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1.0 SUMMARY 

Increasingly sophisticated technology must be leveraged in surveillance environments to enable 
the eventual goal achievement of allowing analysts to increase throughput through management 
of multiple simultaneous feeds. Maintaining this increased tasking will likely introduce 
additional workload and fatigue. Fortunately, analysts can currently offload some of these tasks 
to automation, and will in the future be able to offload additional tasking to streamline the 
intelligence analysis process. Currently, various speech-to-text and text-to-speech programs can 
be used to convert spoken information into chat and automation can be used to copy text to 
multiple needed locations simultaneously. Automation has aided in the transmission of 
information between analysts and organizations. Tools are also being developed to augment the 
detection of important visual features within surveillance scenes. However, the degree of 
assistance autonomous systems can provide is still somewhat limited for cognitively complex 
tasks, but progress is being made incrementally toward viable assistive tools. Balancing analyst 
workload while maintaining multiple tasks will require intelligent and dynamic distribution of 
tasks between humans and autonomy. 

To address this challenge of maintaining performance in a Human-Machine Team (HMT), we 
developed a program to dynamically distribute tasks between a human and automation. By re-
conceptualizing the team dynamic within the surveillance working environment, we developed a 
supervisory role called the Autonomous Manager (AM). The AM dynamically reallocates tasks 
based on task performance and physiological indicators of a human analyst’s workload. We 
tested the AM’s decision logic across multiple scenarios using simulation, allowing us to 
examine the benefits and limitations of the AM more thoroughly than would be feasible with a 
series of empirical studies using human subjects. We tested the benefits of the AM based on: 
performance improvement across tasks, improvement with highly variable mean performance, 
and specific use-case scenarios. The simulated AM can be leveraged to answer a variety of real-
world questions without the expense of physical implementation, prior to full-scale development 
or empirical testing. 
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2.0 THEORETICAL PERSPECTIVE ON HUMAN-MACHINE TEAMING 

In most work environments, accuracy and efficiency are both crucial. To continue growing 
productivity and throughput, work organizations must increasingly rely on sophisticated 
automation to complete complex tasks. However, many cognitively taxing tasks cannot be 
performed by automation to a level of proficiency that matches an expert human at full arousal 
(i.e., an analyst who is not heavily fatigued or overworked). Integration of automation into real-
world workplaces demands effective HMT to compensate for the relative strengths and 
weaknesses of each human and machine agent. Prior autonomy research has attempted to 
establish an appropriate balance of tasks from a range of theoretical perspectives. The 
perspective taken for development of our AM tool was from previous work in managing multiple 
tasks with humans and machines with twofold assumptions: 

• Tasking can be distributed according to a spectrum, ranging from automation/machine 
having full control to human having full control. There are variable degrees of split 
tasking between humans and automation/machines that can include parsing complete or 
partial tasks between agents (Sheridan & Verplank, 1978; Parasuraman, Sheridan, & 
Wickens, 2000). 

• Dynamic implementation of automation provides a greater benefit than simple 
substitution of a single or multiple humans. There are times where human control of tasks 
may be more appropriate and other times where automation control of tasking is more 
appropriate, based on features such as workload or fatigue (Parasuraman & Wickens, 
2008). 

2.1 Continuum of Task Control 
Research over the past decades within autonomy has established many perspectives on how 
Human-Machine Teaming occurs based on how tasks are distributed, ranging from tasks that are 
entirely controlled by humans to tasks entirely controlled by automation (Parasuraman et al., 
2000; Parasuraman & Wickens, 2008). Between these extremes are degrees of divided control 
over tasks. For example, supervisory control typically consists of an automated system with most 
of the direct control over specific task operations, but a human agent can interject and choose to 
veto the actions of the automation or take control manually (Kaber & Endsley, 2004). Likewise, 
a human may typically operate a task with automated intervention only in emergencies, as is the 
case of the Traffic Collision Avoidance System (TCAS) in modern commercial aircraft, which 
automatically adjusts elevation of two aircraft when they are about to collide, overriding pilot 
manual control until a collision is fully avoided (Feigh, Dorneich, & Hayes, 2012).  

In one of the earliest models of a spectrum of task distribution, Sheridan and Verplank (1978) 
proposed a multi-level scale of HMT ranging from 1 (human makes decisions and controls 
tasking with no computer intervention) to 10 (automation makes decisions and controls tasking 
with no human intervention). Parasuraman et al. (2000) proposed a streamlined spectrum that 
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incorporates the functionality of the 10-level model, but simplifies it to 4 levels of automation 
based on cognitive functions: Sensory Processing, Perception/Working Memory, Decision 
Making, and Response Selection. These functions are based on human information processing 
and can provide an initial categorization for tasks: Information Acquisition, Information 
Analysis, Decision and Action Selection, and Action Implementation (Billings, 2018). 

Patterson (2017) ascribed an additional cognitive explanation to these levels. Information 
acquisition and information analysis engages more intuitive processes while decision making and 
action implementation involve more analytic cognitive processes. Intuitive processes are 
typically rapid and automatic, while analytic processes are more deliberate, slow, and volitional 
(Evans, 2008). This distinction means that intervention by automation at different cognitive 
processing stages will likely have differentiable downstream effects on task performance. These 
differences may be particularly pronounced when certain tasks are differentially affected by time 
pressure and workload. For example, automation performing a more quickly-processed, intuitive 
(automatic) perceptual information gathering task may disrupt human performance on a later 
decision making task requiring integration of this perceptual information. 

2.2 Adaptive Automation  
Construction of effective automation depends not only on the calibration of human versus 
automation proportional control, but there is an additional benefit of adaptive automation that 
modifies functionality based on changing task environments (Parasuraman, Mouloua, & Molloy, 
1996) and physiological indicators of human workload or fatigue (Byrne & Parasuraman, 1996). 
Furthermore, effective HMTs should involve some degree of monitoring or communication 
between agents to compensate for failures by either the human or automated agent (Parasuraman 
et al., 1996). Adapting the degree of involvement of automation can allow it to be used 
advantageously when human performance is inadequate, while reducing the “out-of-the-loop 
problem” which occurs when a human is completely disengaged from tasks other than to correct 
occurrences of catastrophic automation failure. Adaptive automation allows the human teammate 
to maintain Situation Awareness (SA) and flexibility to respond effectively to unexpected 
problems. Parasuraman et al. (1996) found that adaptive task allocation based on either a model 
or performance yielded significantly better detection of automation failures. Furthermore, in 
addition to making automation adaptive based on performance, automation has successfully been 
adjusted using psychophysiological data, such as electroencephalography (EEG), including the 
P300 event related potential (Prinzel III, Freeman, Scerbo, Mikulka, & Pope, 2003). The benefit 
of measures such as EEG, eye tracking, or physiological variables (e.g., heart rate, respiration 
rate), is that they can be obtained continuously over the course of a task, provide reaction in near 
real-time, and they can be observed even in the absence of an overt behavior or response. Even if 
a participant is unable to accurately assess their own workload state (either subjectively 
underestimating or overestimating workload), the physiological indicators are more likely to give 
an accurate assessment of cognitive state. Additionally, automation that is calibrated based on a 
human teammate’s physiological variation during an ongoing task has been shown to yield 
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consistently better human performance than when automation is implemented based on the 
identical pattern of variation when it is decoupled from psychophysiology (Prinzel, et al., 2003).  

2.3 Practical Issues of Human-Machine Teaming in ISR 
Prior research has formalized adaptive human-automation interactions within a single complex 
task environment. However, typical working environments require simultaneous management of 
multiple formal or informal tasks, rather than monotasking. Even within ISR, there is a push 
toward developing technologies to allow a single analyst to maintain superior performance while 
managing multiple simultaneous cognitively taxing efforts. If a human can manage multiple 
tasks adequately when working alone, it is unnecessary to develop expensive automation to 
replace them. However, physiological states such as overwork or fatigue can have a dramatic, 
typically negative, influence on human performance (Diekfuss, Ward, & Raisbeck, 2017; 
Hancock, Williams, & Manning, 1995), and this is when automation may be most effectively 
leveraged. Currently, the effectiveness of an ISR analyst managing multiple feeds without 
assistance is not quantified. Generally however, increased workload and performance decrements 
are observed when people must manage multiple tasks that require the same cognitive resources 
or modality (Stevens, Fisher, Morris, Myers, Spriggs, & Dukes, 2018). Watching any single 
screen would take away attentional and cognitive resources that could be allocated to watching 
the other screens. We can reasonably surmise that there could be a decrement in performance if 
there is no automated assistance when a human must devote a single cognitive modality to 
multiple tasks.  

Over the past decade, there has been substantial progress in introducing automation into ISR 
workflows, such as Automatic Target Recognition (ATR) (Irvine & Nelson, 2009) for 
recognizing important target categories based on their features and systems to assist with 
reducing data and information complexity so the most pertinent information can be ascertained 
by analysts (Hershey, Wang, Graham, Davidson, Sica, & Dudash, 2012; Hershey & Wang, 
2013). Although automation is being developed and pushed forward to manage complex tasks, it 
is not yet capable of consistently exceeding performance of a cognitively alert and expert human 
for certain actions, including making call-outs, noting higher-order patterns of behavior, and 
meaning-making. There is a tradeoff of performance between various subtasks within ISR. 
Therefore, automation should be implemented adaptively to appropriately allocate various 
subtasks in multitasking ISR environments to be most effective. The necessary level of control 
may change over time differentially between tasks, requiring real-time management of human 
and automated agents in task allocation. Knowing when to change tasks can be driven by 
measures of workload informed by ongoing collection of physiology, brain activity, and eye 
movement. Although variables including eye tracking metrics (e.g., blink rate, percentage of 
eyelid opening, saccade frequency) and physiology (e.g., heart rate, heart rate variability, EEG) 
can serve as workload indicators (Buettner, 2013; Gable, Kun, Walker, & Winton, 2015; Hoover, 
Singh, Fishel-Brown, & Muth, 2012; Luque-Casado, Perales, Cárdenas, & Sanabria, 2016; 
Palinko, Kun, Shyrokov, & Heeman, 2010), it is not possible for a human to integrate this 



5 
 

5 
 
Distribution A:  Approved for public release. MSC/PA-2018-0376; 88ABW-2018-6274, 4 Jan 2019 

information and make appropriate decisions for task allocation in real-time. In intelligence and 
surveillance analysis however, this information is important and this managerial role could 
improve performance across multiple tasks. 

2.4 Goal of Testing the Autonomous Manager 
For this series of simulation studies, our primary goal was to test the benefits and limitations of 
the AM. These simulated efforts have been instrumental in the development of the AM prior to 
empirical testing. For this multi-task visual search simulation, the AM assessed four concurrent 
surveillance tasks (see Frame, Boydstun, Maresca, & Lopez, 2019 for an empirical 
implementation of the AM using four simultaneous static image search tasks). However, there 
are additional benefits of simulation beyond simple tool development. Simulations can perform 
the most difficult element of empirical research in an efficient manner and allows for a larger 
exploration of the sample space. Performing this series of studies as simulations allowed us to 
explore unlikely performance scenarios and test the robustness of our algorithm to dynamic and 
unpredictable tasking environments. Simulations also allow us to determine the upper bound of 
performance for potential HMTs using the AM versus baseline based on all-human task 
configurations, to determine where the greatest improvement can be made. There is also an 
inherent benefit to a simulation in practical application as a means of saving resources for 
proposed new tasking setups. This simulation allows for testing the marginal benefit of an AM, 
given a variety of proposed task arrangements. A human supervisor that can test and know where 
the greatest benefit can be achieved in advance can make wiser implementation choices for 
working environments and is reminiscent of other successful forms of adaptive automation 
informing a tasking environment (Miller & Parasuraman, 2007). 
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3.0 PRE-EXPERIMENTAL MATHEMATICAL VALIDATION 

Prior to full development of a task allocation program, we needed to validate the assumption that 
an effective human machine team could consistently elicit superior performance to either agent 
(human or machine) performing multiple tasks in isolation. We examined a four independent 
task structure where each of the four tasks could be controlled by either a human or automation 
(machine). When describing potential configurations, we use (H) to denote a human in control of 
a task and (A) to denote automation controlling the task. Either agent could be in control of each 
of the four tasks. For example, HHAA would be used to denote that a human is controlling the 
first two tasks while the automation is controlling latter two tasks. 

We computed the overall task score from each of 15 million iterations with random underlying 
performance distributions for the human or automation. In this mathematical validation, the 
underlying performance distribution for each task was distributed with a mean ranging from 0-
100% with a standard deviation of 10%, capped at 0% and 100% performance. Each run of the 
simulated experiment was 100 time samples long. The average across-task score was calculated 
for situations where 1) all tasks were performed by a human, 2) all tasks were performed by 
automation, and 3) tasks were performed by the optimal combination of human and automation. 
In this lattermost condition, the agent with a higher a priori performance distribution was 
selected to perform each task. Figure 1 illustrates these three final outcome distributions and 
provided us with a benchmark the AM’s ability to successfully increase overall performance 
with no prior assumptions regarding human and automation performance distributions. This 
mathematical validation demonstrates that if the algorithm is sufficiently adaptive and robust to 
changes in parameterization, it should lead to a significant improvement of task performance 
over a human or machine performing the task alone. Combined with real-world expertise (which 
is greater than the average of the uniform distribution used in this test) and training interventions 
to improve human baseline performance, implementation of the AM into a workspace can raise 
the human/automation baselines thus improving the HMT’s performance beyond what the green 
HMT distribution in Figure 2 shows. 
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Figure 1: Histograms of performance for randomly sampled configurations of human and 
automation mean performance on each of the 4 tasks, as well as the distribution for the 
optimal HMT configuration. 
The HMT distribution demonstrates consistent and robust higher performance than human or automation 

performance in isolation.  
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4.0 DEVELOPING A SIMULATED AUTONOMOUS MANAGER 

After initial mathematical validation, we tested the AM simulation. The AM was designed to 
dynamically allocate tasks to either a human or automated agent over time, based on information 
about ongoing simulated task performance and indicators of human workload. Simulation studies 
are powerful in that they are capable of testing a larger range of plausible scenarios than would 
be feasible through experimentation, including possible, but improbable scenarios. This is 
particularly valuable for us to test extreme conditions that could break down the decision logic of 
the AM, allowing us to test its robustness to realistic variability. Prior to empirical evaluation, 
simulations serve to provide insights into mechanisms that contribute to reactions within a real-
world system and can assist with guiding the specifications of research questions in an empirical 
test or to modify parameterization of the decision logic of tools designed to provide assistance. 
The overall decision logic of the AM is illustrated in Figure 2 and the following sections 
articulate parameters that can be modified by users. 
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Figure 2: Decision logic of the Autonomous Manager (AM). Initial performance 
distributions are computed for human and automation on each of 4 tasks (either estimated 
or based on prior data) 

These values are then simulated on each iteration and depending on HMT performance relative to a 
specified threshold, the current HMT performance is either checked against the previous configuration or 

workload is assessed. If workload is found to be above or below an acceptable range, a task is 
reallocated to automation or human, respectively. This logical progression represents the default 

configuration, but can easily be modified with user-set parameters for flexibility. 
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4.1 Autonomous Manager Functions and Customization 
In each of the following subsections, we articulate the various user-configurable parameters of 
the Autonomous Manager as well as the procedural decision logic implemented by the AM to 
reallocate tasks dynamically between humans and automation. 

4.1.1. Simulation Decision Logic 
The backbone of the AM simulation is the procedural decision logic used to iterate from one 
configuration of Human-Machine task allocation to another adaptively and dynamically. 
Performance on multiple tasks was simulated continuously over time and task allocations were 
adjusted between human or automation based on the performance of the HMT and simulated 
human workload (simulated heart rate specifically). However, for the purposes of our testing 
environment and the priorities in surveillance, the decision logic prioritized maintaining 
acceptable performance over moderating workload. When the HMT performed above a 
minimum acceptable performance threshold, simulated physiological metrics were assessed to 
determine workload. If workload was above a user-specified maximum threshold, the lowest 
performing task by the human was taken over by the automation. Conversely, if workload was 
shown to be excessively low, indicating operator underwork or boredom, the lowest performing 
automation task was reallocated from automation to human control. When performance of the 
HMT was below a minimum threshold, the allocation script (AM) determined which task had the 
lowest performance between the two agents (human or automation) and switched from one 
operating agent to the other. There was a simple “memory” parameter, where the AM would 
reallocate the tasks to match the previous configuration if performance was substantially higher 
using that previous configuration, to prevent the random walk from inadvertently lowering HMT 
performance in successive iterations or switching rapidly between two equally suitable 
configurations, as this sort of rapid switching would likely confuse a human subject or lead to a 
loss of situation awareness. Figure 2 illustrates the flow of task redistribution logic implemented 
in our simulation. 

4.1.2. Simulated Task Configuration 
The decision logic of the AM can be implemented for a myriad of possible tasks, but was 
constrained for this simulation as a 4-task setup. Although the simulated AM is capable of 
managing up to a theoretically infinite number of simultaneous tasks, to the degree that it will 
eventually overwhelm computational memory, 4 tasks were selected for the analyses based on 
previous studies of multitasking and workload. Figure 3 illustrates a layout of 4 surveillance 
windows that an analyst might monitor and report events of interest on. Similar setups have been 
used in previous workload tasks, such as the MATB-II (Santiago-Espada, Myer, Latorella, & 
Comstock Jr, 2011), a well-studied multitasking environment consisting of independent tasks 
that has been modified for research (Blaha, Cline, & Halverson, 2015). We limited tasks in this 
simulated working environment to those that could be performed fully by either a human or 
automation and could be delegated effectively between them. 
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Figure 3: An illustration of a possible multi-tasking configuration consisting of multiple 
visual search surveillance tasks (T1, T2, T3, T4), involving either standard image/video 
feeds or infrared with a simplified representation of the AM’s decision logic below 

This figure was created with open-source images by the authors. The overall average (A) performance 
across all tasks is calculated. This percentage is compared to a user-set criterion, workload is assessed, 

and the AM makes a tasking reallocation decision. 
 

4.1.3. Configurable AM Parameters 
There are a variety of simple input parameters that a user can configure prior to running the 
simulated AM. User-customizable parameters fall under three primary categories: 1) 
experimental parameters, 2) agent (human and automation) performance parameters, and 3) 
human physiology parameters. In an empirical setting, the second and third categories of 
parameters are input into the AM as they are collected by an experimental task environment and 
appropriate physiological sensor, respectively. 

Experiment Features. Users can set parameters relating to experiment or mission features, 
which are independent of human or automation performance. These parameters include 
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experiment duration, tempo of trials or events, and how frequently the AM will aggregate 
performance across trials to determine accuracy within and across tasks, based on either time (in 
seconds) or number of trials. 

Agent Features. As with experiment parameters, agent factors are configurable simulation 
parameters. A priori performance distributions can be set for human and automation on each 
task, based on prior or estimated measures of central tendency and variance. By default, this is 
configured using mean and variance in a Gaussian/normal distribution. However, a user can 
choose to model performance using another class of distribution, such as a Poisson for count 
variables or an exponential for response times. In addition to specifying average accuracy, a 
degree of uncertainty in this mean accuracy can be set by specifying a distribution of plausible 
mean values on each task for each agent. By default, generated mean uncertainty is distributed 
using a uniform distribution, but this can be customized if a user believes that mean uncertainty 
should be distributed differently. For most practical applications, either a uniform or normal 
distribution should suffice. If there is no desire to model uncertainty, this can be omitted entirely 
from the simulation. Additionally, a standard deviation can be set around the performance 
mean(s). Finally, a user can set a minimum acceptable accuracy threshold for team performance. 
For example, if a user would find HMT accuracy of less than 90% averaged across all tasks to be 
unacceptable, the performance threshold would be set to .9. When using the AM within in situ 
tasking, performance values are collected and input into the AM rather than simulated. However, 
frequency of score aggregation is still a modifiable parameter in an empirical setting. 

Physiological Features. The final set of customizable simulation parameters are metrics of 
human physiology pertinent to workload. In the current set of analyses, human heart rate was 
simulated as a proxy for workload due to the robust positive correlation between increased heart 
rate and increased workload (Hankins & Wilson, 1998; Luque-Casado et al., 2016). Heart rate 
was set to be higher on average when the human is engaging with more tasks and lower when the 
human is not monitoring as many tasks. These were moderately correlated to account for 
variability. Again, for in situ tasking this information is collected and input in real-time (or near 
real-time), rather than simulated. 
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5.0 TESTING THE A.M. OVER A LARGE PARAMETER SPACE 

As an initial test of the AM, we simulated a variety of configurations to compare the 
performance of the AM versus an all-human baseline. For each run, we computed the 
mathematically optimal, baseline, and AM Parser (output of the AM’s task reallocation, labeled 
as AM Parser in figures) performances. Mathematically optimal scores were calculated as the 
score that would occur if the more proficient agent maintained continuous control of tasking. 
This is the aggregated performance that would be yielded if the AM were omniscient about both 
agents’ potential scores at each time point and how these dynamics would change with different 
task configurations. Baseline was defined as the score that would be obtained if a human were 
performing all four tasks since this is how tasks are currently distributed in surveillance 
environments. Although there are other potential baselines that could have been generated, such 
as randomized parsing, human performance alone serves as the most accurate proxy for task 
allocation under current capabilities. Presently automation has not been integrated into 
performing higher-level cognitive tasks beyond repetitive tasking and “busy work” such as 
copying and pasting text. However, as automation for complex tasking is under development, it 
is important to concurrently develop a means of managing HMTs before full-scale 
implementation of automated solutions. The mathematically optimal distribution along with the 
baseline distribution allowed us to determine where the AM Parser results fall between current 
configurations and optimal redistribution of tasks. 

5.1 Simulation Results 
Our initial simulations were run across a wide span of potential performance and realistic heart 
rate parameterizations. We divided these simulations into two categories: 1) performance 
distributions remaining consistent over time, and 2) performance distribution for the human 
changing over time to reflect inherent nonstationarities due to workload and fatigue fluctuations. 

5.1.1. Determining Degree of Improvement in a Simulated Multitasking Environment 
The human, automation, and HMT distributions were constructed from 10,000 simulations of a 
four-independent task configuration. Mathematically optimal (labeled Optimal in plots) HMT 
performance values were calculated for each run as well as average human-only scores to 
generate the baseline distributions (see Figure 1 in Section 3). In Figure 4, the distribution of AM 
Parser scores shows substantial improvement over baseline and nearly approximates the 
mathematically optimal distribution.  
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Figure 4: Distributions from 10,000 iterations of the AM simulation 
The gray distribution indicates the baseline performance (human performing all tasks). The blue 

distribution indicates the performance from the mathematically optimal allocation of tasks within the 
HMT, given each of their respective performance constraints. The red distribution is the resulting HMT 

performance based on the Autonomous Manager’s parsing. 
 

With the AM, there was an overall improvement of M = 11.36%, SD = 8.64%, and ranged from 
≈ -10% performance improvement (lower than baseline) to an ≈ 40% improvement over baseline 
(see Figure 5 for the improvement distribution). Using the AM, paired samples t-tests were run 
comparing the AM Parser and optimal performance distributions, and comparing the AM Parser 
and baseline performance. AM Parser performance was significantly higher (M = 66.33%, SD = 
13.59%) compared to baseline performance (M = 49.96%, SD = 14.58%), t(9999) = 85.10, p < 
.001, d = 1.16.  
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Figure 5: Distribution of overall (average) improvement between the AM Parser and 
Human-only baseline for each run of the simulation 

The typical range of improvement over baseline was between 5-25%. 
 

The superior performance of AM Parser over baseline indicates that the use of the AM led to 
significantly higher overall scores than one would expect from the human performing the tasks 
alone. However, there was also a significant difference between performance with the AM and 
the mathematically optimal performance (M = 66.79, SD = 11.95%), t(9999) = 88.07, p < .001, d 
= .036, indicating that there is likely still room for improvement of the decision logic. This is 
unsurprising given the simplicity of the simulation logic and use of static thresholds. However, 
the AM results were closer to the optimal distribution than the baseline distribution and the effect 
size for the comparison between the AM Parser and mathematically optimal was small, 
especially compared to the AM Parser vs. baseline performance. The significant difference 
between the AM Parser and the optimal performance is likely due to the large number of 
iterations conducted for the analysis (10,000 iterations). The Cohen’s d effect size for the 
comparison between the baseline and AM Parser however is relatively high and most likely 
reflects a genuine difference in scores, indicating that there is room for improvements as the AM 
is refined and calibrated to novel tasking environments. 

5.1.2. Robustness to Nonstationary Performance 
Within a practical working environment, human and automation performance will likely be 
nonstationary as well as stochastic, as indicated by both increasing/decreasing drifting mean 
performance over time and short-term variability of performance, respectively. For example, one 
might expect fatigue to lead to a gradual drift or decrement of performance with a potential 
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increase in performance after a rest break so that fatigue can be mitigated. We simulated three 
configurations of changing performance to test the AM for robustness to nonstationarity. In the 
first test, mid-way through the simulation, we changed the mean human and automation 
performance for each of the four tasks. For the second test, we increased the frequency of these 
changes to modify the human and automation performance at each quarter, and for the third test 
we changed performance mean parameters six times with random periodicity, rather than by a 
specific temporal interval. By randomizing periodicity, this meant that the random walk would 
not always have time to recover if parameterizations changed within a short period of time. All 
changes were made abruptly, rather than gradually ramping up or down, in contrast to the 
function for real-world fatigue. This provided the AM with a “worst case” scenario of wildly 
fluctuating performance parameters, which would require quick adaptation by the AM. Figure 6 
illustrates an example of how performance might fluctuate in a single run, under each of these 
conditions. For ease of visual interpretation, only two task performances are plotted over time, 
rather than four. If the AM is robust to this changing mean performance, this will demonstrate 
the power and flexibility of the decision logic regardless of variability and perturbations, and 
demonstrate the value of the AM for real-world applications. 
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Figure 6: The effect of nonstationarity on performance of two hypothetical tasks. In the 
upper left panel, the performance data is simulated to stochastically vary, but remain 
stationary 

However, in the other three panels (Upper Right: 1 Change, Bottom left: 3 Changes, Bottom Right: 6 
Random-Interval Changes), there are multiple deflections where greater shifts in performance occur 
based on changes in mean performance. In all four panels, the standard deviation of performance is 

equal to 10%. 
 

As with the stationary condition, 10,000 simulations were conducted for each of the three 
nonstationary conditions, with an initially randomized performance parameterization. For the 
first condition, mid-way through each simulation, the parameterization for both human and 
automation was randomly changed to a new mean performance value (retaining the same 
standard deviation of 10). As with the stationary distributions, for the single deflection 
nonstationary case there was a significant difference between AM parsed and mathematically 
optimal performance (see Table 1 for summary statistics for all nonstationary distributions). 
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Table 1: Results of Paired T-tests for Nonstationary Conditions (Cohen’s d for Effect Sizes) 

 

The table of results for each of the nonstationary conditions illustrates that there were significant 
mean differences between the baseline and AM Parser with relatively large effect sizes. This is 
consistent with the outcome of the simulation using stationary HMT performance. As with the 
stationary condition, there were also significant differences between the HMT score from the 
AM Parser compared with the optimal potential score, with more moderate effect sizes. Figure 7 
provides an illustration of the outcome performance distributions for each of the nonstationary 
conditions.  
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Figure 7: Distributions from 10,000 random iterations of the AM simulation with a change 
in human and automation performance distributions occurring mid-way through the 
simulation (top left), three times during the simulation quarterly (top right), or six times at 
random intervals (bottom graph) 

As with the distributions for stationary performance, there is a significant difference between baseline 
performance and performance from the AM Parser and a significant difference between the AM Parser’s 

performance and the mathematically optimal performance. 
 

Figure 8 illustrates the degree of improvement for each nonstationary condition when parsed by 
the AM over baseline. For both stationary and single deflection nonstationary conditions, 
improvement over baseline (human performing task alone) was calculated. The mean 
performance improvement for the stationary simulations from Section 5.1.1 (M = 11.47%, SD = 
13.67%), was not significantly different from the nonstationary simulations’ performance 
improvement (M = 11.20%, SD = 13.89%), t(9999) = 1.40, p = .162, d = .020. 
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Figure 8: The degree of improvement over baseline performance for all three 
nonstationary conditions is extremely similar to the distribution from the stationary 
condition, with less than a single percent difference in mean improvement between all 
conditions 
 

Further simulations were run with three changes of mean performance across all tasks, occurring 
at equal intervals, effectively leading to a different mean performance for each quarter of a single 
simulated experiment. Under these circumstances, the thrice changing nonstationary condition 
(M = 10.79%, SD = 14.47%), yielded significantly lower performance improvement than the 
stationary condition (M = 11.47%, SD = 13.67%), t(9999) = 3.43, p = .011, d = .048. This is not 
entirely surprising since with increasing frequency of performance fluctuations, the more 
adjustments the random walk must make to converge to a higher performing task reallocation. 
Although the mean difference is robust enough to lead to a statistically significant difference, the 
more important factor in an applied setting is whether the mean difference is practically 
meaningful. With a performance decrement of only .68%, in most real-world environments this 
would not be a meaningful difference. The low effect size provides additional credence that the 
significant difference is likely due to large sample size rather than a robust effect. The final 
analysis allowed mean performance to change six times across a single simulated experiment at 
random intervals, which would prevent a guaranteed recovery time for the random walk process 
after perturbation. Under this condition, the nonstationary performance improvement (M = 
10.26%, SD = 15.16%) again was significantly lower than the stationary performance (M = 
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11.47%, SD = 13.67%), t(9999) = 5.97, p < .001, d = .084. However, with an increased number 
of performance fluctuations occurring at less predictable times, this difference is unsurprising. 
Again, however, a mean difference of only 1.22% is not practically significant and the low effect 
size indicates that this significant difference is likely spurious, due primarily to the large number 
of iterations in the simulation. 

Table 2 provides results from a 1-Way ANOVA comparing degree of improvement over baseline 
across all four stationarity conditions. The omnibus test was found to be significant, F(3, 39996) 
= 13.79, p < .001. However, the only significant pairwise comparison according to a Tukey HSD 
posthoc test was the mean difference between the Stationary condition and the Nonstationary 
condition with 6 random-interval changes.  

Table 2: ANOVA Comparing Stationary vs. Nonstationary Conditions 

 

Importantly, the effect size for the omnibus test is extremely small, indicating that the degree of 
stationarity poorly explains the variability of performance improvement. This means that the 
distributions of performance improvement are similar regardless of how frequently the AM must 
make adjustments due to nonstationary performance (see Figure 9 for means of each condition). 
The AM shows practical robustness to dynamic performance conditions, even in the tested 
“worst case” scenarios. 
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Figure 9: Mean performance improvement for Stationary vs each Nonstationary condition 
The only significant difference is between Stationary and the Six-Intermittent Change condition, but at 

approximately 1% performance disparity, this statistically significant difference is not practically distinct 
for most real-world environments. 
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6.0 SIMULATED AM FOR PRACTICAL IMPLEMENTATION AND TESTING 

The initial tests of the simulated Autonomous Manager demonstrated the value of an intelligent 
decision logic incorporating performance and physiological correlates of human workload to 
increase team performance and prevent overwork. In an empirical task or a working environment 
with established workflows, the AM can be incorporated in real-time. However, in certain 
applied environments, there may be multiple candidate tasking configurations. This may include 
fewer or greater than the four tasks tested in our simulations. Additionally, the optimal tasking 
configuration may be unknown. As an example of testing multiple potential task combinations, 
one can imagine a manager who wants a surveillance worker to perform three simultaneous tasks 
with an automated teammate. There are eight possible tasks to choose from in this hypothetical 
working environment. This means there are 56 total task configurations that are possible. The 
manager will only employ the AM for tasking configurations where it yields the greatest degree 
of improvement over the human performing the tasks alone, since it isn’t worth the cost of 
implementing automation in instances where there isn’t a substantial improvement. This is a 
necessary adjustment when automation is expensive to develop or is not feasible to employ for 
all tasks. It may not be tractable to test every single one of these task combinations empirically 
using the AM in real-time. However, as the developed simulation uses some of the same decision 
logic, it can be utilized prior to full scale implementation to test the degree of marginal benefit 
from using the AM for different tasks, provided there is some a priori estimate of performance or 
previously collected data regarding typical task performance for both a human operator and 
automated agent. 

We tested two hypothetical use-case scenarios calibrated to a surveillance environment and 
typical multitasking setup: 

1) Testing Multiple Combinations of Task Subsets 
2) Human and Automation Expertise 

6.1 Use-Case 1: Testing Multiple Task Subset Combinations 
For the first use-case, we tested a similar scenario to the hypothetical manager scenario discussed 
in Section 6.0. Specifically, we tested a plausible real-world scenario where a manager might 
have the choice of two or three tasking configurations for a HMT to perform. There are six 
hypothetical candidate tasks (Vigilance, Visual Search, Categorization, Decision Making, Mental 
Rotation, and Cueing), but the HMT will only perform four of them simultaneously. The top 
table of Table 3 provides a description of the hypothetical task and performance distributions, as 
well as known workload levels and fatigue effects from hypothetical a priori testing of each task 
individually. To account for difficulty, there was a higher penalty to workload when humans 
were engaged with a given task (Heart Rate penalty of 0-3 Beats per Minute for Easy tasks and 
0-6 Beats per Minute for Difficult tasks). These modifications are somewhat arbitrary without 
real-world data, but were designed to provide an explicit change to workload while being 
minimally influential compared to performance. The degree of change in heart rate is small to 
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reflect minute changes that occur within a seated stationary tasks where the human is not actively 
engaging in high cardiovascular activity, as would be seen in tasks involving movement. 
However, given that these tasks are cognitively difficult rather than physically demanding (all 
are sedentary computer tasks), these are not unreasonable values since the maximum increase is 
only 24 Beats per Minute. Fatigue was denoted via a gradual decrease in mean performance at 
the same time points as the 3-Change Nonstationary condition from Section 5.1.2, with Slight 
fatigue yielding a 0-5% decrease in mean performance at each change and Moderate yielding a 
0-10% decrease, uniformly distributed. To maintain tractability, we presumed that the 
hypothetical supervisor narrowed the tasking configurations to the three most useful (Table 3, 
bottom table), but wants to determine which one will yield the highest HMT performance 
improvement with adequate autonomous management to maximize the AM’s benefit to 
performance. For each of these three tasking configurations, 10,000 iterations with 100 time bins 
each were run, with an 85% minimum performance threshold. 

 

Table 3: (top table) Simulated Use-Case Parameterizations for 6 Tasks with Means (as 
percentages), Standard Deviations, Workload (2 levels), and Fatigue (2 levels) (bottom 

table) Task Configurations Considered for Use-Case 1 

 

6.1.1. Use-Case 1 Results 
The results of the simulation indicated significant differences in performance improvement 
between the human baseline performance and HMT performance when tasks were allocated by 
the AM for all three Configurations (A, B, and C, see Table 4). 
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Table 4: Multiple Task Configurations – HMT Improvement 

 

However, the degree of improvement also varied significantly between conditions. Figure 10 
provides a comparison of the mean performance values of the mathematically optimal score, the 
human baseline score, and the HMT score. The greatest degree of improvement using the AM 
parsed HMT was found with task Combination C and the least substantial improvement was 
found using task Combination B. 

 

Figure 10: For all three conditions, there was a significant improvement in performance 
when the HMT was controlled by the AM 
However, the greatest improvement was found in task Combination C (Vigilance, Visual Search, Cueing 
Task, and Categorization), while the smallest improvement was found in Combination B (Visual Search, 

Mental Rotation, Decision Making, and Cueing Task). 
 

Interestingly, although perhaps not surprisingly, the mean number of tasks performed by the 
human teammate was strongly negatively correlated with performance improvement (all 
correlations stronger than -.52, p < .001). The human is tasked with performing the greatest 
number of tasks in Combination B and the lowest number in Combination C (see Figure 11).  
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Figure 11: On average, with task Combination B, the human teammate was tasked with 
controlling a larger number of tasks than in the other two conditions 

Number of tasks performed by the human was moderately negatively correlated with the degree of 
performance improvement by leveraging the AM over the baseline performance. 

 

If a manager wanted to leverage the AM for the greatest performance improvement, they would 
probably choose task Combination C. For all three conditions, there was a significant, but not 
practical (≈ 1%) difference between HMT and optimal performance. There was no significant 
difference in mean heart rate between the three task configurations, as it was maintained at a 
healthy 66-87 BPM. This is due to the AM’s decision logic that strives to maintain a healthy 
workload in addition to adequate HMT performance. 

6.2 Use-Case 2: Effects of Expertise 
Another potentially valuable use-case is to determine the AM’s effectiveness to parse tasks 
between expert agents, novice agents, and agents where there is a mismatch between human 
versus automation expertise. The simulation can be leveraged to determine if under these 
conditions, the AM provides excellent or only marginal benefits. Expertise was fully crossed 
between agents in a 2x2 design. The generating distribution for mean performance on all tasks 
was (M = 85%, SD = 10%) for experts and (M = 65%, SD = 25%) for novices.  

6.2.1. Use-Case 2 Results 
Findings from the second use-case pertaining to expertise were as expected. There was a ceiling 
effect when both agents had high expertise and a floor effect when they both had low expertise. 
This demonstrates that when both perform around threshold performance, performance will be 
maintained at exactly that threshold value. When both agents’ performance is below threshold, 
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even the optimal parsing would be unable to overcome these inadequacies. There was a 
significant difference between the HMT performance and human-only baseline for the both 
expert condition, t(999) = 4.08, p < .001, and the no expert condition, t(999) = 3.06, p < .001, but 
with mean differences of 0.011% and 0.014% respectively, this is not practically meaningful. 
There was a significantly higher baseline in the human-expert only condition compared to the 
HMT, t(999) = 329.95, p < .001, but again at < 1% mean difference, this is not practical. 
However, this does indicate that in situations where the human dramatically outperforms the 
automation, there is no need for teaming, other than to mitigate high workload. HMT 
performance was expectedly higher than human baseline performance when the automation was 
the expert agent, t(999) = 1012.75, p < .001, but interesting, HMT performance was significantly 
superior to the automation’s solo performance as well, t(999) = 332.71, p < .001. However, this 
was by a mean difference of < 1%, denoting that the AM provides whatever small benefit it can 
to increase overall performance by leveraging the combined efforts of both agents in the HMT. 
There were no significant differences between HMT performance and the optimal score when 
both teammates had equal expertise. HMT was significantly, but not practically (mean difference 
< 1% in both cases) lower than optimal when there were asymmetries in partner expertise. The 
number of tasks maintained by the human partner was also interesting to compare based on 
partner expertise. When expertise was asymmetrical, the number of tasks for the human either 
converged to four (all tasks) when the human was the expert, or to zero when the automation was 
the expert (see Figure 12). When both teammates displayed equal expertise, the number of tasks 
converged to a 2/2 split of tasks between the human and automation, but with a substantial 
degree of variability. This variability was highest when both agents were experts, compared to 
when both were novices. 
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Figure 12: The number of tasks performed by the human varied predictably as a function 
of expertise 

When there was an imbalance of agent expertise, the number of tasks asymptotically approached either 
all or none of the tasks. When both agents were either experts or novices, the AM balanced the number of 

tasks for the human at ≈ 2 tasks, but with a fairly high degree of variability. 
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7.0 CONCLUSIONS AND DISCUSSION OF SIMULATION RESULTS 

These simulation studies demonstrate the potential usefulness of an Autonomous Manager (AM) 
that can adaptively redistribute tasks within HMTs in dynamic environments via a range of 
simulations. It can also be used to test a variety of possible performance scenarios, including 
unlikely scenarios that might not occur in many empirical tests prior to real-world 
implementation. This provides not only the financial benefit of reduced cost, but elucidates the 
range of potential benefit of implementing adaptive automation. This can be particularly helpful 
in environments where the cost of running a real-world task is expensive or situations where 
there are multiple plausible outcomes. Additionally, this simulation has been used as a step 
toward calibrating and finalizing the decision logic of the AM, which has been empirically tested 
in a realistic multitasking visual-search paradigm (Frame, et al., 2019). Continuous 
improvements to the simulation allow for greater flexibility in real-world implementation and 
vice versa, meaning the AM is consistently being refined and improved. As the AM currently 
functions, it is reminiscent of the adaptive automation recommended by Parasuraman and 
colleagues (2000) and Berka and colleagues (2007), both of which asserted that changes in 
tasking should be adaptive and informed by some kind of human physiology variables. The 
current infrastructure of the AM is capable of either simulating or having physiology data input 
to inform how tasks should be dynamically distributed based on HMT performance and 
cognitive workload. 
 
This, as well as continuing practical development of the AM, has the potential to redefine some 
of the roles within applied multitasking ISR environments, including adding a managerial 
component to HMTs, with possibilities for expansion into teams of HMTs. To expand on the 
current decision logic, we are in the process of incorporating advanced models for measuring 
physiological workload and concurrent input from Cognitive Metrics Profiling (CMP, Gray, 
Schoelles, & Myers, 2005) to better estimate appropriate high and low workload threshold. This 
will allow us to also determine which cognitive modalities are being taxed during each task, 
which will be dependent on the tasking environment. Understanding the modalities that are 
currently being overworked will assist with the adaptive logic for task switching, allowing a task 
to be given to automation that requires the human’s overtaxed cognitive resource. Additionally, 
depending on the structure of the multiple concurrent tasks, the AM should be capable of more 
successfully diagnosing errors between tasks with multiple dependences. For example, in a 
multitasking environment, there may be information from one task that is used to inform a later 
task. Poor performance on the second task could be due to errors on that task itself or due to 
errors from the prior, dependent task. Proper intervention from the AM would require 
reallocation of the task causing errors for the human, to the automated teammate. Although this 
scenario requires a far more complex decision logic for accurate performance diagnosis, we are 
in the process of refining the AM’s decision logic to yield greater adaptability in tasking 
environments with multiple interdependencies. 
 
Overall, thorough simulations provided evidence for significant performance improvements 
using the AM to dynamically parse tasks, with an average improvement of around 11%. In 
approximately one quarter of the simulations, there was a greater than 25% performance 
improvement, indicating that within certain HMTs there is tremendous potential for performance 
improvement. Additionally, the simulation’s decision logic was robust to nonstationary, 
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indicating that it can continue to have value and provide performance improvement even in a 
chaotic or noisy practical environment. 
 
Despite the exciting possibilities for improvement using the AM’s decision logic, there is ample 
possibility for future development and increased sophistication in this logic. Despite the 
simplicity of the static thresholds implemented and lack of a complex physiological model, the 
AM still led to a considerable performance improvement. However, further instantiations of the 
AM will incorporate more advanced models of workload, such as integrating eye tracking 
metrics, cardiac variability, and subjective perceived workload to determine appropriate 
workload bounds. 
 
In practice, even a maximally calibrated AM is not the only tool that should be implemented in 
surveillance or other real-world environments, but rather it serves as a compliment to other 
augmentation tools and training. Human performance must be kept at an adequate baseline to 
support inclusion within a HMT, which means that we must continue to rely upon adequate 
training and learning of tasks. The benefit afforded by the AM is the capacity to maintain 
excellent performance on more tasks simultaneously to accommodate the increasing demands of 
the working environment. 
 
It should be noted that our tests of the AM’s dynamic task reallocation put the AM at a 
disadvantage compared to the typical tasking environment. Under normal circumstances, it is 
unlikely that nonstationarity of performance would lead to dramatic fluctuations on all tasks for 
both the human and automation. Typically, one would expect automation performance to stay 
relatively consistent with only human performance fluctuating at a slow and steady drift, and 
most likely only on one or two tasks at a time based on the perceptual and cognitive resources 
shared by the tasks. By testing robustness of the AM with all tasks changing for both agents, we 
provided a demonstration of robustness of the AM under a “worst case scenario”, where the 
random walk must completely re-establish the optimal configuration over multiple steps. The 
fact that he AM was still able to demonstrate value under these simulated conditions is a 
testament to the incredible potential of adaptive automation in real tasking. 
  



31 
 

31 
 
Distribution A:  Approved for public release. MSC/PA-2018-0376; 88ABW-2018-6274, 4 Jan 2019 

8.0 FUTURE DIRECTIONS 

Parasuraman et al. (1996) provided an early demonstration that adaptive allocation of tasking can 
mitigate the out of the loop problem in HMT and improve the ability for humans to detect 
automation failures. However, humans performed poorly at detecting automation failures, even 
with adaptive automation, when they were simultaneously engaged with other tasks 
(Parasuraman, Mouloua, Molloy, & Hilburn, 1993). This is largely due to a lack of sufficient 
cognitive resources to both manage one’s own tasking and additionally monitoring the 
automation’s tasking. Research on interruptions have demonstrated that a similar dual task 
occurs when a person must decide whether to interrupt a task they are engaged in to switch to 
another task (Katidioti, Borst, van Vugt, & Taatgen, 2016), which is alleviated somewhat by 
allowing an external automated agent to determine when to switch tasks. Using a similar logic, 
we have continued to develop our AM parser to be applied to multitasking environments 
involving multiple dependencies between tasks. We have leveraged the lessons learned from this 
series of simulation studies to develop an AM that is integrated into a multitasking environment 
involving four simultaneous visual search tasks (Frame, et al., 2019). Although our initial tests 
have been developed with a general orientation to surveillance-pertinent task configurations, the 
logic of the AM is more domain general and we plan to test this in a variety of real-world task 
environments across multiple domains. This is an appropriate tool that can be calibrated for 
nearly any multitasking environment, even those where there are interdependencies between 
tasks, with only minor modifications to the decision logic. We plan to expand the application of 
the AM to task environments with multiple dependencies, teams of HMTs, and environments 
where the number of tasks may vary as a function of performance or workload. Currently, we are 
in the process of preparing a series of empirical studies examining the potential for the AM to 
influence task feedback and scaling task difficulty. 
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LIST OF ACRONYMS 

ISR  Intelligence, Surveillance, and Reconnaissance 

FMV  Full-Motion Video 

AM  Autonomous Manager 

SA  Situation Awareness 

HMT  Human Machine Team 

EEG  Electroencephalography 


	AFRL-RH-WP-TR-2019-0031
	LIST OF FIGURES
	LIST OF TABLES
	1.0 SUMMARY
	2.0 THEORETICAL PERSPECTIVE ON HUMAN-MACHINE TEAMING
	2.1 Continuum of Task Control
	2.2 Adaptive Automation
	2.3 Practical Issues of Human-Machine Teaming in ISR
	2.4 Goal of Testing the Autonomous Manager

	3.0 PRE-EXPERIMENTAL MATHEMATICAL VALIDATION
	4.0 DEVELOPING A SIMULATED AUTONOMOUS MANAGER
	4.1 Autonomous Manager Functions and Customization
	4.1.1. Simulation Decision Logic
	4.1.2. Simulated Task Configuration
	4.1.3. Configurable AM Parameters


	5.0 TESTING THE A.M. OVER A LARGE PARAMETER SPACE
	5.1 Simulation Results
	5.1.1. Determining Degree of Improvement in a Simulated Multitasking Environment
	5.1.2. Robustness to Nonstationary Performance


	6.0 SIMULATED AM FOR PRACTICAL IMPLEMENTATION AND TESTING
	6.1 Use-Case 1: Testing Multiple Task Subset Combinations
	6.1.1. Use-Case 1 Results

	6.2 Use-Case 2: Effects of Expertise
	6.2.1. Use-Case 2 Results


	7.0 CONCLUSIONS AND DISCUSSION OF SIMULATION RESULTS
	8.0 FUTURE DIRECTIONS
	9.0 REFERENCES
	LIST OF ACRONYMS

	REPORT DOCUMENTATION PAGE: 
	2 REPORT TYPE Interim Report: 
	4  TITLE AND SUBTITLE Dynamically Managing Task Allocation between Humans and Machines in Surveillance Operations: 
	5b GRANT NUMBER: 
	5c PROGRAM ELEMENT NUMBER 00000F: 
	6 AUTHORS Mary Frame Jennifer Lopez Alan Boydstun: 
	5d PROJECT NUMBER 0000: 
	5e TASK NUMBER 00: 
	5f WORK UNIT NUMBER H0L5: 
	7 PERFORMING ORGANIZATION NAMES AND ADDRESSES Wright State Research Institute 4035 Colonel Glenn Hwy Beavercreek OH 45431: 
	8 PERFORMING ORGANIZATION REPORT NUMBER: 
	11 SPONSORINGMONITORING AGENCY REPORT NUMBERS AFRLRHWPTR20190031: 
	12 DISTRIBUTIONAVAILABILITY STATEMENT Distribution A Approved for public release: 
	a REPORT Unclassified: 
	b ABSTRACT Unclassified: 
	c THIS PAGE Unclassified: 
	17 LIMITATION OF ABSTRACT SAR: 
	18 NUMBER OF PAGES 42: 
		2019-08-13T10:33:18-0400
	OCAMPO.SABRINA.M.1185673517


		2019-08-20T13:00:41-0400
	SIMPSON.RICHARD.D.1091443429




