA does not describe nor specify the exchange protocol
and the negotiation process, nor the alarm-raising mechanism and the agent
discovery mechanism. These are issues to be further studied in later research.

3.5 Learning

Learning is the AICA high-level function that allows a cyber-defense agent to use
the agent’s experience to improve progressively its efficiency with regard to all
other functions.

This high-level function relies upon the learning and knowledge improvement
components of the assumed functional architecture.

It includes two functions:

• Learning

• Knowledge improvement

3.5.1 Learning

The learning function operates on the basis of three data sources:

• Feedback data from the agent’s environment changes

• Feedback data from the agent’s functioning

• Feedback data from the agent’s actions

The learning function collects and analyzes the corresponding data sets possibly in
conjunction with the reward function of the agent (or distance between goals and
achievements). Results feed the knowledge improvement function.

3.5.2 Knowledge Improvement

The knowledge improvement function operates on the basis of two data sources:

• Results (propositions) from the learning function

• Current elements of the agent’s knowledge

The knowledge improvement function merges results (propositions) from the
learning function and the current elements of the agent’s knowledge.

The current release of the AICARA provides only a basic description or examples
of the Learning high-level function and of the role of artificial intelligence in this
context.

27

3.6 Agents’ Generic Process Flow

The overall functioning of an agent is summarized in the following graph that
shows the agent’s generic process flow (Fig. 7).

Fig. 7 AICA’s generic process flow

In this diagram, each component of the AICARA details its principal tasks.

A working memory, which could be implemented either as temporary stacks or as
a shared blackboard or common work area, will help with passing data on from
component to component.

28

Besides the acquisition of data relating to the systems falling in the agent’s scope
and of data exchanged with other entities (other agents, a central cyber C2 system,
or human operators via an ad hoc human‒computer cooperation mechanism), the
sensing component has also a monitoring function that covers the execution of
action plans launched by the action execution component.

The world state identification component does the following:

• May ask the sensing component for further data if it cannot compute the
current state of the environment in the agent’s remit.

• Computes how good or poor the performance of previously launched plans
of actions is, and if poor or inadequate, it triggers the planning component
for a revision/tactical adaptation of these plans in order to better match the
attacker’s action.

• Updates, when possible/appropriate, the world current state and history,
world dynamics, and world model databases.

The planning component does the following:

• Elaborates a number of options of action (countermeasure) plans in
response to the current state identified previously.

• May ask the world state identification component for a refinement of the
computation of the current state if it lacks elements to elaborate a plan of
countermeasures.

The action selection component does the following:

• Evaluates and ranks (in terms for instance of cost, time to deliver effects,
risks, etc.) the plan options presented by the planning component.

• May ask the planning component to refine its plan options.

• Updates the world dynamics database component when it has made a clear
choice of a plan and associated it with the current state found by the world
state identification component.

The action execution component does the following:

• Launches the orders corresponding to the plan and sends them to the ad hoc
effectors across the system defended by the agent.

• Specifies what the sensing component must monitor to supervise the
execution of the action plan, and it stores those elements in the working
memory to pass them on to the sensing component.

29

• Updates the world dynamics database components with these
complementary elements of information.

The learning component does the following:

• Has a generic learning mechanism that reinforces itself with experience.

• Learns on the fly from the data acquired and stored by the agent.

• Updates the database components with new elements of knowledge.

• Should trigger the ad hoc adaptations of the agent’s internals to improve the
latter’s performance.

30

4. Data Services within Agents

Author: Paul Théron

This section describes the initial assumptions made about the following AICA data
services:

• World model

• World current state and history

• World dynamics knowledge

These modules of the agent are not just mere data repositories but producers of
processed data (i.e., “information”). They embark on an intelligence of their own
or rely on external sources to produce information, possibly cooperating with other
agent services for higher-order intelligence or support. Their communication with
other agent data services and functional components implies the definition of
internal protocols. Their data must be protected. The agent’s data services are built
in a way similar to that of the diagram in Fig. 8.

Fig. 8 General architecture of the data services

At the present stage, many options are open. We hypothesize the following ones:

• Data collectors accept incoming data records and check their compliance to
formatting and consistency rules.

31

• Once verified, data records are processed. Processing may be limited to
mere storage instructions or the data service module may have to perform
data normalization/consolidation/aggregation functions as well as
exploratory data analysis and exploratory factor analysis operations.

• Data records and elaborated information can be requested by the agent’s
other components. In this case, the data service’s request handler should be
designed to check the request against validity and security rules (according
to agent design options and security policies), and then data are extracted,
sorted, grouped, and bundled into an appropriate data container and returned
to the requesting module.

4.1 World Model Data Service

4.1.1 Definition

We hypothesize that a world model is the following:

• A formal descriptor of the elements it supplies to the agent’s other
components:

o The nominal and degraded ontology or configuration of the agent

o The nominal and degraded ontology or configuration of the system
and environment (systems and threat) to defend

o The nominal and degraded ontology or configuration of cyber
threats against the system and environment to defend and against the
agent itself

o The nominal and degraded patterns of the world’s state (agent +
environment + threat). Patterns express the agent, the system or its
environment’s static and dynamic relations, and the concurrency of
their configurations.

• It is based on the following:

o A theory of world models in the context of the cyber defense of
military systems

o A formal descriptive language

o Validated algorithms transforming inputs into descriptors

• Embedded into the agent, the model is determined by one of the following:

32

o Calculated by the agent (which inflates the agent’s size and requires
computing power) or

o Loaded from external sources (which requires periodic or occasional
downloads of the agent’s data and updates/uploads into the agent of
data produced by external sources).

4.1.2 Inputs

We hypothesize that the world model data service may take the following classes
of data as input:

• Data about the agent:

o Architecture, modules, and functions

o Communication

o Collaboration links

o Processes and protocols

o Performance descriptors

• Data about the defended system:

o Identified vulnerabilities

o Security devices and barriers

o Topology of friendly agents network

o Connection components problems

o Hardware components problems

o Firmware components problems

o Operating system (OS) components problems

o Middleware components problems

o Applicative components problems

• Data about cyber threats:

o Cyberattack, cyber vulnerabilities, cybersecurity, and cyber-defense
state-of-the-art technologies

33

o MITRE and other useful classifications (Common Attack Pattern
Enumeration and Classification [CAPEC], Common Vulnerabilities
and Exposures [CVEs], etc.)

o Kill chain-like models

• Data about the defended system’s environment:

o Sources of threats and attack C2 and tools

o Threat and vulnerability patterns (CAPEC, CVEs, etc.)

o Indicators of compromise (IoCs) (OpenIOC, Malware Information
Sharing Platform [MISP], etc.)

o Cybersecurity and cyber-defense dispositions and their topology

o Available cyber-defense resources

o Surrounding systems and their cybersecurity and cyber-defense
dispositions and topologies

The data sources would then be the following:

• Cyber-threat intelligence sources

• System descriptors (Simple Network Management Protocol [SNMP] data,
packet-based switching [PBS], topology, configuration, etc.)

• The world state and history data service

4.1.3 Process

There are two ways to produce ontologies and patterns of the world state:

• They can be created within the agent.

• They can be uploaded into the agent’s database.

When created within the agent, input data are processed in the following ways:

• Collected through the agent’s sensor (a standard format is required).

• Verified and preprocessed by the world model data service (e.g.,
normalized, formatted, and so on).

• Associated by the world model data service to form ontologies and patterns
(ad hoc functionalities are required).

34

• Stored in the world model data service’s database (a standard format is
required).

4.1.4 Outputs

The hypothesized outputs of the agent’s world data service are the following:

• Domain ontologies

o Agent

o System

o Environment

o Communication

o Threat

o Nominal and degraded

• World patterns

o Cross-domain patterns

o Domain-specific patterns

o Nominal and degraded

4.1.5 Current Issues and Lines of Research

Several issues can be identified at the present stage:

• The data classes required as input and the exact nature of output information

• The data formats of input data, data exchange protocols, and output
information

• The algorithms for preprocessing, creating, and indexing data

• The implementation option of agents

• The risks to the agent’s stealth due to the required memory size, processing
power, and communication needs

35

4.2 World Current State and History

4.2.1 Definition

We hypothesize that the world current state is the evaluated distance between the
world as it is and what it should be (based, for instance, on set goals or standards).
Pieces of information such as the following may be required to form world state
vectors describing the agent’s world and that can be used by the world state
identification component of AICA:

• Nominal and degraded states of reference of agents and their cohort,
defended systems, their environment and connections, and threats,
including the current state and the track record of past states

• Memory of cyber-defense actions and their impacts on the state of the world
(current and past)

• Current data about agents and their cohort, defended systems, their
environment and connections, and threats

The world state identification module can then be hypothesized to do the following:

• Calculate the current world state data vector.

• Measure the deviation of the current world state data vector from the
nominal world state data vector.

• Interpret (meaning) the measure of the deviation (based on history, actions
in progress, etc.).

• Appraise the deviation (i.e., determine the positive or negative valence of
the deviation).

The current world state data vector is a formal descriptor of the appraised world’s
state at a given point in time and circumstances, usable by the world state
identification module.

The world state history is the chronological track record of world state descriptors.

4.2.2 Inputs

The world current state and history data service takes world state records from the
world state identification module.

36

4.2.3 Process

The world current state and history data service labels (with metadata) and stores
the new world state data vector provided by the state identification module into its
database.

4.2.4 Outputs

World state descriptor records are stored in the world current state and history’s
database.

4.2.5 Current Issues and Lines of Research

The issues identified at the present stage are the following, among possible others:

• The specification of world state data descriptors/vectors

• The computation of world states, both nominal and degraded

• How the historical records of world state descriptors are used by the world
state identification

• The size of the world current state and history’s database

4.3 World Dynamics Data Service

4.3.1 Definition

Given that the world can be defined as a collection of interrelated objects, we
hypothesize that world dynamics are the following:

• An agent’s behavioral rules and related expected states (nominal and
degraded) in given circumstances

• Defended systems and other world objects’ behavioral rules and related
expected states (nominal and degraded) in given circumstances

They can be measured in the following four manners, summarized in Table 2:

• A measure of how the world changes given its own event parameters (state
changes, actions, events); the world includes agents, defended systems,
those systems’ environment and connections, and the threats on agents, the
defended systems, and their environments.

• A measure of how the world changes given agents’ event parameters (state
changes, actions).

• A measure of how agents change given events in the world.

37

• A measure of how agents change given their own event parameters (state
changes, actions).

Table 2 Measuring the world dynamics data

Factors of change

Changing object

World’s events Agents’ events

World as a whole 1 2

Agents and agent cohort 3 4

Those laws of world’s dynamics can be computed out of the following data:

• States of reference (nominal and degraded) descriptors for agents, systems,
environments, and threats

• Agents and world entities’ events and actions descriptors

• Agents’ and world entities’ initial and final state descriptors

The world dynamics data service computes state transition patterns. Confidence
estimators are associated with state transition patterns. State transition patterns and
confidence estimators can be applied to identified initial states of world entities or
agents to predict their likely end states.

4.3.2 Inputs

We hypothesize that the world dynamics data service requires the following classes
of data as input:

• Data from the world model data service

• Data about cyber-threat dynamics:

o Patterns of behavior of malware

o {cyber threat; targeted world entities and topologies}

o {cyberattack patterns; expected defense responses}

o {initial state; end state} and their factors

o Circumstances/context of cyber threats

• Data about defended systems and cyber-defense dynamics:

o Monitored and surrounding system(s)

38

 Patterns of behavior of world events

 {world events; expected world retroaction}

 {world’s initial state; world’s end state} and their factors

 Circumstances/context of world changes

o Agent itself and other friendly agents inside/outside agent’s cohort

 Patterns of behavior of agent events

 {agent events; expected agent retroaction}

 {agent’s initial state; agent’s end state} and their factors

 Circumstances/context of agent changes

o Incident response mechanisms (IRM) dynamics

 Patterns of behavior of IRM events

 {IRM events; expected IRM retroaction}

 {IRM’s initial state; IRM’s end state} and their factors

 Circumstances/context of IRM changes

4.3.3 Process

There are two possible ways to compute world state transition patterns and
associated confidence estimators out of input data:

• Data are processed live by the world dynamics data service.

• Data are uploaded into the world dynamics data service’s database from
externally provided records.

4.3.4 Outputs

The world dynamics data service computes state transition patterns and associated
confidence estimators.

4.3.5 Current Issues and Lines of Research

The complexity of the world (and even of the agent, as it is internally dynamic and
adjusts to the world’s changes) poses computational challenges. The second kind
of technical challenges is related to the memory size and computation power
required to compute state transition patterns. The third challenge is associated with
using state transition patterns and their confidence estimators.

39

Part B. Discussion of the Architecture’s Main Functions

40

5. Sensing and World State Identification

Authors: Martin Drašar, Mauno Pihelgas, Markus Kont, and Benoît Leblanc

5.1 Overview

To interact with the world, the agent has to perceive and understand itself and its
surroundings. This is accomplished by two functional components of the AICARA:
Sensing and World State Identification:

• The Sensing function provides the agent with data about itself and its
environment.

• The World State Identification function interprets the collected data as the
following:

o The current state of the world and of the agent itself

o Changes in this context since last observations were made

o Adversarial or suspicious events

o Anomalies in collected data

The Sensing function addresses the question “What do I observe?” and the World
State Identification addresses the question “What is the situation?”. Their combined
actions participate to agent’s situational awareness.

5.2 Sensing

The Sensing function (Fig. 9) can contain a number of subsystems:

• Self: Collects data about the agent’s memory and functions to ensure the
agent’s integrity.

• System: Collects data about the defended system’s resources like memory,
file system, and so on. It also monitors results of actions performed by the
agent. It can either be part of a monolithic agent or function as a separate
module that feeds the agent data.

• Environment: Used for monitoring data coming from outside the agent.
Can either be part of a monolithic agent or function as a separate module
that feeds the agent data.

41

• For the sensory data to be useful to the rest of the system, they should be
properly normalized, correlated, fused, and deduplicated, so that only
unique and relevant bits are passed on.

Fig. 9 Sensing component

The dataflow of the Sensing system includes the following traits:

• Sensing is the function responsible for gathering and processing data from
both external and internal sources.

• To ensure continued operation, the Sensing function monitors its internal
health by collecting runtime statistics and checking their integrity.

• Furthermore, the input modules of the Sensing function fulfil the typical
roles of system and network monitoring tools. The Sensing function collects
logs and metrics from the other internal systems of the agent, the underlying
host system (i.e., the OS), and relevant applications running on the host.
Sensing is also capable of capturing network traffic from the host network
interfaces. Alternatively, in the case of a centralized agent, it is possible to
capture traffic from a dedicated test access point (TAP) device or
monitoring port.

• The data from the input modules always go through the input sanitation
(normalization, correlation, fusion, and deduplication) process, which
ensures that the data can be processed by other functions of the agent. This
also applies to data received from other agents and C2, because the
adversary may try to inject malicious or garbage data into the agent.

42

• The Sensing function passes its data on to the World State Identification
function.

• The Sensing function can also deal with the communication component to
be able to ask question or discuss what is observed with other agents, cyber
C2 or humans, via a secure channel.

It should be noted that when agent’s stealth is a concern, all Sensing operations
should be done on-demand. Unlike in the physical world, it is nearly impossible
(excluding specific side channels) for an agent to do a truly passive reading of a
sensor, because the system calls needed may by intercepted by an adversarial agent.
It should also be noted that by applying this policy an agent can severe itself from
any external orders, which may substantially diminish its usability,

5.3 Current World State Identification

The World State Identification component (Fig. 10) processes data given from
sensing to assess the state the world is in with respect to the world model. It consists
of up to four processes:

• Environment identification: Based on the sensing data and the knowledge
of expected world state, it identifies the environment the agent is running
on. This process is mostly needed to distinguish running inside a virtual
machine or inside a debugger to limit the adversary’s ability to reverse
engineer the agent.

• Friend or foe identification: Used mainly for identification and tagging of
processes and files on the system. It is a prerequisite for offensive and
defensive actions against adversaries as well as correct strategy planning.

• Anomaly identification: Used for detecting anomalies in data from the
Sensing function. The baseline for anomaly identification is encoded into
the world state. The detection can be rule- or pattern-based, or based on
behavioral detection.

• World State Update: Transforms sensor data and data from environment
identification and friend/foe identification into a world model and world
dynamics update.

43

Fig. 10 World State Identification component

The dataflow of the full-featured system includes the following:

• Updates on self and environment changes are received from the Sensing
function.

• The world model database, the current state and history database and the
world dynamics database are queried to have a baseline for sensing data
processing.

• The environment identification component assesses any changes in the
agent’s environment.

• The friend/foe identification component identifies any potential adversaries
and produces IoCs.

• The anomaly detection component estimates potentially anomalous
behavior in sensing data and produces IoCs.

• Findings from the previous three components are combined with input
sensing data and transformed to a world state update. This update is
propagated to a world state database.

44

5.4 Anticipation of the Future World State

This section deals with world state anticipation. This is based on the knowledge of
the actual state of the world and the knowledge of the laws of a regular behavior.

A world model is an abstraction of reality that provides a semantic meaning to
perceived data. Its actual representation is strongly dependent on the
implementation of the agent. In the optimal case, an agent is using data services to
process, store, and employ sensory information transformed into the world model
and world dynamics knowledge. These data services conform to the general
description provided in Section 4 and are built with their own sets of constraints,
which dictate their structure and capabilities.

In this section, we present a set of recommendations for a minimalistic world model
and world dynamics structures, which are required for successful operation of an
in-vehicle AICA. Given the large amount of data the agent could be processing and
the number of different states the agent could be in, the following should be
satisfied:

• The model should use features based on the properties of the machines and
network, which are normal during non-anomalous operation. Provided that
most Army systems have precisely defined operation parameters,
establishing a model as a baseline should be attainable.

• The model should encode explicit IoCs.

• The goals of the agent should be expressible as a function of a world state.

• Both the current state and world dynamics are also highly dependent on the
agent’s implementation and the design decisions for the model.
Nevertheless, given the expected operational parameters of the agent, we
suggest that the model used for the world and the current state should
contain the components listed in Table 3. The world dynamics knowledge
should be computed on the fly from the world model and the current state
and history.

45

Table 3 Components of the world and current state and history models

Component Model Description

Flow database Current state and history
Record of network flows, which can be
augmented by full traffic traces where allowed
by space constraints.

Log stash Current state and history
Collection of system and application logs,
preferably in a unified form suited for quick
searching and analysis.

System metrics Current state and history Performance and operation characteristics of an
agent and the system it is running on.

Whitelists World model
Policies and baselines of normal behavior
derived beforehand from the knowledge of the
agent’s environment.

Entity description World model
Current state and history

Both the description of entities in the agent’s
proximity and their current operational status as
viewed by an agent (e.g., probability of
compromise).

5.5 Use Case

To illustrate possible relations among the Sensing function, World State
Identification function, and world state, we present a scenario where an AICA is
deployed in a vehicle. In this scenario, malicious code was inserted during
maintenance to the VMS and manifests on the battlefield, propagating to the BMS
and then to the COMMS.

The use case timeline and events are as follow:

1) The VMS gets infected during maintenance.

o Sensing (S): No information.

o World state identification (I): No information.

o World state (W): No change.

2) Malware activates and attempts to infiltrate the BMS.

o S: Detected connection between the VMS and BMS.

o I: Identified an anomalous connection and produced an IoC.

o W: Updated with the IoC; the VMS and BMS are flagged as
anomalously acting systems with potential to compromise.

46

3) BMS successfully compromised.

o S: The BMS supervising process identifies an integrity violation and
logs the information.

o I: Logged information is transformed into an IoC.

o W: Updated with the IoC; the BMS is flagged as a potentially
compromised system with higher confidence.

4) Malware attempts to infiltrate COMMS.

o S: Detected connection between the VMS and COMMS.

o I: Identified an anomalous connection and produced an IoC.

o W: Updated with the IoC; the VMS, and COMMS are flagged as
anomalously acting systems with potential to compromise, the VMS
with higher confidence.

5) COMMS successfully compromised.

o S: No information.

o I: No information.

o W: No change.

6) The VMS is functionally affected.

o S: Detected anomalies in vehicle responses.

o I: Anomaly report is converted into an IoC.

o W: Updated with the IoC; the VMS is flagged as compromised with
the highest probability.

47

6. Planning and Action Selection

Authors: Benoît LeBlanc and Krzysztof Rzadca

6.1 Overview

We propose to decompose the part of the decision-making process that decides the
actions to be performed into two components: the Planning function and Action
Selection function.

The goal of Planning is to create a set of possible plans of actions that lead from
the current world state to some interested future world states. As a new plan is
computed, Planning sends it to Action Selection, in a semi-continuous process.
Then, the Planning function continues to compute alternative plans and proposes
them, one by one. Some of them are real new plans, some others are just new
versions or adaptations of previous plans. Finally, it answers the question: “What
could be done?”

The Action Selection receives continuously proposed plans of actions leading to
some future world states of interest. Because of enemy actions or the world
dynamics, there might be multiple future world states stemming from a single
action in the first step. Aware of the goals of the agent, the Action Selection function
choses an action plan that leads to the most desirable future world states and then
sends it to the Action Execution component. Finally, Action Selection function
answers the question: “What must be done?”

Action Selection may ask Planning for a more precise or a fitter plan if needed.

Planning produces plans and Action Selection is able to negotiate details of these
plans in an iterative cycle between the two components. This is a major part of the
decision-making process and it eventually produces a “to do list” of actions.

6.2 Planning

The Planning function has access to a database representing a repertoire of actions:
a kind of a dictionary of all possible actions, including preconditions and
prerequisites for each action. Two functions are used by Planning to implement a
tree exploration. The first one is called function fa. It is in charge of proposing
actions. It maps the current world state (given by the world state identification
[WSI] component) to a set of feasible actions (i.e., a subset of the discussed
database). The second is called function fw. It maps a world state and an action to a
set of future world states (possibly with some information on the probability of
individual states) (Fig. 11).

48

Fig. 11 Planning component

Starting with the current state, Planning uses fa to produce a set of alternative
actions. For instance, and greatly simplifying the situation, if the current state given
by the WSI module is (vehicle engaged in combat; and a system file with changed
SHA-1 hash and previously unseen radio transmission detected), the result of fa, the
set of feasible actions might be {no action, shut down COMM radio Y, shut down
the entire computer system}.

Then, on each of these actions, Planning uses fw, leading to a future world state.
For instance, the previous world system state combined with the action “shut down
COMM radio Y” may lead to the world state (vehicle engaged in combat; a system
file with changed SHA-1 hash and weapon system Z malfunction). The process of
invoking fa and fw is continued, resulting in a tree; a leaf of this tree is a set of future
world states (or a probabilistic distribution over this set).

When a path in the tree is determinate, it leads to a transmission to the Action
Selection component of a plan such as “(#plan, (action, state), (action, state), etc.)”.

Functions fa and fw can be implemented by trained neural networks or rule-based
systems. Both should be precomputed and implemented in the system. Updates
could be done during the vehicle overhaul. If the agent has a Learning component
(see Section 9 about learning), then this function can be updated continuously based
on learning from experience.

Function fa is a service using the database “actions and effects”: receiving the world
state and returning a set of actions. Function fw is a service of world dynamics

49

knowledge, but we stress that fw must consider not only the internal evolution of
the world, but also the effects of a concrete action.

The Planning function’s algorithm effectively builds a complete search tree of the
future actions and world states, and we acknowledge that such a tree probably must
be pruned because of a possibly exponential search space.

An alternative to building a tree is to use a trained neural network directly. The
input to the network is the current world state; the network produces future world
states. Thus, the network implicitly implements fa and fw.

After all, given basic rules (such as “avoid RF propagation” or “keep the
initiative”), given criticality analysis of the assets, given a topology (which
facilitates circulation of information) and security architecture (which curbs
circulation of information), given resources that can be mobilized (such as a
sandbox, a file cleaning tool), and given possible enemy tactical movements (such
as expected expectations of the opponent), Planning combines consistency
preservation and combinations of resources to produce possible plans of actions.
Such plans are lists of proposed actions representing options of several sets of
things to do.

6.3 Action Selection

Based on the current world state, Action Selection decides whether the situation is
urgent, for instance, when the vehicle is engaged in combat. In the urgent decision-
making mode, one of the first action plans suggested by Planning is chosen;
otherwise, Action Selection may wait for a longer time for Planning to send more
actions plans.

The Action Selection function chooses an action plan based on how the predicted
future world states match with the goals of the mission. A goal can be expressed
through a function of the (future) world state, mapping the state into the degree this
particular goal is fulfilled. We acknowledge that there might be multiple goals and
that their relative importance might change depending on the current state of the
mission. For instance, one goal might be to maintain the information integrity of
the vehicle, another to keep the crew as safe as possible, and yet another to achieve
the mission’s principal, tactical objective.

The Action Selection (Fig. 12) works to propose a multicriteria analysis of proposed
plans of actions. Efficacy, rapidity, and assumed risks are the main criteria that must
be considered. Policies, expressed in term of rules or goals, lead the choice of
actions.

50

Fig. 12 Action Selection component

The Action Selection component picks an action plan and then sends it to execution,
beginning with the first action of the plan. Action Selection expects that, in the
future, Planning will send an updated action plan, taking into account the chosen
action and the actual change observed in the world state. Action Selection must
inform Planning that it has chosen an action and sent it for execution. As the world
state is then no longer valid, Planning should stop generating new action plans.

We assume that Action Selection can provide its analysis plan to Planning, for
clarification, refinement, or modification of its own work. This does not lead to an
infinite loop; it just envisages the case in which a complement is needed.

An alternative design is that Action Selection chooses a plan, and then sends
autonomously the actions to be executed, without consulting Planning (or
alternatively it can interrupt a plan with another unrelated plan, proposed in the
future by Planning). However, this solution does not allow for refinement of a plan
by Planning: for instance, an action might lead to three different world states; when
the Action Execution component has executed an action, Planning can refine the
plan based on the actual observed new world state.

6.4 Example

We present here an example of the operation of the Planning and Action Selection
functions in the context of a military vehicle in which several machines are
connected by an internal network. We consider three different situations.

51

6.4.1 A Common Cyberattack

Here a common cyberattack is defined as a known attack that, with high probability,
would not lead to negative effects. For instance, it is an attack that tries to use a
known bug that is patched in the version of the OS used by all the machines in the
vehicle. Furthermore, we assume that there is no time urgency—for instance, the
vehicle is parked at the base.

The world state catches the symptoms of the attack by the network sensors (e.g.,
flow of data or connection attempts to a certain port). The Planning function
constructs an action plan leading to a future world state in which the attack is
attributed. The plan starts with planting false information on the machine (e.g., the
first action is to create a mock-up password file and another is to create a file with
a name suggesting classified content). In a future world state, after creating a mock-
up password file, this password file is either accessed or not. If there is an access,
the next action is to generate more mock-up password files. If the file is ignored,
the next action is to generate a file that pretends to contain classified information.
However, the Planning function also proposes other action plans unrelated to the
current attack (such as proposing actions executing orders from the C2) or doing
nothing.

As the vehicle is parked, the goal of attributing the attack is the most important.
Thus, Action Selection choses the action “small mock-up information” and send it
to be executed (i.e., to generate a mock-up password file).

6.4.2 An Unexpected Cyberattack

An unexpected cyberattack is detected through its results, rather than by
intercepting the attack as it happens. For instance, a routine file system check may
detect a changed hash value of a system file. There might be also time urgency: the
vehicle might be engaged in active combat. As such a situation is a threat to the
integrity of the system, Planning and Action Selection must act quickly. The
Planning component suggests a short plan of, for example, restoring the changed
file from a backup; Action Selection chooses this action based on the goal of
maintaining integrity.

6.4.3 Cyber Exploration

If a vehicle is parked and the world state model does not detect an attack, AICA is
in a kind of “exercise situation”. Depending on what network is protected by AICA,
it will be possible or not to activate some deliberated actions and observe regular
results on agent and/or on environment. This use case is certainly inappropriate in
most part of military situations, but it could be considered in specific cases as an

52

intermediary mode between sandboxes and real-life activities. In this cyber-
exploration opportunity, the Planning and Action Selection components might use
the chance to provide new data for the learning module collected in real and
controlled situation. As the number of monitored characteristics of the world are
vast, one of the important goals of the system is to be able to automatically
distinguish a rare threat from a large number of normal, acceptable states. Similarly,
given a large number of possible actions (closing a communication port, restoring
a file, creating a file, etc.), the system must be able to learn the effects of the
intended consequences of actions (e.g., closing TCP port 12345 would shut down
the internal communication system XYZ).

During the cyber-exploration scenario, Planning would create action plans
consisting of steps of basic actions (close TCP port 12345, open TCP port 12345)
and observe their effects on the integrity of the vehicle.

53

7. Action Execution

Authors: Fabio De Gaspari, Luigi Mancini, and Agostino Panico

7.1 Purpose

The overall purpose of the Action Execution component is to execute the executable
response plan of actions that the Planning and Action Selection components have
chosen according to the mission goals and the situation. Action Execution works as
an actuator that provides the following functionalities: 1) action activation,
2) execution monitoring, 3) effects monitoring, and 4) execution adjustment. The
architecture overview of the Action Execution component is shown in Fig. 13. The
Action Execution component has administrative privileges to execute the actions,
and it should be able to perform all the actions required to accomplish the typical
tasks of a system administrator, including the security analysis of the system. To
guarantee complete execution of the actions, the Action Execution component
should run only atomic actions, either all the operations are completed or nothing
occurs. To this end protocols such as OpenC2 (OpenC2 Forum 2015), the de-facto
standard for C2 functions, can be used by the agent to communicate actions to the
actuators.

Fig. 13 Overview of the Action Execution functionalities

54

The Action Execution component is also connected with two other components:
Sensing and World State Identification and Learning. As an actuator, the Action
Execution component executes actions that produce valuable data that can be
sensed by Sensing and World State Identification. Consider for instance the
scenario when Sensing and World State Identification detects an anomalous
situation and requires the execution of a customized antivirus function to perform
a detailed verification of the current anomalous behavior of the system. In this case,
Action Execution should be able to run a customized antivirus functionality, which
will generate data that can allow the Sensing and World State Identification
component to identify risky current world state patterns. In addition, the Action
Execution component continuously updates the internal rules and conditions with
the feedback provided by the Learning component.

In the following sections, we describe the scope and conditions for each of the
functionalities of the Action Execution component.

7.1.1 Action Activation

Action activation takes as input an executable response plan from Planning and
Action Selection component and environment’s technical configuration and then
proceeds with the execution of the planned actions according to the scheduled
order. This function outputs the response of the execution, which can be a message
that confirms the successful execution or provides some details about the reason
why the operation failed (e.g., if an action “Delete a file” fails, then the agent should
provide to other agents some details like “The file cannot be deleted. The requested
file does not exist.” or “The file cannot be deleted. The requested file is protected.”).
In order to guarantee a secure execution of the actions, the action activation
function should have the capability to perform five main types of actions: 1) device
system administration, 2) customize the antivirus function, 3) integrity check,
4) active defense actions, and 5) legitimate service proxy.

7.1.2 Device System Administration

Device system administration deals with normal system operations, incident
handling, and root cause analysis (RCA). Overall, device system administration
includes a set of actions that can be summarized as follows:

• Install/remove software application

• Software update

• Registry modification

• User management

55

• Log access

• Baseline creation and periodic check sent to sensors

Based on the feedback that derives from the Learning component, device system
administration should be able to dynamically integrate new rules for each of the
aforementioned set of actions.

7.1.3 Antivirus Function

The Action Execution component should cover the antivirus function. This means
that this component should be able to behave as an antivirus software, perform
analysis, and not impact system functionality. For instance, this function should be
able to execute the action “perform a full scan”. The antivirus actions that the
actuator should perform are the following:

• Executable analysis

• Complete device scan

• Basic malware analysis heuristics

The deployment of this set of actions in the actuator aims to enable the antivirus
functionality of the machine and reduce the installation of antivirus software on the
device itself. This means that when the device does not use an endpoint protection
solution, the agent should be still able to guarantee the defense of the device.
However, in the case when the device uses an endpoint protection solution, then
the agent should be able to communicate and interact with this solution to take the
necessary steps to quarantine, delete, or report the infected items. In this case, the
antivirus function serves as a sensing function.

7.1.4 Integrity Check

Integrity check function evaluates the changes of the machine’s state by
periodically checking the stability and integrity of critical files that must not be
changed without proper authorization. Depending on the configuration of the
integrity check and the need of the action selection, the Action Execution
component should check the integrity of the file system against both a whitelist and
a blacklist. Since the integrity check is an action, it should be executed by an
actuator, which then sends the data to the Sensing and World State Identification to
perform further analysis.

56

7.1.5 Active Defense Capabilities

Active defense is a popular defense technique based on systems that hinder an
attacker’s progress by design, rather than reactively responding to an attack only
after its detection. Since the goal of active defense systems is to reduce the risk of
a compromised system, in some cases, active defense can be used as a measure
against lateral movements. Note that the purpose of active defense is not to defend
or prevent the attacker from performing some actions. Instead, its goal is to slow
the attacker down and allow optimal operation of the traditional defense systems.
To this end, active defense tools can be integrated with preexisting security
information and event management (SIEM) systems. This feedback allows
response teams, or the autonomous agent in our case, to refine detection criteria for
traditional security systems, as well as provides useful intelligence on how to react
to the ongoing attack.

The Action Execution component should be able to implement active defense
capabilities to have the ability to perform annoyance, attribution, and, under some
circumstances, even attack. The range of active defense actions can be described as
follows:

• Port remapping

• Fake files

• Fake services and network port

• Fake web services

• Fake supervisory control and data acquisition (SCADA) services

• Attribution capabilities

• Building a covert communication channel

The deployment of this set of actions enables a machine to act and react to the
actions of an attacker, or an abnormal behavior of a legitimate user, by slowing the
adversary down with annoyance and attribution, and eventually, attack.

7.1.6 Legitimate Services Proxy

The legitimate services proxy should be implemented according to the active
defense capabilities of Action Execution and should be able to proxy any legitimate
service of the host machine. The idea of legitimate services proxy is to use the
actuator as a frontend interface toward the external environment, and then perform
a security analysis of the incoming and outgoing traffic through the proxy. To
support flexible active defense strategies, every legitimate port of the host machine

57

should be bound to a port of the actuator, so that such port could be redirected to
another port according to the active defense objectives. In other words, the proxy
function should be able to expose a legitimate service to a nonstandard port without
modifying the host machine.

7.1.7 Execution Monitoring

Execution monitoring function aims to observe the real-time execution of action
activation. This function should be able to check the execution traces triggered by
a given input and should have prior knowledge regarding the expected legitimate
state of the software running during Action Execution. For instance, execution
monitoring can trace logical statements (invariants) to identify properties of a
running software, which can be helpful to check the legitimate execution traces.

Execution tracing is also important to identify the cases when the task action
activation is not completed successfully. In this case, execution monitoring will
activate execution adjustment to adjust the action implementation.

7.1.8 Effects Monitoring

Effects monitoring function should be able to monitor the environmental changes
caused as result of Action Execution. In particular, effects monitoring should
monitor data, access control, and the integrity of the components that are expected
to be effected from Action Execution. Note that some of these functionalities also
be covered also by the Sensing and World State Identification component.
However, the effects monitoring aims to monitor only the effects of Action
Execution and provide a very detailed analysis of particular software components,
which may not be always detected by the general execution of Sensing and World
State Identification for the entire system.

7.1.9 Execution Adjustment

Execution adjustment should be able to handle the cases when the execution of a
plan of actions produces security-critical effects. In this case, this function should
have the ability to adjust the action implementation to the environmental setting.
When the adjustment is not possible (e.g., due to technical or security reasons),
execution adjustment function will trigger the Collaboration and Negotiation
component in order to interact with other agents, C2, or human operators for
agreeing on changing the plan of actions.

58

7.2 Use Cases

In this section, we discuss some use cases, providing concrete examples of how the
Action Execution component works in realistic scenarios.

7.2.1 Anomalous Behavior of a Military Vehicle

This attack scenario (Fig. 14) considers a compromised device that tries to probe
the environment for information gathering. This behavior can result in detection by
a number of active defense tools, providing early indication of compromise. For
instance, the compromised device might interact with fake services exposed by
another component or might access fake files triggering immediate detection. Upon
detection, neighbor agents react based on the intelligence provided, deploying
appropriate active defense tools and reconfiguring classic security tools based on
the behavior of the compromised component. For example, the neighbor agents can
remap service ports or launch new fake services that are interesting for the attacker
in order to profile them. At the same time, the neighbor agents perform a scan on
their local file system to check for suspicious executables and share the findings
among themselves to build a real-time IoC. This operation involves a set of actions
that should be executed on the infected device with administrator privileges and
aims to restore the infected machine back to the normal state.

Fig. 14 Anomalous behavior of a military vehicle scenario

59

With active defense capabilities, agents are able to perform early compromise
detection based on abnormal behavior, reducing the risk of being persistently
compromised by the attacker. Furthermore, deception techniques slow down
ongoing attacks, providing the agent with time to understand the attacker’s goal and
devise a defense strategy.

7.2.2 Battle Management System, Vehicle Management System, and
Communication System Compromised

In this scenario (Fig. 15), an agent that detects a compromised component creates
a covert channel with other noncompromised agents, allowing them to
communicate without being detected by the compromised devices. The goal of this
communication is to alert the other agents of the network not to trust the data that
are coming from the compromised vehicle, avoid the transmission of sensitive data
to such vehicle, and agree on a plan to recover the compromised devices.
Noncompromised agents can also use the covert channel to define a service
remapping strategy and potentially which fake services to expose in their stead, as
well as start a general integrity check to verify that no other systems are
compromised.

Fig. 15 BMS, VMS, and COMMS compromised scenario

60

8. Collaboration and Negotiation

Authors: Edlira Dushku and Luigi V Mancini

8.1 Overall Purpose

Battlefield operations are characterized by an unreliable communications
infrastructure, limited network coverage and also the presence of enemy forces that
intend to compromise these operations. Considering these limitations, an intelligent
agent that operates in a battlefield environment should be able to plan its own
actions and possibly perform them in an autonomous way. However, under some
conditions, a group of autonomous intelligent agents may need to collectively
decide a joint plan of actions that solves a set of common goals. In this context, the
collaborative agent model emerges as an effective approach that allows
autonomous agents to collaborate and negotiate among themselves to accomplish
their mission-critical goals and confront adversarial actions.

In the collaborative model of AICA, an agent can individually perform one or
multiple tasks and also choose to cooperate with other agents to perform
coordinated actions. Different from multiagent systems that aim to solve problems
that are difficult or impossible for an individual agent to solve, in the collaborative
agent system of AICA, each individual agent should be able to solve the problem
autonomously and only start to collaborate with other agents to extend the
individual capacities of World State Identification, Planning, or Action Selection.
In general, the interoperation between autonomous intelligent agents in AICA
intends to improve the active defense capabilities of the contested battlefields by
enabling a collaborative decision-making process and improving the goal execution
capabilities of individual agents.

Agent interoperability in AICA is enabled by the Collaboration and Negotiation
component, which coordinates the interactions agent‒agent, agent‒C2, and agent‒
human. In AICA, the Collaboration and Negotiation component can be initialized
by one of the following components: World State Identification, Planning, or
Action Selection. Overall, the Collaboration and Negotiation component consists
of three functions:

1) Collaboration: The collaboration function allows an individual agent A to
interact with other agents (or C2 or human operators) to make agent A’s
plan of actions more effective or solve a task that is beyond agent A’s
capabilities. The sensitive information that agent A perceives about the
world state should remain local. The agents involved in a collaboration

61

process should be able to exchange only the relevant information that is
required for the collaboration.

2) Negotiation: The goal of the negotiation is to reach an agreement within a
set of agents regarding a goal or a plan execution. During the negotiating
process, agents agree on performing some tasks that are beyond the
capabilities of the individual agents of the friendly forces. Most importantly,
the agents agree on coordinating their plan of actions to reach a common
goal.

3) Agreement: The agreement defines the conditions that the agents agreed
during the negotiation procedure. The agreement first registers the plan of
actions that the agents agreed during the negotiation and then returns a
response to the AICA components that triggered the initialization of the
Collaboration and Negotiation component about an updated action that
should be executed.

8.2 Architecture of the Collaboration and Negotiation
Component

The Collaboration and Negotiation function (Fig. 16) in the agent’s structure
should provide these fundamental services: 1) agent inquiry and discovery, 2) name
discovery, 3) authentication, and 4) service and capacity discovery (SCD).

Fig. 16 Architecture overview of the Collaboration and Negotiation component

62

8.2.1 Agent Inquiry and Discovery

Agent inquiry and discovery is a procedure that allows an agent to be discovered
by friendly forces. When a new agent joins the network, its presence can be detected
by other agents and they can start collaborating. To guarantee a stealth
communication in under-attack situations, agent inquiry and discovery should
allow agents to enable a covert channel communication among themselves. In this
case, the data conveyed by the covert channel should be encrypted to prevent
revealing of secret or sensitive information to unauthorized entities. Optionally,
under high-risk conditions, an agent can use this service to make a choice whether
to be discoverable in the network or not. Likewise, when severe attacks are detected
on the battlefield, the C2 unit can call this service to make agents undiscoverable
from other agents.

8.2.2 Name Discovery

A procedure for retrieving the name of a connectable agent. Friendly forces should
share a common name taxonomy and should have some pre-shared cryptographic
keys. The name of the agent should be connected to some configurations that agents
know about each other. The agent process should be resilient to a Sybil attack. The
agents that participate in the decision-making process should have the identity of
the friendly forces. The enemy should not be able to influence the common goals.

8.2.3 Authentication

The collaboration function must enforce the authentication of the agents and protect
the confidentiality and the integrity of the communications between agents by
supporting standards such as AES-256, TCG Opal, and so on. The authentication
procedure should comprise the required security mechanisms that should be applied
when an agent initiates a collaboration request to a remote agent and when an agent
receives a service collaboration from a remote agent.

The trust establishment process is a prerequisite of the authentication procedure.

8.2.4 Service and Capacity Discovery

SCD involves a set of procedures for querying and browsing the services offered
by or through another agent. SCD does not define methods for accessing services;
once services are discovered with SCD, they can be accessed in various ways,
depending upon the service. After communication between two agents is
established, they start exchanging information and computation. They also declare
their capacities (memory, storage, CPU), which is very important in the later
decision of allocating tasks to other agents.

63

The negotiation function provides the negotiate service, which returns as output
1) accept, 2) reject, and 3) propose. The agreement function consists of two
services: 1) register terms of agreement and 2) update plan.

8.2.5 Collaborative Planning

Each agent has planning capabilities and can autonomously execute its local plan.
An agent can extend its own capabilities by interacting with other agents to
collaboratively construct a joint plan to accomplish their common mission goals.

When there is a new task/goal that the agent should achieve, the agent can choose
to do the following:

1) Fulfill the task autonomously. In this case, the agent does not communicate
with other agents and does not influence the goals of the other agents.

2) Distribute information about the task among the agents to reach a common
plan of actions. This case requires several interactions among agents until
they reach a common plan of actions. Since agents differ in capabilities and
knowledge, they have different views regarding the task that should be
fulfilled. During the interoperation, the data that an agent make accessible
to other agents should present only the relevant information that is required
for the collaborative planning and should not reveal sensitive information
of the agent. This is important because an adversary, which could take
control over an agent, should not be able to gain access to the sensitive
information of other agents.

8.2.6 Communication Protocols

Agents can exchange information by using the following application protocols:

1) client-server:
Simple Object Access Protocol (SOAP), Restful HTTP/Constrained
Application Protocol (COAP)

2) publish-subscribe
Message Queuing Telemetry Transport (MQTT), Advanced Message
Queuing Protocol (AMQP), Requested Power To Send (RPTS)

Agents should use protocols that guarantee the confidentiality and integrity of
communications, for example, the basic security protocols such as Transport Layer
Security (TLS)/Datagram Transport Layer Security (DTLS).

64

8.3 Collaboration Process

The Collaboration and Negotiation component allows an agent to discover other
agents in the network and start to collaborate with them. Figure 17 captures the
process flow of the activities in the Collaboration and Negotiation component
while interacting with the Planning component.

Fig. 17 Process flow in the Collaboration and Negotiation component

The process start with an agent that discovers other agents in the network. The
collaboration between agents starts with a P2P authentication process. After the
authentication, neighboring agents interrogate among each other about the services
and the capacities that they offer. Each agents saves in a storage all the information
related to the other agents, as shown in step 1 in Fig. 17.

The negotiation among agents is instantiated by the Planning component. When
the planned action is a complex task that requires more resource capacities than the
autonomous agent can handle or the planned action affects the common plan of
actions, then the planning unit decides to negotiate the plan of actions with other
agents (step 2). The negotiation unit retrieves all the agents’ information from the
database (step 3) and then, based on the services and the resources that each agent
offers, the negotiation unit requests the agent that satisfy the requirements of the
planned action that should be executed (step 4). Obviously, reasoning which agents
can work on a planned action is a crucial factor for an effective collaboration among
autonomous agents.

65

After sending the negotiation requests to some agents, the negotiation unit handles
the responses that come from these agents (step 5) and then forwards them to the
planning unit (step 6) for elaborating the next step of the plan execution.

8.4 Use Cases

1) An Agent A coordinates with C2:

a) Agent A detects a condition where C2’s decision is needed (e.g.,
Application X1 in the sandbox behaves suspiciously).

b) Agent A sends a question to C2 (e.g., should I delete/kill application
X1? Or else?).

c) C2 may reply or not.

i) If C2 sends an authenticated reply to the agent, then Agent A
performs the following steps:

1) The agent receives the command sent from C2 (e.g., uninstall
the application).

2) The agent checks the feasibility of the execution (e.g., checks
for permissions).

3) The agent responds to C2 (e.g., “will do” or “cannot do, explain
why”).

4) If “will do”, Agent A generates plan and executes the plan (e.g.,
agent has to make a plan that checking all the dependencies, if
there are some necessary services that are critical to be deleted,
generate concealment plan).

5) The agent sends the resulting state to C2 (e.g., respond “success”
or “action failed, explain why”).

ii) If C2 does not give a response, then Agent A performs a local
decision (e.g., agent decides what to do).

The flowchart of the interactions between Agent A and C2 is depicted in Fig. 18.

66

Fig. 18 Flowchart of interaction Agent‒C2

2) Agent A collaborates with other agents:

a) An agent communicates with other agents to improve the common plan
of actions. For instance, if an Agent A identifies a malicious behavior,
Agent A notifies other agents and agree on changing their individual
plans.

i) Agent A identifies anomalous traffic caused from a malicious service
S1.

ii) Agent A detects the presence of Agent B nearby.

67

iii) Agents A and B establish communication and authentication,
and declare services.

iv) Agent A notice that Agent B provides the same service S1.

v) Agent A notifies Agent B about the risk.

vi) Agent B gets the alert from Agent A.

vii) Agent B may perform one of the following actions:

1) Agrees to kill immediately service S1 that is running on the
machine and evaluates again its local plan of actions
considering the non-availability of S1.

2) Completes the execution of the current plan and then kills
S1.

3) Agrees to kill S1 if Agent A accepts to perform one of the
action plan that Agent B must do.

4) Ignores the alert sent from A and continues its local plan.

b) In a similar way as the scenario explained previously, Agent A
communicates with other agents to extend its local capacities in
executing its individual plan of actions. For example, if a task needs
to be executed and the resources are beyond the capacities of a single
agent, then the task can be scaled to a group of agents:

i) Agent A realizes that the execution of an action X2 is taking a
lot of time.

ii) Agent A detects the presence of Agent B nearby.

iii) Agents A and B establish communication and authentication,
and declare services and capacities.

iv) Agent A notice that Agent B has the required capacities to
perform the same action as A is running.

v) Agent A requests the Agent B to perform the action X2.

vi) Agent B gets the request from Agent A.

vii) Agent B may perform one of the following actions:

1) Agrees to immediately run X2.

68

2) Completes the execution of the current plan and then
executes X2.

3) Rejects the request.

8.5 Conclusions

We presented the collaborative model of AICA and summarized the main
properties of the Collaboration and Negotiation component. We emphasize that
each AICA should be able to perform their individual plan of actions autonomously
and only start to collaborate with other agents to extend their individual capabilities
and improve the common plan of actions. The current version of the AICARA
describes the functionality of the collaboration component, while the future work
will focus on providing details of the operation of the negotiation component and
elaborating the functionality of agreement for the communication among many
autonomous agents.

Furthermore, the future works includes designing a secure collaborative model of
AICARA. In particular, a trusted collaboration between autonomous intelligent
agents will require further discussion regarding trust establishment between
autonomous agents in battlefields. In this context, it is crucial to exploit the key
management protocols and trustworthy information delivery in other domains to
gain insight into the most relevant pre-shared key schemes that are suitable for
heterogeneous battlefield environments, as well as communication protocols that
could assure the confidentiality and integrity of the exchanged messages.

69

9. Learning

Authors: Alexander Kott and Alessandro Guarino

The environment in which an agent operates can change rapidly, especially (but not
exclusively) due to enemy action. In addition, the enemy malware, its
capabilities, and TTPs could evolve rapidly. Therefore, the agent must be capable
of autonomous learning that could help it adapt to a changing environment and
enemy. Numerous approaches to learning and purposes of learning are possible. In
this section, we offer merely a few illustrative, highly simplified sketches of how
the agent’s learning could be implemented and for what purposes learning might
be used. The discussion here is heavily influenced by the concepts of
Reinforcement Learning (RL; Sutton et al. 1998) and Partially Observable Markov
Decision Process (POMDP) formalism, but is arranged so that the reader does not
need to be familiar with RL or POMDP.

The reasoning capabilities (such as planning, prediction of effects, state
identification, etc.) of the agent rely on its knowledge (which could include various
models such as world state model, etc.). The purpose of the learning function(s) is
to modify the knowledge of the agent in a way that enhances the success of the
agent’s actions. The success of an agent, or in other words its level of performance,
will be measured as the distance from the goal, in some sense. This of course
implies close collaboration with the WSI function and access to the world state,
world dynamics, and goals databases.

The agent learns from its experiences. These experiences could be acquired when
the agent engages in an actual confrontation with the enemy malware, or in
exercises or simulations where the agent performs against a threat in a simulated or
cyber-range environment. It is conceivable that full-fledged AICAs will need to
undergo a substantial period of “training” before being deployed. This necessity
implies a huge challenge to be met before employing them: the building and
maintaining of appropriate testing and simulation platform and—probably most
importantly—the standardization of the training procedures. Since the AICA that
will emerge from the training period with new knowledge is different from the one
that entered it, we need new ways to certify and validate them.

A general cycle of agent learning from its experiences is the following:

• The agent has a knowledge.

• The agent uses the knowledge to perform actions and also makes
observations (receives percepts). The ensemble of actions and observations
constitute the agent’s experience.

70

• The agent uses this experience to learn the desirable modifications to the
knowledge.

• The agent modifies the knowledge.

• Repeat.

Many different types of resulting knowledge could be obtained. The agent may
learn the world dynamics model (Sections 4 and 6), the mapping of sensed percepts
to states (Section 5), or predictions of results of planned actions (Section 6), and so
on. For the purposes of further discussion on this section, we focus on how AICA
can learn recommendation(s) of a suitable action(s) (i.e., a plan, possibly as a
function of state, or of a sequence of prior actions and observations, regardless of
prior sequence). This knowledge too could be used in the processes discussed in
Section 6.

Connected to those described previously, AICAs have the opportunity to learn such
information that could lead to altering the original world state goal. The opportunity
of designing AICAs with this capability, as well as the extent to which such a
capability should be allowed is an open question. This function looks like one of
the most appropriate parts of the AICARA in which to incorporate ethical and legal
guidelines.

In the following sections, we explore details and illustrative examples of this cycle
of learning from experience.

9.1 Representation of the Agent’s Experience

Let’s explore a simple sketch of how experience could be represented in AICA.

At any time t, the agent performs action a, which could be a NULL action (i.e.,
there was no action); and perceives percept e, which also could be NULL. Note that
generally it is impossible to obtain a percept without performing an action, even if
the action is as simple as reading data. If the percept e, in conjunction with any
prior information that the agent has, provides the agent with sufficient information
to determine the value of the state of the environment (i.e., the “goodness” of the
situation), then the agent may also be able to determine the value of the state V and
consequently evaluate the current distance from the desired goal. Otherwise, the
reward is NULL. (We return to the topic of reward later.)

Therefore, all the experiences of the agent can be represented with this sequence:

 (t1, a1, e1, V1) (t2, a2, NULL, NULL) (t3, NULL, e3, V3) … (tn, an, en, Vn).

71

Here t1 is the time when the agent starts to record an experience and tn is the
moment “now”.

To make the representation more compact and useful, we can divide it into shorter
chunks; the length of the chunk is implementation dependent. We call such a chunk
an episode. Episode Ej is a sequence of pairs {a1, ei}, and the resulting state value
Vj:

 Ej = ({ai, ei},Vj).

The following is an example of a short episode:

• a1 checks file system integrity.

• e1 finds unexpected file.

• a2 deletes file.

• e2 file gone.

• a3 NULL.

• e3 observes enemy C2 traffic.

• Value is (‒0.09).

Here is another example of an episode:

• a1 checks file system integrity.

• e1 finds unexpected file.

• a2 creates poisoned password file.

• e2 NULL.

• a3 NULL.

• e3 receives alert from node 237.

• Value is (‒0.57).

9.2 Approach Example 1: Case-Based Reasoning

In this approach (Fig. 19), the learning is largely implicit. The agent collects its
experiences in a collection of experiences and augments that collection by
determining values for those states, using a function called “state assessor”. When
the agent wants to determine a plan of action, it looks at its most recent actions and
matches them to the experiences. If a well-matching episode is found

72

in its experiences and the resulting value for that episode was sufficiently high, the
agent uses that episode as its plan for future actions. This and related classes of
approaches are studied in research areas such as case-based reasoning (Kolodner
2014), learning from demonstration (Abbeel and Ng 2004), and inverse
reinforcement learning (Argall et al. 2009). Here we offer a very simple sketch of
the idea.

Fig. 19 Approach example 1: case-based reasoning

Consider the following, highly simplified illustration. Suppose the agent most
recently took actions a13 and a76. The agent wants to formulate a plan of its next
actions. The agent wants to make sure that the value of the state that would result
from its future actions should be at least 0.75. The agent accesses its collection of
experiences and finds there the following episode: a13, a76, a06, a52, V = 0.83.
The first two actions of that episode match the most recent actions taken by the
agent. The resulting value is very good, higher than the 0.75. The agent, therefore,
takes the remaining actions of that episode as its plan: it will proceed to execute
actions a06 and a52.

Let us consider what, in this particular example, are inputs and outputs of the
learning module.

Inputs include the following:

• Actions (each with a timestamp) that are provided most likely by the Action
Execution module.

• Percepts (each with a timestamp), each of which is likely to be a change of
state, arriving from the state model database.

73

Outputs include the following:

• Updates to the collection of experiences, which serves here as the form of
knowledge. It can be made available to other modules, either directly or via
the mediation of data services.

• Episode and the associated reward provided to the Action Selection and
Planning modules.

Alternatively, if the agent has a separate Planning function that generates
plans, it can use its collection of experiences to predict the values of states that
would result from executing that plan. For example, again suppose the agent most
recently took actions a13 and a76. The Planning function proposed a plan to
execute actions a06 and a52.

The agent wants to know what will be the values of states resulting from executing
that plan. The agent accesses its collection of experiences and finds there the
following episode: a13, a76, a06, a52, V = 0.83. The episode matches its past
actions and the proposed future actions. Now the agent knows the value if the
proposed plan is executed: V= 0.83.

In this case, the inputs and outputs differ partially from the ones mentioned
previously.

Inputs include the following:

• Actions (each with a timestamp) that are provided most likely by the Action
Execution module.

• Percepts (each with a timestamp), each of which is likely to be a change of
state, arriving from the state model database.

• Plan provided by the Action Selection and Planning modules.

Outputs are the following:

• Updates to the collection of experiences, which serves as the primary
knowledge base (KB). It can be made available to other modules, either
directly or via the mediation of data services.

• Value of the state expected to result from the proposed plan, provided to the
Action Selection and Planning modules.

Let’s add a few words about the state assessor function. How could this function
determine value of a state V? Here is a very simple, illustrative (not really
workable) way to do this: let subject-matter experts assign each percept a number
that characterizes the degree to which the percept indicates the strength of

74

adversarial activity. Then, for each episode, add up such numbers. The sum would
constitute a negative “value”. Needless to say, other approaches are possible.

Of course, this highly simplified illustration eschews many critical details: we did
not mention anything about the percepts and states, and we did not discuss what to
do when the match is not perfect. Nevertheless, the gist of the approach should be
clear.

9.3 Approach Example 2: Deep Neural Network to Learn the
Reward for the Next Action

This approach is inspired by the successes of deep reinforcement learning such as
described in Mnih et al. (2013). Here our agent uses the collection of experiences
to train a neural network. The inputs are the actions and percepts for a number of
previous time points. The outputs are, for each possible action of the agent, the
value associated with taking that action as the next action. Once the neural network
is trained, it is used at each time point to determine the next action—the one with
highest value.

To explain what the neural network might look like, consider a highly simplified
example. Suppose, at any given time, the agent can take one of only three actions:
a1, a2, and a3. (In a practical implementation, there could be thousands of possible
actions.) At any given time, it can receive one of only four percepts: e1, e2,
e3, and e4. (In practical implementations, there could be thousands of possible
percepts.) In our neural network, we consider only two time points: the most recent
time an action was taken and the previous time point. (In a practical
implementation, multiple time points could be considered.) Figure 20 depicts the
neural network after it has been trained. At the most recent time, the agent has
performed action a2 and received percept e3. Right before that, it performed a3 and
perceived e1. These are the data that go into the input layer. The neural network
uses these inputs to produce the outputs: if the next action taken by the agent is a1,
the reward will 0.07, if the next action is a2, the value will be 0.023, and if the next
action is a3, the value will be 0.79. Naturally, the agent will select a3, the one with
the highest value.

75

Fig. 20 Neural network after it has been trained

The architecture of this approach is illustrated in Fig. 21.

Fig. 21 Approach example 2: deep neural network to learn the reward for the next action

76

Let us consider what, in this particular example, are the inputs and outputs of the
Learning module.

Inputs include the following:

• Actions (each with a timestamp) that are provided most likely by the Action
Execution module.

• Percepts (each with a timestamp), each of which is likely to be a change of
state, arriving from the state model database.

Outputs include the following:

• Updates to the weights of the neural net, which serve as the primary KB.

• The best next action and the associated value provided to the Action
Selection and Planning modules.

Note that Mnih et al. (2013) used a deep neural network as a component of a Q-
learning approach (Watkins and Dayan 1992). Indeed, Q-learning could be
appropriate in such problems as ours. It is extremely unlikely that a sufficiently
complete model (i.e., probabilities of state transitions given an action) can be
constructed for operations of a computer or a network of computers. Therefore, an
attractive option is to pursue some form of model-free reinforcement learning. This
could mean Q-learning, that is, action-value learning. On the other hand, there is
some evidence that for multistep agents or plans with complex time dependencies,
Q-learning may not train well. Alternatives might include policy optimizing
algorithms or variants of LSTM neural networks and their combinations.

9.4 Approach Example 3: Learning the Reward Function

In the classical approach to reinforcement learning the reward function is a given
input to the agent and is immutable. The reward function embodies in part the goals
and objectives for the agent; featuring the capability of learning a better one is a big
step toward complete autonomy. Of course, introducing such a capability comes
not only with an opportunity but with risks as well. The behavior of AICA gains a
degree of flexibility that could not be appropriate in all real-world use cases and
scenarios.

This approach is particularly useful in the training phase, where AICA has the
opportunity to learn a compact formulation of the experience, goal, and task to be
performed, in the form of a reward function that will be used during the mission. If
an adequate level of resources is available (computing power, memory…), this

77

approach could be usefully employed to model adversarial software agents against
which AICA is posed, for immediate use in combat or for later reporting.

This approach presents several challenges (see, for instance, Ng and Russell [2000])
but would be important for agents that operate in complex environments where the
optimal reward function is not easily formalized. One limitation to be considered is
that AICA may need a “teacher”, whether another agent or a human expert to show
examples of valuable behavior.

9.5 Always Learning?

One of the assumption of the reference architecture presented in this work is that
AICAs will possibly operate in an environment where limited computing resources
and capabilities are available. If this holds true, real-world AICAs could implement
a number of strategies in deploying the Learning function.

In the most extreme case, no learning at all happens during the actual mission and
AICA relies on preloaded databases, including mission-specific packages (e.g.,
including the topology and details of the networks to protect). In a second scenario,
the Learning functions are active but with no bearing on the agent’s actual behavior.
They are only used to gather information on enemy malware and attacks, if
encountered, for later or real-time reporting. In the third scenario, full Learning
capabilities are active in real time during the mission as well as in training and
databases and the agent’s own goals and policies are changing and responding to
the evolving environment.

78

10. Conclusions

Authors: Alexander Kott, Paul Théron, Benoît LeBlanc, Alessandro Guarino,
Martin Drašar, and Paul Losiewicz

There is a strong rationale for pursuing the development of intelligent autonomous
agents of the kind we describe in this report as AICA. In a conflict with a technically
sophisticated adversary, NATO military tactical networks will operate in a heavily
contested battlefield. Enemy software cyber agents—malware—will likely
infiltrate friendly networks and attack friendly C4ISR and computerized weapon
systems. Bonware—intelligent, autonomous agents specialized in cyber defense,
such as AICA—will be necessary to detect defeat the enemy malware.

The autonomy of AICAs, and the artificial intelligence underpinning their
autonomy, is a necessity. Due to the contested nature of the communications
environment (e.g., the adversary is jamming the communications or radio silence is
required to avoid detection by the adversary), communications between any
friendly battlefield asset, and other elements of the friendly force can be limited
and intermittent at best. Given the constraints on communications, conventional
centralized cyber defense is often infeasible. It is also unrealistic to expect that
human warfighters will be commonly available and able to perform cyber-defense
functions.

In general, today’s reliance on human cyber defenders will be untenable in the
future. The proliferation of intelligent agents is the emerging reality of warfare, and
they will form an ever-growing fraction of total military assets. The sheer quantity
of targetable friendly assets, the complexity and diversity of the overall network of
entities and events, the fast tempo of robotic-heavy battle, the difficulties of
centralized defense in a communications-contested environment, the relative
scarcity of human warfighters in highly dispersed operations, and the high cognitive
load imposed on them by activities other than cyber defense all make an intelligent,
autonomous cyber-defense agent a necessity on the battlefield of the future.

Illustrative scenarios, a few of which are discussed in this report, spell out the need
for specific capabilities and other requirements of AICAs. In particular, to highlight
just a few, AICAs will have to be capable of planning and executing complex multi-
step activities for defeating or degrading sophisticated adversary malware, with
anticipation and minimization of resulting side effects. It will be capable of
adversarial reasoning to conduct a dynamic, strategically minded battle of actions,
reactions, and counteractions against a thinking, adaptive malware. It will be able
to collaborate on planning and coordinating actions with friendly agents. Crucially,

79

AICAs will have to keep themselves and their actions as undetectable as possible,
and will have to create and use deceptions and camouflage.

Our initial exploration—reflected in this report—identified the key functions,
components, and their interactions for a potential reference architecture of such an
agent. To mention just a few examples, Sensing and World State Identification is
the AICA high-level decision-making function that allows a cyber-defense agent to
acquire data from the environment and systems in which it operates, as well as from
itself, to reach an understanding of the current state of the world. Planning and
Action Selection is the AICA high-level decision-making function that allows a
cyber-defense agent to elaborate one to several action proposals (Planning) and
propose them to the Action Selection function that decides the action or set of
actions to execute. Learning is the AICA high-level function that allows a cyber-
defense agent to use the agent’s experience to improve progressively its efficiency
with regard to all other functions. For these and other high-level functions of AICA,
our initial analysis suggests that the required technical approaches do not seem to
be far beyond the current state of research.

The sum of challenges (Table 4) presented by the AICA concept appears, today,
very substantial. Still, an empirical research program and collaboration of multiple
teams should be able to produce significant results and solutions for a robust,
effective intelligent agent. Based on the analysis of the proposed AICARA and
available technological foundation, we envision a roadmap toward initial yet viable
capabilities.

Table 4 AICA research challenges

AICA
component Research challenges

Sensing

- definition of agents' sensing perimeter
- distribution of sensing goals and perimeters between agents in a swarm
- specialization or generality of the Sensing function or of agents in
sensing

World State
Identification

- embarking cyber-defense analysis tools (binary analysis, etc.), analytics
and state estimator algorithms into an autonomous agent that must stay
small and stealthy
- multiagent collaboration toward attack pattern identification
- computing possible future situations that may result from the current
state of the world through, for example, attack path analysis and
multiagent collaboration

Planning

- embarking in a small stealthy autonomous agent an AI + game theory +
risk/criticality + efficiency-based response planning process + knowledge
- experience - routines
- multiagent collective optimized response plans

80

Table 4 AICA research challenges (continued)

AICA
component Research challenges

Action Selection
- evaluation of proposed reaction plans through simulation vs. dynamic
risk analysis, tactical reasoning, multiple criteria analysis
- multiagent collaboration toward selecting optimal attack response plans

Action Execution
- tactical C2 of executing response plans by fully autonomous agents
- multiagent tactical C2 of response plans during their execution

Collaboration and
Negotiation

- CONOPS for collaboration/warnings between agents, agent‒cyber C2,
agent‒human operator
- agent discovery and identification (friend or foe), with/without an agents
directory
- modification of swarms' composition (new entrants, defectors,
connectivity issues)
- man-machine interface and working protocols for collaboration with
humans
- inter-agent negotiation protocols, processes, policies, ontologies
- technical substrate for inter-agent / agent‒cyber C2/agent‒human
collaboration
- inter-agent covert communication channels
- trust in inter-agent/agent‒cyber C2/agent‒human collaboration and
negotiation

Learning - learning on the fly or back-office learning?
- is learning an individual agent's task or is it a collective/swarm task?

Goals
management

- what are the impacts of different contexts (combat, motion, idleness) and
modes (fighting, fail-safe, isolated, etc.) of the agent/agent swarm on
agent goals definition (missions + rules)?
- how and why to overrule autonomous agents' goals in specified
circumstances?

Self-assurance - definition and a theory of agents' self-assurance

Stealth and
security

- technologies, processes and rules for autonomous (multi) agents' stealth
- interdependence between stealth and security (of agent, agents'
communication…)
- cyber resilience of isolated agents and of multi agents swarms/cohorts

World model

- a theory and formal language of agents' world models (scope, nature,
ontology, use, predictive power)
- algorithms for preprocessing, creating, and indexing data and machine
learning based computation of world models
- should the world models of agents in a cohort be consolidated within
each agent?

Current world
state and history

- a theory and formal language of agents' world states (scope, nature,
ontology, use, predictive power)
- algorithms for computing world states, both nominal and degraded and
the role of AI in this process

81

Table 4 AICA research challenges (continued)

AICA
component Research challenges

World dynamics

- a theory and formal language of world's laws of dynamics applied to world
objects and agents themselves
- world state transition patterns and confidence estimators
- can a single isolated/fully autonomous agent compute/learn its world's
laws of dynamics?

Goals

- how to frame agents' behavior through goals
- formal language to express and compute goals and deviations from goals
- human‒computer interaction and methods for defining agents' goals and
embedding them into agents
- formal control of deviations from goals and alerts on deviations
- operational and ethical aspects of self-definition of goals on the battlefield

Development

- agents' fail-safe process: circumstances, process, and other features
- agent's database size vs constraints from host platforms' capacities
- risks to the agent’s stealth due to agents' memory size, processing power,
and communication requirements

Verification and
validation
(V&V)

- simulation as a way to validate agents' design and associated confidence
estimators
- is V&V applicable to agents' knowledge?
- how to measure and validate the efficiency/pertinence of agents and
swarms' outcome before pronouncing them fit for service?

Maintenance - maintenance of agents through their entire lifecycle
- impacts of one agent's maintenance on other agents

Internal agent
process flow

- agent's process orchestration
- optimization of agent's and inter-agent processes and performance

The first phase of the roadmap, which could be lasting perhaps on the order of 2
years, will include the development of knowledge-based planning of actions, the
execution functionality, elements of resilient operations under attack, and
adaptation of the prototype agent for execution of a small computing device. This
phase would culminate in a series of Turing-like experiments that would evaluate
the capability of the agent to produce plans for remediating a compromise, as
compared to experienced human cyber defenders.

The second phase, which could last about 3 years, would focus on adaptive
learning, the development of a structured world model, and mechanisms for dealing
with explicitly defined, multiple, and potentially conflicting goals. At this stage, the
prototype agent should demonstrate the capability, in a few self-learning attempts,
to return the defended system to acceptable performance after a significant change
in the adversary malware behavior or techniques and procedures.

82

The third phase, potentially about 3‒4 years, would delve into issues of multiagent
collaboration, human interactions, and ensuring both the stealth and trustworthiness
of the agent. Cyber‒physical challenges may need to be addressed as well. This
phase would be completed when the prototype agents are able to successfully
resolve a cyber compromise that could not be handled by any individual agent.

NATO cyber defense would benefit from active encouragement of AICA
development efforts. Relevant research in academia and in some government and
industry research organizations is growing, and should be supported. It appears that
academic institutions already begun work toward AICA-like capabilities, and
results are beginning to be available for transition to industry. NATO defense
agencies should query the cybersecurity software vendors about availability of
AICA-like products. Creating a multi-stakeholder working group engaging
industry, academia, and governments could help facilitate the development of
AICA technologies. NATO must not fall behind its adversaries in developing and
deploying such capabilities.

83

11. References

Abbeel P, Ng AY. Apprenticeship learning via inverse reinforcement learning.
In: Proceedings of the 21st International Conference on Machine Learning;
2004 July. ACM. p. 1.

Alsaleh MN, Wei J, Al-Shaer E, Ahmed M. gExtractor: Towards automated
extraction of malware deception parameters. In: Proceedings of the 8th
Software Security, Protection, and Reverse Engineering Workshop (SSPREW
2018), co-located with Annual Computer Security Applications Conference
(ACSAC 2018); 2018 Dec.

Al-Shaer E, Wei J, Hamlen KW, Wang C. Towards intelligent cyber deception
systems. In: Autonomous cyber deception: reasoning, adaptive planning, and
evaluation of honeythings. New York (NY): Springer; 2019.

Apparmor. Project ID: 4484878. GitLab; n.d. [accessed 2019 Aug 15].
https://gitlab.com/apparmor/apparmor.

Argall BD, Chernova S, Veloso M, Browning B. A survey of robot learning from
demonstration. Robotics and autonomous systems. 2009;57(5):469–483.

Army Research Laboratory (US). Internet of Battlefield Things Collaborative
Research Alliance program announcement. Adelphi (MD): Army Research
Laboratory (US); 2017 [accessed 2017 Sep 25].
https://www.arl.army.mil/www/default.cfm?page=3050.

Avgerinos T, Brumley D, Davis J, Goulden R, Nighswander T, Rebert A,
Williamson N. The Mayhem cyber reasoning system. IEEE Security &
Privacy. 2018;16(2):52–60.

Baliga A, Kamat P, Iftode L. Lurking in the shadows: Identifying systemic threats
to kernel data. In: IEEE Symposium on Security and Privacy; 2007 May. IEEE.
pp. 246–251.

Blakely B, Théron P. Decision flow-based agent action planning. toward intelligent
autonomous agents for cyber defense: report of the 2017 workshop by the
North Atlantic Treaty Organization (NATO) Research Group IST-152-RTG;
2017 Oct 18–20; Prague, Czech Republic. https://export.arxiv.org/
pdf/1804.07646, 2018.

Chan H, Perrig A, Song D. Random key predistribution schemes for sensor
networks. In: Proceedings of the 2003 IEEE Symposium on Security and
Privacy (SP ’03). IEEE Computer Society; 2003; Washington, DC.

https://www.arl.army.mil/www/default.cfm?page=3050

84

Christodorescu M, Jha S, Kruegel C. Mining specifications of malicious behavior.
In: Proceedings of the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, ESEC-FSE ’07; 2007; New York, NY.
ACM. p 5–14.

Condomines J-P, Zhang R, Larrieu N. Network intrusion detection system for UAV
ad-hoc communication: From methodology design to real test validation. Ad
Hoc Networks. Forthcoming 2019.

De Gaspari F, Jajodia S, Mancini LV, Panico A. AHEAD: a new architecture for
active defense. In: Proceedings of the 2016 ACM Workshop on Automated
Decision Making for Active Cyber Defense (SafeConfig); 2016.

Docker platform. San Francisco (CA): Docker; 2019 [accessed 2019 Aug 15].
https://www.docker.com.

Eschenauer L, Gligor VD. A key-management scheme for distributed sensor
networks. In: Proceedings of the 9th ACM Conference on Computer and
Communications Security (CCS ’02); 2002; New York, NY. ACM. p 41–47.

Farwell JP, Rohozinski R. Stuxnet and the future of cyber war. Survival.
2011;53(1):23–40.

GAO 19-128. Weapon systems cybersecurity: DOD just beginning to grapple with
scale of vulnerabilities. Washington (DC): Government Office of
Accountability (US); 2018 Oct 9 [accessed 2019 Aug 15].
https://www.gao.gov/products/GAO-19-128. p. 21.

Gonzalez C, Lerch JF, Lebiere C. Instance-based learning in dynamic decision
making. Cognitive Science. 2003;27:591–635.

Guarino A. Autonomous intelligent agents in cyber offence. In: Podins K, Stinissen
J, Maybaum M, editors. 5th International Conference on Cyber Conflict –
Proceedings; 2013 June 4–7; Tallinn, Estonia. IEEE.

Heinl CH. Artificial (intelligent) agents and active cyber defence: policy
implications. In: Brangetto P, Maybaum M, Stinissen J, editors. 6th
International Conference on Cyber Conflict Tallinn. NATO CCD COE
Publications. 2014:53–66.

Hitaj B, Ateniese G, Pérez-Cruz F. Deep models under the GAN: information
leakage from collaborative deep learning. ACM Conference on Computer and
Communications Security; 2017.

85

Intel. A guide to the internet of things. Santa Clara (CA): Intel; n.d. [accessed 2017
Sep 25]. https://www.intel.com/content/www/us/en/internet-of-
things/infographics/guide-to-iot.html.

Jajodia S, Noel S. Advanced cyber attack modeling, analysis, and visualization.
Fairfax (VA): George Mason University; 2010.

Jøsang A, Ismail R, Boyd C. A survey of trust and reputation systems for online
service provision. Decision Support Systems. 2007;43.

Kahn JM, Katz RH, Pister KSJ. Next century challenges: mobile networking for
‘smart dust’. In: Proceedings of the 5th Annual ACM/IEEE International
Conference on Mobile Computing and Networking (MobiCom ’99); 1999;
New York, NY. ACM. p 271–278.

Kendrick P, Criado N, Hussain A, Randles M. A self-organising multi-agent system
for decentralised forensic investigations. Expert Systems with Applications.
2018:12–26.

Kolodner J. Case-based reasoning. Burlington (MA): Morgan Kaufmann
Publishers; 2014.

Kotenko I, Konovalov A, Shorov A. Agent‐based simulation of cooperative
defence against botnets. Concurrency and Computation. Practice and
Experience. 2012;24(6):573–588.

Kott A, Alberts DS. How do you command an army of intelligent things?
Computer. 2017;50(12):96–100.

Kott A, Mancini LV, Théron P, Drašar M, Dushku E, Günther H, Kont M, LeBlanc
B, Panico A, Pihelgas M, Rzadca K. Initial reference architecture of an
intelligent autonomous agent for cyber defense. Adelphi (MD): Army
Research Laboratory (US); 2018 Mar. Report No.: ARL-TR-8337.
https://arxiv.org/abs/1803.10664.

Kott A, Swami A, West B. The Internet of battle things. Computer. 2016;49:70–
75. doi: 10.1109/MC.2016.355.

Kott A, Swami A, West BJ. The fog of war in cyberspace. Computer.
2016a;49(11):84–87.

Kott A. Bonware to the rescue: the future autonomous cyber defense agents.
Conference on Applied Machine Learning for Information Security; 2018 Oct
12; Washington, DC.

https://www.intel.com/content/www/us/en/internet-of-things/infographics/guide-to-iot.html
https://www.intel.com/content/www/us/en/internet-of-things/infographics/guide-to-iot.html

86

Lebiere C, Anderson JR. A connectionist implementation of the ACT-R production
system. Institute of Cognitive Science University of Colorado-Boulder:
Proceedings of the 15th Annual Conference of the Cognitive Science Society;
1993. p 635–640.

LeBlanc B, Losiewicz P, Hourlier S. A program for effective and secure operations
by autonomous agents and human operators in communications constrained
tactical environments. Proceedings of the NATO IST 152 workshop on
Intelligent, Autonomous and Trusted Agents for Cyber Defense and
Resilience; 2017 Oct; Prague, Czech Republic. NATO IST-152 workshop.

Lipshitz R. Naturalistic decision making. Perspectives on decision errors. In
Zsambok CE, Klein GA, editors. Naturalistic decision making. Mahwah (NJ):
Lawrence Erlbaum Associates; 1997.

Loukas G, Karapistoli E, Panaousis E, Sarigiannidis P, Bezemskij A, Vuong T. A
taxonomy and survey of cyber-physical intrusion detection approaches for
vehicles. Ad Hoc Networks. Forthcoming 2019.

Li Y, Hui P, Jin D, Su L, Zeng L. Optimal distributed malware defense in mobile
networks with heterogeneous devices. IEEE Transactions on mobile
computing. 2014;13(2):377–391.

Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Riedmiller
M. Playing Atari with deep reinforcement learning. CoRR. 2013:1312.5602.
arXiv preprint: arXiv:1312.5602.

Muttik I. Good viruses. Evaluating the risks. DEF CON 16; 2008 Aug 8–10;
Las Vegas, NV. https://www.defcon.org/images/defcon-16/dc16-
presentations/defcon-16-muttik.pdf.

Ng A, Russell S. Algorithms for inverse reinforcement learning. In: ICML '00
Proceedings of the Seventeenth International Conference on Machine
Learning; 2000. p 663–670.

Noel S, Harley E, Tam KH, Gyor G. Big-data architecture for cyber attack graphs
representing security relationships in NoSQL graph databases. HST 2015:
IEEE Symposium on Technologies for Homeland Security; 2015; Greater
Boston, MA.

OpenC2 Forum. OpenC2; 2015 [accessed 2019 Aug 15].
https://openc2.org/members.html.

87

Qiao Y, Yang Y, He J, Tang C, Liu Z. CBM: Free, automatic malware analysis
framework using API Call sequences. Berlin (Germany): Springer Berlin
Heidelberg; 2014. p 225–236.

Qing S, Wen W. A survey and trends on Internet worms. Computers & Security.
2005;24(4):334–346.

Ridley A. Machine learning for autonomous cyber defense. The Next Wave.
2018;22(1):7–14. [accessed 2019 Jan 13] https://www.nsa.gov/Portals/
70/documents/resources/everyone/digital-media-center/publications/the-next-
wave/TNW-22-1.pdf.

Russell S, Norvig P. Artificial intelligence: a modern approach. 3rd ed. London
(UK): Pearson; 2010. ISBN: 978-0136042594.

Seresht NA, Azmi R. MAIS-IDS: A distributed intrusion detection system using
multi-agent AIS approach. Engineering Applications of Artificial Intelligence.
2014;35:286–298.

Shankarapani MK, Ramamoorthy S, Movva RS, Mukkamala S. Malware detection
using assembly and API call sequences. J Comput Virol. 2011 May;7(2):107–
119.

Shattuck LG. Transitioning to autonomy: a human systems integration perspective.
Transitioning to Autonomy: Changes in the Role of Humans in Air
Transportation; 2015 Mar 10–12; Moffett Field, CA. NASA.

Shiffman D. The nature of code: simulating natural systems with processing. 2012
Dec.

Smart PR, Scutt T, Sycara K, Shadbolt NR. Integrating ACT-R cognitive models
with the unity game engine. In: Turner JO, Nixon M, Bernardet U, DiPaola S,
editors. Integrating cognitive architectures into virtual character design.
Hershey (PA): IGI Global; 2016. p 35–64.

Spafford EH. The Internet worm program: An analysis. ACM SIGCOMM
Computer Communication Review. 1989;19(1):17–57.

Sutton RS, Barto AG, Bach F. Reinforcement learning: An introduction.
Cambridge (MA): MIT Press; 1998.

Théron P., Lieutenant A, the rottweilers. A pheno-cognitive analysis of a fire-
fighter’s experience of a critical incident and peritraumatic resilience [PhD
thesis]. [Glasgow (Scotland)]: University of Glasgow; 2014 Apr 24.
https://sites.google.com/site/cognitionresiliencetrauma.

88

Trusted Computing Group. Trusted platform module, version 2.0. Parts 1-4.
Beaverton (OR): Trusted Computing Group; 2013.

Vasilomanolakis E, Karuppayah S, Mühlhäuser M, Fischer M. Taxonomy and
survey of collaborative intrusion detection. ACM Computing Surveys.
2015;47:55:1-55:33.

Vasilomanolakis E. On collaborative intrusion detection [PhD thesis]. [Darmstadt
(Germany)]: Technische Universität Darmstadt; 2016.

Watkins CJCH, Dayan P. Q-learning. Machine Learning. 1992;8(3–4):279–292.

Yu K, Leslie NO. FAST-D: Malware and intrusion detection for mobile ad hoc
networks (MANETs). Journal of Defence and Security Technologies – Special
issue on Predictive Analytics and Analysis in the Cyber Domain; 2018.

Zacharia G, Maes P. Trust management through reputation mechanisms. Applied
Artificial Intelligence. 2000;14.

Zhou CV, Leckie C, Karunasekera S. A survey of coordinated attacks and
collaborative intrusion detection. Computers & Security. 2010;29(1):124–140.

Zyba G, Voelker GM, Liljenstam M, Méhes A, Johansson P. Defending mobile
phones from proximity malware. In: INFOCOM 2009, IEEE; 2009. p 1503–
1511.

89

12. Bibliography

Boddy MS, Gohde J, Haigh T, Harp SA. Course of action generation for cyber
security using classical planning. ICAPS; 2005 June. p 12–21.

Korzhyk D, Yin Z, Kiekintveld C, Conitzer V, Tambe M. Stackelberg vs. Nash in
security games: an extended investigation of interchangeability, equivalence,
and uniqueness. J Art Int Res. 2011 May;41(2):297–327.

Kott A, Alberts DS, Wang C. Will cybersecurity dictate the outcome of future
wars? Computer. 2015;48(12):98–101.

Kott A, Singh R, McEneaney WM, Milks W. Hypothesis-driven information fusion
in adversarial, deceptive environments. Information Fusion. 2011;12(2):131–
144.

Kott A. Network science and cybersecurity. In: Towards fundamental science of
cyber security. New York (NY): Springer; 2014. p. 1–13.

Rasch R, Kott A, Forbus KD. AI on the battlefield: An experimental exploration.
Proceedings of the 14th Innovative Applications of Artificial Intelligence
Conference; c2002; Edmonton, AB. AAAI/IAAI.

Rasch R, Kott A, Forbus KD. Incorporating AI into military decision-making: an
experiment. IEEE Int Sys. 2003; 18.4:18–26.

Sarraute C, Buffet O, Hoffmann J. POMDPs make better hackers: Accounting for
uncertainty in penetration testing. Proceedings of the 26th AAAI Conference
on Artificial Intelligence; 2012.

Sarraute C, Richarte G, Obes JL. An algorithm to find optimal attack paths in
nondeterministic scenarios. Proceedings of the 4th ACM workshop on
Security and Artificial Intelligence; 2011. ACM.

Stytz, MR, Lichtblau DE, Banks SB. Toward using intelligent agents to detect,
assess, and counter cyber-attacks in a network-centric environment.
Alexandria (VA): Institute for Defense Analyses; 2005.

Van Dijk M, Juels A, Oprea A, Rivest RL. FlipIt: The game of “stealthy takeover”.
J Crypto. 2013;26(4):655–713.

90

Appendix A. Twenty-Eight Seconds in the Life of an AICA

91

Authors: Michael J De Lucia, Allison Newcomb, and Alexander Kott

(Editors’ note: This appendix comprises excerpts from the following journal paper:
De Lucia MJ, Newcomb A, Kott A. Features and operations of an autonomous
agent for cyber defense. Journal of Cyber Security and Information Systems. 2019.)

A.1 An Illustrative Operating Scenario

In order to illustrate how an autonomous cyber defense agent might operate, we
offer a notional operating scenario. In this scenario, Blue refers to friendly forces
and Red refers to the adversary. Blue-17, Blue-19, and Blue-23 are peer cyber-
defense agents. Each agent is installed by a human operator on its respective device
within the Blue IoBT (e.g., an Android phone) and is tasked with cyber defense of
that device. Blue-C2 is the command and control (C2) node that commands,
coordinates, and supports all other Blue agents, at least when communications
between an agent and the Blue-C2 node are available. There is only one Red
agent—Red-35—in our simple scenario.

The protagonist of our scenario is Blue-17, a cyber-defense agent that has been
installed on a friendly device; it continuously monitors Blue space network and
scans event logs looking for suspicious activity. The antagonist is Red-35, a
malware agent successfully deployed by the Red forces on the device defended by
Blue-17. The events unfold, briefly, as follows.

Blue-17 detects a hostile activity associated with Red-35 and attempts to contact
the Blue-C2 for additional remediation instructions. Unfortunately, the
communications are heavily contested by the adversary, and response from Blue-
C2 is not coming. Therefore, Blue-17 decides to contact peer agents (Blue-19 and
Blue-23) in search for relevant information. Although Blue-19 and Blue-23 receive
this message from Blue-17, their responses are not arriving to Blue-17. Having
heard nothing within a reasonable waiting time, Blue-17 independently formulates
and executes a set of actions to defeat Red-35. However, having completed these
actions, Blue-17 receives a belated reply from Blue-23. Blue-17 determines that
Blue-23 is compromised because the response is suspicious. Given the extreme
seriousness of this situation, Blue-17 neutralizes Blue-23 and places a copy of itself
on the device that was being protected by Blue-23.

Table A-1 provides a hypothetical timeline of these events and the agents’ actions.
Durations are intended to merely illustrate the flow of time in the scenario and are
in no way representative of execution speeds of any actual hardware or software.
Following the table, we discuss each step of the scenario in more detail.

92

Table A-1 Hypothetical timeline of agents’ actions

Step Elapsed
time

Condition/event Active
software

agent

Action

1 H = 0 sec Start up Blue-17 Monitor network traffic and scan logs

2 H = H +
0.100 sec

Hostile software agent
compromises device and

network

Red-35 Red-35 infiltrates Blue device and
network. Blue-17 does not notice the

infiltration.

3 H = H +
0.200 sec

Red-35 begins operations.
Suspicious activity detected

Red-35 and
Blue-17

Red-35 conducts malicious activities.
Blue-17 detects an activity and predicts

probable compromise.

4 H = H +
0.22 sec

Compromise suspected Blue-17 Contacts C2 node

5 H = H +
3.00 sec

No response from C2 node Blue-17 Contact Blue-19 and Blue-23 agents

6 H = H +
5.00 sec

Message among Blue peer
agents

Blue-19 and
Blue-23

Receive message from Blue-17

7 H = H +
10.00 sec

Message acknowledgement
time out

Blue-17 Choose alternate course of action

8 H = H +
12.00 sec

No communication with peer
defensive agents

Blue-17 and
Red-35

Block or redirect Red-35 communication.
Red-35 is unable to defend itself.

9 H = H +
23.00 sec

Response received from Blue-
23

Blue-17 Blue-17 determines that the response is
invalid

10 H = H +
28.00 sec

Neutralize compromised Blue
agent

Blue-17 Quarantine or destroy Blue-23 software
code

11 H = H +
28.3 sec

Replicate and overwrite Blue-17 Copy to device

Scenario Steps 1–2

In the scenario, Blue-17 passively monitors the inbound and outbound network
communications using a lightweight intrusion detection system (IDS) such as
FAST-D (Yu and Leslie 2018). FAST-D is a software that performs intrusion
detection using far less computational resources than alternative solutions. Its
algorithm uses hash kernels and byte patterns as signatures to examine the packet
payload content of all network communications. Additionally, Blue-17 scans the
device logs looking for indicators of compromise (privilege escalation, abnormal
crashes, failed logins, etc.).

93

Scenario Steps 3–4

Blue-17 sends a message to its C2 node for further remediation instructions and
verifications. A C2 node is one that is central (root) and is responsible for the
management and tracking of all Blue agents. A C2 node resides in a central location
that may be the tactical operations center. The message sent to the C2 node is
encrypted to protect the confidentiality and integrity and is in a predefined format
for agent messages. This message is split up into many small segments, is blended
into normal traffic to masquerade as other legitimate traffic, and sent through
different routes within the network in order to avoid an attacker from intercepting
or detecting the agent message sent to the C2 node. Lastly, the address of the C2
node changes over time based on a deterministic algorithm, known to all agents to
make it more difficult for Red-35 to discover its location.

Scenario Step 5

After some reasonable waiting time passes, and Blue-17 does not receive a reply
back from the C2 node, it decides as an alternative action to send out a request to
its peer agents (Blue-19 and Blue-23) for their remediation recommendations.
Again, this message is sent out using an encrypted predefined format for agent
messages as previously described in sending a message to the C2 node. The
message is sent directly to the peers and is blended into another network traffic.
The peer agents are neighbors to Blue-17 and are also be under the management of
the C2 node.

Scenario Step 6

Both Blue-19 and Blue-23 have received the message from Blue-17. After some
delay, Blue-23 sends a response and recommendation back to Blue-17 using the
same method for sending a message to a peer agent.

Scenario Steps 7–8

Within a specified time interval, Blue-17 has not received a response from either
its C2 node or its peers (Blue-19 and Blue-23). Blue-17 requested further
verification of the threat before taking a destructive action against Red-35.
However, since a response was not received, Blue-17 decides to take action on the
perceived Red-35 malware agent threat. The Blue-17 agent first isolates the Red-
35 malware agent and its communication in a honeypot to observe the actions taken
by the attacker. Blue-17 has taken this action since it is not confident in its
assessment of the detection of the perceived Red-35 agent.

94

Scenario Step 9

After some time has passed, and Blue-17 has already taken action, a response from
Blue-23 is received. Blue-23’s response contains a signature and timestamp that
allows Blue-17 to determine the authenticity of the message received. However, as
Blue-17 verifies the response message from Blue-23, it determines that the message
signature is not valid and rejects the message. Blue-17 concludes that Blue-23 may
be compromised.

Scenario Steps 10–11

Blue-17 has discovered that Blue-23 has been compromised. Blue-17 takes action
to quarantine Blue-23. Blue-17 clones itself to create a pristine copy of the
defensive agent. Blue-17 initiates the overwriting of the Blue-23 agent image with
a fresh copy of a defensive agent with the initial state of Blue-17. The agent package
is sent via an encrypted message from Blue-17 to the container management of
Blue-23. The container management package of the agent uses cryptographic
authentication, allowing the overwriting to occur. Blue-23 is restored back to a
fresh agent image and is no longer infected.

A.2 Discussion of Challenges and Requirements

Having offered a scenario—simple yet sufficiently illustrative of potential
difficulties—we now have a basis for discussing the technical challenges and
requirements. One of the requirements illustrated in part by the scenario is that a
defensive agent must reside outside of the operating system of the device it is
protecting. This arrangement avoids the possibility of the malware providing false
information or changing the view of the defensive agent (i.e., Blue-17). Malware
can disable processes or deceive (e.g., by providing false information) software
such as the antivirus (AV) software or firewall on a device (Baliga et al. 2007). A
logical separation at the hardware level between the operating system being
protected and the defensive agent will protect the Blue-17 agent from being
compromised by malware infection. The defensive agent will require access in a
secure manner to all of the files and state from its outside view, while being
protected from any threats affecting the Blue-17 operation or integrity.

Additionally, because the Blue-17 agent resides outside of the protected operating
system, Red-35 will not be able to detect Blue-17’s presence or any of its actions.
A traditional placement alternative for an agent that resides outside of the protected
operating system would be a distributed, or network-based, sensor. That
configuration comes with a tradeoff: An agent (Blue-17) at the network level would
not be able to monitor the file system of the protected operating system. Therefore,

95

the Blue-17 agent must reside on the same physical device as the operating system
being protected.

Also, in order for the agent to move around freely among the devices within the
protected network, the agent must be agnostic of any particular operating system.
It is also presumed that the container in which the agent runs has been pre-installed
on the device to which agents can migrate freely to, such as in the case with Blue-
17 overwriting Blue-23.

Clearly required, as illustrated in our scenario, is a fast, highly reliable and low-
resource means of detecting potentially malicious activity. For example, using a
low-resource intrusion detection software, Blue-17 was able to detect rapidly and
with a significant degree of assurance a suspicious activity performed by a
sophisticated agent Red-35. Additional solutions could be employed that use
supervised machine-learning approaches, coupled with features such as network
packet inter-arrival times, packet sizes, Transmission Control Protocol (TCP) flags,
and such, to perform detection of malware infiltration. However, in either case it is
important to understand the limitations (i.e., inability to detect malware within
encrypted communications) of the intrusion detection algorithm chosen to perform
detection of malicious communications. It is also important to know the possible
ways an attacker could evade (fragmentation attack, encrypted attack, etc.) the IDS.
Successful evasion by an attacker will result in a missed attack. It is also critical for
an autonomous agent employing an IDS algorithm to have a low false-positive rate
(misclassified legitimate traffic as an attack) and false- negative rate (missed
attack). In a military context a false positive in an autonomous cyber-defense agent
will result in an impact to the mission by denying a legitimate communication that
is essential to the mission.

Another challenging requirement is the need to manage the degree of the agent’s
autonomy. Blue-17 could be fully autonomous or semiautonomous. In our scenario,
Blue-17 is fully autonomous, evidenced by the lack of human intervention at any
point. Consequently, Blue-17 must be highly confident in the detection event and
its resultant course of action. The agents’ actions must avoid any adverse reaction,
such as degrading network performance or dropping nodes on the network as a
mitigation, resulting in access denials. Alternatively, Blue-17 could act as a
semiautonomous agents, with varying levels of interaction between the agent and
human controllers, which present many challenges of their own (Kott and Alberts
2017). For example, Blue-17 detects a potential compromise and then defers to a
human analyst (e.g., by contacting the C2 node and waiting for instruction) in a
case where there is a low to moderate confidence in the detection event.

96

The agent will require the ability to share threat data directly with its peers (e.g.,
Blue-17 had the need to share data with Blue-23 and Blue-19) and orchestrate
coordinated defensive actions when necessary. Additionally, the agent must be able
to work in an isolated environment to make appropriate decisions independently,
as Blue-17 had to do when it failed to receive response from either Blue-C2 or
peers’ agents. These agents will need to store pertinent information on detected
attacks and outcomes (successful vs. unsuccessful) of the selected mitigation
strategies. This information will need to be stored in a compressed format due to
the limited resources characteristic of the various devices of the Internet of
Battlefield Things (IoBT). On the other hand, when the agents return to a less-
contested environment where power and bandwidth are less constrained and more
reliable, the data would be uploaded to a central repository. Lessons learned
(quantitative measures of outcomes) and specifics on detected attacks would be
compiled to improve the process of informing other autonomous agents. This
arrangement would expand and enrich the agents’ knowledge and ability to learn
from historical decision-making strategies.

The agent (i.e., Blue-17, Blue-19, or Blue-23) hosted within the IoBT environment
will need to process and reduce the enormous amount of information produced by
itself and other agents to a subset, which is relevant to the human warfighters’
cognitive needs (Kott et al. 2016). For example, an enormous number of alerts may
be produced by the agents, but the human warfighter cognitive requirements only
include the subset of alerts to form a situational awareness of ongoing cyberattacks,
which are impacting missions. Therefore, the agent (i.e., Blue-17, Blue-19, or Blue-
23) will need to process and filter the alerts to a reduced subset of alerts, which are
relevant to ongoing missions. Additionally, the filtered information must be
relevant and trustworthy to the IoBT device and human cognitive needs, as a risk
is providing information that could lead to an undesired action or outcome resulting
in further impact to the mission (Kott et al. 2016). Lastly, information stored by
agents on IoBT devices must be distributed and obscured from the adversary. An
approach to secure the distributed agent information within an IoBT environment
is to split the data into fragments and disperse them among the many devices (Kott
et al. 2016a). This information will need to be obfuscated, segmented, and
distributed among the many agents so that an adversary will not be able to rebuild
the original information. The distribution of the segmented information among the
agents will need to be performed in a way which will thwart the adversary’s ability
to reconstruct the information based on a number of captured segments (Kott et al.,
2016a). The combination of both intelligent filtering and distributing the
information among various agents will assist in informing the human warfighter
cognitive needs and deceiving the adversary.

97

Ideally, the agents’ performance would be evaluated in order to refine and share
successful strategies with other agents. Performance in this context includes the
agents’ decision-making value, timing, and the resulting impacts of the courses of
action executed (e.g., Blue-17 was successful—what factors contributed to these
successes?). This further supports the need for agents to learn from their actions as
well as the actions of other agents via machine-learning techniques.

The agent could employ a combination of supervised and unsupervised machine
learning. The lessons learned and outcomes of the course of action taken by an
agent could be used with a reinforcement-based machine-learning algorithm. For
example, the successful course of action executed by Blue-17 with respect to
defeating Red-35 would receive a positive reward. This approach could be used to
expand the knowledge of the autonomous agents, thereby improving the agents’
performance and effectiveness.

Another requirement of these agents will be trust management between devices.
Each device on the network will require software-based logic to participate in the
network with a full degree of trust and access. This logic can be preinstalled or can
be acquired from a peer node by a device that seeks to join the network in a comply-
to-connect mode of operation. Once compliance conditions are met, the agent can
be transferred to other network member nodes. For example, in our scenario, Blue-
17 needed a way to determine that Blue-23 is no longer trustworthy. At the same
time, Blue-17 had to elicit a sufficient degree of trust from the node where Blue-23
resided in order to overwrite the Blue-23 image.

Device-to-device transfer of the agents—such as the move of a copy of Blue-17 to
the node originally defended by Blue-23—necessarily raises concern for
unintended propagation and behaviors beyond the intended network, as witnessed
with the Morris worm (Qing and Wen 2005; Spafford 1989) and the more recent
Stuxnet attack (Farwell and Rohozinski 2011). Findings from studies on limiting
the spread of malware in mobile networks (Zyba et al. 2009; Li et al. 2014) could
be adapted to manage the propagation of defensive agents. Another potential
solution to controlling propagation is to require consensus approval of a certain
number of nodes prior to enabling transfer of the agent to a new device. A suggested
approach is to define boundary rules to determine whether the agent has been
transferred outside its intended network. When the boundary rules evaluate to a true
condition (out of bounds), mandatory removal of the agent or a self-destruct
sequence would be triggered. The effects of these combined approaches to
controlling propagation require additional research.

While autonomous agents should be free to learn, act, and propagate, careful
thought should be given to methods that would constrain behaviors within the

98

bounds of legal and ethical policies, as well as the chain of command. For example,
it would be undesirable if Blue-17 were to learn that requests to Blue-C2 are
generally fruitless and should not be attempted. An agent that is fully autonomous
must be able to operate within an appropriate military C2 construct (Kott and
Alberts 2017). It is imperative that a software agent be bounded in its propagation,
yet capable to move around freely between authorized devices.

99

Appendix B. Impact of Agent’s Purpose on its Capabilities

100

Authors: Ryan Thomas and Martin Drašar

(Editors’ note: This paper originally appeared in Kott A, Thomas R, Drašar M, Kont
M, Poylisher, A, Blakely B, Théron P, Evans N, Leslie N, Singh R, Rigaki M.
toward intelligent autonomous agents for cyber defense: report of the 2017
workshop by the North Atlantic Treaty Organization (NATO) Research Group IST-
152-RTG; 2018. arXiv preprint arXiv:1804.07646.)

With the proliferation of machine-learning (ML) methods in recent years, it is likely
that autonomous agents will become commonplace in day-to-day military
operations. We expect a significant boost in their capabilities owing to both
algorithmic advancements and adoption of purpose-built ML hardware. However,
the range of agents’ functions will still be, in the foreseeable future, limited by a
number of factors, which we attempt to enumerate.

In this text, we recognize two types of autonomous agents as two extremes on the
capability scale. At one extreme are preprogrammed heuristic agents, responding
only to specified stimuli based on a set of preset actions. At the other extreme are
robust intelligent systems with advanced planning and learning characteristics.
Capability is then the aggregate of an agent’s intelligence, awareness,
connectedness, control, distributedness, level of autonomy, and adaptability.
Agent’s purpose prescribes specific functions and abilities, and the operational
expectations place an upper bound on agents’ capabilities. The following text
provides a list of some limiting factors and evaluates their impact.

B.1 Mobility

Autonomous agents deployed at stationary structures (e.g., buildings or weapon
systems) should suffer the fewest limitations in their operation, as it can reasonably
be expected that such agents will have enough power, processing capacity,
connectivity, and other resources needed to carry out the most complicated of tasks.
These systems will be restricted mostly by the ML state of the art.

Agents deployed on mobile platforms (e.g., vehicles, Soldiers, or missiles) will
inevitably be limited by intermittent connectivity; power, space, and processing
constraints; or even the physical implications of their actions. Furthermore, for
mobile systems, it is likely that the agent will be located at a centralized point in
the architecture, rather than be distributed across all subsystems. This is due to the
expected difficulty in accrediting systems with robust intelligent behaviors.

101

B.2 Lethality

Agents operating in systems with lethal capacity will either have to undergo much
tighter scrutiny or be limited in their actions to prevent the creation of accidental or
exploited killer bots. In such systems, it is easy to envision agents and humans
performing as a team, with the human having the final authority for decisions with
lethal implications. This will require developments in human‒machine trust,
interfaces, and planning.

Another option to safeguard lethality would be the use of a two-tier infrastructure,
where lethal means are physically separated and thus inaccessible to even a rogue
autonomous agent. The ML would control the nonlethal tier only, allowing more
conventional means (or, as described previously, a human) to control the lethal tier.

B.3 Criticality

Critical systems, whose failure has severe consequences, mostly operate with clear
separation of responsibilities and are handled by rigorously trained personnel.
Failures are reduced by the application of processes, which limit the impact of
human error. Autonomous agents will likely introduce whole new classes of errors,
so these error-controlling processes must be updated accordingly.

There are three likely approaches to this:

1) Improvements in the understanding of ML operations and performance
limits will enable better scrutiny of the inner workings of autonomous
agents, constraining the range of possible ML errors and formally proving
the scope of exhibited behaviors.

2) Testing methodologies and testbeds will improve, allowing autonomous
agents to undergo a battery of conformance tests exhaustive enough to give
informal guarantees of the agent’s operation with acceptable confidence.

3) Autonomous agents will be deployed redundantly, allowing for robust and
resilient operations. Techniques such as voting (e.g., three implementations
with a majority voting on a next action) could be used.

B.4 Connectivity

Most mobile platforms will suffer connectivity problems or forced connection
losses. Autonomous agents, which rely on communications links to enable swarm
intelligence, command and control (C2), or computation offloading, would be
severely impaired during connection loss. Therefore, any such ML functionality
requiring connectivity must be designed with respect to the communications

102

environment and timescale in conjunction with required ML decision accuracy. For
systems in unreliable environments, which need stable communication channels to
arrive at decisions quickly or require accurate and reliable decisions under all
conditions, it is up to debate as to whether the presence of autonomous agents is
worth the personnel training extension, related updates to operational processes,
and associated certification hurdles.

B.5 Power and Processing Constraints

Given the currently immense computation requirements for any autonomous and
learning behavior, any hardware able to run sufficiently advanced agents will
require nontrivial space, power, and cooling. Unless there is a significant leap in
technology, this will limit the available resources for agents, especially for
deployment in mobile platforms. Developers of agents and policy makers will have
to carefully consider which autonomous functionalities are necessary or beneficial
enough.

There is great potential in bio-inspired autonomy, assisted by mechanical and
structural features on the host platforms. For instance, insects such as moths and
flies are an inspiring mix of clever sensor arrays, simple processing cortexes, and
advanced mechanical wing design that could enable low-power, low-processing
micro-autonomous air platforms.

B.6 Commoditization and Standardization of Agents for
Environments

We expect that some standard classification of autonomous agents according to
their capability and requirements is inevitable. Such classification would ease the
adoption process by reducing the need to evaluate each agent in a specific context
with regard to whether an agent conforms to a class specification. Military systems
then could be limited to specific classes of autonomous agents, thus prescribing the
level of autonomy such systems can have.

103

Appendix C. “Hello, World” Autonomous Agent

104

Authors: Alessandro Guarino, Jana Komárková, and James Rowell

(Editors’ note: This paper originally appeared in Kott A, Thomas R, Drašar M, Kont
M, Poylisher, A, Blakely B, Théron P, Evans N, Leslie N, Singh R, Rigaki M.
Toward intelligent autonomous agents for cyber defense: report of the 2017
workshop by the North Atlantic Treaty Organization (NATO) Research Group IST-
152-RTG; 2018. arXiv preprint arXiv:1804.07646.)

The challenge we tackle in this section is the design of an actual autonomous agent,
small and simple to implement but able to illustrate the essential functions any
autonomous intelligent agent (AIA) should possess, albeit in a streamlined way.
The agent proposed here is a purely software agent intended for cyber defense only.

To be a proper AIA, it should fulfill the following 6 characteristics:

1) An agent is strictly associated with its environment: an autonomous agent
outside the environment it was designed for can be useless, or not even an
agent at all. Franklin and Graesser (1996) have given a convincing
definition of agents and the ways in which they differ from other software.
The first four points in our definition draw from their definition.

2) An agent interacts with the environment, via appropriate sensors providing
input from it and appropriate actuators, allowing the agent to act and
influence that environment.

3) An autonomous agent acts toward a goal, or, in other words, it has an
“agenda”. In particular, an autonomous agent developed for warfare
operations is assigned a target.

4) The activities of a truly autonomous agent are sustained “over time”, so it
must have a continuity of action.

5) An autonomous agent should possess an adequate internal model of its
environment, including its goal—expressed possibly in terms of world
states—together with some kind of performance measure or utility function
that expresses its preferences.

6) An agent must possess the capability to learn new knowledge and the
possibility to modify over time its model of the world and possibly also its
goals and preferences.

In this section, we describe the agent and explain how it fulfills these requirements.
We define its environment, task, and properties, such as sensors and actions. We
also discuss possible extensions of the agent.

105

To make these “Hello, world” autonomous agents feasible, the design makes
specific assumptions about the environment in which the agent operates, and the
number and type of inputs and outputs its sensors and actuators will have. This has
the aim of keeping the complexity low.

C.1 Environment

AGENTX lives in a virtualized cloud environment that supplies some unspecified
cloud-based service. We assume this platform runs three kinds of virtual machines
(VMs, or virtual servers): database servers, application servers, and web servers.
We also assume that a hypervisor exists to manage the platform and balance the
load.

C.2 Task

Again, for the sake of simplicity, AGENTX performs one specific function and not
in an open-ended generic network defense mission. Its goal is to manage a set of
honeypot (HP) virtual servers with the objective to deceive adversaries and deflect
Cyberattacks against the cloud platform. Its architecture is monolithic (as opposed
to a distributed, swarm-like structure) and operates at the hypervisor level of the
system. To perform some of the available actions, AGENTX relies on small applets
installed on each virtual server, for instance, exposing a RESTful application
programming interface (API). It must be noted that in the context of this proof of
concept, security measures that in a real environment would be mandatory are
overlooked (e.g., encryption of communications, self-protection of the agent itself,
and so on).

Since the mission of AGENTX is purely deception, it implements the capability of
communicating to other autonomous agents (and/or to human supervisors) the
necessity to intervene and implement active defense measures.

The agent has access to background information, such as a set of ready-made HP
images, dummy process containers, and dummy files.

C.3 Sensors

The sensors are able to access the following data and information:

i. Alerts from intrusion detection systems (IDSs) (count and severity)

ii. Integrity information of critical files on the VMs

iii. Metadata about critical files on the VMs

106

iv. Processes

v. Log files

vi. Metrics on the level of use of resources and system load

vii. Feedback and replies from other agents tasked with active measures

C.4 Actions

The following actions are available to the agent:

i. Starting and stopping HP VMs.

ii. Starting and stopping actual virtual server instances (optionally).

iii. Initiating a “cry for help” message to other agents (or humans).

iv. Deploying dummy files and applications, and
quarantine files (via the applets).

C.5 Learning

The agent implements a reinforcement learning model employing an appropriate
reward function:

 𝑅𝑅 = 𝑎𝑎 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑜𝑜𝑒𝑒𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒
𝑒𝑒𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑜𝑜_𝑜𝑜𝑒𝑒𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒

+ 𝑏𝑏 ∆_𝑠𝑠𝑜𝑜𝑒𝑒𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑒𝑒
𝑒𝑒𝑜𝑜𝑒𝑒𝑡𝑡𝑡𝑡_𝑠𝑠𝑜𝑜𝑒𝑒𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑒𝑒

+ 𝑐𝑐 𝑗𝑗𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑗𝑗𝑠𝑠𝑜𝑜𝑗𝑗_𝐶𝐶𝐶𝐶𝐶𝐶,
𝐶𝐶𝐶𝐶

 (1)

where

• honey_events: metric for attacks/events against the HPs;
• security_events: number of attacks against the real servers (detected by

IDSs);

• total_resources: metric for the total amount of resources available;
• Δ_resources: resources freed or needed (example, spinning HPs) to

implement an action by the agent (negative when resources are needed,
positive when resources are freed);

• justified_CFH: “justified cries for help”, number of messages (alerts) sent
by the agent reacting to actual attacks; and

• CW: “cry wolf”, number of messages sent by the agent requesting assistance
for attacks that did not really happen.

The coefficients a, b, c state the relative importance of each factor. They should be
tuned beforehand or during the initial learning phase.

107

We consider total resources available as those actually available at the time of
action, which makes the function and the agent’s behavior dynamic during that
time. It also means that a relatively costly action is not penalized if the system is
under very light load, because the number of available resources is high and even
small actions are heavily penalized if the system is utilizing almost all its resources.

Note that this function could be calculated—in a future version of AGENTX—for
homogeneous groups of VMs (e.g., only the application servers), to better reflect
the situation and the world state, providing AGENTX with a more granular and
detailed view of its environment.

The learning is performed by implementing an anomaly detector leveraging a small
set of hard-coded features (for the purposes of this section) including the following:

• Number and severity of IDS alerts

• Anti-malware software alerts

• Unauthorized accesses

• Access to HPs or dummy files

• Alerts from dummy processes

• File integrity violations

• System load (aggregate, by group, and individual)

C.6 Testing

To validate the performance of the agent, we have to set up a testing environment,
perform real attacks, and evaluate its efficiency. Since the agent is learning with
each attack, we should let the evaluation continue for some time so the learning
process can take place. It would also be ideal to face the agent with real attackers,
not only simulated attacks.

We propose to validate the agent on defending a network with several servers in a
virtualized environment with simulated “regular” traffic. The setup has the
following advantage: since we know which traffic was generated by us, we can
safely assume the rest of the traffic comes from the attacker; therefore, we can
easily recognize the justified and unjustified cries for help. The detection part is
also easily achieved in this setup. We can leave the network running for a long time
with little effort. To prevent the abuse of the compromised machines, we can let the
“servers” actually be high-interaction HPs.

108

C.7 Additional Considerations

Future developments include, of course, the use of real-world tools to implement
the autonomous agents (while this proof of concept could be developed in a
scripting language like Python), the implementation of all possible security
measures to secure and protect the agent, as well as the development of the
cooperative agents postulated previously.

Moving away from a monolithic architecture (at the hypervisor level) to a swarm-
like distributed architecture of agents living on every VM on the system is another
valid possibility.

109

Appendix D. The AHEAD Autonomous Agent

110

Authors: Fabio De Gaspari and Luigi V Mancini

(Editors’ note: We view AHEAD as an agent that in many of its features is a partial
instantiation of the AICA architecture.)

D.1 Introduction

The AHEAD architecture (de Gaspari et al. 2016) defines an autonomous agent
equipped with a variety of active defense tools, providing both sensing and
actuating functions. The AHEAD system consists of two main components: the
AHEAD Controller and the Active Defence Architecture (ADARCH) Pot
(Fig. D-1). The AHEAD Controller component implements the control logic of the
system and manages a group of ADARCH Pots (Al Shaer et al. 2019). The
ADARCH Pots are comprised by a set of active defense tools and can dynamically
change the configuration of these tools to implement the decisions taken by the
controller. In the AHEAD architecture, the ADARCH Pots are integrated directly
into the production systems of a target network, providing ready-to-use active
defense capabilities, while at the same time safeguarding the security of the
production systems themselves.

Fig. D-1 High-level view of the AHEAD architecture

The AHEAD system provides many functions that are also part of the AICA
architecture, such as Sensing and World State Identification, Planning and Action
Selection, Action Execution, and Learning. The active defense tools deployed
within the ADARCH Pot provide sensing functions for the system. Every
interaction with the tools is logged and forwarded to the AHEAD Controller, where
the Learning and Planning components process the input and decide if and what

111

actions are necessary based on the new world state (e.g., possible malicious activity
underway). Once a decision is taken by the controller, the active defense tools of
the ADARCH Pot are updated and reconfigured accordingly. Therefore, each
ADARCH Pot also acts as an actuator for the system. This ability to dynamically
reconfigure the Pot allows the AHEAD system to generate high amounts of
accurate data on the attacker, since the controller can reconfigure the Pot to
maximize the interaction with the malicious agent.

However, differently from the Autonomous Intelligent Cyber-defense Agent
(AICA), the AHEAD system is designed as a single-agent system (the AHEAD
controller), and does not provide for the possibility of a multiagent configuration
as the AICA Reference Architecture (AICARA) does. Therefore, AHEAD does not
include Collaboration and Negotiation functions.

D.2 Component Comparison

In this section, we include a table showing a side-by-side comparison of AICA
functions and the corresponding AHEAD module implementing it.

Table D-1 Comparison of AICA function and the AHEAD module

AICA function AHEAD

Sensing ADARCH Pot

World State Identification Controller state management component

Planning Controller learning component

Action Selection Controller learning component

Action Execution ADARCH Pot

Collaboration and Negotiation n/a

Learning Controller learning component

Goal management Controller learning component

Stealth and security Controller/ADARCH attestation component

World model Controller state management component

World state and history Controller state management component

World dynamics Controller learning component

Goals Controller learning component

112

D.3 Technologies and Implementation

Currently the AHEAD system is only partially implemented, with the ADARCH
Pot in a prototype stage and the controller still in development phase. Therefore, in
this section, we focus only on the ADARCH Pot and the sensing and actuating
functions of the system.

D.3.1 System-Pot Integration

Since the Pot is designed to run alongside the real services in the production
systems, it requires isolation in order to prevent malicious agents to use the active
defense tools as pivot to break into the system. In ADARCH, this is accomplished
by means of the Docker container technology (Docker 2019) and mandatory access
control (MAC) techniques (Apparmor n.d.). Containers allow to provide separation
between the Pot’s environment and the real system’s environment, while the
mandatory access control ensures that even if the malicious agent takes over the
Pot, its influence on the real system is heavily limited. Figure D-2 illustrates the
integration of the Pot with the production systems.

Fig. D-2 Integration of the Pot in the production system. Docker container technology is used
to isolate the Pot from the host

The use of Docker containers provides consistency between the operating system
(OS) environment and the Pot environment, preventing attacks aimed at
differentiating active defense tools from legit production services.

D.3.2 Pot Sensors and Actuators

The sensors and actuators in the AHEAD system are the active defense tools
deployed within the ADARCH Pot. The ADARCH Pot provides a modular and
extensible framework that allows to easily develop and configure new active
defense tools, and seamlessly integrate them within the AHEAD architecture. The

113

active defense tools are developed on top of a Python-based framework that
provides common functions such as logging and networking for all the tools. The
use of a common framework for all the tools allows to easily develop and integrate
new active defense modules, as well as providing a common view of the underlying
system to the active defense tools deployed in the Pot. In particular, having a unified
system environment for all the tools provides a consistent view to malicious agents
interacting with the Pot and vice versa, which in turn means it is harder for such
agents to understand they are interacting with fake services. Finally, the modular
nature of ADARCH makes it easy to dynamically reconfigure the services exposed
based on the output of the learning and planning components of the controller.

Figure D-3 shows a high-level view of the ADARCH Pot architecture. ADARCH
comprises two main components: the ADARCH core and the ADARCH
interpreter. The ADARCH core is developed in C and is the core of the framework.
It implements the most common functions required by a large number of active
defense tools. The ADARCH interpreter encapsulates and extends a Python
interpreter, and is used by external modules to transparently interact with the core
framework. Active defense tools are developed as ADARCH modules written in
Python, along with a corresponding configuration file. The configuration file allows
tools developers to effortlessly instantiate required resources (e.g., port bindings),
as well as to define callback functions associated to specific triggers. Finally,
ADARCH is designed to work with container technologies to provide an additional
layer of isolation to the production system.

Fig. D-3 ADARCH Pot architecture

114

Appendix E. Autonomous Cyber Deception Based on Malware
Analytics

115

Authors: Jinpeng Wei, Ehab Al-Shaer, and Mohammed Noraden Alsaleh

(Editors’ note: This appendix describes analytic framework called Autonomous
Malware-centric Deception System (AMDS), which can be considered as special
instance of the Autonomous Intelligent Cyber-defense Agent (AICA) with special
focus on malware deception. AMDS analyzes the malware behavior, automatically
extracts the deception parameters using symbolic execution, and creates cyber
deception plans.)

E.1 Introduction

Malware as an Opportunity. Malware is normally considered harmful and useless:
when someone detects a piece of malware, their immediate reaction is to get rid
of it. This is also the recommendation by state-of-the-art security solutions,
including antivirus, anti-malware, intrusion detection systems, and intrusion
prevention systems.

Contrary to the conventional wisdom, we argue that malware can be used to
improve the effectiveness of cyber deception: malware provides a communication
channel between the security defender and the attacker; therefore, it creates unique
opportunities to manipulate the attacker, such as feeding misinformation back to
the attacker, engaging the adversary in a deception ploy, and learning about the
adversary’s tactics, techniques, and procedures. In other words, we can rely on the
malware to achieve our deception goal: to execute the deception plan via the
malware.

Here are a few examples.

Example one: The malware finds FTP login credentials on the victim computer
and exfiltrates them to the attacker. We can benefit from this malware by setting
up a honey FTP server, creating honey accounts, and intentionally letting the
malware exfiltrate the login credentials of such accounts. In other words, we can
use the malware as a messenger to lure the attacker to our honey FTP server, which
may be set up just for that one attacker.

Example two: The malware uses the victim computer to run bitcoin mining
software on behalf of the attacker. We can benefit from this malware by first
learning the attacker’s bitcoin mining account name from the malware, and then
submitting a large number of wrong mining results to the mining pool on behalf of
the attacker, so that their reputation is damaged, to the extent that their account is
banned.

116

E.1.1 Deception Models

Cyber deception is a defense technique that deliberately introduces misinformation
or misleading functionality into cyberspace in order to trick an adversary in a way
that benefits the defender. Deception models allows for defining the deception
goals and planning approach in order to construct an effective deception agent.

E.1.2 Deception 4D Goals

Effective cyber deception aims to 1) deflect adversaries away from their goals by
disrupting their progress through the kill-chain, 2) distort adversaries’ perception
of their environment by introducing doubt into the efficacy of their attacks,
3) deplete their financial, computing, and cognitive resources to induce biased and
error-prone decisions that we influence, and4) discover unknown vulnerabilities
and new tactics, techniques, and procedures (TTPs) of adversaries, while predicting
the tactical and strategical intents of adversaries.

E.1.3 Malware Deception Playbook: Toward Real-time Autonomous
Deception of Malware

We are developing an Autonomous Malware-centric Deception System (AMDS) as
shown in Fig. E-1. The main functionality of this system is to map patterns of
malware behavior to prescribed sets of deceptive actions called Deception
Playbooks. It consists of four components: the Detection Agent, the Analysis
Agent, the Planning Agent, and the Deception Actuator.

Fig. E-1 AMDS architecture

The Detection Agent checks whether an application is malicious, and if so notifies
the Analysis Agent. The Detection Agent can be an antivirus application or an
intrusion detection system.

The Analysis Agent analyzes a given malicious executable to extract deception
parameters, which the malware depends on for reaching its goals and which can
be configured/controlled by the environment to implement different deception
plans.

117

The Planning Agent takes the deception parameters as input to find suitable
Deception Playbooks for a deception ploy against the malware and the attacker
behind it, based on certain rules. The Deception Playbook is actionable but it can
have flexible formats (e.g., an algorithm or script template).

The Deception Actuator executes Deception Playbooks to deploy the deception
plan, and it restarts the malware in the deception environment created by the
deception ploy.

E.2 Detection Agent

The Detection Agent can leverage existing malware detection techniques such as
antivirus and intrusion detection systems. It scans suspicious files or detects
suspicious processes in the system, using techniques such as signature matching.
The signatures can be syntactic (e.g., hash code of binary files, string set, and byte
sequences) or semantic (e.g., application programming interface [API] call
patterns). Once a positive detection is made, the relevant file is handed over to the
Analysis Agent.

E.3 gExtractor: The Analysis Agent

To extract the complete behavior of a cyberattack, we execute its binaries (i.e.,
malware) symbolically and build a model that represents its behavior with respect
to selected system parameters. Given that the correct set of system parameters is
selected, symbolic execution can cover all relevant execution paths.

Before going through the technical steps of the symbolic malware analysis, we
present the attack behavior model.

E.3.1 Attack Behavior Model

The attack behavior model describes how the attack behaves based on the results
of its interaction with the environment. The malware interacts with its
environment through system and user library APIs characterized by their input
and output arguments. Some of these arguments may be attacker-specific variables
and cannot be controlled by the environment, while other parameters can be
reconfigured or misrepresented. We assume that a mapping between the selected
system or library APIs’ arguments and the corresponding parameters in the
environment, such as files, registry entries, system time, processes, keyboard layout,
geolocations, hardware ID, C&C, Internet connection, IP address or host name,
and communication protocols, is given. For example, the from argument of the
recvfrom API can be mapped to a system parameter that represents the IP address
of the sender machine.

118

We define the attack behavior model as a graph of points of interaction (PoI) nodes
and fork nodes. The PoIs refer to the points in the malware control flow at which
the malware interacts with the environment by invoking system or library APIs.
The fork nodes represent the points in the control flow at which the malware
makes a control decision based on the results of its interactions with the
environment.

In Fig. E-2, we show an example of attack behavior model that represents a
portion of the Blaster worm that delivers a copy of the worm to an exploited victim.
Round nodes represent PoIs and square nodes represent fork points. The solid
edges represent control dependency, while dashed ones represent data dependency.
In this model, the worm first sends an instruction to a remote command shell
process running on the exploited victim through the send library API, then it waits
for a download request through the recvfrom API call. The attack code checks if
these operations are executed successfully and terminates otherwise as depicted
through the conditions shown on the outbound edges from the fork nodes 2 and 5.
At node 7, the worm starts reading its executable file from the disk into a memory
buffer, through fread, and sending the content of the buffer to the remote victim,
through the sendto API. There is a data dependence between the third argument
of the sendto call, which represents the number of bytes to transmit, and the return
value of the fread call, which represents the number of bytes read from the worm
file.

Fig. E-2 Example of attack behavior model (Alsaleh et al. 2018)

119

E.3.2 Malware Symbolic Execution

We utilize the S2 E engine to symbolically execute malware binaries. The path
coverage and the progress of the executed program depends on the correct marking
of symbolic variables. Since we are interested in the interactions of the malware
with its environment through selected system and library APIs, we intercept these
calls and mark their output arguments as symbolic. This allows us to capture the
malware decisions based on those arguments and track the corresponding
execution paths. In the current version of our implementation, we select about 130
APIs that cover activities related to networking, file system and registry
manipulation, system information and configuration, system services control, and
user interface (UI) operations.

Marking Symbolic Variables. To mark the appropriate symbolic variables, we take
advantage of the Annotation plugin provided by S2 E, which combines monitoring
and instrumentation capabilities and executes user-supplied scripts, written in
LUA language, at run time when a specific annotated instruction or function call
is encountered. We define an annotation entry for each API. The annotation entry
consists of the module name, the address of the API within the module, and the
annotation function. We identified the module names and addresses using
static/dynamic code analysis tools, such as IDA and Ollydbg. The annotation
function is executed at the exit of the intercepted call. It reads the addresses of the
return and output arguments of the call and marks the appropriate memory
locations and registers as symbolic. Note that output arguments may have different
sizes and structures. Hence, we need custom scripts to mark each individual output
argument of the intercepted APIs. The return values of APIs are typically held in
the EAX register and we use special method provided by S2 E to mark its value as
symbolic. It should be noted that system calls and user library APIs are invoked
by all applications in the environment, not only the malware process. Therefore,
our annotation functions check the name of the process that invokes them and
ignore calls from irrelevant processes.

Building the Attack Behavior Model. After preparing the appropriate annotation
entries, we execute the malware using S2 E to collect the execution traces. We
configured the annotation functions to record the arguments, the call stack, and
other metadata, such as the timestamp and the execution path number for each
intercepted system and library call. By design, S2 E intercepts branch statements
whose conditions are based on symbolic variables and forks new states of the
program for each possible branch. We collect the traces and branching conditions
of all execution paths and build the attack behavior model as follows:

120

• We create a PoI node for each system or library API call logged by our
annotation functions. Similarly, the traces contain special log entries for
state forking operations. Those are used to create the fork nodes in our
model.

• For each node in the model, we add a control dependency edge from the
node preceding it in the execution path. If the preceding node is a fork
node, the edge will be associated with a branching condition in terms of
the symbolic variables.

• To capture the data dependency, we check the values of all the input
arguments upon the entry of each API call. If the value is a symbolic
expression, this implies that it is a transformation of previously created
symbolic variables. Hence, we add a data dependency edge from the PoI
nodes in which the symbols of the expression were created.

E.3.3 Deception Parameters Extraction

Given the attack behavior model generated through symbolic execution, we
extract a set of system parameters that help in designing effective deception
schemes to meet the deception goals. Recall that the attack behavior model
describes the complete behavior of a malware with respect to selected system
parameters. However, that does not mean that every parameter in the attack
behavior model is a feasible candidate for deception. That is, mutating or
misrepresenting its value may not be sufficient to successfully deceive the attacker.
We analyze the attack behavior model to select the appropriate set(s) of deception
parameters that can help in designing deception schemes without dictating
particular ones.

We present the following four criteria (C1 to C4) that must be considered to
decide on which parameters are appropriate for effective deception and which are
not:

• C1 (Goal Dependency): the selected deception parameters can directly or
indirectly affect the outcomes of the attack in terms of whether the attacker
can reach her goal. Hence, parameters that are used only in execution paths
that do not lead to particular goals might be excluded.

• C2 (Resilience): in cases where multiple attack paths lead to particular
goals, selected parameters must provide deception in all the paths, not only
one.

• C3 (Consistency): the selected deception parameters must preserve the
integrity of the environment from the attacker’s point of view. As system

121

parameters may be interdependent, deception schemes must take this into
consideration, such that misrepresenting one parameter without
misrepresenting its dependents accordingly does not disclose the
deception.

• C4 (Cost-Effectiveness): although multiple parameters may exist in the
execution paths leading to particular goals, mutating or misrepresenting
different parameters may require different costs and provide different
benefits from the defender’s point of view. Defenders must select the most
cost-effective set of parameters for deception.

E.3.3.1 Refining the Attack Behavior Model

The complete attack behavior model contains many execution paths that may not
be relevant to our deception analysis. In this refinement step, we 1) identify the set
of execution paths that are relevant to deception and 2) eliminate the don’t-care
symbolic variables.

Identifying Relevant Paths. Recall that deception is not about blocking attacks,
rather, it is about misleading and forcing them to follow particular paths that
serve the desired deception goals. Hence, the selection of relevant execution paths
from the attack behavior model depends on the deception goal.

Relevant Paths. A relevant path with respect to a particular deception goal is an
execution path that exhibits particular patterns of interactions with the
environment that can be leveraged by the defender to achieve the deception goal.

Regardless of which deception goal is desired, it can be represented as a single
call or a sequence of calls to system and library APIs leveraging existing tools
that identify specific behaviors through patterns of call sequences, such as
Christodorescu et al. (2007), Shankarapani et al. (2011), and Qiao et al. (2014).
Then, the PoI nodes in our attack behavior model will be used to identify the
execution paths that exhibit that particular sequence of calls. By pruning out all
other paths that do not exhibit the desired sequence, we end up with a portion
of the original behavior model that contains only the paths relevant to the
deception goal.

Another simplification is to eliminate don’t-care variables with respect to a
particular deception goal. A don’t care variable is a symbolic variable that is part
of one or multiple execution path constraints and its value is irrelevant to the
desired deception goal.

122

After eliminating the irrelevant paths and the don’t-care variables, we end up with
refined path constraints for the relevant paths. Any parameter extracted based on
this refined model complies with C1 criteria.

E.3.3.2 Selecting Deception Parameters

Since the output of one interaction may be determined by multiple system
parameters, there is no necessarily one-to-one mapping between the symbolic
variables and the system parameters. Therefore, we need to map the symbolic
variables to the appropriate system parameters, utilizing experts knowledge of the
system and the system and library APIs. The documentation of the APIs can also
be used to extract this mapping as it normally specifies the possible outputs of
APIs and the cases in which each value is returned based on the system and the
environment states. The result of this mapping will be a basic set of system
parameters called deception parameters.

E.4 Planning Agent

The Planning Agent uses knowledge-based reasoning to select the most
appropriate deception ploy, and outputs a deception playbook.

E.4.1 Select the Best Deception Parameters to Achieve 4D

In this step, we define a constraints optimization problem to find an optimal set
of deception parameters that satisfy the following constraint: 1) at least one
parameter is selected for each relevant path (to comply with C2), 2) if a parameter
is selected, all its dependent are also selected (to comply with C3), and 3) the
selected parameters incur the minimum cost on the defender (to comply with C4).
We solve the constraints optimization problems using the Z3 solver. The result
will be a set of system parameters that satisfies our four criteria to provide
resilient, consistent, and cost-effective deception.

E.4.2 Select the Most Appropriate Deception Ploy

In this step, the Planning Agent maps the chosen deception parameter to a
Playbook that manipulates the deception parameter.

Each playbook has the following components: 1) a goal, which can be deflection,
distortion, depletion, or discovery, 2) associated deception parameter(s),
3) preconditions, which is a predicate that must be evaluated to true before the
actions of the playbook are enabled, 4) actions, which are concrete executable steps
of a deception ploy.

123

The associated deception parameter is used as a key to search for playbooks. The
benefit of running each playbook is reflected in its goal attribute, and depending
on what the customer of deception wants to achieve, different playbooks may be
selected. The actions specification can be understood by the Deception Actuator,
which instantiates the action specifications into actual execution.

The actions of a deception playbook may include host-level actions and network-
level actions. Host-level actions include configuration (e.g., saving of user
credentials) and object manipulation (e.g., creation of honey files and honey registry
entries). Network-level actions include firewall configuration and IDS
configuration, such as adding a filtering rule on the firewall to allow malware to
communicate with its C&C server.

Management of playbooks. All playbooks are indexed by the deception parameters
that they manipulate. Our system supports the addition, query, and modification
of playbooks. We provide interfaces for managing playbooks.

The query interface of the playbook manager uses the deception parameter as the
input and returns a playbook. Our design allows a set of Deception Playbooks to
be configured based on user demands. We leverage knowledge-based reasoning
and satisfiability constraint solvers to construct a resilient deception agent.

E.5 Deception Actuator

The Deception Actuator receives Deception Playbooks from the Planning Agent,
constructs a deception environment based on specifications in the Deception
Playbooks, and execute malware that it also receives from the Planning Agent, to
realize the deception ploy.

To construct a deception environment, the deception actuator needs to prepare the
basic OS, runtime systems, applications, and required data, and set up the network
configuration, based on the specifications of the Deception Playbook. We can use
a dedicated virtual machine for each deception environment, to minimize the
interference from other irrelevant workloads.

E.6 Prototype

As an illustration, we have built a prototype of AMDS. The agents are
encapsulated in separate virtual machines on the same host machine, and they use
shared folders on the host machine to collaborate, e.g., the Detection Agent puts
malware files in the shared folder, and the Analysis Agent picks up malware from
the same folder.

124

The Detection Agent uses hashes of know malware samples as signatures. The
Analysis Agent records file- and registry-related API calls made by the given
malware, including the names of files or registry entries. From the names it
recognizes interesting deception parameters such as registry keys that contain
saved FTP passwords (e.g., “Software\Martin Prikryl”).

The Planning Agent has one Deception Playbook about “Software\Martin
Prikryl”: it belongs to WinSCP and the deception ploy includes installing WinSCP,
configuring honey accounts, and saving these FTP passwords. All these steps are
implemented in scripts.

Finally, the Deception Actuator runs the scripts to actually deploy the honey FTP
server and prepare an execution environment for the malware (e.g., installing
WinSCP and saving WinSCP passwords), and then run the malware.

E.7 Relevance to the AICA architecture

The overall design of AMDS fits well into the AICA architecture (Kott et al.
2018). AMDS Analysis Agent corresponds to Sensors in AICA, AMDS Planning
Agent maps to Planner Predictor and Action Selector in AICA, and AMDS
Deception Actuator corresponds to Action Execution in AICA. Both AMDS and
AICA leverage knowledge-based reasoning. However, AMDS can be considered
as special instance of AICA for malware deception. For example, the sensing and
world state identification are based on data collected from the environment but
AICA does not prescribe the exact kind of data to use. However, AMDS explicitly
uses live malware and its execution traces as the data type. Moreover, AICA
includes a collaboration and negotiation component, which is currently not part of
AMDS because the focus at this point on a single agent decision making. However,
we can see that this will be in our future extension of the architecture in order to
enable AMDS agents in various component of the system to share and coordinate
their action to globally orchestrate deception on large-scale cyber systems such as
IoT.

In summary, we consider AMDS as a concrete instantiating of AICA with a focus
on malware. The Analysis Agent and the Planning Agent of AMDS can be
enhanced by adopting strategies recommended in AICA, such as multiagent
collaboration.

125

Appendix F. Security and Trust in AICA

126

Authors: Edlira Dushku and Luigi Vincenzo Mancini

An Autonomous Intelligent Cyber-defense Agent (AICA) should provide real-time
cyber-defense protection to other intelligent devices deployed on nearby systems
within the perimeter that AICA should protect. Therefore, the security of the AICAs
themselves is critical. In particular, the information shared among collaborative
AICAs should be accurate and reliable regardless of the threat conditions. AICAs
should be able to establish trust in a rapidly changing environment and adopt trusted
collaboration mechanisms. In addition, AICAs should implement trusted learning
mechanisms in order to be resilient against attack scenarios, in which a
compromised AICA may maliciously influence the knowledge and the actions of
other friendly AICAs.

In the following, we identify some of the security aspects that should be considered
in the implementation of an AICA.

F.1 Security

F.1.1 Cryptographic Functions

Each AICA should use standard cryptographic functions to provide confidentiality
and integrity of AICA components and operations. Cryptographic functions can be
implemented in software or in a hardware accelerator. To generate unpredictable
random keys, an AICA should use hardware true random number generators
(TRNGs).

F.1.2 Key Management

Key management schemes play a key role in a secure communication between
AICAs. The key management process should be based on a policy and should be
performed by a specific security operation or an authority. The key management
schemes can be 1) centralized: only one entity manages the keys for all the agents,
2) decentralized: the agents will be organized into small subgroups, and different
entities will manage the key distribution for each subgroup, and 3) distributed: the
agents collaborate to generate a common key or each agent generates one key.

Alternatively, a random key pre-distribution scheme (Kahn et al. 1999; Eschenauer
and Gligor 2002; Chan et al. 2003), which rely on probabilistic key sharing can be
used as a lightweight key exchanging scheme between low-end devices. In these
schemes, each device is initialized with m keys, selected from a large pool of S
keys, such that two random subsets of size m in S will share at least one key with
some probability p. Afterwards, devices perform shared-key-discovery to find out
which of other devices they share a key with.

127

To protect the identity of AICAs, the private keys should be accessible only by
authorized components. When necessary, the signing keys can be protected within
hardware protected memory, preventing untrusted parties from using these keys. In
addition, key management schemes should address the impersonation problem. For
instance, an adversary can create its own cyber-defense agent (i.e., Sybil attack)
which joins the Army network in order to participate in the decision-making
process and influence the common goals of the friendly forces. The prominent
necessity against such attacks is the development of mechanisms that can allow the
legitimate agents to detect the agents with fake identity.

F.2 Trust

F.2.1 Trustworthiness of an AICA Agent

To provide reliable evidence about the integrity of software running on AICA, each
AICA should have a hardware-based immutable root of trust, such as a Trusted
Platform Module (TPM) (Trusted Computing Group 2013). Remote Attestation is
a security mechanism that verifies the trustworthiness of a system or a component.
In the hardware-based trust model, the trust establishment derives from the
underlying cryptography based security mechanisms (e.g., digital certificates,
signatures and cryptographic checksums, for instance). During the boot process,
TPM measures the system’s software state and stores the hash values into the
TPM’s Platform Configuration Registers (PCRs). However, TPM measures the
software only at boot time, and it is not resilient against runtime attacks. The
development of AICAs requires new security techniques that can check the
integrity at runtime of each AICA component.

F.2.2 Trusted Collaboration

The agents of friendly forces are expected to have some pre-shared cryptographic
keys protected by hardware Root-of-Trust (RoT) on each agent. To guarantee a
secure collaboration, all the services of the collaboration and negotiation
component should use the security credentials embedded in the RoT. Since none of
the distributed agents in the battlefield has a complete knowledge about the
environment, it is important to construct the necessary security mechanism that
could enable the legitimate to detect the agents with fake identity (e.g., a Sybil
attack).

In order to deploy trust establishment mechanisms for the communication among
agents, the collaboration function should be able to adopt different trust model
approaches. In particular, this component should consider two possible approaches:
hardware trust model and behavior-based trust model. In the hardware trust model

128

(Jøsang et al. 2007), the trust establishment derives from the underlying
cryptography based security mechanisms (e.g., digital certificates, signatures and
cryptographic checksums, for instance). In the behavior-based trust model, the trust
derives from external observations of agent’s behavior by providing a reputation
score for the agents (Zacharia and Maes 2000; Jøsang et al. 2007).

Furthermore, remote attestation can serve as a mechanism that allows an AICA to
establish trust to another AICA. In addition, battlefield environment require new
remote attestation schemes can also be used to verify the trustworthiness of a large
group of devices in a more efficient way than attesting each of devices individually.
These remote attestation schemes should be able to build trust even in the cases of
disruptive networks.

Beside the attestation capabilities, the AICAs should have sufficient onboard
analytics capabilities for performing local profiling of the activities of the other
intelligent agents to make safe decisions when there is no connection to the friendly
agents or command and control (C2). When the cyber-defense agent detects an
anomalous behavior, it should be able perform further investigation on the
suspicious device and then delete the malware.

F.2.3 Trusted Learning Among AICAs

The observation of an AICA can be intentionally misleading. The C2 unit can
extend the local analysis capabilities of an AICA toward an efficient security
protocol that correlates the received information with different source of
communications for the entire network of the agents. The verification of the
received information should take in consideration not only the value of the data,
but also the properties of the data reported from different agents.

Additionally, a distributed collaborative learning scheme presents a crucial threat.
An adversary can compromise an AICA and make the agent to share a particular
information, which will cause the other agents to be more exposed to attacks.
Research has shown that malicious participants on such a learning scenario are able
to effect the outcome of the learning scheme by maliciously affecting what the
global model has learned (Hitaj et al. 2017).

Therefore, it is necessary to develop some new trusted learning techniques in a
distributed collaborative battlefield environment.

129

Appendix G. Deep Decision-Making for AICAs

130

Author: Paul Théron

Information technology (IT) and operations technology (OT) systems are now
evolving toward autonomy and higher levels of complexity, both in the civil and
military domains. From sensors and goods-delivery drones to intelligent
ammunitions or augmented cognition for fire fighters through central command and
control systems and maintenance and inspection things, autonomy will become a
key to being successful over enemies in the increasingly fast pace of combats and
to deliver better services to populations and customers.

Just like in the Internet of Battle Things, intelligent things will fight intelligent
things (Kott 2018), in the Internet of Things and autonomous systems, intelligent
goodware will fight intelligent malware.

With the current paradigm of cyber defense, based on the centralized monitoring of
permanently connected systems, human operators who supervise cybersecurity and
resolve cyberattacks will be overwhelmed by the pace, volume and complexity of
cyberattacks at hand.

A bio-inspired autonomous, intelligent and trustworthy cyber-defense technology,
embedded into systems, must do the job for us, at speed and scale. Multiple agents,
spread across software and hardware components, will work together to monitor
and defend systems when malware strikes.

Autonomous Intelligent Cyber-defense Agents (AICAs) (Fig. G-1) will monitor
systems, detect attacks, design and execute tactically an appropriate response, learn
and protect themselves, and report to us about their doings and circumstances.

Fig. G-1 AICA Reference Architecture (AICARA)

131

G.1 Cyber-defense Agents Must Make Smart Decisions

Agents’ decision making will a key to their trustworthiness. But decision making
is still today at a very early stage of development (Heinl 2014). Machine learning
(ML) and reinforcement learning are regularly advocated as a pathway to the future
(e.g., in Ridley [2018]), but reduce decision making to a problem-solving issue. In
future highly tactical and fast-paced cyber battles, smart decisions will not be those
made in the heat of a single reaction to a single state of the defended system. The
adversary plans many moves and reactions to our anticipated response to each of
his moves. In a tactical cyber battle, a smart decision will be the one that wins the
battle, not one that counters temporarily an adversary malware but risks triggering
a fatal enemy retaliation later on.

G.2 What Makes Decisions Smart

Human decision making is smart because it builds on vigilance, vision, knowledge,
experience, anticipation, wisdom, self-monitoring, deliberation, emotion, and
plasticity. Instance based learning theory (IBLT) shows that five mechanisms are
at play in dynamic decision making (Gonzalez et al. 2003): instance-based
knowledge, recognition-based retrieval, adaptive strategies, necessity-based
choice, and feedback updates. Blakely and Théron (2018) and LeBlanc et al. (2017)
show that, for agents, making the right decision requires the integration of a variety
of approaches. Decision making in action (DMA; Théron [2014]) suggests that the
decision-making process’ plasticity is an adaptive response to circumstances’
characteristics and uncertainty.

G.3 The Plasticity of Decision-Making in Action

Théron (2014) showed that the cognitive process underlying individual human
DMA has plasticity to adapt to the circumstances handled by the subject in real-
time episodes of action.

The following two diagrams (Théron 2014) illustrate how, during a 5-s traumatic
“moment” in a fire fighter’s—Lieutenant A—episode of lived experience, two
successive, fast-paced, cycles of decision making involve differently shaped
cognitive processes to fight the circumstances at hand (Figs. G-2 and G-3).

What these two diagrams show is that in order to escape his fate (Lieutenant A is
caught in the middle of gun shots by three police officers trying to kill two
Rottweiler dogs that attack), the subject struggles at a very fast pace to find margins
of maneuver and ways of controlling the course of events.

132

Lieutenant A executes two successive cycles of decision making in a row, this
representing a time span of about 5 s.

When after the first round of decision making, Lieutenant A realizes that the
margins of safety and maneuver shrink, the second cycle of decision making shows
Lieutenant A struggles far more, resorting on more cognitive resources to sort the
situation out.

Fig. G-2 Decision cycle in Lieutenant A’s episode of experience

Fig. G-3 Another decision cycle in Lieutenant A’s episode of experience

133

When uncertainty appears at a given stage in the DMA cognitive process, the
cognitive function that identifies uncertainty calls upon other functions to resolve
doubts. For instance, the “analysis” function, if it cannot make sense of the
perceived situation, may call upon “long-term memory” to find in autobiographical
knowledge significant world patterns, or it can refocus the “sensing” function on
specific objects to acquire more data about the situation.

G.4 DMA is applicable to AICAs

We posit that AICAs’ decision-making function will rely on a model of DMA
similar to the one described in Théron (2014) and that we assume to be structured
as follows (Fig. G-4):

Fig. G-4 Model of AICAs’ DMA

• The Sensing cognitive component of the AICA will acquire data from its
environment, from itself and form other friendly agents.

• This data set will be processed by the World State Identification cognitive
component of the agent to provide the agent with a picture of the situation
at hand.

• The agent’s Planning cognitive component will elaborate and the Action
Selection cognitive component will select action options, or, alternatively
in case of a major “stress”, these components of the agent will resort on a
repertory of appropriate “reflex” courses of action.

134

• The selected course of action will be passed on to the Action Execution
cognitive component of the agent, and the latter will activate this set of
actions in its environment or within itself, or address them to other friendly
agents.

Agents’ DMA can be up to the challenges of fast-paced intelligent cyber battles if
it is organized in a human-like plastic cognitive process.

G.5 Deep Decision Making (DDM) in Agents

Deep decision making (DDM) is the computational model of DMA in AICAs.

In the DDM model, the agent’s decision-making process will be plastic, meaning
that it will activate the agent’s cognitive components in a plastic variety of ways
and combinations that will be dictated by circumstances at hand.

Each DDM cognitive function will itself rely upon a plastic combination of non-
artificial intelligence (AI) and AI/ML techniques (e.g., genetic algorithms and
classifiers or neural networks). It will be founded upon a set of models, memories,
techniques, and tactics.

The specific research challenge is here to know why, when and how AICAs’
cognitive components will need to trigger and communicate with one another.

This research should explore the various currents of work conducted in recent years
such as cognitive architectures (Lebiere and Anderson 1993) and their use for
computer games (Smart et al. 2016), naturalistic decision making (Lipshitz 1997),
and DMA (Théron 2014) for they characterize the micro-cognitive processes of
expert decision making, instance-based learning theory for DDM (Gonzalez et al.
2003), Agent-based modeling and simulation of cyber battles (Kotenko et al. 2012),
and cyberattack graphs and models (Jajodia and Noel 2010; Noel et al. 2015) as
they seek to provide models of adversaries, along with game theory, AI and ML
and its current refinements.

135

Appendix H. Annotated References from Game Theory Literature

136

Author: Martin Drašar

Game Theory primarily supports the Planning and Action Selection modules, and
secondarily, the Collaboration and Negotiation module.

Game theory is a framework that enables us to infer future actions of agents with
strategic decision-making skills. Thus, in AICA Reference Architecture
(AICARA), it may form a basis for a more formal model for an advisor.
Additionally, to construct a game theoretic model, one needs to reduce the
complexity/ dimensionality of the issue being modeled; such a reduction helps to
find the crucial elements of a problem—or study the orthogonal aspects in
separation.

However, game-theoretic methods might be difficult to apply in cybersecurity.
First, it is unclear how to realistically model an adversary (what are the adversary’s
intended actions, or their utility). Second, in military planning, game theory is
seldom used, and cybersecurity might be probably even more complex than military
planning.

To explore the domain, we strongly recommend these two basic textbooks on game
theory:

• Osborne MJ. An introduction to game theory. Oxford University Press,
2004.

• Nisan N et al., eds. Algorithmic game theory. Cambridge University Press,
2007.

There exist some relevant game-theoretic models used to investigate security-
related games. We comment on two of them:

• Korzhyk D, Yin Z, Kiekintveld C, Conitzer V, Tambe M. Stackelberg vs.
Nash in security games: an extended investigation of interchangeability,
equivalence, and uniqueness. J Art Int Res. 2011 May;41(2):297–327.

In Stackelberg’s Security Game, there are two players, the defender and the
attacker. The defender has to defend some infrastructure (isolated nodes, a
graph). The defender chooses a defense strategy which is the amount of
effort to defend each element of the infrastructure. The attacker observes
the strategy (e.g., sees how many police officers are deployed on each
airport) and picks an attack strategy (what elements to attack and with which
force). The utility of the defender is the value of defended infrastructure
minus cost of defense. The utility of the attacker is the value of hijacked
infrastructure minus the cost of the attack.

137

Relevance: we may represent the defended system as infrastructure for the
Stackelberg’s security game.

• Van Dijk M, Juels A, Oprea A, Rivest RL. FlipIt: the game of “stealthy
takeover”. J Crypto. 2013;26(4):655–713.

In FlipIt, there are two players (the defender and the attacker) and one node
(a single piece of infrastructure). The players fight for the control over the
node over a certain time horizon; players can make repeated actions during
that time. The attacker’s action is to hijack the node. The defender’s action
is to reinitialize the node and thus regain its control over it (until the end of
the game or the next move of the attacker). Players can’t observe the state
of the node without making an action. The utility of a player is the total time
they control the node minus the total cost of the actions. The strategy is
when to execute the actions.

Relevance: FlipIt represents a system with an exploit (that cannot be
permanently fixed) and a stealthy malware; a defender move represents, for
example, a trusted reinitialization.

Following references are sample applications of game-theoretic reasoning to
military and cybersecurity planning:

• Chatterjee S, Halappanavar M, Tipireddy R, Oster M. Game theory and
uncertainty quantification for cyber defense applications. SIAM News.
2016;49(6).

The defended cyber infrastructure is modeled by layers. Each pair of
attacker‒defender actions is associated with probability of penetrating each
layer. Each action has a cost. The utility is the expected cost of penetrating
all layers (or benefit, for the attacker); minus the cost of the action taken.
The paper validates the model by a cyber-wargaming scenario involving
people.

• Colbert EJ, Kott A, Knachel LP. The game-theoretic model and
experimental investigation of cyber wargaming. The Journal of Defense
Modeling and Simulation. 2018.

Game-theoretic modeling commonly assumes that both sides know each
other’s utilities and the repertoire of actions. The paper shows how to cope
with unknown attacker’s strategies using reinforcement learning algorithm.
The algorithm is used to tune transition probabilities between possible
actions.

We indicate another interesting paper about adaptive cyber defense:

138

• Zhu M, Hu Z, Liu P. Reinforcement learning algorithms for adaptive cyber
defense against Heartbleed. Proceedings of the First ACM Workshop on
Moving Target Defense. 2014:51–58.

One crucial point to obtain autonomy for cyber-defense’s agent is the learning
process. The following reference deals with reinforcement learning:

• Beaudoin L, Japkowicz N, Matwin S. Autonomic computer network
defence using risk state and reinforcement learning. Cryptology and
Information Security Series. 2009;3:238–248.

This paper shows an application of reinforcement learning to adapt
computer network defense in order to minimize the risk (a product of the
infrastructure value and the probability of a successful attack). The paper
uses a simulator to learn an optimal defending strategy. The simulator
assumes a queuing-theory like distribution of incoming vulnerabilities. The
defended network is represented by a graph; for each component, the
possible actions of the defender are fixing, patching, isolating and waiting.

Reinforcement learning is a domain in which new important results occur
any year. Research activities about neural networks always places a little
further the border of what is possible to do. We choose the following
reference which presents what we imagine to combine Planning and Action
Selection modules in a single neural network:

• Mnih V et al. Playing Atari with deep reinforcement learning. 2013.
arXiv:1312.5602 [cs].

Cyber defense can be treated as a complex decision-making process in an
environment that has a complex state that changes both stochastically and
in response to the opponents’ actions; and a payoff that might be delayed in
time from the moment the action is taken. Such an environment is not unlike
an arcade game. Reinforcement learning combined with deep learning was
applied to successfully play such arcade games. This approach starts with a
generic learning algorithm that is not adapted for a specific game; instead,
it takes a sequence of images as an input; and joystick movements
(left/right/top/bottom) as possible actions. After learning, the algorithm
achieved higher scores than expert human players. It may seem that a black
box consisting of a reinforcement learning algorithm could replace the
combined Planning and Action Selection modules (taking along also the
problem of representing the world state). However, cyber defense is more
complex than an arcade game. First, there is no simulator to train on.
Second, there are more possible actions. Third, the opponent is stronger than

139

a 1980s “AI” of an arcade game. Without expertise in reinforcement
learning, it is thus unclear how (and whether at all) their impressive results
translate to cyber defense.

140

List of Symbols, Abbreviations, and Acronyms

AICA Autonomous Intelligent Cyber-defense Agent

AICARA Autonomous Intelligent Cyber-defense Agent Reference
Architecture

AMQP Advanced Message Queuing Protocol

APT advanced persistent threat

ARL Army Research Laboratory

BMS battle management system

BUS system bus

C2 command and control

C4ISR command, control, communications, computers, intelligence,
surveillance, and reconnaissance

CAPEC Common Attack Pattern Enumeration and Classification

COAP Constrained Application Protocol

COMMS communication system

CONOPS Concept of Operations

CPS cyber–physical system

CPU central processing unit

CS control systems

CVE Common Vulnerability and Exposure

DTLS Datagram Transport Layer Security

EW electronic warfare

fa set of possible plans of actions

fw set of feasible actions

HTTP Hypertext Transfer Protocol

InterCOM internal communication system

IoC indicator of compromise

141

IRM incident response mechanisms

ISR intelligence, surveillance, and reconnaissance

IT information technology

KB knowledge base

MOTS military off-the-shelf

MISP Malware Information Sharing Platform

MQTT Message Queuing Telemetry Transport

MS Mission Specific System

NATO North Atlantic Treaty Organization

OPT optoelectronic system

OS operating systemP2P peer-to-peer

PBS packet-based switching

POMDP Partially Observable Markov Decision Process

RCA root cause analysis

RoT Root-of-Trust

RPTS Requested Power To Send

RTG Research Task Group

S sensing

SCADA supervisory control and data acquisition

SCD service and capacity discovery

SHA-1 Secure Hash Algorithm 1

SNMP Simple Network Management Protocol

SOAP Simple Object Access Protocol

SW switch

TAP test access point

TCB Trusted Computing Base

TCP Transmission Control Protocol

142

TLS Transport Layer Security

TTPs tactics, techniques, and procedures

UAV unmanned aerial vehicle

VMS vehicle management system

VNS vehicle navigation system

WS weapon system

WSI World State Identification

143

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 1 CCDC ARL
 (PDF) FCDD RLD CL
 TECH LIB

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 1 CCDC ARL
 (PDF) FCDD RLD
 A KOTT

	List of Figures
	List of Tables
	Executive Summary
	1. Introduction
	1.1 Objective
	1.2 Fundamental Choices and Assumptions
	1.3 Basic Concepts and Terminology
	1.4 Scope and Selected Requirements for AICA

	Part A. Presentation of the Architecture
	2. Rationale of AICA and Scenario
	2.1 Context
	2.2 Agent Deployment
	2.3 Cyber-defense Agent Concept of Operations (CONOPS)
	2.4 An Attack Example

	3. Architecture Overview
	3.1 Sensing and World State Identification
	3.1.1 Sensing
	3.1.2 World State Identification

	3.2 Planning and Action Selection
	3.2.1 Planning
	3.2.2 Action Selection

	3.3 Action Execution
	3.3.1 Action Activation
	3.3.2 Execution Monitoring
	3.3.3 Effects Monitoring
	3.3.4 Execution Adjustment

	3.4 Collaboration and Negotiation
	3.5 Learning
	3.5.1 Learning
	3.5.2 Knowledge Improvement

	3.6 Agents’ Generic Process Flow

	4. Data Services within Agents
	4.1 World Model Data Service
	4.1.1 Definition
	4.1.2 Inputs
	4.1.3 Process
	4.1.4 Outputs
	4.1.5 Current Issues and Lines of Research

	4.2 World Current State and History
	4.2.1 Definition
	4.2.2 Inputs
	4.2.3 Process
	4.2.4 Outputs
	4.2.5 Current Issues and Lines of Research

	4.3 World Dynamics Data Service
	4.3.1 Definition
	4.3.2 Inputs
	4.3.3 Process
	4.3.4 Outputs
	4.3.5 Current Issues and Lines of Research

	Part B. Discussion of the Architecture’s Main Functions
	5. Sensing and World State Identification
	5.1 Overview
	5.2 Sensing
	5.3 Current World State Identification
	5.4 Anticipation of the Future World State
	5.5 Use Case

	6. Planning and Action Selection
	6.1 Overview
	6.2 Planning
	6.3 Action Selection
	6.4 Example
	6.4.1 A Common Cyberattack
	6.4.2 An Unexpected Cyberattack
	6.4.3 Cyber Exploration

	7. Action Execution
	7.1 Purpose
	7.1.1 Action Activation
	7.1.2 Device System Administration
	7.1.3 Antivirus Function
	7.1.4 Integrity Check
	7.1.5 Active Defense Capabilities
	7.1.6 Legitimate Services Proxy
	7.1.7 Execution Monitoring
	7.1.8 Effects Monitoring
	7.1.9 Execution Adjustment

	7.2 Use Cases
	7.2.1 Anomalous Behavior of a Military Vehicle
	7.2.2 Battle Management System, Vehicle Management System, and Communication System Compromised

	8. Collaboration and Negotiation
	8.1 Overall Purpose
	8.2 Architecture of the Collaboration and Negotiation Component
	8.2.1 Agent Inquiry and Discovery
	8.2.2 Name Discovery
	8.2.3 Authentication
	8.2.4 Service and Capacity Discovery
	8.2.5 Collaborative Planning
	8.2.6 Communication Protocols

	8.3 Collaboration Process
	8.4 Use Cases
	8.5 Conclusions

	9. Learning
	9.1 Representation of the Agent’s Experience
	9.2 Approach Example 1: Case-Based Reasoning
	9.3 Approach Example 2: Deep Neural Network to Learn the Reward for the Next Action
	9.4 Approach Example 3: Learning the Reward Function
	9.5 Always Learning?

	10. Conclusions
	11. References
	12. Bibliography
	Appendix A. Twenty-Eight Seconds in the Life of an AICA
	A.1 An Illustrative Operating Scenario
	A.2 Discussion of Challenges and Requirements

	Appendix B. Impact of Agent’s Purpose on its Capabilities
	B.1 Mobility
	B.2 Lethality
	B.3 Criticality
	B.4 Connectivity
	B.5 Power and Processing Constraints
	B.6 Commoditization and Standardization of Agents for Environments

	Appendix C. “Hello, World” Autonomous Agent
	C.1 Environment
	C.2 Task
	C.3 Sensors
	C.4 Actions
	C.5 Learning
	C.6 Testing
	C.7 Additional Considerations

	Appendix D. The AHEAD Autonomous Agent
	D.1 Introduction
	D.2 Component Comparison
	D.3 Technologies and Implementation
	D.3.1 System-Pot Integration
	D.3.2 Pot Sensors and Actuators

	Appendix E. Autonomous Cyber Deception Based on Malware Analytics
	E.1 Introduction
	E.1.1 Deception Models
	E.1.2 Deception 4D Goals
	E.1.3 Malware Deception Playbook: Toward Real-time Autonomous Deception of Malware

	E.2 Detection Agent
	E.3 gExtractor: The Analysis Agent
	E.3.1 Attack Behavior Model
	E.3.2 Malware Symbolic Execution
	E.3.3 Deception Parameters Extraction
	E.3.3.1 Refining the Attack Behavior Model
	E.3.3.2 Selecting Deception Parameters

	E.4 Planning Agent
	E.4.1 Select the Best Deception Parameters to Achieve 4D
	E.4.2 Select the Most Appropriate Deception Ploy

	E.5 Deception Actuator
	E.6 Prototype
	E.7 Relevance to the AICA architecture

	Appendix F. Security and Trust in AICA
	F.1 Security
	F.1.1 Cryptographic Functions
	F.1.2 Key Management

	F.2 Trust
	F.2.1 Trustworthiness of an AICA Agent
	F.2.2 Trusted Collaboration
	F.2.3 Trusted Learning Among AICAs

	Appendix G. Deep Decision-Making for AICAs
	G.1 Cyber-defense Agents Must Make Smart Decisions
	G.2 What Makes Decisions Smart
	G.3 The Plasticity of Decision-Making in Action
	G.4 DMA is applicable to AICAs
	G.5 Deep Decision Making (DDM) in Agents

	Appendix H. Annotated References from Game Theory Literature
	List of Symbols, Abbreviations, and Acronyms

