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Abstract 
 
We investigated nanomaterials and nanodevices for chemical sensors with applications 
in explosives detection.  The work was designed to address several deficiencies of 
existing sensors related to speed, reversibility, sensitivity, size, power, and cost.  In 
particular, this work addresses limitations of existing chemical sensors for not only 
detecting, but also identifying chemical signatures in open air environments.  The work is 
organized around a “large N” hypothesis, which proposes that robust chemical detection 
in open environments can be achieved using large arrays of nanoscale elements 
integrated into sensor chips made using microfabrication technology.  The current work 
achieved arrays of 64 individually addressable sensing elements, and the methods are 
scalable to sensor chips with hundreds, thousands, or even more independent elements.  
Scalability is especially exciting because results are already very good for the small arrays 
reported here.  Using machine learning methods, including discriminant analysis, k-
nearest neighbors, and random forest, sensor chips achieve classification accuracies 
consistently in the range of 95-100% for test sets of 20 volatile organic compounds 
(VOCs) and 39 commercial Teas.   
 
The VOC test set was designed to gain deeper understanding into how our sensors work 
at the molecular scale, and the Tea set was designed to test performance for complex 
odors.  The sizes of the two test sets and the good performance of the classification 
algorithms are state-of-the-art for chemical sensors.  In the future, machine learning will 
benefit from larger datasets using sensor arrays with more devices.   We observe that our 
sensors function like artificial noses, similar to canines trained to detect explosives.  The 
devices are not inherently tuned to detect particular chemicals, but can be trained to 
distinguish many types of odorant signatures.  Once a sensor chip is trained, it can identify 
unknown odorants through machine learning classification algorithms.  Besides VOCs 
and Teas, we also demonstrate sensing for materials related to explosives, including 
ammonium nitrate (AN) and trinitrotoluene (TNT).  The sensors are fast and reversible 
with characteristic “ON times” of 100 ms or better.  Further research should enable high 
speed sensors that can reliably detect and classify many types of explosives and 
chemical precursors.   
 
The performance of our sensors has exceeded expectations and raises questions about 
how they function so well.  Two different modeling approaches were initiated during this 
work to better understand how sensor devices interact with odorants at the molecular and 
device scales.  The first approach uses UNIFAC to model chemical interactions between 
sensing materials and VOC analytes.  Initial results show trends that qualitatively match 
experiments and indicate that rational design of sensor materials may be possible from 
basic chemical principles.  The second model seeks to understand sensor device 
properties based on configurational effects of nanoparticle networks.  While molecular 
scale chemical interactions were expected, configurational effects are less intuitive.  Initial 
results suggest sensor performance is boosted by variations of particle configurations in 
particle networks.  The configurational heterogeneity generates new information for 
sensor elements and promotes classification accuracy.   
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1. Introduction & Methods 
 
Nanomaterials and nanodevices are especially promising for chemical detection because 
they are intrinsically fast and sensitive, and their simplicity allows for organization into 
complex hierarchical devices.  This work has investigated chemiresistors as transducers 
using nanoparticle sensing elements.  Chemiresistors are among the simplest devices for 
chemical sensing with robust detection via electrical resistance measurements using two 
terminal devices.  Very simply, chemiresistors are circuit elements that change resistance 
when exposed to different chemical environments.  The sensors have no inherent 
specificity to any particular agents and respond broadly to different chemical 
environments.  The method of sampling is through exposure to, or collection of vapors 
emanating from a source.   
 
In this work, the term ‘nanoparticles’ refers to core-shell nanostructures with metallic 
cores and organic shell layers.  
Metallic cores are most often gold 
(Au), but other metals like palladium 
(Pd) have also been used.  (Note, 
the amount of material used is so 
miniscule that precious metal cost is 
not significant).  Core sizes range 
from a few nm to 100 nm diameter, 
with most of our work using 10 – 20 
nm diameter particles.  The organic 
shell layers are composed of small 
molecules covalently bonded to 
metallic cores most often through 
thiol or amine chemical linkages.  
The chemical structures of the 
organic shell layers, including 
molecular organization, stacking, 
and packing density are generally 
unknown, and may vary significantly 
with different types of organic 
molecules.  In this work, we refer to 
our core-shell particles as monolayer 
capped nanoparticles.  It is assumed 
that the organic shells are limited to 
single (mono) layer thickness, but it 
is likely that residual solvents and 
unattached amines and thiols may 
also be present.  The synthesis of 
monolayer capped nanoparticles is 
an advanced area of chemistry and 
is not discussed here.  Many types of 

 

 

Figure 1. upper: TEM of OLA-PdNP (scale bar = 20 nm); 

lower: SEM of OLA-PdNP between electrodes (scale bar 

= 1 μm). 
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particles can be purchased commercially 
from standard vendors like Sigma-
Aldrich.  Figure 1(a) shows a 
transmission electron microscope (TEM) 
image of aggregates of nanoparticles, 
and Figure 1(b) shows a scanning 
electron microscope (SEM) image of 
particles arranged on a substrate 
between micro-fabricated electrodes.  
The organic shell layers are present, but 
not resolved in these electron microscopy 
images.  It can be seen that the particles 
form aggregates with random 
configurations of varying connectivity.   
 
Key advantages of nanoparticles as 
sensing materials are their inherent small 

size, ease of synthesis, and limitless chemistry.  The small size makes it possible to 
integrate nanoparticles into nanoscale devices and form large arrays of tiny devices.  
Moreover, nanosize makes them inherently fast since molecular transport processes are 
rapid at the nanoscale.  Molecular diffusion is very fast through small clusters of particles 
that contain only a few layers.  The possible composition of the organic shells is very 
diverse with all of the available tools of organic synthesis, and can also be extended to 
biomolecules such as DNA aptamers.  Biomolecules can bring new types of detection 
motifs including molecular recognition through shape dependent host-guest interactions.  
Thus, nanoparticles offer a rich library of chemical properties that can be exploited for 
chemical sensors, including biomolecular recognition elements.  The only practical 
limitation is that the aggregates of nanoparticles must have sufficient conductivity to form 
electrically resistive circuit elements.  Molecules that are too large or insulating may form 
device elements with resistance too high to measure.  Thus, most molecular capping 
agents currently used are about 1 – 2 nm in size.  Table 1 shows a collection of capping 
agents that have been studied in this work.  Molecular capping agents are chosen based 
on their availability, chemical diversity, and sensor performance.  A large collection of 
materials is desirable, and in the future we envision devices with tens to hundreds of 
different organic shell layers. 
 
We define sensor elements as individually addressable electrode pairs loaded with 
nanoparticles, like Figure 1(b).  We have investigated both microscale and nanoscale 
electrodes for making devices, where electrodes are fabricated on substrates such as 
glass or silicon.  Sensor elements are enabled by collecting and trapping nanoparticles in 
the regions between pairs of electrodes to form resistive circuit elements.  Two methods 
have been explored for adding/ loading nanoparticles into electrode arrays.  The first is 
simple drop casting with a micropipette.  A 1 microliter droplet of particle solution is 
applied over the electrodes.  Particles remain on the substrate after the solvent dries.  
The advantage of this approach is simplicity; it provides a high yield of working devices.  
The disadvantage is little control over the placement of nanoparticles, and each 

Table 1. Nanoparticle types and abbreviations 

used in this work 

DDA  dodecylamine 

TDA  tetradecylamine 

HDA  hexadecylamine 

ODA  octadecylamine 

OLA  oleylamine 

-  citrate 

DMAP  4-(dimethylamino)pyridine  

CTAB  cetrimonium bromide 

CTAC  cetrimonium chloride 

MPA 3-mercaptopropionic acid 

HBA 4-hydroxybenzoic acid 

ATP 4-aminothiophenol 

MUA 11-mercaptoundecanoic acid 

PEG-thiol methoxy polyethylene glycol thiol 

- dodecanethiol 
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nanoparticle aggregate is different.  The area coverage is also not typically uniform so 
that not all areas of the electrodes are used.  The other problem is that, although tiny, the 
microliter droplet spreads out several mm on a sensor chip, which limits our ability to 
create multi-particle sensor chips.  Figure 1(b) is an example of a microscale device made 
using drop casting.   
 
The drop casting technique does not extend from micro to nanodevices because the 
nanoelectrodes occupy substrate areas so tiny that it becomes unlikely that randomly 
deposited nanoparticles will cover and span nanoelectrodes.  For nanoscale devices, we 
use dielectrophoresis (DEP) to attract particles from solution into the high field regions of 
the nanoelectrodes.  Figure 2 illustrates an example of nanoscale sensor elements made 
using DEP.  The number of particles increases with time from left to right.  Compared to 
drop casting, DEP provides better control over the placement and numbers of 
nanoparticles in each device junction.  However, the method requires the application of 
high frequency (1 MHz) AC voltages to the electrodes while immersed in nanoparticle 
liquid solution.  Nanoparticles are attracted to high electric field regions near sharp 
corners and constrictions between electrodes.  The castellated electrode shape in Figure 
2 is designed to optimize the high field regions for a greater collection force.  The DEP 
method works well for nanoscale devices, but requires electrical connectivity to each 
device.   
 
Most of our classification experiments used sensor chips with large electrode arrays made 
by drop casting with micron size electrodes.  DEP is not possible with micron sized 
devices because exceedingly high voltages would be needed to achieve the necessary 
electric fields.  For nanoscale devices the applied voltages are only a few (1 - 4) volts AC, 
but impractical voltages >> 10 VAC would be required for micron scale devices.  DEP 
was used with nanoscale devices on smaller sensor chips mounted on TO packages for 
various experiments, but not for the classification studies.  The primary advantage of 
nanoscale devices is speed and layout density, but the microscale devices are easier to 
process and more than adequate for most of our work.  In future work, more effort can be 
dedicated to making sensor chips with large arrays of nanoscale elements using DEP, 
but it was not necessary to reach our current goals.   
 

   

Figure 2.  SEM images of nanoparticle assemblies under DEP. Left: 1 MHz, 4 V, 1 min; Center: 1 

MHz, 4 V, 2 min; Right: 1 MHz, 4 V, 4 min. Scale bars for all three images are 1 μm. The resistances 

corresponding to each device are 10, 7, and 7 kΩ, respectively. 



6 
 

Sensor elements are arranged into arrays to make integrated sensor chips.  The sensor 
chips are fabricated on 100 mm silicon wafers and each chip is near 1 x 1 cm2 size.  
During sensing experiments, the resistances of every sensor element are measured 
separately and simultaneously as a function of time.  Raw data are resistance vs. time 
measurements for each sensor element.  These raw data are processed with peak 

recognition algorithms to produce R/Ro, which is the most useful form of the data.  The 
processed data normalizes for the different baseline resistances of each sensor element, 
Ro.  
 
The mechanism for chemiresistor sensing with nanoparticles is generally known to follow 
equation (1) 
 

∆𝑅

𝑅
= 𝑒𝛽𝛥𝛿 ∙ 𝑒

𝛥𝐸𝑎
𝑘𝑇 − 1     (1) 

 

where  is a tunneling decay constant specific to the molecular capping agents,  is the 
edge-to-edge distance between nanoparticle cores, Ea is an activation energy related to 
Coulomb blockade energy, k is the Boltzmann constant, and T is temperature in Kelvin. 

The sensor response is represented by 
∆𝑅

𝑅
, which is the experimental change in resistance 

divided by the baseline resistance, Ro.   Ro is the resistance measured when there are no 
analytes present.  The equation is derived for an electronic charge transport mechanism 
based on electron tunneling between particles.  The first term shows that the tunneling 
rate is exponentially dependent on the distances between particles, with additional effects 
of particle size and medium permittivity through Ea.  Equation (1) predicts sensing action 

through modulation of particle - particle distances (δ) and the permittivity () of the 
organic medium.  In the present studies, permittivity effects are less important because 

our particles are relatively large.  Our emphasis is on swelling effects (δ).  
 
When chemiresistors are exposed to odorants, volatile molecules partition into the 
organic shell layers according to basic thermodynamic principles (see later discussion of 
UNIFAC modeling).  The solvation of volatile odorants into the condensed organic phases 

causes swelling and increases in particle - 

particle distances, which causes a positive δ.  
Swelling can be simply understood as a 
consequence of volume expansion from 
insertion of odorants into the sensor materials, 
like a dry sponge absorbing water.  (In some 
less common cases, vapors can induce 

apparent negative δ, but we do not generally 
observe those effects in our studies).  The 
dielectric properties of the odorants can also 
modulate the medium permittivity, but for non-
polar molecules the main effect is swelling.  
Note that we use the terms ‘odorant’, ‘analyte’, 
‘vapor’, ‘chemical,’ and ‘target’ 
interchangeably. 

 

Figure 3. Optical image of a sensor chip 

under test through a microscope objective. 
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In our experiments, resistances are measured using a multimeter instrument combined 
with a multiplexer to record many devices simultaneously.  Our experimental arrangement 
uses a probe card to electrically connect 64 two-terminal devices for rapid scanning of all 
devices.  Figure 3 shows an optical image of a 128 pin probe card connected to a device 
under test.  A dried droplet of nanoparticle solution is evident in the center of the chip.   
 
Experiments involve measuring resistances vs. time while alternately pulsing and purging 
(‘sniffing’) chemical vapors.  Our chemical sampling configuration uses a syringe pump 
for delivering vapors through a stainless steel tube to a sensor chip mounted in a probe 
station (Figure 5).  For experiments using VOCs, vapors are generated by adding a small 
(microliter) droplet of source material to a syringe tube and allowing it to come to 
equilibrium in air.  For commercial Tea samples and solids like ammonium nitrate, a few 
μg to mg of solids are added to syringe tubes.  (We sense dry Tea leaves, not the brewed 
liquid).  During sampling, vapors are diluted with a second stream of gas in a mixer located 
upstream of the sensor chip under test.  The dilution serves multiple purposes: (1) it 
purges away vapors after each sampling pulse (‘sniff’), (2) it provides control over analyte 
concentration by dilution, and (3) it limits the vapor concentration to avoid possible 
damage of sensors at high concentrations.   
 
Other sampling methods also work, but we have found that a syringe pump provides good 
control over the volume of vapor / air mixture sampled and the rate of injection and length 
of pulses.  These sampling parameters also allow control of the vapor analyte 
concentrations.  Typical pulse lengths are a few seconds or shorter, usually long enough 
to achieve a steady response with a square wave shape.  Other sampling arrangements 
that we have used include squeeze bottles placed near a sensor chip in open air, or simply 
wafting vapors over a sensor chip.  In addition, smaller chips have been mounted on TO 
packages and moved to and fro a source.  Each of these methods works, but they do not 
provide the same level of control as the syringe pump arrangement.  Moreover, the probe 
station is not mobile, so movements that are possible with a TO package are not practical 
with a probe station.   
 
Figure 4 shows an example of raw data for a sensing experiments using 2,4-DNT 
(dinitrotoluene) as a target. The figure shows a subset of 16 out of 64 sensors, each 
recording resistance vs. time traces for a series of vapor pulses.  The multiplexing rate is 
sufficiently high so that all sensors are sampled in less than 1 second for near 
simultaneous responses.  The raw data for all devices are processed using automated 
peak recognition and baseline subtraction routines to quantify each sensor device 

response as a change of resistance.  The data are converted into R/Ro values where 

R is the resistance change and Ro is the initial baseline resistance.  The later varies from 
device to device because each device has different numbers and arrangements of 
particles.  For typical vapor concentrations near 1 - 10% of the saturation pressure (p/psat), 

the magnitude of R/Ro responses is near 1 – 10%, but varies significantly for different 
analytes and sensor materials.  It is precisely these variations and their patterns that 
provide the ability to recognize and classify odorants.   
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Experimental R/Ro data are collected from each device for each odorant/ air pulse and 
assembled into a data matrix.  The data matrix contains n by m rows and columns where 
each row represents a vapor pulse and each column is a sensor device response.  For 
example, with 48 working sensors, 20 chemicals in a test set, and 8 samples per 
chemical, we would have a 160 x 48 data matrix.  The data matrix format is standard for 
multivariate analysis and machine learning (ML) algorithms.  We have used the Matlab 
Classification App to analyze results with a number of different approaches 
(https://www.mathworks.com/ products/ matlab.html).  The most useful and accurate 
have been linear discriminant analysis (LDA), k-Nearest Neighbors (KNN), bagged trees 
(BT), and Random Forests (RF).  These methods are considered ‘supervised’ because 
they use a-priori knowledge of the targets to train the algorithms, similar to training 
canines to recognize explosives.  Once a sensor is trained, it can predict the ‘classes’ of 
unknown samples.  In the context of chemical sensing, the classes are the identity of 
different odorants.  Standard analysis involves cross-validation to assess classification 
accuracy.  Cross validation divides each data set into subsets of training and test 
samples.  The training set is used to train the algorithm and the accuracy is evaluated by 
testing the ability to predict the test set.  The cross validation approach is equivalent to 
taking additional samples and not including them in the training set, and then testing the 
algorithm accuracy with the additional samples.   
 
We have also used principal components analysis (PCA) to analyze our data.  PCA is 
called an ‘unsupervised’ method because it analyzes datasets without any prior 
knowledge of the groupings of different samples.  PCA does not directly identify unknown 

Figure 4. Raw data for a subset of 16 sensors out of 64 that simultaneously detect 2,4-DNT 

vapor using DMAP as the sensing material.   

https://www.mathworks.com/
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odorants, but the analysis provides some visual indication of the natural groupings of the 
samples.  Targets with similar chemical properties will naturally group together and the 
groupings can be used to qualitatively rationalize sensor properties. 
 
Our data sets are relatively small compared to what is possible, yet we achieve accuracies 
consistently above 90% using large test sets of 20 VOC chemicals and 39 Teas.  The ML 
algorithms have the capability to scale-up to much larger datasets and we expect that 
sensor chips with hundreds or thousands of sensors and automated sampling could be 
rapidly trained to detect and classify target sets with hundreds of different analytes.  
Alternatively, smaller test sets could be identified with very high accuracy.   
 
In addition to classification, the ML methods have the ability to provide confidence 
intervals on chemical detection results.  The algorithms can also be adjusted to consider 
the relative costs of false positives and false negatives.  These are features we have not 
yet included in our analysis.   
 
 
2. Experiments 
 
We demonstrate the performance of our sensor arrays using two large datasets.  One is 
a collection of 20 different VOCs, and the other has 39 commercial Teas.  The purpose 
of the VOC set is to provide data that can be used with our modeling studies to better 
understand how our devices work, see later discussion of the UNIFAC method.  The 
purpose of the Tea set is to demonstrate how sensors perform with solid materials and 
complex, multicomponent odorants.  We also studied nitrates and other materials more 
relevant to explosives detection using smaller test sets.    
 
We emphasize that our sensors do not identify the individual components of a chemical 
mixture.  Rather, the sensors recognize an overall scent.  It makes no difference if the 
scent is a pure component or a complex multicomponent aroma, each generates unique 
response patterns that are recognized by ML algorithms.  These properties make the 
sensors similar to an artificial nose or trained canines.   
 
 
A. Classification Experiments 
 
Microfabricated sensor chips with arrays of 64 sensor elements were processed using 
the drop casting method.  The raw data for detection of VOCs, Teas, and solid explosives 
are similar to Figure 4.  As the chemiresistors are sensitive detectors for all of the analytes 
studied, the main results from our studies are the classification accuracies.  In addition, 
we tested a hypothesis about the role of chemical diversity.   
 
A key observation of our work is that even arrays made with single types of monolayer 
capped nanoparticles perform well for detection and classification.  This result was 
unexpected because we believe that chemical diversity is essential to provide robust 
patterns for odorant recognition.  Intuitively, we expected that different sensor elements 
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with the same sensor material should provide redundant information not especially useful 
for pattern recognition, but this is not what is observed.  On the contrary, we find that 
sensor arrays with a single type of nanoparticle can provide good classification results for 
pattern recognition.  We attribute the good results to a configurational diversity that 
functions independently of chemical diversity.  The mechanism of configurational diversity 
is discussed in more detail later.      
 
A central feature of our “Large N” hypothesis is an expectation of improved sensor 
performance with greater chemical diversity.  The existence of configurational diversity 
presents some difficulty for testing our hypothesis since both effects occur 
simultaneously.  As part of the VOC and Tea sensing studies we designed experiments 
to test our hypothesis using sensor chips with both single and multiple types of monolayer 
capped nanoparticles.  We compared performance on a per element basis.  Ideally, we 
would have tested a series of increasing numbers of sensor materials, 1, 2, 4, 8, 16, etc.  
However, the spreading of microliter droplets via the drop casting method limited us to 4 
different materials on a single sensor chip.  Moreover, the classification accuracy is 
already so good with just a few types of particles that it would be difficult to see further 
improvements with more sensing materials.  More rigorous testing of our hypothesis will 
require larger test sets with more chemicals, but initial results support our hypothesis.  
When similar sized arrays are compared, chemically diverse sets perform measurably 
better than a single material.  The significance is that adding more sensing materials is 
the path to improved sensors.   
 
i. VOC test set 
 
A test set of 20 volatile organic chemicals (VOCs) was examined to measure performance 
for detecting and classifying a large set of pure 
compounds.  These measurements also provide 
data for UNIFAC model development described 
later.  Table 2 lists the 20 compounds that were 
tested.  The major results for these measurements 
are the classification accuracies determined by ML 
processing of sensor data.  We also show example 
confusion matrices that graphically illustrate where 
errors occur in the classification algorithms.   
 
The sensors for this dataset were fabricated using 
microscale photolithography and drop casting 
techniques.  The sensor chip layout was designed to 
have 64 total devices arranged as 4 sets of 16 
devices in each corner of a chip.  In this way, 4 
separate nanoparticle materials could be used on a 
single chip by drop casting particle solutions in each 
corner.  The microliter droplets spread out to cover 
an area of several mm2, so physical separation is 
required to avoid overlap.  Each sensor chip has 64 

Table 2. List of VOCs detected 

1 Acetone 

2 Acetonitrile 

3 Anisole 

4 Butanol 

5 Butyraldehyde 

6 Cyclohexane 

7 Cyclohexanone 

8 Chloroform 

9 Dimethylformamide 

10 Dimethyl methylphosphonate 

11 Dichloromethane 

12 Heptane 

13 Hexane 

14 Isopropyl Alcohol 

15 Nitrobenzene 

16 N-methyl-2-pyrrolidone 

17 Pentanol 

18 Styrene 

19 Tetrafluoroethylene 

20 Toluene 
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devices, but our wiring setup currently limits us to measure only 50.  Some devices are 
eliminated based on poor electrical characteristics yielding about 40-50 working devices 
for each experiment.     
 
Two sets of ligands were investigated (Table 1).  The first set of ligands were alkylamines 
with different chain lengths, including dodecylamine (DDA), tetradecylamine (TDA), 
hexadecylamine (HDA), and octadecylamine (ODA).  The second set of ligands consisted 
of 4-(dimethylamino)pyridine (DMAP), tetradecylamine (TDA), 4-hydroxybenzoic acid (4-
HBA) and 4-aminothiophenol (4-ATP).  The results presented below are based on the 
second set.  Particle sizes are in the range of 10-20 nm.  The concentration of 
nanoparticle solutions were approximately 1.5 mg/ml.  Further details on particle 
synthesis are available in our journal publications. 
 
A schematic of the experiments is shown in Figure 5, which was described in the 
introduction.  All measurements were taken at room temperature.  For each of the 20 
VOC analytes, six repetitions of dosing (‘sniffing’) were performed at four different vapor 

concentrations (p/psat).  Baseline resistances, Ro, span a range of 1 k to several M.  

Raw data like Figure 4 are processed using peak recognition routines to produce R/Ro 
data, which are analyzed using ML methods.  All algorithms use five-fold cross-validation 
where datasets are split into training and test portions.  The ML algorithms are trained 
using a ‘training set’ and then evaluated using a ‘test set’, and the process is repeated for 
all portioning configurations.  Training produces a mathematical model that takes all the 
sensor readings as input and predicts the identity of unknown chemicals in the test set.  
Classification accuracies are based on the % of correct assignments in the test sets.  We 
have verified that this approach is equivalent to collecting a separate dataset of unknowns 
and evaluating the classification accuracy with the trained algorithms.  Note that for these 
experiments classification refers to chemical identity.  100% accuracy would mean that 
all unknown chemicals were correctly identified. 
 

 

 

Figure 5.  Schematic of experimental setup. (a) Detection of VOC analytes with chemiresistor arrays 

using a probe station. Saturated vapor analytes mix with dry nitrogen before delivery to a sensor. (b) 

Fabricated microelectrodes deposited with nanoparticles for sensing measurements. 
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The results for analysis of the full 20 VOC test 
set using the DMAP, TDA, 4-HBA, and 4-ATP 
materials set are shown in Table 3.  The data 
are shown for different partial pressures and 
on different days ranging from the first testing 
on day 1 to 90 days after the initial testing.  We 
show results for 4 different ML algorithms: 
LDA, SVM, KNN, and BT.  The BT method is 
similar to the Random Forests (RF) method 
cited in other parts of this report.  Examination 
of Day 1 data shows very high classification 
accuracies near 100% for all methods and 
partial pressures (p/po) > 0.10.  Figure 6 shows 
an example of a confusion matrix for the BT 
method with 99% accuracy.  There is only one 
incorrect assignment where styrene was 
incorrectly assigned to toluene.  At the lowest 
concentration of 0.10, there is a drop in 
accuracy for three of the ML methods, but the 
BT results are still very good.  Moreover, we 
expect that we can improve the results at lower 
concentrations by more sampling.   
 
One of the major challenges for chemical 
sensing in open air environments is that not 
only is the chemical identity unknown, but also 
the concentration and quality of the odor may 

vary depending on distance from the source.  A useful sensor has to be able to detect 
and identify chemicals over a range of concentrations.  We have found that some ML 
methods are better than others for generalizing to detect chemicals at different 
concentrations.   
 
Figure 7 shows an example of a discriminant plot for a subset of 6 of the 20 VOCs 
investigated.  The plot is associated with the LDA method and gives a visual indication of 
the separation between different chemicals.  Discriminant plots show only a fraction of 
the information used in classification, but they can be helpful to visualize the separation 
of the different chemicals as long as one keeps in mind the plots are two dimensional 
projections of a higher dimensional space.  The discriminant plot is for a set of 
measurements that includes 4 different vapor concentrations.  It can be seen on the plot 
that the six chemicals form separate groupings of data points regardless of concentration, 
but the separation distance is sensitive to concentration.   
 
In practice, analyte concentrations are unknown, so sensor training must include data 
over a range of concentrations, which is much more challenging.  Results of full analysis 
of all 20 VOCs at 4 concentrations is include in Table 3 in the row ‘All p/po’.  Analysis of 
all concentrations as a single dataset (All p/po) shows a drop in classification accuracy to 

 
Table 3. Classification accuracies for VOC 
dataset (Multi-particle chip) 
 

 LDA SVM KNN BT 

Day 1     

p/po = 0.25 100 99 98 98 

p/po = 0.20 98 100 94 99 

p/po = 0.15 100 99 97 100 

p/po = 0.10 94 95 84 98 

     

All p/po 91 88 91 97 

     

Day 45     

p/po = 0.25 98 91 94 97 

p/po = 0.20 100 93 95 99 

     

Day 90     

p/po = 0.25 96 87 94 95 

p/po = 0.20 97 91 90 98 

     

All Days     

p/po = 0.20 63 70 93 94 

     

 
LDA : Linear Discriminant Analysis 
SVM: Support Vector Machines 
KNN: K-Nearest Neighbors 
BT: Bagged Trees 
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about 90% for three of the ML 
methods, while the BT maintains 
impressive performance at 97%.  
A confusion matrix for all 
concentration data on Day 1 is 
shown in Figure 8; there are now 
11 mismatches out of 480 
measurements.  We expect that 
continuous improvements in 
sampling, more sensor elements, 
and more sensor materials will 
provide excellent classification 
accuracy over a large dynamic 
range of concentrations.  We 
emphasize that most studies of 
chemical vapor detection in the 
literature do not consider a range 
of concentrations, and these 
results are state-of-the-art.   
 
We have also investigated the 

aging performance of our sensors over a period of 90 days.  We find that individual sensor 
elements may have some drift of baseline Ro values, and some elements may degrade, 
but the overall sensor chips maintain performance.  There are both increases and 
decreases of signal/ noise for individual sensors.  Data for Day 1, 45, and 90 are included 
in Table 3 for two concentrations.  The data show > 95% accuracy is maintained over a 
90 day period using the BT 
method.  The good performance 
is maintained despite the loss of 
6 sensors at Day 90.  The large 
number of sensor elements 
makes the overall chip robust 
against the loss of a few 
elements and we expect that 
designs with hundreds or 
thousands of sensor elements 
will be robust against aging.  
 
We find that some ML methods 
are very good at classifying well-
defined datasets, but struggle 
when there is more variation.  
Meanwhile, other ML algorithms 
perform slightly worse on well-
defined datasets, but generalize 
better to larger datasets with 

 

Figure 6. Confusion matrix for BT analysis on Day 1 with 

p/po = 0.20.  (Bottom axis is ‘predicted class’). 

 

Figure 7.  Discriminant plot showing the groupings of six 

chemicals at four different concentrations.   
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more variability.  These effects 
can be seen in Table 3 when we 
analyze ‘All Days’ as a single 
data set.  The LDA and SVM 
methods drop significantly from 
near 100% accuracy at Day 1 to 
< 70% accuracy for the ‘All Days’ 
dataset.  LDA is so particular it 
can distinguish datasets taken on 
different days.  By contrast, KNN 
and BT methods are much better 
at generalizing and achieve 90-
95% accuracy for the ‘All Day’ 
dataset.  These results are 
significant for practical 
applications where trained 
sensors would be implemented in 
the field.  We note that the 
concept of generalization is not 
typically discussed in the 
literature and these results are 

state-of-the-art.   
 
Our sensors appear to be especially well suited for the RF and BT methods, which are 
both based on decision trees.  Results are consistently at or above 95% accuracy, and 
the method generalizes well to different concentrations and sensor aging.  The results 
shown here for VOCs and the further results below for Teas are very promising for a new 
class of chemical sensors that can detect and identify a large number of chemicals over 
a useful dynamic range of concentration.  These sensors could find use for detection of 
precursor chemicals as well as explosives. 
 
 
ii. Tea set 
 
We have applied our sensor chips to detect and classify complex, multicomponent odors 
using a set of 39 commercial Teas.  The Teas include several green, black, and herbal 
varieties.  The overall approach and methods are similar to the VOC study above.  This 
work has been recently published in a special issue dedicated to nanosensors.  The article 
includes details on the types of Teas tested.  Therefore, we do not reproduce all of the 
data here, but focus on the main results.   
 
Tables 4 and 5 summarize the main results for the Tea experiments.  Table 4 lists 
classification accuracies for a sensor chip using four different sensor materials.  The data 
are analyzed as one group of black and green teas, and a separate group of herbal teas.  
The classification data are listed for a sensor chip with all materials together, as well as 
subsets of each sensor material analyzed separately.  The overall sensor chip with all 

 

Figure 8. Confusion matrix for BT analysis on Day 1 with all 

concentrations (All p/po).  
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four materials and all 38 sensor elements performs better than any individual material, 
but direct comparison is unfair since the overall chip has nearly four times as many 
elements.  For a more balanced comparison, two devices of each sensing material 
(nanoparticles) were randomly selected to create groupings of eight multi-particle sensing 
elements for comparison with single particle data on an equal number basis (i.e. eight 
multi-particle vs. eight single particle).  The classification results for the multi-particle set 

are 91.4  3.3 % accuracy for black and green teas, and 88.6  3.7 for herbal teas, which 
should be compared with the four separate materials.  Although the DMAP particles 
perform very well for the black and green teas (97%), the performance for the herbal teas 
(75%) is significantly less than for the multi-particle arrangement.  The combination of the 
four types of particles performs better overall than any of the single types of particles, 
which supports our hypothesis that more chemical diversity enhances sensor 
performance.  We expect that adding even more elements and sensor chemistries will 
further improve overall performance.  However, larger and more challenging test sets may 
be needed to more clearly demonstrate the advantages of more materials. 
 
The data in Table 4 also demonstrate the structural diversity effects discovered in this 

work.  We observe that the 
classification accuracy of DMAP 
particles alone for the black and 
green teas is 97%, which is 
unexpectedly good.  Figure 9 
shows an example of a separate 
experiment using a chip with 42 
DMAP sensor elements to detect 
21 Teas.  We analyze the 
classification accuracy as a 
function of the number of sensor 
elements using three ML 
methods: LDA, KNN, and BT.  
Qualitatively, the methods all 
perform similarly, starting with a 
low accuracy for a single sensor, 
rising rapidly for 1-10 elements, 
plateau for 10-20, and then a 
gradual increase to 100% 

 Table 4. Classification accuracy for different sensor materials 

AuNP Number of Working Devices 
Accuracy (%) 

Black and Green Tea Herbal Tea 

DMAP 10 97.1 75.0 

ODA 11 77.9 77.8 

MPA 8 52.9 52.8 

ATP 9 53.8 43.8 

Overall 38 100 97.7 

 

 

Figure 9. Classification accuracy vs. number of sensors on a 

chip for DMAP particles and 21 Teas. 
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accuracy for nearly all 42 sensor elements.  There are several interesting features in this 
data.  For one, we see that the increase of accuracy with the number of sensors elements 
is not smooth.  Some sensors make no difference, and some cause a slight drop in 
accuracy.  The data also demonstrate that beyond 20-25 sensor elements, the data are 
robust against the loss of one or even several elements, which was also seen in the VOC 
data for the 90 day experiments.  Some elements appear redundant, but there is a steady 
increase of information content with increasing numbers of sensor elements that is 
unexpected based on simple chemistry arguments.  The explanation is configurational 
diversity, which we discuss later.   

 
Table 5 shows results for a multiday 
experiment to test sensor stability.  
Sensors were tested on the black and 
green tea set over five sequential days, 
and the classification accuracy was 
determined each day.  We found a 
gradual decrease in the accuracy on 
days 2 and 3 followed by recovery on 
days 4 and 5.  The dip is smallest for the 
RF method where accuracy remains 

high on all days, but it follows the same qualitative trend as the other methods with an 
apparent dip at day 3.  We believe this drop and subsequent recovery is associated with 
drift in the baseline Ro values due to gradual room temperature rearrangements of the 
nanoparticles, and/or burn-in from the testing.  The baseline drift (not shown) appears to 
correlate with classification accuracy.  Baseline Ro values decrease from day 1 to day 3, 
but then stabilize.   
 
Overall, the Tea results show that our sensors are capable of detecting and classifying 
complex odors with high accuracy.  The overall classification accuracy for the full set of 
39 black, green, and herbal teas is 98.6%.  The test set of 39 distinct odors (aromas) is 
the largest that we have seen in the literature.  We believe that larger test sets and higher 
performance can be achieved by expanding to more sensor devices and more sensing 
materials.   
 
 
B. Testing of Explosives and Related Materials 
 
In addition to our work with large test sets of VOCs and Teas, we have also investigated 
detection and classification of materials more directly relevant to explosives detection.  
Table 6 gives a list of some of the chemicals of interest for explosives detection.  Materials 
that we have studied are highlighted in yellow.  Detection of 2,4 DNT was demonstrated 
in Figure 4 above, and acetone, cyclohexanone, and nitrobenzene were included in our 
VOC study.  Figure 10 shows data for ammonium nitrate (AN) detection, similar to the 

DNT plot, but the AN data have been processed to R/Ro.  The 16 sensors are a subset 
of 64 devices on a single sensor chip.  The spikes correspond to pulses (‘sniffs’) of diluted 
AN vapor, and the responses for all sensor elements are simultaneous.  These data show 

Table 5. Accuracy over a 5 day period 

Day LDA (%) SVM (%) KNN (%) RF (%) 

1 100 97.1 93.3 99.7 

2 96.2 97.1 98.1 99.7 

3 90.4 88.5 87.5 98.6 

4 86.5 91.3 88.5 98.9 

5 97.1 98.1 97.1 99.8 
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that our sensors respond quickly and sensitively to 
explosives related materials that are solids at room 
temperature.   
 
We have also used AN to investigate the detection 
speed of our nanosensors.  Figure 11 highlights rapid 
detection of AN with a time constant of 100 msec.  
The square wave form of the signal is unique to the 
nanoscale sensors and reflects ultrafast saturation.  
The time constant is limited by the experimental setup 
and we expect that faster response speeds can be 
achieved with more work.  As discussed in the 
introduction, rapid response rates benefit from 
nanoscale sensors with low capacitance and fast 
mass transport compared to larger devices.   
 
The above experiments were done using commercial 
chemicals, but we have also analyzed standard 
samples used for K-9 training.  K-9 NESTT training 
aids were obtained from Ray Allen K9 supplies.  The 
kits include TNT, RDX, PETN, oxidizers, and a silica 
distractor.  There was a delay in obtaining the 
samples due to regulations, so that a full analysis was 
not performed.  Preliminary results achieved 100% 
accuracy for detection and classification of TNT 
samples compared with the silica distractor.  The 
experiments demonstrate robust detection of TNT 
vapor at room temperature.  Future work will study all 
materials in the kit.  

 
 
3. Modeling  
 
We have pursued two different modeling approaches to gain deeper insight into how our 
sensors function and how to design for improvement.  As should be evident from the 
discussion above, there are two key features of our sensors that provide capability for 
detection and classification.  These features are chemical diversity and configurational 
diversity.  A UNIFAC model was developed to improve our understanding of chemical 
diversity, and a resistor network model was created to investigate configurational 
diversity.   
 
A. UNIFAC Model 
 
Nanoparticle chemiresistors sense vapor analytes through a mechanism that involves 
sorption of vapors into sensing materials as represented in equation (2). 
 

Table 6. Explosives and related 

materials 

Nitro-aromatics 

Nitrobenzene (NB) 

Dinitrobenzene (DNB) 

Trinitrobenzene (TNB) 

Nitrotoluene (NT) 

2,4 & 2,6 Dinitrotoluene (DNT) 

Trinitrotoluene (TNT) 

Picric acid 

DMNB 

EGDN 

Nitroglycerin 

Ammonium Nitrate 

N2O 

Potassium Nitrate 

Potassium perchlorate 

Peroxides 

acetone 

TATP, DADP 

HMTD 

Hydrogen Peroxide 

HMX 

RDX 

cyclohexanone 

PETN 

Tetryl 

Composites: amatol; comp B; 
semtex; C4; detasheet; 
gun powder; fireworks; etc. 
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Analyte (g)  Analyte (s)     (2) 
 
Equation (2) represents that analytes partition from the gas phase (g) into the solid 
(sorbed) phase (s).  For fast molecular transport processes, analytes will partition into the 
solid layers until equilibrium is established.  At equilibrium the rates of partitioning into 
and out-of the sensing materials become equal, and a steady amount of analyte in the 
sensing materials is reached.  The equilibrium ratio is only a function of temperature for 
ideal gases, and can be represented as a partition coefficient, K(T).  Accordingly, the 
concentration of analytes that partition into sensing materials depends on the partition 
coefficients and the concentrations in the gas phase (see equation (5) below).  Generally, 
K values are >> 1, and the volume concentration of analytes is much higher in sensing 
materials than in the gas phase.  The absolute amount of analytes that partition depends 
also on the volume of sensing materials, which favors nanoscale sensors for high 
sensitivity.  In the discussion below, we assume that molecular transport processes are 
sufficiently rapid so that our sensors achieve equilibrium concentrations as per equation 
(2) above.  The assumption allows us to treat the process according to established 
principles of equilibrium thermodynamics to estimate K values.  The assumption of fast 
mass transport is supported by time dependent sensing data that exhibit steady 
responses that track gas phase concentrations.   
 
As introduced earlier, equation (1) provides a general mechanism for how nanoparticle-

based chemiresistors function.  The most important factor is δ, which is a change of 
particle - particle distance due to swelling.  Swelling occurs when vapor analytes partition 
from the gas phase into sensing materials that make up the sensor elements.  Rational 

 

Figure 10.  Processed data for a subset of 16 out of 64 sensor elements that simultaneously detect 

ammonium nitrate. Each peak is a few second pulse of diluted vapor. 
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design of sensor materials could be 
accomplished if the partition values could be 
predicted from chemical models.   
 
We have initiated a new approach to sensor 
modeling using the UNIFAC method as a 
chemical model to predict sensor 
responses.  To the best of our knowledge we 
are the first to build quantitative, predictive 
models for chemical sensor development.  
Here, we describe our approach and show 
preliminary work that has been done to 
validate the model. 
 
UNIFAC is a theoretical method used to 
model the chemical properties of a large 
number of chemical compounds (> 20,000).  
The method is used extensively in the 
chemical industry for modeling chemical 
separations processes of complex mixtures.  
The theory behind UNIFAC is to treat 
molecular scale interactions as 
combinations of pair interactions between all 
functional groups of molecules.  The method 
began as academic research in the 1970s, 
but is now maintained by an industry group, 
The UNIFAC Consortium 

(http://unifac.ddbst.de/unifac_.html).  The group sells software codes that allow users to 
calculate various molecular properties, including activity coefficients for vapor / liquid 
systems.  Figure 12 illustrates a graphical representation of the available parameters for 
different chemical groups.  Only molecules with a complete set of parameters (filled 
squares) can be modeled.  As can be seen in the chart, most parameters are incomplete 
or missing.  As a result, the diversity of chemicals we can predict is limited, which is 
unfortunate for sensors modeling.  Nonetheless, a large number of chemical compounds 
can be modeled (> 20,000) using the available parameters, and UNIFAC is the only 
available predictive chemical method with such a large database.   
 
We have developed an approach to use UNIFAC to calculate activity coefficients and 
predict sensor responses for different combinations of vapor analytes and sensor 
materials.  As described in the introduction, our sensor materials are core-shell 
assemblies of metallic nanoparticles (core) and organic layers (shell).   The organic layers 
are immobilized onto metallic (gold or palladium) particle surfaces via covalent bonds 
through thiol or amine chemistries.  Unfortunately, UNIFAC does not include a complete 
set of parameters for either thiol or amine chemistry; and, of course, it does not account 
for the metallic nanoparticles.  Therefore, we have mapped our problem onto a simpler, 
solvable problem.   

 

Figure 11. Sample data for rapid detection of 

ammonium nitrate with 100 msec response.   

http://unifac.ddbst.de/unifac_.html
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The first assumption is that the metallic cores do not play a significant role in chemical 
sensing.  This is reasonable since the metallic cores are coated with a dense layer of the 
sensing materials (shell layers) and there should not be much free surface area of the 
metallic cores exposed.  Thus, we remove the effects of the metallic cores from the model.  
Next, we make a similar assumption for the amine and thiol groups that anchor 
monolayers to the metallic cores.  These groups are pinned at the metal interface and do 
not have the same flexibility as the rest of the molecular chain.  Moreover, they are a 
small fraction of the full organic monolayers, and thus may play a small role in vapor 
sorption.  After removal of the metal core and anchoring groups from consideration, we 
are left with the molecular structure of the organic shell layers.  For many sensor 
materials, the organic shell layers can be modeled using available UNIFAC parameters.  
As an example, a shell material like octanethiol would be modeled as octane, 
dodecylamine is modeled as dodecane, etc.  In this way, each of the sensor materials in 
Table 1 can be mapped onto a simpler chemistry. 
 
The last assumption is that the organic molecules that make up the shell layers can be 
modeled as a liquid environment not too different from a normal liquid represented by the 
UNIFAC parameters for that material.  This last assumption seems reasonable on a 
chemical basis, but may account for differences between experiment and calculated data.  

 

Figure 12. UNIFAC parameter set.   
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The net result of these assumptions is that we model analyte/ sensor material interactions 
as a vapor/ liquid equilibrium problem well known in thermodynamics. 
 
In our model, activity coefficients are calculated at the infinite dilution limit for pairs of 
analytes and sensing materials.  The partial pressures of vapor analytes are known from 
experiment design and relate to the vapor concentrations via the ideal gas law as shown 
in equation (3). 
 

𝑃𝑖 = 𝐶𝑖𝑅𝑇          (3) 
 
Where Pi is analyte partial pressure in atmospheres [atm], Ci is concentration in 
[moles/liter], R is the gas constant, and T is absolute temperature [K].  Analyte partial 

pressures, Pi, are used along with UNIFAC computed activity coefficients i, and 
saturation pressures Pi,sat, in Raoult’s Law to calculate the mole fractions xi, as in equation 
(4).   
 

𝑃𝑖 = 𝛾𝑥𝑖𝑃𝑖
𝑆𝐴𝑇            (4)  

 
The mole fraction xi, is the amount of vapor analyte that partitions/ sorbs into the sensing 
medium at equilibrium.  Saturation vapor pressure data Pi,sat, are found in databases such 
as the CRC Handbook of Chemistry for pure compounds.  All of the molecular scale 
chemical interactions are contained in the activity coefficient.  For a typical experiment, 
Pi/Pi,sat ranges from 0.001 to 0.1.  Equation (4) is solved for xi to predict the amount of 
material detected in an experiment.  We see that the mole fraction is inversely proportional 
to the activity coefficient.  Large activity coefficients indicate incompatible chemicals that 
do not mix, while activity coefficients near 1.0 indicate ideal mixing.  Thus, a large range 
of activity coefficients is desirable to produce feature rich patterns for classification.  A 
large range of activity coefficients can be realized with many different sensor materials. 
 
With the mole fraction xi computed, the concentration of analytes in the sorbent phases 
(sensor materials) can be calculated using the density and molecular weight of the 
analytes.  The concentrations of analyte in the gas and condensed phases are related by 
the equilibrium constant, equation (5). 
 
 

𝐾 =
𝐶𝑠𝑜𝑟𝑏𝑒𝑛𝑡

𝐶𝑣𝑎𝑝𝑜𝑟
             (5) 

 
The equilibrium constant (partition coefficient) is a measure of the strength of the chemical 
interaction between analyte and sorbent such that high partition coefficient values indicate 
significant vapor sorption for a small concentration in the gas phase (Cvapor).  Typical 
values of K for gas-solid systems like ours range from 103 to 106.  The net result of 
equations (3) - (5) is the ability to predict Csorbent, which are the amounts of analytes that 
partition into sensor materials.  Calculations can be done for any materials that can be 
modeled using the UNIFAC methods and the predictions can be used to design sensor 
arrays for different analytes or to optimize separations with known interferents.   
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Further progress in our model requires a connection between the chemical models for 
Csorbent values and a physical model for device electrical response.  As discussed above, 
equation (1) shows that the major effects of analyte partitioning is to cause swelling of 
particle networks, thus displacing particles from their normal positions and modifying the 
electrical resistances of particle - particle connections.  The logic for the physical model 
is lengthy and not reproduced here, but the qualitative idea is very simple.  We model the 
swelling effect as the addition of the molar volume of analyte molecules sorbed into the 
sensing layers.  The volume expansion is computed from the analyte concentration, 

Csorbent, and its pure component molar volume.  Linear expansion of the network, δ, is 
then computed as the cube root of the volume expansion.  Alternatively, we could take 
the 1/n root where n is a parameter.  The rationale behind allowing n to vary from 3 is that 
the volume expansion may not be uniform in all particle networks.  Our model can be 
equally applied for pure materials or chemical mixtures, as long as UNIFAC parameters 
are available.  Here, we use the pure chemicals from our VOC measurements (Table 2) 
for validation studies.    

 
 
Table 7. Predictions vs. Experiment for DMAP particles 

 

Partition Coefficient (K) 
Ordering 

Partition 
Coefficient (K) 

Predicted ΔR/R 
Ordering 

Experimental ΔR/R 
Ordering 

1. Styrene 1.01 × 104 1. Hexane 1. Hexane 

2. Toluene 2.87 × 103 2. Toluene 2. Toluene 

3. Cyclohexane 178 3. Styrene 3. Styrene 
4. Heptane 172 4. Heptane 4. Heptane 

5. Hexane 67.5 5. Cyclohexane 5. Cyclohexane 

 

Figure 13: (a) Experimental and (b) predicted 
𝛥𝑅

𝑅
 signal outputs for DMAP particles across four 

different 
𝑃

𝑃0
 concentrations. The tested VOCs are hexane, toluene, styrene, heptane, and 

cyclohexane. 
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A subset of vapor analytes and sensing materials was used to validate our UNIFAC 
model.  Results from the model are compared with experiments in Figure 13.  Data are 
shown for hexane, toluene, styrene, heptane, and cyclohexane interacting with DMAP 
particles.  The experimental data are normally linear like the simulated data, but this 
particular sensor chip has some atypical upward curvature.  Nonetheless, the data are 
useful for model validation.  The main interest is to compare the relative ordering of the 
different analytes for experiment and theory.  Table 7 summarizes the data and includes 
UNIFAC calculated partition coefficients.  The model and experimental ordering of the 

R/Ro responses are the same, which is a very nice result.  It is interesting that the model 
does not follow the ordering of the partition coefficients.  It would seem that although K is 
an important component to the model, other factors such as vapor pressure and molar 
volume are also factors in the model.  Although the predicted chemical ordering is correct, 

the calculated R/Ro are about a factor of ten less than experiment.  More work is needed 
to investigate the origin of the under predicted signal intensity.  
  
 
Table 8. Predictions vs. Experiment for MPA particles 

 
 
A second validation experiment was done using a different sensor material, MPA.  Table 
8 shows these results for a small set of three vapors.  The results are similar to the DMAP 
experiments.  The experiment and predicted chemical orderings match, but the predicted 

signal intensities are again too low (not shown).  As with Table 7, R/Ro predictions are 
more complex than a simple ordering of partition coefficient values, which demonstrates 
the importance of other parameters in the model.  Overall, the validation studies show a 
good match between experiment and theory that supports our UNIFAC approach.  More 
work is needed to determine the broader applicability of the model.  Cases that don’t fit 
the model may teach us new things about other chemical effects operating at the 
nanoscale.    
 
We have also used our UNIFAC model to perform several computational experiments to 
investigate how our sensors would perform if we had more sensing materials.  These 
hypothetical computer experiments are a test for the ‘Large N’ hypothesis that underlies 
our approach.  We find that simulating sensor arrays with 150 materials enables robust 
detection and identification of over 100 different chemicals.  Further, we believe the 
chemical identification list could be extended to thousands of chemicals.  It is encouraging 
that our models show that very effective sensors can be designed even with the limited 
types of chemistries that can be modeled with UNIFAC.  Overall, we find strong theoretical 
evidence for the benefits of chemical diversity in sensing materials.  Future work needs 
to investigate how large arrays of chemically diverse sensing materials can be fabricated.   
 
 

Partition Coefficient (K) 
Ordering 

Partition 
Coefficient (K) 

Predicted ΔR/R 
Ordering 

Experimental 
ΔR/R Ordering 

Experimental  
ΔR/R (%) 

1. Butanol 2.24 × 104 1. Hexane 1. Hexane 2.49 

2. Acetone 1.10 × 103 2. Butanol 2. Butanol 2.23 

3. Hexane 315 3. Acetone 3. Acetone 1.81 
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B. Nanoparticle Networks 
 
One of the main findings of the research project 
was significant variability between sensor 
responses for nominally identical sensors 
integrated on a single chip.  For a given sensor 
material and a given vapor analyte, one may 
have expected similar responses from 
neighboring sensors, within measurement 
repeatability.  However, we observe significant 
variability between similar sensors that cannot 
be understood from simple chemistry 
arguments.  Table 9 shows an example of the 
variability for 37 sensors detecting 

nitrobenzene using TDA particles.  The R/Ro 
values range from a minimum of 3.48% to a 
maximum of 7.93% with an average of 5.56%.  
All sensor elements have the same type of 
nanoparticle sensor materials, and the range of 
responses is not expected based on pure 
chemistry considerations, which would predict 
a single value.  For the ML algorithms, the 
variability adds to the information content of the 
sensor array and enhances overall 
performance.  Though we emphasize a need 
for chemical diversity as well, configurational 
diversity means that even sensor chips with a 
single type of particle can perform quite well as 
detectors.   
 
Previous studies might have attributed 
variations between sensors to inhomogeneous 
vapor concentrations between neighboring 
sensors separated by relatively large distances 
of several mm, but our sensors are very close 
together with separation distances of only a few 
microns.  Therefore, we do not believe that 
significant concentration gradients are present.   
Some variability could originate from non-
uniformity of the monolayer coated particles.  
For example, there are particle size 
distributions and there are different particle 
shapes in a batch of nanoparticles.  However, 
we think it more likely that particle 
arrangements themselves contribute to device 

Table 9. Example of experimental data 

for nitrobenzene detection with TDA 

particles 

 

Sensor R/Ro (%) 

1 3.48 

2 4.17 

3 5.09 

4 4.59 

5 4.18 

6 4.39 

7 4.57 

8 5.17 

9 5.42 

10 4.47 

11 5.35 

12 4.92 

13 4.80 

14 4.68 

15 6.94 

16 5.43 

17 5.30 

18 4.34 

19 4.62 

20 6.99 

21 5.08 

22 5.75 

23 6.80 

24 6.24 

25 5.06 

26 6.26 

27 6.97 

28 6.65 

29 7.83 

30 6.58 

31 5.92 

32 6.08 

33 6.15 

34 6.23 

35 5.79 

36 5.57 

37 7.93 

  

Mean 5.56 

STD 1.06 

Range 4.44 

Min 3.48 

Max 7.93 
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to device variability.  Therefore, we have 
investigated how particle organization may 
contribute to response variability.   
 
The electrical conductivity of NP films is due 
to electron tunneling between neighboring 
nanoparticles.  The overall resistance of NP 
networks depends on the arrangements of 
particles, including disorder.  Types of 
disorder include variations in the network 
topology, distributions of nanoparticle sizes, 
and variations of particle - particle spacing.  
Topological variation means that no two 
sensor elements are the same, and 
differences are likely to be greater for small 
sensors.  Variations of particle arrangements 
means that nanoparticle films behave as 
random networks of widely varying tunnel 
conductance.  Because of the exponential 
characteristics of the electron tunneling 
transport mechanism, even small variations of 
particle spacing can yield orders of magnitude 
difference in the conductance between 
particles. 
 
We have developed a numerical model to 
simulate the sensing characteristics of 
randomly assembled particle networks to 
better understand the origins of 
configurational diversity.  We have created a 
software package with a graphical user 
interface to assemble nanoparticles into 
networks by a mouse-controlled point and 
click builder.  We use the software to create 
nanoparticle networks like those shown in 
Figure 1.  Network models with several 
hundred nanoparticles have been assembled.  
Figure 14 shows a set of three different 
particle arrangements that were investigated 
in this work.  There are infinite possibilities, 

but these three were chosen to be representative of the different types of particle 
arrangements that could be present in a working sensor device.  The particle assemblies 
are different in the number of series and parallel connections, the electrode - electrode 
width and distance, as well as the total number of particles.  The height of the electrodes 
and the particle sizes were fixed to the same values as experiments.  The connectivity 
between the particles is random, and they are not close packed or stacked in any 

 

 

 

Figure 14. Images of particle assemblies 

analyzed in this work. Particles are 20 nm in 

size, electrode spacing ranges 50-200 nm. 

Top to bottom are labeled as Networks A, B, & 

C. 
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particular arrangements.  Once physical models of the networks are configured, a 
separate software code assigns resistances to each of the nanoparticle junctions and 
computes the overall network resistance.  The problem is similar to solving 3 dimensional 
networks of resistors.   

 
We used the network 
configurations of Figure 14 to 
test several hypotheses, several 
of which were not supported by 
the models.  Here we describe 
these hypotheses as models 1 
through 4.  For each particle 
arrangement, we calculate an 
overall network resistance before 
and after a simulated sensing 
experiment.  The models all use 
the same approach to calculate 
the overall resistances of the 
particle networks, but differ in 
how the electrical properties of 
the individual particle junctions 
change during a sensing 
experiment.  
 
Each particle – particle junction 

is modeled as a resistor, and the overall network resistance is calculated based on 
Kirchoff’s law and solving for the current and voltage at each junction.  During a simulated 
sensing experiment, the resistance of each particle – particle junction is modified 
according to a model for how analytes might affect the junction.  In general, analyte 
partitioning into the sensing materials is expected to swell particle – particle junctions and 
increase resistance.  The goal of the simulations is to determine whether the models can 
reproduce the variability between sensor elements seen in experiments.  To avoid 
confusion, we will use capital R for the overall network resistance (all particles) and lower 
case r for individual particle - particle junctions, both symbols refer to electrical resistance.  
Results from the different models are summarized in Table 10.  Each entry is an average 
over 10 simulations. 
 
The first hypothesis (Model 1) is that different network configurations with different 

baseline resistances might have different overall R/Ro responses even for the same r/ro 
of each particle - particle junction.  The hypothesis was tested by computing the overall 

R/Ro of the three networks in Figure 14 while keeping the modulation of each junction 

the same (r/ro = constant).  The ro values for each of the 100s of particle - particle 
junctions were randomly assigned according to a Gaussian distribution.  The center and 
width of the Gaussian distribution were chosen to yield overall network resistances Ro 

similar to experimental measurements, with baseline resistance values near 0.1 - 1 M.  
Results from the simulations are shown in Table 10 for model 1.  We observe that the 

Table 10. Sensor simulations for various models. Values are 

averaged over 10 runs each 

Model Network 
(Figure 14) 

Initial Resistance 
(Ro) (Ohms) 

R/Ro 
(%) 

1 A 583580 5.0 

 B 429080 5.0 

 C 625006 5.0 

    

2 A 1365400 5.11 

 B 941530 5.03 

 C 642310 5.44 

    

3 A 307000 8.16 

 B 202000 8.19 

 C 160000 8.50 

    

4 A 452400 5.60 

 B 370800 7.13 

 C 234290 7.68 
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overall network R/Ro was similar to the junction r/ro (5%), even for networks with 
different baseline Ro values.  Thus, model 1 could not reproduce experimental 

observations like Table 9, where different sensors produce different R/Ro values for the 
same analyte/ sensor material combinations.  Model 1 results can be understood from 
simple arguments using series and parallel resistors, but it was not obvious that such a 
simple result would be obtained for the complicated arrangements in Figure 14.   
 
The next hypothesis with Model 2 is similar to Model 1, but we relax the assumption that 

each particle - particle junction undergoes the same r change.  In addition to allowing 

the resistances ro to vary as a distribution, we allow r to also vary as a Gaussian 

distribution.  Now, each of the many particle – particle junctions has different ro and r 

values, randomly assigned.  The hypothesis is that different sensor elements could have 

different overall R/Ro due to random variations of the r of each component junction.  
Justification for this model is that each junction could have a different swelling efficiency 
from the different local properties of the organic shell layers and particle distances.  As 

shown in Table 10, results of this model do produce some variations of R/Ro from sensor 
to sensor for different particle arrangements.  However, the variations are small and do 
not render the magnitudes seen in experiments.  It is apparent that randomly assigned 

Gaussian distributions of r/ro get averaged over a large enough number of particle 
junctions to smooth out the variations between different particle assemblies.  We 

conclude that random variations of ro and/ or r are not sufficient to explain experimental 
results, even for widely different particle arrangements like those in Figure 14.   
 
The next model, Model 3, uses distance distributions instead of assigning junction 
resistance values.  Distances between particles are more fundamental and physically 
represent the space occupied by the organic layers of the monolayer capped 
nanoparticles.  Distances are related to resistances through the probability for charge 
carriers (electrons) to hop between particles via quantum mechanical tunneling.  We use 
the simplest tunneling expression from Simmons’ derivation for a rectangular tunnel 
barrier at low voltages: 
 

𝐽 = 3.16𝑥1010𝜑
1

2 (
𝑉

𝑠
) exp⁡(−1.025 ∗ 𝑠 ∗ 𝜑

1

2)   (6) 

 
, where φ is electronic barrier height, V is applied voltage, and s is particle - particle 
distance [J.G. Simmons, Journal of Applied Physics, v. 34 (6) p. 1793 (1963)].  The barrier 
height is an unknown parameter that we model as 1 eV.  Higher/ lower barrier heights 
would shift our distances to smaller/ larger values, but do not change the qualitative trends 
or conclusions.  The equation does not include charging effects, but these are not 
important for our networks since our particles are relatively large (20 nm) and the organic 
matrix is fixed (same dielectric constant).  We have verified that particle – particle voltage 
drops are small, so that the assumption of low voltage is fulfilled.  Equation (6) gives a 
current density (Amps/cm2) and needs to be multiplied by an area to calculate current.  
Keeping in mind that the particles are not truly spheres, we choose a small patch of a 
sphere spanning a polar angle of 24 degrees as representative of the interfacial area 
between neighboring spheres.  The resistance at each junction is determined from the 
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current density and assumed area.  In this way, particle – particle distances are converted 
into resistances.  The advantages of this approach is that we can compare it more directly 
with our microscopy images.   
 
Model 3 is similar to Model 2 except that distributions are for distances instead of 
resistances.  Gaussian distributions of both particle – particle distances (s) and analyte 

induced variations (s) simulates sensing experiments.  Parameters were chosen as 0.7 

nm and 0.001 nm for the mean s and s, respectively, to give baseline values (Ro) and 

responses (R/Ro) consistent with experiments.  The average particle spacing of 0.7 nm 
is somewhat smaller than expected based on the physical length of the organic 
monolayers, but is within reasonable bounds.  The small spacing is consistent with inter-
digitation of monolayers on neighboring particles, which has been observed in the 
literature.  Here, inter-digitation means that the organic monolayers on adjacent particles 
interpenetrate each other so that the distance between particles is significantly less than 
the sum of the two monolayer thicknesses.  The small mean spacing may also indicate 
that monolayers are bent and disordered, not fully extended molecules.  The distributed 
s values are calculated using a truncated Gaussian distribution to avoid short circuits or 
negative distance values.   
 
Results for Model 3 are included in Table 10.  Similar to Model 2, baseline Ro values differ 

for the three particle networks, but the R/Ro values are similar for all three networks.  

There is a slight trend to larger R/Ro with lower baseline (Ro) resistance, but the 
variations are small compared to experimental variation (Table 9).  We observe that 

calculations of resistances through tunneling equations using distributions of s and s are 
not functionally different than distributions of resistances like Model 2.  Neither model 
explains significant differences for different particle networks. 
 
Based on results from Models 1-3, we conclude that simple random variation of the 
properties of particle - particle junctions cannot explain experimental observations.  We 
conclude that there must be systematic features of particle networks that cause sensing 
variations.  Inspection of high resolution microscopy images like Figure 1 shows that 
particle networks differ in how particles clump and connect to electrodes.  Some particle 
assemblies have three dimensional shapes and some have more two dimensional 
character.  Some are thick and spatially condensed over the electrodes and some have 
extended strings of particles or narrow constrictions between clumps.  The networks have 
different numbers of particles and differ in the relative content of series and parallel 
arrangements. 
 
Based on the above features of particle networks, we hypothesize that local 
configurations around any given particle may influence the local interactions with analytes 
and the extent of swelling.  This heterogeneity of the local environment may influence 
resistance modulation during sensing.  The heterogeneity may depend on the topology 
of the particle networks in a non-random way that Models 1-3 do not capture.  To model 

these network topology effects, we propose that local swelling (s) is inversely 
proportional to particle connectivity.  Particles buried under other particles with many 
neighbors may be constrained to have small swelling responses, while less connected 
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particles at surfaces, edges, or linear configurations are less constrained and swell to a 
greater extent.  The dependence of swelling on the local environment introduces a 
systematic effect (not random) that depends on how particles are configured in a network.  
Networks with dense arrangements will respond differently than sparsely connected 
particles.   
 

Model 4 incorporates configurational information to the distribution of r/ro values.  

Whereas Model 2 uses a Gaussian distribution of r/ro values randomly assigned to 

different particle - particle junctions, Model 4 assigns r/ro values based on the local 

environment around each particle.  Like Model 2, both ro and r are randomly assigned 
according to a Gaussian distribution, but Model 4 then uses the local configuration around 

each particle to modify r for each junction.  The local configuration is quantified by 
counting neighbors around each junction.  In this way, the swelling efficiency depends on 
the local environment.  We make the assumption that swelling is greater for lower 
coordinated particles near edges and less for highly coordinated particles buried into a 
bulk like environment.  The assumption is based on intuition that particles with more free 
volume can expand more easily than highly constrained particles. 
 

With configurational effects included in the model, we see a wider span of R/Ro values 
ranging from 5.6 to 7.7 %, which more closely matches experimental data.  The trend to 

larger R/Ro for configuration C can be rationalized based on the larger edge to bulk ratio, 
where edge particles are freer to expand and yield a higher response.  We can now 
understand how a set of many different sensors, each with the same monolayer chemistry 
but different particle configurations, can act as arrays with more information content than 
expected.  Differences in the swelling efficiencies of different volatile targets combine with 
different sensitivities of the networks to create patterns for chemical identification.   
 
We conclude that the origins of configurational diversity are related to variations of particle 
connectivity in networks due to the particular arrangements of the constituent 
nanoparticles.  We propose that swelling efficiency may depend on the local 
environments around particles leading to differences between sensor elements.  
Heterogeneity of the networks combine with properties of the analytes to produce new 
information that is difficult to measure directly, but is captured by machine learning 
algorithms.   
 
Our Model 4 suggests that experiments to correlate particle arrangements with measured 
sensitivity could be useful to confirm the hypothesis, but such experiments would be very 
difficult since nanoparticle networks are difficult to image even with state-of-the-art 
microscopy.  Moreover, even spectacular images would not provide direct information on 
connectivity.  We also note that our model of neighbor dependent swelling could be 
modified to consider variations in other parameters like local barrier heights.  Also, we 
could have modeled swelling as more efficient (instead of less efficient) in close packed 
arrangements and achieved a similar outcome.  Thus, our conclusion is that neighbor 
connectivity matters, but we cannot specify exactly what properties are most sensitive to 
the particle arrangements.  The simplest explanation is a relationship between 
connectivity and swelling.   
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4. Summary & Conclusions 
 
In this work, we have demonstrated that nanoparticle based sensors can detect and 
classify many types of odorants including pure chemicals, Tea aromas, and solids 
relevant to explosives detection.  Large sensor arrays take advantage of multivariate 
statistical methods and machine learning algorithms to achieve classification accuracies 
of 95-100% for large sets of test chemicals.  Array functionality is demonstrated to be 
robust over a time period of at least 90 days.  Sensors operate over a range of 
concentrations with > 90% classification accuracy.  We demonstrate that nanoparticle 
sensors provide fast and reversible sensing with ‘on’ times quicker than 100 msec.  
Experiments with multi-particle sensor chips support a hypothesis that more sensing 
chemistries will allow larger test sets and further improvements of classification accuracy.   
 
We have initiated a new modeling effort to harness the predictive capabilities of UNIFAC 
to provide rational design for new sensor materials.  Initial data provide validation for the 
modeling approach with a qualitative match between experiment and theory.  We 
discovered a new sensing mechanism based on structural diversity, which is associated 
with variability in how nanoparticles assemble onto electrodes to make working 
chemiresistors.  Experimentally, we observe that sensor elements with identical materials 
and electrode structures can assemble into aggregates of different sizes, shapes, and 
particle arrangements.  The different particle arrangements effectively act as different 
materials, adding non-redundant information to the pattern recognition capabilities of the 
overall array.  A network model suggests that variations in swelling efficiency for different 
particle coordination contributes to configuration-induced sensor diversity.   
 
Sensor fabrication is shown to be robust and reproducible, and sensing capabilities are 
broad, ranging from pure chemicals to complex aromas.  Extrapolation of the current 
results suggests that our models can be used to design and optimize sensor materials for 
any targets of interest, including explosives, chemical precursors, and interferents.  
Expanding the number of sensor elements and sensor materials in combination with 
machine learning and fast calibration should provide highly effective chemical sensors for 
explosives detection and classification.   
 


