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Abstract

Since 1998 the USAF tanker fleet has decreased by 155 aircraft, with the
additional anticipated retirement of the equivalent of 201 KC-135 tankers by 2029.
Meanwhile, the new KC-46A is scheduled to replace only 179 boom-equipped tankers by
2029, resulting in a total decrease of 131 aircraft which corresponds to a reduction of
24.5% in total air refueling fuel capacity in just over three decades. This research
examines historical tanker training requests, drawn from the 618th AOC’s Air Refueling
Scheduling Tool (ARST), and uses multiple forecasting techniques, including
autoregressive integrated moving average (ARIMA) models, in order to create a model
for predicting future air refueling training demand and communicating that demand in
terms of aircraft flight hours. Air refueling remains a supply and demand problem in
which there will always be more demand than the ability to supply with any realistically
sized tanker fleet. The ability to understand, predict, and prepare for increased air
refueling demand holds real value to planners, tanker units, and receiver units. This
research is a first step in more clearly understanding unsupported air refueling training

demand in terms of tanker aircraft flight hours.
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To that receiver low on gas, may a tanker not be far away.
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TIME SERIES FORECASTING OF TANKER TRAINING DEMAND

l. Introduction

"There is nothing we do ... without tankers,"
— Former United States Air Force Chief of Staff, General T. Michael Mosely

General Issue

The United States Air Force (USAF) is facing a dramatic decrease in its projected
air refueling (AR) tanker fleet. In 1998 the USAF operated 610 boom-equipped air
refueling tankers (HQ AMC Office of History, 2018); twenty-one years later that number
is down to 455 (U.S. Air Force, 2014b, 2018), the smallest fleet since the early 1960s
(Boeing, 2018). The USAF total force currently operates 396 KC-135R/T and 59 KC-
10A boom aircraft as the preponderance of the land-based air refueling fleet for the
Department of Defense (DoD) (U.S. Air Force, 2014b, 2018). This equates to 455 booms
and 501 KC-135 equivalent tankers in terms of overall fuel carrying capacity at the end
of the 2018 fiscal year. The USAF is currently in the process of acquiring the new KC-
46A, which is a similar size to the older KC-135, as it plans to retire all of the much
larger KC-10As and some older KC-135R/Ts (Gertler, 2013, p. 1). The exact future
tanker force structure remains uncertain because of a range of factors, including delays in
the acquisition of the KC-46A, undetermined divestment timing of the KC-10A, and an
aging fleet of KC-135 R/Ts with unknown reliability in the coming decades. What is
known is that the target air refueling tanker mix includes a purchase of 179 KC-46A with
a 6% fuel capacity increase over the KC-135 R/T and the sustainment of about 300 of the
KC-135 R/T aircraft by 2029 (U.S. Air Force, 2016). This understanding is important

because it means that tanker availability or the actual number of booms in the air will



remain roughly the same as the current status quo while decreasing in fuel capacity of up

to 42 KC-135 equivalent aircraft in the next ten years, depicted in Figure 1.

USAF TANKER CAPACITY

N

Figure 1: Historical and Projected USAF Tanker Capacity

The above estimates for projected tanker capacity by the researcher are strikingly
different from USAF projections for tanker recapitalization released by the Air Force
Association just ten years ago as shown in Figure 2 (Knight & Bolkcom, 2008). This
shortfall was primarily a result of years of failed recapitalization plans for the tanker
fleet. These failed plans therefore have reduced the overall air refueling capacity and that
has global implications for the Joint Force’s lethality, capability, and mobility as there
will certainly be an increase in future air refueling requirements, not a decrease.
Therefore, an analysis and time series forecast of the United States Transportation
Command (USTRANSCOM) validated tanker training demand would inform decision

making on future tanker force structure and mission readiness.
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Figure 2: Air Force 2008 Tanker Recapitalization Plan

Source: (Knight & Bolkcom, 2008, p. 22)
This research focuses exclusively on tanker training data versus global operational

missions because the training data was readily available over multiple years via the 618
Air Operations Center’s (AOC) Air Refueling Scheduling Tool (ARST), “the USAF
system of record for matching receiver training air refueling needs to tanker capacity”
(HQ AMC/A30, 2016). In particular, this computer-based system was designed to match
lower priority air refueling requests to tanker availability. The database of air refueling
requests provides an important demand signal as this lower level of training requests
often represents the line between what can and cannot be supported due to several factors
including aircraft and crew availability, higher priority taskings, and competing training

opportunities. The most valuable aspect of the data set is that the requests are grouped by



five different statuses, thus allowing some understanding for the researcher as to how air
refueling requests were supported.

Using the currently available data the researcher utilized the definitions below
(Table 1) to identify whether an air refueling request was supported by the tanker unit
and then modeled all five request statuses in order to assist in future analysis and

research.

Table 1: Air Refueling Scheduling Tool Request Statuses

Confirmed | All parties have been notified and have accepted the displayed event’s

terms. Supported AR by both tanker and receiver units

Bought The tanker unit has agreed to support the request and is awaiting receiver

unit to confirm AR details to confirm the transaction. Supported AR

Filled The receiver unit may have pre-coordinated with the tanker unit and

places some tanker information in the request. Potentially Supported AR

Published | Air Refueling requests that have not been supported and have been

entered into the system without tanker details.

Cancelled | Requests that have been cancelled or not supported by tanker units.

The way that the ARST system works is that an air refueling receiver unit enters
details of their air refueling request in the computer database. If the user includes
specific details of their requested tanker unit, the status is recorded as Filled. If no tanker
details are entered the request is entered in the Published status. Once a tanker unit
agrees to support the request, the former clicks a “buy” button which enters their tanker
unit details and changes the status to Bought. The last step is for the receiver unit to

confirm all the entered or updated air refueling details to include air refueling track



location, rendezvous time, altitude, etc. by clicking the “confirm” button, thus changing
the request status to Confirmed. At any time either the tanker or receiver unit can cancel
the request, for any reason, by clicking “cancel,” changing the status to Cancelled.

The Confirmed and Bought statuses most likely indicate supported requests that
the tanker unit was capable of supporting. In contrast, the Filled and Cancelled statuses
currently have no way of determining if they were or were not supported by the tanker
unit in the ARST system. This is because a request can be cancelled by either the
receiver unit or the tanker unit for a multitude of reasons or never even supported.
Currently, the Published category is the clearest representation of unsupported air
refueling requests that were never supported by a tanker unit in the ARST. The time
series forecasting presented here focused on all five request statuses in order to build
representative models in the hopes that future updates to the ARST will provide more
fidelity on unsupported requests and reasoning for more detailed future analysis. For
example, if either the tanker or receiver unit could annotate why a request was being
unsupported or why it was cancelled, it would assist in future capacity and bottleneck
analysis. Sorties could be unsupported for common reasons like crew or aircraft
availability, but also because the request has insufficient training value, a low designated
priority, or any number of other reasons. Such a modification to the ARST would not
alter this research but would assist future models and provide relevant and timely
feedback to receiver units as to why their request was not supported while providing the
receiver units the details to better communicate the impact of a lack of support back to

the tanker units, 618" AOC, and Air Mobility Command. An aggregated analysis of



supported and unsupported unit types, aircraft types, and request priority was also
analyzed and is further discussed in Chapter 5.

Forecasting of air refueling demand and, in particular, training demand allows
tanker units and planners to use assets more efficiently and to prepare for periods of
increased/decreased tanker capacity. This represents a new way of thinking about tanker
scheduling and is proactive rather than reactive; it is a new way to think about the data
the 618" AOC is already capturing as part of the ARST program. Moreover, a reliable
forecast has second-order effects on unit maintenance and support activities by allowing
for more effective operations and an increase in overall readiness. In the end, the whole
point of this system is to provide the most training available to requested receivers, thus
enabling combat readiness. Air refueling remains a supply and demand problem in which
there will always be more demand than the ability to supply with any realistically sized
tanker fleet. Therefore, being able to understand better, predict, and prepare for increased
air refueling demand holds real value to planners, tanker units, and receiver units.

Focused research on this problem is warranted now because the tanker fleet is not
expected to increase in the near future while increased joint and international air refueling
requirements are being added, thus increasing both the mission and training demand with
the same or fewer air refueling assets for the near future. A specific example includes the
next generation fighters that use two to two and a half times as much fuel for much
shorter ranges than older legacy aircraft (U.S. Air Force, 2014a, 2015b, 2015a).
Therefore, it is critical that planners gain a better understanding of what the training
demand data is telling us with regard to request frequency in order to better understand

the overall demand market for air refueling.



As previously stated, the current air refueling demand vastly outpaces the USAF’s
supply. One of the most promising solutions to reduce a segment of the demand remains
the inclusion of commercial air refueling tankers which could reduce a segment of the
training demand. This would likely include routine receiver training, some test and
evaluation support, and non-combat related flight extension. The concept has been
studied multiple times starting in 1998 by the US Transportation Command in its
“Concept Development Report on Contracted Aerial Refueling” (USTRANSCOM TCJ5,
1999). This report led to research including the Defense Science Board Task Force
Report on “Aerial Refueling Requirements” released in 2004 and a RAND Project Air
Force report in 2006 entitled “Analysis of Alternatives (AoA) for KC-135
Recapitalization (Defense Science Board, 2004; Kennedy et al., 2006). The barriers to
market entry range from policy issues such as no FAA certification for commercial air
refueling to a significant financial burden for any organization without a known or
guaranteed market size. Therefore, due to numerous technical and bureaucratic
challenges, no commercial enterprise currently offers boom air refueling service. Omega
Air Refueling Services has operated a small fleet of probe and drogue only aircraft
(utilizing a basket at the end of a hose that the receiver connects to versus the USAF’s
mainstay of a flying boom) since 2001, primarily servicing the US Navy along with some
international partners (Omega Air, 2018). The root cause of the problems highlighted
above all focus on not truly understanding the DoD air refueling market demand. If air
refueling demand could be forecasted, units could plan more efficiently longer into the
future and, consequently, more training could be accomplished. Furthermore, if

commercial augmentation was, at some future time, supported by the DoD as a viable



option to moderate some training demand by supporting less desirable training
opportunities, planners could make informed decisions based on a forecast from historical
employment. It is this question that this research seeks to answer. Utilizing historical
tanker training requests, this research will focus on multiple forecasting techniques in

order to create a model for predicting future air refueling training demand.

Problem Statement

Currently, no known forecast method exists for predicting tanker training demand.

Purpose Statement

This research will consider multiple forecasting techniques utilizing historical
tanker training requests in order to model future training demand. The future demand

will then be estimated using the metric of air refueling flight hours.

Research Questions/Objective

RQ1: Which forecasting technique best predicts the various air refueling training
requests for each designated status in the air refueling scheduling tool?
RQ2: Can the number of requested air refueling flight hours be predicted, with up

to 90% accuracy annually, for each designated status in the air refueling scheduling tool?

Methodology

This research utilizes time series forecasting to analyze the available ARST data
from Jun 2010 — March 2018. The initial data collection only included Published and

Confirmed statuses and, because there is no way to identify the other three statuses from



that earlier data, the analysis started with the April 2012 data, when all five statuses
started to be recorded. The data included several air refueling details about each event
which were further aggregated in order to learn more about patterns within the data set.
The focus of this time series analysis was on the ARST system’s five designated statuses
of Confirmed, Bought, Filled, Published, and Cancelled over a regular time period.
Annual analysis was rejected due to a limited number of data points; daily time periods
were problematic as some statuses had zero requests on a given day resulting in errors in
the computations for variance. Following a careful review, the researcher settled on
weekly time periods for analysis, the reasoning for which will be discussed in Chapter 4.
After running multiple time series analysis techniques for each of the five statuses, the
researcher used validation techniques against one year of reserved data to verify the best
model for each request status. Once the best forecast model was determined, the
researcher applied multiple computational techniques to estimate total annual flight hours

by each designated status.

Assumptions/Limitations

As discussed above, the ARST data used for forecasting was restricted to April
2012 through March 2018 due to the limited statuses recorded Between June 2010 and
April 2012. The database management of the ARST was changed in March of 2018;
which resulted in the collected data from that time forward being unavailable to this
researcher. The data that was inputted into the ARST system also limited this research;
there is a high probability that not all air refueling training requests were inputted into the

system. Additionally, air refueling requests were most likely both supported and



unsupported that were never entered into the ARST. However, the system shows
stability over time, with a similar number of requests (an average of 21350 per year from
16 Mar 2014 — 10 Mar 2018 with the sums each year remaining within 2-4% of the
mean) which leads to the conclusion that it represents a consistent proportion of the air
refueling demand over time. Furthermore, future data can be entered into the proposed
models thereby improving the model accuracy over time. Lastly, commercial air
refueling costing structures were not attainable by the researcher because a boom capable
commercial air refueling aircraft does not exist and, therefore, this research does not
include a potential cost comparison for future commercial tankers. For this reason, all
cost comparisons will use DoD cost structures for current USAF tanker aircraft. When
commercial tankers do come to the market, the cost will likely be on a per flight hour
basis. Therefore, this research methodology is designed to predict air refueling flight
hours to easily apply to future cost comparisons between different tanker aircraft types

for future research endeavors and decision making.

Implications

Air refueling demand will always outpace the available supply. This research is
designed to find the best model for forecasting future air refueling requests as defined by
the ARST status. The analysis outlined here can then use the forecast data to estimate the
flight hour duration requested annually in terms of the same ARST statuses. These
research questions are a first step to a better understanding of unsupported air refueling
training demand in terms of aircraft flight hours. While several metrics are important,

this research focused on the use of flight hours in the final analysis because they have a
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defined value to the DoD. Furthermore, research based on using flight hours can be used
in the future in order to either justify increased expenditures to execute unsupported air
refueling sorties or to compare USAF flight hour costs to future commercial tanker flight
hour costs. When commercial air refueling service is available to the public market, the
research and methods outlined here can provide an actual cost comparison given the
quantitative forecasting background of the models. Such a comparison is likely to be far
more accurate when the commercial tanker costs are available and this research, with its
outlined mathematical rigor, is applied to known costs and more detailed needs rather
than on educated assumptions about the unsupported air refueling training market using

current ARST data.
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Il1. Literature Review

"Aerial refueling will be the biggest shortfall in our Mobility Air Forces”
- Secretary of the United States Air Force, Heather Wilson

Chapter Overview

This research began with a focus on understanding the air refueling challenges
and, specifically, on exploring how the USAF fleet capacity has changed and is expected
to change in the future. The air refueling fleet clearly has a supply and demand problem,
and this researcher started thinking about the problem with respect to how future
commercial air refueling tankers could be used to increase the overall supply faster than
the USAF could through additional KC-46A procurement. However, as more
information was gathered from previous reports, articles, and academic papers, it became
clear that the demand side of the equation required analysis before any supply proposals
could be explored.

Increased supply will certainly help in the short-term, and commercial air
refueling has the potential to solve only certain portions of the overall demand, namely
peacetime training purposes for a host of reasons. It is unlikely that any commercial
enterprise will invest the time, partner with industry for aircraft acquisition, breakthrough
long-standing barriers to market-entry, or even spend what would probably amount to a
significant research and development cost without the DoD’s support and a better
understanding of the potential market. Therefore, gaining a better understanding of the
unsupported air refueling requests (market demand) should be a first step in actually

making headway in this process, which began over 20 years ago.
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In order to fully understand the market demand of the USAF tanker enterprise, the
researcher first focused on literature detailing two decades of recapitalization efforts
along with multiple commercial air refueling studies as background to the problem. With
that background in mind, the second part of this literature review will detail why demand
forecasting is important, in particular, to commercial industries with a focus on the
aviation industry. Lastly, the literature review will focus on the background and theory
behind the primary forecasting technique used in the following analysis which is the Box-
Jenkins methodology for Autoregressive, Integrated, Moving Average (ARIMA) forecast

models.

Air Refueling Tanker Recapitalization

Unfortunately, the multiple plans to replace the over 400 “Eisenhower-era KC-
135°s” have faced significant challenges, controversies, corruption, and ultimately several
failed acquisition programs dating back to the early 2000s (Grismer, 2011, p. 63). These
recapitalization plans range from Boeing’s 767 lease proposal that failed in 2001 to
Northrop Grumman/European Aeronautic Defense and Space Company’s (EADS) 2008
contract award that was later cancelled under protest from Boeing (Grismer, 2011, p. 63).
Then, in February 2011, the Boeing company was finally awarded the contract to build
the KC-46A, a contract valued at approximately $35 billion (Gertler, 2013, p. 1). Again,
after more delays, the USAF only recently took delivery of the first KC-46A on 10 Jan
2019, while still working to reconcile “major technical problems” (Insinna, 2019). This
brief background of the KC-46A’s acquisition is important because, in the over 19 years

that it has taken for the USAF to take the delivery of a new tanker, the overall fleet size
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has decreased by 151 boom tanker aircraft. Moreover, as the USAF acquires the
projected 179 KC-46A aircraft, 59 KC-10A and approximately 96 KC-135R/T aircraft
are projected to be retired, further reducing the overall tanker fleet (Pawlyk, 2018).
Therefore, although the USAF will increase the number of booms available by 24, from
455 to 479 with the current plan, the capacity of fuel available actually decreases by over
2.2M pounds of fuel, from 100,204,000 pounds at the end of fiscal year 2018 to a
projected 98,001521 pounds of fuel at the end of fiscal year 2029 (Gertler, 2013, p. 6).
As stated above, work on this problem started decades ago with the full knowledge of
how important it was to replace this high-demand, low-density resource quickly. Itis
truly unfortunate that years” worth of studies and recapitalization efforts have languished
for so long, resulting in the retirement of more aircraft and only recently resulting in a
new tanker acquisition.

The USAF, DoD, and other research agencies have conducted multiple studies on
increasing the tanker enterprise over the years. In an effort to highlight some of the most
applicable reports presented in chronological order, the researcher started in 1996. That
year the GAO conducted a study entitled, “U.S. Combat Air Power: Aging Refueling
Aircraft are Costly to Maintain and Operate.” The basic conclusions of this report to
Congress included an observation that, “although the services’ air refueling tanker
aircraft meet current needs, satisfying future requirements may be difficult” as the aircraft
age and require increasingly more money to operate (Meredith, Stone, Dey, Newell, &
Ragsdale, 1996, p. 34). The report also recommended that Congress consider dual use
airlift and tanker aircraft in future acquisitions programs (Meredith et al., 1996, p. 35).

Reports to Congress such as these highlighted the potential for a deficit of tankers in the
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future and opened up studies of alternate methods to meet future tanker requirements,
including contracted or commercial tankers.

The United States Transportation Command’s “Concept Development Report on
Contracted Aerial Refueling” was one of the first DoD studies and was completed on 1
Oct 1997, revised on 1 March 1998, and revised again on 21 June 1999. At the time of
the original report, the USAF still maintained approximately 610 boom air refueling
tankers and had only started talks with industry about a replacement for the KC-135, then
roughly 40 years old. Moreover, the 1997 report represents the first time that a
commercial organization, Omega Air, Inc., was included in USTRANSCOM working
groups. This USTRASCOM report provided in-depth operational, policy, legal,
contractual, and cost considerations for what a contract air refueling provider might
provide to USTRASCOM, along with the feasibility of such a contract in a “CRAF-like,
indefinite delivery, indefinite quantity (IDIQ) contract” (USTRANSCOM TCJ5, 1999).
This report focused on using contract tankers to complete only probe and drogue air
refueling which represent a small portion of the annual requirement and the only type of
air refueling that Omega Air was at the time (and remains) capable of performing. Due
to the focus remaining on a small subset of the air refueling requirement (probe and
drogue), legal concerns about how commercial tankers would be integrated into combat
operations, and concerns over reduced training opportunities for USAF crews the idea
was rejected by USTRANSCOM, AMC, and the Joint Staff. In a November 1997
“Report to Congress on Private Sourcing of Airlift of Military Personnel and Cargo,”
required by the 1996 National Defense Authorization Act, the Office of the Secretary of

Defense (OSD) made their position on commercial air refueling clear. OSD highlighted
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that the combat integration, training, and full range of mission sets make “private-sector
sources” for air refueling not suitable (USTRANSCOM TCJ5, 1999, p. 23).

Then, in 2004, the Office of the Under Secretary of Defense for Acquisition,
Technology, and Logistics received their requested report from the “Defense Science
Board Task Force on Aerial Refueling Requirements.” The report focused on evaluating
the current state and future requirements “of the USAF tanker fleet, the corrosion and
maintenance issues associated with it, the studies pertaining to the KC-135, and several
near-term options that the DoD has with regard to recapitalizing the fleet” (Defense
Science Board, 2004, p. 4). Although the report found that the corrosion which resulted
from the age and exposure to naturally-occurring elements was being controlled, the cost
of that process along with the increasing costs of maintenance, lead to the task force to
recommend multiple options for replacing the KC-135 fleet within a “reasonable
timeframe” (Defense Science Board, 2004, p. 42). The proposed options included
purchasing and converting used aircraft for air refueling, such as available DC-10-30’s,
contracting commercial organizations for specific mission sets, and working with large
airframe manufactures for procurement of the next generation of air refueling tanker in
the near-term (Defense Science Board, 2004, p. 36). Significantly, this report continued
to highlight the need for multiple courses of action while considering alternate methods
of recapitalization from a traditional acquisition approach. Furthermore, the 2004
Defense Science Board Report directly lead to a follow-on RAND study for an analysis
of alternatives for the future of the KC-135.

In 2006 RAND Project Air Force published their report “Analysis of Alternatives

(AOA) for KC-135 Recapitalization.” The Under Secretary of Defense for Acquisition,
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Technology, and Logistics at the time had requested the AOA based on the findings of
the 2004 DSB study. Furthermore, the AOA was to include considerations of the tanker
requirements from the forthcoming 2005 Mobility Capabilities Requirements Study. The
RAND AOA study looked specifically at two research questions: “What is the most cost-
effective alternative for recapitalizing the KC-135 fleet?”” and “When should the
recapitalization assets be acquired?” (Kennedy et al., 2006, p. 16) After reviewing
multiple options from new and used commercial-derivatives to new designs to unmanned
and even commercial sources, the study recommended new commercial-derivatives in the
300,000 — 1,000,000 pound max gross takeoff weight categories as the most cost-
effective (Kennedy et al., 2006, p. 21). Smaller tankers, unmanned, and stealthy tankers
were all considered to be not cost-effective in the report. The idea of commercial tankers
was rejected primarily on the assumption that all tankers “must be capable of carrying out
wartime missions” and, therefore, commercial tankers were considered cost prohibitive
due to required defensive equipment (Kennedy et al., 2006, p. 22). Furthermore, the
report found that the timing of the recapitalization of the tanker fleet is more dependent
on factors such as the risk of catastrophic technical problems or critical maintenance
issues rather than overall life-cycle costs of operating the legacy fleet (Kennedy et al.,
2006, p. 25). However, the AOA conceded that the purchasing of a new tanker fleet
quickly after waiting too long for recapitalization would be much more costly than
purchasing it before the legacy tanker fleet wears out (Kennedy et al., 2006, p. 25). The
AOA represents the most recent government report highlighting the need to recapitalize

the KC-135 tanker fleet and, while it considered alternatives to a normal acquisition
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process, it failed to look for broad and innovative solutions to a supply and demand
problem that was only getting worse by the year.

Following the 2006 AOA report, the tanker recapitalization focus was on the 2008
contract that was initially awarded to EADS, challenged by Boeing, and then rescinded
by the USAF. Again, timing is important because the leadup to the contract award
coincided with the USAF’s decision to retire a majority of the KC-135E model aircraft
due to corrosion issues with the engine bolts. Although a small number were upgraded to
KC-135R aircraft, approximately 114 were grounded and ultimately sent to long-term
storage in Arizona, further reducing the overall fleet (Knight & Bolkcom, 2008, p. 31).
The next eleven years were marked by continued calls for recapitalization, followed by
yet another contract bid for a new tanker replacement and countless delays that only now
have resulted in the USAF taking the possession of the first few KC-46As. This history
of multiple working groups, analysis, reports, and recapitalization efforts at multiple
levels within multiple organizations is important for the reader to understand that just
because an innovative or non-standard solution such as outsourcing was deemed not cost
effective or rejected in the past, that conclusion does not necessarily apply in today’s

environment which is radically different than ten or twenty years ago.

Aviation Demand Forecasting

With a clearer understanding of the environment of dwindling tanker fleet supply
and increased demand that the Joint Force faces today, the focus must be on using the
tanker fleet as efficiently as possible, and this includes forecasting. The air transportation

industry is heavily reliant on forecasting in order to use its assets as efficiently as
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possible. “Every day, at all levels of management, within all segments of the air
transportation industry, decisions are made about what is likely to happen in the future”
(Wensveen, 2015, p. 268). Forecasting expected demand can look at multiple different
time periods and include an evaluation using several different methods. “The choice of
forecasting methods should be based on several factors, including availability of data,
accuracy of available data, management sophistication, intended forecast use, and
availability of electronic processing” (Wensveen, 2015, p. 270).

For the reasons above, the decision as to the specific forecasting method is almost
as important as the data available. There are countless studies of forecasting methods for
the aviation industry to include Richard Wickham’s 1995 MIT thesis, “Evaluation of
Forecasting Techniques for Short-Term Demand of Air Transportation.” Wickham
utilized eleven different models — 3 time series models, 2 regression models, and 6
different pickup models - in his analysis of an eighteen week, short-term air
transportation demand forecast for up to an eight week future time period (Wickham,
1995, p. 55). Wickham’s research was focused on determining the best forecasting
method while varying the forecasting period and the size of the historical data set to see
how these changes affected the accuracy of the different methods; he limited his methods
to a simple mean and various exponential smoothing techniques. His research findings
showed that each model’s accuracy decreased as the forecast horizon was increased, yet
for short periods of less than four weeks, the results were very similar (Wickham, 1995,
p. 110). This is to be expected in that longer forecasts are more challenging, in particular
when the data is highly variable as was the case in Wickham’s study. However,

Wickham’s third finding was much more interesting. Some of the models that decreased
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in accuracy did so as the sample size was increased. He states that “if the focus is shifted
to the local booking activity, micro-trends can be observed where the data immediately
before the point of observation gives some indications of the preceding booking
behavior” (Wickham, 1995, p. 111). The point is that, with his short-term demand data
and its volatile behavior, the more recent observations were more important to the short-
term forecast than the older observations. This is also why his exponential smoothing
models resulted in less forecast error; those models weight the more recent observations
greater than the older observations. It should be noted that Wickham chose not to include
corrections for seasonal fluctuations in his analysis based on the narrowed focus of only
eighteen weeks of data, although a larger data set might require such corrections and have
different results as “seasonal variation occurs quite naturally in the demand for air travel”
(Wickham, 1995, p. 23). Wickham’s analysis provides a comparison of multiple
forecasting methods and their application to the air transportation industry, while the next
article speaks to the applicability of one method of analysis over another to the aviation
industry.

In “Predicting Air-Transport Demand,” Pitfield focused on a comparison of
ARIMA models and regression models for the purpose of forecasting air-transport
passengers by the route. Pitfield pointed out numerous cases where regression analysis is
used for demand forecasting and identifying explanatory variables in the air
transportation industry such as UK domestic passengers who use business services and
passenger traffic between airports (Pitfield, 1993, p. 459). The main challenge Pitfield
identified with extremely complicated systems like air transportation was that defining all

relevant variables accurately for regression models is difficult if not impossible. His
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paper examines domestic air travel time series data from the UK by applying both
ARIMA modeling techniques and regression modeling to the same data set for
comparison (Pitfield, 1993, p. 460). The final comparison of the error statistics showed
significantly lower error in every category for the ARIMA model versus the regression-
based models, leading to Pitfield to conclude that the ARIMA model is a superior
forecasting tool over the regression model that struggled with defining the explanatory
variables outside of the airlines’ control (Pitfield, 1993, pp. 465-466). This article
highlights the difficulty in defining and quantifying the multiple variables associated with
forecasting in the airline industry. It also highlights the potential accuracy and utilization

of ARIMA forecasting models, despite multiple ill-defined variables in such an industry.

Historical Perspective of Time Series Analysis

The concept of time series forecasting is not new. In fact, there are documented
cases of merchants utilizing rudimentary forecasting and quantitative reasoning in order
to determine expected values for their profits and losses as the markets changed going
back to at least mid-17" century and probably earlier (Klein, 1997, p. 1). Though many
statisticians have contributed to the early work in time series analysis, George Udny Yule
is credited as one of the first statisticians to utilize applied correlation and regression for
what he called the “time-correlation problem” (Klein, 1997, p. 222). Yule’s work in the
1920s laid the foundation for applied statistics and time series in multiple fields of study
by providing an initial understanding of non-stationary data. “Udny Yule’s specification
of an autoregressive stochastic process was a by-product of his attempts to explain why

statisticians, and in particular those who worked with economic and social data, often got
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strange correlations from time series data” (Klein, 1997, pp. 264-265). In doing so,
“Yule’s specification of the autoregressive process...was to become one of the most
common tools of forecasting with univariate time series models” (Klein, 1997, p. 270).
This work enabled others, including Herman Wold who, in 1938, defined the discrete
stationary process, which is a stochastic or random process. “Wold spelled out the
autoregressive, moving-average, modeling approach that would be used in the coming
decades to investigate stochastic processes, his work spurred further development in
spectral analysis, he gave justification for the use of sum of squares in the analysis of
stationary times series, and he put correlograms front and center as the key means of
model specification” (Klein, 1997, p. 289). These statisticians are highlighted for their
foundational work that was continued by the statisticians George Box and Gwilym
Jenkins, who popularized the use of the ARIMA process for economic and business

process in their seminal work “Time Series Analysis: Forecasting and Control” (1970).

AutoRegressive, Integrated, Moving Average (ARIMA)

“ARIMA processes are mathematical models used for forecasting” (Hyndman,
2001, p. 1). Due to George Box and Gwilym Jenkins’ extensive study of these models
and their applicability to time series forecasting, the ARIMA processes are often called
Box-Jenkins Methods. “The ARIMA approach to forecasting is based on the following
ideas: 1) The forecasts are based on linear functions of the sample observations; 2) The
aim is to find the simplest modes that provide an adequate description of the observed
data” (Hyndman, 2001, p. 1). This concept of the fewest parameters possible is also

known as parsimony. “Parsimony may often be achieved by representation of the linear
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process in terms of a small number of autoregressive and moving average terms” (BoxX &
Jenkins, 1970, p. 46). The intent is to reduce the model’s complexity and, therefore, to
avoid the potential of over-fitting the model with excessive parameters. The ARIMA
process is based in three parameters: autoregressive (AR), integrated (1) , and moving
average (MA); each are explained in detail with their applicable equations in Chapter 3
(Commandeur & Koopman, 2007, p. 122).

By putting all three parameters together, the ARIMA process forms a powerful
forecasting tool with a defined mathematical structure allowing for seasonal and
multivariate time series forecasting (Hyndman, 2001, p. 2). The research presented in
this paper did not focus on multivariate or forecasting with multiple variables; however, it
does focus on multiple seasonal time series independently for each of the five ARST
defined statuses. Seasonal analysis uses the same basic structure as ARIMA but adds an
extra set of AR, I, and MA parameters to model the seasonal elements of the time series,
each characterized by a capital letter. Therefore, the shorthand for a seasonal ARIMA is
(p,d,q)(P,D,Q). In order to determine the value of those parameters, Box and Jenkins

developed a methodology to approach the process.

The Box-Jenkins Methodology

As discussed above, the Box-Jenkins modeling methodology was developed by
two statisticians, George Box and Gwilym Jenkins, as a way to apply an organized and
iterative approach for determining the correct ARIMA values given a forecasting
problem. “Box-Jenkins modeling involves identifying an appropriate ARIMA process,

fitting it to the data, and then using the fitted model for forecasting” (Hyndman, 2000, p.
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1). Box and Jenkins applied the process through an iterative three-step process that they
called model selection, parameter estimation, and model checking; in recent years the
first step of data preparation and last stage of the model application or forecasting has
been added (Hyndman, 2000, p. 1). The full process, as described by Makridakis,

Wheelwright, and Hyndman, is presented in Table 2 below.

Table 2: The Box Jenkins Methodology for ARIMA models

Data preparation

*  Transform datato stabilize vanance

phﬂSE | = Difference data to obtain siationary series
Identification /)
Model Selection
Examine data ACF and PACF to identify potontial [
models

{

Estumate parameters in potential models

Estimation

Select best mode] using suitable criterion

Phase Il
Estimating and l
Testing Diagnostics

Check ACF/PACF of residuals

Do portmantean test of residuals No

Are the residual white noise ?

l Yes

Phase Il Forecasting
Appl ication Use model to forecast

Source: (Makridakis, Wheelwright, & Hyndman, 1998, p. 314)

Data Preparation
Data transformations such as taking the logarithm, square root, or other

mathematical transformations of the data in order to stabilize variance are often required
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for business or economic data as the first step in data preparation (Hyndman, 2000, p. 1).
Data may then be differenced which involves subtracting successive observations in
order to remove patterns such as trend or seasonality thus increasing ease of modeling the
data without unpredictable trends or fluctuations (Hyndman, 2000, p. 1). The data
transformation and differencing techniques that are included in the data preparation steps
are not required with every data set; however, a thorough analysis of the data set is
required before a model is selected to determine what type of preparation, if any, is
required.

Model Selection

After the data is prepared, ARIMA models are determined based on the use of
autocorrelation functions (ACF) and partial autocorrelation functions (PACF) of
differenced data series to determine the best data fit (Hyndman, 2000, p. 1). “If the future
values can be described only in terms of a probability distribution, the time series is said
to be non-deterministic or simply a statistical time series” (Box & Jenkins, 1970, p. 24).

Parameter Estimation

This involves determining the ARIMA coefficients of (p,d,q) or (p,d,q)(P,D,Q)
for seasonal models which best fit the series data (Hyndman, 2000, p. 1). There are
multiple methods for determining the goodness-of-fit of a model, including the Akaike’s
Information Criterion and Schwarz Bayesian Information Criterion, both of which are
utilized in the research below.

Model Checking

Checking the model is an iterative process of identifying where or how the model

is not as good of a fit to the data series and re-accomplishing the model selection,
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parameter estimation, and model checking steps until the best fit is obtained (Hyndman,
2000, p. 1).

Forecasting

Utilizing the best model to accomplish a forecast is the end result of the process
and is often accomplished via a computer program for large data sets (Hyndman, 2000, p.
1). Once the data is forecast, it can be compared to reserved data observations or future
observations in order to validate the model via a multitude of error statistics. Validation
is important because all the goodness-of-fit measures used in the iterative model checking
process are only designed to determine how well the model fits the data used to forecast.
Whereas, the validation process is used to determine how well the end result accurately

predicts future events, the end goal of forecasting.

Summary

This literature review presented a background on over twenty years of USAF
tanker recapitalization efforts from failed contracts to numerous reports analyzing tanker
recapitalization strategies. All of these efforts were focused on producing a new tanker
or tanker alternative before the tanker fleet was reduced by aging aircraft and the
increasing cost of maintenance. Unfortunately, multiple delays have reduced the DoD’s
options and strained the air refueling system, only recently producing a new tanker in the
KC-46A. Efficient use of the remaining assets to include demand forecasting strategies
that have been used in the air transportation industry for decades may alleviate some of
the strain. Several articles on different forecasting strategies were presented along with a

background on time series analysis and ARIMA models. This background helps to
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explain the power and utilization of ARIMA models specifically for the air transportation
industry. Finally, a discussion of the Box-Jenkin’s methodology was presented in

preparation for the mathematical methodology in Chapter 3.
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I11. Methodology

“Prediction is very difficult, especially if it is about the future” - Niels Bohr

Chapter Overview

This research employed time series forecasting techniques, including
autoregressive integrated moving average (ARIMA), models developed by statisticians
George Box and Gwilym Jenkins for business and economic data application in the 1970s
(Nau, 2014b). Time series forecasting develops a model based on past observations of
the same variable over equally spaced time periods in order to describe an underlying
relationship (Zhang, 2003). Such a model can then be used to predict future outcomes of
that variable over future time periods of the data series. This chapter will explain how
the researcher analyzed the available tanker training ARST data which is comprised
primarily of priority 3 and 4 air refueling training missions versus operational missions
and is focused on the air refueling request status portion of the data set. Next, this
chapter will include a brief discussion on data transformations to provide stationary time
series including differencing and logarithmic transformations for application in multiple
forecasting methods. Lastly, the chapter will focus on the description and understanding
of the various time series forecasting methods that were utilized in increasing complexity

to analyze the available data.

Data Scope

As previously stated, this researcher’s data source focused on tanker training data
received from the 618 Air Operations Center’s (AOC) Air Refueling Scheduling Tool.

136,466 rows of data from 30 Jun 2010 to 10 Mar 2018 were initially provided. The data
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provided also contained information about the air refueling requests including receiver
organization, aircraft type, fuel required, priority, duration, etc. for a total of 22 database
columns. As stated in Chapter 1, the request status is most effective in determining
whether the air refueling request was supported. Due to differences in how the request
status was originally recorded prior to April 2012, the data set was scoped to start on 08
Apr 2012 and end on 10 March 2018. These dates were chosen to correspond to the
Sunday through Saturday weekly schedule, which will be more thoroughly explained in
Chapter 4. This subset of the data left 117,446 data points for analysis - 95,906 for
forecasting and 21,540 for validation. Data after 10 Mar 2018 remained unavailable to
the researcher due to a system software change; however, it is still being collected and
should ultimately be used for further validation and updates to the presented forecast

models.

Data Transformations

Many time series forecasting techniques depend on a stationary time series,
meaning that the series is not dependent on the specific observed time (Hyndman &
Athanasopoulos, 2018). Therefore, a time series with a significant trend or seasonal
component would be non-stationary as observed at different times of the year. A series
with no predictable pattern like “white noise” would be stationary and should have
“constant statistical properties such as mean, variance, and autocorrelation over time”
(Nau, 2018). This is important because it can make the series easier to forecast if the

statistical properties remain constant.
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One technique to achieve a stationary series is to take the difference of the time
series. This is accomplished by subtracting the value of the time Y at time period t from
Y at time period t — 1; if this operation produces a stationary series that is random and not
autocorrelated, then it is also called the random walk model described below (Nau, 2018).
It is also possible to take the second difference of a time series by taking the first
difference again of the first difference just taken; however, this can easily cause an
unintended error if not properly analyzed. Other data transformations include
mathematical operations to stabilize the variance in a time series, thereby increasing the
ability to predict future events as the subsequent observances would have a smaller range
of highs and lows from the mean. For example, taking the logarithm (Log 10) or natural
log (LN) of the data set can reduce variance as differencing can stabilize the mean thus

reducing data trend and seasonality (Hyndman & Athanasopoulos, 2018).

Time Series Forecasting Methods

There are several different methods for forecasting data over time. Those in this
section are some of the most commonly used and are presented from the simplest to the
more complex; several concepts are reliant on one-another.

The Naive Method

Naive forecasts simply predict future outcomes based on the last observation
recorded (Hyndman & Athanasopoulos, 2018). Simple forecasts such as these can serve
as an important benchmark for comparison against more complex forecasting methods
that may be prone to more error. The naive model should represent the worst case of an

error a researcher is willing to accept in any given forecast. These models are quick and
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require little to no computing power to produce as they assume that the next data point is
equal to the last observed point (Singh, 2018). The naive method can be surprisingly
adequate when applied to a stable or limited data series. The equation for the naive

method is:

Equation 1: The Naive Method
?t = yt—l (l)

Where
Y, = the forecast value at time t

The Random Walking Method
The random walking method is the first difference of the naive method, which
outputs the difference between successive data points from the original observations, as

shown below (Hyndman & Athanasopoulos, 2018).

Equation 2: First Difference

Yt =Y =Y (2)
Assuming this output is stationary, the random walking model can be re-written as:

Equation 3: The Random Walking Method
?t = Yt—l + St (3)

Where
& = accounts for random error or white noise

This random walking model has the same benefit presented for the naive method — a
benchmark for the worst case of error — yet it is designed for non-stationary data.
The Simple Average Method
Instead of using the last value to predict the next value, the simple average

method uses the average of all previous values observed in order to predict the expected

31



value of a future value (Singh, 2018). This method is best suited for series that maintain
a nearly constant mean and will not account well for data with an upward or downward
trend. The equation for the simple average method is below and encompasses a simple

arithmetic average of all observed values that number a total of p.

Equation 4: The Simple Average Method

4
~ 1
Yip1 = = z Y; (4)
p t=1

Where
p = previous values
The Simple Moving Average Method
A potentially more useful application building upon this method is the simple
moving average method, which allows for the use of a specified subset of the data often
but not always the more recent values to account for variation in earlier data. Another
way to think about this method is that it considers a “sliding window” of data that is

specified by k for a stationary data series in the below equation (Singh, 2018).

Equation 5: The Simple Moving Average Method

~ Yt + Yt—l + Yt—2+"' +Yt—k 1
Yt+1 = k - (5)

Where
Y,,, = the forecast value at time t + 1
It is important to note that if k = 1, the output is the same as the naive method
above; the other extreme is that if k = p or all previous observations, the output would be

the same as the simple average or mean method above. Furthermore, it is possible to
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weigh past observations differently, resulting in the weighted moving average method
(Singh, 2018).

The Simple Exponential Smoothing (SES) Method

In an effort to bridge the gap between the simple average and weighted moving
average methods, simple exponential smoothing takes into account all data by using
weighted averages that decrease exponentially to account more for recent, potentially
relevant data, and less for older, potentially irrelevant, data (Singh, 2018). This process
weighs recent data the most, a benefit of a simple moving average, yet considers all data
in the set, unlike moving average. In order to define the equation for the simple
exponential smoothing method several new terms must be introduced. First, ais a
“smoothing constant” that is between 0 and 1 (Nau, 20144, p. 8). It is important to note
that, once again, if a=1 then the SES model will equal the naive model (or random
walking if differenced) and if o=0 then the SES will equal the simple average or mean
model. The second issue is to define the series L that represents a level or local mean of

the series “computed recursively” from the previous data as shown in equation 6 (Nau,

2014a, p. 7).
Equation 6: Level Mean of the Series
Ly=aY,+ (1-a)liy (6)
Where
0<a=<1

The estimated local mean at time t is calculated by “interpolating between the
just-observed value and the previous estimated level, with weights of a and 1-a,

respectively” (Nau, 20144, p. 8). Larger values of a will increase the weight of more
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recent observations while, conversely, lower values will increase the weight of older
observations. A significant benefit of the SES model is that o can be varied with new
data input to minimize forecast error. Assuming the forecast series has no trend, the
forecast for time t+1 can be estimated by the local mean at time t in equation 7.1 (Nau,
2014a, p. 8). This leads to the simple exponential smoothing equation by substituting

equation 6 in for L;:

Equation 7: The Simple Exponential Smoothing (SES) Method

Vo1 = Ly (7.1)
Yoo = a¥e + (1 — a)¥; (7.2)
Where
0<ac<1

Double (Brown’s) Linear Exponential Smoothing Method

While simple moving average and simple exponential smoothing methods rely on
data without a trend, Brown’s linear exponential smoothing model computes both a level
and trend denoted as L, and T;, respectively (Nau, 2014a, p. 16). To accomplish this, the
series S at time t is exponentially smoothed using SES and the same a, once for S  and a

second time for S”.

Equation 8: Double (Brown’s) Linear Exponential Smoothing Method

Si=a¥e+(1—a)St4 (8.1)
Se=aSt+ (1—a)S" 4 (8.2)
Ly =25 — S"11 (8.3)
Te=(a/(1=a)(St = 5-1) (8.4)
Yesr = Ly + kT, (8.5)
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Where
St = Single smoothed series at time t
S”t = Double smoothed series at time t
L, = Estimated level at time t

T, = Estimated trend at time t

o = Smoothing constant 0 < a < 1

Linear (Holt’s) Exponential Smoothing Method
Holt’s linear exponential smoothing method is similar to Brown’s in that it also
estimates level and trend. However, it employs two different smoothing parameters, one

for level (o)) and one for trend (B), allowing those estimates to vary at independent rates

thus fitting more data patterns (Nau, 2014a, p. 16).

Equation 9: Linear (Holt’s) Exponential Smoothing Method

Ly=a¥, +(1—a)(Le-g + Te-1) (9.1)
Te= By — L)+ (A =BTy (9.2)
9.3)

Vepk = Ly + KT,

Where
L; = Estimated level at time t
T, = Estimated trend at time t
o = Smoothing constant 0 < a < 1

B = Trend smoothing constant0 < f < 1

Damped Trend Linear Exponential Smoothing Method

A downside of Holt’s linear exponential smoothing method is that it forecasts a

constant trend infinitely into the future resulting in over or under forecasting over longer
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periods of time (Hyndman & Athanasopoulos, 2018). In order to combat this forecasting
problem, the damped trend method includes a parameter (¢) to adjust the trend line
toward 0 slope as time periods increase. If ¢ = 1 the damped trend method will equal

the Holt’s linear method, while possible values for ¢ range from0 < ¢ < 1.

Equation 10: Damped Trend Linear Exponential Smoothing Method

Ly=aYe+ (1 —a)(Le—y + dT;—1) (10.1)

Te= B(Le = L)) + (1= PB) ¢Te—4 (10.2)
k

Pup=Le+ ) $iT, (10.3)
i=1

Where
L. = Estimated level at time t
T, = Estimated trend at time t
o = Smoothing constant 0 < o < 1
B = Trend smoothing constant 0 < < 1
¢ = Dampening parameter0 < ¢ < 1
Seasonal Exponential Smoothing Method
Up to this point, methods have built on one another to address mean, moving
average, and exponential smoothing. In particular, the exponential smoothing models
have increased in complexity to accommodate series with different trends. The seasonal
exponential smoothing addresses those series with a seasonal or cyclical component but
no overall trend increasing or decreasing by utilizing a level and seasonal term (Hyndman

& Athanasopoulos, 2018).
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Equation 11: Seasonal Exponential Smoothing Method

Le=a(Yy — Sep) + (1 — )Ly (11.1)
Se=06; — L)+ (1 -98)S—p (11.2)
Yooy = Lt + St—pric (11.3)

Where
L. = Estimated level at time t
S¢ = Estimated length of seasonality at time t
o = Smoothing constant 0 < o < 1
& = Seasonality smoothing constant 0 < 6 < 1
The Holt-Winters Seasonal Method
In an effort to put all of these components together into one method, Holt and
Winters developed a triple exponential smoothing method with a term for level (L;),
trend (T;), and seasonal (S;) components, along with respective independent smoothing
parameters (o, B, ) (Hyndman & Athanasopoulos, 2018). There are two different
representations depending on the series behavior of the seasonal component. “The
additive method is preferred when the seasonal variations are roughly consistent through
the series, while the multiplicative method is preferred when the seasonal variations are
changing proportional to the level of the series” (Hyndman & Athanasopoulos, 2018).
Data samples with little trend or seasonality will result in similar outputs via either
method. The difference as presented in the equations below is that the additive form is
expressed in absolute terms while the multiplicative is expressed in relative terms

(Hyndman & Athanasopoulos, 2018)
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Equation 12: The Holt-Winters Seasonal Method - Additive
Additive Seasonality — Constant Amplitude

Le=a(Yy — Se—p) + (1 —a)(Le—q + Tr—1) (12.1)
Te=PB(Le = Le-1) + (A= B) Tey (12.2)
Se= 8, — L)+ (1 —8)S, (12.3)
Yooy = Le + kT + Se—pik (12.4)

Where
L; = Estimated level at time t
T; = Estimated trend at time t
St = Estimated length of seasonality at time t
o = Smoothing constant 0 < a < 1
B = Trend smoothing constant 0 < f < 1
& = Seasonality smoothing constant 0 < § < 1

p = Number of seasons per year

Equation 13: The Holt-Winters Seasonal Method - Multiplicative
Multiplicative Seasonality — Constant Cycles (in overall percentage teams)

Y
L = «a 5 + (1 —a)(Lgg + Teoq) (13.1)
Te= B(Le = Le-1) + (A= B) Teq (13.2)
St = SL_t + (1 =68)St—p (13.3)
?(k) = LeSt—pri (13.4)
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Where

L. = Estimated level at time t
T, = Estimated trend at time t

S¢ = Estimated length of seasonality at time t

o = Smoothing constant 0 < o < 1
B = Trend smoothing constant 0 < B < 1

0 = Seasonality smoothing constant 0 < 6 < 1
p = Number of seasons per year

ARIMA (The Box-Jenkins Methodology)

Auto-Regressive Integrated Moving Average (ARIMA) models are a variation of
discrete-time filtering methods created by electrical engineers in the 1930s and 40s.
Statisticians George Box and Gwilym Jenkins popularized these models starting in the
1970s for application to business and economic data (Nau, 2014b). Almost all of the
previously covered methods can be described by an ARIMA model, as shown in Table 3
below. The application of the ARIMA model is broken down into three parts — auto-
regressive (AR), integrated (1), and moving average (MA), often with the standard
notation p, d, g to explain the order and degree of each segment of the model (Nau,
2014b). An autoregressive (AR) term is a forecast of the indicated variable utilizing a
linear regression of a number of past values of the variable (Hyndman & Athanasopoulos,
2018). Therefore, the AR term is focused on fitting the forecast to previous observations
in the series. The integrated (1) term is a factor when the series is not stationary and must
be differenced to stabilize the mean or reduce trend and seasonality. ARIMA models

rarely need to be differenced more than twice, and over-differencing can output strong
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negative autocorrelation along with a strong moving average signature (Nau, 2014b).
Lastly, the moving average (MA) term utilizes past forecast errors in the series and
regression for forecasting future values (Hyndman & Athanasopoulos, 2018).
Application of a specific ARIMA model is an iterative process to develop the best model,
involving trial and error in order to minimize forecast error displayed in the

autocorrelation (ACF) and partial autocorrelation (PACF) residual plots (Nau, 2014b).

Table 3: Forecasting Method and ARIMA Equivalence

Mean Model / White Noise ARIMA (0,0,0) + ¢

Random Walk Model ARIMA (0,1,0)

Simple Exponential Smoothing ARIMA (0,1,1)

Double (Brown) Linear Exponential Smoothing ARIMA (0,2,2)

Linear (Holt) Exponential Smoothing ARIMA (0,2,2)

Damped Trend Linear Exponential Smoothing ARIMA (1,1,2)
Seasonal Exponential Smoothing ARIMA (1,1,p+1)(0,1,0)p
Holt-Winters Additive Seasonal Method ARIMA (1,1,p+1)(0,1,0)p

Source: (Jones & Arnold, 2019)
Autoregressive (AR)

The AR part of the model is often written as p and “describes how each
observation is a function of the previous p observations” (Hyndman, 2001, p. 1). The

equation for p > 1 is:

Equation 14: Autoregressive Standard Equation

Yi=c+ P Vg + PV o+ ...+ ¢th_p + & (14)
Where
Y; = Observed value at time t
Y:_1 = The previous value at time t

& = Random error
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¢ = Constant
¢, = Constant
Integrated (1)

The | part of the model is often written as d and “determines whether the
observed values are modelled directly, or whether the differences between consecutive
observations are modelled instead” (Hyndman, 2001, p. 1). This term is used to correct
for non-stationary series, that is those with trend or seasonality, which is quite common in
business and economic data. “Forecasting has been of particular importance to industry,
business, and economics where many times series are often represented as non-stationary
and, in particular, as having no natural mean” (Box & Jenkins, 1970, p. 7). Series are
rarely differenced more than twice to obtain stationarity.

Moving Average (MA)

The MA part of the model is often written as g and “describes how each

observation is a function of the previous q errors” (Hyndman, 2001, p. 1). The equation

forq>1is:

Equation 15: Moving Average Standard Equation
Yt =c+ elgt_l + ezgt_z'i‘ ot qut—q + St (15)

Where
Y; = Observed value at time t
&t—q = Random error at a previous time t — q
& = Random error at time t
¢ = Constant

8, = Constant
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Seasonal ARIMA

For data series that exhibit seasonal fluctuations, ARIMA can be used to model
the data in a way similar to the seasonal exponential smoothing or the Holt-Winters
methods, which include a seasonal component. In order to apply seasonal ARIMA, or
SARIMA, three more terms are added - seasonal auto-regressive (P), seasonal integrated
(D), and seasonal moving average (Q). The seasonal function thus is expressed as
ARIMA(p,d,q)(P,D,Q) where the uppercase and lowercase terms are independent of one
another and have recommended values based on residual ACF/PACF outputs (Nau,
2014b).

Time Series Forecasting Model Approach

The researcher utilized JMP 12.0 statistical software developed by SAS to analyze
the 2012 — 2018 ARST statuses of Confirmed, Bought, Filled, Published, and Cancelled
grouped by seven-day weeks (Sunday thru Saturday). Weekly analysis was chosen for
seasonal reasons apparent in the data set. Some days resulted in zero requests (major
holidays, etc.) and daily forecasting with a zero value for the variable of interest results in
software calculation errors amongst the various formulas. An initial exploration into
monthly forecasting resulted in a less than optimal sample size with only 72 months of
data, 12 of which were to be withheld for validation. Furthermore, there are some
monthly cycles and some seasonality, but the true cycles appeared to be weekly, as
requests on the weekends were much less than mid-week (and often non-existent thus
skewing data and making an analysis of a smaller time scale not useful with the
techniques evaluated). Therefore, weekly aggregation of data allowed for 309

observations, 52 of which were withheld for validation.
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Each of the five series were plotted in JMP, log (In) transformed and differenced
to achieve stationary series data, before applying the above exponential smoothing and
ARIMA methods in order to determine the best models to compare to the withheld 52-
weeks of data and to determine the best forecast model moving forward for each request
status. An explanation of the output results and how they were used to determine the best
possible models for validation is included in the next chapter. Furthermore, analysis and
comparison of error for each status is included with a graph depicting the forecast,

validation data, and confidence interval for each request status.

Measures of Error and Model Comparison

The output from the JMP program produces multiple measures to compare against
one another by defining error in multiple ways. For example, the JIMP model comparison
output includes degrees of freedom, variance, Akaike’s ‘A” Information Criterion (AIC),
Schwartz’s Bayesian Information Criterion (SBC), RSquare, -2LogLikelihood
(-2LogLH), Mean Absolute Percentage Error (MAPE), and Mean Absolute Error (MAE).
Whereas the AIC and SBC are used primarily for model comparison, the MAPE and
MAE are measures of error to determine how well the model actually represents the
historical observations. Each of these measures will be discussed below in more detail;
for now, it is important to note that none of these measures can be certain in predicting
future values. For that, the model predictions must be compared to data reserved for

model validation.
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Degrees of Freedom (DF)

Degrees of Freedom are measured from n (the number of observations in the
series) — k (the “number of fitted parameters in the model”) (JMP Support, 2018). The
model degrees of freedom are normally reduced primarily by the number of forecast
periods which are included in the value of k. However, other data alterations like
differencing, AR, and MA terms also increase model parameters and reduce the degrees
of freedom.

Variance

An estimate of variance in the model is calculated by dividing the sum squared
error (SSE), which is calculated by summing the squared residuals by the degrees of
freedom, SSE / (n-k). This results in a sample estimate of the variance or the random
changes in the model (JMP Support, 2018).

RSquare

Also known as the coefficient of determination (R?) is calculated by 1-SSE/SST
where SSE is the “sum of the squares of the residuals” and SST is the total sum of the

squares (JMP Support, 2018).

Equation 16: Sum Squared Error

SSE= ) (= 91’ (16)

Equation 17: Total Sum of Squares

SST = Z(Yi - y)? (17)
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RSquare is presented as a correlation between the explained variance and total variance
of Y values in a squared form to provide a proportion of the variation that can be
explained (Makridakis et al., 1998, pp. 199-200). This makes RSquare an especially
useful tool when using regression and understanding. For example, it shows how linear
variance in y is explained by x. However, it can be a more difficult tool with time series
forecasting; which can have an extremely low RSquare’s that must be taken into context
with other forecasting methods as one piece of the puzzle. One aspect to watch out for is
a negative Rsquare resulting from a SSE that is larger than the SST; this result may
indicate a poorly fitting model (JMP Support, 2018).

-2LogLikelihood

The above measures focus primarily on variance while the next three focus on
model comparison. -2LogLikelihood, or -2LogLH as it is depicted in JMP, is an iterative
optimization method to find the maximum likelihood of the probability density function
(PDF) by observing the actual sample observations given a defined set of parameters
(Makridakis et al., 1998). The likelihood function is applied to time series forecasting
which also uses historical observational data modeled after a known probability
distribution function for a given set of parameters or variables (Myung, 2003, p. 92). The
process uses a method called maximum likelihood estimation (MLE) which derives a
probability distribution that best fits the data observation in order to determine other
selection criteria such as AIC and SBC (Myung, 2003, p. 93). The actual calculation
varies depending on the projected PDF and potential for local and global maximums. In
practice, -2LogLikelihood is actually taking negative two times the natural log of the

likelihood function which is then evaluated “at the best fit parameter estimates with the
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smallest value representing a better fit model” (JMP Support, 2018). The major
drawback of this parameter estimation technique is that -2LogLikelihood fails to penalize
models with excessive parameters. This can result in ‘overfitting” a model with
additional parameters in order to result in a low -2LogLikelihood value, yet there is no
corresponding value in how well the model fits future data; this is where AIC and SBC
have value.

Akaike’s “A” Information Criterion (AIC)

The Akaike’s “A” Information Criterion (AIC) is a measure of a model’s
goodness-of-fit which can be used to decide between competing forecast models
(Makridakis et al., 1998, p. 589). This is because the AIC estimates the quality of the
model by including twice the number of model parameters in the equation, thereby
reducing the chance of ‘overfitting’ or ‘underfitting’ the model with the lowest AIC

representing the best fit model.

Equation 18: Akaike’s “A” Information Criterion (AIC)
AIC = —2LogLikelihood + 2k (18)

Where
k = Number of estimated parameters in the model
Schwartz’s Bayesian Information Criterion (SBC)
The Schwartz’s Bayesian Information Criterion (SBC), like AIC, is a measure of
a model’s goodness-of-fit which can be used to decide between competing forecast
models; it is also called an order selection criteria (Makridakis et al., 1998, p. 592). Like
AIC, SBC estimates model quality while reducing the chance of ‘overfitting” or

‘underfitting” with a more complex model. SBC includes both the number of parameters
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and number of observations in the equation, thereby producing a slightly different result

than AIC and often an overall less complex model which should be prone to less error.

Equation 19: Schwartz’s Bayesian Information Criterion (SBC)
SBC = —2LogLikelihood + k * In(n) (19)

Where
k = Number of estimated parameters in the model
n = Number of observations in the model

With a complete understanding of the above measures of model goodness-of-fit,
the researcher utilized JMP software for the model comparisons below. The software
output is rank ordered by AIC followed by SBC, both computed using an MLE approach
for calculating best fit model parameters using -2LogLikelihood. This approach was
used for both forecast model selection and order selection criteria when deciding between

multiple ARIMA models.

Model Validation

The above measures of goodness-of-fit are focused on how well each model
compares to the historical data it is based upon and not how well the model might fit
future data. 52-weeks of data were reserved from each of the five statuses being
forecasted for the purpose of forecast validation. The error statistics MAE and MAPE
can be used to see which forecasting technique resulted in the least error and should be
considered for modeling future requests for that type of status. Each of the five demand
statuses was modeled independently and, therefore, have slightly different models for

best fit of the data. It also should be noted that all five statuses were transformed by
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taking the natural log of the data in order to reduce variance for each of the forecasting
methods.

Mean Absolute Error (MAE)

Although there are several ways of communicating forecast error, this research
will focus on two of the most common, mean absolute error (MAE) and mean absolute
percentage error (MAPE). Each of these measures of error represents the difference
between the actual observation and the prediction or forecast for that observation. The
first, mean absolute error, is a simpler representation of error as a measure of the
difference between the observation and prediction without regard to the sign of the error
(Makridakis et al., 1998, p. 605). The absolute value of the value’s difference results in
the positive and negative errors not being cancelled out. However, MAE is not
particularly good at comparing different sized data sets or unit values; for that MAPE is a

better option.

Equation 20: Mean Absolute Error (MAE)
n
1 A
MAE = = |y - i (20)
i=1

Where
n = Number of observations in the model
Mean Absolute Percentage Error (MAPE)
Mean absolute percentage error is the average of all the percentage errors of a
data set without regard to the sign of the errors (Makridakis et al., 1998, p. 605). MAPE
includes an absolute value so that the positive and negative errors are not cancelled out.

Moreover, the percentage of errors allows for better comparison across multiple forecasts
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of different magnitudes or even units as the percentage error can be compared equally.
The drawback is that observations of zero result in an undefined MAPE. Both MAE and
MAPE are common measures for forecasting error and are utilized throughout this

analysis for their simplicity and commonality.

Equation 21: Mean Absolute Percentage Error (MAPE)

n
100 = P
MAPE = Z |yl s
no&l

i=

(21)

Where

n = Number of observations in the model

Summary

After evaluating the 618 AOC’s ARST data provided from Apr 2012 to Mar
2018, the researcher saw patterns and seasonality in the data when separated by request
status. The five statuses of Confirmed (the receiver and tanker have agreed to the details
of the request which is supported), Bought (the tanker unit has agreed to support the
request by clicking “buy” in ARST and, therefore, is supporting the request), Filled (the
request is entered with an identified tanker unit in ARST assuming some initial
coordination; however, the request may or may not be supported), Published (the request
was not entered with an identified tanker unit and was not supported in the system, an
unsupported air refueling request), and Cancelled (the request that was cancelled by
either the tanker or receiver unit and may or may not have been able to be supported).

These five statuses were then aggregated by weeks from 8 Apr 2012 to 10 Mar

2018 in order to develop 309 weeks of data for the 5 statuses. The researcher then
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explored the major time series forecasting methods, including exponential smoothing and
ARIMA, to understand how they applied to one another and to determine which might be
the most valuable in forecasting future demand by each of the five statuses designated in

the data set. The next chapter will apply this methodology along with measures of the

error to determine the best potential models to compare to the withheld validation data.
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IV. Analysis and Results

’

“I have seen the future and it is very much like the present, only longer.’
- Kehlog Albran

Chapter Overview

This chapter presents the results of the researcher’s time series forecasting for
each of the five identified statuses represented in the ARST data set described in Chapter
1. The time series forecasting was accomplished in JMP to create models that would best
represent the data while forecasting the next 52-weeks of air refueling requests. This
analysis was grouped by seven-day weeks starting on the Sunday of each week. Upon
initial review, the researcher determined that neither monthly groupings of data nor daily
groupings of data were feasible for the analysis method due to small sample size for
monthly groupings (72 total) and zero observations on certain days for particular daily
groupings. Therefore, the weekly method was chosen for an adequate sample size of 309
observations with no weekly status groupings resulting in zero observations over the
seven-day week. Once the data was grouped by week, multiple forecasting methods were
applied to the data sets. Each forecasting method results in some error. Therefore, this
chapter will begin with a discussion of measures of error and a discussion as to how
different methods best fit a forecast for the source data. The best models were then used
to forecast 52-weeks of data that was reserved from the initial forecast; this allowed for
model validation and analysis of how error as a measure of best fit applied to the forecast

data over the validation period.
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Data Preparation

In order to utilize Box-Jenkins ARIMA Methodology for the time series
forecasting models, the data had to be first analyzed for stationarity and seasonality. The
researcher expected seasonal fluctuations over monthly and weekly time periods, which
were visible in the data with peaks of requests surrounding April and October and a lack

of requests overall in December and January.
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Figure 3: Monthly Distribution of Air Refueling Requests

The most apparent cyclical or seasonal fluctuations are seen within the weekly period.
Graphing the data by the day of the week clearly shows that most requests are for
Tuesday through Thursday, with the fewest for Saturday and Sunday, as shown in Figure
4. This figure represents the daily distribution of all 309 weeks of request data, each
represented by a different color line in order to show highs and lows of the requests by
the day of the week. Therefore, although there is some monthly seasonal fluctuation in

the data, the real cyclical or seasonal activity happens at the weekly level. This
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observation was confirmed with forecasting models with less error over a 52-week period
versus a 12-month period. This drives the 52-period calculations in the forecasting

techniques with a seasonal component seen below.

AIR REFUELING REQUESTS BY WEEKDAY
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Figure 4: Daily Distribution of Air Refueling Requests

The next aspect to look for in the data was stationarity, which means that the data
set’s mean and variance are constant throughout the observed time periods in order to
apply the ARIMA forecasting techniques. This is important because the larger the
variance, the more difficult it will be to predict future occurrences. Therefore, the
smaller the variance, the more accurate the forecast should be. One of the easiest ways to
check for stationarity is to look at the autocorrelation function (ACF); if the ACF quickly
decreases toward zero, the data set is stationary. Alternatively, if the values decrease

slowly, as shown below, the data set is hon-stationary (Ngo, 2013, p. 1). This example is
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from the Confirmed status and depicts the slow decrease in ACF values in the bottom left

column, only decreasing within an acceptable margin of error at the 10" lag point.
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Figure 5: Non-Stationary Data Set
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In order to correct for non-stationary data, the first or second difference can be
taken to reduce the variance and make the data more constant around the mean, thereby
transforming the data into a stationary time series (Ngo, 2013, p. 1). Below is the first
difference of the same data set shown above. It now decreases quickly after the first lag

and is centered around the mean of -0.53 with a smaller standard deviation.
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Figure 6: Stationary Data Set
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Differencing is a more complex process when applied to seasonal data. The five
data sets being analyzed are non-stationary and seasonal data. Therefore, a data
transformation must be applied prior to differencing and application of a forecasting
technique in that order to reduce the data variance such as log, exp, square root, etc.
(Ngo, 2013, p. 3). The researcher applied all 17 potential data transformation techniques
in JMP to each of the five data sets and determined that natural log of the data reduced
the variance the most for each of the five seasonal data sets. As an example, below is the
first difference of the same Confirmed data set showing the data centered around a mean

of effectively zero and a standard deviation of 0.4.
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Figure 7: Seasonal Stationary Data Set
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Model Selection, Estimation, and Diagnostics

After the above analysis, the researcher determined that the five air refueling
request statuses were seasonal data on a weekly basis to be approximated by 52 equal
time periods per year. The air refueling requests were disaggregated into the five statuses
of Confirmed, Bought, Filled, Published, and Cancelled because each type of request has
its own mean, variance, and specific input variables. A single forecast model could be fit
for overall request into the ARST system; however, it would have additional error
embedded into the model. Furthermore, the focus of this research was to highlight
unsupported air refueling requests. The researcher is assuming that Confirmed and
Bought requests are supported, that Filled and Cancelled include both supported and
unsupported requests at unknown percentages until the system is updated with that
fidelity, and that the Publish status includes all known unsupported requests. Therefore,
disaggregation was required to get at the known unsupported requests.

Furthermore, all data sets required seasonal data transformation via taking the
natural log of the original data for analysis and raising that number to the number e in
order to transform the result back to the original form after the forecasting was complete.
Also, all data sets with the exception of the Cancelled time series required differencing to
develop stationary data sets. A full breakdown and validation of each data set are set out

below.

The Confirmed Status

As discussed in Chapter 1, air refueling requests that have been supported by both

the receiver unit and the tanker unit have the Confirmed status and were likely completed
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air refueling events. Prior to early April 2012, the only statuses shown in the ARST data
were Confirmed and Published which is why the number of requests is very high in the

early weeks of data; correspondingly, it is also why the other three statuses are low and

take some time to catch up.

4 (*' Time Series Confirmed

Mean 59.365759
Std 25.104731
N 257

Zero Mean ADF  -3.213495
Single Mean ADF  -7.703477
Trend ADF -7.736319
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Figure 8: Time Series of Weekly Confirmed Status, 08 Apr 12 — 11 Mar 17

The above JMP graph of the Confirmed status over weekly intervals from Sunday
through Saturday shows high request numbers in the first few months of 2012 moderating
into a more cyclical fashion around the mean as time progresses. Note that this
representation has not been transformed in any way and yet still shows a high standard
deviation along with seasonality. In order to run multiple forecasting techniques, the data

set was transformed with the natural log of the original observation, thus decreasing the

variance of the data about the mean.
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Model Selection

4 = Time Series Log[Confirmed]
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4 Model Comparison

Model DF Variance AIC SBC RSquare -2LogLH AICRank SBC Rank MAPE MAE
—|Seasonal ARIMA(2, 1, 2)(1, 1, 0)52 No Intercept 199 | 0.0854796 | 89.275002 105.86560 0.008 | 79.275002 1 1/ 5596895 | 0.215690
~|Winters Method (Additive) 201 0.0904561| 104.38180| 114.33616 0.09 | 98.381801 2 3| 5766066 | 0.221448
~— Seasonal Exponential Smoothing( 52, Zero to One )| 202 | 0.0929329| 107.12551 | 113.76175 -0.11 | 103.12551 3 2| 5.833960| 0.224379
~|Simple Exponential Smoothing( Zero to One ) 255| 01177171 180.61843 | 184.16361 0.295| 178.61843 4 4| 6.557148| 0.234531
~|Damped-Trend Linear Exponential Smoothing 253 0.1186477 | 184.61843 | 195.25397 0.295| 178.61843 5 5| 6.557148 0.234531
—|Linear (Holt) Exponential Smoothing 253| 0.1190704 | 190.43030| 197.51283 0.254| 186.4303 6 7| 6.752387| 0.245660

Double (Brown) Exponential Smoothing 254 0.1214103 | 193.08005 | 196.62132 0.244 | 191.08005 7 6| 6.807101| 0.247176
~11(1) No Intercept 256 | 0.1665223 | 267.58430 | 267.58430 0.00| 267.5843 8 8| 7.541781| 0.273352
~ ARIMA(0, 0, 0) 256 0.1729327 | 279.33534 | 282.88441 0.000| 277.33534 9 9| 7.682062| 0.283234

Figure 9: Confirmed Status Model Comparison

The model comparison chart above allows for the assessment of different
forecasting techniques in JMP. Each of the forecasting techniques described in Chapter 3
was applied to the Confirmed data. Moreover, a minimum of 1250 different iterations of
seasonal ARIMA permutations was applied in accordance with the Box-Jenkins
Methodology (available in Appendix C) in order to arrive at the lowest AIC/SBC values
while verifying significant P values for each parameter. In this case, the seasonal
ARIMA(2,1,2)(1,1,0)52 with no intercept resulted in the lowest AIC/SBC values along
with the lowest MAPE and MAE error values for the data used to develop the forecast
from 08 Apr 12 — 11 Mar 17. This indicates that the seasonal ARIMA model is the best

fit for the forecast data with the least number of parameters and the least overall error.
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4 '~/ Time Series Log[Confirmed]
4 *'Model: Seasonal ARIMA(2, 1, 2)(1, 1, 0)52 No Intercept

4 Model Summary

DF 199 Stable Yes
Sum of Squared Errors 17.0104367 Invertible Yes
Variance Estimate 0.08547958
Standard Deviation 0.29236891
Akaike's ‘A" Information Criterion 89.2750021
Schwarz's Bayesian Criterion 105.865602
RSquare 0.00842266
RSquare Adj -0.0115085
MAPE 5.59689474
MAE 0.21569047
-2LogLikelihood 79.2750021

4 Parameter Estimates
Term Factor Lag  Estimate Std Error tRatio Prob>|t|

AR1,1 1 1 -1.001788 0.1063419 -942 <.0001*
AR1,2 1 2 -0.224531 0.1039438 -2.16 0.0320*
AR2,52 2 52 -0.335018 0.0836814 -400 <.0001
MA1,1 1 1 -0.291071 0.0973296 -2.99 0.0031
MAT1,2 1 2 0.543818 0.0958664 5.67 <.0001*
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Figure 10: Confirmed Status Seasonal ARIMA(2,1,2)(1,1,0)52 No Intercept
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Looking closer at the selected seasonal ARIMA model, the basic information
about the model is available, and each of the parameters is significant. The AR1,2
parameter is the least of all at just above 3%. However, it is not possible to exclude one
AR or MA parameter and keep the other parameters with this type of ARIMA
forecasting. Nevertheless, all meet a 95% or greater significance. Additionally, the
depicted residuals appear to be evenly distributed about zero and show no clear patterns
or skew.

Model Validation

Based on the JMP output and forecast measures such as AIC/SBC, the seasonal
ARIMA model appears to be the best fit for the data used during the forecast period.
However, the only true test of a forecast model is to compare the forecast, for 52-weeks
in this case, to actual data not used in the development of the model. The researcher
utilized the MAPE and MAE error statistics in order to show which model represents the
least error and, therefore, is the most accurate forecast for the subsequent 52-weeks, from

12 March 17 to 10 March 18.

Table 4: Confirmed Status — 52-Week Validation Set Error Statistics

Model MAPE MAE
Mean Model / White Noise (0,0,0) + ¢ 4.687855| 0.187497
Random Walk Model (0,1,0) 4.605422| 0.178326
Simple Exponential Smoothing (0 < a < 1) 4.946746] 0.199302
Double (Brown) Linear Exponential Smoothing 5.722216| 0.234371
Linear (Holt) Exponential Smoothing 5.359548| 0.218370
Damped Trend Linear Exponential Smoothing 4.946746] 0.199302
Seasonal Exponential Smoothing (52 weeks, (0< 6 < 1)) | 6.622882] 0.268338
Winters Method (Additive) 5.120940] 0.205673
Seasonal ARIMA (2,1,2)(1,1,0)52 No Intercept 4.310800] 0.173742
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As shown above, the seasonal ARIMA model both provided the best model of the
forecast data and resulted in the least error for the 52-week validation data set, leading the
researcher to conclude that it was the best model analyzed to forecast future Confirmed

air refueling requests.

Confirmed Status

Figure 11: Confirmed Status Forecast with 95% Confidence Interval

The above graph depicts the entire data set over the 309 weeks, including a 95%
confidence interval for the forecast versus the actual request values in the last 52-weeks.
In reality, there were 3058 Confirmed requests with a forecast for 2863. Therefore, the

forecast was a conservative estimate by 195 requests or 6% less than actual.

The Bought Status

Air refueling requests with the Bought status have been supported by the tanker
unit, but not yet Confirmed by the receiver unit. For the purposes of understanding the
tanker capacity and ability to support receiver demand, these requests were considered as

likely completed air refueling events.
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4 [*'Time Series Bought
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Figure 12: Time Series of Weekly Bought Status, 08 Apr 12 — 11 Mar 17

The above JMP graph of the Bought status over weekly intervals from Sunday

through Saturday shows low request numbers through late 2013 as this new status was

only included in the ARST since the spring of 2012. Also apparent is some cyclical

seasonality. This graph of the Bought data has not been transformed in any way and yet

still shows a high standard deviation, along with seasonality, to illustrate the difference

from the figure below. In order to run multiple forecasting techniques, this data set was

transformed with the natural log of the original observation, thereby decreasing the

variance of the data about the mean.

Model Selection

4~ Time Series Log[Bought]

Log[Bought]

Mean 3.7756653

Std 0.6968644

N 257

Zero Mean ADF -0.62079

Single Mean ADF  -6.00965

Trend ADF -10.52375

01Jan2013 01Jan2014 01Jan2015 01Jan2016 01Jan2017
Week Of
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4 Model Comparison

Model DF  Variance AlC SBC RSquare -2LogLH AICRank SBC Rank MAPE MAE
~|Seasonal ARIMA(0, 1, 1)(0, 1, 1)52 No Intercept 202 | 0.1272945 | 165.77693 | 17241317 0424 161.77693 1 1] 7300150 0.277830
Seasonal Exponential Smoothing( 52, Zero to One )| 202|0.1241088| 167.03699 | 173.67323 0419 163.03699 2 2| 7.365317| 0.280770
~ Winters Method (Additive) 201| 0.123676| 167.52052 | 177.47488 0422 161.52052 3 3| 7335935 0.279841
~—|Simple Exponential Smoothing( Zero to One ) | 255 0.1488443 | 240.62547 | 244.17064 0.683 | 238.62547 4 4| 8667453| 0277161
~ Damped-Trend Linear Exponential Smoothing 253 0.1500209 | 244.62547 | 255.26100 0.683 | 238.62547 5 5| 8667453 0277161
~|Linear (Holt) Exponential Smoothing | 253 0.1490995 | 248.47556 | 255.55808 0.663 | 24447556 6 6| 8.891393| 0275433
~ Double (Brown) Exponential Smoothing 254 | 0.1542407 | 254.20592 | 257.74719 0.654 | 25220592 7 7| 9.105281| 0.285873
~=11(1) No Intercept 256| 0.208965 | 325.70593 | 325.70593 0.555| 325.70593 8 8| 9.973805| 0317796
— ARIMA(0, 0, 0) 256 0487517 | 545.69591 | 549.24498 0.00 | 543.69591 9 9| 17.551592| 0.548101

Figure 13: Bought Status Model Comparison
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The model comparison chart above allows for the assessment of different
forecasting techniques in JMP. Each of the forecasting techniques described in Chapter 3
was also applied to the Bought data. Moreover, a minimum of 1250 different iterations
of seasonal ARIMA permutations was applied in accordance with the Box-Jenkins
Methodology (available in Appendix D) in order to arrive at the lowest AIC/SBC values
while verifying significant P values for each parameter. In this case, the seasonal
ARIMA(0,1,1)(0,1,1)52 with no intercept resulted in the lowest AIC/SBC values along
with the lowest MAPE, although three models resulted in a slightly lower MAE for the
data used to develop the forecast from 08 Apr 12 — 11 Mar 17. The lower MAEs are all
remarkably close to the seasonal ARIMA’s value; this represents something to consider
during model validation. Moreover, the model comparison indicates that the seasonal
ARIMA model is the best fit for the forecast data with the least number of parameters and

the least overall error.
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4 »'Time Series Log[Bought]
4 */Model: Seasonal ARIMA(0, 1, 1)(0, 1, 1)52 No Intercept
4 Model Summary

DF 202 Stable  Yes
Sum of Squared Errors 25.7134916 Invertible Yes
Variance Estimate 0.12729451
Standard Deviation 0.35678357
Akaike's 'A" Information Criterion 165.776928
Schwarz's Bayesian Criterion 172413168
RSquare 0.42422153
RSquare Adj 042137114
MAPE 7.30015018
MAE 0.27783025
-2Loglikelihood 161.776928

4 Parameter Estimates
Term  Factor Lag  Estimate Std Error tRatio Prob>|t|

MA1,1 1 1 0.69825594 0.0624390 11.18 <.0001
MA2,52 2 52 0.29358845 0.0832284 3.53 0.0005*
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Figure 14: Bought Status Seasonal ARIMA(0,1,1)(0,1,1)52 No Intercept
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Looking closer at the selected seasonal ARIMA model, the basic information
about the model is available. Each of the parameters is significant and well above a 95%
significance level. Additionally, the depicted residuals appear to be evenly distributed
about zero and show no clear patterns or skew.

Model Validation

Based on the JMP output and forecast measures such as AIC/SBC, the seasonal
ARIMA model appears to be the best fit for the data used during the forecast period.
Again, the 52-weeks of validation data will be used to calculate the lowest MAPE and
MAE error statistics. The resulting model represents the least error and, therefore, is the

most accurate forecast for the subsequent 52-weeks (12 March 17 to 10 March 18).

Table 5: Bought Status — 52-Week Validation Set Error Statistics

Model MAPE MAE
Mean Model / White Noise (0,0,0) + ¢ 12.347367| 0.535522
Random Walk Model (0,1,0) 7.735098]| 0.316859
Simple Exponential Smoothing (0 < a < 1) 4.487647| 0.180085
Double (Brown) Linear Exponential Smoothing 4.002118| 0.160925
Linear (Holt) Exponential Smoothing 9.651085| 0.398166
Damped Trend Linear Exponential Smoothing 4.487640] 0.180085
Seasonal Exponential Smoothing (52 weeks, (0< 6 <1)] 6.040294] 0.256403
Winters Method (Additive) 4.033481| 0.170903
Seasonal ARIMA (0,1,1)(0,1,1)52 No Intercept 3.918795] 0.164768

As shown above, the seasonal ARIMA model both provided the best model of the

forecast data and resulted in the least MAPE and second lowest MAE error for the 52-

week validation data set, leading the researcher to conclude that it was the best model

analyzed to forecast future Bought air refueling requests.
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Bought Status
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Figure 15: Bought Status Forecast with 95% Confidence Interval

—e—Predicted Bought  —@— Actual Bought

The above graph depicts the entire data set over the 309 weeks, including a 95%
confidence interval for the forecast versus the actual request values in the last 52-weeks.
In reality, there were 3882 Bought requests with a forecast for 4392. Therefore, the

forecast overestimated by 510 requests or 13%.

The Filled Status

Air refueling requests submitted with tanker details and the presumption of pre-
coordination between the receiver and tanker unit have the Filled status. The challenge
with this category is that receivers can enter tanker unit information from which they
intend to receive air refueling service without any knowledge about whether the tanker
unit can actually support the AR event. Therefore, some of the requests in the Filled
status were probably supported by the tanker units and others were not. It is just not
possible with the current database information to determine how much demand was

unsupported.
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Figure 16: Time Series of Weekly Filled Status, 08 Apr 12 — 11 Mar 17

The above JMP graph of the Filled status over weekly intervals from Sunday

through Saturday shows low request numbers through late 2013 as this new status was

only included in the ARST since the spring of 2012. Some cyclical seasonality is

apparent, along with very high numbers from 2014 to 2015 as users gained an

understanding of the status. This graph of the Filled data has not been transformed in any
way and yet still shows a high standard deviation along with seasonality to illustrate the
difference from the figure below. In order to run multiple forecasting techniques, this

data set was transformed with the natural log of the original observation decreasing the

variance of the data about the mean.
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Model Selection

4 > Time Series Log[Filled]

6 Mean 4.9384988
55 : Std 0.5865371
= 5 N 257
2 u Zero Mean ADF  -0.216586
T 45 Single Mean ADF -5.477023
g 4 'Yy 1 Trend ADF 6.18176
3
35 l ‘
40 1
01Jan2013 01Jan2014 01Jan2015 01Jan2016 01Jan2017
Week Of
Time Series Basic Diagnostics
4 Model Comparison
Model DF  Variance AlC SBC RSquare -2LogLH AICRank SBC Rank MAPE MAE
—|Seasonal ARIMA(0, 1, 1)(1, 0, 1)52 No Intercept 253 | 0.0546544 | 12670775 23.306307 0797 | 6.6707746 1 1/ 3.920432| 0.179548
Seasonal Exponential Smoothing( 52, Zero to One )| 202 | 0.0626176 | 30.070623 | 36.706863 0.455| 26.070623 2 2| 3.715940| 0.187774
~ Winters Method (Additive) 201 0.0629291 | 32.070624 42.024984 0455 | 26.070624 3 3| 3715940 0.187774
— Simple Exponential Smoothing( Zero to One ) 255/ 0.0871012| 103.37278 | 106.91796 0.736| 10137278 4 4| 4415334 0.202960
~|Damped-Trend Linear Exponential Smoothing 253 0.0877897 | 107.37278 | 118.00832 0.736| 101.37278 S 5 4415334| 0.202960
—|Linear (Holt) Exponential Smoothlng 253 0.0877213| 111.93534| 119.01787 0.713| 107.93534 6 6| 4535114| 0.205382
~ Double (Brown) Exponential Smoothing 254 0.0897262 | 11590153  119.44279 0.707 | 113.90153 7 7. 4598607 0.209191
~=|I(1) No Intercept 256 | 0.1148503 | 17248033 | 172.48033 0.653| 17248033 8 8| 5.115907| 0.234225
~|ARIMA(0, 0, 0) 256 | 0.3453697 | 457.10548 | 460.65456 0.00| 455.10548 9 9] 10335422 0.470462

Figure 17: Filled Status Model Comparison

The model comparison chart above allows for the assessment of different
forecasting techniques in JMP. Each of the forecasting techniques described in Chapter 3
was also applied to the Filled data. Moreover, a minimum of 1250 different iterations of
seasonal ARIMA permutations was applied in accordance with the Box-Jenkins
Methodology (available in Appendix E) in order to arrive at the lowest AIC/SBC values
while verifying significant P values for each parameter. In this case, the seasonal
ARIMA(0,1,1)(1,0,1)52 with no intercept resulted in the lowest AIC/SBC values along
with the lowest MAE, although two other models resulted in a slightly lower MAPE for
the data used to develop the forecast from 08 Apr 12 to 11 Mar 17. The lower MAPE
values remained relatively close to the seasonal ARIMA’s MAPE error value. This
indicates that the seasonal ARIMA model is the best fit for the forecast data with the least

number of parameters and the least overall error.
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4 '~ Time Series Log[Filled]
4 */Model: Seasonal ARIMA(0, 1, 1)(1, 0, 1)52 No Intercept
4 Model Summary

DF 253 Stable Yes
Sum of Squared Errors 13.827561 Invertible Yes
Variance Estimate 0.05465439
Standard Deviation 0.23378279

Akaike's ‘A" Information Criterion 12.6707746
Schwarz's Bayesian Criterion 23.3063069

RSquare 0.79698626
RSquare Adj 0.7953814
MAPE 3.92043186
MAE 0.17954776
-2LogLikelihood 6.6707746

4 Parameter Estimates
Term  Factor Lag  Estimate Std Error tRatio Prob>|t|

AR2,52 2 52 0.77030373 0.0663125 11.62 <.0001
MA1,1 1 1 0.66653419 0.0494409 1348 <.0001"
MA2,52 2 52 0.26649630 0.1069835 249 0.0134*
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Figure 18: Filled Status Seasonal ARIMA(0,1,1)(1,0,1)52 No Intercept
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Again, looking closer at the selected Filled seasonal ARIMA model, the basic

information about the model is available. Each of the parameters is significant and well

above a 95% significance level; the lowest is the MA2,52 parameter, which is only 1.3%,

still significant and required to maintain the MA1,1 parameter. Additionally, the

depicted residuals appear to be evenly distributed about zero and show no clear patterns

or skew.

Model Validation

Based on the JMP output and forecast measures such as AIC/SBC, the Filled

seasonal ARIMA model appears to be the best fit for the data used during the forecast

period. Again, the 52-weeks of validation data will be used to calculate the lowest

MAPE and MAE error statistics. The resulting model represents the least error and,

therefore, is the most accurate forecast for the subsequent 52-weeks (12 March 17 to 10

March 18).

Table 6: Filled Status — 52-Week Validation Set Error Statistics

Model MAPE MAE
Mean Model / White Noise (0,0,0) + ¢ 3.936391| 0.195276
Random Walk Model (0,1,0) 3.355093| 0.159267
Simple Exponential Smoothing (0 < a < 1) 3.102410| 0.147881
Double (Brown) Linear Exponential Smoothing 4.418292| 0.211397
Linear (Holt) Exponential Smoothing 3.319933| 0.157722
Damped Trend Linear Exponential Smoothing 3.102410] 0.147881
Seasonal Exponential Smoothing (52 weeks, (0 < 6 <1)| 3.734782] 0.185105
Winters Method (Additive) 3.734782] 0.185105
Seasonal ARIMA (0,1,1)(1,0,1)52 No Intercept 2.222276] 0.108962

As shown above, the seasonal ARIMA model both provided the best model of the

forecast data and resulted in the least error for the 52-week validation data set, leading the
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researcher to conclude that it was the best model analyzed to forecast future Filled air

refueling requests.

Filled Status

Figure 19: Filled Status Forecast with 95% Confidence Interval

The above graph depicts the entire data set over the 309 weeks, including a 95%
confidence interval for the forecast versus the actual request values in the last 52-weeks.
Of note, there were 8223 Filled requests with a forecast for 7970. Therefore, the forecast

was a conservative estimate by 253 requests or 3% less than actual.

The Published Status

Air refueling requests that remain in the Published status are those requests with
no tanker details and that are understood to have been unsupported in the system. This
category is in short term focus for this research because, unlike the Filled status and the
Cancelled status yet to come, where it was unclear how many requests went unsupported,
all of those requests that remained in the Published status were unsupported by tanker

units.
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4 */Time Series Published

Mean 40.961089
Std 17.003732
N 257

Zero Mean ADF ~ -3.108952
Single Mean ADF  -8.77537
Trend ADF -9.272746

Published

01Jan2013 01Jan2014 01Jan2015 01Jan2016 01Jan2017
Week Of

Figure 20: Time Series of Weekly Published Status, 08 Apr 12 — 11 Mar 17

The above JMP graph of the Published status over weekly intervals from Sunday
through Saturday shows some higher request numbers in 2012 as the system moved away
from Confirmed and Published being the only possible categories. The data is fairly
consistent about the mean, with some cyclical seasonality. The above graph of the
Published data has not been transformed in any way and yet still shows a high standard
deviation along with seasonality to illustrate the difference from the figure below. In
order to run multiple forecasting techniques, this data set was transformed with the

natural log of the original observation decreasing the variance of the data about the mean.
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Model Selection

4 '~ Time Series Log[Published]

Mean 3.6215343

Std 04511277

T N 257

% Zero Mean ADF  -1.104706

5 Single Mean ADF  -9.524027

%’ Trend ADF 9.764479

3
01Jan2013 01Jan2014 01kJan2015 01Jan2016 01Jan2017
eel
I Time Series Basic Diagnostics
4 Model Comparison

Model DF Variance AlC SBC RSquare -2LoglH AICRank SBC Rank MAPE MAE
— Seasonal ARIMA(1, 1, 2)(1, 1, 0)52 199 | 0.1435461 ' 208.09099 | 224.68159 0.093 | 198.09099 1 1/ 9.246431| 0.316599
Seasonal Exponential Smoothing( 52, Zero to One )| 202 | 0.1405198 | 220.52234 | 227.15858 0.002 | 216.52234 2 2| 9351976 0.319951
~ Winters Method (Additive) 201 0.1412189 | 222.52234 | 232.47670 0.002 | 216.52234 3 3| 9351976| 0.319951
~|Simple Exponential Smoothing( Zero to One ) 255] 0.1596962 | 258.66317 | 262.20834 0.218| 256.66317 4 4| 8994626 0.288300
~ Damped-Trend Linear Exponential Smoothing 253 0.1609586  262.66317 | 273.29870 0218 256.66317 - 5| 8994626 0.288300
~|Linear (Holt) Exponential Smoothing 253 0.1609765 | 268.75299 | 275.83552 0.193 | 264.75299 6 6| 9.130169| 0.295633
~—|Double (Brown) Exponential Smoothing 254 0.1694224 | 278.14542 | 281.68669 0.159 | 276.14542 id 7| 9.263584| 0.298679
~ ARIMA(0, 0, 0) 256 0.2043111 | 322.18787 | 325.73695 0.00| 320.18787 8 8| 10329647 | 0.335868
~11(1) No Intercept 256 0.2137264 | 331.47354 | 33147354 0.05| 331.47354 9 9| 10450418 | 0.338557

Figure 21: Published Status Model Comparison

The model comparison chart above allows for the assessment of different
forecasting techniques in JMP. Each of the forecasting techniques described in Chapter 3
was also applied to the Filled data. Moreover, a minimum of 1250 different iterations of
seasonal ARIMA permutations was applied in accordance with the Box-Jenkins
Methodology (available in Appendix F) in order to arrive at the lowest AIC/SBC values
while verifying significant P values for each parameter. In this case, the seasonal
ARIMA(1,1,2)(1,1,0)52 resulted in the lowest AIC/SBC values but not the lowest MAPE
and MAE error statistics. In fact, the seasonal ARIMA model was 4™ and 5" lowest for
the data used to develop the forecast from 08 Apr 12 to 11 Mar 17. This indicates that
the seasonal ARIMA model is the best fit for the forecast data with the least number of
parameters but with slightly higher error values than represented by other models. The
true test of the better model will be a comparison of the error values that result from the

validation set presented below.
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4 [»/Time Series Log[Published]

4 */Model: Seasonal ARIMA(1, 1, 2)(1, 1, 0)52

4 Model Summary

DF

Sum of Squared Errors
Variance Estimate
Standard Deviation
Akaike's ‘A" Information Criterion 208.090987
Schwarz's Bayesian Criterion
RSquare
RSquare Adj
MAPE

MAE

-2LogLikelihood
4 Parameter Estimates

Term Factor Lag Estimate Std Error t Ratio Prob>|t|
AR1,1 1 1 0.771906 0.0996602 7.75 <.0001
AR2,52 2 52 -0511351 0.0616322 -830 <.0001
MAT1,1 1 1 1426364 0.1444692 9.87 <.0001*
MA1,2 1 2 -0426381 0.1435263 -2.97 0.0033
Intercept 1 0 0.003176 0.0009278 342 0.0008
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Figure 22: Published Status Seasonal ARIMA(1,1,2)(1,1,0)52

199 Stable
28.5656664 Invertible Yes

0.14354606
0.37887473

224.681587
0.09271058
0.07447361
9.24643061
0.31659882
198.090987
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Again, looking closer at the selected Filled seasonal ARIMA model, the basic

information about the model is available. Each of the parameters is significant and well

above a 95% significance level. Additionally, the depicted residuals appear to be evenly

distributed about zero and show no clear patterns or skew.

Model Validation

Based on the JMP output and forecast measures such as AIC/SBC, the Published

seasonal ARIMA model again appears to be the best fit for the data used during the

forecast period. Again, the 52-weeks of validation data will be used to calculate the

lowest MAPE and MAE error statistics. The resulting model represents the least error

and, therefore, is the most accurate forecast for the subsequent 52-weeks from 12 March

17 to 10 March 18.

Table 7: Published Status — 52-Week Validation Set Error Statistics

Model MAPE MAE
Mean Model / White Noise (0,0,0) + ¢ 11.397139| 0.473538
Random Walk Model (0,1,0) 16.486559] 0.682855
Simple Exponential Smoothing (0 < a < 1) 9.216920] 0.383172
Double (Brown) Linear Exponential Smoothing 7.459565] 0.308530
Linear (Holt) Exponential Smoothing 10.420547| 0.433338
Damped Trend Linear Exponential Smoothing 9.216920] 0.383172
Seasonal Exponential Smoothing (52 weeks, (0< 6 <1)] 9.062291] 0.373491
Winters Method (Additive) 9.062291| 0.373491
Seasonal ARIMA (1,1,2)(1,1,0)52 6.762654| 0.276404

As shown above, the seasonal ARIMA model both provided the best model of the

forecast data and resulted in the least error for the 52-week validation data set, leading the

researcher to conclude that it was the best model analyzed to forecast future Published air

refueling requests.
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Published Status
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Figure 23: Published Status Forecast with 95% Confidence Interval

The above graph depicts the entire data set over the 309 weeks, including a 95%
confidence interval for the forecast versus the actual request values in the last 52-weeks.
In reality, there were 3150 Filled requests with a forecast for 2897. Therefore, the

forecast was a conservative estimate by 253 requests or 8% less than actual.

The Cancelled Status

Air refueling requests that remain in the Cancelled status are those requests that
were cancelled by either the tanker or receiver unit. Unfortunately, the system fails to
account for why an AR event was cancelled, which could be for a number of reasons to
include the inability of the tanker unit to support the air refueling event. Therefore, there
are certainly unsupported requests in the Cancelled status that cannot be accounted for at

this time.
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4 [» Time Series Cancelled

Mean 58.961089
Std 18.537963
N 257

Zero Mean ADF  -2.187026
Single Mean ADF  -9.335107
Trend ADF -9.411139

Cancelled

01Jan2013 01Jan2014 01Jan2015 01Jan2016 01Jan2017
Week Of

Figure 24: Time Series of Weekly Cancelled Status, 08 Apr 12 — 11 Mar 17
The above JMP graph of the Cancelled status over weekly intervals from Sunday
through Saturday shows a fairly consistent distribution of data about the mean with some
cyclical seasonality. The above graph of the Cancelled data has not been transformed in
any way and yet still shows a high standard deviation along with seasonality to illustrate
the difference from the figure below. In order to run multiple forecasting techniques, this
data set was transformed with the natural log of the original observation decreasing the

variance of the data about the mean.
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Model Selection

4 = Time Series Log[Cancelled]

Mean 4.0208277

Std 0.3533596

T N 257

K Zero Mean ADF ~ -0.484238

S Single Mean ADF  -9.67892

% Trend ADF -9.704816

|
01Jan2013 01Jan2014 01Jan2015 01Jan2016 01Jan2017
Week Of
I Time Series Basic Diagnostics
4 Model Comparison

Model DF Variance AIC SBC RSquare -2LogLH AICRank SBC Rank MAPE MAE
—|Seasonal ARIMA(2, 0, 0)(2, 0, 0)52 252 | 0.0819538 | 108.75940 | 126.50478 0.284 | 98.759397 1 1| 5799628| 0.222581
Seasonal Exponential Smoothing( 52, Zero to One )| 202| 0.0757818 | 138.22695 | 144.86319 -0.14 | 134.22695 2 2| 6.666302| 0.262050
~ Winters Method (Additive) 201/ 0.0761588 | 140.22695 | 150.18131 0.14| 134.22695 3 3| 6.666302| 0.262050
f— Simple Exponential Smoothing( Zero to One ) 255| 0.1106493 | 164.39601| 167.94119 0.095| 162.39601 4 4| 6.729038| 0.258706
—|Damped-Trend Linear Exponential Smoothing 253 | 0.1115246 | 168.39608 | 179.03161 0.095 | 162.39608 S 5/ 6.729088 0.258708
~—|Double (Brown) Exponential Smoothing 254| 0.120478| 189.64748 | 193.18874 -0.03| 187.64748 6 6| 7.192615| 0.276289
—|ARIMA(0, 0, 0) 256 | 0.1253508 | 196.63618 | 200.18525 -0.00| 194.63618 7 7| 7.034649| 0.268104
~11(1) No Intercept 256 | 0.1313543 | 206.85320 | 206.85320 -0.07| 206.8532 8 8| 7.183811| 0.276975
—|Linear (Holt) Exponential Smoothing 253| 0.126337 | 217.81752| 22490004 -0.15| 213.81752 9 9| 7410497 0.279131

Figure 25: Cancelled Status Model Comparison

The model comparison chart above allows for the assessment of different
forecasting techniques in JMP. Each of the forecasting techniques described in Chapter 3
was also applied to the Filled data. Moreover, a minimum of 1250 different iterations of
seasonal ARIMA permutations was applied in accordance with the Box-Jenkins
Methodology (available in Appendix G) in order to arrive at the lowest AIC/SBC values
while verifying significant P values for each parameter. In this case, the seasonal
ARIMA(2,0,0)(2,0,0)52 resulted in the lowest AIC/SBC values and the lowest MAPE
and MAE error statistics used to develop the forecast from 08 Apr 12 to 11 Mar 17. This
indicates that the seasonal ARIMA model is the best fit for the forecast data with the least
number of parameters and the least overall error. Of note, the Cancelled status was the
only one of the five that did not require differencing in order to reduce the variance for

the forecasting techniques.
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4 '~ Time Series Log[Cancelled]
4 *Model: Seasonal ARIMA(2, 0, 0)(2, 0, 0)52
4 Model Summary

DF 252 Stable  Yes
Sum of Squared Errors 20.6523561 Invertible Yes
Variance Estimate 0.08195379
Standard Deviation 0.28627573
Akaike's ‘A" Information Criterion 108.759397
Schwarz's Bayesian Criterion 126.504777
RSquare 0.28424204
RSquare Adj 0.2728808
MAPE 5.79962801
MAE 0.22258126
-2LogLikelihood 98.7593967

4 Parameter Estimates
Term Factor Lag Estimate Std Error tRatio Prob>|t] Constant

AR1,1 1 1 0.3685796 0.0649041 5.68 <.0001 Estimate
AR1,2 1 2 0.1406660 0.0646559 2.18 0.0305* 0.95609356
AR2,52 2 52 0.1628757 0.0644140 253 0.0121*
AR2,104 2 104 0.3519093 0.0768860 4.58 <.0001
Intercept 1 0 40151520 0.0564173 71.17 <.0001
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Figure 26: Cancelled Status Seasonal ARIMA(2,0,0)(2,0,0)52
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Again, looking closer at the selected Filled seasonal ARIMA model, the basic
information about the model is available. Each of the parameters is significant and well
above a 95% significance level. Of note, the AR,1,2 and AR2,52 are the highest at 3.1%
and 1.2%, respectively, although both still significant at the 95% level. Additionally, the
depicted residuals appear to be evenly distributed about zero with a notable low outlier
around Christmas 2012.

Model Validation

Based on the JMP output and forecast measures such as AIC/SBC, the Cancelled
seasonal ARIMA model again appears to be the best fit for the data used during the
forecast period. Again, the 52-weeks of validation data will be used to calculate the
lowest MAPE and MAE error statistics. The resulting model represents the least error
and, therefore, is the most accurate forecast for the subsequent 52-weeks from 12 March

17 to 10 March 18.

Table 8: Cancelled Status — 52-Week Validation Set Error Statistics

Model MAPE MAE
Mean Model / White Noise (0,0,0) + c 5.992025]0.236018
Random Walk Model (0,1,0) 13.984956|0.539294
Simple Exponential Smoothing (0 < a < 1) 8.129361]0.307461
Double (Brown) Linear Exponential Smoothing 30.313196|1.197508
Linear (Holt) Exponential Smoothing 6.412654|0.255705
Damped Trend Linear Exponential Smoothing 8.138256|0.307804
Seasonal Exponential Smoothing (52 weeks, (0< 6 <1)] 7.216771]0.283724
Winters Method (Additive) 7.216771]0.283724
Seasonal ARIMA (2,0,0)(2,0,0)52 5.727990{0.228003
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As shown above, the seasonal ARIMA model both provided the best model of the
forecast data and resulted in the least error for the 52-week validation data set, leading the
researcher to conclude that it was the best model analyzed to forecast future Cancelled air

refueling requests.

Cancelled Status
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Figure 27: Cancelled Status Forecast with 95% Confidence Interval
The above graph depicts the entire data set overall 309 weeks, including a 95%
confidence interval for the forecast versus the actual request values in the last 52-weeks.
Of note, there were 3227 Filled requests with a forecast for 2931. Therefore, the forecast
was a conservative estimate by 296 requests or 9% less than actual. Significantly, the
Cancelled status was much more volatile than the other statuses due to increased

unpredictability resulting in more forecasting error.

Forecasting

As stated above, each of the five ARST request statuses was best modeled by
seasonal ARIMA models as verified by the lowest overall MAPE and MAE error when
applied to the validation data set. There were differences in the parameters of the
seasonal model between each of the statuses but, overall, the seasonal ARIMA proved to

be the best model for forecasting future air refueling requests in the ARST as shown in
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the consolidated Table 9 below. The number of air refueling requests on a weekly or

annual basis is helpful for long-term planners and answers the researcher’s first research

question, about which forecasting technique is best to predict future demand, seasonal

ARIMA in this case. Since air refueling is accounted for financially by the number of

airframe hours utilized in the expenditure of the service, flight hours executed is a useful

metric for communicating future demand in financial terms. Therefore, the researcher’s

second question applies to methods to convert the number of forecast requests into the

number of requested hours for air refueling with a reasonable degree of certainty.

Table 9: Air Refueling Requests by ARST Status, Difference, and Percent Change

Confirmed Status Bought Status Filled Status Published Status Cancelled Status
Actual |Predicted| Actual |Predicted] Actual |Predicted| Actual |Predicted| Actual |Predicted
3058 2863 3882 4392 8223 7970 3150 2897 3227 2931
195 -510 253 253 296
6% -13% 3% 8% 9%
Total Actual Requests | 21540 Total Predicted Requests 21053

Difference (Actual - Predicted)

487

Percent Change

2%

To attempt to answer this second research question, the researcher analyzed

multiple statistical measures of the hours requested in the ARST. The use of statistical

measures as a method was chosen because a number of factors go into a specific hourly

request for AR, to include the size or number of aircraft to be refueled, length of the

track, operational or training requirements, etc. Furthermore, these varied requirements

do not necessarily have anything to do with when a request is made in the time series or

what status it is assigned, unlike the requests by the statuses that were forecast above.

Therefore, multiple mean and median statistical figures were analyzed to determine the

best hourly predictor based on the number of forecast requests by status. The researcher
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analyzed the statistical measures of one year, two years, three years, four years, and all
data prior to the forecast period beginning 12 Mar 2017. These distributions and
summary statistics are available in their entirety in Appendixes H — L. Furthermore, the
researcher also provided hourly duration requests for the 52-week validation period from
12 Mar 17 — 10 Mar 18 in Appendix M for comparison. By plotting the hourly duration
requests and reviewing the summary statistics for each category, it is apparent that there
is a wide range of values from zero to several thousand. This results from input error or
potentially from users not understanding or not seriously considering the actual duration
of air refueling they are requesting. Whatever the case, although each range has
significant outliers, the data is tightly grouped around the mean and median in each case.
Interestingly, the median value is 60 minutes in every case except the one-year confirmed
and validation confirmed ranges where the median value is 66 and 70 minutes,
respectively. This is most likely a result of the request for one hour of air refueling
service being a common practice for multiple aircraft and a fairly standard air refueling
track length. In order to determine the best statistical measure for predicting hourly
duration based on the number of forecasted air refueling requests, the researcher
computed six test cases utilizing the median value of 60 minutes for all five statuses,
followed by the average number of minutes requested by each requested status for all of
the test data (08 Apr — 11 Mar 17), four years of test data (17 Mar 13 — 11 Mar 17), three
years of test data (16 Mar 14 — 11 Mar 17), two years of test data (15 Mar 15 — 11 Mar
17), and one year of test data (13 Mar 16 — 11 Mar 17). Lastly, the average of the 52-
weeks of validation data was computed as a mark of comparison with the six computed

estimates. The comparison is shown below in Table 10. Interestingly, although the 60-
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minute median in each category resulted in the closest hourly estimation for the

Published category with an underestimate of 231 hours, the median technique also

resulted in the worst overall estimation of hourly duration with an underestimation of

2,897 over the 52-week validation period. Even if the 66-minute Confirmed status

median is used, as was seen in the 1-year distribution, the total hourly duration is still

underestimated by 2,610 hours. Therefore, it is apparent that utilizing the mean over

some range of values will result in a closer estimate of future hourly duration given a

forecast of future requests.

Table 10: Air Refueling Hourly Duration Estimates

Filled

Confirmed Bought Published Cancelled Total Hours

Data Actual | Predicted| Actual |Predicted| Actual |Predicted| Actual |Predicted| Actual |Predicted| Actual | Predicted
Mean (60)) 3,540 2,863 4827|4392 9044| 7970| 3128] 2897| 3411| 2931| 23950 21,053
Difference] 677 435 1074 231 480 2,897
All Test 3540 2675 4827|4633 9044 9426] 3128 2658| 3411| 2677] 23950] 22,068
Difference 865 194 -382 470 733 1,882
4 Years 3540]  3060| 4827 4707 o04a| 9504|3128 2777] 3411|2787 23950] 22,925
Difference| 480 120 -550 351 623 1,025
3 Years 3540  3166| 4827] asoe| 904a] 9se9| 3128] 2768] 3411] 2,889 23950] 23,498
Difference 374 21 -825 360 521 451
2 Years 3540  3249| as827] a9s0| 904a] 10s88] 3128] 2791 3411] 3138 23950 24,745
Difference| 291 -152 -1544 338 273 (795)
1Year 3540 3282 a827] 5439 9044| 9534 3128] 2874 3411] 3074] 23950 24203
Difference| 258 -612 -490 255 337 (253)
validation] 3540 3314 4827] 5461 9044 8766] 3,128] 2,877 3411  3008] 23950] 23515
Difference] 226 -634 278 252 313 434

Reviewing the five distributions of the mean hourly requested duration of air

refueling service showed that the averages over a shorter time span closer to the reserved

data resulted in a better overall predictor of the total number of hours that would be

requested. With the exception of the two years of data distribution that drastically

overestimated the Filled status, the difference between the actual hours requested and

predicted number of hours requested based on previous averages decreased as the data

range decreased toward the preceding one year prior. It is worth noting that the one year

prior only overestimated the number of hours requested by 253 or about 1%, which is
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much less than the control of the average validation data that underestimated by 434
hours. Additional testing in future years will be required to see if the previous year’s
distribution data remains the best estimator for hourly air refueling duration requests,
although this technique is certainly a starting point in estimating air refueling hours given
a forecast number of requests. The full table for one year of air refueling hourly duration

request distribution is shown below in Table 11.

Table 11: Air Refueling Estimates (Averages Calculated in Minutes)

Confirmed (68.8) Bought (74.3) Filled (71.8) Published (59.5) Cancelled (62.9)
Data Actual |Predicted| Actual |Predicted| Actual |Predicted| Actual |Predicted| Actual |Predicted
Requests 3058 2863 3882 4392 8223 7970 3150 2897 3227 2931
Hours 3,540 3,282 4,827 5,439 9,044 9,534 3,128 2,874 3,411 3,074
Difference 258 -612 -490 255 337
% Change 7% -13% -5% 8% 10%
Total Actual Hour Requests | 23950 Total Predicted Hour Requests 24203
Difference (Actual - Predicted) -253
Percent Change -1%

Research Question Analysis

This research focused on specific time series forecasting techniques addressed in
Chapter 3 in order to determine which technique would best model the five identified air
refueling statuses presented in the air refueling scheduling tool (ARST). The researcher
utilized the MAPE and MAE error statistics in order to validate the best fit forecast
model for each of the five statues by minimizing the error between the forecasting model
and the 52-weeks of validation data from 12 March 17 to 10 March 18. In each of the
five cases, the seasonal ARIMA model was the best overall fit of a forecasting model,
resulting in the lowest MAPE and MAE error overall for the nine models evaluated.

The second research question focused on how the forecast number of requests

could then be used as a predictor for the number of hours of air refueling service
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requested. Multiple methods were experimented with including numbers distributions
and summary statistics. The mean of the previous one-year of each defined request status
multiplied by the number of requests represented the best model evaluated. This method
resulted in 90% accuracy or better for each status with the exception of the Bought status
that was 87% accurate and a total hour overestimate of 253 hours or 1% more than actual.
No other method evaluated resulted in a closer estimation or with all five categories

greater than 90% accuracy.

Summary

This chapter presented multiple measures of forecasting comparison to include -
2Log Likelihood, AIC, and SBC, along with the statistical error measures of MAPE and
MAE. The researcher presented the initial data analysis and determination of weekly
seasonality along with the concepts of differencing and data transformation. Next, each
of the five ARST request statuses were presented, including their model selection in JMP
and model validation including error analysis, and then graphed to fully understand how
close the prediction was to the actual reserved data. In each case, the seasonal ARIMA
model was the best fit for the forecast data and was validated with the lowest overall error
utilizing the MAPE and MAE error statistics. Lastly, in accordance with the second
research question, the total number of hours requested was estimated utilizing the
previous one year’s mean hourly duration requests by ARST status multiplied by the
forecast number of requests in each status. This method resulted in the best estimation
overall with regard to the actual number of hours requested and represented a baseline for

future analysis along with a mathematically supported hourly estimation of forecast air
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refueling demand that could then be used for forthcoming decision making. A discussion
of the financial implications, conclusions, and implications of this research will be

included in the next chapter.
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V. Conclusions and Recommendations

“All models are wrong, some are useful” — George E. P. Box

Chapter Overview

This research into tanker training demand forecasting not only fills a void in the
current tools available to USTRANSCOM, AMC, and the 618" AOC, but also allows for
forecasts that can be updated to obtain more precise results as more data is gathered in
future years. Additionally, the forecast models can be adapted for both training and
operational requirements in order to build a more holistic view of the tanker force supply
and demand. This research sought to define the most accurate of nine forecasting
techniques evaluated for predicting future air refueling requests in five different statuses
as defined by the 618" AOC’s air refueling scheduling tool. Furthermore, based on the
most precise forecasting model, the research pursued a calculation by which the number
of forecast air refueling flight hours could be predicted with up to 90% accuracy
annually.

This chapter will focus on the specific conclusions of the above research,
concentrating on the significant applications of the forecast models and specifically what
they could indicate for future demand. Specific recommendations for action are
presented to include an analysis and application of DoD fixed wing hourly
reimbursement rates and their application for future air refueling service cost
comparisons. Lastly, various avenues for future research into the tanker supply and
demand problem will be explored, to include 1) a review of request prioritization, 2) the

multitude of barriers to air refueling service market entry, and 3) a lack of a DoD tanker
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pricing strategy. This last issue not only results in the DoD/USAF being unable to
participate in other air refueling markets but also has the potential to cause the DoD to be
ill-prepared to work with commercial air refueling organizations if/when the latter bring a

service to market.

Conclusions of Research

The first research question focused on identifying the best forecasting model for
the various air refueling training requests for each of the five designated statuses defined
by the air refueling scheduling tool. After evaluating nine different forecasting models,
multiple goodness-of-fit measures demonstrated that the seasonal ARIMA forecasting
models were the best fit for the modeled data. Furthermore, the MAPE and MAE error
measures used to validate the forecast models resulted in the lowest error in every case
for the seasonal ARIMA models with one exception. The MAE for the Bought status
was the second lowest by four one-thousandths of a point with a much lower MAPE for
comparison. Overall, these low error statistics confirm that the seasonal ARIMA models
are the best models to represent future air refueling demand.

Secondly, the research evaluated six different statistical measures of hourly
duration data in order to predict future requested flying hour duration based on the
forecast number of requests by ARST status. The results showed that in four of the five
categories the future requested hours could be predicted within 90 percent accuracy. The
fifth category (Bought) was predicted with 87 percent accuracy. Overall, using the
previous year’s data resulted in an overestimation of 253 flight hours or 1% off from the

actual 23,950 hours requested, as shown in Table 11.
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Significance of Research

Not only was the seasonal ARIMA model the most accurate model evaluated, but
it also highlighted a significant trend with regard to the number of air refueling requests.
The researcher noticed that in four of the five status categories, the seasonal ARIMA
model under forecasted the future number of requests; only the Bought status was over
forecast as noted in Table 9. This could be the result of an increasing trend in the number
of air refueling requests. Therefore, the researcher re-examined the request data over the
period used for the forecast. Five sets of 52-weeks of request data are represented below

in Figure 28 with the last set of data 3/12/17 — 3/10/18 being the validation data set.
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Figure 28: Total Number of ARST Requests in 52-Week Periods

This data represents a historical low in the 2013 timeframe due in part to
sequestration and also potentially to the ARST program being new to the tanker and
receiver community as of 2010, which could have resulted in fewer requests being

captured. In 2014 — 2015 the number of requests spiked, again potentially due to
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increased training that was delayed or suspended due to sequestration in 2013. March
2015 — 2017 showed very stable total requests with a slight jump in the following year.
This increase in the number of total air refueling requests from Mar 2017 to Mar 2018 is
also the period of time used to validate the forecast models and could explain why most
of the categories were under forecasted. It also appears that there is an upward trend in
the number of air refueling requests represented by the green trendline. Additional future
years of data will be required to determine if this upward trend will continue; however, it
seems logical as more air refueling requests are being captured in the ARST system along
with greater overall training requirements for the Joint Force. The total number of air

refueling requests by ARST category over the same range are displayed in Figure 29.
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Figure 29: Total Number of Requests by ARST Status in 52-Week Periods

This representation starts to explain some of the overestimation in the Bought
status as it was on an upward trend until March of 2017, leading the model to predict a

higher than actual value for the Bought Status. Significantly, this representation reveals

92



that the Confirmed and Cancelled requests are fairly consistent across the data rage and
the Filled requests have leveled out in the last year. The main upward trend is the
Published requests that represent unsupported air refueling requests. Again, additional
data for future years will be required to see if this upward trend continues. Moreover,
years of study could refine the above forecasting and continue to build upon the time
series data set. Lastly, it represents an opportunity to execute more sorties with a
potentially growing unsupported market, thus increasing readiness of the Joint Force or

for outside support from a future commercial contractor.

Recommendations for Action

Planners at USTRANSCOM, AMC, and the 618" AOC have an opportunity to
utilize these forecasting models not only for tanker training but also for operational use
outside of training and other larger data sets that were not available to this researcher.
Moreover, in order to refine the forecasts and, thereby, increase the accuracy of the
output, several more years of data need to be gathered and analyzed.

The second part of this research focused on being able to communicate, in
financial terms, what the air refueling requests and, in particular, the unsupported
requests mean or could mean in the future. The objective, given an ability to forecast the
number of requests by status, was to convert those requests into a predicted number of
flight hours of service. That was accomplished with a reasonable degree of certainty with
the results depicted in Table 11. The researcher chose flight hours as the units of analysis
because the DoD publishes fixed wing reimbursement rates for all aircraft each fiscal

year, which equates to the hourly rate of operating the aircraft for one additional hour.
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To put that another way, the DoD already has a quantitative financial measure for aircraft
flight hours. Several Air Mobility Command (AMC) aircraft have alternate rates that
they can charge other uniformed services or agencies for operations such as airlift under
the Defense Working Capital Fund or Transportation Working Capital Fund (TWCF), but
USAF tankers completing a refueling mission do not fall under a separate working capital
fund at this time. Therefore, the researcher chose the DoD component of the fixed wing
reimbursable rate published each fiscal year by the Office of the Secretary Defense
(OSD) for the KC-135 and KC-10 as a baseline for this discussion. The rate for the fiscal
year 2019 equates to $13,419 for the KC-135R, $13,463 for the KC-135T, and $16,078
for the KC-10A (McAndrew, 2018, p. 4). Moreover, it is important to understand that
this rate does not include many sustainment, logistics, operational, ownership, or other
equipment capitalization costs; it is only a function of Aviation Fuel, Other Operational
Material, Consumable Materials and Repair Parts, Depot Level Repairs (DLR),
Intermediate Level Maintenance, Depot Maintenance, and Contract Maintenance

Services as depicted in Figure 30 below (AFCAA/FMCY, 2018, p. 10).
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Figure 30: DoD Cost Metric Categories

Source: (AFCAA/FMCY, 2018, p. 12)
As is apparent, there are a number of other costs that are not included in the fixed

wing reimbursable rate that would have to be considered if the DoD choose to compare
costs directly with a commercial provider at some later date, yet this comparison cannot
be accomplished until a commercial organization develops or acquires a boom tanker
and, moreover, is outside of the scope of this research. What can be addressed at this
time is what it would cost the DoD financially to execute the unsupported flight hours
under the Published status in the ARST utilizing existing aircraft, sustainment, and
support facilities and personnel. It is important to note in any such analysis that the flight
hours predicted as part of the research and analysis in Chapter 4 only equates to the flying
hours used during the process of aerial refueling with a receiver and does not include the

flight time required for takeoff, setup en route to an air refueling track, recovery back to
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an airfield, and approach and landing. All of these events add additional flight time to the
tanker aircraft. Therefore, again as a baseline for discussion, the researcher assumed a
conservative forty-five minutes for takeoff and flight to the air refueling track and
another forty-five minutes to return to an appropriate airfield, approach, and landing. The
process of adding an additional one hour and thirty minutes to each request will more
fairly account for the total aircraft flight time required for each air refueling request and

therefore a more appropriate cost. An example of this calculation is depicted in Table 12.

Table 12: Actual and Forecast Reimbursement Cost for Unsupported Requests

Published ARST Requests for Air Refueling (Unsupported)
Actual 3150
Forecast 2897
Published Air Refueling Hour Estimates (Unsupported)
Actual 3128 Actual + 1.5 7853
Forecast 2874 Forecast + 1.5 7219.5
Estimated and Actual Fixed Wing Reimbursement Cost for Unsupported Requests
Airframe KC-135R KC-135T KC-10A
FY19 Rate $13,419 $13,463 $16,078
Actual Estimated Actual Estimated Actual Estimated
$105,379,407| $96,878,471 |$105,724,939| $97,196,129 | $126,260,534]$116,075,121
Difference $8,500,937 $8,528,811 $10,185,413
Percent Change 8% 8% 8%

The above baseline for calculating reimbursement costs would need to be
modified based on a more appropriate mix of tankers available, but the concept is the
same. For example, tanker support would not come solely from KC-10As or KC-135Ts,
as both of these aircraft represent a smaller portion of the fulfillment of any unsupported
requests as these airframes represent a smaller portion of the total tanker force. However,
even accounting for the KC-10A and KC-135T as approximately 13% and 12% of the
tanker force, respectively, it is still approximately $100M per year using this cost metric

to execute known unsupported requests with the above assumptions. Furthermore, again
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because it is important, this all assumes that the USAF has the aircraft, crews, and other
operations and support capacity to execute with this cost metric. At the end of the day, it
is more likely that additional tanker capacity will be required in the future. Itis also
likely that, when a commercial tanker is brought to the market, calculations such as those
in Table 12 will be helpful in not only forecasting the air refueling hours required by the
DoD but also helpful in making a fair cost comparison between USAF air refueling costs
and any proposed commercial service.

Lastly, after reviewing several years of DoD fixed wing reimbursable rate for the
tanker force, the researcher noted that the costs appear to be increasing. This trend is
likely due to the increased cost of aviation fuel and the steadily rising maintenance costs

as depicted in Figure 31.
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Figure 31: DoD Fixed Wing Reimbursement Rates (FY 2007 — 2019)

Source: (McAndrew, 2018)
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In order to truly understand the rate trend, the researcher corrected the values for
inflation via the Bureau of Labor and Statistics Consumer Price Index (CPI) as seen in

Figure 32 below.
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Figure 32: CPI Inflation Corrected Reimbursement Rates

Source: (McAndrew, 2018)
Even with the reimbursement rates corrected for inflation, there are similar

positive linear trendlines for each of the three airframes studied; and the annual costs by
specific tanker airframe are increasing over time. Moreover, the actual number of tankers
available is not projected to increase in the near-term and may even decrease as
requirements have the potential to increase; requests for service are clearly showing an
overall increase. All of these trends point to an opportunity for the DoD to leverage
commercial air refueling service to fill near-term gaps and moderate spikes in demand for

specific peacetime training opportunities.
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Recommendations for Future Research

Future research in the USAF air refueling tanker supply and demand problem
should continue to evaluate the feasibility of innovative and non-traditional ideas not only
to increase supply but also to understand demand signals from receiver units better. This
research primarily focused on better understanding demand from a forecasting
perspective; however, there are multiple other elements that could help planners better
understand the underlying demand signals. Starting with the data this researcher
analyzed in the ARST, the database should be expanded to include prompts for users to
explain why a sortie is cancelled (lack of availability of aircraft, lack of aircrew, priority,
etc.) or if the sortie is not “Bought” from the Filled status. Multiple feedback
mechanisms built into the database could allow the 618" AOC a great deal more specific
information on which sorties were unsupported and why, for future research and analysis.

Secondly, the DoD Air Refueling Support Priority System is governed by CJCSI
4120.02D and is the system through which USTRANSCOM validates and manages air
refueling requirements with the support of AMC and the 618" AOC. This system is
required because there needs to be a fair process to allocate limited resources to the
highest priority users. The process needs to be more transparent, and users of the system,
particularly non-USAF users, need to be better trained in the benefits of the system. This
lack of knowledge has probably led to some receiver units not receiving needed service
and ultimately no longer requesting service because of false perceptions that they will not
receive service even if requested. There is an opportunity for USTRANSCOM, AMC,
and the 618" AOC to build transparency in the system, some of which already is

happening through the ARST system to advertise air refueling opportunities, build
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knowledge about the request system, and result in a more successful tanker and receiver
matches. Moreover, aspects of this research could be continued to include more research
into the weekly request rate. For example, more capacity appears available during the
weekends, Mondays, and Fridays than midweek, according to Figure 4. Simple concepts
such as this, packaged together for our Joint Force, could result in less frustration about
the process and more efficient use of our limited resources.

While the above future research strategies are designed to understand more
clearly and to moderate the demand, the supply side of the equation could be
supplemented via commercial contracted air refueling service. The likelihood of this
concept succeeding is directly related to the support received from the DoD,
USTRANSCOM, and AMC. This support is required not only because the DoD owns
100% of the current market but also because of enormous barriers to market entry for a
commercial air refueling service. These barriers include everything from a lack of a
Federal Aviation Regulation (FAR) for commercial air refueling to likely interference
from large aviation industry contractors like the Boeing Corporation, as well as numerous
government policies that limit the sale or lease of military equipment. Many of these
issues are policy related and could be solved if the commercial industry had DoD
support; to date, such support has failed to materialize despite commercial interest since
the mid-1990s. Each of these issues could be researched in detail as interest continues to
grow throughout the DoD.

As previously stated, USAF air refueling service is not currently governed by
TWCF and only charges receiver units for the fuel transferred and not the flight hours

expended as they are considered training for the aircrew. The costs of the tanker flight
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hours are covered by operational and maintenance (O&M) funds. Future research in the
benefits and consequences of a TWCF-like program for the USAF tanker fleet could be
very beneficial on several fronts. First of all, it would modify demand signals as some
fighter units may reduce requests to what they actually need versus what is convenient
due to actually having to use command funds for the transit. For example, an overseas
fighter deployment from Luke AFB to Aviano AB Italy may only be requested from the
East coast to Lajes Field, Azores, (only the long distance over water portion where
landing fields for refueling are not available) versus the entire distance. This has the
potential to reduce overall demand and use the tanker aircraft more efficiently, where
they are needed. Moreover, assigning an appropriate value for air refueling service
would allow the USAF to fully participate in air refueling exchanges such as the
Movement Coordination Centre Europe’s (MCCE) Air Transport, Air to Air Refueling,
and other Exchanges of Services (ATARES) program. These programs could be an
important first step into laying the groundwork for the DoD to be prepared to incorporate

commercial air refueling service once it is brought to the market.

Summary

This research established the best forecasting method as the seasonal ARIMA
model out of the nine evaluated for predicting future air refueling requests by ARST
status. Six methods then were evaluated for estimating the number of hours of air
refueling duration expected annually for each ARST status with a focus on those requests
that were not supported and, therefore, presented an opportunity to increase readiness

training and potentially be accomplished by a commercial contractor if and when that
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capability is finally available to the market. The researcher then presented the
significance of an increasing trend of unsupported requests along with a consistently
increasing trend of the fixed wing reimbursement rate corrected for inflation. While
more analysis of future years of data will be required to continue to validate the
forecasting models, an example of how to perform a cost comparison of multiple tanker
options was presented with the intent for an easier comparison against commercial air
refueling services when they come available. Lastly, the researcher presented multiple
directions for future research aimed both at better understanding the demand signals and
also at supporting the supply of air refueling tankers through research into both policy
efforts and funding changes. Ultimately, the current USAF air refueling fleet is facing
likely increased requirements, more requests for service, and similar or fewer tankers to
accomplish the task. Continued research into the supply and demand problems can and
will result in solutions to these problems and potentially create alternatives, rather than
just failing to support requests, or worse yet, making our aircrews work longer and
harder. Having the means to consider new opportunities to address this supply and
demand problem will hopefully allow the USAF to fulfill its air refueling mission to the

Joint Force better.

102



Appendix A: Quad Chart
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Appendix B: ARIMA Model Comparison

Daily, Monthly, and Weekly Forecasting Comparison

The following daily and monthly forecasts were the researcher’s original attempt at defining the
interval upon which to forecast. Note the daily forecasts compute extremely high AIC/SBC and
no MAPR due to zero observations on particular dates. The monthly forecasts have a limited

number of observations and produce negative AIC/SBC values.

Daily

4 Model Comparison

Report Graph

Model

I

Monthly

<4 Model Comparison

Report Graph Model

~[] (] — IMA(1, 1) No Intercept
1 ~ Simple Exponential Smoothing( Zero to One )
(| — IMA(1, 1)
1 ~— Damped-Trend Linear Exponential Smoothing
(] = Linear (Holt) Exponential Smoothing
(] Double (Brown) Exponential Smoothing
(] — Seasonal Exponential Smoothing( 12, Zero to One )
(] — Winters Method (Additive)

— Seasonal ARIMA(D, 1, 18)(0, 1, 18)52
— Seasonal ARIMA(0, 1, 7)(0, 1, 7)52
= Seasonal ARIMA(0, 1, 5)(0, 1, 5)52
= Seasonal ARIMA(D, 0, 0)(0, 1, 7)12
— Seasonal Exponential Smoothing( 52, Zero to One )
= Winters Method (Additive)
Seasonal Exponential Smoothing( 12, Zero to One )
— Winters Method (Additive)
— Simple Exponential Smoothing( Zero to One )
= Damped-Trend Linear Exponential Smoothing
= Double (Brown) Exponential Smoothing
~ Linear (Holt) Exponential Smoothing

DF
137N
1393
1397
1441
1406
1405
1446
1445
1459
1457
1458
1457

DF
46
46
45
44
44
45
33
32

Variance AIC
93570054 7556.4601
14396294 B047.0126
17.508744 8202.2015
23327236 B8765.0099
37.207405 9263.1875
37.233887 0265.1875
36802269 9389.7101
40.010519 8518.6060
39687893 9522.3887
39742372 9526.3887
39824815 95344110
39818562 9535.2028

Variance
0.0307241
0.0307241
0.0314033
0.0324741
0.0322999
0.0342284

0.032016
0.0330165

-28.81429
-28.81429
-26.81602
-24.80350
-19.56648
-19.31509
-15.78551
-13.78551

AlC

The following outputs are for the same data; the first was without a logarithmic data
transformation, while the second was transformed via the natural log. Note the difference in
variance along with much lower AIC/SBC values.

4 Model Comparison

Model
— Seasonal ARIMA(1, 1,
Seasonal ARIMA(1, 1,
Seasonal ARIMA(2, 1,
~— Seasonal ARIMA(1, 1,
= Seasonal ARIMA(2, 1,
~— Seasonal ARIMA(1, 1,
— Seasonal ARIMA(2, 1,
~— Seasonal ARIMA(1, 1,
~ Seasonal ARIMA(3, 1,
— Seasonal ARIMA(1, 1,
Seasonal ARIMA(2, 1,
— Seasonal ARIMAQ2, 1,
— Seasonal ARIMA(3, 1,
~— Seasonal ARIMA(3, 1,
~— Seasonal ARIMA(2, 1,
— Seasonal ARIMA(3, 1,
— Seasonal ARIMA(1, 1,
Seasonal ARIMA(1, 1,
Seasonal ARIMA(4, 1, 1)(1,
- Seasonal ARIMA(3, 1, 1)(2,
~— Seasonal ARIMA(2. 1. 11(4,

Report
V]

Graph
] na,
.,
na,
e
i,
DIE
e
e
na,
(0,
063,
phica
na,
plea
10,
pIE
)4,
DIE

OO0

0

1
1
1
1

1,
1
i
T
1
1
1
1
1
1
1
1
1,
1,
1,
1,
1

0)52 No Intercept
1)52 No Intercept
0)52 No Intercept
0)52 No Intercept
1)52 No Intercept
0)52 No Intercept
0)52 No Intercept
1)52 No Intercept
0)52 No Intercept
1)52 No Intercept
0)52 No Intercept
1)52 No Intercept
1)52 No Intercept
0)52 No Intercept
1)52 No Intercept
0)52 No Intercept
0)52 No Intercept
1)52 No Intercept
0)52 No Intercept
1)52 No Intercept
0152 No Intercent

DF
201
200
200
200
199
199
199
199
199
201
198
198
198
198
200
197
198
198
198
197
197

Variance
23491852

2319521
23447737
23333847
232.07498
230.09033
23344256
209.66977

2349173
228.84567
22892917
209.72647
232.66911
23412836
228.84599
228.26506
1.3126201
205.89825
236.11665
209.91629
0.3203738

AIC
1713.9702
1714.6207
1714.8390
17149705
17156703
17159683
1716.0167
1716.0419
1716.1800
17165523
1716.7439
1716.9386
1717.0892
17174517
1717.6236
1717.8966
1717.9583
1717.9672
17181356
17182295
17187326

SBC
1723.9246
1727.8932
1728.1114
17282430
17322609
17325589
17326073
17326325
1732.7706
1726.5066
1736.6526
1736.8473
1736.9979
1737.3604
1730.8961
17411235
1737.8671
1737.8759
1738.0443
17414564
1741.9595

104

RSquare
-031
-0.30
-030
-0.30
-0.30
-0.30
-0.30
-0.30
-0.30
-032
-0.29

0.30

0.29

0.29
-0.32
-0.29
-0.30
-030
-0.30
-0.29
-0.29

-2LogLlH
1707.9702
17066207
1706.839
17069705
1705.6703
1705.9683
17060167
1706.0419
1706.18
17105523
1704,7439
17049386
17050892
17054517
1709.6236
1703.8966
1705.9583
1705.9672
1706.1356
1704.2295
17047326

Weights
0119921
0086625
0077670
0072725
0051254
0044158
0043102
0042564
0039723
0032977
0029965
0027185
0025213
0021033
0019301
0016838
0016326
0016254
0014942
0014256
0011085

e

2.4.6.8 MAPE
37.999911
37.642359
37137134
37.752986
36.918045
37.429446
37.028825
37.489186
37.215997
37.285776
36.579324
36.727706
37.049808
37.131878
36.584798
36.727480
37.427960
37.429126
37.144556
36.870185
36.585435

MAE
12.537200
12.476097
12443354
12503639
12395629
12378324
12425991
12408913
12450609
12367590
12.274908
12.329608
12.430996
12.449769
12.287037
12.305810
12377655
12378188
12421381
12364426
12275387

SBC RSquare -2loglH  Weights .2.4.6.8 MAPE MAE
7750.7074 0687 74824601 1.000000 o] 2731424
81257615 0553 8017.0126 0000000 | | | | 3.361691
82599506 0498 81802015  0.000000 | 3.559857
88072389 0370 87490099 0000000 | 4084376
92736873  -0.07 9259.1875  0.000000 | 5.173543
9280.9372 007 9259.1875  0.000000 | 5.173543
9400.2660  0.035 93857101 0.000000 | 4821486
95344398 -006 9512606  0.000000 | 5.554903
9527.6740 0002 9520.3887 0.000000 | 5.434729
95422472 0002 9520.3887  0.000000 | 5.434729
9539.6965  -001 9532411  0.000000 | 5.450732
95457738 -001 9531.2028  0.000000 | 5.450894

SBC RSguare -2loglH  Weights .2 .4 .6.8 MAPE MAE

2696414 0088 -30.81429 0396306 [ 2562784  0.139840

2696414 0088 -30.81420 0396306 [l 2562784 0.139840

2311572 0088 -30.81602 01450190 ! 2562362 0.139798

-19.25305 0083 -308035 0053346] 2574044  0.140408

1590920  -003 -23.56648 0003890 2753312 0.150514

1748645 -008 -21.31509 0003430/ 2760636  0.150893

1267481 -037 -19.78551 0.000587| 2772228 0.152875

0119462 -037 -19.78551 0.000216| 2772228 0.152875



4 Model Comparison

™

Report Graph

Maodel
— Seasonal ARIMA(1, 1, 2)(1, 1, 0)52
— Seasonal ARIMA(1, 1, 2)(1, 1, 2)52
— Seasonal ARIMA(2, 1, 1)(1, 1, 0)52
— Seasonal ARIMA(1, 1, 2)(1, 1, 1)52
— Seasonal ARIMA(1, 1, 1)(1, 1, 0)52 No Intercept
— Seasonal ARIMA(2, 1, 2)(1, 1, 0)52
— Seasonal ARIMA(1, 1, 2)(2, 1, 0)52
= Seasonal ARIMA(1, 0, 1)(1, 1, 0)52
— Seasonal ARIMA(1, 1, 2)(1, 1, 0)52 No Intercept
— Seasonal ARIMA(2, 1, 1)(1, 1, 0)52 No Intercept
— Seasonal ARIMA(2, 0, 1)(1, 1, 0)52
— Seasonal ARIMA(1, 1, 2)(0, 1, 1)52
— Seasonal ARIMA(1, 1, 2)(2, 1, 1)52
— Seasonal ARIMA(2, 1, 1)(1, 1, 2)52
— Seasonal ARIMA(1, 1, 2)(0, 1, 2)52
Seasonal ARIMA(1, 0, 1)(1, 1, 2)52
~— Seasonal ARIMA(Q, 1, 3)(1, 1, 0)52 No Intercept
— Seasonal ARIMA(1, 0, 2)(1, 1, 0)52
Seasonal ARIMA(1, 1, 2)(2, 1, 2)52
— Seasonal ARIMA(1, 1, 1)(1, 1, 0)52
— Seasonal ARIMA(2. 1. 1)(1. 1. 1152

DF
199
197
199
198
201
198
198
20
200
200
200
199
197
197
198
199
200
200
196
200
198

Variance
0.1435461
0.1275094

0.144668
0.1434427
0.1488412
0.1441446
0.1438471
0.1477288
0.1482357
0.1486082
0.1475591
0.1410218
0.1303883
01274447
0.1439475
0.1283309
0.1489018
0.1477274
0.1206916

0148947
0.1446743

AlC
208.09099
209.38064
209.38066
209.64837
209.69939
209.71831
209.81466
210.04406
210.12460
21034407
21043806
21060250
21062257
21065521
210.71358
21076423
210.85022
210.87729
21080249
210.97806
21098634

SBC RSquare
22468159 0093
232.60748 0.101
22597126 0.087
229.55709 0.094
219.65375 0073
229.62763 0.096
229.72338 0094
22333610 0.084
22339708 0.078
22361655 0.077
22705311 0.094
227.19310 0.078
233.84941 0.097
233.88205 0.095
230.62230 0.089
23070229 0.094
224.12270 0.075
227.49234 0.092
23744745 0.093
22425054 0076
230.89506 0.089

-2LoglH
198.09099
195.38064
199.38066
197.64837
203.69939
197.71891
197.81466
202.04406

2021246
20234407
20043806

2006025
196.62257
196.65521
198.71358
198.76423
20285022
20087729
194.90249
202.97806
198.98634

Weights
0.040876
0.021450
0.021450
0.018762
0.018290
0018112
0.017265
0.015394
0.014787
0.013250
0.012642
0.011644
0011528
0.011341
0.011015
0010739
0.010287
0.010148
0.010022
0.009650
0.009611

2.4.6.8

MAPE
9.245431
9.148346
9.244203
9.244105
9.285754
9219734
9.248561
9.262517
9218173
9.226350
9143014
9.259274
9.200971
9.149128
9.263495
9.230328
9.213806
9.160656
9.130501
9.380163
9244413

MAE
0.316599
0.312746
0316767
0316268
0318511
0315748
0.316521
0.314895
0316846
0316780
0311310
0.316468
0314583
0313007
0.316855
0313292
0316004
0311710
0312135
0320728
0.316549

105




Appendix C: Confirmed Time Series: Best Seasonal ARIMA Values from JMP

The following JMP output includes the best seasonal ARIMA values computed for the Confirmed

status sorted by lowest AIC followed by lowest SBC. The researcher explored all options in
accordance with the Box-Jenkins Methodology in order to produce a model with significant
parameters that was the least complex possible. This required at least 625 permutations for an
equation with an intercept and another 625 without an intercept. Additional permutations were

calculated to verify the best result.

4 ~|Time Series Log[Confirmed]
55%

&

LLwLas LG

Log[Confirmed]
Noow

Mean

Std
N

Zero Mean ADF
Single Mean ADF

Trend ADF

01Jan2013 01Jan2014 01Jan2015 01Jan2016 01Jan2017
Week Of

I Time Series Basic Diagnostics
4 Model Comparison

Report Graph  Model
v[] ] — Seasonal ARIMA(2, 1, 2)(1, 1, 0)52 No Intercept
v[] ] — Seasonal ARIMA(1, 1, 3)(1, 1, 0)52 No Intercept
] ~ Seasonal ARIMA(2, 1, 2)(0, 1, 2)52 No Intercept
— Seasonal ARIMA(1, 1, 3)(0, 1, 2)52 No Intercept
- Seasonal ARIMA(2, 1, 2)(1, 1, 0)52
= Seasonal ARIMA(2, 1, 4)(1, 1, 0)52 No Intercept
~ Seasonal ARIMA(1, 1, 3)(1, 1, 0)52

Seasonal ARIMA(3, 1, 4)(0, 1, 2)52 No Intercept
- Seasonal ARIMA(2, 1, 4)(0, 1, 2)52 No Intercept
=~ Seasonal ARIMA(2, 1, 2)(2, 1, 0)52 No Intercept
~— Seasonal ARIMA(1, 1, 4)(1, 1, 0)52 No Intercept

Seasonal ARIMA(2, 1, 2)(1, 1, 1)52 No Intercept
- Seasonal ARIMA(2, 1, 2)(0, 1, 2)52

Seasonal ARIMA(3, 1, 4)(1, 1, 0)52 No Intercept

Seasonal ARIMA(0, 1, 4)(0, 1, 2)52 No Intercept
— Seasonal ARIMA(3, 1, 2)(1, 1, 0)52 No Intercept
~— Seasonal ARIMA(2, 1, 4)(1, 1, 0)52

Seasonal ARIMA(1, 1, 3)(2, 1, 0)52 No Intercept
- Seasonal ARIMA(1, 1, 3)(1, 1, 1)52 No Intercept
~ Seasonal ARIMA(1, 1, 2)(1, 1, 0)52 No Intercept

Seasonal ARIMA(1. 1. 3)(0. 1. 2)52

000

00000

e R RS S AR R

0

DF
199
199
198
198
198
197
198
195
196
198
198
198
197
196
198
198
196
198
198
200
197

Variance
0.0854796
0.0856568
0.0842005
0.0844253
0.0854809
0.0854712
0.0856924
0.0828478
0.0838033
0.0857294
0.0858719
0.0858143
0.0843725

0.085157
0.0844716
0.0859266
0.0852114
0.0859344
0.0860076
0.0866752
0.0846133

4.0037692

0415042

257

1.016687

9438526

9.452477
AIC SBC RSquare
89.275002 105.86560 0.008
89.581056 106.17166 0.008
89.842351 109.75107 0.012
90.197673 110.10639 0.011
90.395477 110.30420 0.013
90.753717 113.98056 0.023
90.785796 110.69452 0.011
90.829368 120.69245 0.035
90.929210 11747417 0.028
91.009632 110.91835 0.010
91.078729 110.98745 0.010
91.107794 111.01651 0.009
91119989 11434683 0.016
91.175293 117.72025 0.029
91213604 111.12232 0.006
91.267266 111.17599 0.009
91.346950 117.89191 0.030
91.351882 111.26060 0.009
91437334 11134605 0.008
91.445537 104.71802 0.02
91.541002 114.76784 0.015

106

-2LogLH
79275002
79581056
77.842351
78197673
78395477
76753717
78.785796
72829368

7492921
79.009632
79078729
79107794
77.119989
75.175293
79213604
79.267266

7534695
79351882
79437334
83.445537
77541002

Weights
0.022616
0.019407
0.017030
0.014258
0.012915
0.010797
0.010625
0.010397
0.009890
0.009500
0.009178
0.009045
0.008990
0.008745
0.008579
0.008352
0.008026
0.008006
0.007671
0.007640
0.007284

2.4.6.8

MAPE
5.596895
5.580605
5.561535
5.546106
5.590353
5.545271
5.575611
5459281
5.518595
5.592037
5.598588
5.590280
5.556096
5485315
5.562268
5.594095
5.525043
5.577020
5.574792
5.594718
5.540459

MAE
0.215690
0.214817
0.214371
0.213530
0.215168
0.213571
0.214386
0.210052
0.212506
0.215445
0.215737
0.215405
0.213971
0.211105
0.213352
0.215534
0.212380
0.214628
0.214570
0.215155
0213165



Appendix D: Bought Time Series: Best Seasonal ARIMA Values from JMP

The following JMP output includes the best seasonal ARIMA values computed for the Bought

status sorted by lowest AIC followed by lowest SBC. The researcher explored all options in
accordance with the Box-Jenkins Methodology in order to produce a model with significant

parameters that was the least complex possible. This required at least 625 permutations for an
equation with an intercept and another 625 without an intercept. Additional permutations were

calculated to verify the best result.

4 = Time Series Log[Bought]

Log[Bought]

01Jan2013 01Jan2014 01Jan2015 01Jan2016 01Jan2017
leek

I Time Series Basic Diagnostics
4 Model Comparison

Report Graph  Model DF  Variance AIC
«[] ] Seasonal ARIMA(4, 1, 3)(0, 1, 1)52 195 0.1231879 16531132
«[] L] ~ Seasonal ARIMA(0, 1, 1)(0, 1, 1)52 No Intercept 202 0.1272945 165.77693
«[] [ — Seasonal ARIMA(0, 1, 1)(0, 1, 1)52 201 0.1265867 166.06797
«[] ] Seasonal ARIMA(4, 1, 3)(0, 1, 1)52 No Intercept 196 0.124554 166.08612
«[] ] Seasonal ARIMA(0, 1, 1)(1, 1, 0)52 No Intercept 202 0.1277333 166.17811
«[] [ ~— Seasonal ARIMA(4, 1, 3)(1, 1, 0)52 No Intercept 196 0.1246785 166.20508
~[] [ — Seasonal ARIMA(1, 1, 2)(0, 1, 1)52 199 0.1257293 166.37907
~[] [l Seasonal ARIMA(4, 1, 1)(0, 1, 1)52 197 01250124 166.61118
v[] ] — Seasonal ARIMA(0, 1, 1)(1, 1, 0)52 201 0.1272361 166.63330
~[] ] — Seasonal ARIMA(2, 1, 3)(1, 1, 1)52 No Intercept 197 0.1231225 166.66087
«[] C Seasonal ARIMA(2, 1, 3)(1, 1, 0)52 No Intercept 198 0.1239974 166.69013
~[] L] Seasonal ARIMA(2, 1, 3)(1, 1, 1)52 196 0.1224331 166.88995
v[] [l ~— Seasonal ARIMA(4, 1, 1)(1, 1, 0)52 197 0.1255328 167.07033
«[] L] — Seasonal ARIMA(1, 1, 2)(1, 1, 0)52 199 0.1266035 167.16487
«[] ] — Seasonal ARIMA(2, 1, 3)(1, 1, 0)52 197 0.1235834 167.20812
«[] ] Seasonal ARIMA(4, 1, 4)(0, 1, 1)52 194 0.1237463 167.21317
«[] [ = Seasonal ARIMA(0, 1, 1)(2, 1, 0)52 No Intercept 201 0.1272509 167.24199
«[] ] Seasonal ARIMA(4, 1, 3)(0, 1, 2)52 194 0.1237598 167.25163
«[] ] Seasonal ARIMA(1, 1, 2)(0, 1, 1)52 No Intercept 200 0.1272626 167.26157
«[] [ ~ Seasonal ARIMA(4, 1, 1)(0, 1, 1)52 No Intercept 198 0.1265055 167.47021
-l [ Seasonal ARIMA(0. 1. 1Y(0. 1. 2)52 No Intercent 201 01275682 167.49205
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Mean 3.7756653
Std 0.6968644
N 257

Zero Mean ADF 0.62079
Single Mean ADF  -6.00965
Trend ADF 10.52375

SBC RSquare
195.17440 0463
17241317 0424
176.02233 0429
19263108 0457
172.81435 0423
192.75004 0.456
182.96967 0438
189.83802 0450
176.58766 0427
189.88771 0447
186.59885 0442
193.43491 0.451
190.29717 0449
183.75547 0436
190.43496 0.446
200.39437 0464
177.19635 0425
200.43283 0463
180.53405 0431
187.37893 0443
177.44641 0424

-2LoglH
14731132
161.77693
160.06797
150.08612
162.17811
150.20508
156.37907
152.61118

160.6333
15266087
15469013
150.88995
153.07033
15716487
153.20812
147.21317
161.24199
147.25163
159.26157
155.47021
161.49205

Weights
0.018522
0.014675
0.012688
0.012573
0.012008
0.011847
0.010860
0.009670
0.009564
0.009433
0.009296
0.008412
0.007686
0.007332
0.007175
0.007157
0.007054
0.007020
0.006986
0.006294
0.006225

2.4.6.8

MAPE
7.057395
7.300150
7.218054
7.104412
7312729
7.118623
7.283186
7.162760
7.231134
7.055339
7.121077
6.991753
7.158477
7.288929
7.063122
7.053165
7.287401
7.047761
7345619
7.199875
7.297651

MAE
0.270268
0.277830
0.275882
0.270947
0.278493
0.271660
0.276950
0.273223
0.276551
0.268787
0.271332
0.267476
0.273243
0.277359
0.270239
0.270022
0.277230
0.269871
0278172
0.273511
0.277720



Appendix E: Filled Time Series: Best Seasonal ARIMA Values from JMP

The following JMP output includes the best seasonal ARIMA values computed for the Filled
status sorted by lowest AIC followed by lowest SBC. The researcher explored all options in
accordance with the Box-Jenkins Methodology in order to produce a model with significant
parameters that was the least complex possible. This required at least 625 permutations for an
equation with an intercept and another 625 without an intercept. Additional permutations were
calculated to verify the best result.

4 > Time Series Log[Filled]

6
5.5

LoglFilled]

w
AR

’w‘

g  aant

Mean 4.9384988
Std 0.5865371
N 257

Zero Mean ADF 0.216586
Single Mean ADF  -5.477023

01Jan2013 01Jan2014 01Jan2015 01Jan2016 01Jan2017
Week Of

I Time Series Basic Diagnostics
4 Model Comparison

Report Graph
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Model
=~ Seasonal ARIMA(0, 1, 1)(1, 0, 1)52 No Intercept
= Seasonal ARIMA(0, 1, 1)(1, 1, 0)52
Seasonal ARIMA(0, 1, 1)(1, 0, 1)52
— Seasonal ARIMA(0, 1, 1)(1, 1, 0)52 No Intercept
~ Seasonal ARIMA(1, 1, 1)(1, 0, 1)52 No Intercept
~— Seasonal ARIMA(1, 1, 1)(1, 1, 0)52
- Seasonal ARIMA(0, 1, 1)(1, 1, 1)52 No Intercept
~ Seasonal ARIMA(1, 1, 1)(1, 1, 0)52 No Intercept
~ Seasonal ARIMA(O, 1, 1)(1, 1, 1)52
~— Seasonal ARIMA(1, 1, 1)(1, 1, 1)52 No Intercept
Seasonal ARIMA(1, 1, 1)(1, 1, 1)52
Seasonal ARIMA(1, 1, 1)(1, 0, 1)52
Seasonal ARIMA(0, 1, 1)(1, 0, 0)52 No Intercept
Seasonal ARIMA(0, 1, 1)(1, 0, 0)52
Seasonal ARIMA(1, 0, 1)(1, 1, 0)52 No Intercept
= Seasonal ARIMA(1, 1, 1)(1, 0, 0)52 No Intercept
= Seasonal ARIMA(1, 0, 1)(1, 1, 1)52 No Intercept
= Seasonal ARIMA(0, 1, 1)(0, 1, 1)52
~ Seasonal ARIMA(0, 1, 1)(0, 1, 1)52 No Intercept
Seasonal ARIMA(1, 0, 1)(1, 0, 1)52
=~ Seasonal ARIMA(1. 0. 1)(1. 1. 0)52

Trend ADF 618176

DF Variance AIC SBC RSquare
253 0.0546544 12.670775 23.306307 0.797
201 0.0586211 13.872191 23.826551 0.493
252 0.054812 14.126467 28307177 0.798
202 0.0592151 14.153103 20.789343 0.489
252 0.0549243 14.635211 28.815921 0.797
200 0.0586031 14.856382 28.128862 0.495
201 00588266 14.914678 24.869037 0.491
201 0.0591318 14.992039 24.946399 0492
200 0.0584968 15.062259 28334739 0.494
200 0.0587716 15801633 29.074113 0494
199 0.0584796 16.050486 32.641086 0497
251 0.0550929 16.076708 33.802595 0.798
254 00563598 16.593256 23.683611 0.794
253 0.0564882 17.957293 28.592826 0.795
202 0.0594507 17.990994 27.960024 0421
253 0.0566564 18.398159 29.033692 0.795
201 0.0590595 18,798831 32090871 0423
201 0.0609195 19.013396 28.967756 0.488
202 0.0614775 19.104467 25.740707 0484
252 0.0551339 19.276959 37.022340 0.790
201 0.0596765 19.363295 32.655334 0459
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-2LoglLH
66707746
7.8721912
6.1264672
10.153103
66352108
68563824
8.9146775
89920389
7.0622588
7.8016331
60504856
60767078
12.593256
11.957293
11.990994
12.398159
10.798831
13.013396
15104467
9.2769593
11.363295

Weights .2.4.6.8
0.184212
0.101026
0.088965
0.087788
0.068983
0.061762
0.059987
0.057711
0.055720
0.038500
0.033996
0.033553
0.025916
0.013103 |
0.012884
0010511
0.008603 |
0.007727 |
0.007383 |
0.006773 |
0.006487 |

itk |

MAPE
3.920432
3.560509
3.903508
3.592006
3919199
3.570698
3611322
3595188
3.575951
3613810
3.581014
3.901745
3.980039
3957674
3.690269
3977472
3.715058
3.566232
3.603856
4.062772
3.655692

MAE
0.179548
0.180183
0.178601
0.181625
0.179524
0.180862
0.182683
0.181967
0.180987
0.182964
0.181402
0.178517
0.182673
0.181397
0.185924
0.182636
0.187242
0.180332
0.182060
0.184231
0.184364



Appendix F: Published Time Series: Best Seasonal ARIMA Values from JMP

The following JMP output includes the best seasonal ARIMA values computed for the Published
status sorted by lowest AIC followed by lowest SBC. The researcher explored all options in
accordance with the Box-Jenkins Methodology in order to produce a model with significant
parameters that was the least complex possible. This required at least 625 permutations for an
equation with an intercept and another 625 without an intercept. Additional permutations were
calculated to verify the best result.

4 '~ Time Series Log[Published]

Mean 3.6215343
Std 04511277
N 257

Zero Mean ADF 1.104706
Single Mean ADF  -9.524027
Trend ADF 9.764479

Log[Published]

01Jan2013 01Jan2014 01Jan2015 01Jan2016 01Jan2017
Week Of

I Time Series Basic Diagnostics
4 Model Comparison

Report Graph Model DF  Variance AIC SBC RSquare -2LoglH Woeights .2.4 .6.8 MAPE MAE
] v/ ~— Seasonal ARIMA(1, 1, 2)(1, 1, 0)52 199 0.1435461 208.09099 224.68159 0093 19809099 0.026484 9.246431 0316599
«[] ] ~= Seasonal ARIMA(1, 1, 2)(3, 1, 0)52 197 0.1330542 20890652 232.13336 0099 19490652 0.017615 9.130876 0.312147
-] ] ~ Seasonal ARIMA(1, 1, 2)(1, 1, 2)52 197 0.1275094 209.38064 232.60748 0.101 19538064 0.013898 9.148346 0312746
il ] Seasonal ARIMA(2, 1, 1)(1, 1, 0)52 199 0.144668 209.38066 225.97126 0087 199.38066 0.013897 9.244203  0.316767
v | == Seasonal ARIMA(1, 1, 2)(0, 1, 3)52 197 01151825 209.56592 232.79276 0.101 195.56592 0.012668 9.156361 0.313073
- ] ~ Seasonal ARIMA(1, 1, 2)(1, 1, 1)52 198 0.1434427 209.64837 229.55709 0094 197.64837 0.012156 9.244105 0316268
- v ] = Seasonal ARIMA(1, 1, 1)(1, 1, 0)52 No Intercept 201 0.1488412 209.69939 219.65375 0073 203.69939 0.011850 9.285754 0.318511
- ] Seasonal ARIMA(2, 1, 2)(1, 1, 0)52 198 0.1441446 209.71891 229.62763 0,096 197.71891 0.011735 9219734 0.315748
v | Seasonal ARIMA(1, 1, 2)(2, 1, 0)52 198 0.1438471 209.81466 229.72338 0094 197.81466 0.011186 9.248561 0316521
w[ ] ~ Seasonal ARIMA(1, 1, 3)(1, 1, 0)52 198 0.1441542 209.85022 229.75894 0095 197.85022 0.010989 9.230443  0.316086
- | Seasonal ARIMA(2, 1, 1)(3, 1, 0)52 197 0.1330029 210.00455 233.23139 0.093 196.00455 0.010173 9.130010 0.312301
(] (] ~ Seasonal ARIMA(1, 1, 2)(1, 1, 0)52 No Intercept 200 0.1482357 210.12460 223.39708 0078 202.1246 0.009580 9.218173  0.316846
v v ] Seasonal ARIMA(2, 1, 1)(1, 1, 0)52 No Intercept 200 0.1486082 210.34407 223.61655 0.077 20234407 0.008585 9.226350 0.316780
*[] CJ Seasonal ARIMA(1, 1, 2)(0, 1, 1)52 199 0.1410218 210.60250 227.19310 0078 200.6025 0.007544 9259274  0.316468
- ] ~— Seasonal ARIMA(1, 1, 2)(2, 1, 1)52 197 0.1303883 210.62257 233.84941 0.097 196.62257 0.007469 9.200971  0.314583
- ] —= Seasonal ARIMA(2, 1, 1)(1, 1, 2)52 197 01274447 210.65521 233.88205 0,095 196.65521 0.007348 9.149128  0.313007
[ (] ~ Seasonal ARIMA(1, 1, 2)(4, 1, 0)52 196 0.0014278 210.70304 237.24800 0.100 19470304 0.007174 9.120955 0.311852
- ] — Seasonal ARIMA(1, 1, 2)(0, 1, 2)52 198 0.1439475 210.71358 230.62230 0.089 19871358 0.007137 9.263495 0.316855
il ] ~= Seasonal ARIMA(2, 1, 1)(0, 1, 3)52 197 01158291 210.72269 233.94953 0096 196.72269 0.007104 9.153552 0.313180
] | ~— Seasonal ARIMA(3, 1, 1)(1, 1, 0)52 198 0.1448093 210.75165 230.66037 0,090 198.75165 0.007002 9.278803 0.317817
wlvl 1 == Seasonal ARIMA(0. 1. 3)(1. 1, 052 No Intercent 200 0.1489018 210.85022 224.12270 0075 20285022 0.006665 9.213806 0.316004
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Appendix G: Cancelled Time Series: Best Seasonal ARIMA Values from JMP

The following JMP output includes the best seasonal ARIMA values computed for the Cancelled
status sorted by lowest AIC followed by lowest SBC. The researcher explored all options in
accordance with the Box-Jenkins Methodology in order to produce a model with significant
parameters that was the least complex possible. This required at least 625 permutations for an
equation with an intercept and another 625 without an intercept. Additional permutations were
calculated to verify the best result.

4 '~ Time Series Log[Cancelled]

5 Mean 4.0208277
45 Std 0.3533596
' N 257

Zero Mean ADF 0484238
Single Mean ADF  -9.67892

Log[Cancelled]
w
w n s

Trend ADF 9.704816
25
01Jan2013 01Jan2014 01Jan2015 01Jan2016 01Jan2017
Week Of
[ Time Series Basic Diagnostics
4 Model Comparison

Report Graph  Model DF Variance AlC SBC RSquare -2LoglH Weights .2.4 .6.8 MAPE MAE
- L] - Seasonal ARIMA(2, 0, 0)(2, 0, 0)52 252 0.0819538 108.75940 126.50478 0.284 98.759397  0.074267 || 5799628 0.222581
[ L] = Seasonal ARIMA(2, 0, 0)(1, 0, 2)52 251 0.0807933 109.18050 13047496 0.288 97.1805 0.060166 || 5789562 0.222144
v ] Seasonal ARIMA(2, 0, 0)(2, 0, 1)52 251 0.0812113 109.36294 130.65740 0287 97.36294 0.054921 5791022 0222108
v | Seasonal ARIMA(1, 0, 1)(2, 0, 0)52 252 0.0822501 109.37359 127.11897 0.283 99.373594 0.054629 5.807545 0.222986
Ad = - Seasonal ARIMA(1, 0, 1)(1, 0, 2)52 251 0.0808219 109.50633 130.80079 0.287 97.506334 0.051121 5791665 0222294
- ] Seasonal ARIMA(2, 0, 1)(2, 0, 0)52 251 0.0822092 109.59551 130.88997 0.288 97595514  0.048892 5766330 0.221058
[ [ Seasonal ARIMA(1, 0, 1)(2, 0, 1)52 251 0.0812701 109.74210 131.03655 0.287 97742096 0.045437 5792694 0.222247
v || ~— Seasonal ARIMA(2, 0, 1)(1, 0, 2)52 250 0.0813123 11040670 13525023 0291 96406702 0.032590 5773953 0.221382
vl | Seasonal ARIMA(2, 0, 1)(2, 0, 1)52 250 0.0817298 110.53942 13538296 0291 96.539425 0.030498 5.775167 0.221315
Ad L] - Seasonal ARIMA(1, 0, 2)(2, 0, 0)52 251 0.082407 111.02716 13232162 0.284 99.027163 0.023898 5.809244 0.222984
- Iz -~ Seasonal ARIMA(2, 0, 0)(2, 0, 2)52 250 0.0812718 111.16123 136.00476 0288 97.161231 0.022348 5786897 0.222017
v[] ] = Seasonal ARIMA(1, 0, 0)(1, 0, 2)52 252 0.0822247 111.22217 128.96755 0280 101.22217 0.021678 5.865789 0.225409
[ [ ~ Seasonal ARIMA(2, 0, 2)(2, 0, 0)52 250 0.0823391 111.39227 136.23580 0288 97392266 0.019910 5762874 0.220937
v li — Seasonal ARIMA(1, 0, 2)(1, 0, 2)52 250 0081179 11141268 136.25621 0.287 97412675 0.019708 5794207 0.222355
v L] - Seasonal ARIMA(1, 0, 0)(2, 0, 0)52 253 0.0838771 11144032 125.63662 0276 103.44032 0.019438 5884539 0.226169
Ad ] - Seasonal ARIMA(1, 0, 1)(2, 0, 2)52 250 0.0812556 111.50001 136.34354 0.287 97.500007 0.018866 5790113  0.222221
v L] Seasonal ARIMA(1, 0, 0)(2, 0, 1)52 252 0.0825921 111.52407 129.26945 0279 101.52407 0.018640 5.874133 0.225643
w[_ ] Seasonal ARIMA(1, 0, 2)(2, 0, 1)52 250 0.0816043 111.60162 13644515 0287 97.601617 0.017931 5796567 0.222353
- ] Seasonal ARIMA(2, 0, 0)(1, 0, 1)52 252 0.0812798 111.82098 129.56636 0.281 101.82098 0.016069 5.922705 0.227397
- ] Seasonal ARIMA(0, 0, 2)(2, 0, 0)52 252 0.0837525 11211797 129.86335 0279 10211797 0.013851 5.847380 0.224440
- rl ~— Seasonal ARIMA(2, 0. 2)(1. 0. 2)52 249 00813631 11214440 140.53701 0291 96.144399 0.013669 5771347  0.221290
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Appendix H: 1 Year of Air Refueling Hourly Duration Request Distribution
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Appendix I: 2 Years of Air Refueling Hourly Duration Request Distribution
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Appendix J: 3 Years of Air Refueling Hourly Duration Request Distribution
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Appendix K: 4 Years of Air Refueling Hourly Duration Request Distribution
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Appendix L: All Test Data of Air Refueling Hourly Duration Request Distribution
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Appendix M: Validation Data of Air Refueling Hourly Duration Distribution
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