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Executive Summary 

The North Atlantic Treaty Organization (NATO) Research Task Group IST-152 
developed a concept and a reference architecture for intelligent software agents 
performing active, largely autonomous cyber-defense actions on military assets. In 
this report, which is an updated and extended version of its previous release, such 
an agent is referred to as an Autonomous Intelligent Cyber-defense Agent (AICA).  

In a conflict with a technically sophisticated adversary, NATO military networks 
will operate in a heavily contested battlefield. Enemy malware will likely infiltrate 
and attack friendly networks and systems. Today’s reliance on human cyber 
defenders will be untenable on the future battlefield. Instead, artificially intelligent 
agents such as AICAs will be necessary to defeat the enemy malware in an 
environment of potentially disrupted communications where human intervention 
may not be possible.  

The IST-152 group identified specific capabilities of AICA. For example, AICA 
will have to be capable of autonomous planning and execution of complex multi-
step activities for defeating or degrading sophisticated adversary malware, with 
anticipation and minimization of resulting side effects. It will have to be capable of 
adversarial reasoning to battle against a thinking, adaptive malware. Crucially, 
AICA will have to keep itself and its actions as undetectable as possible, and will 
have to use deceptions and camouflage. 

The group identified the key functions, components, and their interactions for a 
potential reference architecture of such an agent, as well as a tentative roadmap 
toward the capabilities of AICA.  

NATO should encourage the emerging interest in member nations’ academia, 
industry, and governments toward the related research and development. AICAs 
are likely to become primary cyber fighters on the future battlefield, and NATO 
must not fall behind its adversaries in developing and deploying such technologies. 
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1. Introduction 

Authors: Alexander Kott and Guido Gluschke 

This report describes a reference architecture for intelligent software agents 
performing active, largely autonomous cyber-defense actions on military networks 
of computing and communicating devices. The report is produced by the North 
Atlantic Treaty Organization (NATO) Research Task Group (RTG) IST-152 
“Intelligent Autonomous Agents for Cyber Defense and Resilience”. 

1.1 Objective 

In a conflict with a technically sophisticated adversary, NATO military tactical 
networks will operate in a heavily contested battlefield. Enemy software cyber 
agents—malware—will likely infiltrate friendly networks and attack friendly 
command, control, communications, computers, intelligence, surveillance, and 
reconnaissance (C4ISR) and computerized weapon systems. To fight them, NATO 
needs an effective response. Artificial cyber defenders—intelligent, autonomous, 
mobile agents specialized in active cyber defense—are one form of adequate and 
effective response. The key roles of these agents will be to detect and defeat the 
enemy malware that infiltrated friendly systems and networks. 

With this in mind, in 2016, NATO initiated RTG IST-152 “Intelligent Autonomous 
Agents for Cyber Defense and Resilience”. Its objective is to help accelerate 
development and transition to practice of such software agents by producing a 
reference architecture and technical roadmap. 

If such research is successful, it will lead to technologies that enable the following 
vision. Cyber-defense agents will stealthily monitor the networks, detect the enemy 
cyber activities while remaining concealed, and then destroy or degrade the enemy 
malware. They will do so mostly autonomously, because human cyber experts will 
be always scarce on the battlefield. They have to be capable of autonomous learning 
because enemy malware is constantly evolving. They have to be stealthy because 
the enemy malware will try to find and destroy them. At the time of this writing 
and to the best of our knowledge, autonomous agents with such capabilities remain 
unavailable. The IST-152 group performed focused technical analysis to produce a 
first-ever reference architecture and technical roadmap for autonomous cyber-
defense agents. In addition, the RTG worked to identify selected elements of such 
capabilities that are beginning to appear in academic and industrial research. 

The output of the RTG is a tangible starting point for acquisition activities by 
NATO nations. If based on a common reference architecture, software agents 
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developed or purchased by different nations will be far more likely to be 
interoperable. Deployed on NATO networks, the autonomous cyber-defense agents 
will become a significant force multiplier: the agents will operate autonomously 
when it is necessary to augment the inevitably limited capabilities of human cyber 
defenders, and will work under the control of humans when ordered to do so and 
when conditions permit such a control. 

With the help of autonomous, intelligent cyber-defense agents, NATO C4ISR will 
be more likely to survive an encounter with a determined, technically sophisticated 
enemy. To acquire and successfully deploy such agents, in an interoperable manner, 
NATO nations must have a common technical vision, including a reference 
architecture and a roadmap, of which this report is a beginning.  

1.2 Fundamental Choices and Assumptions 

A key assumption taken by this report is that in a conflict with a technically 
sophisticated adversary, NATO military tactical networks will operate in a heavily 
contested battlefield. Enemy software cyber agents—malware—will infiltrate 
NATO networks and attack NATO C4ISR and computerized weapon systems, with 
a significant probability that cannot be ignored. 

To focus the attention of our research group, we have chosen to limit the scope of 
the problem as follows. We consider a single military platform, such as a vehicle, 
a vessel, or an unmanned aerial vehicle (UAV) with one or more computers residing 
on the platform, connected to sensors and actuators. Each computer contributes 
considerably to the operation of the platform or systems installed on the platform. 
One or more computers are assumed to have been compromised, where the 
compromise is either established as a fact or is suspected. 

Due to the contested nature of the communications environment (e.g., the enemy is 
jamming the communications or radio silence is required to avoid detection by the 
enemy), communications between the vehicle and other elements of the friendly 
force are often limited and intermittent. At certain times and under some conditions, 
communications may be entirely impossible. 

Given the constraints on communications, conventional centralized cyber defense 
(i.e., an architecture where local sensors send cyber-relevant information to a 
central location where highly capable cyber-defense systems and human analysts 
detect the presence of malware and initiate corrective actions remotely) is often 
infeasible. It is also unrealistic to expect that the human warfighters residing on the 
platform, for example, a vehicle, will have the necessary skills or time available to 
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perform cyber-defense functions locally on the vehicle, even more so if the vehicle 
is unmanned. 

Therefore, cyber defense of such a platform, including its computing devices, will 
have to be performed by an intelligent, autonomous software agent. The agent (or 
multiple agents per platform) will stealthily monitor the networks, detect the enemy 
agents while remaining concealed, and then destroy or degrade the enemy malware. 
The agent will have to do so mostly autonomously, without support or guidance by 
a human expert. 

In most discussions in this report, the agent is considered as a monolithic piece of 
software. However, depending on the implementation, the agent’s modules can be 
distributed over multiple processes or devices, or it could be implemented as a team 
of agents or subagents. 

To fight the enemy malware that has infiltrated the friendly computer, the agent 
may have to take destructive actions, such as deleting or quarantining certain 
software. Such destructive actions are carefully controlled by the appropriate rules 
of engagement and are allowed only on the computer where the agent resides. 

In most cases, the agent will not be able to stop the enemy from penetrating the 
platform’s systems. However, it will be able to perform detection of, analysis, and 
response to a given threat. The actions of the agent, in general, cannot be guaranteed 
to preserve the availability or integrity of the functions and data of friendly 
computers. There is a risk that an action of the agent will “break” the friendly 
computer, disable important friendly software, or corrupt or delete important data. 
Developers of the agent will attempt to design its actions and planning capability 
to minimize the risk. This risk, in a military environment, has to be balanced against 
the death or destruction caused by the enemy if the agent’s action is not taken. 

Provisions will be made to enable a remote controller—human or automated cyber 
command and control (C2) node—to fully observe, direct, and modify the actions 
of the agent, and even to update the agent’s software as needed. However, it is 
recognized that such a remote control is often impossible due to the difficulties of 
communicating between the agent and the control node. The agent, therefore, 
should be able to plan, analyze, and perform most or all of its actions autonomously. 

Similarly, provisions should be made for the agent to collaborate with other agents 
(that reside on other computers); however, in many cases, because the 
communications are impaired or observed by the enemy, the agent has to eschew 
collaboration and operate alone. 

The enemy malware, specifically, its capabilities and tactics, techniques, and 
procedures (TTPs), evolves rapidly. Therefore, the agent will be capable of 
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autonomous learning. In case the enemy malware knows that the agent exists and 
is likely to be present on the computer, the enemy malware will seek to find and 
destroy the agent. Therefore, the agent will possess techniques and mechanisms for 
maintaining a certain degree of stealth, camouflage, and concealment. More 
generally, the agent takes measures that reduce the probability that the enemy 
malware will detect the agent. The agent is mindful of the need to exercise self-
preservation and self-defense. 

It is assumed here that the agent resides on a computer where it was originally 
installed by a human controller or an authorized process. We do envision a 
possibility that an agent may move itself (or move a replica of itself) to another 
computer. However, such propagation is assumed to occur only under exceptional 
and well-specified conditions, and takes place only within a friendly network—
from one friendly computer to another friendly computer. 

Here is a good place to mention the controversy about “good viruses”. Such viruses 
have been proposed, criticized, and rejected earlier (Muttik 2008). These criticisms 
do not apply here. This agent is not a virus because it does not propagate except 
under explicit conditions within authorized and cooperative nodes. It is also used 
only in military environments, where the concerns listed in Muttik (2016) do not 
apply. As mentioned earlier, in a military environment, any drawbacks that might 
be associated with operations of an autonomous cyber-defense agent have to be 
balanced against the death or destruction caused by the enemy if the agent is not 
available. 

Discussions of autonomous cyber-defense capabilities bring to mind the Defense 
Advanced Research Projects Agency (DARPA) Cyber Grand Challenge and the 
products that showed effective performance at that competition (e.g., Avgerinos et 
al. [2018]). However, unlike those products, the Autonomous Intelligent Cyber-
defense Agent’s (AICA’s) purpose is not to find and fix vulnerabilities in friendly 
software, but rather to find and defeat the adversary’s malware. 

The field of collaborative intrusion detection (Zhou et al. 2010) is another topic that 
appears to be related to AICA. However, collaborative intrusion detection, while a 
possible useful capability for AICA, is not its central purpose. It is possible that 
extensive collaboration would not be possible for AICAs due to the need to 
maintain stealth. 

Other related areas of research include software agents, multiagent systems, 
autonomous software, and host-based intrusion detection systems. Each of these 
areas is associated with voluminous literature. To our knowledge, an agent with 
AICA’s purposes, capabilities, and architecture has not been discussed in the 
literature.  
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1.3 Basic Concepts and Terminology 

In this report, the term “agent” denotes software or a collection of software that 
resides and operates on one or more computing devices, perceives its environment, 
and executes purposeful actions on the environment (and on itself) to achieve the 
agent’s goals. We use the following acronyms: the agent is AICA and the 
architecture is the AICA Reference Architecture (AICARA). 

The term “environment” here denotes everything that surrounds the agent and that 
the agent can perceive: the computer hardware and software where the agent 
operates, the vehicle, the enemy malware, the humans who communicate with the 
agent or with surrounding hardware and software, and other agents that this agent 
can find and with whom it can communicate. 

The term “percept” denotes an element of information that the agent is able to 
obtain or receive; the percept reflects an attribute of the environment or a change 
in an attribute of the environment. The following are examples of percepts, partly 
inspired by De Gaspari et al. (2016): 

• Report from Nmap probing 

• Observation of a change to the file system 

• A signal that someone has interacted with a fake webpage (honeypot page) 
or fake service 

The term “action” denotes any action that a software agent can execute on its 
environment. It can include an impact on other software or data, or a 
communication to a human or another agent. The following are examples of actions 
(De Gaspari et al. 2016): 

• Remap ports 

• Check the integrity of the file system 

• Create and deploy a fake password file, with an alarm mechanism activated 
when the file is accessed 

• Create and deploy a fake webpage or web service 

• Deposit a file with a “poison pill” 

• Identify a suspicious file 

• Sandbox a suspicious file 

• Analyze the behavior of software in the sandbox 
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Examples of actions and situations in which the agent takes such actions are 
described in the Appendices. 

The term “state” refers to a collection of values of the environment’s attributes. 
Generally, the state is not known either fully or accurately, and the agent must infer 
it, at least in part. 

The term “plan” here refers to a sequence or a directed graph of actions that the 
agent generates in order to transform the current state of the environment into a 
different state more desirable by the agent. The plan can be conditional (i.e., it 
includes intermediate decisions based on the perceived state) or temporal (i.e., it 
includes constraints on when the actions are performed). 

1.4 Scope and Selected Requirements for AICA 

For the purposes of describing its reference architecture, we assume that AICA 
resides on a physical military platform with the scope of ensuring availability and 
integrity of all relevant computerized functions of the platform against injected 
malicious code in order to ensure the correct behavior of the platform. Detecting 
abnormal functional behavior of the physical platform is not within the scope of the 
cyber-defense agent. This is assumed to be done by other operational monitor and 
control functions, manually or autonomously. 

Taking a UAV as an example of a platform, the scope of AICA can be illustrated 
as in Fig. 1. 

 

Fig. 1 A possible scope of AICA implementation is illustrated in the context of a 
hypothetical UAV 
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In the figure, computing power means the primary computers (one or multiple) that 
support the functions of the UAV. Actuators are physical devices for controlling 
the physical elements of the UAV. Here these devices are assumed to include 
computer processing, can be targets of cyberattacks, and therefore, should be 
protected by AICAs. The same argument applies to sensors and communication 
components. Therefore, in this example, the elements highlighted in the figure fall 
in the scope of AICA’s responsibilities. 

The following are some of the key requirements that can be seen as prerequisites 
for development of AICA’s architecture: 

• The agent shall reside on a military platform in a persistent and stealthy 
manner. Here, stealth refers to the agent’s ability to minimize the probability 
that the adversary malware will detect and observe the agent’s presence and 
activity. 

• The agent shall be able to observe the state and activities within the elements 
within its scope of responsibilities, detect the enemy malware while 
remaining minimally observable to the malware, and destroy or degrade the 
enemy malware. 

• The agent shall be capable of operating effectively in an environment 
compromised by an adversary malware.  

• The agent shall be resistant to compromise. 

• The agent shall be able to observe and understand the environment in which 
it is operating and for that it needs its own world model of the relevant 
environment.  

• The agent shall be able to observe and influence all computational elements 
under its protection, including computational elements of all sensors and 
actuators of the platform. 

• All relevant communications traffic shall be observable for the agent. 

• The agent shall be able to function effectively when communications to 
other friendly elements or external controller are limited or unavailable.  

• The agent shall function under specific circumstances, such as limited 
computing resources (memory, CPU, etc.) and special environmental 
conditions (e.g., temperature, air pressure, G-forces, size, and so on.) 

• The agent shall function autonomously when necessary, that is, without 
depending on support of external friendly elements or an external controller. 
This implies that it has to be enabled to interact with all computational 
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components of the platform, including the computational elements of 
sensors and actuators in real time; make its own decisions; and take the 
necessary actions. 

• Provisions shall be made to enable a remote or local human controller to 
observe, direct, and modify the actions of the agent, when a need arises and 
circumstances permit.  

• The agent shall be able to make nontrivial (and nonobvious to the adversary) 
plans in order to pursue a given goal and has to be able to execute defined 
actions resulted from the plan. 

• The agent shall be able to take destructive actions, such as deleting or 
quarantining certain software and data, autonomously, while observing the 
specified rules of engagement. The agent shall have the means to assess the 
risk and benefits involved in such actions, and make its decisions 
accordingly. 

• The agent should be able to collaborate with other friendly agents when a 
need arises and conditions permit. Collaboration schemes and negotiation 
mechanisms are needed for that. 

• The agent should be able to perform autonomous learning, particularly 
regarding the capabilities, techniques, and procedures of the enemy 
malware. The learning should occur both offline and online, and the newly 
learned knowledge should be able to inform the agent during its operation.  

• The agent, whenever requested, shall report data to the external controller 
that would enable the controller to make inferences about the 
trustworthiness of the agent. 

• The agent should be able to self-propagate to a remote, friendly computing 
device. Self-propagation shall occur only under exceptional and well-
specified conditions of military necessity. 

The remainder of this report describes a proposed architecture that would meet such 
requirements. 

Part A of the report provides the rationale and concept of operations of AICA, gives 
an overview of its architecture, and explains how the necessary data are stored and 
managed within the agent.  

Part B offers a collection of exploratory discussions of possible approaches to 
implementing the key functions of the architecture. In this part, Section 5 describes 
how the agent acquires the information about its environment and determines the 
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state of the environment. Section 6 discusses the means by which the agent plans 
its actions, including the prediction of actions’ ramifications. Section 7 is about the 
ways in which the agent executes the actions it decided upon. Section 8 explains 
how the agent may collaborate with other agents. Section 9 outlines possible 
approaches to means by which the agent learns from its actions and observations.  
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Part A. Presentation of the Architecture 
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2. Rationale of AICA and Scenario  

Authors: Paul Losiewicz, Mauno Pihelgas, and Martin Drašar 

2.1 Context  

The threat of cyberattack on NATO-member military platforms cannot be 
underestimated. As described in a US General Accounting Office Report, GAO-
19-128, Weapon Systems Cybersecurity: DOD Just Beginning to Grapple with 
Scale of Vulnerabilities, “Nearly all major acquisition programs that were 
operationally tested between 2012 and 2017 had mission-critical cyber 
vulnerabilities that adversaries could compromise” (GAO 2018). 

In the wider cybersecurity domain, tactical targets for cyberattacks are termed 
“cyber–physical systems” (CPSs). The gateways for attacks are often the control 
systems (CSs) that manage the guidance and propulsion of a vehicle, the C2 of a 
system, or the operations of a system payload, such as weapon systems or 
intelligence, surveillance, and reconnaissance (ISR) sensor packages. CSs have 
been segregated into either facilities-related control systems (FRCSs) or platform 
control systems (often termed platform information technology [PIT]).  

In this section, we describe an AICA employment strategy to defend against 
cyberattack in a notional platform using realistic threats in the military domain. It 
is understood that the modality of the vehicle (ground, aerial, surface, subsurface) 
will have different operational impacts in different contexts. In addition the targeted 
attacks can occur on the control systems of manned, optionally manned, and 
unmanned vehicles. We attempt to generalize as much as possible. 

The following notional systems components (represented by boxes) are used in the 
vehicle (Fig. 2): 

• Bus (BUS): This box describes a component that is able to interconnect 
different devices, not relying on a specific technology. It includes all 
internal communication systems including intercoms that enable crew 
members who are physically separated to communicate within the vehicle, 
if the vehicle is crewed. There may be more than one, and busses can be 
repeated as needed.  

• Payload (PLD): This is a symbolic box for a weapon, electronic warfare, 
ISR sensor package, or simply a cargo CS on the vehicle. There may be 
more than one, and the designation can be used as needed. The payload may 
include manned crew stations.  
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• Communication system (COMMS): This box describes the 
communication systems between the vehicle and the external world 
(satellite communication, radio communication, etc.). There may be more 
than one, and the designation can be used as needed. 

• Vehicle Navigation System (VNS): This box describes the internal 
position, navigation, and timing (PNT) system of the vehicle. The VNS 
receives input from PNT sensors on the vehicle or from offboard. The VNS 
provides input to the vehicle CS, either a pilot in case of a manned vehicle 
or the autopilot in case of an unmanned system.  

• Sensors (SENS): This box represents the systems that can be used to 
provide input from the environment. The sensing function may be part of 
the VNS, vehicle CS, or a payload.  

• Vehicle Management System (VMS): This box indicates the platform 
internal CS used to pilot the vehicle. It includes either a pilot in case of a 
manned vehicle or an autopilot and a contingency management system in 
case of an unmanned vehicle.  

• Battle Management System (BMS): This box represents the system that 
is used by the operators, either onboard or offboard, to gather and send 
information about their tasking, platform status, and situation awareness of 
friends or foes. It is primarily used to report systems status and update 
mission tasking. It usually includes a bidirectional geo-information system 
that relies on information from the vehicle CS and navigation sensors, and 
payload sensors. It gets information from either a centralized battle manager 
or forms part of a distributed, noncentralized BMS. 
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Fig. 2 Vehicle systems and network structure 

2.2 Agent Deployment 

Agents can be deployed in a centralized approach with master and client agents or 
as a distributed network of self-organizing agents (dotted lines indicate optional C2 
configurations). The AICA we envision monitors internal component operations or 
communications bus traffic, which could include sensor readings, control signals, 
or TCP-IP packet data. For the autonomous CPS that may be operated remotely or 
operate with high degrees of autonomy, the data will consist of machine-to-machine 
(M2M) data passed over C2 or platform CS networks, using protocols and busses 
such as MIL-STD-1553, BACnet, MODBUS, ZigBee, IEBus, and ANSI/ISA-95. 
CSs are rapidly migrating to use of TCP-IP as well.  

In a centralized approach, the evaluation of data and subsequent decision making 
is delegated to a master agent. The master agent controls the client agents and 
commands them to perform actions. The client agents, which have been installed 
on subsystem hardware can be very simple (e.g., scripts that send data and execute 
commands) or full replicas of the designated master agent that can be activated as 
needed.   

In Fig. 3, the dotted lines indicate optional AICA communication schemes for either 
onboard or offboard C2.  
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Fig. 3 Centralized agent system 

A distributed network of self-organizing agents does not employ a centralized 
master agent, but uses more of a peer-to-peer (P2P) structure (Fig. 4). In the extreme 
case, the autonomous agents have to independently negotiate and coordinate 
tasking, attempt to maintain a common situational picture, and decide together 
about collaborative goals. This structure eliminates the master agent as a single 
point of failure and dramatically increases system resilience. Thus, even isolated or 
partitioned agents can continue to protect some portion of the entire system. This 
more resilient structure does come at the cost of more complexity in the 
maintenance of communications and the coordination of action and deliberation. 

 

Fig. 4 Distributed agent CS 
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2.3 Cyber-defense Agent Concept of Operations (CONOPS) 

CPSs operate over sensor or control links that can be degraded, denied, or corrupted 
by adversarial action in combat. The standard of performance of a cyber system is 
how well the system guarantees confidentiality, integrity, and availability of the 
data that are transmitted or stored on the system. For the discussion that follows, 
we assume a decentralized command structure of autonomous agents operating to 
mitigate interference with a BMS of a military vehicle. We assume use of TCP-IP. 
Note that use of a decentralized cyber-defense agent command structure in a vehicle 
does not imply that the command structure for the vehicle as a whole is 
decentralized.  

2.4 An Attack Example 

Let us assume a vehicle in laager undergoing routine maintenance. A maintenance 
management system is connected to a system bus to record system network traffic 
during static pre-operations test procedures.  

Stage 0: Primary Infection 

Prior to the maintenance procedure, malware is loaded onto the maintenance system 
hardware, which has now become the vector for the attack on the vehicle. When 
the maintenance hardware is connected to the vehicle, malicious code is allowed to 
migrate to the VMS.  

However, there is an AICA resident in the VMS, which in this case logs the network 
activity under the maintenance procedure, which includes identification and access 
management (IDAM), file transfers, and configuration file changes.  

Stage 1: Reconnaissance 

Once the maintenance hardware is removed, the malware begins to log network 
traffic in order to identify the attached subsystems of the vehicle. The location of 
the BMS is not known to the malware a priori, so the malware starts probing for 
any open ports commonly used by a BMS. Once located, it scans the BMS for 
vulnerabilities it can exploit from within the VMS. 

The AICA in the VMS detects the scanning activity going out over the network. It 
puts AICAs in the target systems on alert following the anomalous activity of an 
unanticipated port scan. The VMS is given an alert from its AICA that there is 
anomalous activity originating from the VMS. This information is then used in 
accordance with platform TTPs to initiate systems diagnostics. Systems diagnostics 
notifications are sent offboard via the BMS and COMMS to a C2 node that the 
vehicle operational readiness might be degraded.  
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Stage 2: Attack 

The malware in the VMS recognizes that VMS diagnostics have started and 
commences a lateral movement into the file structures of the BMS. It selects an 
appropriate exploit and executes code.  

The AICA in the BMS recognizes a subsequent change in a configuration file as a 
result of the code execution and that it was updated outside of a scheduled 
maintenance period or without system access authorization. That AICA notifies the 
BMS to commence systems diagnostics. Another diagnostics alert is sent offboard 
to the C2 system. An AICA at the central C2 system recognizes an increased 
frequency of diagnostics alerts and sends status queries back to the vehicle system’s 
AICAs. The malware now needs to move laterally again due to systems diagnostics 
procedures being initiated and selects the COMMS after a port scan. The AICA in 
COMMS has already been alerted to anomalous behavior in two other subsystems 
and notifies COMMS that no configuration changes are to be accepted without the 
elevated privileges required by systems recovery procedures. The malware is now 
unable to execute a hijacking of a software-defined radio (SDR) communications 
channel and resumes port scanning to seek further lateral movement and further 
targets. 

Stage 3: Recovery 

It is at this point that the AICAs at the various vehicle control subsystems isolate 
their systems on the various control busses and initiate automated diagnostics and 
recovery procedures. The vehicle maintenance team is alerted and diagnostics and 
forensics begins, whereby the malware is discovered, and agent-based examination 
of systems logs discovers the chain of events and the likely vector. Luckily, in this 
example, our vehicle never made it out of laager before recovery. But we can 
envision many other scenarios where we encounter cyber‒physical attacks while 
underway, and mitigation and recovery processes have to be carried out during a 
mission. In some of these instances, the deliberative actions of the embedded agents 
will have to include prosecuting a mission with degraded capabilities or 
autonomous recovery of a vehicle with minimal human intervention.  
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3. Architecture Overview 

Author: Paul Théron 

This section provides an overview of the AICARA. First, it presents the agents’ 
functional architecture and its components as it is assumed today. Next, it identifies 
five high-level functions of agents and, for each of them, details their main features. 
Finally, recognizing that the components of the functional architecture will have 
dependencies, the last section presents what they are going to be. 

Cyber-defense agents considered in the AICARA can essentially do the following: 

• They can handle autonomously and in a trustworthy manner the 
cyberattacks affecting the perimeter they defend. 

• They can cooperate, with one another, a cyber C2 system, or even a human 
operator, when and as required and feasible. 

Each agent is implemented within or in attachment to one delimited system or 
device. Cooperation between agents is achieved through available communication 
channels. These communication channels must be as covert as feasible because 
agents must be as stealth as possible in order to protect themselves from attacks by 
enemy malware. 

The AICARA, derived from Russell and Norvig (2010), is assumed to include the 
functional components outlined in Fig. 5. 

 

Fig. 5 AICA’s functional architecture, AICARA 

State 
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The agents’ functional components belong in three classes as outlined in Table 1. 

Table 1 Classes of AICA components 

Class of components Functional components 
Core components Sensing 
 World State Identification 
 Planning 
 Action Selection 
 Action Execution 

Support functions Collaboration and Negotiation 
 Learning 
 Goals management 
 Self-assurance 
 Stealth and security 

Data services World model 
 Current state and history 
 World dynamics 
 Goals 

 

Note that at the time of publication, the AICARA stands as an initial assumption. 
It is discussed and exemplified in later sections. 

AICAs can be implemented in three different ways, and each option would entail 
specific choices both in terms of technology and doctrine of use: 

1) A society of specialized agents: This option refers to the distributed 
implementation of the reference agent’s functional components (as in  
Fig. 5) as a group of specialized agents, each one owning/delivering one of 
the functions of the AICA presented, and the sum of the agents delivering 
the entire reference agent’s cyber-defense capability. Major questions are 
the following: Where should these agents be implemented/located within 
the defended system? What happens if one specialist agent is disabled (for 
instance, out of an attack directed at it) and thus breaks a functional chain: 
would it be replaced, how would its own knowledge/working memory be 
preserved, how would the tasks it was performing before being attacked 
continue, and so on? Does this option allow or jeopardize agents’ stealth 
and can covert communication channels hide a possibly intense traffic 
between specialist agents? 

2) A multiagent system: This option refers to a swarm or cohort of fully 
functional agents the architecture of which would be as in the AICA model 
presented previously, each one being capable of executing all AICA 
functions, and the swarm as a whole being supposed to deliver a collective 
response to a cyberattack. Major questions are the following: What is the 
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collective intelligence of the swarm and how does it emerge? Are 
multiagent systems less stealthy than option 1 and option 3? 

3) An autonomous collaborative agent: This option refers to a fully 
functional agent, capable of performing full cyber-defense duty on its own 
territory and capable, when and as needed and circumstances permitting, of 
communicating with other agents. Major questions are the following: What 
is the purpose of communications/collaborations between agents? Where is 
this single agent implemented within a system? How different is this agent 
from cyber-detection agents currently under development or already 
available? 

This report does not advocate any choice of an implementation option. The choice 
of an implementation option may be guided by criteria such as, but not limited to, 
the following: 

• The type and level of classification of systems to defend 

• Their architecture and topology 

• Their technical capacities (computing power, memory, communications, 
etc.) 

• Agents’ performance and cost requirements 

AICA contributes to the cyber defense of a military system or device through five 
main high-level functions (Fig. 6): 

1) Sensing and World State Identification 

2) Planning and Action Selection 

3) Collaboration and Negotiation 

4) Action Execution 

5) Learning 
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Fig. 6 AICA’s main five high-level functions 

3.1 Sensing and World State Identification 

Sensing and World State Identification is the AICA high-level function that allows 
a cyber-defense agent to acquire data from the environment and systems in which 
it operates, as well as from itself, to reach an understanding of the current state of 
the world and, should it detect risks in it, trigger the Planning and Action Selection 
high-level function.  

This high-level function relies upon the world model, current state and history, 
sensors, and world state identification components of the assumed functional 
architecture.  

It includes the following two functions: 

• Sensing 

• World state identification 

3.1.1 Sensing 

Sensing operates from two types of data sources: 

• External (system/device-related) current world state descriptors 

• Internal (agent-related) current state descriptors 

Current world state descriptors, both external and internal, are captured on the fly 
by the agent’s sensing component. They may be double checked, formatted, or 
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normalized for later use by the world state identification component (to create 
processed current state descriptors). 

3.1.2 World State Identification 

The world state identification function operates from two sources of data: 

• Processed current state descriptors 

• Learned world state patterns 

Learned world state patterns are stored in the agent’s world knowledge repository. 
Processed current state descriptors and learned world state patterns are compared 
to identify problematic current world state patterns (i.e., presenting an anomaly or 
a risk). When identifying a problematic current world state pattern, the world state 
identification function triggers the Planning and Action Selection high-level 
function. 

3.2 Planning and Action Selection 

Planning and Action Selection is the AICA high-level function that allows a cyber-
defense agent to elaborate one to several action proposals and propose them to the 
action selection function, which decides the action or set of actions to execute to 
resolve the problematic world state pattern previously identified by the world state 
identification function.  

This high-level function relies upon the world dynamics, actions and effects, goals, 
the actions’ effect predictor, and action selection components of the assumed 
functional architecture.  

It includes the following two functions: 

• Planning 

• Action selection 

3.2.1 Planning 

The planning function operates on the basis of two data sources: 

• Problematic current world state pattern 

• Repertoire of actions (response repertoire) 

The problematic current world state pattern and repertoire of actions (response 
repertoire) are concurrently explored to determine the action or set of actions 
(proposed response plan) that can resolve the submitted problematic current world 
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state pattern. The action or set of actions so determined are presented to the action 
selection. 

It may be possible that the planning function requires some form of cooperation 
with other agents or a central cyber C2 to come up with an optimal set of actions 
forming a global response strategy. Such cooperation could be to either request 
from other agents or the cyber C2 complementary action proposals or delegate to 
the cyber C2 the responsibility of coordinating a global set of actions forming the 
wider response strategy. This aspect is not yet studied in the present release of the 
AICARA. 

3.2.2 Action Selection 

The action selection function operates on the basis of three data sources: 

• Proposed response plans 

• Agent’s goals 

• Execution constraints and requirements (e.g., environment’s technical 
configuration, and so on) 

The proposed response plan is analyzed by the action selection function in the light 
of the agent’s current goals, and the execution constraints and requirements that 
may either be part of the world state descriptors gained through the Sensing and 
World State Identification high-level function or be stored in the agent’s data 
repository and originated in the Learning high-level function. The proposed 
response plan is then trimmed from whatever element does not fit the situation at 
hand and augmented by prerequisite, preparatory, precautionary, or postexecution 
recommended complementary actions. The action selection thus produces an 
executable response plan, which is then submitted to the Action Execution high-
level function. 

Like with the planning function, it is possible that the action selection function is 
required to liaise with other agents or a central cyber C2 to come up with an optimal 
executable response plan forming part of and being in line with a global response 
strategy. Such cooperation could be to exchange and consolidate information with 
other agents or the central cyber C2, and then agree collectively on the assignment 
of responsibilities over the various parts of the execution of the global executable 
response plan to specific agents. Alternatively, it could be to delegate to the cyber 
C2 the responsibility of elaborating a consolidated executable response plan and 
then assign to specific agents the responsibility of executing part(s) of the overall 
plan within their dedicated perimeter. This aspect is not yet studied in the present 
release of the AICARA. 
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3.3 Action Execution 

Action Execution is the AICA high-level function that allows a cyber-defense agent 
to effect the action selection function’s decision about an executable response plan 
(or the part of a global executable response plan assigned to the agent), monitor its 
execution and its effects, and provide friendly agents with the means to adjust the 
execution of their own part of the response plan as and when needed.  

This high-level function relies upon the goals and actuators components of the 
assumed functional architecture.  

It includes the following four functions: 

• Action activation 

• Execution monitoring 

• Effects monitoring 

• Execution adjustment 

3.3.1 Action Activation 

The action activation function operates on the basis of two data sources: 

• Executable response plan 

• Environment’s technical configuration 

Taking into account the environment’s technical configuration, the action 
activation function executes each planned action in the scheduled order. 

3.3.2 Execution Monitoring 

The execution monitoring operates on the basis of two data sources: 

• Executable response plan 

• Plan execution feedback and status 

The execution monitoring function should be able to monitor (possibly through the 
sensing function) each action’s execution status (for instance, done, not done, or 
wrongly done). Any status apart from “done” should trigger the execution 
adjustment function. 
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3.3.3 Effects Monitoring 

The effects monitoring function operates on the basis of two data sources: 

• Executable response plan 

• Environment’s change feedback and status 

It should be able to capture (possibly through the sensing function) any 
modification occurring in the plan execution’s environment. The associated data 
set should be analyzed/explored. The result of such data exploration might (should) 
provide a positive (satisfactory) or negative (unsatisfactory) environment change 
status. Should this status be negative, this should trigger the execution adjustment 
function. 

3.3.4 Execution Adjustment 

The execution adjustment function operates on the basis of three data sources: 

• Executable response plan 

• Plan execution feedback and status 

• Environment’s change feedback and status 

The execution adjustment function should explore the correspondence between the 
three data sets to find alarming associations between the implementation of the 
executable response plan and its effects. Should warning signs be identified, the 
execution adjustment function should either adapt the actions’ implementation to 
circumstances or trigger a tactical revision/adaptation to the plan. 

The update of the response plan in the course of its execution is not studied in the 
current release of the AICARA. It presents issues that require further research work 
such as the need for collaboration and negotiation between agents. A notion of 
tactical superiority can be envisaged but is not studied in this report. 

3.4 Collaboration and Negotiation 

Collaboration and Negotiation is the AICA high-level function that allows a cyber-
defense agent to 1) exchange information with other agents or a central cyber C2, 
or possibly with a human operator, for instance, when one of the agent’s functional 
components is not capable on its own of reaching satisfactory conclusions or usable 
results; and 2) negotiate with its partners the elaboration of a consolidated 
conclusion or result.  
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This high-level function relies upon the collaboration and negotiation component 
of the assumed functional architecture.  

It includes, at the present stage, one function: 

• Collaboration and negotiation 

The collaboration and negotiation function operates on the basis of three data 
sources: 

• Internal, outgoing data sets (i.e., sent to other agents, a cyber C2, or human 
operator) 

• External, incoming data sets (i.e., received from other agents, a central 
cyber C2, or human operator) 

• The agents’ own knowledge (i.e., consolidated through the Learning high-
level function). 

When an agent’s World State Identification, Planning, or Action Selection high-
level function (or potentially any other functional component) needs it, the agent’s 
collaboration and negotiation function is activated. Depending on collaboration 
policies memorized in the agent’s stealth and security component, ad hoc data are 
sent to authorized agents or a central cyber C2, possibly to a human operator. The 
receiver(s) may negotiate with the emitting agent or may not be able to elaborate 
further on the basis of the data received through their own collaboration and 
negotiation function. When agents (including possibly a central cyber C2 or human 
operator) have elaborated and reached shared conclusions, agent(s) will spark the 
next function within their own decision-making process. 

When the agent’s own security is threatened, the agent’s collaboration and 
negotiation function should at least help warn other agents (or a central cyber C2 
or possibly a human operator) of this state. 

This release of the AICARA does not describe the agent’s security monitoring and 
management. 

Furthermore, the agent’s collaboration and negotiation function may be used to 
receive warnings from other agents that may trigger in the agent a higher state of 
alarm. 

Finally, the agent’s collaboration and negotiation function should help agents 
discover other agents and establish links with them. 
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This release of the AICARA does not describe nor specify the exchange protocol 
and the negotiation process, nor the alarm-raising mechanism and the agent 
discovery mechanism. These are issues to be further studied in later research. 

3.5 Learning 

Learning is the AICA high-level function that allows a cyber-defense agent to use 
the agent’s experience to improve progressively its efficiency with regard to all 
other functions.  

This high-level function relies upon the learning and knowledge improvement 
components of the assumed functional architecture.  

It includes two functions: 

• Learning 

• Knowledge improvement 

3.5.1 Learning 

The learning function operates on the basis of three data sources: 

• Feedback data from the agent’s environment changes 

• Feedback data from the agent’s functioning  

• Feedback data from the agent’s actions 

The learning function collects and analyzes the corresponding data sets possibly in 
conjunction with the reward function of the agent (or distance between goals and 
achievements). Results feed the knowledge improvement function. 

3.5.2 Knowledge Improvement 

The knowledge improvement function operates on the basis of two data sources: 

• Results (propositions) from the learning function 

• Current elements of the agent’s knowledge 

The knowledge improvement function merges results (propositions) from the 
learning function and the current elements of the agent’s knowledge. 

The current release of the AICARA provides only a basic description or examples 
of the Learning high-level function and of the role of artificial intelligence in this 
context.  



 

27 

3.6 Agents’ Generic Process Flow 

The overall functioning of an agent is summarized in the following graph that 
shows the agent’s generic process flow (Fig. 7). 

 

Fig. 7 AICA’s generic process flow 

In this diagram, each component of the AICARA details its principal tasks. 

A working memory, which could be implemented either as temporary stacks or as 
a shared blackboard or common work area, will help with passing data on from 
component to component. 
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Besides the acquisition of data relating to the systems falling in the agent’s scope 
and of data exchanged with other entities (other agents, a central cyber C2 system, 
or human operators via an ad hoc human‒computer cooperation mechanism), the 
sensing component has also a monitoring function that covers the execution of 
action plans launched by the action execution component. 

The world state identification component does the following: 

• May ask the sensing component for further data if it cannot compute the 
current state of the environment in the agent’s remit. 

• Computes how good or poor the performance of previously launched plans 
of actions is, and if poor or inadequate, it triggers the planning component 
for a revision/tactical adaptation of these plans in order to better match the 
attacker’s action. 

• Updates, when possible/appropriate, the world current state and history, 
world dynamics, and world model databases. 

The planning component does the following: 

• Elaborates a number of options of action (countermeasure) plans in 
response to the current state identified previously. 

• May ask the world state identification component for a refinement of the 
computation of the current state if it lacks elements to elaborate a plan of 
countermeasures. 

The action selection component does the following: 

• Evaluates and ranks (in terms for instance of cost, time to deliver effects, 
risks, etc.) the plan options presented by the planning component. 

• May ask the planning component to refine its plan options. 

• Updates the world dynamics database component when it has made a clear 
choice of a plan and associated it with the current state found by the world 
state identification component. 

The action execution component does the following: 

• Launches the orders corresponding to the plan and sends them to the ad hoc 
effectors across the system defended by the agent. 

• Specifies what the sensing component must monitor to supervise the 
execution of the action plan, and it stores those elements in the working 
memory to pass them on to the sensing component. 



 

29 

• Updates the world dynamics database components with these 
complementary elements of information. 

The learning component does the following: 

• Has a generic learning mechanism that reinforces itself with experience. 

• Learns on the fly from the data acquired and stored by the agent. 

• Updates the database components with new elements of knowledge. 

• Should trigger the ad hoc adaptations of the agent’s internals to improve the 
latter’s performance. 
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4. Data Services within Agents 

Author: Paul Théron 

This section describes the initial assumptions made about the following AICA data 
services: 

• World model 

• World current state and history 

• World dynamics knowledge 

These modules of the agent are not just mere data repositories but producers of 
processed data (i.e., “information”). They embark on an intelligence of their own 
or rely on external sources to produce information, possibly cooperating with other 
agent services for higher-order intelligence or support. Their communication with 
other agent data services and functional components implies the definition of 
internal protocols. Their data must be protected. The agent’s data services are built 
in a way similar to that of the diagram in Fig. 8. 

 

Fig. 8 General architecture of the data services 

At the present stage, many options are open. We hypothesize the following ones: 

• Data collectors accept incoming data records and check their compliance to 
formatting and consistency rules.  
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• Once verified, data records are processed. Processing may be limited to 
mere storage instructions or the data service module may have to perform 
data normalization/consolidation/aggregation functions as well as 
exploratory data analysis and exploratory factor analysis operations. 

• Data records and elaborated information can be requested by the agent’s 
other components. In this case, the data service’s request handler should be 
designed to check the request against validity and security rules (according 
to agent design options and security policies), and then data are extracted, 
sorted, grouped, and bundled into an appropriate data container and returned 
to the requesting module. 

4.1 World Model Data Service 

4.1.1 Definition 

We hypothesize that a world model is the following: 

• A formal descriptor of the elements it supplies to the agent’s other 
components: 

o The nominal and degraded ontology or configuration of the agent 

o The nominal and degraded ontology or configuration of the system 
and environment (systems and threat) to defend 

o The nominal and degraded ontology or configuration of cyber 
threats against the system and environment to defend and against the 
agent itself 

o The nominal and degraded patterns of the world’s state (agent + 
environment + threat). Patterns express the agent, the system or its 
environment’s static and dynamic relations, and the concurrency of 
their configurations. 

• It is based on the following: 

o A theory of world models in the context of the cyber defense of 
military systems 

o A formal descriptive language 

o Validated algorithms transforming inputs into descriptors 

• Embedded into the agent, the model is determined by one of the following: 
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o Calculated by the agent (which inflates the agent’s size and requires 
computing power) or 

o Loaded from external sources (which requires periodic or occasional 
downloads of the agent’s data and updates/uploads into the agent of 
data produced by external sources). 

4.1.2 Inputs 

We hypothesize that the world model data service may take the following classes 
of data as input: 

• Data about the agent: 

o Architecture, modules, and functions 

o Communication 

o Collaboration links 

o Processes and protocols 

o Performance descriptors 

• Data about the defended system: 

o Identified vulnerabilities 

o Security devices and barriers 

o Topology of friendly agents network 

o Connection components problems 

o Hardware components problems 

o Firmware components problems 

o Operating system (OS) components problems 

o Middleware components problems 

o Applicative components problems 

• Data about cyber threats: 

o Cyberattack, cyber vulnerabilities, cybersecurity, and cyber-defense 
state-of-the-art technologies 
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o MITRE and other useful classifications (Common Attack Pattern 
Enumeration and Classification [CAPEC], Common Vulnerabilities 
and Exposures [CVEs], etc.) 

o Kill chain-like models 

• Data about the defended system’s environment: 

o Sources of threats and attack C2 and tools 

o Threat and vulnerability patterns (CAPEC, CVEs, etc.) 

o Indicators of compromise (IoCs) (OpenIOC, Malware Information 
Sharing Platform [MISP], etc.) 

o Cybersecurity and cyber-defense dispositions and their topology 

o Available cyber-defense resources 

o Surrounding systems and their cybersecurity and cyber-defense 
dispositions and topologies 

The data sources would then be the following: 

• Cyber-threat intelligence sources 

• System descriptors (Simple Network Management Protocol [SNMP] data, 
packet-based switching [PBS], topology, configuration, etc.) 

• The world state and history data service 

4.1.3 Process 

There are two ways to produce ontologies and patterns of the world state: 

• They can be created within the agent. 

• They can be uploaded into the agent’s database. 

When created within the agent, input data are processed in the following ways: 

• Collected through the agent’s sensor (a standard format is required). 

• Verified and preprocessed by the world model data service (e.g., 
normalized, formatted, and so on). 

• Associated by the world model data service to form ontologies and patterns 
(ad hoc functionalities are required). 
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• Stored in the world model data service’s database (a standard format is 
required). 

4.1.4 Outputs 

The hypothesized outputs of the agent’s world data service are the following: 

• Domain ontologies 

o Agent 

o System 

o Environment 

o Communication 

o Threat 

o Nominal and degraded 

• World patterns 

o Cross-domain patterns 

o Domain-specific patterns 

o Nominal and degraded 

4.1.5 Current Issues and Lines of Research 

Several issues can be identified at the present stage: 

• The data classes required as input and the exact nature of output information 

• The data formats of input data, data exchange protocols, and output 
information 

• The algorithms for preprocessing, creating, and indexing data 

• The implementation option of agents 

• The risks to the agent’s stealth due to the required memory size, processing 
power, and communication needs 
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4.2 World Current State and History 

4.2.1 Definition 

We hypothesize that the world current state is the evaluated distance between the 
world as it is and what it should be (based, for instance, on set goals or standards). 
Pieces of information such as the following may be required to form world state 
vectors describing the agent’s world and that can be used by the world state 
identification component of AICA: 

• Nominal and degraded states of reference of agents and their cohort, 
defended systems, their environment and connections, and threats, 
including the current state and the track record of past states 

• Memory of cyber-defense actions and their impacts on the state of the world 
(current and past) 

• Current data about agents and their cohort, defended systems, their 
environment and connections, and threats 

The world state identification module can then be hypothesized to do the following: 

• Calculate the current world state data vector. 

• Measure the deviation of the current world state data vector from the 
nominal world state data vector. 

• Interpret (meaning) the measure of the deviation (based on history, actions 
in progress, etc.). 

• Appraise the deviation (i.e., determine the positive or negative valence of 
the deviation). 

The current world state data vector is a formal descriptor of the appraised world’s 
state at a given point in time and circumstances, usable by the world state 
identification module. 

The world state history is the chronological track record of world state descriptors. 

4.2.2 Inputs 

The world current state and history data service takes world state records from the 
world state identification module. 
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4.2.3 Process 

The world current state and history data service labels (with metadata) and stores 
the new world state data vector provided by the state identification module into its 
database. 

4.2.4 Outputs 

World state descriptor records are stored in the world current state and history’s 
database. 

4.2.5 Current Issues and Lines of Research 

The issues identified at the present stage are the following, among possible others: 

• The specification of world state data descriptors/vectors 

• The computation of world states, both nominal and degraded 

• How the historical records of world state descriptors are used by the world 
state identification 

• The size of the world current state and history’s database 

4.3 World Dynamics Data Service 

4.3.1 Definition 

Given that the world can be defined as a collection of interrelated objects, we 
hypothesize that world dynamics are the following: 

• An agent’s behavioral rules and related expected states (nominal and 
degraded) in given circumstances 

• Defended systems and other world objects’ behavioral rules and related 
expected states (nominal and degraded) in given circumstances 

They can be measured in the following four manners, summarized in Table 2: 

• A measure of how the world changes given its own event parameters (state 
changes, actions, events); the world includes agents, defended systems, 
those systems’ environment and connections, and the threats on agents, the 
defended systems, and their environments. 

• A measure of how the world changes given agents’ event parameters (state 
changes, actions). 

• A measure of how agents change given events in the world. 
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• A measure of how agents change given their own event parameters (state 
changes, actions). 

Table 2 Measuring the world dynamics data  

Factors of change  
 
Changing object  

World’s events Agents’ events 

World as a whole 1 2 

Agents and agent cohort 3 4 

 

Those laws of world’s dynamics can be computed out of the following data: 

• States of reference (nominal and degraded) descriptors for agents, systems, 
environments, and threats 

• Agents and world entities’ events and actions descriptors 

• Agents’ and world entities’ initial and final state descriptors 

The world dynamics data service computes state transition patterns. Confidence 
estimators are associated with state transition patterns. State transition patterns and 
confidence estimators can be applied to identified initial states of world entities or 
agents to predict their likely end states. 

4.3.2 Inputs 

We hypothesize that the world dynamics data service requires the following classes 
of data as input: 

• Data from the world model data service 

• Data about cyber-threat dynamics: 

o Patterns of behavior of malware 

o {cyber threat; targeted world entities and topologies} 

o {cyberattack patterns; expected defense responses} 

o {initial state; end state} and their factors 

o Circumstances/context of cyber threats 

• Data about defended systems and cyber-defense dynamics: 

o Monitored and surrounding system(s) 
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 Patterns of behavior of world events 

 {world events; expected world retroaction} 

 {world’s initial state; world’s end state} and their factors 

 Circumstances/context of world changes  

o Agent itself and other friendly agents inside/outside agent’s cohort 

 Patterns of behavior of agent events 

 {agent events; expected agent retroaction} 

 {agent’s initial state; agent’s end state} and their factors 

 Circumstances/context of agent changes 

o Incident response mechanisms (IRM) dynamics 

 Patterns of behavior of IRM events 

 {IRM events; expected IRM retroaction} 

 {IRM’s initial state; IRM’s end state} and their factors 

 Circumstances/context of IRM changes 

4.3.3 Process 

There are two possible ways to compute world state transition patterns and 
associated confidence estimators out of input data: 

• Data are processed live by the world dynamics data service. 

• Data are uploaded into the world dynamics data service’s database from 
externally provided records. 

4.3.4 Outputs 

The world dynamics data service computes state transition patterns and associated 
confidence estimators. 

4.3.5 Current Issues and Lines of Research 

The complexity of the world (and even of the agent, as it is internally dynamic and 
adjusts to the world’s changes) poses computational challenges. The second kind 
of technical challenges is related to the memory size and computation power 
required to compute state transition patterns. The third challenge is associated with 
using state transition patterns and their confidence estimators. 
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Part B. Discussion of the Architecture’s Main Functions 
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5. Sensing and World State Identification 

Authors: Martin Drašar, Mauno Pihelgas, Markus Kont, and Benoît Leblanc 

5.1 Overview 

To interact with the world, the agent has to perceive and understand itself and its 
surroundings. This is accomplished by two functional components of the AICARA: 
Sensing and World State Identification: 

• The Sensing function provides the agent with data about itself and its 
environment. 

• The World State Identification function interprets the collected data as the 
following: 

o The current state of the world and of the agent itself  

o Changes in this context since last observations were made 

o Adversarial or suspicious events 

o Anomalies in collected data 

The Sensing function addresses the question “What do I observe?” and the World 
State Identification addresses the question “What is the situation?”. Their combined 
actions participate to agent’s situational awareness. 

5.2 Sensing 

The Sensing function (Fig. 9) can contain a number of subsystems: 

• Self: Collects data about the agent’s memory and functions to ensure the 
agent’s integrity. 

• System: Collects data about the defended system’s resources like memory, 
file system, and so on. It also monitors results of actions performed by the 
agent. It can either be part of a monolithic agent or function as a separate 
module that feeds the agent data. 

• Environment: Used for monitoring data coming from outside the agent. 
Can either be part of a monolithic agent or function as a separate module 
that feeds the agent data. 
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• For the sensory data to be useful to the rest of the system, they should be 
properly normalized, correlated, fused, and deduplicated, so that only 
unique and relevant bits are passed on. 

 

Fig. 9 Sensing component 

The dataflow of the Sensing system includes the following traits: 

• Sensing is the function responsible for gathering and processing data from 
both external and internal sources. 

• To ensure continued operation, the Sensing function monitors its internal 
health by collecting runtime statistics and checking their integrity. 

• Furthermore, the input modules of the Sensing function fulfil the typical 
roles of system and network monitoring tools. The Sensing function collects 
logs and metrics from the other internal systems of the agent, the underlying 
host system (i.e., the OS), and relevant applications running on the host. 
Sensing is also capable of capturing network traffic from the host network 
interfaces. Alternatively, in the case of a centralized agent, it is possible to 
capture traffic from a dedicated test access point (TAP) device or 
monitoring port. 

• The data from the input modules always go through the input sanitation 
(normalization, correlation, fusion, and deduplication) process, which 
ensures that the data can be processed by other functions of the agent. This 
also applies to data received from other agents and C2, because the 
adversary may try to inject malicious or garbage data into the agent. 
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• The Sensing function passes its data on to the World State Identification 
function. 

• The Sensing function can also deal with the communication component to 
be able to ask question or discuss what is observed with other agents, cyber 
C2 or humans, via a secure channel.  

It should be noted that when agent’s stealth is a concern, all Sensing operations 
should be done on-demand. Unlike in the physical world, it is nearly impossible 
(excluding specific side channels) for an agent to do a truly passive reading of a 
sensor, because the system calls needed may by intercepted by an adversarial agent. 
It should also be noted that by applying this policy an agent can severe itself from 
any external orders, which may substantially diminish its usability, 

5.3 Current World State Identification 

The World State Identification component (Fig. 10) processes data given from 
sensing to assess the state the world is in with respect to the world model. It consists 
of up to four processes: 

• Environment identification: Based on the sensing data and the knowledge 
of expected world state, it identifies the environment the agent is running 
on. This process is mostly needed to distinguish running inside a virtual 
machine or inside a debugger to limit the adversary’s ability to reverse 
engineer the agent. 

• Friend or foe identification: Used mainly for identification and tagging of 
processes and files on the system. It is a prerequisite for offensive and 
defensive actions against adversaries as well as correct strategy planning. 

• Anomaly identification: Used for detecting anomalies in data from the 
Sensing function. The baseline for anomaly identification is encoded into 
the world state. The detection can be rule- or pattern-based, or based on 
behavioral detection. 

• World State Update: Transforms sensor data and data from environment 
identification and friend/foe identification into a world model and world 
dynamics update. 
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Fig. 10 World State Identification component 

The dataflow of the full-featured system includes the following: 

• Updates on self and environment changes are received from the Sensing 
function. 

• The world model database, the current state and history database and the 
world dynamics database are queried to have a baseline for sensing data 
processing. 

• The environment identification component assesses any changes in the 
agent’s environment. 

• The friend/foe identification component identifies any potential adversaries 
and produces IoCs. 

• The anomaly detection component estimates potentially anomalous 
behavior in sensing data and produces IoCs. 

• Findings from the previous three components are combined with input 
sensing data and transformed to a world state update. This update is 
propagated to a world state database. 
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5.4 Anticipation of the Future World State 

This section deals with world state anticipation. This is based on the knowledge of 
the actual state of the world and the knowledge of the laws of a regular behavior. 

A world model is an abstraction of reality that provides a semantic meaning to 
perceived data. Its actual representation is strongly dependent on the 
implementation of the agent. In the optimal case, an agent is using data services to 
process, store, and employ sensory information transformed into the world model 
and world dynamics knowledge. These data services conform to the general 
description provided in Section 4 and are built with their own sets of constraints, 
which dictate their structure and capabilities. 

In this section, we present a set of recommendations for a minimalistic world model 
and world dynamics structures, which are required for successful operation of an 
in-vehicle AICA. Given the large amount of data the agent could be processing and 
the number of different states the agent could be in, the following should be 
satisfied: 

• The model should use features based on the properties of the machines and 
network, which are normal during non-anomalous operation. Provided that 
most Army systems have precisely defined operation parameters, 
establishing a model as a baseline should be attainable. 

• The model should encode explicit IoCs. 

• The goals of the agent should be expressible as a function of a world state. 

• Both the current state and world dynamics are also highly dependent on the 
agent’s implementation and the design decisions for the model. 
Nevertheless, given the expected operational parameters of the agent, we 
suggest that the model used for the world and the current state should 
contain the components listed in Table 3. The world dynamics knowledge 
should be computed on the fly from the world model and the current state 
and history. 
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Table 3 Components of the world and current state and history models 

Component Model Description 

Flow database Current state and history 
Record of network flows, which can be 
augmented by full traffic traces where allowed 
by space constraints. 

Log stash Current state and history 
Collection of system and application logs, 
preferably in a unified form suited for quick 
searching and analysis. 

System metrics Current state and history Performance and operation characteristics of an 
agent and the system it is running on. 

Whitelists World model 
Policies and baselines of normal behavior 
derived beforehand from the knowledge of the 
agent’s environment. 

Entity description World model 
Current state and history 

Both the description of entities in the agent’s 
proximity and their current operational status as 
viewed by an agent (e.g., probability of 
compromise). 

 

5.5 Use Case 

To illustrate possible relations among the Sensing function, World State 
Identification function, and world state, we present a scenario where an AICA is 
deployed in a vehicle. In this scenario, malicious code was inserted during 
maintenance to the VMS and manifests on the battlefield, propagating to the BMS 
and then to the COMMS. 

The use case timeline and events are as follow: 

1) The VMS gets infected during maintenance. 

o Sensing (S): No information. 

o World state identification (I): No information. 

o World state (W): No change. 

2) Malware activates and attempts to infiltrate the BMS. 

o S: Detected connection between the VMS and BMS. 

o I: Identified an anomalous connection and produced an IoC. 

o W: Updated with the IoC; the VMS and BMS are flagged as 
anomalously acting systems with potential to compromise. 
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3) BMS successfully compromised. 

o S: The BMS supervising process identifies an integrity violation and 
logs the information. 

o I: Logged information is transformed into an IoC. 

o W: Updated with the IoC; the BMS is flagged as a potentially 
compromised system with higher confidence. 

4) Malware attempts to infiltrate COMMS. 

o S: Detected connection between the VMS and COMMS. 

o I: Identified an anomalous connection and produced an IoC. 

o W: Updated with the IoC; the VMS, and COMMS are flagged as 
anomalously acting systems with potential to compromise, the VMS 
with higher confidence. 

5) COMMS successfully compromised. 

o S: No information. 

o I: No information. 

o W: No change. 

6) The VMS is functionally affected. 

o S: Detected anomalies in vehicle responses. 

o I: Anomaly report is converted into an IoC. 

o W: Updated with the IoC; the VMS is flagged as compromised with 
the highest probability. 
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6. Planning and Action Selection 

Authors: Benoît LeBlanc and Krzysztof Rzadca 

6.1 Overview 

We propose to decompose the part of the decision-making process that decides the 
actions to be performed into two components: the Planning function and Action 
Selection function.  

The goal of Planning is to create a set of possible plans of actions that lead from 
the current world state to some interested future world states. As a new plan is 
computed, Planning sends it to Action Selection, in a semi-continuous process. 
Then, the Planning function continues to compute alternative plans and proposes 
them, one by one. Some of them are real new plans, some others are just new 
versions or adaptations of previous plans. Finally, it answers the question: “What 
could be done?” 

The Action Selection receives continuously proposed plans of actions leading to 
some future world states of interest. Because of enemy actions or the world 
dynamics, there might be multiple future world states stemming from a single 
action in the first step. Aware of the goals of the agent, the Action Selection function 
choses an action plan that leads to the most desirable future world states and then 
sends it to the Action Execution component. Finally, Action Selection function 
answers the question: “What must be done?” 

Action Selection may ask Planning for a more precise or a fitter plan if needed. 

Planning produces plans and Action Selection is able to negotiate details of these 
plans in an iterative cycle between the two components. This is a major part of the 
decision-making process and it eventually produces a “to do list” of actions. 

6.2 Planning 

The Planning function has access to a database representing a repertoire of actions: 
a kind of a dictionary of all possible actions, including preconditions and 
prerequisites for each action. Two functions are used by Planning to implement a 
tree exploration. The first one is called function fa. It is in charge of proposing 
actions. It maps the current world state (given by the world state identification 
[WSI] component) to a set of feasible actions (i.e., a subset of the discussed 
database). The second is called function fw. It maps a world state and an action to a 
set of future world states (possibly with some information on the probability of 
individual states) (Fig. 11). 
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Fig. 11 Planning component 

Starting with the current state, Planning uses fa to produce a set of alternative 
actions. For instance, and greatly simplifying the situation, if the current state given 
by the WSI module is (vehicle engaged in combat; and a system file with changed 
SHA-1 hash and previously unseen radio transmission detected), the result of fa, the 
set of feasible actions might be {no action, shut down COMM radio Y, shut down 
the entire computer system}.  

Then, on each of these actions, Planning uses fw, leading to a future world state. 
For instance, the previous world system state combined with the action “shut down 
COMM radio Y” may lead to the world state (vehicle engaged in combat; a system 
file with changed SHA-1 hash and weapon system Z malfunction). The process of 
invoking fa and fw is continued, resulting in a tree; a leaf of this tree is a set of future 
world states (or a probabilistic distribution over this set). 

When a path in the tree is determinate, it leads to a transmission to the Action 
Selection component of a plan such as “(#plan, (action, state), (action, state), etc.)”. 

Functions fa and fw can be implemented by trained neural networks or rule-based 
systems. Both should be precomputed and implemented in the system. Updates 
could be done during the vehicle overhaul. If the agent has a Learning component 
(see Section 9 about learning), then this function can be updated continuously based 
on learning from experience. 

Function fa is a service using the database “actions and effects”: receiving the world 
state and returning a set of actions. Function fw is a service of world dynamics 
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knowledge, but we stress that fw must consider not only the internal evolution of 
the world, but also the effects of a concrete action.  

The Planning function’s algorithm effectively builds a complete search tree of the 
future actions and world states, and we acknowledge that such a tree probably must 
be pruned because of a possibly exponential search space. 

An alternative to building a tree is to use a trained neural network directly. The 
input to the network is the current world state; the network produces future world 
states. Thus, the network implicitly implements fa and fw. 

After all, given basic rules (such as “avoid RF propagation” or “keep the 
initiative”), given criticality analysis of the assets, given a topology (which 
facilitates circulation of information) and security architecture (which curbs 
circulation of information), given resources that can be mobilized (such as a 
sandbox, a file cleaning tool), and given possible enemy tactical movements (such 
as expected expectations of the opponent), Planning combines consistency 
preservation and combinations of resources to produce possible plans of actions. 
Such plans are lists of proposed actions representing options of several sets of 
things to do. 

6.3 Action Selection 

Based on the current world state, Action Selection decides whether the situation is 
urgent, for instance, when the vehicle is engaged in combat. In the urgent decision-
making mode, one of the first action plans suggested by Planning is chosen; 
otherwise, Action Selection may wait for a longer time for Planning to send more 
actions plans. 

The Action Selection function chooses an action plan based on how the predicted 
future world states match with the goals of the mission. A goal can be expressed 
through a function of the (future) world state, mapping the state into the degree this 
particular goal is fulfilled. We acknowledge that there might be multiple goals and 
that their relative importance might change depending on the current state of the 
mission. For instance, one goal might be to maintain the information integrity of 
the vehicle, another to keep the crew as safe as possible, and yet another to achieve 
the mission’s principal, tactical objective. 

The Action Selection (Fig. 12) works to propose a multicriteria analysis of proposed 
plans of actions. Efficacy, rapidity, and assumed risks are the main criteria that must 
be considered. Policies, expressed in term of rules or goals, lead the choice of 
actions. 
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Fig. 12 Action Selection component 

The Action Selection component picks an action plan and then sends it to execution, 
beginning with the first action of the plan. Action Selection expects that, in the 
future, Planning will send an updated action plan, taking into account the chosen 
action and the actual change observed in the world state. Action Selection must 
inform Planning that it has chosen an action and sent it for execution. As the world 
state is then no longer valid, Planning should stop generating new action plans. 

We assume that Action Selection can provide its analysis plan to Planning, for 
clarification, refinement, or modification of its own work. This does not lead to an 
infinite loop; it just envisages the case in which a complement is needed. 

An alternative design is that Action Selection chooses a plan, and then sends 
autonomously the actions to be executed, without consulting Planning (or 
alternatively it can interrupt a plan with another unrelated plan, proposed in the 
future by Planning). However, this solution does not allow for refinement of a plan 
by Planning: for instance, an action might lead to three different world states; when 
the Action Execution component has executed an action, Planning can refine the 
plan based on the actual observed new world state. 

6.4 Example 

We present here an example of the operation of the Planning and Action Selection 
functions in the context of a military vehicle in which several machines are 
connected by an internal network. We consider three different situations. 
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6.4.1 A Common Cyberattack 

Here a common cyberattack is defined as a known attack that, with high probability, 
would not lead to negative effects. For instance, it is an attack that tries to use a 
known bug that is patched in the version of the OS used by all the machines in the 
vehicle. Furthermore, we assume that there is no time urgency—for instance, the 
vehicle is parked at the base. 

The world state catches the symptoms of the attack by the network sensors (e.g., 
flow of data or connection attempts to a certain port). The Planning function 
constructs an action plan leading to a future world state in which the attack is 
attributed. The plan starts with planting false information on the machine (e.g., the 
first action is to create a mock-up password file and another is to create a file with 
a name suggesting classified content). In a future world state, after creating a mock-
up password file, this password file is either accessed or not. If there is an access, 
the next action is to generate more mock-up password files. If the file is ignored, 
the next action is to generate a file that pretends to contain classified information. 
However, the Planning function also proposes other action plans unrelated to the 
current attack (such as proposing actions executing orders from the C2) or doing 
nothing. 

As the vehicle is parked, the goal of attributing the attack is the most important. 
Thus, Action Selection choses the action “small mock-up information” and send it 
to be executed (i.e., to generate a mock-up password file).  

6.4.2 An Unexpected Cyberattack 

An unexpected cyberattack is detected through its results, rather than by 
intercepting the attack as it happens. For instance, a routine file system check may 
detect a changed hash value of a system file. There might be also time urgency: the 
vehicle might be engaged in active combat. As such a situation is a threat to the 
integrity of the system, Planning and Action Selection must act quickly. The 
Planning component suggests a short plan of, for example, restoring the changed 
file from a backup; Action Selection chooses this action based on the goal of 
maintaining integrity. 

6.4.3 Cyber Exploration 

If a vehicle is parked and the world state model does not detect an attack, AICA is 
in a kind of “exercise situation”. Depending on what network is protected by AICA, 
it will be possible or not to activate some deliberated actions and observe regular 
results on agent and/or on environment. This use case is certainly inappropriate in 
most part of military situations, but it could be considered in specific cases as an 
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intermediary mode between sandboxes and real-life activities. In this cyber-
exploration opportunity, the Planning and Action Selection components might use 
the chance to provide new data for the learning module collected in real and 
controlled situation. As the number of monitored characteristics of the world are 
vast, one of the important goals of the system is to be able to automatically 
distinguish a rare threat from a large number of normal, acceptable states. Similarly, 
given a large number of possible actions (closing a communication port, restoring 
a file, creating a file, etc.), the system must be able to learn the effects of the 
intended consequences of actions (e.g., closing TCP port 12345 would shut down 
the internal communication system XYZ). 

During the cyber-exploration scenario, Planning would create action plans 
consisting of steps of basic actions (close TCP port 12345, open TCP port 12345) 
and observe their effects on the integrity of the vehicle. 
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7. Action Execution 

Authors: Fabio De Gaspari, Luigi Mancini, and Agostino Panico 

7.1 Purpose 

The overall purpose of the Action Execution component is to execute the executable 
response plan of actions that the Planning and Action Selection components have 
chosen according to the mission goals and the situation. Action Execution works as 
an actuator that provides the following functionalities: 1) action activation,  
2) execution monitoring, 3) effects monitoring, and 4) execution adjustment. The 
architecture overview of the Action Execution component is shown in Fig. 13. The 
Action Execution component has administrative privileges to execute the actions, 
and it should be able to perform all the actions required to accomplish the typical 
tasks of a system administrator, including the security analysis of the system. To 
guarantee complete execution of the actions, the Action Execution component 
should run only atomic actions, either all the operations are completed or nothing 
occurs. To this end protocols such as OpenC2 (OpenC2 Forum 2015), the de-facto 
standard for C2 functions, can be used by the agent to communicate actions to the 
actuators. 

 

Fig. 13 Overview of the Action Execution functionalities 
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The Action Execution component is also connected with two other components: 
Sensing and World State Identification and Learning. As an actuator, the Action 
Execution component executes actions that produce valuable data that can be 
sensed by Sensing and World State Identification. Consider for instance the 
scenario when Sensing and World State Identification detects an anomalous 
situation and requires the execution of a customized antivirus function to perform 
a detailed verification of the current anomalous behavior of the system. In this case, 
Action Execution should be able to run a customized antivirus functionality, which 
will generate data that can allow the Sensing and World State Identification 
component to identify risky current world state patterns. In addition, the Action 
Execution component continuously updates the internal rules and conditions with 
the feedback provided by the Learning component. 

In the following sections, we describe the scope and conditions for each of the 
functionalities of the Action Execution component. 

7.1.1 Action Activation 

Action activation takes as input an executable response plan from Planning and 
Action Selection component and environment’s technical configuration and then 
proceeds with the execution of the planned actions according to the scheduled 
order. This function outputs the response of the execution, which can be a message 
that confirms the successful execution or provides some details about the reason 
why the operation failed (e.g., if an action “Delete a file” fails, then the agent should 
provide to other agents some details like “The file cannot be deleted. The requested 
file does not exist.” or “The file cannot be deleted. The requested file is protected.”). 
In order to guarantee a secure execution of the actions, the action activation 
function should have the capability to perform five main types of actions: 1) device 
system administration, 2) customize the antivirus function, 3) integrity check,  
4) active defense actions, and 5) legitimate service proxy. 

7.1.2 Device System Administration 

Device system administration deals with normal system operations, incident 
handling, and root cause analysis (RCA). Overall, device system administration 
includes a set of actions that can be summarized as follows: 

• Install/remove software application  

• Software update 

• Registry modification 

• User management 
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• Log access 

• Baseline creation and periodic check sent to sensors 

Based on the feedback that derives from the Learning component, device system 
administration should be able to dynamically integrate new rules for each of the 
aforementioned set of actions. 

7.1.3 Antivirus Function 

The Action Execution component should cover the antivirus function. This means 
that this component should be able to behave as an antivirus software, perform 
analysis, and not impact system functionality. For instance, this function should be 
able to execute the action “perform a full scan”. The antivirus actions that the 
actuator should perform are the following: 

• Executable analysis 

• Complete device scan 

• Basic malware analysis heuristics 

The deployment of this set of actions in the actuator aims to enable the antivirus 
functionality of the machine and reduce the installation of antivirus software on the 
device itself. This means that when the device does not use an endpoint protection 
solution, the agent should be still able to guarantee the defense of the device. 
However, in the case when the device uses an endpoint protection solution, then 
the agent should be able to communicate and interact with this solution to take the 
necessary steps to quarantine, delete, or report the infected items. In this case, the 
antivirus function serves as a sensing function. 

7.1.4 Integrity Check 

Integrity check function evaluates the changes of the machine’s state by 
periodically checking the stability and integrity of critical files that must not be 
changed without proper authorization. Depending on the configuration of the 
integrity check and the need of the action selection, the Action Execution 
component should check the integrity of the file system against both a whitelist and 
a blacklist. Since the integrity check is an action, it should be executed by an 
actuator, which then sends the data to the Sensing and World State Identification to 
perform further analysis. 
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7.1.5 Active Defense Capabilities 

Active defense is a popular defense technique based on systems that hinder an 
attacker’s progress by design, rather than reactively responding to an attack only 
after its detection. Since the goal of active defense systems is to reduce the risk of 
a compromised system, in some cases, active defense can be used as a measure 
against lateral movements. Note that the purpose of active defense is not to defend 
or prevent the attacker from performing some actions. Instead, its goal is to slow 
the attacker down and allow optimal operation of the traditional defense systems. 
To this end, active defense tools can be integrated with preexisting security 
information and event management (SIEM) systems. This feedback allows 
response teams, or the autonomous agent in our case, to refine detection criteria for 
traditional security systems, as well as provides useful intelligence on how to react 
to the ongoing attack. 

The Action Execution component should be able to implement active defense 
capabilities to have the ability to perform annoyance, attribution, and, under some 
circumstances, even attack. The range of active defense actions can be described as 
follows: 

• Port remapping  

• Fake files  

• Fake services and network port 

• Fake web services 

• Fake supervisory control and data acquisition (SCADA) services 

• Attribution capabilities 

• Building a covert communication channel 

The deployment of this set of actions enables a machine to act and react to the 
actions of an attacker, or an abnormal behavior of a legitimate user, by slowing the 
adversary down with annoyance and attribution, and eventually, attack. 

7.1.6 Legitimate Services Proxy 

The legitimate services proxy should be implemented according to the active 
defense capabilities of Action Execution and should be able to proxy any legitimate 
service of the host machine. The idea of legitimate services proxy is to use the 
actuator as a frontend interface toward the external environment, and then perform 
a security analysis of the incoming and outgoing traffic through the proxy. To 
support flexible active defense strategies, every legitimate port of the host machine 
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should be bound to a port of the actuator, so that such port could be redirected to 
another port according to the active defense objectives. In other words, the proxy 
function should be able to expose a legitimate service to a nonstandard port without 
modifying the host machine. 

7.1.7 Execution Monitoring 

Execution monitoring function aims to observe the real-time execution of action 
activation. This function should be able to check the execution traces triggered by 
a given input and should have prior knowledge regarding the expected legitimate 
state of the software running during Action Execution. For instance, execution 
monitoring can trace logical statements (invariants) to identify properties of a 
running software, which can be helpful to check the legitimate execution traces. 

Execution tracing is also important to identify the cases when the task action 
activation is not completed successfully. In this case, execution monitoring will 
activate execution adjustment to adjust the action implementation. 

7.1.8 Effects Monitoring 

Effects monitoring function should be able to monitor the environmental changes 
caused as result of Action Execution. In particular, effects monitoring should 
monitor data, access control, and the integrity of the components that are expected 
to be effected from Action Execution. Note that some of these functionalities also 
be covered also by the Sensing and World State Identification component. 
However, the effects monitoring aims to monitor only the effects of Action 
Execution and provide a very detailed analysis of particular software components, 
which may not be always detected by the general execution of Sensing and World 
State Identification for the entire system. 

7.1.9 Execution Adjustment 

Execution adjustment should be able to handle the cases when the execution of a 
plan of actions produces security-critical effects. In this case, this function should 
have the ability to adjust the action implementation to the environmental setting. 
When the adjustment is not possible (e.g., due to technical or security reasons), 
execution adjustment function will trigger the Collaboration and Negotiation 
component in order to interact with other agents, C2, or human operators for 
agreeing on changing the plan of actions. 
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7.2 Use Cases 

In this section, we discuss some use cases, providing concrete examples of how the 
Action Execution component works in realistic scenarios. 

7.2.1 Anomalous Behavior of a Military Vehicle 

This attack scenario (Fig. 14) considers a compromised device that tries to probe 
the environment for information gathering. This behavior can result in detection by 
a number of active defense tools, providing early indication of compromise. For 
instance, the compromised device might interact with fake services exposed by 
another component or might access fake files triggering immediate detection. Upon 
detection, neighbor agents react based on the intelligence provided, deploying 
appropriate active defense tools and reconfiguring classic security tools based on 
the behavior of the compromised component. For example, the neighbor agents can 
remap service ports or launch new fake services that are interesting for the attacker 
in order to profile them. At the same time, the neighbor agents perform a scan on 
their local file system to check for suspicious executables and share the findings 
among themselves to build a real-time IoC. This operation involves a set of actions 
that should be executed on the infected device with administrator privileges and 
aims to restore the infected machine back to the normal state. 

 

Fig. 14 Anomalous behavior of a military vehicle scenario 
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With active defense capabilities, agents are able to perform early compromise 
detection based on abnormal behavior, reducing the risk of being persistently 
compromised by the attacker. Furthermore, deception techniques slow down 
ongoing attacks, providing the agent with time to understand the attacker’s goal and 
devise a defense strategy. 

7.2.2 Battle Management System, Vehicle Management System, and 
Communication System Compromised 

In this scenario (Fig. 15), an agent that detects a compromised component creates 
a covert channel with other noncompromised agents, allowing them to 
communicate without being detected by the compromised devices. The goal of this 
communication is to alert the other agents of the network not to trust the data that 
are coming from the compromised vehicle, avoid the transmission of sensitive data 
to such vehicle, and agree on a plan to recover the compromised devices. 
Noncompromised agents can also use the covert channel to define a service 
remapping strategy and potentially which fake services to expose in their stead, as 
well as start a general integrity check to verify that no other systems are 
compromised.  

 

Fig. 15 BMS, VMS, and COMMS compromised scenario 
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8. Collaboration and Negotiation 

Authors: Edlira Dushku and Luigi V Mancini 

8.1 Overall Purpose 

Battlefield operations are characterized by an unreliable communications 
infrastructure, limited network coverage and also the presence of enemy forces that 
intend to compromise these operations. Considering these limitations, an intelligent 
agent that operates in a battlefield environment should be able to plan its own 
actions and possibly perform them in an autonomous way. However, under some 
conditions, a group of autonomous intelligent agents may need to collectively 
decide a joint plan of actions that solves a set of common goals. In this context, the 
collaborative agent model emerges as an effective approach that allows 
autonomous agents to collaborate and negotiate among themselves to accomplish 
their mission-critical goals and confront adversarial actions. 

In the collaborative model of AICA, an agent can individually perform one or 
multiple tasks and also choose to cooperate with other agents to perform 
coordinated actions. Different from multiagent systems that aim to solve problems 
that are difficult or impossible for an individual agent to solve, in the collaborative 
agent system of AICA, each individual agent should be able to solve the problem 
autonomously and only start to collaborate with other agents to extend the 
individual capacities of World State Identification, Planning, or Action Selection. 
In general, the interoperation between autonomous intelligent agents in AICA 
intends to improve the active defense capabilities of the contested battlefields by 
enabling a collaborative decision-making process and improving the goal execution 
capabilities of individual agents. 

Agent interoperability in AICA is enabled by the Collaboration and Negotiation 
component, which coordinates the interactions agent‒agent, agent‒C2, and agent‒
human. In AICA, the Collaboration and Negotiation component can be initialized 
by one of the following components: World State Identification, Planning, or 
Action Selection. Overall, the Collaboration and Negotiation component consists 
of three functions:  

1) Collaboration: The collaboration function allows an individual agent A to 
interact with other agents (or C2 or human operators) to make agent A’s 
plan of actions more effective or solve a task that is beyond agent A’s 
capabilities. The sensitive information that agent A perceives about the 
world state should remain local. The agents involved in a collaboration 
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process should be able to exchange only the relevant information that is 
required for the collaboration.  

2) Negotiation: The goal of the negotiation is to reach an agreement within a 
set of agents regarding a goal or a plan execution. During the negotiating 
process, agents agree on performing some tasks that are beyond the 
capabilities of the individual agents of the friendly forces. Most importantly, 
the agents agree on coordinating their plan of actions to reach a common 
goal.  

3) Agreement: The agreement defines the conditions that the agents agreed 
during the negotiation procedure. The agreement first registers the plan of 
actions that the agents agreed during the negotiation and then returns a 
response to the AICA components that triggered the initialization of the 
Collaboration and Negotiation component about an updated action that 
should be executed. 

8.2 Architecture of the Collaboration and Negotiation 
Component 

The Collaboration and Negotiation function (Fig. 16) in the agent’s structure 
should provide these fundamental services: 1) agent inquiry and discovery, 2) name 
discovery, 3) authentication, and 4) service and capacity discovery (SCD). 

 

Fig. 16 Architecture overview of the Collaboration and Negotiation component 
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8.2.1 Agent Inquiry and Discovery  

Agent inquiry and discovery is a procedure that allows an agent to be discovered 
by friendly forces. When a new agent joins the network, its presence can be detected 
by other agents and they can start collaborating. To guarantee a stealth 
communication in under-attack situations, agent inquiry and discovery should 
allow agents to enable a covert channel communication among themselves. In this 
case, the data conveyed by the covert channel should be encrypted to prevent 
revealing of secret or sensitive information to unauthorized entities. Optionally, 
under high-risk conditions, an agent can use this service to make a choice whether 
to be discoverable in the network or not. Likewise, when severe attacks are detected 
on the battlefield, the C2 unit can call this service to make agents undiscoverable 
from other agents. 

8.2.2 Name Discovery 

A procedure for retrieving the name of a connectable agent. Friendly forces should 
share a common name taxonomy and should have some pre-shared cryptographic 
keys. The name of the agent should be connected to some configurations that agents 
know about each other. The agent process should be resilient to a Sybil attack. The 
agents that participate in the decision-making process should have the identity of 
the friendly forces. The enemy should not be able to influence the common goals. 

8.2.3 Authentication 

The collaboration function must enforce the authentication of the agents and protect 
the confidentiality and the integrity of the communications between agents by 
supporting standards such as AES-256, TCG Opal, and so on. The authentication 
procedure should comprise the required security mechanisms that should be applied 
when an agent initiates a collaboration request to a remote agent and when an agent 
receives a service collaboration from a remote agent.  

The trust establishment process is a prerequisite of the authentication procedure.  

8.2.4 Service and Capacity Discovery 

SCD involves a set of procedures for querying and browsing the services offered 
by or through another agent. SCD does not define methods for accessing services; 
once services are discovered with SCD, they can be accessed in various ways, 
depending upon the service. After communication between two agents is 
established, they start exchanging information and computation. They also declare 
their capacities (memory, storage, CPU), which is very important in the later 
decision of allocating tasks to other agents. 
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The negotiation function provides the negotiate service, which returns as output  
1) accept, 2) reject, and 3) propose. The agreement function consists of two 
services: 1) register terms of agreement and 2) update plan. 

8.2.5 Collaborative Planning 

Each agent has planning capabilities and can autonomously execute its local plan. 
An agent can extend its own capabilities by interacting with other agents to 
collaboratively construct a joint plan to accomplish their common mission goals. 

When there is a new task/goal that the agent should achieve, the agent can choose 
to do the following: 

1) Fulfill the task autonomously. In this case, the agent does not communicate 
with other agents and does not influence the goals of the other agents. 

2) Distribute information about the task among the agents to reach a common 
plan of actions. This case requires several interactions among agents until 
they reach a common plan of actions. Since agents differ in capabilities and 
knowledge, they have different views regarding the task that should be 
fulfilled. During the interoperation, the data that an agent make accessible 
to other agents should present only the relevant information that is required 
for the collaborative planning and should not reveal sensitive information 
of the agent. This is important because an adversary, which could take 
control over an agent, should not be able to gain access to the sensitive 
information of other agents. 

8.2.6 Communication Protocols 

Agents can exchange information by using the following application protocols:  

1) client-server: 
Simple Object Access Protocol (SOAP), Restful HTTP/Constrained 
Application Protocol (COAP) 

2) publish-subscribe 
Message Queuing Telemetry Transport (MQTT), Advanced Message 
Queuing Protocol (AMQP), Requested Power To Send (RPTS) 

Agents should use protocols that guarantee the confidentiality and integrity of 
communications, for example, the basic security protocols such as Transport Layer 
Security (TLS)/Datagram Transport Layer Security (DTLS). 
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8.3 Collaboration Process 

The Collaboration and Negotiation component allows an agent to discover other 
agents in the network and start to collaborate with them. Figure 17 captures the 
process flow of the activities in the Collaboration and Negotiation component 
while interacting with the Planning component.  

 

Fig. 17 Process flow in the Collaboration and Negotiation component 

The process start with an agent that discovers other agents in the network. The 
collaboration between agents starts with a P2P authentication process. After the 
authentication, neighboring agents interrogate among each other about the services 
and the capacities that they offer. Each agents saves in a storage all the information 
related to the other agents, as shown in step 1 in Fig. 17. 

The negotiation among agents is instantiated by the Planning component. When 
the planned action is a complex task that requires more resource capacities than the 
autonomous agent can handle or the planned action affects the common plan of 
actions, then the planning unit decides to negotiate the plan of actions with other 
agents (step 2). The negotiation unit retrieves all the agents’ information from the 
database (step 3) and then, based on the services and the resources that each agent 
offers, the negotiation unit requests the agent that satisfy the requirements of the 
planned action that should be executed (step 4). Obviously, reasoning which agents 
can work on a planned action is a crucial factor for an effective collaboration among 
autonomous agents. 
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After sending the negotiation requests to some agents, the negotiation unit handles 
the responses that come from these agents (step 5) and then forwards them to the 
planning unit (step 6) for elaborating the next step of the plan execution. 

8.4 Use Cases 

1) An Agent A coordinates with C2: 

a) Agent A detects a condition where C2’s decision is needed (e.g., 
Application X1 in the sandbox behaves suspiciously). 

b) Agent A sends a question to C2 (e.g., should I delete/kill application 
X1? Or else?). 

c) C2 may reply or not. 

i) If C2 sends an authenticated reply to the agent, then Agent A 
performs the following steps: 

1) The agent receives the command sent from C2 (e.g., uninstall 
the application). 

2) The agent checks the feasibility of the execution (e.g., checks 
for permissions). 

3) The agent responds to C2 (e.g., “will do” or “cannot do, explain 
why”). 

4) If “will do”, Agent A generates plan and executes the plan (e.g., 
agent has to make a plan that checking all the dependencies, if 
there are some necessary services that are critical to be deleted, 
generate concealment plan). 

5) The agent sends the resulting state to C2 (e.g., respond “success” 
or “action failed, explain why”). 

ii) If C2 does not give a response, then Agent A performs a local 
decision (e.g., agent decides what to do). 

The flowchart of the interactions between Agent A and C2 is depicted in Fig. 18. 
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Fig. 18 Flowchart of interaction Agent‒C2 

2) Agent A collaborates with other agents: 

a) An agent communicates with other agents to improve the common plan 
of actions. For instance, if an Agent A identifies a malicious behavior, 
Agent A notifies other agents and agree on changing their individual 
plans. 

i) Agent A identifies anomalous traffic caused from a malicious service 
S1. 

ii) Agent A detects the presence of Agent B nearby. 
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iii) Agents A and B establish communication and authentication, 
and declare services. 

iv) Agent A notice that Agent B provides the same service S1. 

v) Agent A notifies Agent B about the risk. 

vi) Agent B gets the alert from Agent A. 

vii) Agent B may perform one of the following actions: 

1) Agrees to kill immediately service S1 that is running on the 
machine and evaluates again its local plan of actions 
considering the non-availability of S1. 

2) Completes the execution of the current plan and then kills 
S1. 

3) Agrees to kill S1 if Agent A accepts to perform one of the 
action plan that Agent B must do.  

4) Ignores the alert sent from A and continues its local plan. 

b) In a similar way as the scenario explained previously, Agent A 
communicates with other agents to extend its local capacities in 
executing its individual plan of actions. For example, if a task needs 
to be executed and the resources are beyond the capacities of a single 
agent, then the task can be scaled to a group of agents: 

i) Agent A realizes that the execution of an action X2 is taking a 
lot of time. 

ii) Agent A detects the presence of Agent B nearby. 

iii) Agents A and B establish communication and authentication, 
and declare services and capacities. 

iv) Agent A notice that Agent B has the required capacities to 
perform the same action as A is running. 

v) Agent A requests the Agent B to perform the action X2. 

vi) Agent B gets the request from Agent A. 

vii) Agent B may perform one of the following actions: 

1) Agrees to immediately run X2. 
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2) Completes the execution of the current plan and then 
executes X2. 

3) Rejects the request. 

8.5 Conclusions 

We presented the collaborative model of AICA and summarized the main 
properties of the Collaboration and Negotiation component. We emphasize that 
each AICA should be able to perform their individual plan of actions autonomously 
and only start to collaborate with other agents to extend their individual capabilities 
and improve the common plan of actions. The current version of the AICARA 
describes the functionality of the collaboration component, while the future work 
will focus on providing details of the operation of the negotiation component and 
elaborating the functionality of agreement for the communication among many 
autonomous agents.  

Furthermore, the future works includes designing a secure collaborative model of 
AICARA. In particular, a trusted collaboration between autonomous intelligent 
agents will require further discussion regarding trust establishment between 
autonomous agents in battlefields. In this context, it is crucial to exploit the key 
management protocols and trustworthy information delivery in other domains to 
gain insight into the most relevant pre-shared key schemes that are suitable for 
heterogeneous battlefield environments, as well as communication protocols that 
could assure the confidentiality and integrity of the exchanged messages. 
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9. Learning 

Authors: Alexander Kott and Alessandro Guarino 

The environment in which an agent operates can change rapidly, especially (but not 
exclusively) due to enemy action. In addition, the enemy malware, its 
capabilities, and TTPs could evolve rapidly. Therefore, the agent must be capable 
of autonomous learning that could help it adapt to a changing environment and 
enemy. Numerous approaches to learning and purposes of learning are possible. In 
this section, we offer merely a few illustrative, highly simplified sketches of how 
the agent’s learning could be implemented and for what purposes learning might 
be used. The discussion here is heavily influenced by the concepts of 
Reinforcement Learning (RL; Sutton et al. 1998) and Partially Observable Markov 
Decision Process (POMDP) formalism, but is arranged so that the reader does not 
need to be familiar with RL or POMDP.  

The reasoning capabilities (such as planning, prediction of effects, state 
identification, etc.) of the agent rely on its knowledge (which could include various 
models such as world state model, etc.). The purpose of the learning function(s) is 
to modify the knowledge of the agent in a way that enhances the success of the 
agent’s actions. The success of an agent, or in other words its level of performance, 
will be measured as the distance from the goal, in some sense. This of course 
implies close collaboration with the WSI function and access to the world state, 
world dynamics, and goals databases.  

The agent learns from its experiences. These experiences could be acquired when 
the agent engages in an actual confrontation with the enemy malware, or in 
exercises or simulations where the agent performs against a threat in a simulated or 
cyber-range environment. It is conceivable that full-fledged AICAs will need to 
undergo a substantial period of “training” before being deployed. This necessity 
implies a huge challenge to be met before employing them: the building and 
maintaining of appropriate testing and simulation platform and—probably most 
importantly—the standardization of the training procedures. Since the AICA that 
will emerge from the training period with new knowledge is different from the one 
that entered it, we need new ways to certify and validate them.  

A general cycle of agent learning from its experiences is the following: 

• The agent has a knowledge.  

• The agent uses the knowledge to perform actions and also makes 
observations (receives percepts). The ensemble of actions and observations 
constitute the agent’s experience. 
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• The agent uses this experience to learn the desirable modifications to the 
knowledge.  

• The agent modifies the knowledge.  

• Repeat. 

Many different types of resulting knowledge could be obtained. The agent may 
learn the world dynamics model (Sections 4 and 6), the mapping of sensed percepts 
to states (Section 5), or predictions of results of planned actions (Section 6), and so 
on. For the purposes of further discussion on this section, we focus on how AICA 
can learn recommendation(s) of a suitable action(s) (i.e., a plan, possibly as a 
function of state, or of a sequence of prior actions and observations, regardless of 
prior sequence). This knowledge too could be used in the processes discussed in 
Section 6. 

Connected to those described previously, AICAs have the opportunity to learn such 
information that could lead to altering the original world state goal. The opportunity 
of designing AICAs with this capability, as well as the extent to which such a 
capability should be allowed is an open question. This function looks like one of 
the most appropriate parts of the AICARA in which to incorporate ethical and legal 
guidelines. 

In the following sections, we explore details and illustrative examples of this cycle 
of learning from experience.  

9.1 Representation of the Agent’s Experience 

Let’s explore a simple sketch of how experience could be represented in AICA.  

At any time t, the agent performs action a, which could be a NULL action (i.e., 
there was no action); and perceives percept e, which also could be NULL. Note that 
generally it is impossible to obtain a percept without performing an action, even if 
the action is as simple as reading data. If the percept e, in conjunction with any 
prior information that the agent has, provides the agent with sufficient information 
to determine the value of the state of the environment (i.e., the “goodness” of the 
situation), then the agent may also be able to determine the value of the state V and 
consequently evaluate the current distance from the desired goal. Otherwise, the 
reward is NULL. (We return to the topic of reward later.) 

Therefore, all the experiences of the agent can be represented with this sequence: 

 (t1, a1, e1, V1) (t2, a2, NULL, NULL) (t3, NULL, e3, V3) … (tn, an, en, Vn). 
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Here t1 is the time when the agent starts to record an experience and tn is the 
moment “now”. 

To make the representation more compact and useful, we can divide it into shorter 
chunks; the length of the chunk is implementation dependent. We call such a chunk 
an episode. Episode Ej is a sequence of pairs {a1, ei}, and the resulting state value 
Vj:  

 Ej = ({ai, ei},Vj). 

The following is an example of a short episode:  

• a1 checks file system integrity. 

• e1 finds unexpected file. 

• a2 deletes file. 

• e2 file gone. 

• a3 NULL. 

• e3 observes enemy C2 traffic. 

• Value is (‒0.09). 

Here is another example of an episode: 

• a1 checks file system integrity. 

• e1 finds unexpected file. 

• a2 creates poisoned password file. 

• e2 NULL. 

• a3 NULL. 

• e3 receives alert from node 237. 

• Value is (‒0.57). 

9.2 Approach Example 1: Case-Based Reasoning 

In this approach (Fig. 19), the learning is largely implicit. The agent collects its 
experiences in a collection of experiences and augments that collection by 
determining values for those states, using a function called “state assessor”. When 
the agent wants to determine a plan of action, it looks at its most recent actions and 
matches them to the experiences. If a well-matching episode is found 
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in its experiences and the resulting value for that episode was sufficiently high, the 
agent uses that episode as its plan for future actions. This and related classes of 
approaches are studied in research areas such as case-based reasoning (Kolodner 
2014), learning from demonstration (Abbeel and Ng 2004), and inverse 
reinforcement learning (Argall et al. 2009). Here we offer a very simple sketch of 
the idea.  

 

Fig. 19 Approach example 1: case-based reasoning 

Consider the following, highly simplified illustration. Suppose the agent most 
recently took actions a13 and a76. The agent wants to formulate a plan of its next 
actions. The agent wants to make sure that the value of the state that would result 
from its future actions should be at least 0.75. The agent accesses its collection of 
experiences and finds there the following episode: a13, a76, a06, a52, V = 0.83. 
The first two actions of that episode match the most recent actions taken by the 
agent. The resulting value is very good, higher than the 0.75. The agent, therefore, 
takes the remaining actions of that episode as its plan: it will proceed to execute 
actions a06 and a52. 

Let us consider what, in this particular example, are inputs and outputs of the 
learning module.  

Inputs include the following:  

• Actions (each with a timestamp) that are provided most likely by the Action 
Execution module. 

• Percepts (each with a timestamp), each of which is likely to be a change of 
state, arriving from the state model database. 
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Outputs include the following:  

• Updates to the collection of experiences, which serves here as the form of 
knowledge. It can be made available to other modules, either directly or via 
the mediation of data services. 

• Episode and the associated reward provided to the Action Selection and 
Planning modules. 

Alternatively, if the agent has a separate Planning function that generates 
plans, it can use its collection of experiences to predict the values of states that 
would result from executing that plan. For example, again suppose the agent most 
recently took actions a13 and a76. The Planning function proposed a plan to 
execute actions a06 and a52.  

The agent wants to know what will be the values of states resulting from executing 
that plan. The agent accesses its collection of experiences and finds there the 
following episode: a13, a76, a06, a52, V = 0.83. The episode matches its past 
actions and the proposed future actions. Now the agent knows the value if the 
proposed plan is executed: V= 0.83. 

In this case, the inputs and outputs differ partially from the ones mentioned 
previously.  

Inputs include the following:  

• Actions (each with a timestamp) that are provided most likely by the Action 
Execution module.  

• Percepts (each with a timestamp), each of which is likely to be a change of 
state, arriving from the state model database. 

• Plan provided by the Action Selection and Planning modules. 

Outputs are the following:  

• Updates to the collection of experiences, which serves as the primary 
knowledge base (KB). It can be made available to other modules, either 
directly or via the mediation of data services. 

• Value of the state expected to result from the proposed plan, provided to the 
Action Selection and Planning modules. 

Let’s add a few words about the state assessor function. How could this function 
determine value of a state V? Here is a very simple, illustrative (not really 
workable) way to do this: let subject-matter experts assign each percept a number 
that characterizes the degree to which the percept indicates the strength of 
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adversarial activity. Then, for each episode, add up such numbers. The sum would 
constitute a negative “value”. Needless to say, other approaches are possible. 

Of course, this highly simplified illustration eschews many critical details: we did 
not mention anything about the percepts and states, and we did not discuss what to 
do when the match is not perfect. Nevertheless, the gist of the approach should be 
clear. 

9.3 Approach Example 2: Deep Neural Network to Learn the 
Reward for the Next Action 

This approach is inspired by the successes of deep reinforcement learning such as 
described in Mnih et al. (2013). Here our agent uses the collection of experiences 
to train a neural network. The inputs are the actions and percepts for a number of 
previous time points. The outputs are, for each possible action of the agent, the 
value associated with taking that action as the next action. Once the neural network 
is trained, it is used at each time point to determine the next action—the one with 
highest value.  

To explain what the neural network might look like, consider a highly simplified 
example. Suppose, at any given time, the agent can take one of only three actions: 
a1, a2, and a3. (In a practical implementation, there could be thousands of possible 
actions.) At any given time, it can receive one of only four percepts: e1, e2, 
e3, and e4. (In practical implementations, there could be thousands of possible 
percepts.) In our neural network, we consider only two time points: the most recent 
time an action was taken and the previous time point. (In a practical 
implementation, multiple time points could be considered.) Figure 20 depicts the 
neural network after it has been trained. At the most recent time, the agent has 
performed action a2 and received percept e3. Right before that, it performed a3 and 
perceived e1. These are the data that go into the input layer. The neural network 
uses these inputs to produce the outputs: if the next action taken by the agent is a1, 
the reward will 0.07, if the next action is a2, the value will be 0.023, and if the next 
action is a3, the value will be 0.79. Naturally, the agent will select a3, the one with 
the highest value.  
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Fig. 20 Neural network after it has been trained 

The architecture of this approach is illustrated in Fig. 21. 

 

Fig. 21 Approach example 2: deep neural network to learn the reward for the next action 
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Let us consider what, in this particular example, are the inputs and outputs of the 
Learning module.  

Inputs include the following:  

• Actions (each with a timestamp) that are provided most likely by the Action 
Execution module. 

• Percepts (each with a timestamp), each of which is likely to be a change of 
state, arriving from the state model database. 

Outputs include the following:  

• Updates to the weights of the neural net, which serve as the primary KB.  

• The best next action and the associated value provided to the Action 
Selection and Planning modules. 

Note that Mnih et al. (2013) used a deep neural network as a component of a Q-
learning approach (Watkins and Dayan 1992). Indeed, Q-learning could be 
appropriate in such problems as ours. It is extremely unlikely that a sufficiently 
complete model (i.e., probabilities of state transitions given an action) can be 
constructed for operations of a computer or a network of computers. Therefore, an 
attractive option is to pursue some form of model-free reinforcement learning. This 
could mean Q-learning, that is, action-value learning. On the other hand, there is 
some evidence that for multistep agents or plans with complex time dependencies, 
Q-learning may not train well. Alternatives might include policy optimizing 
algorithms or variants of LSTM neural networks and their combinations. 

9.4 Approach Example 3: Learning the Reward Function 

In the classical approach to reinforcement learning the reward function is a given 
input to the agent and is immutable. The reward function embodies in part the goals 
and objectives for the agent; featuring the capability of learning a better one is a big 
step toward complete autonomy. Of course, introducing such a capability comes 
not only with an opportunity but with risks as well. The behavior of AICA gains a 
degree of flexibility that could not be appropriate in all real-world use cases and 
scenarios.  

This approach is particularly useful in the training phase, where AICA has the 
opportunity to learn a compact formulation of the experience, goal, and task to be 
performed, in the form of a reward function that will be used during the mission. If 
an adequate level of resources is available (computing power, memory…), this 
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approach could be usefully employed to model adversarial software agents against 
which AICA is posed, for immediate use in combat or for later reporting. 

This approach presents several challenges (see, for instance, Ng and Russell [2000]) 
but would be important for agents that operate in complex environments where the 
optimal reward function is not easily formalized. One limitation to be considered is 
that AICA may need a “teacher”, whether another agent or a human expert to show 
examples of valuable behavior. 

9.5 Always Learning? 

One of the assumption of the reference architecture presented in this work is that 
AICAs will possibly operate in an environment where limited computing resources 
and capabilities are available. If this holds true, real-world AICAs could implement 
a number of strategies in deploying the Learning function. 

In the most extreme case, no learning at all happens during the actual mission and 
AICA relies on preloaded databases, including mission-specific packages (e.g., 
including the topology and details of the networks to protect). In a second scenario, 
the Learning functions are active but with no bearing on the agent’s actual behavior. 
They are only used to gather information on enemy malware and attacks, if 
encountered, for later or real-time reporting. In the third scenario, full Learning 
capabilities are active in real time during the mission as well as in training and 
databases and the agent’s own goals and policies are changing and responding to 
the evolving environment. 
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10. Conclusions 

Authors: Alexander Kott, Paul Théron, Benoît LeBlanc, Alessandro Guarino, 
Martin Drašar, and Paul Losiewicz 

There is a strong rationale for pursuing the development of intelligent autonomous 
agents of the kind we describe in this report as AICA. In a conflict with a technically 
sophisticated adversary, NATO military tactical networks will operate in a heavily 
contested battlefield. Enemy software cyber agents—malware—will likely 
infiltrate friendly networks and attack friendly C4ISR and computerized weapon 
systems. Bonware—intelligent, autonomous agents specialized in cyber defense, 
such as AICA—will be necessary to detect defeat the enemy malware. 

The autonomy of AICAs, and the artificial intelligence underpinning their 
autonomy, is a necessity. Due to the contested nature of the communications 
environment (e.g., the adversary is jamming the communications or radio silence is 
required to avoid detection by the adversary), communications between any 
friendly battlefield asset, and other elements of the friendly force can be limited 
and intermittent at best. Given the constraints on communications, conventional 
centralized cyber defense is often infeasible. It is also unrealistic to expect that 
human warfighters will be commonly available and able to perform cyber-defense 
functions.  

In general, today’s reliance on human cyber defenders will be untenable in the 
future. The proliferation of intelligent agents is the emerging reality of warfare, and 
they will form an ever-growing fraction of total military assets. The sheer quantity 
of targetable friendly assets, the complexity and diversity of the overall network of 
entities and events, the fast tempo of robotic-heavy battle, the difficulties of 
centralized defense in a communications-contested environment, the relative 
scarcity of human warfighters in highly dispersed operations, and the high cognitive 
load imposed on them by activities other than cyber defense all make an intelligent, 
autonomous cyber-defense agent a necessity on the battlefield of the future. 

Illustrative scenarios, a few of which are discussed in this report, spell out the need 
for specific capabilities and other requirements of AICAs. In particular, to highlight 
just a few, AICAs will have to be capable of planning and executing complex multi-
step activities for defeating or degrading sophisticated adversary malware, with 
anticipation and minimization of resulting side effects. It will be capable of 
adversarial reasoning to conduct a dynamic, strategically minded battle of actions, 
reactions, and counteractions against a thinking, adaptive malware. It will be able 
to collaborate on planning and coordinating actions with friendly agents. Crucially, 
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AICAs will have to keep themselves and their actions as undetectable as possible, 
and will have to create and use deceptions and camouflage. 

Our initial exploration—reflected in this report—identified the key functions, 
components, and their interactions for a potential reference architecture of such an 
agent. To mention just a few examples, Sensing and World State Identification is 
the AICA high-level decision-making function that allows a cyber-defense agent to 
acquire data from the environment and systems in which it operates, as well as from 
itself, to reach an understanding of the current state of the world. Planning and 
Action Selection is the AICA high-level decision-making function that allows a 
cyber-defense agent to elaborate one to several action proposals (Planning) and 
propose them to the Action Selection function that decides the action or set of 
actions to execute. Learning is the AICA high-level function that allows a cyber-
defense agent to use the agent’s experience to improve progressively its efficiency 
with regard to all other functions. For these and other high-level functions of AICA, 
our initial analysis suggests that the required technical approaches do not seem to 
be far beyond the current state of research.  

The sum of challenges (Table 4) presented by the AICA concept appears, today, 
very substantial. Still, an empirical research program and collaboration of multiple 
teams should be able to produce significant results and solutions for a robust, 
effective intelligent agent. Based on the analysis of the proposed AICARA and 
available technological foundation, we envision a roadmap toward initial yet viable 
capabilities.  

Table 4 AICA research challenges 

AICA 
component Research challenges 

Sensing 

- definition of agents' sensing perimeter 
- distribution of sensing goals and perimeters between agents in a swarm 
- specialization or generality of the Sensing function or of agents in 
sensing 

World State 
Identification 

- embarking cyber-defense analysis tools (binary analysis, etc.), analytics 
and state estimator algorithms into an autonomous agent that must stay 
small and stealthy 
- multiagent collaboration toward attack pattern identification 
- computing possible future situations that may result from the current 
state of the world through, for example, attack path analysis and 
multiagent collaboration 

Planning 

- embarking in a small stealthy autonomous agent an AI + game theory + 
risk/criticality + efficiency-based response planning process + knowledge 
- experience - routines 
- multiagent collective optimized response plans 
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Table 4 AICA research challenges (continued) 

AICA 
component Research challenges 

Action Selection 
- evaluation of proposed reaction plans through simulation vs. dynamic 
risk analysis, tactical reasoning, multiple criteria analysis 
- multiagent collaboration toward selecting optimal attack response plans 

Action Execution 
- tactical C2 of executing response plans by fully autonomous agents 
- multiagent tactical C2 of response plans during their execution 

Collaboration and 
Negotiation 

- CONOPS for collaboration/warnings between agents, agent‒cyber C2, 
agent‒human operator 
- agent discovery and identification (friend or foe), with/without an agents 
directory 
- modification of swarms' composition (new entrants, defectors, 
connectivity issues) 
- man-machine interface and working protocols for collaboration with 
humans 
- inter-agent negotiation protocols, processes, policies, ontologies 
- technical substrate for inter-agent / agent‒cyber C2/agent‒human 
collaboration 
- inter-agent covert communication channels 
- trust in inter-agent/agent‒cyber C2/agent‒human collaboration and 
negotiation 

Learning - learning on the fly or back-office learning? 
- is learning an individual agent's task or is it a collective/swarm task? 

Goals 
management 

- what are the impacts of different contexts (combat, motion, idleness) and 
modes (fighting, fail-safe, isolated, etc.) of the agent/agent swarm on 
agent goals definition (missions + rules)? 
- how and why to overrule autonomous agents' goals in specified 
circumstances? 

Self-assurance - definition and a theory of agents' self-assurance 

Stealth and 
security 

- technologies, processes and rules for autonomous (multi) agents' stealth 
- interdependence between stealth and security (of agent, agents' 
communication…) 
- cyber resilience of isolated agents and of multi agents swarms/cohorts 

World model 

- a theory and formal language of agents' world models (scope, nature, 
ontology, use, predictive power) 
- algorithms for preprocessing, creating, and indexing data and machine 
learning based computation of world models 
- should the world models of agents in a cohort be consolidated within 
each agent? 

Current world 
state and history 

- a theory and formal language of agents' world states (scope, nature, 
ontology, use, predictive power) 
- algorithms for computing world states, both nominal and degraded and 
the role of AI in this process 
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Table 4 AICA research challenges (continued) 

AICA 
component Research challenges 

World dynamics 

- a theory and formal language of world's laws of dynamics applied to world 
objects and agents themselves 
- world state transition patterns and confidence estimators 
- can a single isolated/fully autonomous agent compute/learn its world's 
laws of dynamics? 

Goals 

- how to frame agents' behavior through goals 
- formal language to express and compute goals and deviations from goals 
- human‒computer interaction and methods for defining agents' goals and 
embedding them into agents 
- formal control of deviations from goals and alerts on deviations 
- operational and ethical aspects of self-definition of goals on the battlefield 

Development 

- agents' fail-safe process: circumstances, process, and other features 
- agent's database size vs constraints from host platforms' capacities 
- risks to the agent’s stealth due to agents' memory size, processing power, 
and communication requirements 

Verification and 
validation 
(V&V) 

- simulation as a way to validate agents' design and associated confidence 
estimators 
- is V&V applicable to agents' knowledge? 
- how to measure and validate the efficiency/pertinence of agents and 
swarms' outcome before pronouncing them fit for service? 

Maintenance - maintenance of agents through their entire lifecycle 
- impacts of one agent's maintenance on other agents 

Internal agent 
process flow 

- agent's process orchestration 
- optimization of agent's and inter-agent processes and performance 

 

The first phase of the roadmap, which could be lasting perhaps on the order of 2 
years, will include the development of knowledge-based planning of actions, the 
execution functionality, elements of resilient operations under attack, and 
adaptation of the prototype agent for execution of a small computing device. This 
phase would culminate in a series of Turing-like experiments that would evaluate 
the capability of the agent to produce plans for remediating a compromise, as 
compared to experienced human cyber defenders. 

The second phase, which could last about 3 years, would focus on adaptive 
learning, the development of a structured world model, and mechanisms for dealing 
with explicitly defined, multiple, and potentially conflicting goals. At this stage, the 
prototype agent should demonstrate the capability, in a few self-learning attempts, 
to return the defended system to acceptable performance after a significant change 
in the adversary malware behavior or techniques and procedures. 
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The third phase, potentially about 3‒4 years, would delve into issues of multiagent 
collaboration, human interactions, and ensuring both the stealth and trustworthiness 
of the agent. Cyber‒physical challenges may need to be addressed as well. This 
phase would be completed when the prototype agents are able to successfully 
resolve a cyber compromise that could not be handled by any individual agent. 

NATO cyber defense would benefit from active encouragement of AICA 
development efforts. Relevant research in academia and in some government and 
industry research organizations is growing, and should be supported. It appears that 
academic institutions already begun work toward AICA-like capabilities, and 
results are beginning to be available for transition to industry. NATO defense 
agencies should query the cybersecurity software vendors about availability of 
AICA-like products. Creating a multi-stakeholder working group engaging 
industry, academia, and governments could help facilitate the development of 
AICA technologies. NATO must not fall behind its adversaries in developing and 
deploying such capabilities.  
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A.1 An Illustrative Operating Scenario  

In order to illustrate how an autonomous cyber defense agent might operate, we 
offer a notional operating scenario. In this scenario, Blue refers to friendly forces 
and Red refers to the adversary. Blue-17, Blue-19, and Blue-23 are peer cyber-
defense agents. Each agent is installed by a human operator on its respective device 
within the Blue IoBT (e.g., an Android phone) and is tasked with cyber defense of 
that device. Blue-C2 is the command and control (C2) node that commands, 
coordinates, and supports all other Blue agents, at least when communications 
between an agent and the Blue-C2 node are available. There is only one Red 
agent—Red-35—in our simple scenario. 

The protagonist of our scenario is Blue-17, a cyber-defense agent that has been 
installed on a friendly device; it continuously monitors Blue space network and 
scans event logs looking for suspicious activity. The antagonist is Red-35, a 
malware agent successfully deployed by the Red forces on the device defended by 
Blue-17. The events unfold, briefly, as follows.  

Blue-17 detects a hostile activity associated with Red-35 and attempts to contact 
the Blue-C2 for additional remediation instructions. Unfortunately, the 
communications are heavily contested by the adversary, and response from Blue-
C2 is not coming. Therefore, Blue-17 decides to contact peer agents (Blue-19 and 
Blue-23) in search for relevant information. Although Blue-19 and Blue-23 receive 
this message from Blue-17, their responses are not arriving to Blue-17. Having 
heard nothing within a reasonable waiting time, Blue-17 independently formulates 
and executes a set of actions to defeat Red-35. However, having completed these 
actions, Blue-17 receives a belated reply from Blue-23. Blue-17 determines that 
Blue-23 is compromised because the response is suspicious. Given the extreme 
seriousness of this situation, Blue-17 neutralizes Blue-23 and places a copy of itself 
on the device that was being protected by Blue-23. 

Table A-1 provides a hypothetical timeline of these events and the agents’ actions. 
Durations are intended to merely illustrate the flow of time in the scenario and are 
in no way representative of execution speeds of any actual hardware or software. 
Following the table, we discuss each step of the scenario in more detail. 
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Table A-1 Hypothetical timeline of agents’ actions 

Step Elapsed 
time 

Condition/event Active 
software 

agent  

Action 

1 H = 0 sec Start up Blue-17 Monitor network traffic and scan logs 

2 H = H + 
0.100 sec 

Hostile software agent 
compromises device and 

network 

Red-35 Red-35 infiltrates Blue device and 
network. Blue-17 does not notice the 

infiltration. 

3 H = H + 
0.200 sec 

Red-35 begins operations. 
Suspicious activity detected 

Red-35 and 
Blue-17 

Red-35 conducts malicious activities. 
Blue-17 detects an activity and predicts 

probable compromise. 

4 H = H + 
0.22 sec  

Compromise suspected Blue-17 Contacts C2 node 

5 H = H + 
3.00 sec 

No response from C2 node Blue-17 Contact Blue-19 and Blue-23 agents 

6 H = H + 
5.00 sec 

Message among Blue peer 
agents 

Blue-19 and 
Blue-23 

Receive message from Blue-17 

7 H = H + 
10.00 sec 

Message acknowledgement 
time out 

Blue-17 Choose alternate course of action 

8 H = H + 
12.00 sec 

No communication with peer 
defensive agents 

Blue-17 and 
Red-35 

Block or redirect Red-35 communication. 
Red-35 is unable to defend itself. 

9 H = H + 
23.00 sec 

Response received from Blue-
23 

Blue-17 Blue-17 determines that the response is 
invalid 

10 H = H + 
28.00 sec 

Neutralize compromised Blue 
agent 

Blue-17 Quarantine or destroy Blue-23 software 
code 

11 H = H + 
28.3 sec 

Replicate and overwrite Blue-17 Copy to device 

 
Scenario Steps 1–2  

In the scenario, Blue-17 passively monitors the inbound and outbound network 
communications using a lightweight intrusion detection system (IDS) such as 
FAST-D (Yu and Leslie 2018). FAST-D is a software that performs intrusion 
detection using far less computational resources than alternative solutions. Its 
algorithm uses hash kernels and byte patterns as signatures to examine the packet 
payload content of all network communications. Additionally, Blue-17 scans the 
device logs looking for indicators of compromise (privilege escalation, abnormal 
crashes, failed logins, etc.). 
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Scenario Steps 3–4  

Blue-17 sends a message to its C2 node for further remediation instructions and 
verifications. A C2 node is one that is central (root) and is responsible for the 
management and tracking of all Blue agents. A C2 node resides in a central location 
that may be the tactical operations center. The message sent to the C2 node is 
encrypted to protect the confidentiality and integrity and is in a predefined format 
for agent messages. This message is split up into many small segments, is blended 
into normal traffic to masquerade as other legitimate traffic, and sent through 
different routes within the network in order to avoid an attacker from intercepting 
or detecting the agent message sent to the C2 node. Lastly, the address of the C2 
node changes over time based on a deterministic algorithm, known to all agents to 
make it more difficult for Red-35 to discover its location. 

Scenario Step 5  

After some reasonable waiting time passes, and Blue-17 does not receive a reply 
back from the C2 node, it decides as an alternative action to send out a request to 
its peer agents (Blue-19 and Blue-23) for their remediation recommendations. 
Again, this message is sent out using an encrypted predefined format for agent 
messages as previously described in sending a message to the C2 node. The 
message is sent directly to the peers and is blended into another network traffic. 
The peer agents are neighbors to Blue-17 and are also be under the management of 
the C2 node.  

Scenario Step 6  

Both Blue-19 and Blue-23 have received the message from Blue-17. After some 
delay, Blue-23 sends a response and recommendation back to Blue-17 using the 
same method for sending a message to a peer agent.  

Scenario Steps 7–8  

Within a specified time interval, Blue-17 has not received a response from either 
its C2 node or its peers (Blue-19 and Blue-23). Blue-17 requested further 
verification of the threat before taking a destructive action against Red-35. 
However, since a response was not received, Blue-17 decides to take action on the 
perceived Red-35 malware agent threat. The Blue-17 agent first isolates the Red-
35 malware agent and its communication in a honeypot to observe the actions taken 
by the attacker. Blue-17 has taken this action since it is not confident in its 
assessment of the detection of the perceived Red-35 agent.  
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Scenario Step 9  

After some time has passed, and Blue-17 has already taken action, a response from 
Blue-23 is received. Blue-23’s response contains a signature and timestamp that 
allows Blue-17 to determine the authenticity of the message received. However, as 
Blue-17 verifies the response message from Blue-23, it determines that the message 
signature is not valid and rejects the message. Blue-17 concludes that Blue-23 may 
be compromised. 

Scenario Steps 10–11 

Blue-17 has discovered that Blue-23 has been compromised. Blue-17 takes action 
to quarantine Blue-23. Blue-17 clones itself to create a pristine copy of the 
defensive agent. Blue-17 initiates the overwriting of the Blue-23 agent image with 
a fresh copy of a defensive agent with the initial state of Blue-17. The agent package 
is sent via an encrypted message from Blue-17 to the container management of 
Blue-23. The container management package of the agent uses cryptographic 
authentication, allowing the overwriting to occur. Blue-23 is restored back to a 
fresh agent image and is no longer infected. 

A.2 Discussion of Challenges and Requirements 

Having offered a scenario—simple yet sufficiently illustrative of potential 
difficulties—we now have a basis for discussing the technical challenges and 
requirements. One of the requirements illustrated in part by the scenario is that a 
defensive agent must reside outside of the operating system of the device it is 
protecting. This arrangement avoids the possibility of the malware providing false 
information or changing the view of the defensive agent (i.e., Blue-17). Malware 
can disable processes or deceive (e.g., by providing false information) software 
such as the antivirus (AV) software or firewall on a device (Baliga et al. 2007). A 
logical separation at the hardware level between the operating system being 
protected and the defensive agent will protect the Blue-17 agent from being 
compromised by malware infection. The defensive agent will require access in a 
secure manner to all of the files and state from its outside view, while being 
protected from any threats affecting the Blue-17 operation or integrity. 

Additionally, because the Blue-17 agent resides outside of the protected operating 
system, Red-35 will not be able to detect Blue-17’s presence or any of its actions. 
A traditional placement alternative for an agent that resides outside of the protected 
operating system would be a distributed, or network-based, sensor. That 
configuration comes with a tradeoff: An agent (Blue-17) at the network level would 
not be able to monitor the file system of the protected operating system. Therefore, 
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the Blue-17 agent must reside on the same physical device as the operating system 
being protected.  

Also, in order for the agent to move around freely among the devices within the 
protected network, the agent must be agnostic of any particular operating system. 
It is also presumed that the container in which the agent runs has been pre-installed 
on the device to which agents can migrate freely to, such as in the case with Blue-
17 overwriting Blue-23.  

Clearly required, as illustrated in our scenario, is a fast, highly reliable and low-
resource means of detecting potentially malicious activity. For example, using a 
low-resource intrusion detection software, Blue-17 was able to detect rapidly and 
with a significant degree of assurance a suspicious activity performed by a 
sophisticated agent Red-35. Additional solutions could be employed that use 
supervised machine-learning approaches, coupled with features such as network 
packet inter-arrival times, packet sizes, Transmission Control Protocol (TCP) flags, 
and such, to perform detection of malware infiltration. However, in either case it is 
important to understand the limitations (i.e., inability to detect malware within 
encrypted communications) of the intrusion detection algorithm chosen to perform 
detection of malicious communications. It is also important to know the possible 
ways an attacker could evade (fragmentation attack, encrypted attack, etc.) the IDS. 
Successful evasion by an attacker will result in a missed attack. It is also critical for 
an autonomous agent employing an IDS algorithm to have a low false-positive rate 
(misclassified legitimate traffic as an attack) and false- negative rate (missed 
attack). In a military context a false positive in an autonomous cyber-defense agent 
will result in an impact to the mission by denying a legitimate communication that 
is essential to the mission. 

Another challenging requirement is the need to manage the degree of the agent’s 
autonomy. Blue-17 could be fully autonomous or semiautonomous. In our scenario, 
Blue-17 is fully autonomous, evidenced by the lack of human intervention at any 
point. Consequently, Blue-17 must be highly confident in the detection event and 
its resultant course of action. The agents’ actions must avoid any adverse reaction, 
such as degrading network performance or dropping nodes on the network as a 
mitigation, resulting in access denials. Alternatively, Blue-17 could act as a 
semiautonomous agents, with varying levels of interaction between the agent and 
human controllers, which present many challenges of their own (Kott and Alberts 
2017). For example, Blue-17 detects a potential compromise and then defers to a 
human analyst (e.g., by contacting the C2 node and waiting for instruction) in a 
case where there is a low to moderate confidence in the detection event.  
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The agent will require the ability to share threat data directly with its peers (e.g., 
Blue-17 had the need to share data with Blue-23 and Blue-19) and orchestrate 
coordinated defensive actions when necessary. Additionally, the agent must be able 
to work in an isolated environment to make appropriate decisions independently, 
as Blue-17 had to do when it failed to receive response from either Blue-C2 or 
peers’ agents. These agents will need to store pertinent information on detected 
attacks and outcomes (successful vs. unsuccessful) of the selected mitigation 
strategies. This information will need to be stored in a compressed format due to 
the limited resources characteristic of the various devices of the Internet of 
Battlefield Things (IoBT). On the other hand, when the agents return to a less-
contested environment where power and bandwidth are less constrained and more 
reliable, the data would be uploaded to a central repository. Lessons learned 
(quantitative measures of outcomes) and specifics on detected attacks would be 
compiled to improve the process of informing other autonomous agents. This 
arrangement would expand and enrich the agents’ knowledge and ability to learn 
from historical decision-making strategies. 

The agent (i.e., Blue-17, Blue-19, or Blue-23) hosted within the IoBT environment 
will need to process and reduce the enormous amount of information produced by 
itself and other agents to a subset, which is relevant to the human warfighters’ 
cognitive needs (Kott et al. 2016). For example, an enormous number of alerts may 
be produced by the agents, but the human warfighter cognitive requirements only 
include the subset of alerts to form a situational awareness of ongoing cyberattacks, 
which are impacting missions. Therefore, the agent (i.e., Blue-17, Blue-19, or Blue-
23) will need to process and filter the alerts to a reduced subset of alerts, which are 
relevant to ongoing missions. Additionally, the filtered information must be 
relevant and trustworthy to the IoBT device and human cognitive needs, as a risk 
is providing information that could lead to an undesired action or outcome resulting 
in further impact to the mission (Kott et al. 2016). Lastly, information stored by 
agents on IoBT devices must be distributed and obscured from the adversary. An 
approach to secure the distributed agent information within an IoBT environment 
is to split the data into fragments and disperse them among the many devices (Kott 
et al. 2016a). This information will need to be obfuscated, segmented, and 
distributed among the many agents so that an adversary will not be able to rebuild 
the original information. The distribution of the segmented information among the 
agents will need to be performed in a way which will thwart the adversary’s ability 
to reconstruct the information based on a number of captured segments (Kott et al., 
2016a). The combination of both intelligent filtering and distributing the 
information among various agents will assist in informing the human warfighter 
cognitive needs and deceiving the adversary. 
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Ideally, the agents’ performance would be evaluated in order to refine and share 
successful strategies with other agents. Performance in this context includes the 
agents’ decision-making value, timing, and the resulting impacts of the courses of 
action executed (e.g., Blue-17 was successful—what factors contributed to these 
successes?). This further supports the need for agents to learn from their actions as 
well as the actions of other agents via machine-learning techniques. 

The agent could employ a combination of supervised and unsupervised machine 
learning. The lessons learned and outcomes of the course of action taken by an 
agent could be used with a reinforcement-based machine-learning algorithm. For 
example, the successful course of action executed by Blue-17 with respect to 
defeating Red-35 would receive a positive reward. This approach could be used to 
expand the knowledge of the autonomous agents, thereby improving the agents’ 
performance and effectiveness.  

Another requirement of these agents will be trust management between devices. 
Each device on the network will require software-based logic to participate in the 
network with a full degree of trust and access. This logic can be preinstalled or can 
be acquired from a peer node by a device that seeks to join the network in a comply-
to-connect mode of operation. Once compliance conditions are met, the agent can 
be transferred to other network member nodes. For example, in our scenario, Blue-
17 needed a way to determine that Blue-23 is no longer trustworthy. At the same 
time, Blue-17 had to elicit a sufficient degree of trust from the node where Blue-23 
resided in order to overwrite the Blue-23 image.  

Device-to-device transfer of the agents—such as the move of a copy of Blue-17 to 
the node originally defended by Blue-23—necessarily raises concern for 
unintended propagation and behaviors beyond the intended network, as witnessed 
with the Morris worm (Qing and Wen 2005; Spafford 1989) and the more recent 
Stuxnet attack (Farwell and Rohozinski 2011). Findings from studies on limiting 
the spread of malware in mobile networks (Zyba et al. 2009; Li et al. 2014) could 
be adapted to manage the propagation of defensive agents. Another potential 
solution to controlling propagation is to require consensus approval of a certain 
number of nodes prior to enabling transfer of the agent to a new device. A suggested 
approach is to define boundary rules to determine whether the agent has been 
transferred outside its intended network. When the boundary rules evaluate to a true 
condition (out of bounds), mandatory removal of the agent or a self-destruct 
sequence would be triggered. The effects of these combined approaches to 
controlling propagation require additional research. 

While autonomous agents should be free to learn, act, and propagate, careful 
thought should be given to methods that would constrain behaviors within the 
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bounds of legal and ethical policies, as well as the chain of command. For example, 
it would be undesirable if Blue-17 were to learn that requests to Blue-C2 are 
generally fruitless and should not be attempted. An agent that is fully autonomous 
must be able to operate within an appropriate military C2 construct (Kott and 
Alberts 2017). It is imperative that a software agent be bounded in its propagation, 
yet capable to move around freely between authorized devices.  
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Appendix B. Impact of Agent’s Purpose on its Capabilities 
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With the proliferation of machine-learning (ML) methods in recent years, it is likely 
that autonomous agents will become commonplace in day-to-day military 
operations. We expect a significant boost in their capabilities owing to both 
algorithmic advancements and adoption of purpose-built ML hardware. However, 
the range of agents’ functions will still be, in the foreseeable future, limited by a 
number of factors, which we attempt to enumerate.  

In this text, we recognize two types of autonomous agents as two extremes on the 
capability scale. At one extreme are preprogrammed heuristic agents, responding 
only to specified stimuli based on a set of preset actions. At the other extreme are 
robust intelligent systems with advanced planning and learning characteristics. 
Capability is then the aggregate of an agent’s intelligence, awareness, 
connectedness, control, distributedness, level of autonomy, and adaptability. 
Agent’s purpose prescribes specific functions and abilities, and the operational 
expectations place an upper bound on agents’ capabilities. The following text 
provides a list of some limiting factors and evaluates their impact. 

B.1 Mobility 

Autonomous agents deployed at stationary structures (e.g., buildings or weapon 
systems) should suffer the fewest limitations in their operation, as it can reasonably 
be expected that such agents will have enough power, processing capacity, 
connectivity, and other resources needed to carry out the most complicated of tasks. 
These systems will be restricted mostly by the ML state of the art.  

Agents deployed on mobile platforms (e.g., vehicles, Soldiers, or missiles) will 
inevitably be limited by intermittent connectivity; power, space, and processing 
constraints; or even the physical implications of their actions. Furthermore, for 
mobile systems, it is likely that the agent will be located at a centralized point in 
the architecture, rather than be distributed across all subsystems. This is due to the 
expected difficulty in accrediting systems with robust intelligent behaviors. 

  



 

101 

B.2 Lethality 

Agents operating in systems with lethal capacity will either have to undergo much 
tighter scrutiny or be limited in their actions to prevent the creation of accidental or 
exploited killer bots. In such systems, it is easy to envision agents and humans 
performing as a team, with the human having the final authority for decisions with 
lethal implications. This will require developments in human‒machine trust, 
interfaces, and planning. 

Another option to safeguard lethality would be the use of a two-tier infrastructure, 
where lethal means are physically separated and thus inaccessible to even a rogue 
autonomous agent. The ML would control the nonlethal tier only, allowing more 
conventional means (or, as described previously, a human) to control the lethal tier.  

B.3 Criticality 

Critical systems, whose failure has severe consequences, mostly operate with clear 
separation of responsibilities and are handled by rigorously trained personnel. 
Failures are reduced by the application of processes, which limit the impact of 
human error. Autonomous agents will likely introduce whole new classes of errors, 
so these error-controlling processes must be updated accordingly.  

There are three likely approaches to this: 

1) Improvements in the understanding of ML operations and performance 
limits will enable better scrutiny of the inner workings of autonomous 
agents, constraining the range of possible ML errors and formally proving 
the scope of exhibited behaviors. 

2) Testing methodologies and testbeds will improve, allowing autonomous 
agents to undergo a battery of conformance tests exhaustive enough to give 
informal guarantees of the agent’s operation with acceptable confidence.  

3) Autonomous agents will be deployed redundantly, allowing for robust and 
resilient operations. Techniques such as voting (e.g., three implementations 
with a majority voting on a next action) could be used.  

B.4 Connectivity 

Most mobile platforms will suffer connectivity problems or forced connection 
losses. Autonomous agents, which rely on communications links to enable swarm 
intelligence, command and control (C2), or computation offloading, would be 
severely impaired during connection loss. Therefore, any such ML functionality 
requiring connectivity must be designed with respect to the communications 
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environment and timescale in conjunction with required ML decision accuracy. For 
systems in unreliable environments, which need stable communication channels to 
arrive at decisions quickly or require accurate and reliable decisions under all 
conditions, it is up to debate as to whether the presence of autonomous agents is 
worth the personnel training extension, related updates to operational processes, 
and associated certification hurdles. 

B.5 Power and Processing Constraints 

Given the currently immense computation requirements for any autonomous and 
learning behavior, any hardware able to run sufficiently advanced agents will 
require nontrivial space, power, and cooling. Unless there is a significant leap in 
technology, this will limit the available resources for agents, especially for 
deployment in mobile platforms. Developers of agents and policy makers will have 
to carefully consider which autonomous functionalities are necessary or beneficial 
enough.  

There is great potential in bio-inspired autonomy, assisted by mechanical and 
structural features on the host platforms. For instance, insects such as moths and 
flies are an inspiring mix of clever sensor arrays, simple processing cortexes, and 
advanced mechanical wing design that could enable low-power, low-processing 
micro-autonomous air platforms.  

B.6 Commoditization and Standardization of Agents for 
Environments 

We expect that some standard classification of autonomous agents according to 
their capability and requirements is inevitable. Such classification would ease the 
adoption process by reducing the need to evaluate each agent in a specific context 
with regard to whether an agent conforms to a class specification. Military systems 
then could be limited to specific classes of autonomous agents, thus prescribing the 
level of autonomy such systems can have. 
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Appendix C. “Hello, World” Autonomous Agent 
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The challenge we tackle in this section is the design of an actual autonomous agent, 
small and simple to implement but able to illustrate the essential functions any 
autonomous intelligent agent (AIA) should possess, albeit in a streamlined way. 
The agent proposed here is a purely software agent intended for cyber defense only. 

To be a proper AIA, it should fulfill the following 6 characteristics: 

1) An agent is strictly associated with its environment: an autonomous agent 
outside the environment it was designed for can be useless, or not even an 
agent at all. Franklin and Graesser (1996) have given a convincing 
definition of agents and the ways in which they differ from other software. 
The first four points in our definition draw from their definition. 

2) An agent interacts with the environment, via appropriate sensors providing 
input from it and appropriate actuators, allowing the agent to act and 
influence that environment. 

3) An autonomous agent acts toward a goal, or, in other words, it has an 
“agenda”. In particular, an autonomous agent developed for warfare 
operations is assigned a target. 

4) The activities of a truly autonomous agent are sustained “over time”, so it 
must have a continuity of action. 

5) An autonomous agent should possess an adequate internal model of its 
environment, including its goal—expressed possibly in terms of world 
states—together with some kind of performance measure or utility function 
that expresses its preferences. 

6) An agent must possess the capability to learn new knowledge and the 
possibility to modify over time its model of the world and possibly also its 
goals and preferences. 

In this section, we describe the agent and explain how it fulfills these requirements. 
We define its environment, task, and properties, such as sensors and actions. We 
also discuss possible extensions of the agent. 
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To make these “Hello, world” autonomous agents feasible, the design makes 
specific assumptions about the environment in which the agent operates, and the 
number and type of inputs and outputs its sensors and actuators will have. This has 
the aim of keeping the complexity low. 

C.1 Environment 

AGENTX lives in a virtualized cloud environment that supplies some unspecified 
cloud-based service. We assume this platform runs three kinds of virtual machines 
(VMs, or virtual servers): database servers, application servers, and web servers. 
We also assume that a hypervisor exists to manage the platform and balance the 
load. 

C.2 Task 

Again, for the sake of simplicity, AGENTX performs one specific function and not 
in an open-ended generic network defense mission. Its goal is to manage a set of 
honeypot (HP) virtual servers with the objective to deceive adversaries and deflect 
Cyberattacks against the cloud platform. Its architecture is monolithic (as opposed 
to a distributed, swarm-like structure) and operates at the hypervisor level of the 
system. To perform some of the available actions, AGENTX relies on small applets 
installed on each virtual server, for instance, exposing a RESTful application 
programming interface (API). It must be noted that in the context of this proof of 
concept, security measures that in a real environment would be mandatory are 
overlooked (e.g., encryption of communications, self-protection of the agent itself, 
and so on). 

Since the mission of AGENTX is purely deception, it implements the capability of 
communicating to other autonomous agents (and/or to human supervisors) the 
necessity to intervene and implement active defense measures. 

The agent has access to background information, such as a set of ready-made HP 
images, dummy process containers, and dummy files. 

C.3 Sensors 

The sensors are able to access the following data and information: 

i. Alerts from intrusion detection systems (IDSs) (count and severity) 

ii. Integrity information of critical files on the VMs 

iii. Metadata about critical files on the VMs 
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iv. Processes 

v. Log files 

vi. Metrics on the level of use of resources and system load 

vii. Feedback and replies from other agents tasked with active measures 

C.4 Actions 

The following actions are available to the agent: 

i. Starting and stopping HP VMs. 

ii. Starting and stopping actual virtual server instances (optionally). 

iii. Initiating a “cry for help” message to other agents (or humans). 

iv. Deploying dummy files and applications, and 
quarantine files (via the applets). 

C.5 Learning 

The agent implements a reinforcement learning model employing an appropriate 
reward function: 

 𝑅𝑅 = 𝑎𝑎 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑜𝑜𝑒𝑒𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒
𝑒𝑒𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑜𝑜_𝑜𝑜𝑒𝑒𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒

+ 𝑏𝑏 ∆_𝑠𝑠𝑜𝑜𝑒𝑒𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑒𝑒
𝑒𝑒𝑜𝑜𝑒𝑒𝑡𝑡𝑡𝑡_𝑠𝑠𝑜𝑜𝑒𝑒𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑒𝑒

+ 𝑐𝑐 𝑗𝑗𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑗𝑗𝑠𝑠𝑜𝑜𝑗𝑗_𝐶𝐶𝐶𝐶𝐶𝐶,
𝐶𝐶𝐶𝐶

 (1) 

where 

• honey_events: metric for attacks/events against the HPs; 
• security_events: number of attacks against the real servers (detected by 

IDSs); 

• total_resources: metric for the total amount of resources available; 
• Δ_resources: resources freed or needed (example, spinning HPs) to 

implement an action by the agent (negative when resources are needed, 
positive when resources are freed); 

• justified_CFH: “justified cries for help”, number of messages (alerts) sent 
by the agent reacting to actual attacks; and 

• CW: “cry wolf”, number of messages sent by the agent requesting assistance 
for attacks that did not really happen. 

The coefficients a, b, c state the relative importance of each factor. They should be 
tuned beforehand or during the initial learning phase. 
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We consider total resources available as those actually available at the time of 
action, which makes the function and the agent’s behavior dynamic during that 
time. It also means that a relatively costly action is not penalized if the system is 
under very light load, because the number of available resources is high and even 
small actions are heavily penalized if the system is utilizing almost all its resources. 

Note that this function could be calculated—in a future version of AGENTX—for 
homogeneous groups of VMs (e.g., only the application servers), to better reflect 
the situation and the world state, providing AGENTX with a more granular and 
detailed view of its environment. 

The learning is performed by implementing an anomaly detector leveraging a small 
set of hard-coded features (for the purposes of this section) including the following: 

• Number and severity of IDS alerts 

• Anti-malware software alerts 

• Unauthorized accesses 

• Access to HPs or dummy files 

• Alerts from dummy processes 

• File integrity violations 

• System load (aggregate, by group, and individual) 

C.6 Testing 

To validate the performance of the agent, we have to set up a testing environment, 
perform real attacks, and evaluate its efficiency. Since the agent is learning with 
each attack, we should let the evaluation continue for some time so the learning 
process can take place. It would also be ideal to face the agent with real attackers, 
not only simulated attacks. 

We propose to validate the agent on defending a network with several servers in a 
virtualized environment with simulated “regular” traffic. The setup has the 
following advantage: since we know which traffic was generated by us, we can 
safely assume the rest of the traffic comes from the attacker; therefore, we can 
easily recognize the justified and unjustified cries for help. The detection part is 
also easily achieved in this setup. We can leave the network running for a long time 
with little effort. To prevent the abuse of the compromised machines, we can let the 
“servers” actually be high-interaction HPs. 
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C.7 Additional Considerations 

Future developments include, of course, the use of real-world tools to implement 
the autonomous agents (while this proof of concept could be developed in a 
scripting language like Python), the implementation of all possible security 
measures to secure and protect the agent, as well as the development of the 
cooperative agents postulated previously. 

Moving away from a monolithic architecture (at the hypervisor level) to a swarm- 
like distributed architecture of agents living on every VM on the system is another 
valid possibility. 
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Appendix D. The AHEAD Autonomous Agent
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(Editors’ note: We view AHEAD as an agent that in many of its features is a partial 
instantiation of the AICA architecture.) 

D.1 Introduction 

The AHEAD architecture (de Gaspari et al. 2016) defines an autonomous agent 
equipped with a variety of active defense tools, providing both sensing and 
actuating functions. The AHEAD system consists of two main components: the 
AHEAD Controller and the Active Defence Architecture (ADARCH) Pot  
(Fig. D-1). The AHEAD Controller component implements the control logic of the 
system and manages a group of ADARCH Pots (Al Shaer et al. 2019). The 
ADARCH Pots are comprised by a set of active defense tools and can dynamically 
change the configuration of these tools to implement the decisions taken by the 
controller. In the AHEAD architecture, the ADARCH Pots are integrated directly 
into the production systems of a target network, providing ready-to-use active 
defense capabilities, while at the same time safeguarding the security of the 
production systems themselves. 

 

Fig. D-1 High-level view of the AHEAD architecture 

The AHEAD system provides many functions that are also part of the AICA 
architecture, such as Sensing and World State Identification, Planning and Action 
Selection, Action Execution, and Learning. The active defense tools deployed 
within the ADARCH Pot provide sensing functions for the system. Every 
interaction with the tools is logged and forwarded to the AHEAD Controller, where 
the Learning and Planning components process the input and decide if and what 



 

111 

actions are necessary based on the new world state (e.g., possible malicious activity 
underway). Once a decision is taken by the controller, the active defense tools of 
the ADARCH Pot are updated and reconfigured accordingly. Therefore, each 
ADARCH Pot also acts as an actuator for the system. This ability to dynamically 
reconfigure the Pot allows the AHEAD system to generate high amounts of 
accurate data on the attacker, since the controller can reconfigure the Pot to 
maximize the interaction with the malicious agent. 

However, differently from the Autonomous Intelligent Cyber-defense Agent 
(AICA), the AHEAD system is designed as a single-agent system (the AHEAD 
controller), and does not provide for the possibility of a multiagent configuration 
as the AICA Reference Architecture (AICARA) does. Therefore, AHEAD does not 
include Collaboration and Negotiation functions.  

D.2 Component Comparison 

In this section, we include a table showing a side-by-side comparison of AICA 
functions and the corresponding AHEAD module implementing it. 

Table D-1 Comparison of AICA function and the AHEAD module 

AICA function AHEAD  

Sensing ADARCH Pot 

World State Identification Controller state management component 

Planning Controller learning component 

Action Selection Controller learning component 

Action Execution ADARCH Pot 

Collaboration and Negotiation n/a 

Learning Controller learning component 

Goal management Controller learning component 

Stealth and security Controller/ADARCH attestation component 

World model Controller state management component 

World state and history Controller state management component 

World dynamics Controller learning component 

Goals Controller learning component 
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D.3 Technologies and Implementation 

Currently the AHEAD system is only partially implemented, with the ADARCH 
Pot in a prototype stage and the controller still in development phase. Therefore, in 
this section, we focus only on the ADARCH Pot and the sensing and actuating 
functions of the system. 

D.3.1 System-Pot Integration 

Since the Pot is designed to run alongside the real services in the production 
systems, it requires isolation in order to prevent malicious agents to use the active 
defense tools as pivot to break into the system. In ADARCH, this is accomplished 
by means of the Docker container technology (Docker 2019) and mandatory access 
control (MAC) techniques (Apparmor n.d.). Containers allow to provide separation 
between the Pot’s environment and the real system’s environment, while the 
mandatory access control ensures that even if the malicious agent takes over the 
Pot, its influence on the real system is heavily limited. Figure D-2 illustrates the 
integration of the Pot with the production systems. 

 

Fig. D-2 Integration of the Pot in the production system. Docker container technology is used 
to isolate the Pot from the host 

The use of Docker containers provides consistency between the operating system 
(OS) environment and the Pot environment, preventing attacks aimed at 
differentiating active defense tools from legit production services.  

D.3.2 Pot Sensors and Actuators 

The sensors and actuators in the AHEAD system are the active defense tools 
deployed within the ADARCH Pot. The ADARCH Pot provides a modular and 
extensible framework that allows to easily develop and configure new active 
defense tools, and seamlessly integrate them within the AHEAD architecture. The 
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active defense tools are developed on top of a Python-based framework that 
provides common functions such as logging and networking for all the tools. The 
use of a common framework for all the tools allows to easily develop and integrate 
new active defense modules, as well as providing a common view of the underlying 
system to the active defense tools deployed in the Pot. In particular, having a unified 
system environment for all the tools provides a consistent view to malicious agents 
interacting with the Pot and vice versa, which in turn means it is harder for such 
agents to understand they are interacting with fake services. Finally, the modular 
nature of ADARCH makes it easy to dynamically reconfigure the services exposed 
based on the output of the learning and planning components of the controller. 

Figure D-3 shows a high-level view of the ADARCH Pot architecture. ADARCH 
comprises two main components: the ADARCH core and the ADARCH 
interpreter. The ADARCH core is developed in C and is the core of the framework. 
It implements the most common functions required by a large number of active 
defense tools. The ADARCH interpreter encapsulates and extends a Python 
interpreter, and is used by external modules to transparently interact with the core 
framework. Active defense tools are developed as ADARCH modules written in 
Python, along with a corresponding configuration file. The configuration file allows 
tools developers to effortlessly instantiate required resources (e.g., port bindings), 
as well as to define callback functions associated to specific triggers. Finally, 
ADARCH is designed to work with container technologies to provide an additional 
layer of isolation to the production system. 

 

Fig. D-3 ADARCH Pot architecture 
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Appendix E. Autonomous Cyber Deception Based on Malware 
Analytics 
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(Editors’ note: This appendix describes analytic framework called Autonomous 
Malware-centric Deception System (AMDS), which can be considered as special 
instance of the Autonomous Intelligent Cyber-defense Agent (AICA) with special 
focus on malware deception. AMDS analyzes the malware behavior, automatically 
extracts the deception parameters using symbolic execution, and creates cyber 
deception plans.) 

E.1 Introduction 

Malware as an Opportunity. Malware is normally considered harmful and useless: 
when someone detects a piece of malware, their immediate reaction is to get rid 
of it. This is also the recommendation by state-of-the-art security solutions, 
including antivirus, anti-malware, intrusion detection systems, and intrusion 
prevention systems. 

Contrary to the conventional wisdom, we argue that malware can be used to 
improve the effectiveness of cyber deception: malware provides a communication 
channel between the security defender and the attacker; therefore, it creates unique 
opportunities to manipulate the attacker, such as feeding misinformation back to 
the attacker, engaging the adversary in a deception ploy, and learning about the 
adversary’s tactics, techniques, and procedures. In other words, we can rely on the 
malware to achieve our deception goal: to execute the deception plan via the 
malware. 

Here are a few examples. 

Example one: The malware finds FTP login credentials on the victim computer 
and exfiltrates them to the attacker. We can benefit from this malware by setting 
up a honey FTP server, creating honey accounts, and intentionally letting the 
malware exfiltrate the login credentials of such accounts. In other words, we can 
use the malware as a messenger to lure the attacker to our honey FTP server, which 
may be set up just for that one attacker. 

Example two: The malware uses the victim computer to run bitcoin mining 
software on behalf of the attacker. We can benefit from this malware by first 
learning the attacker’s bitcoin mining account name from the malware, and then 
submitting a large number of wrong mining results to the mining pool on behalf of 
the attacker, so that their reputation is damaged, to the extent that their account is 
banned. 

  



 

116 

E.1.1 Deception Models 

Cyber deception is a defense technique that deliberately introduces misinformation 
or misleading functionality into cyberspace in order to trick an adversary in a way 
that benefits the defender. Deception models allows for defining the deception 
goals and planning approach in order to construct an effective deception agent. 

E.1.2 Deception 4D Goals 

Effective cyber deception aims to 1) deflect adversaries away from their goals by 
disrupting their progress through the kill-chain, 2) distort adversaries’ perception 
of their environment by introducing doubt into the efficacy of their attacks,  
3) deplete their financial, computing, and cognitive resources to induce biased and 
error-prone decisions that we influence, and4) discover unknown vulnerabilities 
and new tactics, techniques, and procedures (TTPs) of adversaries, while predicting 
the tactical and strategical intents of adversaries. 

E.1.3  Malware Deception Playbook: Toward Real-time Autonomous 
Deception of Malware 

We are developing an Autonomous Malware-centric Deception System (AMDS) as 
shown in Fig. E-1. The main functionality of this system is to map patterns of 
malware behavior to prescribed sets of deceptive actions called Deception 
Playbooks. It consists of four components: the Detection Agent, the Analysis 
Agent, the Planning Agent, and the Deception Actuator. 

 

Fig. E-1 AMDS architecture 

The Detection Agent checks whether an application is malicious, and if so notifies 
the Analysis Agent. The Detection Agent can be an antivirus application or an 
intrusion detection system. 

The Analysis Agent analyzes a given malicious executable to extract deception 
parameters, which the malware depends on for reaching its goals and which can 
be configured/controlled by the environment to implement different deception 
plans. 
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The Planning Agent takes the deception parameters as input to find suitable 
Deception Playbooks for a deception ploy against the malware and the attacker 
behind it, based on certain rules. The Deception Playbook is actionable but it can 
have flexible formats (e.g., an algorithm or script template). 

The Deception Actuator executes Deception Playbooks to deploy the deception 
plan, and it restarts the malware in the deception environment created by the 
deception ploy. 

E.2 Detection Agent 

The Detection Agent can leverage existing malware detection techniques such as 
antivirus and intrusion detection systems. It scans suspicious files or detects 
suspicious processes in the system, using techniques such as signature matching. 
The signatures can be syntactic (e.g., hash code of binary files, string set, and byte 
sequences) or semantic (e.g., application programming interface [API] call 
patterns). Once a positive detection is made, the relevant file is handed over to the 
Analysis Agent. 

E.3 gExtractor: The Analysis Agent 

To extract the complete behavior of a cyberattack, we execute its binaries (i.e., 
malware) symbolically and build a model that represents its behavior with respect 
to selected system parameters. Given that the correct set of system parameters is 
selected, symbolic execution can cover all relevant execution paths. 

Before going through the technical steps of the symbolic malware analysis, we 
present the attack behavior model. 

E.3.1 Attack Behavior Model 

The attack behavior model describes how the attack behaves based on the results 
of its interaction with the environment. The malware interacts with its 
environment through system and user library APIs characterized by their input 
and output arguments. Some of these arguments may be attacker-specific variables 
and cannot be controlled by the environment, while other parameters can be 
reconfigured or misrepresented. We assume that a mapping between the selected 
system or library APIs’ arguments and the corresponding parameters in the 
environment, such as files, registry entries, system time, processes, keyboard layout, 
geolocations, hardware ID, C&C, Internet connection, IP address or host name, 
and communication protocols, is given. For example, the from argument of the 
recvfrom API can be mapped to a system parameter that represents the IP address 
of the sender machine. 
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We define the attack behavior model as a graph of points of interaction (PoI) nodes 
and fork nodes. The PoIs refer to the points in the malware control flow at which 
the malware interacts with the environment by invoking system or library APIs. 
The fork nodes represent the points in the control flow at which the malware 
makes a control decision based on the results of its interactions with the 
environment. 

In Fig. E-2, we show an example of attack behavior model that represents a 
portion of the Blaster worm that delivers a copy of the worm to an exploited victim. 
Round nodes represent PoIs and square nodes represent fork points. The solid 
edges represent control dependency, while dashed ones represent data dependency. 
In this model, the worm first sends an instruction to a remote command shell 
process running on the exploited victim through the send library API, then it waits 
for a download request through the recvfrom API call. The attack code checks if 
these operations are executed successfully and terminates otherwise as depicted 
through the conditions shown on the outbound edges from the fork nodes 2 and 5. 
At node 7, the worm starts reading its executable file from the disk into a memory 
buffer, through fread, and sending the content of the buffer to the remote victim, 
through the sendto API. There is a data dependence between the third argument 
of the sendto call, which represents the number of bytes to transmit, and the return 
value of the fread call, which represents the number of bytes read from the worm 
file. 

 

Fig. E-2 Example of attack behavior model (Alsaleh et al. 2018) 
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E.3.2 Malware Symbolic Execution 

We utilize the S2 E engine to symbolically execute malware binaries. The path 
coverage and the progress of the executed program depends on the correct marking 
of symbolic variables. Since we are interested in the interactions of the malware 
with its environment through selected system and library APIs, we intercept these 
calls and mark their output arguments as symbolic. This allows us to capture the 
malware decisions based on those arguments and track the corresponding 
execution paths. In the current version of our implementation, we select about 130 
APIs that cover activities related to networking, file system and registry 
manipulation, system information and configuration, system services control, and 
user interface (UI) operations. 

Marking Symbolic Variables. To mark the appropriate symbolic variables, we take 
advantage of the Annotation plugin provided by S2 E, which combines monitoring 
and instrumentation capabilities and executes user-supplied scripts, written in 
LUA language, at run time when a specific annotated instruction or function call 
is encountered. We define an annotation entry for each API. The annotation entry 
consists of the module name, the address of the API within the module, and the 
annotation function. We identified the module names and addresses using 
static/dynamic code analysis tools, such as IDA and Ollydbg. The annotation 
function is executed at the exit of the intercepted call. It reads the addresses of the 
return and output arguments of the call and marks the appropriate memory 
locations and registers as symbolic. Note that output arguments may have different 
sizes and structures. Hence, we need custom scripts to mark each individual output 
argument of the intercepted APIs. The return values of APIs are typically held in 
the EAX register and we use special method provided by S2 E to mark its value as 
symbolic. It should be noted that system calls and user library APIs are invoked 
by all applications in the environment, not only the malware process. Therefore, 
our annotation functions check the name of the process that invokes them and 
ignore calls from irrelevant processes. 

Building the Attack Behavior Model. After preparing the appropriate annotation 
entries, we execute the malware using S2 E to collect the execution traces. We 
configured the annotation functions to record the arguments, the call stack, and 
other metadata, such as the timestamp and the execution path number for each 
intercepted system and library call. By design, S2 E intercepts branch statements 
whose conditions are based on symbolic variables and forks new states of the 
program for each possible branch. We collect the traces and branching conditions 
of all execution paths and build the attack behavior model as follows: 
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• We create a PoI node for each system or library API call logged by our 
annotation functions. Similarly, the traces contain special log entries for 
state forking operations. Those are used to create the fork nodes in our 
model. 

• For each node in the model, we add a control dependency edge from the 
node preceding it in the execution path. If the preceding node is a fork 
node, the edge will be associated with a branching condition in terms of 
the symbolic variables. 

• To capture the data dependency, we check the values of all the input 
arguments upon the entry of each API call. If the value is a symbolic 
expression, this implies that it is a transformation of previously created 
symbolic variables. Hence, we add a data dependency edge from the PoI 
nodes in which the symbols of the expression were created. 

E.3.3 Deception Parameters Extraction 

Given the attack behavior model generated through symbolic execution, we 
extract a set of system parameters that help in designing effective deception 
schemes to meet the deception goals. Recall that the attack behavior model 
describes the complete behavior of a malware with respect to selected system 
parameters. However, that does not mean that every parameter in the attack 
behavior model is a feasible candidate for deception. That is, mutating or 
misrepresenting its value may not be sufficient to successfully deceive the attacker. 
We analyze the attack behavior model to select the appropriate set(s) of deception 
parameters that can help in designing deception schemes without dictating 
particular ones. 

We present the following four criteria (C1 to C4) that must be considered to 
decide on which parameters are appropriate for effective deception and which are 
not: 

• C1 (Goal Dependency): the selected deception parameters can directly or 
indirectly affect the outcomes of the attack in terms of whether the attacker 
can reach her goal. Hence, parameters that are used only in execution paths 
that do not lead to particular goals might be excluded. 

• C2 (Resilience): in cases where multiple attack paths lead to particular 
goals, selected parameters must provide deception in all the paths, not only 
one. 

• C3 (Consistency): the selected deception parameters must preserve the 
integrity of the environment from the attacker’s point of view. As system 
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parameters may be interdependent, deception schemes must take this into 
consideration, such that misrepresenting one parameter without 
misrepresenting its dependents accordingly does not disclose the 
deception. 

• C4 (Cost-Effectiveness): although multiple parameters may exist in the 
execution paths leading to particular goals, mutating or misrepresenting 
different parameters may require different costs and provide different 
benefits from the defender’s point of view. Defenders must select the most 
cost-effective set of parameters for deception. 

E.3.3.1 Refining the Attack Behavior Model 

The complete attack behavior model contains many execution paths that may not 
be relevant to our deception analysis. In this refinement step, we 1) identify the set 
of execution paths that are relevant to deception and 2) eliminate the don’t-care 
symbolic variables. 

Identifying Relevant Paths. Recall that deception is not about blocking attacks, 
rather, it is about misleading and forcing them to follow particular paths that 
serve the desired deception goals. Hence, the selection of relevant execution paths 
from the attack behavior model depends on the deception goal.  

Relevant Paths. A relevant path with respect to a particular deception goal is an 
execution path that exhibits particular patterns of interactions with the 
environment that can be leveraged by the defender to achieve the deception goal. 

Regardless of which deception goal is desired, it can be represented as a single 
call or a sequence of calls to system and library APIs leveraging existing tools 
that identify specific behaviors through patterns of call sequences, such as 
Christodorescu et al. (2007), Shankarapani et al. (2011), and Qiao et al. (2014). 
Then, the PoI nodes in our attack behavior model will be used to identify the 
execution paths that exhibit that particular sequence of calls. By pruning out all 
other paths that do not exhibit the desired sequence, we end up with a portion 
of the original behavior model that contains only the paths relevant to the 
deception goal. 

Another simplification is to eliminate don’t-care variables with respect to a 
particular deception goal. A don’t care variable is a symbolic variable that is part 
of one or multiple execution path constraints and its value is irrelevant to the 
desired deception goal. 
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After eliminating the irrelevant paths and the don’t-care variables, we end up with 
refined path constraints for the relevant paths. Any parameter extracted based on 
this refined model complies with C1 criteria. 

E.3.3.2 Selecting Deception Parameters 

Since the output of one interaction may be determined by multiple system 
parameters, there is no necessarily one-to-one mapping between the symbolic 
variables and the system parameters. Therefore, we need to map the symbolic 
variables to the appropriate system parameters, utilizing experts knowledge of the 
system and the system and library APIs. The documentation of the APIs can also 
be used to extract this mapping as it normally specifies the possible outputs of 
APIs and the cases in which each value is returned based on the system and the 
environment states. The result of this mapping will be a basic set of system 
parameters called deception parameters. 

E.4 Planning Agent 

The Planning Agent uses knowledge-based reasoning to select the most 
appropriate deception ploy, and outputs a deception playbook. 

E.4.1 Select the Best Deception Parameters to Achieve 4D 

In this step, we define a constraints optimization problem to find an optimal set 
of deception parameters that satisfy the following constraint: 1) at least one 
parameter is selected for each relevant path (to comply with C2), 2) if a parameter 
is selected, all its dependent are also selected (to comply with C3), and 3) the 
selected parameters incur the minimum cost on the defender (to comply with C4). 
We solve the constraints optimization problems using the Z3 solver. The result 
will be a set of system parameters that satisfies our four criteria to provide 
resilient, consistent, and cost-effective deception. 

E.4.2 Select the Most Appropriate Deception Ploy 

In this step, the Planning Agent maps the chosen deception parameter to a 
Playbook that manipulates the deception parameter. 

Each playbook has the following components: 1) a goal, which can be deflection, 
distortion, depletion, or discovery, 2) associated deception parameter(s),  
3) preconditions, which is a predicate that must be evaluated to true before the 
actions of the playbook are enabled, 4) actions, which are concrete executable steps 
of a deception ploy. 
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The associated deception parameter is used as a key to search for playbooks. The 
benefit of running each playbook is reflected in its goal attribute, and depending 
on what the customer of deception wants to achieve, different playbooks may be 
selected. The actions specification can be understood by the Deception Actuator, 
which instantiates the action specifications into actual execution. 

The actions of a deception playbook may include host-level actions and network-
level actions. Host-level actions include configuration (e.g., saving of user 
credentials) and object manipulation (e.g., creation of honey files and honey registry 
entries). Network-level actions include firewall configuration and IDS 
configuration, such as adding a filtering rule on the firewall to allow malware to 
communicate with its C&C server. 

Management of playbooks. All playbooks are indexed by the deception parameters 
that they manipulate. Our system supports the addition, query, and modification 
of playbooks. We provide interfaces for managing playbooks. 

The query interface of the playbook manager uses the deception parameter as the 
input and returns a playbook. Our design allows a set of Deception Playbooks to 
be configured based on user demands. We leverage knowledge-based reasoning 
and satisfiability constraint solvers to construct a resilient deception agent. 

E.5 Deception Actuator 

The Deception Actuator receives Deception Playbooks from the Planning Agent, 
constructs a deception environment based on specifications in the Deception 
Playbooks, and execute malware that it also receives from the Planning Agent, to 
realize the deception ploy. 

To construct a deception environment, the deception actuator needs to prepare the 
basic OS, runtime systems, applications, and required data, and set up the network 
configuration, based on the specifications of the Deception Playbook. We can use 
a dedicated virtual machine for each deception environment, to minimize the 
interference from other irrelevant workloads. 

E.6 Prototype 

As an illustration, we have built a prototype of AMDS. The agents are 
encapsulated in separate virtual machines on the same host machine, and they use 
shared folders on the host machine to collaborate, e.g., the Detection Agent puts 
malware files in the shared folder, and the Analysis Agent picks up malware from 
the same folder. 
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The Detection Agent uses hashes of know malware samples as signatures. The 
Analysis Agent records file- and registry-related API calls made by the given 
malware, including the names of files or registry entries. From the names it 
recognizes interesting deception parameters such as registry keys that contain 
saved FTP passwords (e.g., “Software\Martin Prikryl” ). 

The Planning Agent has one Deception Playbook about “Software\Martin 
Prikryl”: it belongs to WinSCP and the deception ploy includes installing WinSCP, 
configuring honey accounts, and saving these FTP passwords. All these steps are 
implemented in scripts. 

Finally, the Deception Actuator runs the scripts to actually deploy the honey FTP 
server and prepare an execution environment for the malware (e.g., installing 
WinSCP and saving WinSCP passwords), and then run the malware. 

E.7 Relevance to the AICA architecture 

The overall design of AMDS fits well into the AICA architecture (Kott et al. 
2018). AMDS Analysis Agent corresponds to Sensors in AICA, AMDS Planning 
Agent maps to Planner Predictor and Action Selector in AICA, and AMDS 
Deception Actuator corresponds to Action Execution in AICA. Both AMDS and 
AICA leverage knowledge-based reasoning. However, AMDS can be considered 
as special instance of AICA for malware deception. For example, the sensing and 
world state identification are based on data collected from the environment but 
AICA does not prescribe the exact kind of data to use. However, AMDS explicitly 
uses live malware and its execution traces as the data type. Moreover, AICA 
includes a collaboration and negotiation component, which is currently not part of 
AMDS because the focus at this point on a single agent decision making. However, 
we can see that this will be in our future extension of the architecture in order to 
enable AMDS agents in various component of the system to share and coordinate 
their action to globally orchestrate deception on large-scale cyber systems such as 
IoT. 

In summary, we consider AMDS as a concrete instantiating of AICA with a focus 
on malware. The Analysis Agent and the Planning Agent of AMDS can be 
enhanced by adopting strategies recommended in AICA, such as multiagent 
collaboration. 
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Appendix F. Security and Trust in AICA 
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An Autonomous Intelligent Cyber-defense Agent (AICA) should provide real-time 
cyber-defense protection to other intelligent devices deployed on nearby systems 
within the perimeter that AICA should protect. Therefore, the security of the AICAs 
themselves is critical. In particular, the information shared among collaborative 
AICAs should be accurate and reliable regardless of the threat conditions. AICAs 
should be able to establish trust in a rapidly changing environment and adopt trusted 
collaboration mechanisms. In addition, AICAs should implement trusted learning 
mechanisms in order to be resilient against attack scenarios, in which a 
compromised AICA may maliciously influence the knowledge and the actions of 
other friendly AICAs. 

In the following, we identify some of the security aspects that should be considered 
in the implementation of an AICA. 

F.1 Security 

F.1.1 Cryptographic Functions 

Each AICA should use standard cryptographic functions to provide confidentiality 
and integrity of AICA components and operations. Cryptographic functions can be 
implemented in software or in a hardware accelerator. To generate unpredictable 
random keys, an AICA should use hardware true random number generators 
(TRNGs).  

F.1.2 Key Management 

Key management schemes play a key role in a secure communication between 
AICAs. The key management process should be based on a policy and should be 
performed by a specific security operation or an authority. The key management 
schemes can be 1) centralized: only one entity manages the keys for all the agents, 
2) decentralized: the agents will be organized into small subgroups, and different 
entities will manage the key distribution for each subgroup, and 3) distributed: the 
agents collaborate to generate a common key or each agent generates one key. 

Alternatively, a random key pre-distribution scheme (Kahn et al. 1999; Eschenauer 
and Gligor 2002; Chan et al. 2003), which rely on probabilistic key sharing can be 
used as a lightweight key exchanging scheme between low-end devices. In these 
schemes, each device is initialized with m keys, selected from a large pool of S 
keys, such that two random subsets of size m in S will share at least one key with 
some probability p. Afterwards, devices perform shared-key-discovery to find out 
which of other devices they share a key with.  
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To protect the identity of AICAs, the private keys should be accessible only by 
authorized components. When necessary, the signing keys can be protected within 
hardware protected memory, preventing untrusted parties from using these keys. In 
addition, key management schemes should address the impersonation problem. For 
instance, an adversary can create its own cyber-defense agent (i.e., Sybil attack) 
which joins the Army network in order to participate in the decision-making 
process and influence the common goals of the friendly forces. The prominent 
necessity against such attacks is the development of mechanisms that can allow the 
legitimate agents to detect the agents with fake identity. 

F.2 Trust 

F.2.1 Trustworthiness of an AICA Agent 

To provide reliable evidence about the integrity of software running on AICA, each 
AICA should have a hardware-based immutable root of trust, such as a Trusted 
Platform Module (TPM) (Trusted Computing Group 2013). Remote Attestation is 
a security mechanism that verifies the trustworthiness of a system or a component. 
In the hardware-based trust model, the trust establishment derives from the 
underlying cryptography based security mechanisms (e.g., digital certificates, 
signatures and cryptographic checksums, for instance). During the boot process, 
TPM measures the system’s software state and stores the hash values into the 
TPM’s Platform Configuration Registers (PCRs). However, TPM measures the 
software only at boot time, and it is not resilient against runtime attacks. The 
development of AICAs requires new security techniques that can check the 
integrity at runtime of each AICA component.  

F.2.2 Trusted Collaboration 

The agents of friendly forces are expected to have some pre-shared cryptographic 
keys protected by hardware Root-of-Trust (RoT) on each agent. To guarantee a 
secure collaboration, all the services of the collaboration and negotiation 
component should use the security credentials embedded in the RoT. Since none of 
the distributed agents in the battlefield has a complete knowledge about the 
environment, it is important to construct the necessary security mechanism that 
could enable the legitimate to detect the agents with fake identity (e.g., a Sybil 
attack). 

In order to deploy trust establishment mechanisms for the communication among 
agents, the collaboration function should be able to adopt different trust model 
approaches. In particular, this component should consider two possible approaches: 
hardware trust model and behavior-based trust model. In the hardware trust model 
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(Jøsang et al. 2007), the trust establishment derives from the underlying 
cryptography based security mechanisms (e.g., digital certificates, signatures and 
cryptographic checksums, for instance). In the behavior-based trust model, the trust 
derives from external observations of agent’s behavior by providing a reputation 
score for the agents (Zacharia and Maes 2000; Jøsang et al. 2007).  

Furthermore, remote attestation can serve as a mechanism that allows an AICA to 
establish trust to another AICA. In addition, battlefield environment require new 
remote attestation schemes can also be used to verify the trustworthiness of a large 
group of devices in a more efficient way than attesting each of devices individually. 
These remote attestation schemes should be able to build trust even in the cases of 
disruptive networks. 

Beside the attestation capabilities, the AICAs should have sufficient onboard 
analytics capabilities for performing local profiling of the activities of the other 
intelligent agents to make safe decisions when there is no connection to the friendly 
agents or command and control (C2). When the cyber-defense agent detects an 
anomalous behavior, it should be able perform further investigation on the 
suspicious device and then delete the malware. 

F.2.3 Trusted Learning Among AICAs 

The observation of an AICA can be intentionally misleading. The C2 unit can 
extend the local analysis capabilities of an AICA toward an efficient security 
protocol that correlates the received information with different source of 
communications for the entire network of the agents. The verification of the 
received information should take in consideration not only the value of the data, 
but also the properties of the data reported from different agents.  

Additionally, a distributed collaborative learning scheme presents a crucial threat. 
An adversary can compromise an AICA and make the agent to share a particular 
information, which will cause the other agents to be more exposed to attacks. 
Research has shown that malicious participants on such a learning scenario are able 
to effect the outcome of the learning scheme by maliciously affecting what the 
global model has learned (Hitaj et al. 2017).  

Therefore, it is necessary to develop some new trusted learning techniques in a 
distributed collaborative battlefield environment. 
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Appendix G. Deep Decision-Making for AICAs 
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Author: Paul Théron 

Information technology (IT) and operations technology (OT) systems are now 
evolving toward autonomy and higher levels of complexity, both in the civil and 
military domains. From sensors and goods-delivery drones to intelligent 
ammunitions or augmented cognition for fire fighters through central command and 
control systems and maintenance and inspection things, autonomy will become a 
key to being successful over enemies in the increasingly fast pace of combats and 
to deliver better services to populations and customers.  

Just like in the Internet of Battle Things, intelligent things will fight intelligent 
things (Kott 2018), in the Internet of Things and autonomous systems, intelligent 
goodware will fight intelligent malware. 

With the current paradigm of cyber defense, based on the centralized monitoring of 
permanently connected systems, human operators who supervise cybersecurity and 
resolve cyberattacks will be overwhelmed by the pace, volume and complexity of 
cyberattacks at hand.  

A bio-inspired autonomous, intelligent and trustworthy cyber-defense technology, 
embedded into systems, must do the job for us, at speed and scale. Multiple agents, 
spread across software and hardware components, will work together to monitor 
and defend systems when malware strikes. 

Autonomous Intelligent Cyber-defense Agents (AICAs) (Fig. G-1) will monitor 
systems, detect attacks, design and execute tactically an appropriate response, learn 
and protect themselves, and report to us about their doings and circumstances. 

 

Fig. G-1 AICA Reference Architecture (AICARA) 
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G.1 Cyber-defense Agents Must Make Smart Decisions 

Agents’ decision making will a key to their trustworthiness. But decision making 
is still today at a very early stage of development (Heinl 2014). Machine learning 
(ML) and reinforcement learning are regularly advocated as a pathway to the future 
(e.g., in Ridley [2018]), but reduce decision making to a problem-solving issue. In 
future highly tactical and fast-paced cyber battles, smart decisions will not be those 
made in the heat of a single reaction to a single state of the defended system. The 
adversary plans many moves and reactions to our anticipated response to each of 
his moves. In a tactical cyber battle, a smart decision will be the one that wins the 
battle, not one that counters temporarily an adversary malware but risks triggering 
a fatal enemy retaliation later on.  

G.2 What Makes Decisions Smart 

Human decision making is smart because it builds on vigilance, vision, knowledge, 
experience, anticipation, wisdom, self-monitoring, deliberation, emotion, and 
plasticity. Instance based learning theory (IBLT) shows that five mechanisms are 
at play in dynamic decision making (Gonzalez et al. 2003): instance-based 
knowledge, recognition-based retrieval, adaptive strategies, necessity-based 
choice, and feedback updates. Blakely and Théron (2018) and LeBlanc et al. (2017) 
show that, for agents, making the right decision requires the integration of a variety 
of approaches. Decision making in action (DMA; Théron [2014]) suggests that the 
decision-making process’ plasticity is an adaptive response to circumstances’ 
characteristics and uncertainty.  

G.3 The Plasticity of Decision-Making in Action 

Théron (2014) showed that the cognitive process underlying individual human 
DMA has plasticity to adapt to the circumstances handled by the subject in real-
time episodes of action. 

The following two diagrams (Théron 2014) illustrate how, during a 5-s traumatic 
“moment” in a fire fighter’s—Lieutenant A—episode of lived experience, two 
successive, fast-paced, cycles of decision making involve differently shaped 
cognitive processes to fight the circumstances at hand (Figs. G-2 and G-3).  

What these two diagrams show is that in order to escape his fate (Lieutenant A is 
caught in the middle of gun shots by three police officers trying to kill two 
Rottweiler dogs that attack), the subject struggles at a very fast pace to find margins 
of maneuver and ways of controlling the course of events. 
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Lieutenant A executes two successive cycles of decision making in a row, this 
representing a time span of about 5 s. 

When after the first round of decision making, Lieutenant A realizes that the 
margins of safety and maneuver shrink, the second cycle of decision making shows 
Lieutenant A struggles far more, resorting on more cognitive resources to sort the 
situation out. 

 

Fig. G-2 Decision cycle in Lieutenant A’s episode of experience 

 

Fig. G-3 Another decision cycle in Lieutenant A’s episode of experience 
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When uncertainty appears at a given stage in the DMA cognitive process, the 
cognitive function that identifies uncertainty calls upon other functions to resolve 
doubts. For instance, the “analysis” function, if it cannot make sense of the 
perceived situation, may call upon “long-term memory” to find in autobiographical 
knowledge significant world patterns, or it can refocus the “sensing” function on 
specific objects to acquire more data about the situation. 

G.4 DMA is applicable to AICAs 

We posit that AICAs’ decision-making function will rely on a model of DMA 
similar to the one described in Théron (2014) and that we assume to be structured 
as follows (Fig. G-4): 

 

Fig. G-4 Model of AICAs’ DMA 

• The Sensing cognitive component of the AICA will acquire data from its 
environment, from itself and form other friendly agents. 

• This data set will be processed by the World State Identification cognitive 
component of the agent to provide the agent with a picture of the situation 
at hand. 

• The agent’s Planning cognitive component will elaborate and the Action 
Selection cognitive component will select action options, or, alternatively 
in case of a major “stress”, these components of the agent will resort on a 
repertory of appropriate “reflex” courses of action. 
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• The selected course of action will be passed on to the Action Execution 
cognitive component of the agent, and the latter will activate this set of 
actions in its environment or within itself, or address them to other friendly 
agents. 

Agents’ DMA can be up to the challenges of fast-paced intelligent cyber battles if 
it is organized in a human-like plastic cognitive process. 

G.5 Deep Decision Making (DDM) in Agents 

Deep decision making (DDM) is the computational model of DMA in AICAs. 

In the DDM model, the agent’s decision-making process will be plastic, meaning 
that it will activate the agent’s cognitive components in a plastic variety of ways 
and combinations that will be dictated by circumstances at hand. 

Each DDM cognitive function will itself rely upon a plastic combination of non-
artificial intelligence (AI) and AI/ML techniques (e.g., genetic algorithms and 
classifiers or neural networks). It will be founded upon a set of models, memories, 
techniques, and tactics. 

The specific research challenge is here to know why, when and how AICAs’ 
cognitive components will need to trigger and communicate with one another. 

This research should explore the various currents of work conducted in recent years 
such as cognitive architectures (Lebiere and Anderson 1993) and their use for 
computer games (Smart et al. 2016), naturalistic decision making (Lipshitz 1997), 
and DMA (Théron 2014) for they characterize the micro-cognitive processes of 
expert decision making, instance-based learning theory for DDM (Gonzalez et al. 
2003), Agent-based modeling and simulation of cyber battles (Kotenko et al. 2012), 
and cyberattack graphs and models (Jajodia and Noel 2010; Noel et al. 2015) as 
they seek to provide models of adversaries, along with game theory, AI and ML 
and its current refinements. 

 



 

135 

Appendix H. Annotated References from Game Theory Literature 
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Author: Martin Drašar 

Game Theory primarily supports the Planning and Action Selection modules, and 
secondarily, the Collaboration and Negotiation module.  

Game theory is a framework that enables us to infer future actions of agents with 
strategic decision-making skills. Thus, in AICA Reference Architecture 
(AICARA), it may form a basis for a more formal model for an advisor. 
Additionally, to construct a game theoretic model, one needs to reduce the 
complexity/ dimensionality of the issue being modeled; such a reduction helps to 
find the crucial elements of a problem—or study the orthogonal aspects in 
separation. 

However, game-theoretic methods might be difficult to apply in cybersecurity. 
First, it is unclear how to realistically model an adversary (what are the adversary’s 
intended actions, or their utility). Second, in military planning, game theory is 
seldom used, and cybersecurity might be probably even more complex than military 
planning. 

To explore the domain, we strongly recommend these two basic textbooks on game 
theory: 

• Osborne MJ. An introduction to game theory. Oxford University Press, 
2004. 

• Nisan N et al., eds. Algorithmic game theory. Cambridge University Press, 
2007. 

There exist some relevant game-theoretic models used to investigate security-
related games. We comment on two of them: 

• Korzhyk D, Yin Z, Kiekintveld C, Conitzer V, Tambe M. Stackelberg vs. 
Nash in security games: an extended investigation of interchangeability, 
equivalence, and uniqueness. J Art Int Res. 2011 May;41(2):297–327.  

In Stackelberg’s Security Game, there are two players, the defender and the 
attacker. The defender has to defend some infrastructure (isolated nodes, a 
graph). The defender chooses a defense strategy which is the amount of 
effort to defend each element of the infrastructure. The attacker observes 
the strategy (e.g., sees how many police officers are deployed on each 
airport) and picks an attack strategy (what elements to attack and with which 
force). The utility of the defender is the value of defended infrastructure 
minus cost of defense. The utility of the attacker is the value of hijacked 
infrastructure minus the cost of the attack.  
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Relevance: we may represent the defended system as infrastructure for the 
Stackelberg’s security game. 

• Van Dijk M, Juels A, Oprea A, Rivest RL. FlipIt: the game of “stealthy 
takeover”. J Crypto. 2013;26(4):655–713.  

In FlipIt, there are two players (the defender and the attacker) and one node 
(a single piece of infrastructure). The players fight for the control over the 
node over a certain time horizon; players can make repeated actions during 
that time. The attacker’s action is to hijack the node. The defender’s action 
is to reinitialize the node and thus regain its control over it (until the end of 
the game or the next move of the attacker). Players can’t observe the state 
of the node without making an action. The utility of a player is the total time 
they control the node minus the total cost of the actions. The strategy is 
when to execute the actions. 

Relevance: FlipIt represents a system with an exploit (that cannot be 
permanently fixed) and a stealthy malware; a defender move represents, for 
example, a trusted reinitialization.  

Following references are sample applications of game-theoretic reasoning to 
military and cybersecurity planning: 

• Chatterjee S, Halappanavar M, Tipireddy R, Oster M. Game theory and 
uncertainty quantification for cyber defense applications. SIAM News. 
2016;49(6). 

The defended cyber infrastructure is modeled by layers. Each pair of 
attacker‒defender actions is associated with probability of penetrating each 
layer. Each action has a cost. The utility is the expected cost of penetrating 
all layers (or benefit, for the attacker); minus the cost of the action taken. 
The paper validates the model by a cyber-wargaming scenario involving 
people.  

• Colbert EJ, Kott A, Knachel LP. The game-theoretic model and 
experimental investigation of cyber wargaming. The Journal of Defense 
Modeling and Simulation. 2018. 

Game-theoretic modeling commonly assumes that both sides know each 
other’s utilities and the repertoire of actions. The paper shows how to cope 
with unknown attacker’s strategies using reinforcement learning algorithm. 
The algorithm is used to tune transition probabilities between possible 
actions.  

We indicate another interesting paper about adaptive cyber defense: 
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• Zhu M, Hu Z, Liu P. Reinforcement learning algorithms for adaptive cyber 
defense against Heartbleed. Proceedings of the First ACM Workshop on 
Moving Target Defense. 2014:51–58. 

One crucial point to obtain autonomy for cyber-defense’s agent is the learning 
process. The following reference deals with reinforcement learning: 

• Beaudoin L, Japkowicz N, Matwin S. Autonomic computer network 
defence using risk state and reinforcement learning. Cryptology and 
Information Security Series. 2009;3:238–248. 

This paper shows an application of reinforcement learning to adapt 
computer network defense in order to minimize the risk (a product of the 
infrastructure value and the probability of a successful attack). The paper 
uses a simulator to learn an optimal defending strategy. The simulator 
assumes a queuing-theory like distribution of incoming vulnerabilities. The 
defended network is represented by a graph; for each component, the 
possible actions of the defender are fixing, patching, isolating and waiting. 

Reinforcement learning is a domain in which new important results occur 
any year. Research activities about neural networks always places a little 
further the border of what is possible to do. We choose the following 
reference which presents what we imagine to combine Planning and Action 
Selection modules in a single neural network: 

• Mnih V et al. Playing Atari with deep reinforcement learning. 2013. 
arXiv:1312.5602 [cs]. 

Cyber defense can be treated as a complex decision-making process in an 
environment that has a complex state that changes both stochastically and 
in response to the opponents’ actions; and a payoff that might be delayed in 
time from the moment the action is taken. Such an environment is not unlike 
an arcade game. Reinforcement learning combined with deep learning was 
applied to successfully play such arcade games. This approach starts with a 
generic learning algorithm that is not adapted for a specific game; instead, 
it takes a sequence of images as an input; and joystick movements 
(left/right/top/bottom) as possible actions. After learning, the algorithm 
achieved higher scores than expert human players. It may seem that a black 
box consisting of a reinforcement learning algorithm could replace the 
combined Planning and Action Selection modules (taking along also the 
problem of representing the world state). However, cyber defense is more 
complex than an arcade game. First, there is no simulator to train on. 
Second, there are more possible actions. Third, the opponent is stronger than 
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a 1980s “AI” of an arcade game. Without expertise in reinforcement 
learning, it is thus unclear how (and whether at all) their impressive results 
translate to cyber defense. 
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List of Symbols, Abbreviations, and Acronyms 

AICA Autonomous Intelligent Cyber-defense Agent 

AICARA Autonomous Intelligent Cyber-defense Agent Reference 
Architecture 

AMQP Advanced Message Queuing Protocol  

APT advanced persistent threat  

ARL Army Research Laboratory 

BMS battle management system 

BUS system bus 

C2 command and control 

C4ISR command, control, communications, computers, intelligence, 
surveillance, and reconnaissance 

CAPEC Common Attack Pattern Enumeration and Classification  

COAP Constrained Application Protocol 

COMMS communication system 

CONOPS Concept of Operations 

CPS cyber–physical system 

CPU central processing unit 

CS control systems 

CVE Common Vulnerability and Exposure 

DTLS Datagram Transport Layer Security  

EW electronic warfare 

fa set of possible plans of actions 

fw set of feasible actions 

HTTP Hypertext Transfer Protocol 

InterCOM internal communication system 

IoC indicator of compromise 
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IRM incident response mechanisms 

ISR intelligence, surveillance, and reconnaissance 

IT information technology 

KB knowledge base 

MOTS military off-the-shelf 

MISP Malware Information Sharing Platform 

MQTT Message Queuing Telemetry Transport  

MS Mission Specific System 

NATO North Atlantic Treaty Organization 

OPT optoelectronic system 

OS operating systemP2P peer-to-peer 

PBS packet-based switching 

POMDP Partially Observable Markov Decision Process  

RCA root cause analysis 

RoT Root-of-Trust 

RPTS Requested Power To Send  

RTG Research Task Group 

S sensing 

SCADA supervisory control and data acquisition  

SCD service and capacity discovery 

SHA-1 Secure Hash Algorithm 1 

SNMP Simple Network Management Protocol 

SOAP Simple Object Access Protocol  

SW switch 

TAP test access point 

TCB Trusted Computing Base 

TCP Transmission Control Protocol 
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TLS Transport Layer Security 

TTPs tactics, techniques, and procedures 

UAV unmanned aerial vehicle 

VMS vehicle management system 

VNS vehicle navigation system 

WS weapon system 

WSI World State Identification 
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