
 
 
 
 

 ARL-TR-8768 ● JULY 2020 
  
 
 
 

 
 
 
Integrated Sensor Architecture (ISA) 
Database/Media Storage Tool Software 
Package Documentation Updated 
 
by Jesse Kovach and Laurel Sadler 
 
 
 
 
 
 
 
 
 
 
 
Approved for public release; distribution is unlimited. 



 

 

NOTICES 
 

Disclaimers 
 

The findings in this report are not to be construed as an official Department of the 
Army position unless so designated by other authorized documents. 
 
Citation of manufacturer’s or trade names does not constitute an official 
endorsement or approval of the use thereof. 
 
Destroy this report when it is no longer needed. Do not return it to the originator. 



 

 

 
 
 

 ARL-TR-8768 ● JULY 2020 

 

 
 
Integrated Sensor Architecture (ISA) 
Database/Media Storage Tool Software Package 
Documentation Updated 
 
by Jesse Kovach and Laurel Sadler 
Sensors and Electron Devices Directorate, CCDC Army Research Laboratory 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Approved for public release; distribution is unlimited.



 

ii 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the 
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. 
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 

July 2020 
2. REPORT TYPE 

Technical Report 
3. DATES COVERED (From - To) 

1 January–31 July 2019 
4. TITLE AND SUBTITLE 

Integrated Sensor Architecture (ISA) Database/Media Storage Tool Software 
Package Documentation Updated 

5a. CONTRACT NUMBER 

 
5b. GRANT NUMBER 

 
5c. PROGRAM ELEMENT NUMBER 

 
6. AUTHOR(S) 

Jesse Kovach and Laurel Sadler 
5d. PROJECT NUMBER 

 
5e. TASK NUMBER 

 
5f. WORK UNIT NUMBER 

 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

CCDC Army Research Laboratory 
ATTN: FCDD-RLS-SI 
2800 Powder Mill Road 
Adelphi, MD 20783-1138 

8. PERFORMING ORGANIZATION REPORT NUMBER 

 
ARL-TR-8768 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

 
10. SPONSOR/MONITOR'S ACRONYM(S) 

 
11. SPONSOR/MONITOR'S REPORT NUMBER(S) 

 
12. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

13. SUPPLEMENTARY NOTES 
ORCID ID: Laurel C Sadler, 0000-0001-8697-2246 

14. ABSTRACT 

The Database/Media Storage (DMS) tool is a configurable software package for retrieving and storing media and message 
data on an Integrated Sensor Architecture (ISA) network. The DMS tool can be configured to store selected message contents 
to a fully queryable PostgreSQL database and store media data linked from selected ISA messages to disk. This report 
describes the functions of the DMS tool and provides installation instructions and configuration examples for the tool. 

15. SUBJECT TERMS 

Integrated Sensor Architecture, sensor networks, unattended ground sensors, data analytics, PostgreSQL 

16. SECURITY CLASSIFICATION OF: 
17. LIMITATION 
       OF  
       ABSTRACT 

UU 

18. NUMBER 
       OF  
       PAGES 

34 

19a. NAME OF RESPONSIBLE PERSON 

Jesse Kovach 
a. REPORT 

Unclassified 
b. ABSTRACT 

Unclassified 
 

c. THIS PAGE 

Unclassified 
 

19b. TELEPHONE NUMBER (Include area code) 

(301) 394-3988 
 Standard Form 298 (Rev. 8/98) 

 Prescribed by ANSI Std. Z39.18 



 

iii 

Contents 

Summary v 

1. Introduction 1 

1.1 Integrated Sensor Architecture (ISA) Overview 1 

1.2 Database/Media Storage (DMS) Tool Overview 1 

1.3 DMS Tool Use Cases 2 

1.4 Usage within the U.S. Army Combat Capabilities Development Center 
(CCDC) Army Research Laboratory (ARL) Networked Sensor Research 
Test Bed 3 

2. DMS Tool Installation Instructions 4 

2.1 Assumptions 4 

2.2 Prerequisites/System Requirements 4 

2.3 Installation Procedure 4 

2.4 Starting the Software 5 

3. DMS Tool Configuration Instructions 6 

4. Example Usage Scenarios 9 

4.1 Store Media Only 9 

4.2 Store Media and Send Update Message with New URL 10 

4.3 Store Media, Send Update Message with New URL, and Delete Media 
from Source 10 

4.4 Store Media and Add Messages Received to the Database 11 

4.5 Store Media, Add Message to Database, and Send Update Message 
with New URL 12 

4.6 Store Media, Add Message to Database, Send Update Message with 
New URL, and Delete Media from Source 13 

4.7 Write ISA Messages to a File 13 

5. Message Database Structure 15 

5.1 Administrative Table 16 



 

iv 

5.2 Config Table 17 

5.3 Configconverged Table 18 

5.4 Event Table 18 

5.5 Status Table 21 

5.6 Sample Queries 22 

6. References 24 

List of Symbols, Abbreviations, and Acronyms 25 

Distribution List 26 
 



 

v 

Summary 

The Database/Media Storage (DMS) tool is a configurable software package for 
retrieving and storing media and message data on an Integrated Sensor Architecture 
(ISA) network. The DMS tool can be configured to store selected message contents 
to a fully queryable PostgreSQL database and store media data linked from selected 
ISA messages to disk. This report describes the functions of the DMS tool and 
provides installation instructions and configuration examples for the tool.  



 

1 

1. Introduction 

1.1 Integrated Sensor Architecture (ISA) Overview 

According to the US Army Night Vision and Electronic Sensors Directorate 
(NVESD), US Army Combat Capabilities Development Command (CCDC) 
Command, Control, Computers, Communications, Cyber, Intelligence, 
Surveillance and Reconnaissance Center (C5ISR),1  

[ISA] is a U.S. Army Service-Oriented Architecture (SOA) developed by NVESD. 
ISA provides capabilities that enable Soldiers to exchange information between 
their own sensors and those on other platforms in a fully dynamic and shared 
environment. ISA enables Army sensors and systems to readily integrate into an 
existing network and dynamically share information and capabilities to improve 
situational awareness in a battlefield environment.  

According to Poltronieri et al.,2 

ISA identifies common standards and protocols, which support a net-centric 
system-of-systems integration. Utilizing a common language, these systems are 
able to connect, publish their needs and capabilities, and interact dynamically. ISA 
provides an extensible data model with defined capabilities, and provides a 
scalable approach across multi-echelon deployments, which when coupled with 
dynamic discovery capabilities, cybersecurity, and sensor management, provides 
a system which can adjust and adapt to dynamic environments. 

1.2 Database/Media Storage (DMS) Tool Overview 

The DMS tool has two primary functions: 1) storing selected ISA message contents 
in a queryable PostgreSQL3 database and 2) storing media data linked from selected 
ISA messages to a file system. When storing media data, the software can 
optionally serve this stored media via an embedded Web server. It can also 
optionally generate ISA update messages to inform other applications of the new 
location/Uniform Resource Locator (URL) for the media and send commands 
requesting deletion of media stored at the originating sensor. The software can be 
configured with a custom ISA subscription to only process and store specified 
messages. Additionally, the DMS tool can be used to store ISA messages to a file 
in either a human readable format or a binary format. 

The DMS tool fills a different role from the Historical Data Service provided by 
the ISA program office. The Historical Data Service archives binary ISA message 
data in the same form as originally transmitted and provides an interface for other 



 

2 

ISA components to query and retrieve the archived information. The database 
storage function of the DMS tool does not store the data in the originally received 
form, as it is intended to support advanced data-analytics applications and not 
provide archival storage of message data. The media storage functions of the DMS 
tool augment the Historical Data Service, as the Historical Data Service does not 
archive linked media from ISA messages as of this writing. The file-based message- 
storage functions of the DMS tool are intended to facilitate development and testing 
of ISA components and do not provide a query/retrieval interface. 

1.3 DMS Tool Use Cases 

The DMS tool can be used in a number of different applications. Primary uses 
include the following: 

• Storage of media items sent via ISA. As discussed, ISA messages 
containing media do not actually contain the media data; instead, they 
contain a “Resource Descriptor” type that includes a URL pointing to data 
residing on a Web server.4 Tools that record ISA message data will store 
these URLs but will not store the media data, as they are not actually 
included in the message. The DMS tool can be configured to download and 
save the data pointed to by resource descriptor URLs in any media messages 
that it receives, making it a useful complement to message-archiving tools 
in scenarios where media data need to be stored as well. 

• “Rehosting” of media data. Since ISA media messages contain URLs, a 
Web server must be provided to serve the data. Typically, this Web server 
is hosted on the same system as the ISA component producing the media. 
In some scenarios, storing imagery on or retrieving imagery from the 
producing system may not be desirable. For example, the producing system 
may not be located in a secure area, network security policy may restrict 
Hypertext Transfer Protocol (HTTP) or Hypertext Transfer Protocol Secure 
(HTTPS) connections to the producing system, or the communications link 
to the producing system may be disadvantaged, intermittent, or limited. In 
these cases the media data must be retrieved from the producing system and 
rehosted elsewhere. The DMS tool includes an embedded Web server that 
will serve the images that it has archived and can be configured to send ISA 
message updates using the standard ISA Event Reference mechanism5 to 
inform other applications of the new URL for the archived image. 
Additionally, it can be configured to send a custom Delete Resource 
command to the image producer after the image has been successfully 



 

3 

archived. Data producer components can implement this command to delete 
their local copy of the data after it has been successfully archived. 

• Storage of ISA messages in a queryable database. This is useful for sensor 
system testing, sensor performance analysis, data fusion applications, and 
many other scenarios where the full power of a Structured Query Language 
(SQL) database is needed for processing and analysis of sensor data.  

• Storage of ISA messages in files on disk. This is useful for sensor system 
testing and sensor performance analysis or when a database application is 
unavailable.  

• Storage of ISA messages in files on disk in a binary format.  This is useful 
for sensor system testing, sensor performance analysis and evaluation of 
complex sensor systems using simulated or recorded data when access to 
actual sensors is inhibited.  

1.4 Usage within the US Army Combat Capabilities 
Development Center (CCDC) Army Research Laboratory 
(ARL) Networked Sensor Research Test Bed 

The DMS tool is used to collect and store test data within the CCDC Army Research 
Laboratory Networked Sensor Research Test Bed (NSRTB). The NSRTB, an 
extension of the ARL Campus Sensor Network, is an environment designed for 
developing and testing new sensing and data/video analytics capabilities for tactical 
applications. It incorporates commercial off-the-shelf, government off-the-shelf 
(GOTS), and experimental sensor systems and software. All components of the 
NSRTB are interconnected using ISA. 

Sensors currently employed within the NSRTB include Axis Communications 
Q1615-E MkII surveillance cameras, EPC (Electronic Product Code) Gen2 RFID 
(radio frequency identification) readers from multiple vendors, TRSS (Tactical 
Remote Sensor System) seismic/acoustic sensors, and experimental sensor systems 
under development by ARL. Data management and monitoring software within the 
NSRTB includes the RaptorX mapping system, multiple GOTS video management 
systems, the ISA diagnostics package, and custom visualization applications 
developed by ARL engineers. The NSRTB is being used to support the 
development of data and video analytics systems for multiple government sponsors. 

  



 

4 

2. DMS Tool Installation Instructions 

2.1 Assumptions 

This report assumes the user has a working knowledge of basic ISA component 
configuration and ISA certificate use. See the ISA software development kit 
documentation for more information regarding these topics. 

2.2 Prerequisites/System Requirements 

The DMS tool has the following system requirements and prerequisites: 

• A Java Runtime Environment (JRE) for Java 8 must be installed. The 
software has been built and tested with OpenJDK 8. It should also function 
with Oracle JRE 8, but this configuration has not been tested by the authors. 
At the time of this writing, use of Oracle JRE 8 in a production environment 
requires a paid license. 

• PostgreSQL 11 must be installed if the database functions are used. 
PostgreSQL is not needed for the media storage function. 

2.3 Installation Procedure 

1) Obtain an ISA certificate and private key for this application. The certificate 
needs to be provided as a .jks file. Generating/obtaining certificates is 
outside the scope of this document; contact your local ISA system 
administrator for assistance. 

2) Extract the distribution zip file to a suitable location (e.g., 
c:\isa\database-archiver). The path to the installation folder cannot 
contain spaces. 

3) Copy the certificate file from Step 1 into the folder you just created. 

4) Change into the folder created in Step 2. Copy the 
connection_sample.properties file to connection.properties. 

5) Open connection.properties in a text editor. Change the settings in 
the file as needed for your application (see Section 3). Save the file and exit 
the editor. 

On a Windows platform, the Database Archiver tool can optionally be configured 
to run as a Windows service. To do so, perform the following steps: 

1) Perform all steps of the installation procedure. 



 

5 

2) Open the install_service.bat file in a text editor. Locate the line beginning  
 
  set LOCAL_JAVA_HOME= 

3) Edit this line to specify the path to your JRE installation. If you have a full 
Java Development Kit (JDK) installation, make sure you specify the path 
to the JRE contained within the JDK and not to the JDK itself. For 
example, if you have OpenJDK installed in c:\openjdk\jdk8u172-
b11, the setting should read 

  set LOCAL_JAVA_HOME=C:\openjdk\jdk8u172-b11\jre\ 

Alternatively, if the JAVA_HOME environment variable is properly set on 
your system, you can skip this step and the script will use the value of 
JAVA_HOME. 

4) Ensure that the NT AUTHORITY\NETWORK SERVICE account has “Full 
Control” permissions to the installation folder. The simplest way to do this 
is to open an administrator command prompt and run the following 
command: 
 
icacls "<path-to-installation-folder>" /grant "NT 
AUTHORITY\NETWORK SERVICE":(OI)(CI)F 

5) Install the service by opening an administrator command prompt and 
running install_service.bat. The script will attempt to remove any 
previously installed versions of the service prior to installing. If the service 
was not previously installed, you will see errors related to this. These errors 
can be safely ignored. 

6) Verify that the service is running by opening the Windows service control 
panel and verifying that the service is shown as “Running”. The name of 
the service will be the name of the installation folder. 

If the service does not start after installation, check the logs in the “ServiceLogs” 
folder for error messages.  

The service may be uninstalled by opening an administrator command prompt and 
running install_service.bat /u. 

2.4 Starting the Software 

On all platforms, the DMS tool can be started using the following command: 



 

6 

  java -jar mil.arl.apps.isaToSensorDB.jar 

Alternatively, on Windows the software can be started using the included run.bat 
script. 

3. DMS Tool Configuration Instructions 

This section discusses each of the configuration settings in the 
config.properties file, including how they are set and what they mean. This 
will allow the user to configure the software to accomplish exactly what the user 
requires and no more. 

isaControllerHost: IP address or hostname of the ISA controller. 

isaControllerPort: Port of the ISA controller. 

isaControllerUCI: Universal Component Identifier (UCI) of the ISA 
controller. If this does not match the UCI configured on the controller, the software 
will not connect. 

myUCI: UCI to use for this instance of the DMS tool. It must match the name on 
the certificate being used. 

isaKeystorePath: Path/file name of the keystore (.jks) file containing the ISA 
certificates to use. The names embedded in the certificates contained within the file 
must match the UCI being used. Generally, the name of this file will match the UCI. 

isaKeystorePassword: Password for the keystore file. 

isaKeyPassword: Password for the private keys in the keystore file. This is 
usually the same as the keystore password. 

isaEncoding: ISA protocol encoding to use. This should always be set to 
ipl_3v7 unless special circumstances apply. 

isaEnableTLS: If true, the software will use transport layer security (TLS) 
authentication and encryption for the ISA connection. This should always be true 
unless special circumstances apply. 

isaSubscription: Subscription that selects the type of ISA messages that will 
be processed by the application and stored in the database (if enabled). This is in 
standard ISA Query Language (IQL) format. Currently, the same subscription is 
used for the media storage function, the database function, and the delete-from-
source function. Future versions will allow a different subscription for each. 

  



 

7 

Some example subscriptions follow: 

• To receive all admin, event, status, and config messages: 
o isaSubscription=select admin, event, status, config 

• To receive config and event messages only (no admin or status): 
o isaSubscription=select config, event 

 
• To receive all config messages, and events containing detections: 

o isaSubscription=select config, event matching  
    

• To receive only events containing detections: 
o isaSubscription=

 

For more information on IQL syntax, see the IQL documentation.6 

mediaLocation: Location of the folder in which to save archived media files. The 
tool will create additional folders under this folder to store media from different 
sources. 

enableDatabase: If true, the database function will be enabled and received 
messages will be stored to a PostgreSQL database in a queryable manner. If false, 
the database function will not be used. 

enableStoreMedia: If true, the media retrieval and storage function will be 
enabled and media items referenced from received messages will be stored in the 
folder specified in mediaLocation. 

enableWriteMessageToFile: If this parameter is true, the human readable text 
format of the ISA messages received by the component will be written to a file as 
defined in txtFileLocation. Other capabilities of the component may also be 
performed if they have been enabled. 

enableWriteBinaryMessageToFile: If this parameter is true, the binary 
format of the ISA messages received by the component will be written to a file as 
defined in txtFileLocation.   

enableWriteMessageToFileOnly: If this parameter is true, the component will 
only write the ISA messages received by the component to a file as defined in 
txtFileLocation.  No other capabilities of the component will be performed. 

txtFileLocation: This parameter defines the location and name of the output 
text and binary files when writing messages to a file is enabled.   



 

8 

enableJettyServer: If true, start an embedded Jetty Web server to serve the 
archived media files.  

The following options only apply if useJettyServer is true: 

httphostOverride: Listen IP address for the embedded Jetty Web 
server. Set this to an externally accessible IP of the machine. This IP address 
will also be used as the host subcomponent of any media URLs generated 
by this system. (The correct IP to use cannot be reliably autodetected, so it 
must be set by hand.) 

httpPort: Port used for the Jetty Web server. If this parameter is set to  
–1, HTTP will be disabled. 

httpsPort: Port used for the Jetty Web server secure. If this parameter is 
set to –1, HTTPS will be disabled.  

useHttpsAsPrimary: This parameter controls whether the URLs sent by 
this component over ISA will be HTTP URLs or HTTPS URLs. If this 
parameter is set to false, the HTTP URL will be sent; otherwise, if it is set 
to true, the HTTPS URL will be sent. 

httpsKeystorePath: Sets the keystore path containing the HTTPS 
certificates.  

httpsKeyPassword: Sets the key password for the HTTPS certificates. If 
this is left blank, the ISA certificate for Key will be used.  

httpsKeyStorePassword: Sets the keystore password for the HTTPS 
certificates. If this is left blank, the ISA certificate for Key Store will be 
used. 

disableHttpsCertificateValidation: Setting this parameter to true 
disables the HTTPS certificate validation when downloading media. This is 
necessary if the media producers do not have certificates that were issued 
by a JRE-trusted certificate authority. 

sendnewURL: If true, send an updated ISA message of type “OTHER” 
containing the URLs to the new locations of the media files.  

sendDeleteMediaAtSiteCommand: If true, send a custom ISA “Delete 
Resource” command back to the device from which the media was received 
to delete the media at the originating site. This is for specific applications. 
Most components do not implement this command. 

The following options only apply if enableDatabase is true: 



 

9 

databaseServer: Name of the PostgreSQL server to use (usually 
localhost). 

databaseName: Name of the PostgreSQL database to use. This database 
will be created if it does not already exist. 

databaseUser: PostgreSQL database username. This should usually be 
“postgres” (the default database-administrative user). Using a 
nonadministrative user is possible but beyond the scope of this report. 

databasePassword: Password for the PostgreSQL user. Set to match 
your PostgreSQL configuration. 

databaseLocale: Locale setting to use when creating new database. The 
allowed values for this setting will vary with your platform and PostgreSQL 
configuration, and incorrect values will cause database creation to fail. For 
Windows installations of PostgreSQL with default settings, use 

English_United States.1252  

For Ubuntu packaged versions of PostgreSQL with default settings, use 

en_US.UTF-8 

4. Example Usage Scenarios 

This section provides example configurations for different DMS tool use scenarios. 

4.1 Store Media Only 

This configuration does not connect to a database. It subscribes to the ISA 
controller for event messages of type “Detection” with observables containing 
media. The media will be stored on the local file system. 

This is accomplished by setting 

isaSubscription=select event matching exists( 
  value: /get_event()/observables[/name=="Media"] ) 

and  

enableStoreMedia=true 

and 

enableDatabase=false  

and 



 

10 

sendnewURL=false   

and 

enableJettyServer=false 

and 

sendDeleteMediaAtSiteCommand=false 

4.2 Store Media and Send Update Message with New URL 

This configuration does not connect to a database. It subscribes to the ISA 
controller for config messages and event messages of type “Detection” with 
observables containing media. The media will be stored on the local file system and 
made available through the embedded Web server. The tool will send ISA update 
messages with the new URLs for the media.  

This is accomplished by setting 

isaSubscription=select event matching exists( 
  value: /get_event()/observables[/name=="Media"]) 
 
and  

enableStoreMedia=true 

and 

enableDatabase=false  

and 

sendnewURL=true 

and 

enableJettyServer=true 

and 

sendDeleteMediaAtSiteCommand=false 

4.3 Store Media, Send Update Message with New URL, and 
Delete Media from Source 

This configuration does not connect to a database. It subscribes to the ISA 
controller for config messages and event messages of type “Detection” with 
observables containing media. The media will be stored on the local file system and 
made available through the embedded Web server. The tool will send ISA update 



 

11 

messages with the new URLs for the media and will send an ISA command to the 
originating component requesting that the media be deleted from the originator site. 

The ISA config messages are needed to send the delete command to the originating 
component, so the subscription used must include config messages in addition to 
Event messages containing media of interest. 

This is accomplished by setting 

isaSubscription=select config, event matching 
  !exists(value: /get_event()) || exists( value:  
  /get_event()/observables[/name=="Media"]) 

and  

enableStoreMedia=true 

and 

enableDatabase=false  

and 

sendnewURL=true 

and 

enableJettyServer=true 

and 

sendDeleteMediaAtSiteCommand=true 

4.4 Store Media and Add Messages Received to the Database 

In this mode the software attempts to connect to the database specified by 
databaseServer and databaseName in the configuration file. If the database 
connection fails, the software assumes the database does not exist and attempts to 
create a new database with the provided name. 

This configuration subscribes to the ISA controller for the following message types: 
admin, event, status, and config. All received messages are submitted to the 
database, and all media is retrieved and stored on the local file system. 

This is accomplished by setting 

isaSubscription=select admin, event, status, config  

and  

enableStoreMedia=true 



 

12 

and 

enableDatabase=true 

and 

sendnewURL=false 

and 

enableJettyServer=false 

and 

sendDeleteMediaAtSiteCommand=false 

4.5 Store Media, Add Message to Database, and Send Update 
Message with New URL 

In this mode the software attempts to connect to the database specified by 
databaseServer and databaseName in the configuration file. If the database 
connection fails, the software assumes the database does not exist and attempts to 
create a new database with the provided name. 

This configuration subscribes to the ISA controller for the following message types: 
admin, event, status, and config. All received messages are submitted to the 
database. All media will be stored on the local file system and made available 
through the embedded Web server. The tool will send ISA update messages with 
the new URLs for the media. 

This is accomplished by setting 

isaSubscription=select admin, event, status, config  

and  

enableStoreMedia=true 

and 

enableDatabase=true 

and 

sendnewURL=true 

and 

enableJettyServer=true 

and 

sendDeleteMediaAtSiteCommand=false 



 

13 

4.6 Store Media, Add Message to Database, Send Update 
Message with New URL, and Delete Media from Source 

In this mode the software attempts to connect to the database specified by 
databaseServer and databaseName in the configuration file. If the database 
connection fails, the software assumes the database does not exist and attempts to 
create a new database with the provided name. 

This configuration subscribes to the ISA controller for the following message types: 
admin, event, status, and config. All received messages are submitted to the 
database. All media will be stored on the local file system and made available 
through the embedded Web server. The tool will send ISA update messages with 
the new URLs for the media, and will send an ISA command to the originating 
component requesting that the media be deleted from the originator site. 

This is accomplished by setting 

isaSubscription=select admin, event, status, config  

and  

enableStoreMedia=true 

and 

enableDatabase=true 

and 

sendnewURL=true 

and 

enableJettyServer=true 

and 

sendDeleteMediaAtSiteCommand=true 

4.7 Write ISA Messages to a File 

The DMS tool can be used solely for the purpose of writing the ISA messages to a 
file by setting the enableWriteMessageToFileOnly to true in the 
configuration file. However, this capability may also be used in combination with 
any or all of the previously described capabilities (Sections 4.1–4.6) by setting 
enableWriteMessageToFileOnly to false.  



 

14 

In this mode the software attempts to write the ISA messages to a file location 
specified by txtFileLocation in the configuration file. If the designated file 
path does not exist, the software attempts to create the user-defined path. 

When enableWriteMessageToFile is true, the human readable text format of 
the ISA messages received by the component will be written to a file as defined in 
txtFileLocation.  The messages are further sorted into folders based upon their 
message type. For example, a message of type Event would be stored in a file 
located in the txtFileLocation/Event and a message of type Status would be 
stored a file located in txtFileLocation/Status.  

When enableWriteBinaryMessageToFile is true, the binary format of the 
ISA messages received by the component will be written to a file as defined in 
txtFileLocation with the subdirectory BinaryXXXXX, where XXXXX is an 
integer starting with 00000, that is incremented for each additional Binary folder 
that is created. A new folder is created after every 10,000 messages. All messages 
types are stored together in the same folder. The first 10,000 messages will be 
written to the folder txtFileLocation/Binary00000. 

The following configuration only writes ISA messages to a file. It subscribes to the 
ISA controller for the following message types: admin, event, status, and config. 
All received messages are written to both human readable files and binary files. 

This is accomplished by setting 

isaSubscription=select admin, event, status, config  

and  

enableStoreMedia=false 

and 

enableDatabase=false 

and 

sendnewURL=false 

and 

enableJettyServer=false 

and 

sendDeleteMediaAtSiteCommand=false 

and 

enableWriteMessageToFileOnly=true 



 

15 

and 

enableWriteMessagesToFile=true 

and 

enabledWriteBinaryMessagesToFile=true 

and 

txtFileLocation=C:/ISAMessages 

5. Message Database Structure 

The message database stores ISA messages and therefore directly follows the 
structure of the ISA messages with additional columns for easy/rapid queries. 

The database is divided into tables based on the individual ISA message types.  The 
database contains five tables: administration, config, configconverged, 
event, and status. Note there is a config and a configconverged table 
although a message of type configconverged does not exist. As per the 
philosophy of ISA, when a configuration message is updated, only a partial 
configuration message containing the changes is sent. This partial configuration 
message is stored in the config table exactly as received. This config message is 
then merged with the previous config message using withCcd from the standard 
ISA libraries, and the resulting full configuration is stored in the 
configconverged table. 

The ISA tables are then broken into columns based on the ISA message composite 
data type. Generally, these composite data types are converted from their native 
ISA NameValuePair representation and stored in the database in JavaScript Object 
Notation (JSON) format. However, there are additional columns in each table for 
database record keeping/maintenance (tableid, databaseguid, and 
receivertime). These allow for easy database queries on items within composite 
data types that are often queried (such as location and timestamp values) as well as 
human readable values for ease of the user. The user can use SQL to query the 
database and can also query into the JSON-formatted composite-data types using 
the PostgreSQL JSON query functions. 

The ISA message tables and columns are described in the following sections. 
Columns marked with an asterisk (*) contain data directly from the ISA message. 
The definitions for these columns are drawn from the ISA Data Model 
Specification.3 While summary definitions are included here for informative 
purposes, the definitions in the data model specification should be regarded as 



 

16 

authoritative. Columns without an asterisk (*) are locally generated by the database 
tool and are defined as specified in this document. 

Certain fields such as priority and source appear in multiple message types 
with identical names and definitions. The ISA Data Model Specification does not 
contain common definitions for these fields; rather, the fields are defined separately 
in each message where they appear. This structure is paralleled within the database 
design and this report. 

Unless otherwise noted, numeric date/time values are stored in the database as the 
number of milliseconds elapsed since midnight 1 January 1970 Coordinated 
Universal Time (UTC) (i.e., Java time). 

5.1 Administrative Table 

This table contains the administrative messages, which share messages about the 
ISA network as a whole. It is the mechanism for announcing when a device’s 
connection state changes or when anything noteworthy occurs on the network. 

1) *priority – bigint: Optional value in the ISA message. Priority of the 
given message. Zero is the highest. If not provided, the default value is 80. 

2) *stale – bigint: Optional value in the ISA message. UTC time at 
which data contained in the message should be regarded as invalid.  

3) *source – character varying: Required value in the ISA message 
containing the UCI of the message source.  

4) *identifier – bigint: Required value in the ISA message describing 
a conversation-unique identifier for the message. 

5) *code – character varying: Required value in the ISA message that 
defines what the message is about. 

6) *about – jsonb: One or more UCIs describing who the message is 
about.  

7) *extras – jsonb: Zero or more Name Value Pair. This is a container to 
be used for passing arguments or defining properties. Named value 
representing the new value for the pair.  

8) *messagetime – bigint: Message date/time from the ISA message. 

9) receivetime – bigint: Date/time at which the message was received 
by the database tool. 



 

17 

10) tableid – bigint: Auto-incrementing integer identifying the row of 
data in the table. 

11) databaseguid – character varying: Unique identifier used for 
data message identification to avoid multiple copies of data being added to 
the database. 

12) stalestring – character varying: Human readable staletime 
value. 

13) receivetimestring – character varying: Human readable 
receivetime value. 

14) messagetimestring – character varying: Human readable 
messagetime value. 

5.2 Config Table 

This table contains messages that are used by a component to describe itself to the 
other components in a deployment. The database breaks the ISA Component 
Capability Declaration (CCD) into four separate columns (properties, 
commands, observables, and customtypes) for easy queries.  

1) *priority – bigint: Optional value in the ISA message. Priority of the 
given message. Zero is the highest. If not provided, the default value is 80. 

2) *source – character varying: Required value in the ISA message 
containing the UCI of the message source. 

3) *identifier – bigint: Required value in the ISA message describing a 
conversation-unique identifier for the message. 

4) *properties – jsonb: Zero or more Property Declarations. Describes the 
components properties. Part of the CCD.  

5) *commands – jsonb: Zero or more Command Declarations. Describes the 
commands that the component handles. Part of the CCD.  

6) *observables – jsonb: Zero or more Observables Declarations. 
Describes the observables that the component publishes. Part of the CCD.  

7) *propertystates – jsonb: Zero or more Property States. The current 
usable state of the properties.  

8) *observablestates – jsonb: Zero or more Observable States. The 
current usable state of the observables.  



 

18 

9) *commandstates - jsonb: Zero or more Command States. The current 
usable state of the commands.  

10) *extras – jsonb: Zero or more Name Value Pair. Additional data that can 
be optionally attached to a config message.  

11) *customtypes – jsonb: Zero or more custom types. Describes types 
unique to the component. Part of the CCD.  

12) *messagetime – bigint: Message date/time from the ISA message. 

13) receivetime – bigint: Date/time at which the message was received by 
the database tool. 

14) tableid – bigint: Auto-incrementing integer identifying the row of data 
in the table. 

15) databaseguid – character varying: Unique identifier used for data 
message identification to avoid multiple copies of data being added to the 
database. 

16) receivetimestring – character varying: Human readable 
receivetime value. 

17) messagetimestring – character varying:  Human readable 
messagetime value. 

18) staletimestring – character varying: Human readable staletime 
value. 

5.3 Configconverged Table 

This table contains the entire configuration file for each sensor after it has been 
merged with the changes from each config message. The column definitions for 
this table are identical to the Config Table described in Section 5.2.  

5.4 Event Table 

This table contains component or controller-published declared observables. 

1) *priority – bigint: Optional value in the ISA message. Priority of the 
given message. Zero is the highest. If not provided, the default value is 80. 

2) *source – character varying: Required value in the ISA message 
containing the UCI of the message source. 



 

19 

3) *identifier – bigint: Required value in the ISA message describing 
a conversation-unique identifier for the message. 

4) *stale – bigint: Optional value in the ISA message. UTC time at which 
data contained in the message should be regarded as invalid. 

5) *messagetime – bigint: Message date/time from the ISA message. 

6) *eventsymbol – character varying: MIL-STD-25257 symbol code 
for the entity described in the message. From the identity observable in 
the ISA message. 

7) *eventid – bigint: Required value containing an integer key, unique per 
component, that allows that event to be updated and referred to at a later 
point. 

8) *type – character varying: Required value describing the reason the 
event was created. For example: Detection, Alert, Alarm, and Other. 
Default is Other.  

9) *observables – jsonb: Zero or more ISA name value pairs; set of fields 
published within any event message.  

10) *detectorproperties – jsonb: Zero or more ISA name value pairs. 
Properties of the detector when the event occurred if those properties are 
different from the last status.  

11) *media – jsonb: Media items linked from the ISA message. Removed 
from observables and placed in its on column for easy queries.  

12) *eventrefid – bigint: Optional field containing part of a unique ID that 
can be used to update previous event information. It is the Event ID of the 
original event. 

13) *eventrefcreator – character varying: Required if eventrefid 
is present. UCI of the creator of the original event. 

14) *eventreftime – bigint: Required if eventrefid is present. The time 
of the original event.   

15) *eventlat – double precision: Latitude (World Geodetic System 
[WGS84] decimal degrees*) of the entity at the point at which it was 
observed. The observation could be a detection or a measurement. The 

                                                 
* The ISA data model specification is ambiguous regarding the coordinate system used to represent 
geographic positions. In practice, WGS84 with the EGM96 gravitational model is used. 



 

20 

entity could be visible (e.g., tank, mortar) or invisible (e.g., signal, 
atmosphere). From the Position observable in the ISA message. 

16) *eventlon – double precision: Longitude (WGS84 decimal degrees) 
of the entity at the point at which it was observed. From the Position 
observable in the ISA message. 

17) *eventalt – double precision: Altitude (meters above Earth 
Gravitational Model 96 [EGM96] mean sea level) of the entity at the point 
at which it was observed. From the Position observable in the ISA message. 

18) *detectorlat – double precision: Altitude of the ISA component at 
the time the observation was produced. From the Position detector property 
in the ISA message. 

19) *detectorlon – double precision: Longitude of the ISA component 
at the time the observation was produced. From the Position detector 
property in the ISA message. 

20) *detectoralt – double precision: Altitude of the ISA component at 
the time the observation was produced. From the Position detector property 
in the ISA message. 

21) *detectorsymbol – character varying: MIL-STD-25257 symbol 
code for the detector. From the identity detector property in the ISA 
message. 

22) *bso – character varying: Unique identifier assigned by the 
component to a confirmed or suspected entity on the battlefield. 

23) receivetime – bigint: Date/time at which the message was received by 
the database tool. 

24) tableid – bigint: Auto-incrementing integer identifying the row of data 
in the table. 

25) Databaseguid – character varying: Unique identifier used for data 
message identification to avoid multiple copies of data being added to the 
database. 

26) receivetimestring – character varying: Human readable 
receivetime value. 

27) messagetimestring – character varying: Human readable 
messagetime value. 



 

21 

28) staletimestring – character varying: Human readable staletime 
value above.  

29) imagefilename – text []: Contains a list of file paths identifying the 
location (on the local file system) of the stored media acquired from the 
media URLs provided in the ISA message.  

30) distance – double precision: The distance from the observing 
component to the observed entity.   

31) bearingyaw – double precision: Derived from the line of bearing 
representing the rotation from the current orientation of the observing 
component to the observed entity. Yaw represents the angle about the  
z-axis. 

32) bearingpitch – double precision: Derived from the line of bearing 
representing the rotation from the current orientation of the observing 
component to the observed entity. Pitch represents the angle about the  
y-axis.  

5.5 Status Table 

This list contains messages used for sending periodic updates on component status. 
The frequency of these messages is based on the thresholds designated by property 
values as well as the status interval property. 

1) *priority – bigint: Optional value in the ISA message. Priority of the 
given message. Zero is the highest. If not provided, the default value is 80. 

2) *source – character varying: Required value in the ISA message 
containing the UCI of the message source. 

3) *identifier – bigint: Required value in the ISA message describing a 
conversation-unique identifier for the message. 

4) *stale – bigint: Optional value in the ISA message. UTC time at which 
data contained in the message should be regarded as invalid. 

5) *messagetime – bigint: Message date/time from the ISA message. 

6) *properties – jsonb: Zero or more property states. The current state of 
the properties.  

7) latitude – double precision: Optional field containing the latitude 
(WGS84 decimal degrees) of the component from the position property 
in the ISA message.  



 

22 

8) longitude – double precision: Optional field containing the 
longitude (WGS84 decimal degrees) of the component from the position 
property in the ISA message. 

9) altitude – double precision: Optional field containing the altitude 
(meters above EGM96 mean sea level) of the component from the 
position property in the ISA message. 

10) sensorsymbol – character varying: MIL-STD-2525 symbol code 
for the component. From the identity property in the ISA message. 

11) receivetime – bigint: Date/time at which the message was received by 
the database tool. 

12) tableid – bigint: Auto-incrementing integer identifying the row of data 
in the table. 

13) databaseguid – character varying: Unique identifier used for data 
message identification to avoid multiple copies of data being added to the 
database. 

14) receivetimestring – character varying: Human readable 
receivetime value. 

15) messagetimestring – character varying:  Human readable 
messagetime value. 

16) staletimestring – character varying: Human readable staletime 
value. 

5.6 Sample Queries 

The PostgreSQL query language can be used to match individual elements within 
a JSON field. The following syntax can be used for JSON matching: 

select * from table where column @> '[desired match inside 
the json]' 

 
For example, when looking for the JSON object 

"[{"url":"http://192.168.1.1:8001/obs/afc3141e-7f06-
4a15-bada-a11327eec4c4/media","mimetype":"jpeg", 
"mediaType":"image"}]" 

 
the following queries will all match: 



 

23 

SELECT * from event where media @> '[{"url":"http:// 
192.168.1.1:8001/obs/afc3141e-7f06-4a15-bada-
a11327eec4c4/media","mimetype":"jpeg", 
"mediaType":"image"}]' 

 
SELECT * from event where media @> '[{"url":"http:// 
192.168.1.1:8001/obs/afc3141e-7f06-4a15-bada-
a11327eec4c4/media"}]' 
 
SELECT databaseguid, imagefilename from event where 
media @> '[{"url":"http:// 
192.168.1.1:8001/obs/afc3141e-7f06-4a15-bada-
a11327eec4c4/media"}]' 
 

Many other JSON queries are possible. For more information, see the PostgreSQL 
documentation.8 Note that unlike many other database systems, PostgreSQL query 
syntax is case-sensitive. 

 
  



 

24 

6. References 

1. Integrated Systems Architecture (ISA). Fort Belvoir (VA): Army Night Vision 
and Electronic Sensors Directorate, US Army Combat Capabilities 
Development Command (CCDC) Command, Control, Computers, 
Communications, Cyber, Intelligence, Surveillance and Reconnaissance 
(C5ISR) Center (US); n.d. [accessed 2019 July 18]. 
https://confluence.di2e.net/display/ISA/.  

2. Poltronieri F, Sadler L, Benincasa G, Gregory T, Harrell JM, Metu S, Moulton 
C. Enabling efficient and interoperable control of IoBT devices in a multi-force 
environment. Proceedings of the 2018 IEEE Military Communications 
Conference (MILCOM); 2018 Oct 29–31; IEEE, c2019. p. 757–762.  

3. The PostgreSQL Global Development Group. PostgreSQL. Ver. 11; 2018 
[accessed 2019 June 25]. https://www.postgresql.org/. 

4. ISA data model specification, release 6.0, document revision 7. Fort Belvoir 
(VA): US Army Night Vision and Electronic Sensors Directorate, Army 
Combat Capabilities Development Command (CCDC) Command, Control, 
Computers, Communications, Cyber, Intelligence, Surveillance and 
Reconnaissance (C5ISR) Center (US); 2019 Jan 16. 

5. OTTO – BSOs and event references. Fort Belvoir (VA): Army Night Vision 
and Electronic Sensors Directorate, US Army Combat Capabilities 
Development Command (CCDC) Command, Control, Computers, 
Communications, Cyber, Intelligence, Surveillance and Reconnaissance 
(C5ISR) Center (US); 2016 Dec 20.  

6. ISA data query language user’s guide, release 6.0, document revision 3. Fort 
Belvoir (VA): US Army Night Vision and Electronic Sensors Directorate, 
Army Combat Capabilities Development Command (CCDC) Command, 
Control, Computers, Communications, Cyber, Intelligence, Surveillance and 
Reconnaissance (C5ISR) Center (US); 2016 Sep 6. 

7. MIL-STD-2525C. Common warfighting symbology. Washington (DC): 
Department of Defense (US); 2008 Nov 17. 

8. The PostgreSQL Global Development Group. JSON functions and operators. 
[accessed 2019 July 25]. https://www.postgresql.org/docs/11/functions-
json.html. 

  

https://confluence.di2e.net/display/ISA/


 

25 

List of Symbols, Abbreviations, and Acronyms 

ARL Army Research Laboratory 

C5ISR Command, Control, Computers, Communications, Cyber, 
Intelligence, Surveillance and Reconnaissance 

CCD Component Capability Declaration 

CCDC US Army Combat Capabilities Development Command 

DMS Database/Media Storage 

EGM Earth Gravitational Model 

EPC Electronic Product Code 

GOTS government off-the-shelf 

HTTP Hypertext Transfer Protocol 

HTTPS Hypertext Transfer Protocol Secure 

IP Internet Protocol 

IQL ISA Query Language 

ISA Integrated Sensor Architecture 

JDK Java Development Kit 

JRE Java Runtime Environment 

JSON JavaScript Object Notation 

NSRTB Networked Sensor Research Test Bed 

NVESD Night Vision and Electronic Sensors Directorate 

SOA Service-Oriented Architecture 

SQL Structured Query Language 

TLS transport layer security 

TRSS Tactical Remote Sensor System 

UCI Universal Component Identifier 

URL Uniform Resource Locator 

UTC Coordinated Universal Time 



 

26 

WGS World Geodetic System 

  



 

27 

 1 DEFENSE TECHNICAL 
 (PDF) INFORMATION CTR 
  DTIC OCA 
 
 1 CCDC ARL 
 (PDF) FCDD RLD CL 
   TECH LIB 
 
 2 CCDC ARL 
 (PDF) FCDD RLS SI 
   J KOVACH 
   L SADLER 
 
 2 CCDC C5ISR NVESD 
 (PDF)  C MOULTON 
   M HARRELL 
 
 
 
 


	Summary
	1. Introduction
	1.1 Integrated Sensor Architecture (ISA) Overview
	1.2 Database/Media Storage (DMS) Tool Overview
	1.3 DMS Tool Use Cases
	1.4 Usage within the US Army Combat Capabilities Development Center (CCDC) Army Research Laboratory (ARL) Networked Sensor Research Test Bed

	2. DMS Tool Installation Instructions
	2.1 Assumptions
	2.2 Prerequisites/System Requirements
	2.3 Installation Procedure
	2.4 Starting the Software

	3. DMS Tool Configuration Instructions
	4. Example Usage Scenarios
	4.1 Store Media Only
	4.2 Store Media and Send Update Message with New URL
	4.3 Store Media, Send Update Message with New URL, and Delete Media from Source
	4.4 Store Media and Add Messages Received to the Database
	4.5 Store Media, Add Message to Database, and Send Update Message with New URL
	4.6 Store Media, Add Message to Database, Send Update Message with New URL, and Delete Media from Source
	4.7 Write ISA Messages to a File

	5. Message Database Structure
	5.1 Administrative Table
	5.2 Config Table
	5.3 Configconverged Table
	5.4 Event Table
	5.5 Status Table
	5.6 Sample Queries

	6. References
	List of Symbols, Abbreviations, and Acronyms

