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EXECUTIVE SUMMARY 

A monetized tornado benefit model is developed for arbitrary weather radar network configurations. 

Geospatial regression analyses indicate that improvement in two key radar coverage parameters—fraction 

of vertical space observed and cross-range horizontal resolution—lead to better tornado warning 

performance as characterized by tornado detection probability and false alarm ratio. Previous experimental 

results showing faster volume scan rates yielding greater warning performance, including increased lead 

times, are also incorporated into the model.  Enhanced tornado warning performance, in turn, reduces 

casualty rates. In combination, then, it is clearly established that better and faster radar observations reduce 

tornado casualty rates. Furthermore, lower false alarm ratios save cost by cutting down on people’s time 

lost while taking shelter. 

The model is run on the existing contiguous United States weather radar network as well as 

hypothetical configurations. Key results are as follows (values are given in 2019 dollars): 

1. Current weather radars provide a tornado-based benefit of $535M per year. 

2. The remaining benefit pool is $676M per year. 

3. About half of the benefit pool ($333M per year) can be claimed by upgrading the current radars 

with rapid-scan (one-minute volume coverage update) capability. 

4. Over 99% of the current tornado-related benefit is realized east of the Rockies. 

5. The highest single-site gap-filling benefit exists in northern Alabama and is about $4M per year 

($7M per year with rapid scan capability). 

The model also enabled estimation of the present-day net benefit (casualty reduction benefit minus 

sheltering cost) of tornado warnings ($1921M per year), as well as the benefit associated with the transition 

from county-based to storm-based tornado warnings ($732M per year). 

The quantification of rapid scan effects is based on a small number of past experiments and is less 

robust than the other parts of the benefit model. In order to drive down this uncertainty, it is recommended 

that more statistics be gathered on the effects of faster volume scans on tornado warning performance by 

utilizing existing and new radars capable of fine temporal resolution observations.
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1. INTRODUCTION 

For decades, the Weather Surveillance Radar-1988 Doppler (WSR-88D) network (Crum and Alberty 

1993) has served as the backbone for severe weather observation in the U.S. Deployment of the WSR-88D 

led to significant improvement in severe weather warning performance (Polger et al. 1994). Upgrades to 

various subsystems over the years have kept its performance close to the leading edge of meteorological 

radar technology. In particular, the addition of dual polarization capability (Istok et al. 2009b) has provided 

major additional benefits for WSR-88D users. 

There is, however, a limit to further upgrades. For example, meteorologists always want faster 

observational updates.  Although some inroads have been made in this direction through the adoption of 

adaptive volume scan strategies (Chrisman 2013; Chrisman 2014), the mechanically steered antenna 

ultimately limits the ability of the WSR-88D to collect data quickly and adaptively in real time. A potential 

solution to this issue is the electronically scanned phased array radar (PAR). Although long considered too 

expensive for civilian applications, recent breakthroughs in cost reduction is bringing this technology within 

reach of a wider customer base (Herd and Conway 2016). 

For over a decade, the National Oceanic and Atmospheric Administration (NOAA) has been studying 

PAR use for weather (Forsyth et al. 2005), with an eye toward possibly replacing the WSR-88D with a 

polarimetric PAR (PPAR) in the future. Although there are many potential benefits to deploying a PPAR 

nationally, there are also still many technical challenges to overcome (Zhang 2008). A solid business case 

will have to be built before such a large acquisition decision can be made. In response to this programmatic 

need, NOAA is conducting PPAR risk reduction and benefit quantification studies (Weber et al. 2018). The 

work described in this report is part of this effort; it covers benefit analyses for future weather radar 

networks with respect to tornadoes. A separate article covers a similar study for flash floods (Cho and 

Kurdzo 2019b). 

NOAA is also an interested party in the ongoing Spectrum Efficient National Surveillance Radar 

(SENSR) program, which was initiated in 2016 to study the feasibility of auctioning at least 30 MHz of the 

federally reserved 1300–1350 MHz band by 2024 for commercial use (FAA 2018). SENSR is a multi-

agency coalition composed of the Federal Aviation Administration (FAA), Department of Defense (DoD), 

and Department of Homeland Security (DHS); it is led by the FAA.  Auction proceeds would fund the 

replacement surveillance capability of the long-range radars (LRRs) now operating in the 1300–1350-MHz 

band.  Since 2700–2900 MHz is a potential target band for the LRR replacement sensors, the WSR-88D 

network could be impacted by the outcome of SENSR.  It is also possible that some of the new radars 

deployed by SENSR could have weather observation capabilities that may be of utility for NOAA. 

Therefore, potential SENSR radar network solutions are considered as part of this study.  



 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 
 



 

3 

2. BENEFIT MODEL 

Excessive heat, tornadoes, and floods are the top three weather causes of fatalities in the U.S. (NOAA 

2018).  Tornado warnings issued by the National Weather Service (NWS) are part of a strategy to reduce 

casualties by providing people with a chance to shelter in advance (Simmons and Sutter 2011).  Forecasters 

issuing these warnings utilize multiple data sources, with Doppler weather radar serving as the most 

essential component (Brotzge and Donner 2013). Indeed, the nation-wide deployment of the WSR-88D 

improved tornado warning statistics (Bieringer and Ray 1996) that led to an estimated casualty rate 

reduction of ~40% (Simmons and Sutter 2005). 

Decreasing tornado casualties is just one of many weather radar benefits to society.  These radars, 

however, are expensive to operate and maintain, and even more so to replace.  As the WSR-88Ds approach 

the end of their original (and upgraded) life spans (NRC 2002), careful consideration must be given to 

defining requirements for their replacements or further refurbishments to optimize return on investment.  

Spatial coverage, measurement resolution, update rates, and sensitivity are all important performance 

metrics that should be maximized, but there is a cost associated with each.  Benefit quantification based on 

radar performance and network layout can help with difficult decisions and enable objective trade-offs. 

This chapter presents a geospatial model for monetizing tornado-related benefits of a generic weather 

radar network.  The goal of this effort was to take as input an arbitrary network of weather radars over a 

given area, and output a monetized benefit that the radars provide to the area populace with respect to 

tornadoes.  Given that this is a complex problem involving many factors, we endeavored to simplify the 

model components to only the essentials needed to objectively quantify the radar effects.  Statistically 

insignificant variables were not used.  In cases of uncertainty, we took a conservative approach.  As the 

overwhelming majority of tornadoes in the nation are within the contiguous United States (CONUS), we 

took that to be our geographic scope.  The model can easily be expanded to include the rest of the U.S., but 

the increase in benefit should be marginal, since we calculated that only 0.09% of U.S. tornadoes occur 

outside the CONUS historically. 

Tornadoes are relatively rare occurrences, and casualties (especially fatalities) are sparser.  To 

achieve statistically significant results, we had to use as much data as we could, which meant including as 

many years of historical data as possible.  However, this imperative was counteracted by the need to 

maintain a uniform condition set for fair regression results.  This issue will be addressed in the individual 

analysis subsections. 

2.1 RADAR DATA SOURCE FOR MODEL DEVELOPMENT 

In the CONUS, there are 143 operational WSR-88Ds.  There are also 44 FAA Terminal Doppler 

Weather Radars (TDWRs) (Michelson et al. 1990) in the CONUS.  The TDWRs’ primary mission is 

providing hazardous wind-shear alerts for aircraft landing and taking off at airports, but their data are also 
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available to forecasters and the public (Istok et al. 2009a).  Compared to the WSR-88D, they provide faster 

low-level updates (every minute during hazardous weather conditions) and better vertical resolution. 

However, the TDWR’s operation is more negatively impacted by rain attenuation and range-velocity 

ambiguity issues (Cho and Weber 2010) due to the utilization of C band rather than S band that the WSR-

88D uses. 

In areas with TDWR coverage, do meteorologists make use of this additional radar data for making 

tornado warning decisions? To answer this question, we conducted a small survey that targeted NWS 

offices with TDWR coverage, including both tornado-intensive and tornado-sparse locations. We received 

responses from eight forecast offices (Tampa Bay, Florida; Peachtree City, Georgia; Wilmington, Ohio; 

Norman, Oklahoma; Fort Worth, Texas; Philadelphia, Pennsylvania; Topeka, Kansas; and Milwaukee, 

Wisconsin), plus the Storm Prediction Center (SPC).  The survey prompt, as posed, is included below, and 

is followed by the responses from the forecasters.  Some of the responses were lightly edited for brevity 

and focus. 

Prompt 

NOAA has tasked Lincoln Laboratory with assessing future radar network designs with respect to 

tornado warning lead time.  Rather than focusing on temporal update rate, which has been a common area 

of research, we will be focusing on spatial resolution and height of the beam (resulting from different 

network configurations).  We are at the stage of deciding whether or not to include TDWRs in our analysis 

on tornado warning lead time.  If you could give a brief response on whether or not you find that TDWR is 

regularly used for tornado warning guidance in your office, we would appreciate your thoughts. 

Responses 

Tampa Bay Area, FL: “We do have a TDWR located at the north end of Tampa Bay. It is used 

regularly when storms are near the bay, especially for waterspout detection and strong marine downbursts. 

Of course, TDWR comes with several caveats. Data is often messy and/or incomplete and NWS offices 

don’t really control if or when they are taken down for maintenance. Just a few considerations.” 

Peachtree City, GA: “Regarding the TDWR (for us at FFC [Weather Forecast Office in Peachtree 

City, Georgia] we use TATL [Terminal Doppler Weather Radar in Atlanta, Georgia])... I would say for us 

in ATL [Atlanta] we routinely use it during warning operations, especially around the ATL metro. In fact, 

it was the only source we had during the missed tornado/tornado warning at Hartsfield-Jackson Airport this 

past spring. It captured a very small velocity couplet right over the airport when looking back at the data, 

whereas KFFC [Weather Surveillance Radar-1988 Doppler in Peachtree City, Georgia] (which is not too 

far) had nothing.  While I would still say that we use the 88Ds MUCH more when issuing tornado warnings, 

our TDWR is very useful in many cases, particularly squall lines in our area. I'd say include TDWRs in 

your analysis if you can!” 
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Wilmington, OH: “Here at ILN [Weather Forecast Office in Wilmington, Ohio], we are very fortunate 

to have 3 TDWRs (TDAY, TCVG, TCMH [Terminal Doppler Weather Radars in Dayton, Ohio; Covington, 

Kentucky; and Columbus, Ohio]) in our CWA [county warning area]. And yes, we heavily rely on them 

for issuance of TORs [tornado warnings]. I would say we issue more TORs based on TDWRs signals than 

we do from our 88-D (KILN [Weather Surveillance Radar-1988 Doppler in Wilmington, Ohio]). Given that 

many of our tornadoes are spawned courtesy of QLCSs [quasi-linear convective systems] (and therefore 

have very quick spin-ups and lifespans), TDWR data is constantly used in the warning decision process for 

our office.” 

Norman, OK: “We absolutely use TDWR to assist with tornado warning decisions. It’s been a great 

tool in numerous events close to metro OKC [Oklahoma City], especially when there is the potential for 

tornadic storms close to the radar. There is utility in sampling closer to the storm—especially for 

QLCS/non-supercell tornado events.” 

SPC, Norman, OK: “While I don't issue warnings at SPC, I do get to see tornado warnings issued 

from every office across the CONUS. From what I’ve noticed, TDWRs do occasionally provide useful 

velocity data that wouldn't otherwise be seen by the WSR-88D network. Specifically, I’ve seen this multiple 

times along the FL Peninsula for mainly land-falling tropical systems, and in western NC with TCLT 

[Terminal Doppler Weather Radar in Charlotte, North Carolina] where there is a bit of a radar hole 

otherwise.  Prior to the SAILS/MESO-SAILS [supplemental adaptive intra-volume low-level 

scan/multiple-elevation scan option for supplemental adaptive intra-volume low-level scan] era, TDWR 

velocity data had much higher temporal resolution than the 88Ds, so I believe offices would often use them 

to get better looks at velocity couplets in between 88D scans. I know OUN [Weather Forecast Office in 

Norman, Oklahoma] did this with TOKC [Terminal Doppler Weather Radar in Oklahoma City, Oklahoma] 

back when I volunteered with them years ago.” 

Fort Worth, TX: “TDWR is something we make aggressive use of for warning decisions at the Fort 

Worth WFO [Weather Forecast Office]. The high temporal and spatial resolution of these systems is 

paramount in fast-evolving tornadic events like those spawned by QLCSs. I think this is where the TDWRs 

shine for us when it comes to tornado warning guidance; while we can usually ‘see’ and track the big ones 

well enough from KFWS [Weather Surveillance Radar-1988 Doppler in Fort Worth, Texas], it’s nice 

having the finer detail from way down low with the TDWRs when small and low-level mesocylones are a 

threat.  Obviously, we have to make due with increased velocity dealiasing failures, attenuation, and beam 

blockage, but I’d still put the TDWRs up there on the ‘must-have’ list for tornado warning guidance.” 

Philadelphia, PA: “I’ve used TPHL [Terminal Doppler Weather Radar in Philadelphia, Pennsylvania] 

more times than I count to either help verify what KDIX [Weather Surveillance Radar-1988 Doppler in 

Fort Dix, New Jersey] was showing rotation-wise or just straight up warning based solely off its signatures. 

TDWRs helped a lot too on MD’s eastern shore using either TBWI [Terminal Doppler Weather Radar in 

Baltimore, Maryland] or TADW [Terminal Doppler Weather Radar in Andrews Air Force Base, Maryland]. 

Same can be said for TEWR [Terminal Doppler Weather Radar in Newark, New Jersey]. Again these 

Terminal Dopplers have become an amazing asset to warning operations.” 
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Topeka, KS: “Here at Topeka, TMCI [Terminal Doppler Weather Radar in Kansas City, Missouri] 

does clip a few of our NE counties. I have not personally had the opportunity to use the TDWR for tornado 

warning guidance, but I imagine that on the rare occasions that we have tornadic storms within range of the 

radar that we would use it. I am all for increasing the spatial resolution of the current 88-D network by any 

means possible.” 

Milwaukee/Sullivan, WI: “The Milwaukee TDWR is mainly a source of supplemental information 

during severe weather operations.  The most common use would be to get a different perspective on storm 

structure if the 88D’s data is being contaminated by TBSS [three-body scatter signature], etc.” 

The responses unanimously affirmed the TDWR as a useful data source for tornado warning 

decisions.  Although the reliance ratio on data from WSR-88Ds and TDWRs varied depending on their 

relative coverages, note that one office (Wilmington) even asserted that they issued more tornado warnings 

based on TDWR data than on WSR-88D data.  Consequently, we decided to include TDWRs as part of our 

analysis.  Figure 2-1 is a map of CONUS WSR-88D and TDWR locations. 

 

 

2.2 RADAR COVERAGE AND RESOLUTION METRICS 

Past studies of tornado warning performance dependence on weather radar have used distance from 

radar as the key parameter (Brotzge and Erickson 2009; Brotzge et al. 2011; Brotzge et al. 2013).  This 

 

Figure 2-1. CONUS WSR-88D (blue circle) and TDWR (red cross) locations. 
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makes sense because sensitivity, spatial resolution, and low-level coverage degrade with range.  Tornadoes 
exist within a limited height above the surface and their rotational signature requires fine horizontal 
resolution to detect.  Our initial investigation into the relationship between radar coverage and tornado 
warning performance, however, exposed some unexpected behavior at close range.  We hypothesized that 
this was due to not taking into account near-radar degraded coverage caused by the “cone of silence.”  
Weather radars do not scan all the way to zenith angle, which leaves an overhead cone of unobserved space.  
Some of this gap can be covered if there is another radar close enough, but the spatial resolution is degraded.  
Even if a radar did scan to zenith, it would not be able to measure horizontal velocity as the angle would be 
too steep. 

Why is radar coverage aloft important for tornado warning decisions even though tornadoes occur at 
the surface?  The ultimate goal is to issue a warning before a tornado touches down with as much lead time 
as possible, and forecasters look for features at both low- and mid-levels.  For supercell storms, these 
include a strong mesocyclone, a bounded weak echo region or a hook echo in conjunction with big peak 
mid-level reflectivities, and a mid-level overhang (Lemon and Doswell 1979; Falk 1997).  Virtually all 
strong or violent tornadoes are associated with mesocyclones (Burgess and Lemon 1990).  Detection of 
tornado debris signatures aloft after touchdown is also used for detection and confirmation, with violent 
tornadoes sending debris to over 18,000 ft above ground level (AGL) (Schultz et al. 2012; Gibbs 2016).  
The cone of silence cuts off these critical measurements. 

Thus, we developed a new radar coverage metric, fraction of vertical volume observed (FVO), with 
the floor at the Earth’s surface and ceiling at 20 kft AGL.  The top panel of Figure 2-2 shows the vertical 
observation limits vs. range for a WSR-88D on a smooth Earth.  The bottom plot shows FVO with range, 
illustrating that this metric combines the cone of silence and Earth curvature effects.  In the actual 
calculation, we included surface elevation data to account for blockage and height AGL variations.  We 
used Level 1 Shuttle Radar Tomography Mission (SRTM) data, which includes both natural terrain and 
surface structures/features, as the primary source of digital elevation, supplemented by Level 1 Digital 
Terrain Elevation Data (DTED) where SRTM had gaps (Cho 2015).  Our model computation grid matched 
the horizontal resolution (30 arcsec in latitude and longitude) of these data sets, while the vertical grid 
spacing was 200 ft.  We employed a standard 4/3-Earth-radius model for radio frequency (RF) propagation 
path calculations.  The minimum elevation coverage angle was taken to be 0° (roughly corresponding to 
the bottom side of the main lobe) for both WSR-88D and TDWR, while the maximum angle was set to 20° 
for WSR-88D and 60° for TDWR (topside of the main lobe).  These are approximations, since the minimum 
and maximum angles vary from site to site (especially for TDWRs) and for different scan strategies 
(especially for WSR-88Ds). 
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The 20-kft value for the FVO ceiling was chosen because above this height the CONUS coverage by 

the WSR-88D network is essentially perfect (Figure 2-3).  Since we are developing statistical relationships 

based on historical data (i.e., on observations by existing radars), increasing the ceiling of this coverage 

metric does not add any informational value. In other words, the surface-to-20-kft AGL span covers the 

entire dynamic range of fractional vertical volume observed. Figure 2-4 shows the resulting FVO over the 

CONUS for the combined WSR-88D and TDWR networks. 

 

Figure 2-2. (Top) WSR-88D vertical coverage limits vs. range from radar as delineated by the bottom of the lowest-
elevation scan (0°) and the top of the highest-elevation scan (20°).  The 4/3-Earth-radius propagation model is used.  
(Bottom) Corresponding fraction of vertical volume observed between 0 and 20 kft AGL. 
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Figure 2-3. Coverage provided by the WSR-88D network at 5000 ft, 10,000 ft, 15,000 ft, and 20,000 ft AGL . 

 

 

Figure 2-4. Fraction of vertical volume observed between 0 and 20 kft AGL by current CONUS WSR-88Ds  
and TDWRs. 
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We also considered the cross-radial horizontal resolution (CHR).  This parameter is important for 

detection of tornadic velocity couplets (Wood and Brown 1997; Brown et al. 2002; Brown and Wood 2012).  

Along-range horizontal resolution is also a factor but is not an interesting metric, because it is a constant 

value everywhere for monostatic radars.  Roughly speaking, CHR is angular resolution (in radians) 

multiplied by range.  Angular resolution is dependent on the antenna beamwidth and the dwell size (Zrnic 

and Doviak 1976).  Although the TDWR’s beamwidth is about half that of the WSR-88D’s (0.55° vs. 1°), 

because its sampling interval is 1°, the effective angular resolution of the two systems are not very different.  

Currently, the WSR-88D has a so-called “superresolution” mode that outputs data at overlapping 0.5° 

intervals, but the effective angular resolution is still ~1° based on the data window and the beamwidth 

(Torres and Curtis 2006).  Therefore, we approximated the angular resolution of both systems as 1°. The 

resulting CHR is, thus, functionally the same as the distance-from-radar metric for the current radars.  

Terrain blockage was not factored in, because that is elevation angle dependent, and we did not want to 

pick a particular angle for this metric.  Figure 2-5 maps CHR over the CONUS for the combined WSR-

88D and TDWR networks.  Future radars, however, could have very different angular resolutions, e.g.,  

a dense network of broad-beam systems (Brotzge et al. 2010), or even angle-dependent resolution for fixed 

planar phased arrays (Brown and Wood 2012), which may make CHR a more meaningful  

performance yardstick. 

2.3 MODEL DEVELOPMENT 

Tornado warnings are expected to benefit society by allowing people to shelter in advance of impact, 

thereby reducing casualties.  This intuitive causal chain has been proven empirically, at least for the case 

of injuries (Simmons and Sutter 2008); fatalities are such rare events that it is difficult to achieve statistically 

significant results for them.  Little can be done to protect property at warning time scales, so we only 

considered casualty reduction in our model.  At the same time, there is a cost incurred for those taking 

 

Figure 2-5. Cross-radial horizontal resolution for current CONUS WSR-88Ds and TDWRs. 
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shelter based on the loss of work and personal time.  If false alarms can be decreased, some of this cost 

could be recouped (section 2.3.8). 

Better Doppler weather radar coverage should contribute to tornado casualty reduction by improving 

tornado warning performance.  It may also lower sheltering cost by decreasing false alarms.  Our benefit 

model combined all of these effects to output a monetized cost given an arbitrary weather radar network as 

input (Figure 2-6). 

2.3.1 Detection Probability Dependence on Radar Coverage 

A five-year (2000–2004) study (Brotzge and Erickson 2010) showed that the fraction of tornadoes 

without warning increased with distance from radar, which implies that better radar coverage improves 

tornado warning performance.  We performed our own analysis using NWS tornado warning data, 

extending the analysis period.  National deployment of operational WSR-88Ds was completed in late 1997.  

Therefore, we set the analysis period to be between 1 January 1998 and 31 December 2018.  However, after 

1998, two new WSR-88D sites were added—Evansville, Indiana (operational January 2003) and Langley 

Hill, Washington (installed September 2011).  Furthermore, the TDWR Supplemental Product Generator 

(SPG) deployment (Istok et al. 2009a), which enabled TDWR data access by NWS forecasters, was finished 

in late 2008.  Thus, to account for these radar network changes, we generated four sets of FVO and CHR 

maps: (1) Prior to the Evansville WSR-88D installation, (2) after the Evansville addition but before the 

 

Figure 2-6. Block diagram of weather radar network benefit model for tornado warnings. 
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TDWR SPG deployment, (3) post-TDWR SPG but before the Langley Hill WSR-88D installation, and (4) 

after the Langley Hill deployment.  We did not discriminate between the periods before and after the WSR-

88D dual-polarization upgrade, since overall tornado warning statistics did not improve post-upgrade in our 

analysis (Figure 2-7).  The mean tornado fraction warned prior to the start of the dual-polarization 

deployment but after the switch to storm-based warnings (October 2007 to February 2011) was 0.74, 

whereas it was 0.63 after the completion of the upgrade (June 2013 to December 2018). This methodology 

is not perfectly accurate, as we did not take into account the exact periods of radar down times, variations 

in volume scanning strategies, etc., but the expansion of the analyzed database to twenty years helped 

suppress the noise level of these minor errors relative to the desired signal. 

 

Tornado event data were downloaded from the storm events database 

(https://www.ncdc.noaa.gov/stormevents/) of NOAA’s National Center for Environmental Information.  

Tornado warning data were obtained from the Iowa Environmental Mesonet NWS Watch/Warnings archive 

(https://mesonet.agron.iastate.edu/request/gis/watchwarn.phtml).  A warning was deemed to be a hit if any 

portion of the tornado path was inside the area enclosed by the warning latitude-longitude coordinates and 

if any part of the tornado existence period overlapped the warning valid interval; otherwise, the warning 

 

Figure 2-7. CONUS tornado detection probability by year. 

 

https://www.ncdc.noaa.gov/stormevents/
https://mesonet.agron.iastate.edu/request/gis/watchwarn.phtml
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was classified as a false alarm.  For a hit, the lead time was calculated as the tornado start time minus the 

initial time of warning issuance.  Multiple warnings for one storm were treated separately. For the remainder 

of the paper, we will refer to the fraction of tornadoes with warning as the probability of detection (POD), 

which is the more commonly used term. The number of tornadoes and POD during the analysis period, 

parsed by Enhanced Fujita (EF) scale number, are given in Table 2-1. 

 

Table 2-1  CONUS Tornado Warning Statistics for Analysis Period 
EF# 0 1 2 3 4 5 

Tornado count 16 517 8789 2632 790 171 19 
POD (all lead times) 0.66 0.70 0.84 0.95 0.98 1.0 
POD (positive lead times only) 0.59 0.61 0.74 0.87 0.92 1.0 

 

 

Prior to February 1, 2007, the original Fujita scale was used to rate tornadoes. With a far greater 

number of damage indicators used, the EF scale is agreed to be a more accurate and consistent estimator of 

tornado strength. Although carefully designed to minimize discontinuity in the historical tornado database, 

there may still be some small statistical differences between the old and new scales, such as shifts in the 

relative distributions between strength categories (Edwards and Brooks 2010), which could potentially 

affect our regression results. 

For each tornado event, FVO and CHR at the start-of-tornado location were recorded.  Based on 

similarities in POD statistics, and also to increase the number of samples per category for the high-EF cases, 

we then computed POD vs. FVO and CHR for EF0–1, EF2, and EF3–5.  For these calculations, FVO was 

binned into the following intervals: [0, 0.3], (0.3, 0.6], (0.6, 0.7], (0.7, 0.8], (0.8, 0.9], and (0.9, 1], while 

CHR (in meters) was binned into: [0 500], (500, 1000], (1000, 1500], (1500, 2000], (2000, 2500], and 

(2500, ∞). 

Figure 2-8 shows POD vs. FVO for EF0–1, EF2, and EF3–5, where warnings with any lead time 

(including zero and negative values) are considered valid.  The argument in favor of this interpretation is 

that even if a tornado touches down before the warning issuance time, as long as the warning is issued 

before the end of the event, people further down the track have a chance to shelter before impact. The 

plotted abscissa values are the means of the binned FVO data, not the center of the bins.  The horizontal 

error bars are ±1.96 times the FVO standard deviation divided by the square-root of the number of data 

points.  The vertical error bars are ±1.96 times the standard error for proportional data (the computed PODs) 

divided by the square-root of the number of data points.  These bars indicate the 95% confidence intervals 
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in both dimensions.  A minimum of four data points per bin were required for inclusion in the plots, which 

eliminated low-FVO points with increasing EF number. 

Figure 2-9 shows POD vs. FVO for EF0–1, EF2, and EF3–5, where only warnings with positive lead 

times are considered detections. The main effect of excluding zero and negative lead times was to lower 

the POD values as expected, but the general trends are quite similar in Figures 2-7 and 2-8. That is, POD 

increases with FVO for all EF categories. This is a key result, as it associates improvement in tornado 

warning performance to better radar coverage.  We modeled these dependencies with least-squares straight 

 

Figure 2-8. Tornado detection probability vs. fraction of vertical volume covered by radar from surface to 20 kft 
AGL: (top left) EF0 and EF1, (top right) EF2, and (bottom) EF3, EF4, and EF5.  Presence of warning with any lead 
time is considered a detection. Solid red lines are least-squares linear fits to the data. 
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line fits to the data with input uncertainty in two dimensions using the Numerical Recipes function fitexy 

(Press et al. 1992).  Results of the fitting are listed in Table 2-2, where a is the y intercept, b is the slope, a 

is the standard deviation of a, b is the standard deviation of b, 2 is the final chi-squared value, and Q is 

the goodness-of-fit probability.  The slopes are positive; they remain positive within the errors except for 

the EF3–5 cases, which have much fewer data points than the other categories.  The dashed red line in the 

EF0–1 plot in Figure 2-9 will be explained in section 2.3.6. The decision of whether to use the all-lead-time 

or positive-lead-time-only fits in our model will be discussed in section 2.3.4. 

 

Figure 2-9. Same as Figure 2-8, except only warnings with positive lead times are considered detections. Dashed 
red line corresponds to rapid scanning radar case. 
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Table 2-2  POD vs. FVO Linear Fit Results 
EF# group 0–1  2 3–5 
Segment Low FVO High FVO All FVO All FVO 

All lead times     
a (y intercept) 0.00 0.48 0.55 0.84 

b (slope) 0.94 0.23 0.32 0.13 

a 0.18 0.07 0.18 0.18 

b 0.30 0.08 0.24 0.19 

2 0.51 0.20 0.99 0.36 
Q 0.48 0.90 0.80 0.95 

Positive lead times only     
a (y intercept) -0.17 0.48 0.49 0.58 

b (slope) 1.1 0.14 0.27 0.34 
a 0.15 0.08 0.21 0.29 

b 0.26 0.09 0.27 0.38 

2 1.3 0.27 0.26 0.10 
Q 0.26 0.87 0.97 0.99 

 

The dependence of POD on CHR was more problematic, as POD did not decrease monotonically 

with increase in CHR.  Figure 2-10 shows the results for all EF categories combined.  Since CHR is 

proportional to distance from the nearest radar, the decrease in POD at close range may be at least partly 

due to the negative impact of the cone of silence.  This type of cross-contamination of effects is undesirable, 

since future radar systems could have a significantly smaller cone of silence and a CHR-POD relationship 

based mostly on WSR-88D data may not hold. Therefore, we excluded CHR as a radar performance metric 

from the POD dependency model. 
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2.3.2 False Alarm Ratio Dependence on Radar Coverage 

Tornado warning false alarm ratio (FAR) depends on many factors, e.g., time of day, population 

density, and tornado occurrence frequency.  An earlier five-year study (2000–2004) showed FAR more-or-

less constant with distance from radar up to ~150 km, but then decreasing at farther ranges (Brotzge et al. 

2011).  Taken at face value, this meant that improving radar coverage would not lower FAR, and might 

even raise the overall number of false alarms.  It is also possible that lower FAR (and lower POD) might 

result from forecasters’ reluctance to issue warnings where they know radar coverage is poor.  Thus, we 

revisited this study using the FVO and CHR radar coverage metrics instead of distance from radar, and 

expanded the database period as we did for the POD dependency analysis in section 2.3.1.   

An important point about the database is that operational NWS tornado warnings switched from a 

county-based to a storm-based polygon area definition on 1 October 2007.  This transition made a large 

difference in the warning statistics as seen in Table 2-3, with the mean warning area shrinking to 40% of 

the former mean area.   Because the analysis of FAR vs. the radar coverage metrics involved computation 

of the average coverage parameters over the warning area, the change to storm-based warning resulted in 

much sharper relationships.  This was in contrast to the POD analysis of section 2.3.1, which used the 

location of the tornado with the radar coverage values, not the warning area.  Therefore, in this section, we 

only used the database period 1 October 2007 to 31 December 2018. 

 

 

Figure 2-10. Tornado detection probability vs. cross-radial horizontal resolution of radar observations for 
detection based on (left) all warning lead times and (right) positive lead times only. 
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Table 2-3  Tornado Warning Statistics Before and After Switch to Storm-based Warnings 
Period 1998-1-1 to 2007-9-30 2007-10-1 to 2018-12-31 

Warning count 33 814 25 290 
Mean warning area 2370 km2 953 km2 
FAR 0.763 0.722 

 

 

For the FAR vs. radar coverage calculations, FVO was binned into the following intervals: [0, 0.3], 

(0.3, 0.4], (0.4, 0.7], (0.7, 0.8], (0.8, 0.9], and (0.9, 1], while CHR (in meters) was binned into: [0 700], 

(700, 1400], (1400, 2100], (2100, 2800], (2800, 3500], and (3500, ∞).  Limits were adjusted to spread out 

the data distribution more evenly among bins.  The results and subsequent linear fits are plotted in Figure 

2-11 (FAR vs. FVO) and Figure 2-12 (FAR vs. CHR); the fitting procedure was the same as for Figures  

2-8 and 2-9 as explained in section 2.3.1.  For Figure 2-12, the line fit excluded the rightmost data point, 

and the FAR was capped at 0.76 as shown by the horizontal red line, a piecewise linear approximation of 

what appears to be a saturation curve type of behavior.  The dashed red line will be explained in  

section 2.3.6. 

 

 

 

Figure 2-11. Tornado warning false alarm ratio vs. fraction of vertical volume covered by radar from surface to 
20 kft AGL.  Red line is a least-squares linear fit to the data. 
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Curiously, in this case, FAR vs. CHR yielded the better fit.  Coefficients and fitting statistics are 

given in Table 2-4.  In an attempt to optimally combine CHR and FVO in the FAR-radar coverage model, 

we tried weighted means of the two linear relationships and compared the resulting errors (mean-squared 

sums of the difference between model and data).  The smallest error was achieved with zero weighting on 

the FVO relationship.  Thus, only the FAR-CHR relation was used in our model. 

 

Table 2-4  FAR vs. Radar Coverage Parameter Linear Fit Results 
Parameter FVO CHR 

a (y intercept) 0.79 0.67 
b (slope) -0.085 2.7 × 10-5 m-1 

a 0.026 0.015 

b 0.033 7.9 × 10-6 m-1 

2 5.3 1.3 

Q 0.26 0.72 
 

 

 

Figure 2-12. Tornado warning false alarm ratio vs. mean cross-radial horizontal resolution of radar observations.  
Sloped solid red line is a least-squares linear fit to first five data points.  Dashed red line corresponds to rapid 
scanning radar case, which will be explained in section 2.3.6. 
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2.3.3 Warning Lead Time Dependence on Radar Coverage 

Since we were able to establish significant links between radar coverage parameters and tornado 

warning POD and FAR, one might also hope to find a statistically meaningful relationship between the 

former and tornado warning lead time. Unfortunately, data analysis did not yield such a connection. Figure 

2-13 shows 2D histograms of warning lead time vs. FVO and CHR. There was no apparent trend in either 

case, and the linear regression fits shown had slopes that were the opposite signs of what one would expect 

(positive for FVO and negative for CHR). In any case, the goodness-of-fits were poor, with R2 values less 

than 0.005 in both cases. Excluding negative lead times and parsing the data by EF number also produced 

similarly inconclusive results. This is consistent with past reports (Brotzge and Erickson 2009). Therefore, 

we could not include tornado warning lead time enhancement as a beneficiary of improved radar coverage. 

 

2.3.4 Casualty Dependence on Tornado Warning 

Now that we have established models for dependency of tornado warning performance on radar 

coverage, we move on to discuss casualty dependence on tornado warnings.  Tornado casualty rate is 

positively correlated with surface dissipation energy, population density, fraction of mobile homes in 

housing stock, and FAR (Ashley 2007; Simmons and Sutter 2009; Fricker et al. 2017).  The dependence on 

historical FAR may be due to “the boy who cried wolf” effect, where residents used to a high FAR are less 

likely to heed warnings seriously and take shelter (LeClerc and Joslyn 2015); research on this topic, 

however, has yielded mixed results (Lim et al. 2019). Tornado casualty rate is negatively correlated with 

the presence of tornado warnings, as expected; when a tornado warning is correctly issued, one intuits that 

lead time should also be negatively correlated with casualty, but this has not been established, as the 

 

Figure 2-13. 2D histograms of tornado warning lead time vs. (left) FVO and (right) CHR. The black lines are linear 
regression fits to the data. 
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dependence of casualty rate on lead time is not monotonic (Simmons and Sutter 2008). We include a lead 

time variable to see if a meaningful relationship can be established. Time-based variables like season and 

time of day were also shown to be significant predictors of casualty rate, but these are not factors that we 

can use in our time-independent cost generation model, so we did not consider them. 

Since casualty is a counting variable and its statistical distribution is overspread, we followed the 

earlier studies in assuming a negative binomial distribution model, 

 

𝐶~NegBin(𝜇, 𝜃) ,                                                             (2-1) 

 

where C is conditional casualty count,  is the distribution mean, and  is the dispersion parameter 

(Simmons and Sutter 2008; Fricker et al. 2017).  Our regression model is expressed as 

 

ln 𝜇 = 𝛼 ln𝑃𝑇 + 𝛽 ln 𝑆 + 𝛾𝑀 + 𝛿𝐹0 + 𝜀𝑊 + 𝜁𝑇 + 𝑘 ,                                 (2-2) 

 

where PT is population inside the tornado path, S is tornado surface dissipation energy density, M is fraction 

of PT residing in mobile homes, recreational vehicles, and vans, F0 is mean historical FAR inside the tornado 

path, W is warning presence (0 for absent, 1 for present), T is the warning lead time (in seconds), k is the 

intercept constant, and , , , , , and  are the regression coefficients. A warning was defined to be 

present if there was a lead time (positive or negative). For lead time input data, in order to have a logical 

cutoff for the minimum value, we set all instances of no warning and negative lead times to zero. The 

tornado surface dissipation energy density is (Fricker et al. 2017) 

 

𝑆 = 𝜌∑ 𝑤𝑚𝑣𝑚
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𝑚=0  ,                                                            (2-3) 

 

where  is the air density (assumed to be 1 kg m-3), v is the midpoint wind speed for each EF value m, and 

w is the corresponding fraction of the path area.  Because there is no upper bound speed for EF5, we set a 

midpoint of 97 m s-1 following Fricker et al. (2017).  Path area fractions are not given in the tornado 

database, so mean wm values were taken from Table 3-1 of Ramsdell and Rishel (2007). 

In Equation 2-2 it is not intuitively obvious that population should be used instead of population 

density or that dissipation energy density should be used instead of dissipation energy; Fricker et al. (2017) 

opted for population density and dissipation energy.  Both terms should not be posed as density, since that 

would omit the important tornado path area factor.  We chose to use the combination that gave the best 

regression fit, and that was dissipation energy density and population. 
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Recently, Elsner et al. (2018) proposed a nonlinear casualty model in which the casualty elasticity 

with respect to energy dissipation increases with population density. To account for this hypothesized 

effect, they added a multiplicative term (log of population density times log of energy dissipation) to their 

regression equation. We tried this scheme with our data, but the results showed that the fit statistics were 

much worse with the added term. Therefore, we opted to stay with the linear model. 

We did not separate casualties into fatalities and injuries at this stage, as the former is merely the 

extreme end case of the latter.  By combining the two groups, we avoided the problem of extremely sparse 

statistics for fatalities.  Only direct casualties were included to tighten the causal relationship between the 

tornado and its impact on people.  In the monetization stage (section 2.3.5), we parsed the model results 

into fatalities and two types of injuries. 

For population data, we obtained gridded population density from the Center for International Earth 

Science Information Network (CIESIN 2017).  The latitude-longitude resolution of this data matched our 

model grid spacing of 30 arcsec.  Data were available for the years 2000, 2005, 2010, 2015, and 2020 

(projected).  The 2015 CONUS population density is plotted in Figure 2-14; a base-ten log scale is used to 

visually compress the large dynamic range around urban regions. For 1998–1999 we used the 2000 data, 

and for other years we linearly interpolated as needed between the available years. 

 

 

 

Mobile housing statistics were pulled from the American Community Survey database for 2015 

(USCB 2016) and the Decennial Census for 2000 (Manson et al. 2018).  The population in housing units 

 

Figure 2-14. CONUS population density (logarithmic scale) in 2015. 
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were broken down by building structure categories, one of which was “mobile home.”  We grouped this 

together with the much smaller “boat, RV, van, etc.” category to arrive at our mobile housing population.  

The highest spatial resolution data available (block group level) were normalized by the total population in 

each block group to yield the fraction of population in mobile housing.  This data set was then sampled and 

mapped to our latitude-longitude grid to generate the CONUS maps.  In the regression analysis, the 2000 

map was used for 1998–2000, the 2015 map (Figure 2-15) was used for 2015–2018, and linearly 

interpolated maps (between 2000 and 2015) were used for the years 2001–2016.  Although only 5.8% of 

the national population lives in mobile housing, because they are prevalent in rural regions, 

disproportionately large areas of the country have significantly higher fractions. 

 

 

From the tornado warning data, we computed CONUS maps of historical FAR on our model grid for 

the periods before and after storm-based warnings (Figure 2-16).  Areas with no data were dropped from 

the regression analysis. 

 

 

Figure 2-15. Fraction of population residing in mobile homes and RVs in 2015. 
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We used the function glm.nb from the open statistical analysis software package R (R Core Team 

2018) for the negative binomial regression analysis.  The results are given in the top half of Table 2-5.  All 

coefficients estimates had the expected signs, i.e., mean casualty per tornado was positively correlated with 

population, tornado dissipation energy, and FAR, and it was negatively correlated with the presence of 

tornado warning; casualty rate was also negatively correlated with warning lead time. The coefficient signs 

were constant within the standard errors, and the z statistics (Wald test) showed that all coefficient estimates 

were significant at a better than 9 × 10-11 level, except for , the lead time coefficient for results computed 

from the entire time period of our database. (The z value is the estimate divided by the standard error, and 

the probability of |z| exceedance is rejection of the null hypothesis at that level.) Furthermore, comparing 

models with and without each variable through degree-of-freedom chi-square tests indicated that every 

 

Figure 2-16. Historical FAR for (top) 1 January 1998 to 30 September 2007, in the county-based warning era, and 
(bottom) 1 October 2007 to 31 December 2018, in the storm-based warning era. 
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variable was a statistically significant predictor of casualty rate. Application of Equation 2-2 with the 

estimated coefficients to the same input data yielded a casualty count of 23,501 compared to the actual 

count of 23 675, which is a difference of only 0.7%.  According to this model, the presence of a tornado 

warning reduces casualty by 40%. 

Table 2-5 Tornado Casualty Model Regression Results 

Data Period Coefficient Estimate Std. Error z Pr (> |z|) 

1998-1-1 to 
2018-12-31 

(log. population) 0.315 0.0121 26.0 < 2 × 10-16 

(log. energy density) 6.04 0.128 47.2 < 2 × 10-16 

(mobile home fraction) 1.70 0.196 8.69 < 2 × 10-16 

(historical FAR) 1.24 0.147 8.44 < 2 × 10-16 

(warning presence) -0.504 0.0778 -6.48 9 × 10-11 

(lead time) -1.04 × 10-4 4.20 × 10-5 -2.48 0.01 

k (intercept constant) -68.2 1.38 -49.5 < 2 × 10-16 

(dispersion parameter) 0.142 0.00466 N/A N/A 

2007-10-1 to 
2018-12-31 

(log. population) 0.340 0.0176 19.4 < 2 × 10-16 

(log. energy density) 6.09 0.180 33.8 < 2 × 10-16 

(mobile home fraction) 1.32 0.274 4.83 1 × 10-6 

(historical FAR) 1.17 0.197 5.93 3 × 10-9 

(warning presence) -0.352 0.110 -3.19 0.001 

(lead time) -1.33 × 10-5 5.90 × 10-5 -0.225 0.8 

k (intercept constant) -70.9 2.54 -27.9 < 2 × 10-16 

(dispersion parameter) 0.116 0.00695 N/A N/A 
 

Regression analysis was performed on all data as well as data since the implementation of storm-

based warnings (bottom half of Table 2-5).  Comparison of Table 2-5 top- and bottom-half values shows 

that the results were quite robust relative to this data segmentation, except for the lead time variable. Since 

the statistical fits are better with the larger data set, henceforth we will only show results using the full  

data set. 

Since warning lead time was not a statistically reliable variable in the full regression equation, we 

tried removing it. Table 2-6 gives the corresponding regression results. The coefficient estimates hardly 

change and a better statistical fit is obtained for the warning presence variable.  
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Table 2-6  Tornado Casualty Model Regression Results without Lead Time Variable 

Coefficient Estimate Std. error z Pr (> |z|) 

(log. population) 0.315 0.0121 26.0 < 2 × 10-16 

(log. energy density) 6.02 0.127 47.3 < 2 × 10-16 

(mobile home fraction) 1.68 0.196 8.58 < 2 × 10-16 

(historical FAR) 1.25 0.147 8.48 < 2 × 10-16 

(warning presence) -0.598 0.0677 -8.83 < 2 × 10-16 

k (intercept constant) -68.0 1.37 -49.6 < 2 × 10-16 

(dispersion parameter) 0.142 0.00465 N/A N/A 
 

We also tried keeping the lead time variable, but omitting the warning presence variable. The results 

are given in Table 2-7. In this case, lead time variable yielded a statistically reliable regression fit. 

Moreover, the negative coefficient estimate indicated that increased lead time resulted in reduced casualty 

rate as expected, and the sign was consistent within the standard error bounds. It may be that including both 

warning presence and lead time in the regression created an “interference” condition, because they are 

highly correlated variables. In any case, we could not justifiably keep both variables in our  

regression model. 

 

Table 2-7  Tornado Casualty Model Regression Results  

without Warning Presence Variable 

Coefficient Estimate Std. error z Pr (> |z|) 

(log. population) 0.306 0.0121 25.4 < 2 × 10-16 

(log. energy density) 5.96 0.127 47.0 < 2 × 10-16 

(mobile home fraction) 1.63 0.196 8.29 < 2 × 10-16 

(historical FAR) 1.44 0.145 9.92 < 2 × 10-16 

(lead time) -2.33 × 10-4 3.70 × 10-5 -6.31 3 × 10-10 

k (intercept constant) -67.7 1.37 -49.4 < 2 × 10-16 

(dispersion parameter) 0.141 0.00463 N/A N/A 
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Hence, we were left with a dilemma. On one hand, because the radar coverage parameters (FVO and 

CHR) had a clear link to tornado warning POD but had no correlation with lead time, we preferred to keep 

the warning presence variable in the casualty regression model. On the other hand, since increasing warning 

lead time is a high priority for the NWS, we wished to use the newly established statistically meaningful 

relationship between it and casualty reduction to generate quantitative benefits. We overcame this quandary 

by choosing to include only lead time in the casualty model. In the model casualty computation over the 

geospatial grid, two separate terms were calculated—one with mean positive lead times (warning present) 

and the other with zero lead time (warning absent). The terms were multiplied by the probabilities of 

warning and no warning, respectively, then summed. This process is explained in section 2.3.7. In order to 

keep this procedure consistent, we had to define warning POD as being restricted to warnings with positive 

lead times. (c.f. last paragraph of section 2.3.1). 

2.3.5 Casualty Monetization 

In benefit studies like this one, the value of a statistical life (VSL) is often used to monetize casualties.  

VSL is an estimate of one’s willingness to pay for small reductions in mortality risks.  We adopted the 

Department of Transportation’s guidance (DOT 2016), which called for a VSL of $9.6M in 2015 dollars.  

To adjust the value to 2019 dollars, we employed the DOT’s formula, 

 

VSLT = VSL0
CPIT

CPI0
(
MUWET

MUWE0
)
𝑞
 ,                                                   (2-4) 

 

where CPI is the consumer price index, MUWE is the median usual weekly earnings, q is income elasticity, 

and the subscripts T and 0 denote updated base year and original base year.  From the U.S. Bureau of Labor 

Statistics (BLS) online database, we obtained CPIT/CPI0 = 1.08 

(https://www.bls.gov/data/inflation_calculator.htm) for a baseline of January 2015 and updated time of 

January 2019, and MUWET/MUWE0 = 1.12 (https://www.bls.gov/cps/cpswktabs.htm) for a baseline of 

2015 first quarter and updated time of 2019 first quarter.  With the DOT’s estimate of q = 1, we got a 2019 

VSL of $11.6M. 

As discussed in section 2.3.4, our casualty regression model did not differentiate between fatalities 

and injuries.  To parse the model output into the two types of casualty, we relied on the strong relationship 

between EF category and relative proportions of casualty types computed from the tornado database.  Table 

2-8 gives the mean fraction of casualties that are fatalities vs. EF number. 

  

https://www.bls.gov/data/inflation_calculator.htm
https://www.bls.gov/cps/cpswktabs.htm
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Table 2-8  Mean CONUS Tornado Statistics vs. EF Number 

EF# Fatality 
fraction 

Path area 
(km2) 

Surface dissipation 
energy density (GW km-2) 

0 0.027 0.0279 37.6 

1 0.049 0.353 48.2 

2 0.053 1.67 64.8 

3 0.066 5.88 85.2 

4 0.067 11.9 96.8 

5 0.15 29.3 114 
 

Injuries can be monetized as fractions of VSL.  To do this, we referenced a Federal Emergency 

Management Administration (FEMA) tornado safe room benefit study (FEMA 2009).  Their formulation 

specified injuries requiring hospitalization as level 4 (severe) and injuries that led to professional treatment 

and immediate release as level 2 (moderate).  The latest DOT guidance sets the level 4 injury cost at 

0.266 × VSL and level 2 injury cost at 0.047 × VSL (DOT 2016).  In 2019 dollars, these costs are $3.09M 

and $0.545M, respectively.  All estimated casualty costs are compiled by type in Table 2-9. 

 

Table 2-9  Casualty Cost by Type 
Casualty type Cost ($M) 

Fatality 11.6 
Injury (hospitalized) 3.09 
Injury (treated and released) 0.545 

 

The historical tornado database does not differentiate injuries by severity.  Thus, we needed another 

way to generate model output for injuries requiring hospitalization versus those that are treated and released.  

Fortunately, the FEMA report connected the probability of injury levels to tornado EF class and building 

type.  We simplified the building categories to two (mobile housing and other) to match the gridded fraction 

of population in housing data that we obtained for the regression analysis.  For the “other” category, we 

averaged the FEMA table values for one- and two-family residences and institutional buildings (Table  

2-10).  The results were used to generate CONUS maps for the fraction of injuries requiring hospitalization 

by EF number (Figure 2-17). 
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Table 2-10  Injury Type Fraction vs. EF Number and Building Type 
Building type EF# Treat and release Hospitalize 

Manufactured 
(mobile homes) 

0 0.89 0.11 

1 0.65 0.35 

2 0.35 0.65 

3 0.25 0.75 

4 0.25 0.75 

5 0.25 0.75 

Others 0 1 0 

1 0.67 0.33 

2 0.65 0.35 

3 0.55 0.45 

4 0.43 0.57 

5 0.29 0.71 
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2.3.6 Rapid Scan Benefits 

Faster radar measurement updates could improve tornado warning lead time, POD, and FAR 

(Heinselman et al. 2015).  However, weather radar volume update rate is constrained by the need to collect 

enough samples over the same space to reduce measurement error and improve clutter filtering, as well as 

by the limited agility of the antenna.  WSR-88D volume coverage patterns (VCPs) designed for convective 

conditions have periods of 4.5 to 6 minutes, while TDWR hazard mode volume scans have ~2.5-minute 

periods (albeit with sparse sampling in elevation angle) and a 1-minute update time for base scans.  In 2011, 

 

Figure 2-17. Modeled fraction of injuries that require hospitalization for (top left) EF0, (top right) EF1, (middle 
left) EF2, (middle right) EF3, (bottom left) EF4, and (bottom right) EF5 tornadoes. 
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the automated volume scan evaluation and termination (AVSET) algorithm was deployed on WSR-88Ds 

to adaptively shorten a VCP by skipping high-elevation cuts with no weather, and in 2014, the SAILS 

technique was introduced, giving operators the option to run an additional base scan during the middle of a 

VCP (Chrisman 2013).  Subsequently, MESO-SAILS was added in 2016 to allow the insertion of multiple 

base scans within a VCP period (Chrisman 2014). 

These new VCP algorithms allow better update rates in the elevation angles targeted for specific 

weather phenomena such as potentially tornadic storms.  The scan rates are still ultimately limited by the 

radar resource.  In the future, significantly faster updates could be enabled by operational deployment of 

electronically scanned phased array radars (e.g., Heinselman et al. 2008; Weber et al. 2017).  Since we wish 

to apply our model to potential future radar networks, we need to quantify added benefits from rapid 

scanning. 

We showed earlier that improvements in tornado warning POD and FAR can reduce casualty rates.  

Furthermore, previous studies have indicated that faster radar scanning can raise POD and lower FAR 

(Heinselman et al. 2015; Wilson et al. 2017). Therefore, combining the two dependencies, we were able to 

model the casualty-reduction benefits of rapid-scan radars. 

The National Weather Radar Testbed (NWRT) (Heinselman and Torres 2011) was used in a series 

of phased array radar innovative sensing experiments (PARISE) to study the effects of faster scanning on 

weather forecasters making severe storm warning decisions.  Tornadoes resulting from three storm types 

(squall line, supercell cluster, and supercell) were studied in the 2015 PARISE (Wilson et al. 2017), with 

surveillance volume update periods of 61–76 s.  The radar data were sampled to generate full- (~1 minute), 

half- (~2 minutes), and quarter- (~5 minutes) speed outputs.  Each temporal resolution set was given to a 

separate group of ten NWS forecasters for warning guidance.  The quarter-speed case is representative of 

most of the weather radar data used in our regression analyses, so that can be considered the baseline 

condition. 

The supercell case yielded no difference among the three groups, with a perfect score of POD = 1 

and FAR = 0 across the board.  The squall line case also showed little variation with update rate, with FAR 

= 1 for all groups, POD = 0.1 for the full- and half-speed groups, and POD = 0 for the quarter-speed group.  

The supercell cluster case generated the only notable response with POD increasing—0.1, 0.6, 0.8—and 

FAR decreasing—0.50, 0.53, 0.33—for the quarter-, half-, and full-speed groups. 

Since these results were based on a very small sample size (thirty forecasters working on one null 

storm case and three storms that spawned five tornado events in total), we applied them conservatively.  

PARISE was conducted under fairly ideal radar coverage, so looking at Figure 2-9, we only considered 

changing the POD vs. FVO relationship close to FVO = 1.  Since the maximum POD enhancement of 0.8 

(at full scan rate) only exceeded the model values at FVO = 1 for the EF0–1 case, that was the only modeled 

relationship modified for the rapid-scan case. In other words, the POD performance of the EF2 and EF3–5 

cases were already too good for a rapid-scan capability to add value.  For one-minute update scans, we 

enhanced the POD vs. FVO relationship as indicated by the dashed line in the top left plot of Figure 2-9.  
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The new value of POD at FVO = 1 is given by 0.8u + (a + b)(1 – u), where a and b are taken from the EF0–

1 high-FVO column in the bottom section of Table 2-2, and u = 0.316 is the fraction of CONUS tornadic 

storms that are of cluster type (Smith et al. 2012).  This equation conservatively assumes that the POD 

enhancement due to rapid scanning is only effective on cluster storms. 

Likewise, for FAR reduction, a similar logic was applied to arrive at the dashed line shown in Figure 

2-12.  The corresponding equation for one-minute scan FAR at CHR = 0 is 0.33u + a(1 – u), where a is 

taken from Table 2-4.  The resulting changes to the curves in Figures 2-9 and 2-12 were applied in 

computing model results for rapid-scan scenarios. 

Lengthening tornado warning lead times also lowers casualties, as we showed in section 2.3.4. Wilson 

et al. (2017) showed that the median lead time for tornado warnings increased in the squall line, supercell 

cluster, and supercell cases by 0, 7.5, and 3.5 minutes, respectively, for the full-speed groups relative to the 

quarter-speed groups. The fraction of CONUS tornadic storms of cluster type and discrete supercell type 

are 0.316 and 0.290 (Smith et al. 2012), so we computed an overall effective increase in median lead time 

as (7.5)(0.316) + (3.5)(0.290) = 3.385 minutes (203 s) for the rapid-scan case relative to baseline. This extra 

time was then added to the input lead time in the casualty model computation. To be conservative, this lead 

time enhancement was only directly applied to the EF0, EF1, and EF2 cases, since stronger tornadoes were 

not observed during the cited PARISE experiment. For the EF3–5 case, the rapid-scan improvement was 

restricted to match the EF2 case. Table 2-11 summarizes the median lead times used in the casualty 

estimation model. The baseline values were computed over all warnings with positive lead times in our 

1998–2018 database. The EF3, EF4, and EF5 cases were combined because of the smaller number of cases. 

 

Table 2-11  Median Tornado Warning Lead Times 
EF# 0 1 2 3–5 

Baseline (actual) 900 s 930 s 1020 s 1140 s 
Rapid scan (modeled) 1103 s 1133 s 1223 s 1223 s 

 

2.3.7 CONUS Grid Computation 

We now combine the development presented in the previous sections to produce model estimates of 

the mean annual casualty cost due to tornadoes over the CONUS.  The modeled tornado casualty rate (per 

year, per grid cell) is given by 

 

𝑅𝑖𝑗𝑚
𝐹,𝐻,𝑅 = ∑ [𝑟𝑖𝑗𝑚(1)𝐵𝑖𝑗𝑚 + 𝑟𝑖𝑗𝑚(0)(1 − 𝐵𝑖𝑗𝑚)]𝑂𝑖𝑗𝑚

5
𝑚=0 𝑌𝑖𝑗𝑚

𝐹,𝐻,𝑅
 ,                       (2-5) 
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where B is the probability of warning per tornado, O is the tornado occurrence rate, i and j are the latitude 

and longitude grid indices, m is the EF number, and the superscripts denote fatal (F), injured—hospitalized 

(H), and injured—treated and released (R).  The casualty type fractions are parsed as 

 

𝑌𝑖𝑗𝑚
𝐹 = 𝑓𝑚 ,                                                                   (2-6) 

𝑌𝑖𝑗𝑚
𝐻 = (1 − 𝑓𝑚)ℎ𝑖𝑗𝑚 , and                                                     (2-7) 

𝑌𝑖𝑗𝑚
𝑅 = (1 − 𝑓𝑚)(1 − ℎ𝑖𝑗𝑚) ,                                                     (2-8) 

 

where f is the fatality fraction given by Table 2-8 and h is the fraction of injured that are hospitalized (Figure 

2-17).  From Equation 2-2, omitting the warning presence variable as discussed, 

 

𝑟𝑖𝑗𝑚(𝑊) = exp[𝛼 ln(𝐷𝑖𝑗𝐴0𝑚) + 𝛽 ln 𝑆𝑚 + 𝛾𝑀𝑖𝑗 + 𝛿𝐹𝑖𝑗 + 𝜁𝑇𝑚(𝑊) + 𝑘]                     (2-9) 

 

is the casualty rate per tornado with (W = 1) and without (W = 0) warning. Tm(0) = 0, and Tm(1) is given by 

the entries in Table 2-11.  F is the gridded FAR computed from our model via CHR and the relationship 

depicted in Figure 2-12.  The regression coefficients used are given in Table 2-7.  D is the population 

density.  A0 is the mean tornado path area and S is the mean tornado surface dissipation energy density 

(Table 2-8).  The mean of the path area is taken in log space, since the distribution is closer to log-normal 

than to normal. To include as much data as possible, we went back to the beginning (1950) of the U.S. 

tornado database; however, data from 1950–1953 were excluded due to suspected quality issues (Ashley 

and Strader 2016).  Tornadoes were sorted by EF number and accumulated in our 30-arcsec CONUS model 

grid. The sums were then smoothed with a 2D Gaussian kernel with a width of 0.5°, then divided by the 

number of years to get the annual tornado occurrence rate (Figure 2-18). Without any spatial smoothing, 

there would be too many grid cells with zero occurrence rate, which would not be realistic. 
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The spatial features in the EF4 and EF5 cases of Figure 2-18 are likely not so robust due to the small 

number of tornadoes. The features in the lower EF cases, however, are probably meaningful. The three hot 

spots over central Oklahoma, Arkansas, and northern Alabama are notable, as they persist over the EF1, 

EF2, and EF3 cases. (The northern Alabama peak is also present for EF4 and EF5.) There may be an element 

of reporting bias at play, but this is, nonetheless, an interesting observation. 

 

Figure 2-18. Historical (1954–2018) occurrence rate for (top left) EF0, (top right) EF1, (middle left) EF2, (middle 
right) EF3, (bottom left) EF4, and (bottom right) EF5 tornadoes. Note that a different color scaling was used for 
each map to enhance contrast. 
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Summing Equation 2-5 across all grid indices and EF numbers yielded the predicted CONUS tornado 

casualty rate per year parsed by casualty type.  The results were multiplied by the corresponding costs in 

Table 2-9 and summed to arrive at the total estimated annual CONUS tornado casualty costs. 

2.3.8 Tornado Warning Sheltering Cost Reduction 

As demonstrated, tornado warnings save lives.  However, they can also exact a cost due to time spent 

sheltering by people who responded to the warnings.  Strictly speaking, time spent sheltering when a 

tornado does not hit your building is time wasted.  Since very few buildings are actually damaged by 

tornadoes, that adds up to a lot of lost time. 

For a more nuanced take on this issue, we treat the cost of work and personal time losses separately. 

Work time lost is a loss regardless of whether a tornado warning was correct or a false alarm—the cost to 

society from loss of work time does not depend on the outcome of the warning. We posit, however, that 

personal time should only be considered a loss if the warning was a false alarm. That is, if one took shelter 

on a warning and a tornado touched down in the warning area, then one is likely to say that time spent 

sheltering was worthwhile from a personal perspective. 

The mean per-person, per-hour cost of work-time lost while sheltering can be computed as 

 

𝐶𝑊 = 𝐹𝐸𝐹𝑊𝑉𝑊 ,                                                            (2-10) 

 

where FE is the fraction of the population that is employed, FW is fraction of time spent working by those 

who are employed, and VW is the mean wage per hour.  This cost applies to sheltering on all warnings, true 

or false. The mean per-person, per-hour cost of personal time lost while sheltering only on a false alarm 

can be calculated as 

 

𝐶𝑃 = 𝐹𝐸(1 − 𝐹𝑊)𝑉𝑃 + (1 − 𝐹𝐸)𝑉𝑃 ,                                            (2-11) 

 

where VP is the value of personal time per unit time.  We followed Sutter and Erickson (2010) in valuing 

personal time as 1/3 of the mean wage (VW/3) after Cesario (1976).  January 2019 total private sector 

employment numbers were taken from the U.S. BLS web site (https://www.bls.gov/ces/) to get FE = 0.607, 

FW = (34.5 h per week)/(168 h per week) = 0.205, VW = $27.56 h-1, and VP = ($27.56 h-1)/3 = $9.19  h-1.  

Plugging these values into Equations 2-10 and 2-11, we get CW = $3.44  h-1 and CP = $8.04  h-1. 

The total annual added cost of sheltering due to tornado warnings is given by 

 

https://www.bls.gov/ces/
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𝐶𝑆 = 𝐻𝑇(𝐶𝑊∑ 𝐼𝑖𝑗
CONUS
𝑖,𝑗 𝑃𝑖𝑗 + 𝐶𝑃 ∑ 𝐼𝑖𝑗

CONUS
𝑖,𝑗 𝑃𝑖𝑗𝐹𝑖𝑗) ,                                  (2-12) 

 

where H is the shelter response rate, T is the mean time spent sheltering, I is the tornado warning issuance 

rate per year, P is population, and F is the modeled false alarm ratio for tornado warnings.  Again, following 

Sutter and Erickson (2010), we assumed H = 0.4.  We approximated the mean time spent sheltering by the 

mean tornado warning valid period computed over the storm-based warning era, which yielded T = 0.574 h.  

CONUS maps of I for the county-based and storm-based warning eras are shown in Figure 2-19.  The 

CIESIN 2015 and 2020 gridded population data were interpolated to get current (2019) values. 
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2.3.8.1 Tornado Warning Sheltering Cost Reduction due to Storm-Based Warnings 

As an aside, we can estimate the tornado warning sheltering cost savings associated with the switch 

from county-based to storm-based tornado warnings in 2007. Because the mean storm-based warning area 

is much smaller than the mean county-based warning area (Table 2-3), people at a given location experience 

fewer warnings per year, which is apparent in Figure 2-19.  The decrease of I in Equation 2-12 results in 

lower cost. The mean FAR is also slightly lower in the storm-based warning period (Table 2-3). Using 2019 

population, employment, and dollar values, we get total sheltering costs of $1027M per year with county-

 

Figure 2-19. Mean annual tornado warning issuance rate over the (top) county-based (January 1998 to September 
2007) and (bottom) storm-based warning (October 2007 to December 2018) eras within our study period. 
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based warnings and $295M per year with storm-based warnings. That is a savings of $732M per year in 

2019 dollars. 

2.4 MODEL SUMMARY 

To recap briefly, we developed a geospatial model for calculating weather radar benefits for tornadoes.  

We showed that certain radar performance and coverage metrics impacted tornado warning statistics 

(detection probability and false alarm ratio), which, in turn, affected casualty rate and loss of work and 

personal time in sheltering (Figure 2-20).  The model operates on a high-resolution spatial grid over the 

CONUS capable of revealing regional variances.  It can take as input any hypothetical radar network 

configuration. 

 

 

The “fraction of vertical volume observed” measure of radar network coverage is new to tornado 

warning performance analysis.  It takes into account the near-range cone of silence, the far-range loss of 

low-level coverage due to the Earth’s curvature, as well as terrain blockage and ground height variability.  

It was instrumental in establishing an unambiguously positive correlation between radar coverage and 

tornado warning performance. 

Although our model treats the detection probability and false alarm ratio separately and independently, 

in reality these two statistical measures are intertwined. Ideally, we want detection probability to approach 

 

Figure 2-20. Simplified flow chart of weather radar tornado benefits model. 
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1, while eliminating false alarms altogether. In general, this is not realistic; increasing detection probability 

tends to also increase FAR. To take this dependence into account, various statistical measures have been 

devised, such as the area under the receiver operating curve (AUC) and critical success index (CSI), to 

provide a single metric for optimization. This type of approach is also advocated for quantifying tornado 

warning performance (Brooks and Correia 2018). However, we were not able to employ an integrated 

warning performance metric in our model for the following reasons. (1) The casualty regression analysis 

was best done on an event-by-event basis, where the key statistic is the presence/absence of warning; this 

precluded use of an averaged statistical measure of detection. (2) Even if we wanted to apply an integrated 

statistical warning performance measure in the casualty regression, the detection probability is so heavily 

dependent on EF number that parsing by EF value would need to be done. False alarms, on the other hand, 

cannot be parsed by EF number, so that made use of an integrated metric impossible. 

An earlier version of our tornado benefit model was presented in a refereed publication (Cho and 

Kurdzo 2019a). The changes made to the model since that time are as follows. 

1. The final year of the tornado and warning data used for analysis and model input was updated 

from 2017 to 2018. 

2. VSL, employment data, and population estimates were updated from 2018 to 2019. 

3. The warning presence variable was dropped in lieu of a lead time variable in the casualty 

regression model. 

4. Rapid scanning impact on warning lead time was added. 

5. Work time lost during sheltering on true tornado warnings was added to the sheltering cost model. 

6. The tornado occurrence rate map smoothing operation was modified. Previously, the historical 

occurrences were accumulated in a coarse CONUS grid, then mapped to the finer model grid via 

2D linear interpolation. Now, the accumulation is done directly on the model grid, then smoothed 

using a 2D Gaussian kernel. 

7. An error was corrected in the tornado path to FAR map grid points matching code, which improved 

the casualty regression model statistics for the historical mean FAR predictor variable. 

 

In the next chapter, we use our model to compute monetized tornado-related benefits for various 

CONUS weather radar network configurations.
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3. BENEFIT CALCULATIONS 

3.1 BASIC SCENARIOS 

Before considering a variety of hypothetical CONUS weather radar networks, we computed modeled 

tornado casualty and false alarm costs for six basic radar network configurations: (1) No radar coverage, 

(2) WSR-88Ds, (3) WSR-88Ds and TDWRs (current baseline), (4) WSR-88Ds and TDWRs with rapid 

scanning, (5) perfect radar coverage with current scanning capability, and (6) perfect radar coverage with 

rapid scanning.  The no radar coverage case was simulated by setting FVO = 0 and CHR = ∞ everywhere. 

Comparison with the no-radar case allows an estimate of the benefit added by any radars, while comparison 

with the baseline yields benefits above what we currently have. Comparison of the WSR-88D-only case 

with the baseline yields the incremental benefit of TDWRs for tornadoes.  The perfect coverage cases were 

handled by setting FVO = 1 and CHR = 0 everywhere; these configurations allow estimates of the remaining 

benefit pools over the baseline. Rapid scanning assumes a one-minute volume update rate. 

Table 3-1 gives the tornado casualty estimates for the six basic scenarios, as well as the actual mean 

annual casualty rates. There is excellent agreement between the baseline model results and the actual mean 

casualty rates—they are well within the actual annual standard deviation variabilities.  Table 3-2 lists the 

corresponding tornado casualty costs, and Table 3-3 adds the estimated costs due to time spent sheltering 

under warning.  All costs are in 2019 dollars. 

 

Table 3-1  Annual CONUS Tornado Casualty Estimates for Basic Scenarios 

Scenario Fatal Injured 
(hospitalized) 

Injured (treated 
and released) Total Delta 

baseline 

No radar coverage 102 678 573 1353 195 
WSR-88D 88 583 493 1164 6 
WSR-88D, TDWR 87 580 491 1158 —— 
WSR-88D, TDWR, 
rapid scan 78 521 440 1039 -119 

Perfect coverage 82 547 463 1092 -66 

Perfect coverage,  
rapid scan 69 459 388 916 -242 

Actual mean  
(1998–2018) 78 ± 25 1060 ± 248a 1138 ± 273 N/A 

aActual average injured counts are totals, not broken out by injury type. 
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Table 3-2  Annual CONUS Tornado Casualty Cost Estimates for Basic Scenarios 

Scenario Fatal 
($M) 

Injured 
(hospitalized)  

($M) 

Injured (treated 
and released)  

($M) 

Total 
($M) 

Delta 
baseline 

($M) 

No radar coverage 1184 2092 313 3589 519 

WSR-88D 1017 1798 269 3084 14 

WSR-88D, TDWR 1012 1790 268 3070 —— 
WSR-88D, TDWR, rapid scan 909 1608 240 2757 -313 
Perfect coverage 955 1687 252 2894 -176 
Perfect coverage, rapid scan 802 1416 211 2429 -641 

 

 

Table 3-3  Annual CONUS Tornado Casualty and Sheltering Cost Estimates for Basic 

Scenarios 

Scenario Casualty ($M) Sheltering  ($M) Total  
($M) 

Delta 
baseline ($M) 

No radar coverage 3589 315 3904 535 

WSR-88D 3084 301 3385 16 

WSR-88D, TDWR 3070 299 3369 —— 
WSR-88D, TDWR, rapid scan 2757 279 3036 -333 
Perfect coverage 2894 292 3186 -183 
Perfect coverage, rapid scan 2429 264 2693 -676 

 

Casualty and cost differences from the current baseline are listed in the “Delta baseline” columns of 

Tables 3-1 to 3-3.  Relative to a CONUS without weather radars, the current baseline provides over half a 

billion dollars in tornado benefits annually.  The perfect coverage, rapid scan case shows that the remaining 

benefit pool is somewhat larger. The incremental benefit of TDWRs is modest at $16M per year, which is 

not surprising since they mostly cover the same areas as the WSR-88Ds.  Adding rapid scanning capability 

achieves far greater cost reduction than improving radar coverage—just upgrading the existing radars with 

rapid scanning yields about 80% more benefit as blanketing the CONUS with perfect radar coverage. 

There is a caveat with the rapid scanning results.  Since there are no operational weather radars 

conducting volume scans at a rate of one per minute, our rapid scan FAR reduction model was necessarily 
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based on a limited number of experiments carried out with the NWRT phased array radar.  Other parts of 

our cost model were based on large numbers of tornadoes and warnings (Tables 2-1 and 2-3), inspiring a 

much higher degree of confidence.  Since the overall results indicated high benefit leverage through rapid 

scanning, it would be prudent to gather more statistics on the effects of faster volume scans on tornado 

warning performance by utilizing existing and new radars capable of fine temporal resolution observations 

(e.g., Stailey and Hondl 2016; Kurdzo et al. 2017). With the recent implantation of SAILS and MESO-

SAILS (faster surface scan updates), there may soon be enough data to analyze potential tornado warning 

performance improvement due to these scan modes.  

Figure 2-18 indicates that most of the CONUS tornado activity exists east of the Rockies. This suggests 

that perhaps most of the tornado-related benefits also exists in the east. To show this explicitly, we 

computed the annual tornado casualty and sheltering cost estimates for the CONUS east of 106° W 

longitude (Table 3-4). The “Delta baseline” column is almost identical to the one in Table 3-3. So as far as 

tornadoes are concerned, radars in the West have almost no leverage in generating benefits. 

Table 3-4  Annual CONUS Tornado Casualty and Sheltering Cost Estimates for Basic 

Scenarios East of the Rockies 

Scenario Casualty ($M) Sheltering  ($M) Total  
($M) 

Delta 
baseline ($M) 

No radar coverage 3583 311 3894 533 

WSR-88D 3080 297 3377 16 

WSR-88D, TDWR 3066 295 3361 —— 
WSR-88D, TDWR, rapid scan 2753 275 3028 -333 
Perfect coverage 2890 288 3178 -183 
Perfect coverage, rapid scan 2426 260 2686 -675 

 

3.1.1 Tornado warning benefit 

As an aside, we could ask what the current tornado warning cost/benefit balance is between casualty 

reduction benefit vs. the total cost due to sheltering. In other words, do present-day tornado warnings 

provide a net positive benefit as monetized by our model? This is different from asking how much benefit 

radars provide through tornado warning performance improvement. 

In order to answer this question, we need to simplify the casualty regression model to exclude FAR 

effects (since false alarms are meaningless in a world without alarms), and include presence of warning 

instead of lead time. In other words, we omit the F0 and T terms from Equation 2-2. The resulting regression 

coefficient estimates are given in Table 3-5, and the corresponding casualty and cost estimates for the no-

warning cases are given in Table 3-6. 
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Table 3-5  Tornado Casualty Model Regression Results  

without FAR and Lead Time Variables 
Coefficient Estimate Std. error z Pr (> |z|) 

(log. population) 0.313 0.0121 25.9 < 2 × 10-16 

(log. energy density) 5.98 0.127 46.9 < 2 × 10-16 

(mobile home fraction) 1.76 0.195 9.01 < 2 × 10-16 

(warning presence) -0.740 0.0656 -11.3 < 2 × 10-16 

k (intercept constant) -66.7 1.36 -48.9 < 2 × 10-16 

(dispersion parameter) 0.139 0.00455 N/A N/A 
 

 

Table 3-6  Annual CONUS Tornado Casualty  

and Cost Estimates for No Tornado Warnings 
Parameter Fatal Injured (hospitalized) Injured (treated and released) Total 

Casualty 151 1000 833 1983 
Cost ($M) 1746 3085 454 5286 

 

Subtracting the estimated current annual casualty cost of $3070M (Table 3-3) from the estimated cost 

for the no-warning scenario in Table 3-6 ($5286M) yields $2216M—this is the estimated annual CONUS 

benefit of having tornado warnings (with current performance statistics). Since the current total cost of 

sheltering on tornado warnings is $295M per year (section 2.3.8.1), the answer is yes, there is a net benefit 

for tornado warnings of $1921M per year. 

3.2 RADAR NETWORK UPGRADE SCENARIOS 

Aside from the WSR-88D and TDWR, which are weather-specialty radars, there are primary air 

surveillance radars in the U.S. that provide some degree of weather observation capability as well. These 

are the FAA’s Airport Surveillance Radars (ASRs), including those with a Weather Systems Processor 

(WSP) (Cho et al. 2015), and their military equivalents (Ground Position Navigation (GPN) radars), Air 

Route Surveillance Radar-4 (ARSR-4), and the Common Air Route Surveillance Radar (CARSR).  Figure 

3-1 shows a map of their locations. Within the CONUS there are 294 ASR/GPNs (33 with WSPs), 40 

ARSR-4s, and 73 CARSRs, excluding training and support systems. It is possible that one or more of these 

radar types could be replaced by future systems with upgraded weather observation capability. Of course, 
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requiring higher quality weather data from new radars would increase their cost.  Thus, it is of interest to 

quantify the additional benefits such a move would yield. 

 

3.2.1 One-to-one radar replacement 

The existing radar networks could be upgraded separately without any attempt to consolidate coverage 

and sites using new multi-mission radars. In this case, the systems would likely be replaced one-to-one at 

every site. We considered various potential permutations of upgrades to these networks. 

In order to compute the coverage and spatial resolution of the hypothetical network upgrades, we 

needed to assign some basic parameters for the new radars.  For the ASR/GPN replacement, we assumed a 

2° azimuth resolution and maximum elevation angle of 60°, with the same coverage range (110 km) as the 

current systems. For the long-range radar (ARSR-4 and CARSR) replacement, we assumed a 1.7° azimuth 

resolution and maximum elevation angle of 30°, with the same coverage range (460 km) as the current 

systems.  We also considered cases with (~1 minute update) and without (~5 minute update) rapid scanning. 

These parameters are consistent with early SENSR performance requirements. (Since then, SENSR has 

been de-scoped to exclude weather missions except for the ARSR-4 replacement sites.) 

 

Figure 3-1. Locations of NEXRAD, TDWR, and primary air surveillance radars with weather observation 
capability. 
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Because there were a large number of permutations possible, we ran a limited number of combinations 

for added weather capability at the following sets of locations: (1) ASR/GPN sites, (2) ARSR-4 sites, (3) 

ASR/GPN and ARSR-4 sites, (4) ARSR-4 and CARSR sites, (5) ASR/GPN, ARSR-4, and CARSR sites, 

and (6) ASR-9 WSP sites.  The addition of weather capability at CARSR sites without a corresponding 

upgrade at ARSR-4 sites is unlikely, due to the overlap with the WSR-88D network, so we did not include 

those cases. The rapid scan option was not applied to individual radar types, but to the legacy weather radars 

(WSR-88D and TDWR) as a group and to the hypothetical aircraft surveillance radar replacements as a 

group, which also cut down on the number of potential network configurations. 

Results for these scenarios are given in Table 3-7.  To keep the table size manageable, casualty counts 

and injury type breakdowns are not provided. For brevity, the following codes are used for the scenario 

cases: N = NEXRAD (WSR-88D), T = TDWR, A = ASR/GPN replacement, 4 = ARSR-4 replacement, C 

= CARSR replacement, and W = ASR-9 WSP replacement. Subscript “R” is used to denote rapid scan 

capability. Presence of a particular radar type in a given scenario means that all the current CONUS sites 

for that type would be populated with a radar with quality weather output capability. 

 

Table 3-7  Annual CONUS Tornado Cost Estimates for Augmented Network Scenarios 

Scenario Casualty 
($M) 

Sheltering  
($M) 

Total  
($M) 

Delta 
baseline ($M) 

Delta baseline per 
upgraded site ($k) 

N, T (baseline) 3070 299 3369 —— —— 

NR, TR 2757 279 3036 -333 -1781 

N, T, A 3050 298 3348 -21 -71 

N, T, AR 2999 292 3291 -78 -265 

NR, TR, A 2757 279 3036 -333 -692 

NR, TR, AR 2724 276 3000 -369 -767 

N, T, 4 3069 299 3368 -1 -25 

N, T, 4R 3067 299 3366 -3 -75 

NR, TR, 4 2757 279 3036 -333 -1467 

NR, TR, 4R 2756 279 3035 -334 -1471 

N, T, 4, C 3061 299 3360 -9 -80 

N, T, 4R, CR 3039 298 3337 -32 -283 

NR, TR, 4, C 2757 279 3036 -333 -1110 

NR, TR, 4R, CR 2742 279 3021 -348 -1160 
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N, T, A, 4 3050 298 3348 -21 -63 

N, T, AR, 4R 2996 292 3288 -81 -243 

NR, TR, A, 4 2757 279 3036 -333 -639 

NR, TR, AR, 4R 2723 276 2999 -370 -710 

N, T, A, 4, C 3044 298 3342 -27 -66 

N, T, AR, 4R, CR 2974 292 3266 -103 -253 

NR, TR, A, 4, C 2757 279 3167 -333 -561 

NR, TR, AR, 4R, CR 2713 276 2989 -380 -640 

N, T, W 3066 299 3365 -4 -121 

N, T, WR 3041 297 3338 -31 -939 

NR, TR, W 2757 279 3036 -333 -1514 

NR, TR, WR 2751 278 3029 -340 -1546 
 

From Table 3-7, we see that the most per-site benefit is obtained by upgrading the WSR-88Ds with 

rapid scan capability.  With respect to upgrades to other radar networks, the WSP locations provide the 

most benefit per site. This can be explained by the fact that these sites tend to be near medium to large cities 

with significant convective weather potential, and are mutually exclusive with TDWR locations. Overall, 

without rapid scan capability, the addition of high-quality weather observation at non-baseline sites does 

not add much value with respect to tornado cost reduction. 

3.2.2 Replacement with MPAR 

For over a decade, FAA and NOAA have been studying the feasibility of replacing their single-mission 

radars with scalable multifunction phased array radars (MPARs) (Weber et al. 2007; Zrnic et al. 2007). 

Because of the coverage overlap provided by the current single-mission radar networks, a unified MPAR 

replacement plan could decrease the total number of radars needed to cover the same airspace, which might 

lead to lower acquisition and sustainment costs. While the scenarios of the previous section assumed one-

to-one replacement of the current radars, an MPAR-type solution can lead to site consolidation. Therefore, 

in this section we examine MPAR-based scenarios, leveraging a previous siting analysis that was conducted 

for the FAA (Cho 2015). 

Here we consider three of the radar replacement scenarios presented in the MPAR siting analysis: (I) 

Terminal radars replaced by MPAR, (II) WSR-88D and terminal radars replaced by MPAR, and (III) WSR-

88D, terminal radars, and LRRs replaced by MPAR. As a fourth scenario (IV), we add a case where the 

WSR-88D and LRRs are replaced by MPAR, using the same methodology as Cho (2015). In this section, 

“terminal radars” are ASRs, GPNs, and TDWRs; LRRs are CARSRs and ARSR-4s. 
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In the siting study, two MPAR sizes were assumed for more cost-efficient coverage of the 

heterogeneous (terminal, en route, off-shore) air space—a full-size MPAR and a scaled down terminal 

MPAR (TMPAR). Table 3-8 lists their assumed characteristics. Each radar was assumed to have fixed 

planar phased array faces—four for full azimuthal coverage, and one to three where only selective azimuthal 

coverage was deemed necessary. Only existing radar sites (Figure 3-1) were considered for MPAR 

placement, i.e., no “green field” sites were allowed. See Cho (2015) for more details about the siting 

methodology. 

Table 3-8  Assumed MPAR Characteristics 
Parameter MPAR TMPAR 

Range resolution (weather) 0.15 km 0.15 km 
Maximum elevation angle  60 60 
Elevation angle resolution (weather)a 1 2 
Azimuthal resolution (weather)a 1 2 
Minimum detectable weather reflectivity at 20 kmb -19 dBZ -1 dBZ 

aThese are approximate values. They would actually vary with scan angle. 
bThese values are for horizon scans. They would be degraded with increasing elevation angle due to deliberate transmit 
beam widening that speeds up volume scan rates. 

 

For the CONUS, the reductions in system count for MPAR compared to the legacy radar networks are 

shown in Table 3-9. Overall, similar or better air space coverage is provided by the MPAR networks with 

fewer sites, although not necessarily in specific locations, especially at low altitude. The MPAR site map 

for each scenario is given in Figure 3-2. 

 

Table 3-9  Reduction in Number of Radars 

Scenario Legacy MPAR + TMPAR Change % Reduction 
I 339 42 + 249 = 291 -48 14% 
II 482 160 + 180 = 340 -142 29% 
III 598 197 + 187 = 384 -214 36% 
IV 259 171 + 0 = 171 -90 34% 
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The specific MPAR locations for our scenarios I, II, and III are given in Appendix A of Cho (2015), 

where they are called scenarios 1G, 2G, and 3G, respectively. Since scenario IV is new, we provide the 

MPAR locations in Appendix A at the end of this report. 

 

 

From a purely coverage efficiency perspective, replacing WSR-88Ds and LRRs with MPARs 

(scenario IV) makes the most sense, because there is tremendous overlap between their coverages. The 

terminal surveillance missions, on the other hand, do not allow much reduction in radar count, aside from 

the elimination of TDWR sites. The low-altitude coverage around each airport must be maintained, so a 

TMPAR or MPAR is located at virtually all the existing ASR/GPN sites. This contrast can be seen in the 

Figure 3-2 maps, with scenario IV having much more evenly spaced sites than the other cases that include 

replacement of terminal radars. 

 

Figure 3-2. MPAR locations for scenarios (top left) I, (top right) II, (bottom left) III, and (bottom right) IV. Blue 
is MPAR, red is TMPAR. 
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Table 3-10 gives the annual CONUS tornado cost estimates and the benefits relative to baseline for 

the MPAR scenarios. Scenario I has two subcases—with and without an upgrade of the WSR-88D for rapid-

scan capability. We assume that MPAR and TMPAR have rapid-scan capability. Scenario I without a WSR-

88D upgrade is nearly equivalent to the N, T, AR scenario of Table 3-7. Scenario IV provides the most 

benefit per upgraded site (nearly $2M yr-1 per site) of all the scenarios examined, as might be expected 

given the massive coverage redundancy of the replaced legacy networks. 

  

Table 3-10  Annual CONUS Tornado Cost Estimates for MPAR Scenarios 

Scenario Casualty 
($M) 

Sheltering  
($M) 

Total  
($M) 

Delta baseline 
($M) 

Delta baseline per 
upgraded site ($k) 

N, T (baseline) 3070 299 3369 —— —— 

I 2998 292 3290 -79 -271 

I (rapid scan WSR-88D) 2723 276 2999 -370 -853 

II 2738 277 3015 -354 -1041 

III 2735 276 3011 -358 -932 

IV 2759 280 3039 -330 -1930 
 

 

A more targeted set of additional sites could yield increased “bang for the buck.” In the next section, 

we provide an example of such a gap filling exercise. 

 

3.3 GAP FILLING EXAMPLE 

Maps of cost density could also be used to analyze optimal locations for radars (e.g., Kurdzo and 

Palmer 2012).  Figure 3-3 shows the tornado cost density map for a world without weather radars.  If helping 

generate tornado warnings were the sole mission of weather radars, then this map could be used to optimize 

radar locations. Obviously, that is not the case, but if similar cost density maps could be developed for other 

major weather radar objectives such as flash flood cost reduction (Cho and Kurdzo 2019b; Kurdzo et al. 

2019), then they could be combined to form the basis for a “clean slate” siting study. 
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Here we provide an example of a gap-filling exercise based only on tornado benefits. The left-hand 

plot of Figure 3-4 shows the cost density difference between the current baseline and perfect coverage 

(without rapid scanning), which shows the areas with the largest remaining benefit pools.  Although the 

small-scale details are dominated by the high dynamic range of the population density, and much of the 

larger-scale modulation is due to high-EF tornado occurrence rate, the radar coverage deficiencies are also 

visible, e.g., the honeycomb-like pattern in the Midwest. The prevalence of mobile housing is also a factor, 

as Strader and Ashley (2018) highlighted in pointing out the higher tornado vulnerability of Alabama 

relative to Kansas. 

 

 

Figure 3-3. Tornado cost density map for the no-radar case. 
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The cost density difference map shows a particularly strong peak in northern Alabama that manifests 

as a dark red patch. In order to fill this deficiency, we selected a site in the middle of the patch—Cullman 

Regional Airport (Figure 3-5)—at which to place a hypothetical WSR-88D in Cullman, Alabama 

(“KCMD”). Cullman lies right between two population centers and WSR-88Ds in Birmingham and 

Huntsville. The right-hand plot in Figure 3-4 shows the resulting cost density difference, indicating that the 

gap has been filled in effectively. The subsequent tornado casualty and sheltering cost reduction is $4M per 

year. If the WSR-88Ds and TDWRs are upgraded with rapid scan capability, the additional benefit provided 

by a rapid-scan WSR-88D at Cullman is $7M per year. These seem like fairly modest gap-filling benefits, 

but they are significantly more than the per-site benefits provided by the non-targeted network 

augmentation scenarios of Tables 3-7 and 3-10. Considering other unaccounted-for benefits (e.g., QPE 

improvement) and the decades-long lifetimes of radars, there may be a business case to be made for such a 

gap filler. 

 

Figure 3-4. Tornado casualty and false alarm sheltering cost density difference, where the reference density is 
the perfect radar coverage case (without rapid scanning), for (left) the baseline network and (right) the baseline 
network with a WSR-88D added at Cullman Regional Airport in Alabama. 
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The gap filling analysis could potentially be automated by using the cost density metric within an 

optimization scheme. Given a finite set of potential radar sites, the most beneficial top N additions could 

be determined through global optimization and/or exhaustive search. 

 

Figure 3-5. Locations of (center marker) Cullman Regional Airport, (top marker) KHTX WSR-88D, and (bottom 
marker) KBMX WSR-88D (courtesy of Google Maps). 
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4. SUMMARY DISCUSSION 

Through historical geospatial analyses, we were able to establish and quantify relationships between 

weather radar network coverage and tornado warning performance. Specifically, improvements in fraction 

of vertical volume observed and cross-radial horizontal resolution were linked to better tornado detection 

probability and false alarm rates, while faster radar scan updates were associated with enhanced POD, FAR, 

and longer warning lead times. Better tornado warning performance (POD and lead time) and lower 

historical FAR in a particular location were, in turn, linked to casualty rate reduction. Combining these 

relationships led to a geospatial model for estimating tornado casualty rates based on a given meteorological 

radar network. Monetizing casualties (fatalities and two injury classes) based on a standard value-of-

statistical-life method yielded casualty costs. The value of time (work and personal) lost due to sheltering, 

which is dependent on FAR, was added to complete the tornado cost model. The difference in cost relative 

to a baseline yielded the monetized benefit. 

Our model showed that the current weather radar network provides $535M per year benefit with 

respect to CONUS tornado cost reduction. 97% of this benefit is attributed to casualty reduction, and the 

rest to sheltering cost reduction. 99.6% of the benefit is realized east of the Rockies, due to the very 

geographically inhomogeneous tornado occurrence distribution. 

There is a remaining benefit pool of at least $676M per year.  The majority of this pool is due to faster 

scanning (one-minute volume update) radars.  Since perfect radar coverage over the CONUS (or anything 

close to it) would be extremely expensive, upgrading existing sites with faster-scanning radars may be a 

more cost-effective way to harvest more of those benefits (for tornadoes). Note, however, that the 

quantification of rapid scan effects was based on a small number of experiments and is less robust than the 

other parts of our benefit model. In order to drive down this uncertainty, we recommend gathering more 

statistics on the effects of faster volume scans on tornado warning performance by utilizing existing and 

new radars capable of fine temporal resolution observations (e.g., Stailey and Hondl 2016;  

Kurdzo et al. 2017). 

Targeted gap filling at benefit-heavy locations like northern Alabama may also be warranted. Gap 

locations, however, are dependent on the historical occurrence rate of high-EF-number tornadoes, of which 

the sample size is small, i.e., the uncertainty of this quantity is fairly high. Furthermore, areas of high 

tornado occurrence has been slowly shifting eastward, which may be related to the movement of the dry 

line due to climate change (Gensini and Brooks 2018). This migration may lead to even stronger cost-

density gaps in the eastern U.S., where population density is generally higher and there is a greater 

concentration of mobile housing. 

Tornado warning FAR is positively correlated with casualty rate and incurs added cost due to work 

and personal time lost during sheltering.  The current FAR is high (0.72) relative to other severe weather 

warnings. For example, in the mid-2000s, NWS warning FARs were 0.46 for flash floods, 0.31 for winter 

storms, 0.31 for high winds, and 0.48 for severe thunderstorms (Barnes et al. 2007). This has not escaped 

the notice of mass media (Stirling 2015). There has been a slow decrease in FAR in recent years, due to an 
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apparent increased focus on this issue (Brooks and Correia 2018), but there is still room for improvement 

(although POD should not be sacrificed for this purpose). Reducing the current FAR of 0.72 is a worthy 

goal that taps into the sheltering cost reduction benefit.  Making progress in this direction, however, is 

complicated and involves much more than improving weather radar data. 

As discussed earlier, tornadoes are just one type of hazardous weather to consider when planning a 

weather radar network. Flash flooding is another deadly phenomenon for which we have developed an 

analogous benefit model (Cho and Kurdzo 2019b). Other uses of meteorological radar data, such as 

assimilation by numerical weather forecast models, also should be assigned monetized values. Extensive 

analyses will be required to form a comprehensive benefit case for future weather radar solutions. 
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APPENDIX A: SITE-BY-SITE LISTING OF SCENARIO IV MPAR LOCATIONS 

The scenario IV MPAR CONUS locations are listed below, grouped by legacy radar type. If fewer 

than four antenna faces are specified, this is indicated by the number of faces and azimuth coverage range 

in parentheses. 

Table A-1  ARSR-4 Sites 
Site ID Site Name State Replacement Radar 

AJO AJO AZ MPAR 
CTY CROSS CITY FL MPAR (2: 120°-300°) 
DMN DEMING (MAGDALEN) NM MPAR 
FN7 FT GREEN FL MPAR 
GFA BOOTLEGGER RIDGE (MALMSTROM) MT MPAR 
LCH LAKE CHARLES LA MPAR 
MLB MELBOURNE FL MPAR 
NEN WHITEHOUSE (JACKSONVILLE) FL MPAR (2: 0°-180°) 
NEW SLIDELL (NEW ORLEANS) LA MPAR 
NQX KEY WEST FL MPAR 
NSD SAN CLEMENTE CA MPAR 
PAM TYNDALL AFB FL MPAR 
PRB PASO ROBLES CA MPAR 
QEA NORTH TRURO MA MPAR 
QFI FINLEY ND MPAR 

QGV FT FISHER NC MPAR 
QIE GIBBSBORO NJ None 
QJA EMPIRE MI None 
QJD NASHWAUK MN MPAR 
QKW MAKAH WA MPAR 
QLS LAKESIDE MT MPAR 
QM8 TAMIAMI FL MPAR 
QMI MICA PEAK WA MPAR 
QMV MILL VALLEY CA MPAR 
QNA MORALES TX MPAR 
QNW EAGLE PEAK TX MPAR 
QOM KING MOUNTAIN TX MPAR 
QRJ JEDBURG SC MPAR 
QRW MT LAGUNA CA MPAR 
QVH RIVERHEAD (SUFFOLK) NY MPAR 
QVR OCEANA VA MPAR (2: 30°-210°) 
QWA WATFORD CITY ND MPAR 
QXU UTICA (REMSEN) NY None 



 

58 

QYA BUCKS HARBOR ME MPAR 
QYD CARIBOU ME MPAR 
QZA OILTON TX MPAR 
QZZ RAINBOW RIDGE CA MPAR 
RSG ROCKSPRINGS TX MPAR 
SLE SALEM OR MPAR 
VBG VANDENBERG AFB CA MPAR 
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Table A-2  CARSR Sites 
Site ID Site Name State Original Type Radar Replacement 
AEX ALEXANDRIA LA FPS-20A None 
AMA AMARILLO TX FPS-67B None 
ATL MARIETTA GA ARSR-1 None 
BAM BATTLE MOUNTAIN NV ARSR-2 MPAR 
CDC CEDAR CITY UT ARSR-2 MPAR 
CLE BRECKSVILLE (CLEVELAND) OH ARSR-1 None 
CPV COOPERSVILLE MI FPS-66A None 
DSV DANSVILLE NY ARSR-1 None 
FLX FALLON NV FPS-66A MPAR 
FPK SALT LAKE CITY (FRANCIS PEAK) UT ARSR-1 MPAR (2: 350°-170°) 
FTW KELLER TX ARSR-1 MPAR 
GCK GARDEN CITY KS ARSR-2 None 
GJT GRAND JUNCTION CO ARSR-2 MPAR 
GUP GALLUP (FARMINGTON) NM ARSR-2 MPAR 
HOU HOUSTON (ELLINGTON AFB) TX ARSR-1 None 
HTI HUTCHINSON KS FPS-66A None 
IND INDIANAPOLIS IN ARSR-1 None 
IRK KIRKSVILLE MO ARSR-3 None 
JOL ELWOOD (JOLIET) IL ARSR-3 None 
LBF NORTH PLATTE NE ARSR-2 None 
LMT KLAMATH FALLS OR FPS-67B MPAR 
LSK LUSK WY ARSR-2 MPAR 
MGM MONTGOMERY AL ARSR-1 None 
OKC TINKER AFB OK FPS-67B None 
PHX PHOENIX (HUMBOLDT) AZ ARSR-1 None 
PIT OAKDALE PA FPS-67B None 
QAS ANGEL PEAK NV FPS-20A MPAR 
QBE BEDFORD VA ARSR-3 None 
QBN BINNS HALL VA ARSR-3 MPAR 
QBZ OSKALOOSA KS ARSR-2 None 
QCF CLEARFIELD PA ARSR-3 None 
QCK CASCADE (BOISE) ID ARSR-2 MPAR 
QDT CANTON (DETROIT) MI ARSR-1 None 
QHA CUMMINGTON MA FPS-67 None 
QHB ST ALBANS VT FPS-67B MPAR 
QHN ASHBURN GA ARSR-1 None 
QHO OMAHA NE FPS-66A None 
QHZ HORICON WI ARSR-2 None 
QJB GETTYSBURG SD FPS-67B None 
QJC TYLER MN ARSR-2 None 
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QJE APPLE VALLEY MN ARSR-1 None 
QJO ARLINGTON IA ARSR-3 None 
QLA SAN PEDRO CA ARSR-1 None 
QNK LINCOLNTON GA ARSR-3 None 
QNM NEWPORT MS ARSR-3 None 
QOJ JOELTON (NASHVILLE) TN ARSR-1 None 
QPC HALEYVILLE AL FPS-67B None 
QPK PARKER CO ARSR-1 MPAR 
QPL THE PLAINS VA ARSR-3 None 
QRB CITRONELLE AL ARSR-2 None 
QRC BENTON PA FPS-67B None 
QRI LYNCH KY ARSR-2 None 
QRL BENSON NC ARSR-1 None 
QRM MAIDEN NC ARSR-1 None 
QSA WEST MESA NM FPS-66A None 
QSI LOVELL WY ARSR-2 None 
QSR BORON CA FPS-67B MPAR 
QTZ LAGRANGE IN ARSR-1 None 
QUZ HANNA CITY IL FPS-67B None 
QVA ASHTON ID ARSR-2 MPAR 
QVN FOSSIL OR ARSR-3 MPAR 
QWC MESA RICA NM ARSR-1 MPAR 
QWO LONDON OH ARSR-1 None 
QXP SELIGMAN AZ ARSR-3 MPAR 
QXR RUSSELLVILLE AR FPS-67A None 
QXS ODESSA TX ARSR-1 MPAR 
QYB BYHALIA (MEMPHIS) MS ARSR-1 None 
QYS ROGERS TX ARSR-1 MPAR 
RBL RED BLUFF CA FPS-67B None 
RKS ROCK SPRINGS WY ARSR-2 MPAR 
SEA SEATTLE (FT LAWTON) WA ARSR-1 None 
SNI SAN NICOLAS CA ARSR-3 MPAR 
STL ST LOUIS (OVERLAND) MO ARSR-1 None 
SVC SILVER CITY NM ARSR-2 MPAR 
TAD TRINIDAD CO ARSR-2 MPAR 
TXK TEXARKANA AR FPS-67 None 
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Table A-3  NEXRAD Sites 
Site ID Site Name State Radar Replacement 

KABR ABERDEEN SD MPAR 

KABX ALBUQUERQUE NM MPAR 

KAKQ NORFOLK VA None 

KAMA AMARILLO TX MPAR 

KAMX MIAMI FL None 

KAPX NCL MICHIGAN MI MPAR 

KARX LA CROSSE WI MPAR 

KATX SEATTLE WA MPAR 

KBBX BEALE AFB CA MPAR 

KBGM BINGHAMTON NY MPAR 

KBHX EUREKA (BUNKER HILL) CA None 

KBIS BISMARCK ND MPAR 

KBLX BILLINGS MT MPAR 

KBMX BIRMINGHAM AL MPAR 

KBOX BOSTON MA None 

KBRO BROWNSVILLE TX MPAR 

KBUF BUFFALO NY MPAR 

KBYX KEY WEST FL None 

KCAE COLUMBIA SC MPAR 

KCBW CARIBOU ME MPAR (3: 30°-300°) 

KCBX BOISE ID MPAR 

KCCX STATE COLLEGE PA MPAR 

KCLE CLEVELAND OH MPAR 

KCLX CHARLESTON SC None 

KCRP CORPUS CHRISTI TX MPAR 

KCXX BURLINGTON VT None 

KCYS CHEYENNE WY MPAR 

KDAX SACRAMENTO CA None 

KDDC DODGE CITY KS MPAR 

KDFX LAUGHLIN AFB TX MPAR (3: 45°-315°) 

KDGX JACKSON/BRANDON MS MPAR 

KDIX PHILADELPHIA NJ MPAR 

KDLH DULUTH MN None 

KDMX DES MOINES IA MPAR 

KDOX DOVER AFB DE MPAR 

KDTX DETROIT MI MPAR 
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KDVN QUAD CITIES IA MPAR 

KDYX DYESS AFB TX MPAR 

KEAX PLEASANT HILL MO MPAR 

KEMX TUCSON AZ MPAR 

KENX ALBANY NY MPAR 

KEOX FT RUCKER AL MPAR 

KEPZ EL PASO NM None 

KESX LAS VEGAS NV MPAR 

KEVX EGLIN AFB FL None 

KEWX AUSTIN/SAN ANTONIO TX MPAR 

KEYX EDWARDS AFB CA None 

KFCX ROANOKE VA MPAR 

KFDR ALTUS AFB OK MPAR 

KFDX CANNON AFB NM None 

KFFC ATLANTA GA MPAR 

KFSD SIOUX FALLS SD MPAR 

KFSX FLAGSTAFF  AZ MPAR 

KFTG DENVER CO None 

KFWS DALLAS/FT WORTH TX None 

KGGW GLASGOW MT MPAR 

KGJX GRAND JUNCTION  CO MPAR 

KGLD GOODLAND KS MPAR 

KGRB GREEN BAY WI MPAR 

KGRK FT HOOD TX None 

KGRR GRAND RAPIDS MI MPAR 

KGSP GREER SC MPAR 

KGWX COLUMBUS AFB MS MPAR 

KGYX PORTLAND ME MPAR 

KHDX HOLLOMAN AFB NM None 

KHGX HOUSTON TX MPAR 

KHNX SAN JOAQUIN VALLEY CA MPAR 

KHPX FT CAMPBELL KY MPAR 

KHTX NORTHEAST ALABAMA AL MPAR 

KICT WICHITA KS MPAR 

KICX CEDAR CITY  UT None 

KILN CINCINNATI OH MPAR 

KILX LINCOLN IL MPAR 

KIND INDIANAPOLIS IN MPAR 
KINX TULSA OK MPAR 
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KIWA PHOENIX AZ MPAR (2: 0°-180°) 
KIWX NORTHERN INDIANA IN MPAR 
KJAX JACKSONVILLE FL None 

KJGX ROBINS AFB GA MPAR 

KJKL JACKSON KY MPAR 

KLBB LUBBOCK TX MPAR 

KLCH LAKE CHARLES LA None 

KLGX LANGLEY HILL WA MPAR 

KLIX SLIDELL LA None 

KLNX NORTH PLATTE NE MPAR 

KLOT CHICAGO IL MPAR 

KLRX ELKO  NV MPAR 

KLSX ST LOUIS MO MPAR 

KLTX WILMINGTON NC None 

KLVX LOUISVILLE KY MPAR 

KLWX STERLING VA MPAR 

KLZK LITTLE ROCK AR MPAR 

KMAF MIDLAND/ODESSA TX None 

KMAX MEDFORD  OR MPAR (3: 135°-45°) 

KMBX MINOT AFB ND MPAR 

KMHX MOREHEAD CITY NC MPAR 

KMKX MILWAUKEE WI MPAR 

KMLB MELBOURNE FL None 

KMOB MOBILE AL MPAR 

KMPX MINNEAPOLIS MN MPAR 

KMQT MARQUETTE MI MPAR 

KMRX KNOXVILLE TN MPAR 

KMSX MISSOULA  MT MPAR 

KMTX SALT LAKE CITY  UT MPAR 

KMUX SAN FRANCISCO CA MPAR 

KMVX FARGO/GRAND FORKS ND None 

KMXX MAXWELL AFB AL MPAR 

KNKX SAN DIEGO CA None 

KNQA MEMPHIS TN MPAR 

KOAX OMAHA NE MPAR 

KOHX NASHVILLE TN MPAR 

KOKX BROOKHAVEN NY None 

KOTX SPOKANE WA None 

KPAH PADUCAH KY MPAR 
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KPBZ PITTSBURGH PA MPAR 

KPDT PENDLETON OR MPAR 

KPOE FT POLK LA MPAR (2: 300°-120°) 

KPUX PUEBLO CO None 

KRAX RALEIGH/DURHAM NC MPAR 

KRGX RENO  NV MPAR 

KRIW RIVERTON/LANDER WY MPAR 

KRLX CHARLESTON WV MPAR 

KRTX PORTLAND OR MPAR 

KSFX POCATELLO ID MPAR 

KSGF SPRINGFIELD MO MPAR 

KSHV SHREVEPORT LA MPAR 

KSJT SAN ANGELO TX MPAR 

KSOX SANTA ANA MTS CA None 

KSRX WESTERN ARKANSAS AR MPAR 

KTBW TAMPA FL None 

KTFX GREAT FALLS MT None 

KTLH TALLAHASSEE MT None 

KTLX NORMAN FL MPAR 

KTWX TOPEKA KS MPAR 

KTYX FT DRUM NY MPAR 

KUDX RAPID CITY SD MPAR 

KUEX GRAND ISLAND NE MPAR 

KVAX MOODY AFB GA MPAR 

KVBX VANDENBERG AFB CA None 

KVNX VANCE AFB OK MPAR 

KVTX LOS ANGELES CA MPAR 

KVWX EVANSVILLE IN MPAR 

KYUX YUMA  AZ MPAR 
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GLOSSARY 

AGL Above Ground Level  

ARSR Air Route Surveillance Radar  

ASR Airport Surveillance Radar 

ATL Atlanta  

AUC Area Under the Receiver Operating Curve  

AVSET Automated Volume Scan Evaluation and Termination  

CARSR Common Air Route Surveillance Radar  

CHR Cross-radial Horizontal Resolution  

CONUS Contiguous United States  

CPI Consumer Price Index  

CSI Critical Success Index  

CWA County Warning Area  

DHS Department of Homeland Security  

DoD Department of Defense  

DOT Department of Transportation  

DTED Digital Terrain Elevation Data  

EF Enhanced Fujita  

FAA Federal Aviation Administration  

FAR False Alarm Ratio  

FEMA Federal Emergency Management Administration  

FFC Weather Forecast Office in Peachtree City, Georgia  

FVO Fraction of Vertical Volume Observed  

GPN Ground Position Navigation  

ILN Weather Forecast Office in Wilmington, Ohio  

KCMD Hypothetical Weather Surveillance Radar-1988 Doppler in 

Cullman, Alabama  
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KDIX Weather Surveillance Radar-1988 Doppler in Fort Dix,  

New Jersey  

KFFC Weather Surveillance Radar-1988 Doppler in Peachtree  

City, Georgia  

KFWS Weather Surveillance Radar-1988 Doppler in Fort Worth, Texas  

KILN Weather Surveillance Radar-1988 Doppler in Wilmington, Ohio  

LRR. Long-Range Radar 

MESO-SAILS Multiple-Elevation Scan Option for Supplemental Adaptive 

Intra-volume Low-level Scan  

MPAR Multifunction Phased Array Radar  

MUWE Median Usual Weekly Earnings  

NOAA National Oceanic and Atmospheric Administration  

NWRT National Weather Radar Testbed  

NWS National Weather Service  

OKC Oklahoma City  

OUN Weather Forecast Office in Norman, Oklahoma  

PAR Phased Array Radar  

PARISE Phased Array Radar Innovative Sensing Experiments  

POD Probability of Detection  

PPAR Polarimetric Phased Array Radar 

QLCS Quasi-Linear Convective System  

RF Radio Frequency  

SAILS Supplemental Adaptive Intra-volume Low-level Scan  

SENSR Spectrum Efficient National Surveillance Radar  

SPC Storm Prediction Center   

SRTM Shuttle Radar Tomography Mission  

TADW Terminal Doppler Weather Radar in Andrews Air Force  

Base, Maryland  

TATL Terminal Doppler Weather Radar in Atlanta, Georgia  

TBSS Three-Body Scatter Signature  
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TBWI Terminal Doppler Weather Radar in Baltimore, Maryland  

TCLT Terminal Doppler Weather Radar in Charlotte, North Carolina  

TCMH Terminal Doppler Weather Radar in Columbus, Ohio  

TCVG Terminal Doppler Weather Radar in Covington, Kentucky  

TDAY Terminal Doppler Weather Radar in Dayton, Ohio  

TDWR Terminal Doppler Weather Radar 

TEWR Terminal Doppler Weather Radar in Newark, New Jersey  

TMCI Terminal Doppler Weather Radar in Kansas City, Missouri  

TOKC Terminal Doppler Weather Radar in Oklahoma City, Oklahoma  

TOR Tornado Warning 

TPHL Terminal Doppler Weather Radar in Philadelphia, Pennsylvania  

VCP Volume Coverage Patter 

VSL Value of a Statistical Life  

WFO Weather Forecast Office  

WSP Weather Systems Processor 

WSR-88D Weather Surveillance Radar-1988 Doppler  
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