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Itô-Taylor Expansion Moments for
Continuous-Time State Propagation

David Frederic Crouse∗ Member, IEEE

Abstract—The state-prediction step of the continuous-discrete
cubature Kalman filter by Arasaratnam, Haykin, and Hurd was
derived using the mean and covariance matrix of an order-1.5
strong Itô-Taylor expansion for autonomous additive noise. In
this note, we provide the mean and covariance matrix of a
variety of strong and weak Itô-Taylor expansions, enabling the
implementation of nine continuous-discrete cubature Kalman-
filter variants.

I. INTRODUCTION

Many target-tracking algorithms, such as the Kalman-filter
variants discussed in [3], approximate the uncertainty in the
target-state vector as a mean and a covariance matrix (a Gaus-
sian approximation). With certain exceptions [5], [7], [12],
[17], the time of a target’s state associated with a particular
measurement can be assumed to be known exactly and thus,
one can separate the measurement update of a target state
from the state-prediction step. Such a separation allows one
to mix and match measurement-update and state-propagation
routines, as one can do, for example, with the routines in
the Tracker Component Library (TCL) [6], [18]. This note
presents variants of the continuous-time state-propagation step
of the continuous-discrete cubature Kalman filter (CKF), de-
rived in [1]. The measurement-update step of the filter is not
explicitly addressed. That is because any measurement-update
routine that takes a mean and covariance matrix as inputs and
outputs a mean and covariance matrix can be used.

As discussed in the tutorial [4], continuous-time stochas-
tic dynamic models under Itô calculus are typically defined
having the form:

dxt =

What Physics
Tells You︷ ︸︸ ︷

a(xt, t)dt +

Unknown
Perturbations︷ ︸︸ ︷

B(xt, t)dβt, (1)

where xt is the dx-dimensional target state at time t, dβt is
the differential of a dw-dimensional Wiener process, a is the
dx×1 drift function, and B is the dx×dw diffusion function.

When given a target-state probability density function (PDF)
at time t, approximated as Gaussian with mean x̂t and
covariance-matrix Pt, a state-prediction step involves finding
the mean and covariance matrix at time t+T that is consistent
with the continuous-time stochastic dynamic model described
in (1). The most common approach to this problem involves
formulating deterministic differential equations for x̂t and Pt

(or in a square-root filter for St such that Pt = StSt) and
integrating them using some type of Runge-Kutta method or

*The author is employed by the Naval Research Laboratory, Attn:
Code 5344, 4555 Overlook Ave., SW, Washington DC 20375. (e-mail:
david.crouse@nrl.navy.mil)

other standard approach for solving the differential-equation
initial-value problem. This is done for the continuous-discrete
extended Kalman filter (EKF) in [8], [10] and for cubature
filters in [1], [4], [15].

In contrast, the method presented in [1] replaces the solution
with an approximate discretization of the form:

xt+T ≈ f(xt, t) + F(xt, t)w̃ (2)

where w̃ is a zero-mean random vector whose dimensionality
and distribution depends on the approach used to obtain the
discretization, and f and F are functions of the state and time.
Define the conditional expectations:

µxt
,E {xt+T |xt} (3)

Σxt ,Cov {xt+T |xt} . (4)

The law of total covariance state, which comes from the law
of total expectation, states that:

Cov {xt+T } = E {Cov {xt+T |xt}}+ Cov {E {xt+T |xt}} .
(5)

Consequently, the mean and covariance matrix associated with
(2), given a Gaussian prior, are:

x̂t+T = E {xt+T } = E {E {xt+T |xt}} (6)

= E
{
µxt

}
(7)

Pt+T = E {Σxt}+ Cov
{
µxt

}
. (8)

The evaluation of x̂t+T and Pt+T involve integrals over
N {xt, x̂t,Pt}, the multivariate Gaussian distribution with
mean x̂t, and covariance matrix Pt. As in [1], these can be
approximated using cubature integration as follows:

x̂t+T =

∫
x∈Rdx

µxt
N {xt, x̂t,Pt} dxt (9)

≈
N∑
k=1

ωkµξk
(10)

Pt+T =

∫
x∈Rdx

Σxt
N {xt, x̂t,Pt} dxt

+

∫
x∈Rdx

(
µxt
− x̂t+T

) (
µxt
− x̂t+T

)′
dxt (11)

≈
N∑
k=1

ωk

(
Σξk

+
(
µξk
− x̂t+T

)(
µξk
− x̂t+T

)′)
(12)

where ′ denotes the transpose operator (See Section II for when
this will have a different definition), and ωk and ξk are the
cubature weights and points for a Gaussian distribution with
mean x̂t and covariance matrix Pt.

____________
Manuscript approved July 2, 2019.
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One is not limited to using the specific third-order cubature
points that are given in the description of the continuous-
discrete CKF in [1]; any cubature points of the required
dimensionality for a Gaussian weighting function can be used.
However, one should typically restrict the choice to cubature
points with all-positive weights to guarantee that none of the
eigenvalues of Pt+T is negative.

Cubature points and weights for the Gaussian distribution
with zero mean and a covariance matrix of I, the identity
matrix, are given in the TCL [18].1 To use such points for
a Gaussian with mean x̂t and covariance matrix Pt, just
transform the normal 0,I cubature points ξ̃k as

ξk = x̂t + Stξ̃k (13)

where Pt = StS
′
t. That is, St is a lower-triangular Cholesky

decomposition of Pt. Expressions and derivations for many
cubature formulae are collected in [2], [14].

Given a set of cubature points, the continuous-time predic-
tion T into the future is given by (10) and (12), which depend
on µxt

and Σxt
, which are based on the discretization used.

If T is large, one might wish to perform a number of small
prediction steps rather than one large prediction step.

The following sections derive the conditional means µxt

and covariance matrices Σxt for many of the strong and weak
Itô-Taylor discretizations that are given in [9].2 Strong Itô-
Taylor expansions are such that for a particular continuous-
time realization of the Wiener process βt, the values taken by
the expansion will equal the true values of the processes. In
contrast, the values delivered by weak Itô-Taylor expansions
do not necessarily converge to the true process values, but
the moments of the values will converge to the true moments
of the process. Weak Itô-Taylor expansions have been used
before in target-tracking problems including [11].

The use of more general Itô-Taylor expansions goes beyond
the order-1.5 strong Itô-Taylor discretization used in [1]. In-
deed, in [15], it is criticized that the algorithm of [1] “cannot be
easily extended to the case of non-additive noises.” This paper
addresses that shortcoming as a number of the expansions here
can handle non-additive noise.3 The results are summarized
in Section II; Section III provides a simulation example of
some of the results, and Section IV provides a conclusion.
Expressions for random quantities and their expected values
are given in Appendix A and these quantities are used in the
derivations, which have been placed in Appendices B and C for
the strong and weak expansions, respectively. The algorithms
are implemented in the stochTaylorCubPred function in
version 4.0 of the TCL [18].

II. NOTATION AND SUMMARY OF RESULTS

In the following sections, the drift function a(xt, t) and
the diffusion function B(xt, t) from the stochastic differential
equations (1) will only be considered evaluated at the state

1See the functions in Mathematical Functions/Numerical Integra-
tion/Cubature Points/Gaussian Weight/ in the TCL.

2It is worth noting that additional weak Itô-Taylor expansions exist in the
literature [16].

3Additive noise is when B(xt, t) does not depend on xt.

xt and time t. Consequently, those function values shall be
written as a and B. The ′ will denote the matrix transpose
except when considering expansions where dx = dw = 1.
In such instances, it denotes derivatives. Thus, a′ and a′′ are
the first and second derivatives of the (scalar) drift function
with respect to xt. When considering individual elements of a
vector or a matrix, subscripts on the vector or matrix, which
will not be written in bold, will be used. For example, Bj1,j2
refers to the item in row j1 and column j2 of B.

The following derivative operators, defined in [9, Ch. 10.1]
are used:

L0 ,
∂

∂t
+

dx∑
k=1

ak
∂

∂xk
+

1

2

dx∑
k=1

dx∑
i=1

dw∑
j=1

Bk,jBi,j
∂2

∂xk∂xi

(14)

Lj ,
dx∑
k=1

Bk,j
∂

∂xk
. (15)

The remainder of this section presents the results for many
of the expansions given in [9, Ch. 10.2]. Multiple variants of
an expansion are given depending on assumptions on a and
B. The weak Itô-Taylor expansions given in [9, Ch. 14] can
often be simulated with different random variables. However,
these do not change the first and second moments.

A. Strong Expansions

1) Euler-Maruyama Method (order 0.5)
The expansion is Eq. 2.1 in [9, Ch. 10.2].

µxt
=xt + aT (16)

Σxt
=TBB′. (17)

2) Milstein Scheme (order 1.0)
All of the Milstein scheme variants considered have
discretizations:

µxt
=xt + aT (18)

Σxt
=TBB′ +

T 2

2
DD′. (19)

where D depends on the scheme. For specific variants,
the values of D are:

a) Scalar noise.
The expansion is Eq. 3.2 in [9, Ch. 10.3]. Assum-
ing that dw = 1,

D =

dx∑
i=1

Bi,1
∂B

∂xi
. (20)

b) General noise.
The expansions are Eq. 3.3 in [9, Ch. 10.3] and
Eq. 3.16 in [9, Ch. 10.3], respectively, though the
equation for commutative noise must be modified
for Itô calculus. General noise is any function for
B. Commutative noise is such that:

Lj1Bk,j2 = Lj2Bk,j1 . (21)
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In both instances, D has elements:

dk,j1+(j2−1)dw = Lj1Bk,j2 . (22)

c) Diagonal noise.
The expansion is Eq. 3.12 in [9, Ch. 10.3]. D is
a diagonal matrix where the kth element on the
diagonal is:

Dk,k = Bk,k
∂Bk,k
∂xk

. (23)

3) Order 1.5
a) Additive noise.

The expansion is Eq. 4.10 in [9, Ch. 10.4].

µxt
=xt + aT +

1

2
T 2 (L0a) (24)

Σxt
=TC1C

′
1

+
1

3
T 3C2C

′
2 +

1

2
T 2 (C1C

′
2 + C2C

′
1)

(25)

where

C1 =B + T
∂B

∂t
(26)

C2 = (La)− ∂B

∂t
. (27)

b) Autonomous scalar problems.
“Autonomous” means that a and B do not depend
on t. The expansion is Eq. 4.1 in [9, Ch. 10.4].

µxt
=xt + aT +

1

2

(
aa′ +

1

2
B2a′′

)
T 2 (28)

Σxt =
1

3
T
(
3c21 + 3c1 (6c3 + c4)T

)
+

1

3
T 2
(
6c22 +

(
45c23 + 9c3c4 + c24

)
T
)

(29)

where

c1 =B +

(
aB′ +

1

2
B2B′′

)
T

− 1

2
B
(
BB′′ + (B′)

2
)
T (30)

c2 =
1

2
BB′ (31)

c3 =
1

6
B
(
BB′′ + (B′)

2
)

(32)

c4 =a′B −
(
aB′ +

1

2
B2B′′

)
. (33)

B. Weak Expansions

1) Order 2.0
a) Scalar state and noise.

The non-simplified expansion is Eq. 2.1 in [9, Ch.
14.2]; the simplified expansion is Eq. 2.2 in [9, Ch.
14.2]. Both expansions have mean

µxt
=xt + aT +

1

2

(
a
∂a

∂x
+

1

2

∂2a

∂x2
B2

)
T 2.

(34)

The unsimplified expansion has variance

Σxt
=c20 + (c21 + 2c0c2)T +

(
3c22 + c1c3

)
T 2

+
1

3
c23T

3 (35)

where

c0 =− T

2
B
∂B

∂x
(36)

c1 =B + T

(
a
∂B

∂x
+

1

2

∂2B

∂x2
B2

)
(37)

c2 =
1

2
B
∂B

∂x
(38)

c3 =
∂a

∂x
B −

(
a
∂B

∂x
+

1

2

∂2B

∂x2
B2

)
. (39)

The simplified expansion has variance

Σxt
= c20 + (c12 + 2c0c2)T + 3c22T

2 (40)

where

c0 =− 1

2
B
∂B

∂x
(41)

c1 =B +
T

2

(
∂a

∂x
B + a

∂B

∂x
+

1

2

∂2B

∂x2
B2

)
(42)

c2 =
1

2
B
∂B

∂x
. (43)

b) General noise.
The unsimplified expansion is Eq. 2.6 in [9, Ch.
14.2] and the simplified expansion is Eq. 2.7 in [9,
Ch. 14.2]. In both instances,

µxt
=xt + aT +

1

2

(
L0a

)
T 2. (44)

When using the unsimplified scheme:

Σxt =TBB′+
T 3

3

(
C(1)

(
C(1)

)′
+C(2)

(
C(2)

)′)
+
T 3

6

(
C(1)

(
C(2)

)′
+ C(2)

(
C(1)

)′)
+
T 2

2

(
C(3)

(
C(3)

)′
+ B

(
C(1)

)′)
+
T 2

2

(
B
(
C(2)

)′
+ C(1)B′ + C(2)B′

)
(45)

where

C
(1)
k,j =L0Bk,j (46)

C
(2)
k,j =

(
Ljak

)
(47)

C
(3)
k,j1+(j2−1)m =Lj1Bk,j2 . (48)

When using the simplified scheme:

Σxt
= TC(1)

(
C(1)

)′
+ 2T 2C(2)

(
C(2)

)′
(49)

where

C(1) =B +
T

2

((
L0B

)
+ (La)

)
(50)
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and C(2) has elements

C
(2)
k,j1+(j2−1)dw

=
1

2
Lj1Bk,j2 . (51)

c) Scalar noise.
This requires that dw = 1. The expansion is Eq.
2.5 in [9, Ch. 14.2]:

µxt
=xt + aT +

1

2

(
L0a

)
T 2 (52)

Σxt
=c0c

′
0 + c2c

′
23T 2 + c3c

′
3

T 3

3
+ (c1c

′
1 + c0c

′
2 + c2c

′
0)T

+ (c1c
′
3 + c3c

′
1)
T 2

2
(53)

where

c0 =− T

2
(LB) (54)

c1 =B + T
(
L0B

)
(55)

c2 =
1

2
(LB) (56)

c3 = (La)−
(
L0B

)
. (57)

III. SIMULATION EXAMPLE

To demonstrate the utility of some of the new continuous-
time prediction schemes, we consider a multivariate dynamic
model with non-additive noise, as it cannot be handled by [1].
However, we specifically choose a model for which an exact
solution is available. Thus, we choose the geometric Brownian
model, also known as the Black-Scholes model. This dynamic
model is a multivariate form of the model as expressed by
the stochastic differential equation under the Itô calculus with
drift and diffusion terms [13, Ch. 2.4],

a(xt, t) = diag (xt) m (58)
B(xt, t) = diag (xt) D (59)

where m is a dx × 1 vector and D is a dx × dw matrix. The
expected value and the elements of the covariance matrix of
the prediction of this system conditioned on xt are given in
[4]4 based on [13, Ch. 2.4] and are

µxt
= diag (xt) e

µ+ 1
2 diag(Σ̃), (60)

Σxt,i,j =xt,ixt,je
µi+µj+ 1

2 (Σ̃i,i+Σ̃j,j)
(
eΣ̃i,j−1

)
(61)

where the exponential is element-by-element (not a matrix
exponential), and

µ =

(
m− 1

2
diag (DD′)

)
T (62)

Σ̃ = DD′T. (63)

Additionaly, the diag operator is defined such that diag applied
to a vector returns a matrix with the vector as its main diagonal
and diag of a matrix returns a vector holding the main diagonal
of the matrix.

4In [4], it is incorrectly claimed that the matrix D must be square. That,
however, is not the case.

TABLE I
THE PEAK RELATIVE ERRORS OF THE DIFFERENT PREDICTION

ALGORITHMS PREDICTING THE GEOMETRIC BROWNIAN MODEL. THE
HIGHER ORDER THE FORMULA, THE BETTER THE RESULTS.

Expansion pErrx pErrP
Euler-Maruyama 0.1219 0.5056

Milstein 0.1219 0.3940
Weak Order 2.0 0.0072 0.0819

Given (60) and (61), unlike with general nonlinear models,
it is possible to explicitly evaluate the expected values for
x̂T+t and Pt in (9) and (11) cubature integration. These are:

x̂t+T = diag
{
eµ+ 1

2 diag(Σ̃)
}

x̂t (64)

Pt+T =P̃t+T

+ diag
{
eµ+ 1

2 diag(Σ̃)
}

Pt diag
{
eµ+ 1

2 diag(Σ̃)
}

(65)

P̃t+T,i,j = (Pt,i,j + x̂t,ix̂t,j) e
µi+µj+ 1

2 (Σ̃i,i+Σ̃j,j)
(
eΣ̃i,j−1

)
(66)

where the Law of Total Covariance was used to find (65).
Given explicit solutions for the predicted moments, we

consider a Black-Scholes system with

m =


0.9

1.7

1.3

0.1

 D =


1.6154 0.0284

0.1034 0.4361

0.9386 0.0641

1.1955 0.4186

 (67)

being predicted T = 1/5 forward in time.
In comparison, we consider the solutions for the strong

Euler-Maruyama expansion, using (16) and (17), the strong
Milstein scheme for general noise using (18), (19), and (22),
and the unsimplified weak order-2.0 expansion for general
noise using (44) and (45). For cubature points, we use fifth-
order cubature points corresponding to the algorithm named
Er

2

n 5-3, on pg. 317 of [14]. These are reproduced in Appendix
D, as was also done in [4]. These cubature points are imple-
mented as one of the choices in fifthOrderCubPoints
in the TCL [18].

For each of the expansions, the prediction was done using
ten steps to go from t = 0 to t = T = 1/5. The peak
relative error of the estimates is considered. If x̂t+T is the
true mean obtained from (64), and ˆ̂xt+T is the estimate from
one of the aforementioned methods, and Pt+T and P̂t+T are
the analogous quantities for the covariance matrix, then the
peak relative errors are defined to be

pErrx ,max
{(

ˆ̂xt+T − x̂t+T

)
/x̂t+T

}
(68)

pErrP ,max
{(

P̂t+T −Pt+T

)
/Pt+T

}
(69)

where the division is element-by-element and the maximum
operator is taken over all elements of the vector or matrix.

Table I shows the maximum relative errors for each of the
algorithms. It can be seen that the higher the approximation
order, the more accurate the results are. The Euler-Maruyama



5

and Milstein methods differ only in the covariance esti-
mates with better performance from the higher-order Milstein
method. The order-2.0 weak scheme outperforms the other
methods in both respects.

IV. CONCLUSIONS

The logic of [1] was applied to obtain new continuous-
time prediction steps for CKFs based on Itô-Taylor expansions
beyond the one considered in [1]. An example was presented
demonstrating improved performance with higher expansion
orders when applied to a geometric Brownian model, for
which an explicit propagation solution is available. This goes
beyond the capabilities of the continuous-time propagation
algorithm of [1], which cannot handle dynamic models with
non-additive noise. The algorithms are implemented in the
stochTaylorCubPred function in version 4.0 of the TCL
[18].
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APPENDIX A
RANDOM QUANTITIES AND MOMENTS

The integral over the Wiener process from t to T is a
multivariate Gaussian random variable:

w ,
∫ T

t

dβ (70)

such that

E {w} =0 (71)
E {ww′} =T I. (72)

Consequently, when scalar, one can use the following moments
for Gaussian random variables:

E
{
w2
}

=T (73)

E
{
w3
}

=0 (74)

E
{
w4
}

=3T 2 (75)

E
{
w5
}

=0 (76)

E
{
w6
}

=15T 3. (77)

A number of the expansions use a second Gaussian random-
variable z that is correlated with w such that:

E {z} = 0 (78)

E {zz′} =
1

3
T 3I (79)

E {wz′} =
1

2
T 2I. (80)

In the scalar case, the following expected values are also
needed:

E
{
w2z

}
=0 (81)

E
{
w3z

}
=

3

2
T 3. (82)

Additionally, multiple Itô integrals of the noise process
appear in many of the expansions. In the expansions chosen for
this paper, only Itô integrals with one or two subscripts appear.
However, when computing Σxt

in subsequent sections, values
with up to four subscripts appear. The multiple Itô integrals
arising in this paper are:

Ij =

∫ T

t

dβs,j = wj (83)

I0,0 =

∫ T

t

∫ s2

t

ds1 ds2 =
1

2
T 2 (84)

I0,j =

∫ T

t

∫ s2

t

ds1 dβs2,j (85)

Ij,0 =

∫ T

t

∫ s2

t

dβs1,j ds2 (86)

Ij1,j2 =

∫ T

t

∫ s2

t

dβs1,j1 dβs2,j2 (87)

Ij1,j2,j3 =

∫ T

t

∫ s3

t

∫ s2

t

dβs1,j1 dβs2,j2 dβs3,j3 (88)

Ij1,j2,j3,j4 =

∫ T

t

∫ s4

t

∫ s3

t

∫ s2

t

dβs1,j1 dβs2,j2 dβs3,j3 dβs4,j4

(89)

and are defined in [9, Ch. 5.2]. For the purpose of this paper,
there is no need to evaluate these stochastic integrals. Rather,
only various expected values involving them are needed. First,
due to Lemma 5.7.1 of [9, Ch. 5.7], the expected values of all
of those multiple Itô integrals are zero. Also, using Lemma
5.7.2 of [9, Ch. 5.7], we know that

E {Ij1,j2Ij3,j4} =

{
0 if j1 6= j3 or j2 6= j4

1

2
T 2 otherwise.

(90)

Using Eq. 2.16 in [9, Ch. 5.2]

wkIj1,j2 =Ik,j1,j2 + Ij1,k,j2 + Ij1,j2,k + δ{j1 − k}I0,j2
+ δ{j2 − k}Ij1,0. (91)

Consequently,
E {wkIj1,j2} = 0. (92)

Similarly, Eq. 2.16 in [9, Ch. 5.2]

wkI0,j =Ik,0,j + I0,k,j + I0,j,k + δ{k − j}I0,0 (93)
wkIj,0 =Ik,j,0 + Ij,k,0 + Ij,0,k + δ{k − j}I0,0 (94)

where δ indicates the Dirac delta function. Consequently,

E {wkIj,0} = E {wkI0,j} = δ{k − j}1

2
T 2. (95)

Using Lemma 5.7.2 of [9, Ch. 5.7] one can also determine
the cross terms:

E {I0,j1I0,j2} = E {Ij1,0Ij2,0} =

{
0 if j1 6= j2

1

3
T 3 otherwise

(96)

E {Ij1,0I0,j2} = E {I0,j1Ij2,0} =

{
0 if j1 6= j2

1

6
T 3 otherwise.

(97)
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Another expected value that will arise more than once is:

1

4
E {(wj1wj2 − δ{j1 − j2}T ) (wj3wj4 − δ{j3 − j4}T )}

=
1

4
E
{
wj1wj2wj3wj4 + δ {j1 − j2} δ {j3 − j4}T 2

}
+

1

4
E {−δ {j3 − j4}Twj1wj2 − δ {j1 − j2}Twj3wj4}

(98)

=

{
0 if j1 6= j3 or j2 6= j4

1

2
T 2 otherwise.

(99)

The second condition in (99) is a simplification of E
{
w4
j

}
+

T 2 − 2T E
{
w2
j

}
.

Finally, a random-matrix V that is independent of all of the
aforementioned random variables arises in a simplified weak
scheme. This symmetric matrix has a deterministic diagonal
and is defined with elements such that:

Vj2,j1 =


−T if j1 = j2

Vj2,j1 if j1 < j2

±T if j1 > j2; the signs are equiprobable.
(100)

The following expectations involving the elements of this
random matrix will arise:

E {wj1 (wj2wj3 + Vj2,j3)} =0 (101)

and

E {(wj1wj2 + Vj1,j2) (wj3wj4 + Vj3,j4)} ={
0 if j1 6= j3 or j2 6= j4

2T 2 otherwise.
(102)

APPENDIX B
STRONG ITÔ-TAYLOR SCHEMES

A. Order 0.5
1) Euler-Maruyama Method: The expansion from Eq. 2.1

in [9, Ch. 10.2] is:

xt+T = xt + aT + Bw. (103)

The mean and covariance matrix conditioned on xt in (16)
and (17) come directly from the definitions of the expected
value and covariance, and from the moments (71) and (72).

B. Strong Order 1.0
1) The Milstein Scheme for Scalar Noise: The expansion

from Eq. 3.2 in [9, Ch. 10.3] is:

xt+T = xt + aT + Bw+
1

2

(
dx∑
i=1

bi
∂B

∂xi

)(
w2 − T

)
. (104)

Using (71) and (72), one obtains the expected value in (18).
For the covariance matrix, define

C1 ,B (105)

C2 ,
1

2

(
dx∑
i=1

bi
∂B

∂xi

)
(106)

C3 ,−C2T. (107)

The covariance matrix is

Σxt
= E

{(
C1w + C2w

2 + C3

) (
C1w + C2w

2 + C3

)′}
(108)

=C1C
′
1 E
{
w2
}

+ C2C
′
2 E
{
w4
}

+ C3C
′
3

+ (C1C
′
2 + C2C

′
1) E

{
w3
}

+ C1C
′
3 E {w}

+ C3C
′
1 E {w}+ C2C

′
3 E
{
w2
}

+ C3C
′
2 E
{
w2
}
.

(109)

Using (71), (73), (74), and (75), one obtains the expression
for the covariance matrix in (19) with D given in (20).

2) The Milstein Scheme for General Noise: The expansion
from Eq. 3.3 in [9, Ch. 10.3] has its kth elements as

xt+T,k = xt+akT +

dw∑
j=1

Bk,jwj +

dw∑
j1=1

dw∑
j2=1

(
Lj1Bk,j2

)
Ij1,j2 .

(110)
Define a matrix D with elements as in (22), and define a vector
i with elements such that

ij1+(j2−1)dw , Ij1,j2 . (111)

Equation (110) can be written in vector form as:

xt+T = xt + aT + Bw + Di. (112)

As noted in Appendix A, E {Ij1,j2} = 0 ∀j1, j2 ≥ 1.
Consequently, one obtains the expected value in (18).

The covariance matrix is

Σxt
= E

{
(Bw + Di) (Bw + Di)

′} (113)
=B E {ww′}B′ + D E {ii′}D′ + B E {wi′}D′

+ D E {iw′}B′. (114)

Using the expected value in (90), we know that

E {ii′} =
1

2
T 2I. (115)

Using (92), we know that

E {wi′} = 0. (116)

Finally with (72), the covariance matrix simplifies to the
formulation in (19) with D given by (22).

3) The Milstein Scheme for Commutative Noise: The ex-
pansion from Eq. 3.16 in [9, Ch. 10.3], modified to be for Itô
calculus rather than Stratonovich calculus, is:

xt+T,k = xt + akT +

dw∑
j=1

Bk,jwj

+
1

2

dw∑
j1=1

dw∑
j2=1

(
Lj1Bk,j2

)
(wj1wj2 − δ{j1 − j2}T ) . (117)

Define a matrix D with elements as in (22), and define a vector
i with elements such that

ij1+(j2−1)m ,
1

2
(wj1wj2 − δ{j1 − j2}T ) . (118)

Equation (117) can be written in vector form as:

xt+T = xt + aT + Bw + Di. (119)
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Using (72), we know that

E {i} = 0. (120)

Thus, the expected value is given by (18).
Prior to simplification, the covariance matrix has the same

form as (114). However, the expected values involving i have
to be determined. These are given by (99). All of the elements
in wi′ have odd powers of the elements of w. Consequently,
the expected value is zero. Thus, the covariance matrix is again
(19) with the matrix D given by (22).

4) The Milstein Scheme for Diagonal Noise: The expansion
from Eq. 3.12 in [9, Ch. 10.3] has its kth element given by

xt+T,k = xt + akT +Bk,kwk +
1

2
Bk,k

∂Bk,k
∂xk

(
w2
k − T

)
.

(121)
Define the diagonal matrix D with the kth element given by
(23), and define a vector i such that the kth element is

ik =
1

2

(
w2
k − T

)
. (122)

Equation (121) can now be written in vector form as

xt+T = xt + aT + Bw + Di. (123)

The expected value is given by (18).
Before simplification, the covariance matrix has the same

form as in (114). However, the expected values involving i
have to be determined. The elements of E {ii′} have the form

E
{
ij1i
′
j2

}
=

1

4
E
{(
w2
j1 − T

) (
w2
j2 − T

)}
(124)

=
1

4

(
T 2 − T E

{
w2
j1

}
− T E

{
w2
j2

})
+

1

4
E
{
w2
j1w

2
j2

}
(125)

=
1

4

(
T 2 − 2T 2 + E

{
w2
j1w

2
j2

})
(126)

=
1

4

(
E
{
w2
j1w

2
j2

}
− T 2

)
(127)

=

{
0 if j1 6= j2

1

2
T 2 otherwise

(128)

where the second condition in (128) comes using (75).
The cross terms iw′ have an odd number of products of

elements of w and are thus zero. Consequently, the covariance
matrix simplifies to (19) with D given by (23).

C. Strong Order 1.5

1) The Order-1.5 Strong Taylor Scheme for Additive Noise:
The expansion in Eq. 4.10 in [9, Ch. 10.4] is

xt+T =xt + aT +
1

2
T 2 (L0a) + Bw + (La) z

+
∂B

∂t
(wT − z) . (129)

Define

c0 ,xt + aT +
1

2
T 2 (L0a) (130)

and C1 and C2 as given by (26) and (27). Equation (129) can
thus be written

xt+T = c0 + C1w + C2z. (131)

The expected value, conditioned on xt, is then given by (24).
The covariance matrix is:

Σxt
= E

{
(C1w + C2z) (C1w + C2z)

′} (132)
=C1 E {ww′}C′1 + C2 E {zz′}C′2

+ C1 E {wz′}C′2 + C2 E {zw′}C′1 (133)

where a final simplification using (72), (80), and (79) leads to
(25).

2) The Order-1.5 Strong Taylor Scheme for Autonomous
Scalar Problems: The expansion in Eq. 4.1 in [9, Ch. 10.4]
is of the form

xt+T = c0 + c1w + c2(w2 − T ) + c3w
3 + c4z (134)

where
c0 = xt + aT +

1

2

(
aa′ +

1

2
b2a′′

)
T 2 (135)

and c1, c2, c3, and c4 are given by (30), (31), (32), and (33).
With this format, the mean is (28).

The variance is

Σxt = E
{(
c1w + c2(w2 − T ) + c3w

3 + c4z
)2}

. (136)

To evaluate the variance, use (73), (74), (75), (76), (77), (79),
(80), (81), and (82). After substitution, one gets the expression
of (29).

APPENDIX C
WEAK ITÔ-TAYLOR SCHEMES

A. Weak Order 2.0

1) The Order-2.0 Weak Itô-Taylor Scheme for Scalar Prob-
lems: There are two such order-2.0 expansions: a non-
simplified and a simplified expansion. We consider the non-
simplified expansion first. The non-simplified expansion in Eq.
2.1 in [9, Ch. 14.2] is

xt+T =xt + aT +Bw +
1

2
b
∂b

∂x

(
w2 − T

)
+
∂a

∂x
bz +

1

2

(
a
∂a

∂x
+

1

2

∂2a

∂x2
b2
)
T 2

+

(
a
∂b

∂x
+

1

2

∂2b

∂x2
b2
)

(wT − z) . (137)

The expected value is thus given by (34).
The covariance matrix is:

Σ = E

{(
1

2
b
∂b

∂x

(
w2 − T

)
+
∂a

∂x
bz

+

(
a
∂b

∂x
+

1

2

∂2b

∂x2
b2
)

(wT − z)
)2
}

(138)

= E
{(
c0 + c1w + c2w

2 + c3z
)2}

(139)

=c20 + 2c0c1 E {w}+ (c21 + 2c0c2) E
{
w2
}

+ 2c2c3 E
{
w2z

}
+ 2c1c2 E

{
w3
}

+ c22 E
{
w4
}
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+ 2c1c3 E {wz}+ 2c0c3 E {z}+ c23 E
{
z2
}

(140)

with c0, c1, c2, and c3 given by (36), (37), (38), (39). The
expected value terms are given by (71), (73), (74), (75), (78),
(80), (81), and (79). After substitution, one gets (34).

The simplified expansion in Eq. 2.2 in [9, Ch. 14.2] is:

xt+T =xt + aT +Bw +
1

2
b
∂b

∂x

(
w2 − T

)
+

1

2

(
∂a

∂x
b+ a

∂b

∂x
+

1

2

∂2b

∂x2
b2
)
wT

+
1

2

(
a
∂a

∂x
+

1

2

∂2a

∂x2
b2
)
T 2. (141)

The mean is thus given by (34) again.
The variance is

Σxt
= E

{(
c0 + c1w + c2w

2
)2}

(142)

=c20 + 2c0c1 E {w}+ (c12 + 2c0c2) E
{
w2
}

+ 2c1c2 E
{
w3
}

+ c22 E
{
w4
}

(143)

where c0, c1, and c2 are given by (41), (42), and (43).
Consequently, using (71), (73), (74), and (75), one gets the
solution in (40).

2) The Order-2.0 Weak Taylor Scheme for General Noise:
There are two such order-2.0 expansions: a non-simplified
and a simplified expansion. We consider the non-simplified
expansion first. The unsimplified expansion in Eq. 2.6 in [9,
Ch. 14.2] is:

xt+T =xt + aT +
1

2

(
L0a

)
T 2

+

dw∑
j=1

(
bjwj +

(
L0bj

)
I0,j +

(
Lja

)
Ij,0
)

+

dw∑
j1=1

dw∑
j2=1

(Lj1bj2) Ij1,j2 . (144)

This can be rewritten as

xt+T =xt + aT +
1

2

(
L0a

)
T 2 + Bw + C(1)i(1)

+ C(2)i(2) + C(3)i(3) (145)

where C(1), C(2), and C(3) are given by (46), (47), and (48)
and

i
(1)
j ,I0,j (146)

i
(2)
j ,Ij,0 (147)

i
(3)
j1+(j2−1)m ,Ij1,j2 . (148)

The mean is thus (44).
The covariance matrix follows as

Σxt
= E

{(
Bw + C(1)i(1) + C(2)i(2) + C(3)i(3)

)
·
(
Bw + C(1)i(1) + C(2)i(2) + C(3)i(3)

)′}
. (149)

Using (95), one can evaluate the following expectations:

E

{
w
(
i(1)
)′}

= E

{
w
(
i(2)
)′}

= E
{

i(1)w′
}

= E
{

i(2)w′
}

=
T 2

2
I. (150)

Using (92), E
{

w
(
i(3)
)′}

= 0 and E
{
i(3)w′

}
= 0. Also,

the expected values of i(1)i(3) and i(2)i(3) are zero, because
the expected value of all of the multiple Itô integrals, except
I0,0 in Appendix A are zero. Consequently,

Σxt
=B E {ww′}B′ + C(1) E

{
i(1)
(
i(1)
)′}(

C(1)
)′

+ C(2) E

{
i(2)
(
i(2)
)′}(

C(2)
)′

+ C(3) E

{
i(3)
(
i(3)
)′}(

C(3)
)′

+ C(1) E

{
i(1)
(
i(2)
)′}(

C(2)
)′

+ C(2) E

{
i(2)
(
i(1)
)′}(

C(1)
)′

+ B E

{
w
(
i(1)
)′}(

C(1)
)′

+ B E

{
w
(
i(2)
)′}(

C(2)
)′

+ C(1) E
{

i(1)w′
}

B′ + C(2) E
{

i(2)w′
}

B′. (151)

For the expected value of the outer product of i(3), we use
the result of (99) to get

E

{
i(3)
(
i(3)
)′}

=
1

2
T 2I. (152)

For the outer products involving i(1) and i(2), we use (96)
and (97) to get the expression for the covariance matrix in
(45).

The simplified expansion in Eq. 2.7 in [9, Ch. 14.2] is:

xt+T =xt+aT+
1

2

(
L0a

)
T 2+

(
B+

T

2

((
L0B

)
+(La)

))
w

+
1

2

dw∑
j1=1

dw∑
j2=1

(
Lj1bj2

)
(wj1wj2 + Vj1,j2) . (153)

The mean is thus (44).
To determine the covariance matrix, we rewrite the equation

in the form:

xt+T =xt + aT +
1

2

(
L0a

)
T 2 + C(1)w + C(2)i (154)

where
ij1+(j2−1)m = wj1wj2 + Vj1,j2 (155)

and C(1) and C(2) are given by (50), and (51).
The covariance matrix has the form:

Σxt
= E

{(
C(1)w + C(2)i

)(
C(1)w + C(2)i

)′}
(156)

=C(1) E {ww′}
(
C(1)

)′
+ C(2) E {ii′}

(
C(2)

)′
+ C(1) E {wi′}

(
C(2)

)′
+ C(2) E {iw′}

(
C(1)

)′
.

(157)
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To simplify this, we use (101) and (102) to get

E {ii′} = 2T 2I. (158)

So, the covariance matrix simplifies to (49).
3) The Order-2.0 Weak Taylor Scheme for Scalar Noise:

The expansion in Eq. 2.5 in [9, Ch. 14.2] is:

xt+T = xt + aT + Bw +
1

2
(LB) (w2 − T ) +

1

2

(
L0a

)
T 2

+
(
L0B

)
(wT − z) + (La) z. (159)

The mean is consequently (52).
The covariance matrix is

Σxt
=E

{(
Bw+

1

2
(LB) (w2−T )+

(
L0B

)
(wT−z)+(La) z

)
·
(
Bw+

1

2
(LB) (w2−T )+

(
L0B

)
(wT−z)+(La) z

)′}
(160)

= E
{(

c0+c1w+c2w
2+c3z

) (
c0+c1w+c2w

2+c3z
)′}

(161)

where c0, c1, c2, and c3 are given by (54), (55), (56), and
(57).

Omitting all terms containing a coefficient of just w, w3 or
z, whereby the expected value is zero, the covariance matrix
expands to

Σxt
=c0c

′
0 + c1c

′
1 E
{
w2
}

+ c2c
′
2 E
{
w4
}

+ c3c
′
3

{
z2
}

+ (c0c
′
2 + c2c

′
0) E

{
w2
}

+ (c1c
′
3 + c3c

′
1) E {wz}

+ (c2c
′
3 + c3c

′
2) E

{
w2z

}
. (162)

Substituting (73), (75), (79), (80), and (81), this simplifies to
(53).

APPENDIX D
FIFTH-ORDER CUBATURE POINTS

Fifth-Order Cubature Points and Weights

Weight (ωi) Point (ξi)
4

(d+2)2 [±a]
(d−2)2

2d(d+2)2
(±b,±b, . . . ,±b)

The cubature points and weight of [14, pg. 317, No. 5-3] are
given as shown above, where

a =

√
d+ 2

2
b =

√
d+ 2

d− 2
, (163)

and d is the dimensionality of the points generated. The ±
indicates that all possible combinations of negative and pos-
itive elements should be used. The bracket notation indicates
that all possible vectors with that nonzero element should be
generated. There are 2d points of the first type and 2d of the
second type. These points can be used for integrals involving
an arbitrary Gaussian weighting with d > 2.
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target tracking using continuous wave bistatic sonar with propagation
delay,” Journal of Advances in Information Fusion, vol. 13, no. 1, pp.
36–49, Jun. 2018.

[18] The tracker component library. [Online]. Available: https://github.com/
USNavalResearchLaboratory/TrackerComponentLibrary

https://github.com/USNavalResearchLaboratory/TrackerComponentLibrary
https://github.com/USNavalResearchLaboratory/TrackerComponentLibrary

	Introduction
	Notation and Summary of Results
	Strong Expansions
	Weak Expansions

	Simulation Example
	Conclusions
	Appendix A: Random Quantities and Moments
	Appendix B: Strong Itô-Taylor Schemes
	Order 0.5
	Euler-Maruyama Method

	Strong Order 1.0
	The Milstein Scheme for Scalar Noise
	The Milstein Scheme for General Noise
	The Milstein Scheme for Commutative Noise
	The Milstein Scheme for Diagonal Noise

	Strong Order 1.5
	The Order-1.5 Strong Taylor Scheme for Additive Noise
	The Order-1.5 Strong Taylor Scheme for Autonomous Scalar Problems


	Appendix C: Weak Itô-Taylor Schemes
	Weak Order 2.0
	The Order-2.0 Weak Itô-Taylor Scheme for Scalar Problems
	The Order-2.0 Weak Taylor Scheme for General Noise
	The Order-2.0 Weak Taylor Scheme for Scalar Noise


	Appendix D: Fifth-Order Cubature Points
	References

