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Executive Summary  

Rural communities are facing pressure to increase broadband connectivity for their residents to 

maintain economic growth, however, due to their low populations, broadband projects are typically not 

financially feasible with current investment models.  Distributed energy resource technologies offer a new 

opportunity to both bring broadband connections to rural communities and improve grid utilization and 

resilience.  However, many rural cooperatives are either not familiar enough with the advantages of new 

distributed renewable energy technologies or do not have enough utility consumption data to optimize 

their installation with existing power generation. 

The Post Road Foundation project team evaluated the financial feasibility of distributed wind and 

solar energy resources for Presque Isle Electric and Gas (PIEG), a utility cooperative in Northern 

Michigan.  The team found that distributed wind and solar at the residential level are not currently 

financially viable with payoff periods exceeding 20 years due to low solar and wind resources.  However, 

the team identified that solar installations for Commercial and Industrial customers in the 250kW range 

could be financially viable due to increased array sizes and rate structure incentives.  

In order to further test the feasibility of solar and battery arrays for larger utility customers, the 

team built a long short term recurrent neural network to aid in prediction of future load profile. This load 

profile would be used to optimize solar array and battery size to minimize capital investment costs and 

reduce payback periods. The team used publically available utility data from the Northeastern United 

States for utility customers in the same industries as PIEG as training data. However, when the recurrent 

neural network was applied to the PIEG data to predict future electric load profiles, the machine learning 

model could only predict several weeks beyond the scope of the dataset before converging to an average 

load value.  Analyzing the model’s limitations, the team identified that while the model was well trained, 

the team did not provide enough parameters for the model to learn all the correlations between the 

training data set’s patterns and the actual load data. With further parameter design and expansion, our 

neural network model may be able to provide year long prediction intervals to aid in load prediction for 

rural cooperatives with limited load data.  
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Index Terms - Distributed Energy Resources, Synthetic Load Profile, Recurrent Neural Network, 

optimization, Presque Isle Gas and Electric, Post Road Foundation 

1.  Introduction 

[Author: LC, Reviewer: ZZ] The Post Road Foundation (PRF) team is focused on improving broadband 

connectivity for rural utility cooperatives in the United States. PRF helps communities develop intelligent, 

broadband-connected infrastructure to drive digital inclusion, efficient resource management and 

economic growth by focusing on Distributed Energy Resources (DER) and Distributed Generation (DG) 

technologies.  DER and DG technologies include small scale electricity generating equipment such as 

rooftop solar, wind turbines, batteries or microturbines optimized with broadband connectivity.  These 

technologies offer benefits to end-users to either provide backup power, or to reduce their peak electric 

consumption in order lower their electric rates. PRF is working with Presque Isle Electric & Gas (PIEG), a 

distributing utility cooperative in northeastern Michigan (MI)  to harness the rising market for DER and 

DG.  

Rural cooperatives have struggled to install and adopt DER technologies at a similar pace with 

investor owned utilities such as Pacific Gas and Electric.  Unlike investor owned utilities, rural 

cooperatives have more difficulty in raising large amounts of financial capital for non traditional power 

generation technology.  Additionally, cooperatives have little motivation to innovate as they typically have 

no competition and are heavily regulated by the government, which makes it difficult to implement any 

changes. Due to their customer oriented nature, all changes need to substantially benefit customers. 

Broadband projects in rural areas have typically struggled due to poor rate of return based on a limited 

user base (NRECA, 2018, 3).  PRF enters this sector as a new entrant by showing the benefits of DER in 

both electricity rate reduction and increased broadband connection. With the successful investment of 

DER in rural areas, PRF’s business model will have utility investment offset broadband investments, 

which typically have poor rate of return, to aid connectivity projects in this pilot community, a model with 

potential application to thousands of communities in America. 
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Specifically in partnering with the Fung Institute of Engineering Leadership, PRF is looking for 

DER technology with 10 year payback periods, and to help develop load forecasting tools for PIEG.  10 

year payback periods were specifically chosen to help make the investments attractive and help support 

broadband development.  Load forecasting is particularly important with renewables due to the variability 

of the resource, which commonly requires natural gas plants on standby to ramp up to assist with the 

evening demand period after solar no longer generates.  

2.  Problem Space 

2.1 Landscape of the Current Rural Electric Power Industry 

 [Author: LC, Reviewer: EF] Utilities can be investor owned, like a traditional company with public 

stock holdings, and cooperatives, which were formed primarily during the American New Deal to bring 

utilities to rural areas that were not profitable for investor owned utilities (​Davis 1986​).  These 

cooperatives would function as limited monopolies in their area of service with rates set by a public 

utilities commission at the state level. Large utilities such as Pacific Gas and Electric or Tennessee Valley 

Authority, have their own in-house planning and research divisions to develop future products or they hire 

engineering or consulting firms (Smart Electric Power Alliance 2017, 8).  However, in the case of small 

rural electric cooperatives the utilities are primarily focused on successful transmission, safe operation 

and rate management in accordance with state laws.  These cooperatives do not have enough staff to 

develop new projects, nor do they have the investment capital to hire consultants.  

2.2 Spurring the Development of Innovative DER 

[Author: LC, Reviewer: ZZ] For the utility consulting services that PRF delivers to rural 

cooperatives, there are no direct competitors. PRF is stepping in to fill the market gap as a non-profit 

consulting service identifying areas of growth and to drive innovation in their utility infrastructure and 

providing load forecasting tools for future planning. Communities are especially interested in the PRF 

because of the potential for broadband infrastructure alongside the development of new energy 

6 



technologies, which is unique to PRF. In order to feasibly create this infrasture, the PRF builds plans that 

operate under financial models with 10 year payback periods in order to incentivize outside investment in 

these projects. 

3.  Technical Literature Review 

[Author: EF, Review: LC] Throughout October the team conducted a thorough literature review of energy 

technology to determine which technologies were worth pursuing in the target region. The following 

sections describe solar and wind technology, other alternative energy technologies, and emerging 

technology in the energy field.  

3.1 Solar and Wind Technology  

[Author: ZZ, Reviewer:EF] Solar energy technology and photovoltaic (PV) systems were early 

contenders within the scope of the project because of their widespread availability and ability to serve as 

a distributed system. PV thrives on supportive policy for renewable energy and improved technology to 

reduce the cost ​(Lotker 1991, 1)​, and the team found that the return on investment for PV installation 

could range from 4 to about 20 years in the United States, with some states having higher electricity costs 

and greater support from the government like Massachusetts (Ferroni and others 2017, 498-505). After 

additional review of several utility-scale PV system operations, the team determined that PV is the most 

feasible approach for developing DER considering the land availability in MI, the possible cooperation 

with local customers, and demand for electric compensation.  

The team found new wind power systems, especially utility-scale wind farms, would need access 

to the electric grid to make profits on selling the generation since wind generation is much more random 

in comparison to solar. The return on investment of wind power system is largely affected by the local 

average wind speed, ranging from -2% to 13% for a wind turbine with 20-year life cycle (Renewables First 

2018). Therefore, investing in wind power requires close cooperation with the government, grid, and 

investment partners. The team continued to explore this idea, as seen in later sections, because of the 

availability of information related to wind installations although the costs associated with them are high. 

7 



3.2 Other Additional Energy Technologies 

[Author: LC, Reviewer: ZZ] Combined heat and power (CHP) uses fuel combustion for electricity 

and recovers the waste heat to provide hot air and water. CHP additionally pairs well with biomass 

energy, specifically in burning methane generated from manure.  There have been several commercial 

applications for microturbines for dairy farms where methane is recovered from the manure and burned 

for heat and electricity​ (Bioferm 2018).  H​owever, when evaluating PIEG’s current customer base there 

did not appear to be any customers that could readily take advantage of this application of biomass or 

CHP.  

Ground source heat pumps and heat electrification use electrical appliances to replace traditional 

climate conditioning in residences either by replacing gas furnaces with heat pumps or using the ground 

as a heat sink to reduce climate conditioning requirements ​(Canadian Center for Housing Technology, 

2013)​.  These applications, however, focus on the additional electric load on cooperative’s grids, and the 

team was unable to readily find simulation software to calculate the resource value.  Additionally the team 

decided to focus on technology that would reduce demand peaks by lowering electricity intake by 

end-users, which would be the opposite of electrification technologies.  

3.3 Emerging Technology 

[Author: EF, Reviewer: LC] Emerging technologies, like virtual power plants and energy storage 

systems, were important to the team to consider to ensure that the developed plan was forward thinking. 

From ​the National Renewable Energy Lab (NREL)’s ​paper, which reviewed various types of energy 

storage, the team decided that battery storage was relevant to the PIEG community, especially when 

paired with DG, like solar PV systems (U.S. Department Of Energy 2016, 2). However, battery storage is 

cost-intensive so the team needed to explore optimizing DG before fully pursuing battery storage. The 

concept of virtual power plants (VPP)  was also interesting to the team as it essentially optimizes DG  and 

storage usage across an entire system rather than an entire customer (Zurborg 2018, 2). While enticing, 

the team recognized before pursuing VPP, DG and storage must be fully investigated.  
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Following the completion of the October literature review, the team conducted an additional 

literature review in January pertaining to machine learning (ML) and electric load forecasting. First, the 

team explored papers that defined different types of ML (​Bouktif and others 2018, 3-4​). Traditional neural 

networks could only integrate all the inputs as a whole to generate an output, while a recurrent neural 

network (RNN) could connect previous information to the present task in the most recent timestep. It is 

extremely difficult for both networks to connect information from a long-term period (​Bengio 1994, 164)​. 

However, electric load data usually has patterns across weekly or monthly cycles, indicating that 

long-term connection of previous information is essential when building the model. Long Short Term 

Memory (LSTM) RNNs can perfectly solve this problem with its default behavior of remembering 

information for long periods of time.  Jiao et al. (2018) specifically used smaller sets of data similar to the 

existing data from PIEG to make predictions using LSTM RNNs, which inspired the team to utilize the 

existing data to create short term prediction networks.  

4.  Finding and analyzing results 

[Author: LC,  Reviewer: ZZ] The project team initially attempted to focus on common DER technology with 

high potentials for rural communities (Krishnaswami, 2018, 3), specifically, residential solar photovoltaics 

and distributed wind. 

4.1 Residential Solar 

Residential solar photovoltaics are typically found as rooftop or ground mounted solar panel 

installations designed primarily to provide additional backup power to residences.  Typically, due to size 

constraints, they are not able to completely power a home, but instead rely on a electrical generation 

buyback program with the utility for financial compensation.  

Distributed Residential Solar was modeled using National Renewable Energy Laboratory’s 

PVWatts calculator. System specifications for array tested included: a 4kW rooftop fixed array, similar to 

the average solar array size for a single family home in the United States; 16% efficiency, comparable to 

current technology; 45 degree tilt angle; and 180 degree azimuth.  The tilt and azimuth angles were 
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chosen to maximize solar production.  For financial parameters, the loan interest was set at 2.5%, no tax 

credit was applied, and PIEG's electricity rate of $0.115/kWh was applied. Simulations were executed 

representing 28 different locations based on zip codes within PIEG’s area of responsibility.  NREL used a 

synthesized weather data profile based on the last eight years for each locations’ latitude and longitude.  

  Daily Solar Radiation (kWh/m​2​/day) AC Energy (kWh) Annual Value 

Average 4.368 4961 $570.79 

Standard Deviation 0.067 107 $12.43 

Table 1. Average Annual Value from 4kW fixed roof array in PIEG's service area 

 

After simulations the team was able to draw two main conclusions. First, Distributed Residential 

Solar is not currently financially viable in under a 10 year payback period for PIEG’s customers.  A 

combination of low solar irradiance and low cost of retail electricity reduces the economic value generated 

by residential photovoltaic solar.  Specifically as shown in Figure 1,​ ​Northern Michigan has some of the 

lowest solar irradiance in the United States ranging in the 3.6 to 4.4 kilowatt-hours per square meter per 

day.  The low radiation is due in part to the higher latitudes and more frequent weather events that make 

solar more variable.  As an additional complication, PIEG's service area has some of the lowest solar 

irradiance levels in Michigan.  Additionally, PIEG has relatively low electric rates compared to other areas 

of the U.S. due to Michigan’s access to natural gas. The low rates, while good for consumers, actually 

hamper solar payback because they reduce the value of the energy generated from the solar panels.  In 

this simulation, 1:1 net-metering, where PIEG buys back electricity from solar panels at the same retail 

electric rate, was used to analyze the payback period.  
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Figure 1. Direct Normal Solar Irradiance for Michigan 1998-2016 (Credit NREL) 

 

However, the team was able to identify a breakpoint where residential solar would become 

financially viable with 10 year payback periods.  This breakpoint would occur when solar installation costs 

approached $1.25/watt.  The current average solar panel installation cost for residential applications is 

$3.05/watt (Energy Sage, 2018).  Commercial applications usually have a cost around $1.25/watt to 

$1.50/watt, which offers potential for residential customers if prices continue to lower.  Historically, 

installation costs have steadily reduced, however, there is a great deal of uncertainty in the market due to 

the current tariff on Chinese goods and the future of the federal tax credit for installation (not included in 

this report's simulation) (Energy Sage, 2018).  
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4.2 Distributed Wind 

Next, the team analyzed distributed wind generation.  Similar to residential photovoltaic solar, 

distributed wind includes small scale wind turbines installed around residential areas and large 

commercial customers, typically to help offset some utility costs.  Commercial wind installations were 

simulated using System Advisory Model (SAM), Version 2018.11.11, Operating System Windows 10. 

The wind resource profile was the National Renewable Energies Laboratory (NREL) Eastern Michigan 

Onshore wind profile set a height of 50 meters.  For the simulation four different wind turbines ranging in 

output from 0.5kW to 25kW were tested with loan periods from 10 to 25 years.  PIEG's electrical rates 

were imported for the financial model, and the Commercial, General Service Three Phase setting was 

used for all simulations. Default financial parameters were used, except for sales tax which was set at 6% 

to match Michigan's rate.  The payback model included full 1:1 net-metering and no tax incentives.  

 

Turbine Rating (kW) Rotor Dia. (M) Hub Ht. (M) Loan Period NPV ($) 

Hummer 2.7M 0.5 2 15 25 years -1,887 

Hummer 2.7M 0.5 2 15 10 years -2,827 

Endurance S-343 5 6 15 25 years -13,520 

Endurance S-343 5 6 15 10 years -17,435 

Evoco 9.7M 10 9 15 25 years -15,722 

Evoco 9.7M 10 9 15 10 years -25,222 

Eocycle EO25/12 25 12 20 25 years -58,344 

Eocycle EO25/12 25 12 20 10 years -84,602 

Table 2. SAM Simulation Results with loan periods from 10 to 25 years. 

 

After the simulation, all Net Present Values (NPV) for the wind turbine installations were negative. 

Larger turbine installations increased the amount of electricity generated and yielded greater profit, 

however, the overall value of the systems were offset by increasing capital investments.  Two issues 
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primarily affected wind generation profitability: lack of wind resource, and PIEG’s low electricity rates. 

The lack of wind resource, shown in Figure 2,  reduces the amount of potential electricity generation from 

wind turbines and overall decreases the rate of payback on the renewable investment.  Combining low 

generation with full 1:1 net-metering to create financial value, distributed wind encountered the same 

issues as residential solar, namely, low retail costs of electricity reduced the value created by the wind 

turbines, further making them more difficult to install.  

 

Figure 2. NREL Wind Resource Map. (Credit NREL) 

4.3 Commercial Solar  

After realizing that distributed residential technologies were not likely to be financially feasible for 

PIEG, the PRF team instead examined the feasibility of distributed photovoltaic solar for Commercial and 

Industrial (CNI) customers.  The team believed that CNI customers would have a greater potential for 
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success for three reasons, first CNI customers are charged at a peak demand rate, that is they are 

charged based on the maximum power draw for the month, not their total consumption.  This rate 

structure is due in part that the distributing utility (e.g. PIEG), must install electrical infrastructure able to 

support that peak power demand.  So CNI customers have very high incentives to “load shave”, or reduce 

their load demands to avoid rate ceilings or extra tariffs, and even small solar arrays can reduce demand 

peaks.  Additionally, CNI customers typically have larger facilities which facilitate larger solar installations, 

and through an examination of case studies in the Midwest, several CNI solar installations in the 250kW 

range were proven to be financially viable in Eau Clair, Wisconsin, with a similar latitude as Michigan 

(NRECA 2018, 12).  Finally, unlike residential customers, PIEG was able to supply three months of 

metering data for their CNI customers.  One of the customers, the Alpena Readiness Training Center, 

actually had a full year of metering data due to Federal Aviation Administration requirements.  Based on 

the data available, the team formulated equations to calculate the projected value of solar installations in 

a consumption and demand reduction capacity. 

 4.4 Commercial Solar Optimization Scenarios 

While the data was valuable to validate assumptions, in order to balance renewable energy 

solutions such as solar or wind, some form of energy storage would be required to allow for demand 

response since natural resources do not generate consistent electricity throughout the entire day. 

However, energy storage technologies, such as batteries, typically are the most expensive parts of a 

distributed energy resource installation. The team formulated the following optimization function and 

constraints based on Moura, 15-03-19,  ‘Lecture 8, Case Study: Microgrid Planning and Control,’ in order 

to properly analyze the trade off between the capital investment costs of solar array systems with energy 

storage and the return based on reduced electric charges for commercial customers. The variables c​b ​,​  ​c​s​,  

E​max ​, and B​max ​were estimated from Energy Sage’s 2019 report for renewable installation costs and a 

2016 report from NREL detailing current available commercial battery storage technology (Mclaren et al. 

2016).  ​ ​c​G ​, ​ ​c​D ​, and ​ ​G​max​ were obtained from PIEG’s 2013 tariff sheet.   were simplified to linear , η η c  c  
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efficiency constraints for ease of program formulation.  Finally, S(k) was obtained from NREL’s System 

Advisory Model for the Michigan sites, and L(k) was submitted by the utility.  A summary of equations and 

the variable list are shown in Table 3 and Equations 1-8. 

Variable Value Units Description 

s, b Optimize N/A Scale factors for the solar and battery 
array size 

S(k) NREL Data kW Power generated from solar 

B​d​(k), B​c​(k) Optimize kW Battery Charge and Discharge Power 

G(k) Optimize kW Power imported from grid 

L(k) Load data kW Power demand of building 

E(k) Optimize kWh Energy level of battery 

c​b 209 $/kWh Marginal levelized cost of scaling batt 

c​s 2000 $/kW Marginal levelized cost of scaling solar 

c​G 0.07 $/kWh Cost of grid imported power 

c​D 11.06 $/kW Demand Charge in time 

tΔ  0.25 hr Time step  

 , η η c  c  0.9 N/A Battery charge and discharge efficiency 

E​max 40 kWh Nominal battery energy capacity 

B​max 40 kW Nominal battery power capacity 

G​max 1961 kW Maximum grid power  

g​d Varies kW Monthly 15 Minute Average of maximum 
grid import 

S​min    ​S​max [0,40]  Solar scale limit based on 60 kW arrays 

b​min    ​b​max [0,20]  Battery scale limits 

 

Table 3. Optimization Notation and Parameter Values, for the Alpena Training Center 
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Equation 1 minimizes the overall capital investment of batteries and solar panels, along with 

operating costs of importing electricity or operating revenue from exporting electricity, and operating 

revenue from reduced demand.  

This minimization equation is subject to the following equality and inequality constraints:

         

Equation 2 is the power balance equation, where the energy generated for the solar array, the 

energy generated from battery discharge, the energy used by battery charge, and the energy from grid 

import must equal the building’s load. 

 

Equation 3 models the battery dynamics via timestep allotting for a discharge and charge 

efficiency ratio. 

 

Battery energy limits are modeled by equation 4. 

 

Battery power limits are modeled by equation 5. 

 

The grid power limits is constrained by equation 6. This situation allows for full net-metering.  

 

 

Equations 7 and 8 limit the scale of the battery and solar array installation. Based on these 

equations, the team could optimize the installation of a combined solar and battery array for a commercial 

customer, based on the historical solar insolation data  S(k)  for the site, the interval demand data D(k), 

and the interval load data L(k).  

 The team then ran simulations for the a regional airport in PIEG’s service area.  Due to Federal 
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requirements, PIEG was able to supply a full year of demand data, which the team used as a 

representative yera to predict if solar arrays and batteries would be a feasible distributed energy resource 

for Commercial customers.  MATLAB 2018b, with CVX solver add on, was used on a Windows 10 

computer to simulate and the results are summarized below: 

Payback Period Solar Arrays (60kW) Batteries (40kWh) 

10 Years None 5 

15 Years None 7 

20 Years 4 12 

 

Table 4. Optimized installations by payback period for a regional airport in PIEG’s service area.  

In these scenarios the Distributed Energy Resources would pay for their installation fees within in 

the payback period using the savings from reducing the demand and electric consumption charges.  The 

relationship is further shown below, with the peak demand per month shown for the base case, and each 

optimization period.  
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Figure 3. Monthly Demand for the regional airport in base and optimized cases 

While this model motivated the team to explore other CNI customers’ potential for distributed 

energy resources, it could also be expanded by adding interest payments in the payback period, and a 

facilities recapitalization cost e.g. battery replacement at the 10 year mark.  

4.5 Electric Load Forecasting Motivation 

[Author: LC, Reviewer: EF] After reviewing similar optimization scenarios, the team determined in 

order to sufficiently design battery and solar array sizes a much larger data set of at least five years of 

load and demand data was required (Jiao and others 2018, 59443 - 59444). In contrast, PIEG only 

provided three months of data for eleven of the customers and almost one year of data for the Alpena 

Training Center.  The team realized that the optimization hinged on acquiring a larger dataset to create a 

representative year and more accurately predict solar array and battery size, and thus pivoted its focus to 

developing electric load forecasting using machine learning algorithms. These forecasts would then 

facilitate solar and battery array design, which ultimately allows PRF to forecast loads for PIEG and then 

make concrete infrastructure investment recommendations.  

[Author: EF, Reviewer: LC] In addition to the literature review indicating a higher data requirement 

for optimization, the team was uncomfortable optimizing only the limited data sets provided by PIEG as 

there was no way to determine whether or not this optimization would be accurate in the slightest. 

Considering the dataset provided by PIEG was solely for summer months, when solar irradiance is high, 

the optimized solution would likely have much smaller PV installations, since less panels would be 

needed to provide the same level generation, and as a result, be less expensive than an optimization 

across an entire calendar year. The team felt it was against the mission of this project to provide a 

potentially infeasible and unreasonable plan to the PIEG community, so we turned our focus towards 

electric load forecasting as a solution to the data problem. 

4.6 Initial Load Forecasting with MATLAB 

[Author: ZZ, Reviewer: EF] To develop a commercial solar investment plan, load forecasting 
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plays an essential role in determining the appropriate solar size to install because of inconsistent solar 

generation. The amount of electricity generated by a solar panel is largely based on the solar irradiance 

on the panel. So, the daily generation from the solar panel would have a peak at noon and a valley at 

night. Normally, the electric load curves of CNI customers are relatively flat compared to the solar 

generation curve, and CNI customers would sell excess electricity generated by solar panels back to the 

grid to maximize the return of investment from the installed solar panels, which is called net-metering. 

However, since there is no net-metering in the target community - a self imposed metric to prevent 

reliance on volatile state and federal policies - the peak generation from solar panels should not exceed 

the electric loads for each CNI customer to avoid energy waste and interest loss. Here, energy storage 

could be installed to make full use of excess electricity, but this would be another scenario to analyze. So, 

assuming no excess electricity is allowed to be generated, accurate prediction of future electric load data 

is needed to determine the exact amount of solar panels to be installed while maximizing the return of 

investment. 

[Author: EF, Reviewer: LC] The team used the existing PIEG data to create a rudimentary 

electrical load prediction across all months of 2018 using MATLAB. To do this prediction, the team utilized 

publically available electricity data from the Energy Information Administration (EIA) for the sector 

containing Michigan, Illinois, and Ohio. This analysis gave the team a preliminary idea of electrical usage 

across the year. However, the team recognized there were limitations with this method since the data 

from PIEG was solely for summer months, which coincides with peak tourism in the area, and using it as 

the baseline for prediction most likely created a much higher than actual electricity usage prediction for 

winter months. Within the confines of the problem, if the team sizes optimal PV arrays based on electricity 

usage that is much greater than it actually is, then surplus generation occurs and net-metering is 

necessary, which the team is avoiding. In this scenario, underestimating usage is better than 

overestimating. To address the limitations associated with the MATLAB model, the team explored the 

possibility of using machine learning to more accurately predict electrical loads. 
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4.7 Load Forecasting Using Machine Learning 

[Author: EF, Reviewer: LC] Electricity usage is highly dependent on previous iterations because 

systems are limited by how quickly electricity can be produced. As a result, load forecasting is naturally a 

good candidate for time series based prediction models like a Recurrent Neural Network (RNN). More 

specifically, the team is using a Long Short Term Memory (LSTM) RNN since this type of model more 

acutely reduces different types of error propagation that occur in regular RNN. The team built several 

LSTM RNN using different data sets for training and testing.  

 

Figure 3. Short Term Model Prediction 

The first model developed did short term predictions using the existing PIEG data for training and 

testing. May, June, and the first three weeks of July were the data sets used for training, while the last 

week of July was used for testing. The model the team developed was fairly accurate over several hour 

windows, as shown in Figure 3, and had a mean average percentage error of 5.89% over a four hour 

prediction window. In the future, this model may be useful when optimizing within the network and running 

in near-real time. However, the model was limited as it was not capable of predicting across an entire 

year, which the team needed in order to optimize a PV system. The team also wanted to develop the load 

forecasting tool to be general enough that it could be applicable to additional communities, but this model 

20 



was very specific to PIEG.  

 

Figure 4. Prediction Using Massachusetts Dataset 

[Author: ZZ, Reviewer: EF] Since the team is developing the model to forecast electric load data 

with parameters like weather and type of industry, at least a full year of training data is needed to ensure 

accuracy. With the three-month data PIEG  provided, the resulting average error for a full-year prediction 

would be high. Facing this problem, the team decided to look for a full year of electric load data from other 

sources located in regions with similar altitude and climate as the target community. The team found a full 

year of electric load data from commercial and industrial facilities in Massachusetts. The team built the 

LSTM RNN model for regression with standard time steps based on the dataset, and created memory 

between batches to retain the memory to the next training step so that several data sets from similar 

industries could train together to create a more general prediction model for a specific industry (Brownlee 

2018). The results are shown in Figure 4 and had a mean average percentage error of 11.8%. While this 

model had potential for being a versatile model, at its crux, it could still only predict several hour windows 

before the curve converges to an average prediction. 

5.  Conclusions and Future Research 

[Author: ZZ, Reviewer: EF] In this project, the team examined several DER technologies in order to make 

the best choice of renewable energy for the rural community in North Michigan to adopt. The team 
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eliminated the option of wind power after determining that the net present value of wind power investment 

is negative even with a 25 year scenario. Residential solar was also ruled out for the reason that Michigan 

has a relatively low electricity rate that the investment of residential solar would not pay back, and that 

there is no electric load data for residential sectors available for us to analyze and optimize the size of the 

panels.  

After focusing on commercial solar, the team noticed that investing in commercial and industrial 

solar systems is the best choice for this rural area to adopt renewable energy. Commercial and industrial 

customers are charged by the peak usage, so they are incentivized to “load shave”. The team then saw 

that the limitation of data in rural areas would largely hinder their ability to adopt renewable resources, so 

the team pivoted and tried to develop a machine learning algorithm to help predict the load data using 

very limited existing data. Although the algorithm the team built is not reliable for accurate long term 

prediction of around a year, it still provides resources for future researchers to continue on this study, 

specifically by expanding parameter selection.  

Long-term forecasting for data with complex multivariate analysis is a problem that many data 

scientists are still trying to solve. Basically, research on long-term forecasting is based on two types of 

algorithms in machine learning, Deep Neural Networks (DNN) and LSTM RNN. Since electric load is time 

dependent, time series forecasting using LSTM should be the best option to start with. The reason why 

the two attempts for long-term forecasting failed is that the team did not input enough features for the 

look-ahead prediction. Essentially, even if the data set was well trained, the machine could not 

understand the correlations between the training data and the actual data. However, there is not enough 

time for the team to build another model to test after figuring out the algorithm. 

For future researchers, the team suggests building a LSTM RNN model for this kind of 

forecasting with multiple layers for different feature inputs that could potentially affect the electric load like 

temperature, weather, location, month, or even day and then try combinations of different parameters to 

find the best estimation. 
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