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Robust Tracking of Mobile Small-scale Primary
Users in Cognitive Radio Networks

Kang G. Shin

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science
The University of Michigan, Ann Arbor, MI 48109-2121, USA

kgshin@umich.edu

ABSTRACT

In cognitive radio networks (CRNs), secondary users must
be able to identify the location of primary users to effi-
ciently coexist with them in the same geographical area
without causing excessive interference to primary commu-
nications. Although various sensing schemes have been pro-
posed for the detection of spectrum opportunities in time
and frequency domains left unused by large-scale primary
users, identifying spectrum opportunities in space domain—
by tracking the location of a primary transmitter—has not
been studied efficiently before. Although the target track-
ing problem has studied extensively in the context of wire-
less sensor networks, it is challenging to secure primary user
tracking due to CR-unique features, such as the absence
of primary-secondary cooperation and low sensor density.
This project devloped a novel mobile, small-scale primary
user (e.g., wireless microphone) tracking framework, called
SOLID, that accurately tracks the location of primary user
based solely on the PHY-layer signal propagation charac-
teristics (i.e., measured received primary signal strengths
(RSSs)) even in the presence of compromised or faulty spec-
trum sensors. In essence, SOLID augments the conventional
Sequential Monte Carlo (SMC)-based target tracking with
shadow-fading estimation, which, in turn, improves both lo-
calization accuracy and detection of compromised or faulty
sensors, by efficiently exploiting the coupling between them.
Our extensive simulation-based evaluation shows that SOLID
achieves high-level robustness, while reducing the localiza-
tion error by up to 77% under no attack, and 55% under at-
tacks, compared to the conventional SMC-based tracking.

1. INTRODUCTION
Cognitive radio (CR) is a key technology to enhance the

spectrum efficiency by allowing secondary (unlicensed) users/devices
to reuse spectrum opportunities (a.k.a. spectrum white spaces),
thus mitigating the spectrum-scarcity problem that we may
soon face due to the explosive growth of wireless/mobile

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

users, services and applications. The main goals of CR
technology are efficient detection and reuse of spectrum op-
portunities, which are found to be abundant in the time,
frequency, and space domains [5,27,31,41,43].

While spectrum sensing has been studied extensively [4,
22, 24, 28, 32], most existing sensing schemes target the de-
tection of large-scale primary signals, such as DTV signals
in IEEE 802.22. For such large-scale primary signals, de-
tecting/reusing spatial spectrum opportunities, i.e., the area
where the licensed spectrum bands are temporarily unused
by the primary users (PUs), is relatively easy and is less of
concern. This is because large-scale PUs are often station-
ary and their location is known a priori to secondary users
(SUs). This make the geo-location database a feasible solu-
tion for detecting large-scale PUs. Moreover, a large spatial
footprint of primary signals requires most, if not all, of the
secondary devices on the spectrum band to promptly vacate
the band upon return of PUs, in order to avoid interference
to the PUs. For example, all the CR devices (called CPEs)
in an 802.22 cell must vacate the current operating channel
within 2 seconds upon detection of a TV signal, which has
a keep-out radius of 150.3 km [12].

Unlike the detection of large-scale primaries, accurately
tracking the physical location of a mobile small-scale pri-
mary transmitter is crucial in achieving main objectives and
functionalities of CRNs, such as spatial spectrum reuse [9],
interference management [19,42], routing decisions [11], and
fake primary signal detection [7, 25]. For example, knowing
the location of the primary transmitter enables SUs to reuse
the licensed spectrum more efficiently without causing exces-
sive interference to the primary by admission and transmit-
power controls [9,19,37,42]. Recently, we have shown in [30]
that performance of cooperative sensing also highly depends
on the accuracy of location information, especially in case of
detecting a very weak primary signal like a wireless micro-
phone (WM) signal [30]. Recently, Yang et al. [44] studied
the problem of detecting the boundary of primary signals.
However, they only cosider a large-scale stationary primary
transmitter and assume a separate sensor network without
addressing any security issues.

The small-scale primary tracking is vulnerable to attacks,
since its accuracy depends heavily on the integrity of sen-
sor reports, or the sensors’ measured received primary signal
strengths (RSSs). The measured RSSs at sensors is often the
only available information at the BS since is it not feasible
to modify primary system for opportunistic spectrum ac-
cess, as stated by the FCC. As a result, the tracking process
can be easily disrupted by malicious or faulty sensors that
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report fake or distorted RSSs. However, it is challenging to
secure the tracking mechanism because there does not ex-
ist any collaboration or communication between secondary
and primary devices in CRNs. This is because the FCC
specifies that no modification to the primary system for the
opportunistic spectrum access by the unlicensed devices [16].
Moreover, low sensor density in CRNs exacerbates the vul-
nerability against such attacks, e.g., the average sensor den-
sity in 802.22 WRANs is only about 1.25/km2 [33]. Inaccu-
rate location estimation may ultimately cause SUs to gen-
erate excessive interference to the primary system, violating
the basic premise of CRNs and unmotivating PUs to share
their licensed spectrum bands with SUs. Therefore, there
is a clear need for efficient and secure tracking of mobile,
small-scale PUs.

In this project, we address the problem of reliably track-
ing mobile, small-scale PUs in CRNs. Specifically, we de-
sign a novel RSS-based tracking scheme, called SOLID, which
jointly estimates the location of a primary and shadow-
fading gains in the RSSs. The shadowing estimation in
SOLID greatly improves the localization performance. In ad-
dition, by monitoring temporally-correlated shadow fading,
SOLID accurately detects manipulated or erroneous sensor
reports. The key motivation behind exploiting temporal cor-
relation in attack detection is based on the observation that
malicious sensors cannot control the physical-layer signal-
propagation characteristics.

1.1 Contributions
This project makes the following main contributions.

• Identification of a new type of attack in CRNs that dis-
rupts the process of tracking a small-scale PU by manip-
ulating the sensing reports. Despite its importance, the
problem of designing robust tracking schemes for mobile
PUs has not yet been studied effectively. Most previous
work builds on an unrealistic assumption that the loca-
tion information of small-scale primary transmitters is
available to the SUs.

• Development of a novel attack-tolerant tracking scheme,
called SOLID, that jointly estimates the primary’s location
and shadow-fading gains using an adaptive filter. SOLID

exploits the temporal correlation in shadow fading to (i)
improve the localization accuracy, and (ii) promptly de-
tect abnormal sensor reports. To the best of our knowl-
edge, this is the first attempt that exploits shadow-fading
correlation to securely track mobile nodes, such as small-
scale primary transmitters.

• In-depth evaluation of SOLID in a realistic shadow-fading
environment under various attack scenarios. Our simula-
tion results show that, under no attack, SOLID lowers the
average localization error by up to 77% compared to the
conventional Sequential Monte Carlo (SMC)-based track-
ing scheme. When attack exits, SOLID lowers the average
error more than 55% in various attack scenarios.

• Investigation of an interesting tradeoff in the performance
of localization accuracy, i.e., when the BS filters out sen-
sors or sensing reports too aggressively (conservatively),
the localization can suffer from lack of samples (existence
of manipulated RSS reports). These observations provide
practical guidelines in spatial spectrum reuse in the pres-
ence of localization error so that the primary receivers
can be protected even under various attacks.

Note that our focus is not on a new localization/tracking
algorithm, which has been studied extensively [14, 35, 46].
Rather, we focus on adding robustness to the existing local-
ization and tracking algorithms.

1.2 Organization
The remainder of this report is organized as follows. Sec-

tion 2 describes the network, signal-propagation, PU track-
ing models, and introduces the attack models. Section 3
presents our proposed approach for attack detection, and
the underlying localization protocol. Section 4 details our
approach for the generation of shadow fading, the estima-
tion of shadow fading, and the design of attack detector.
Section 5 evaluates the performance of SOLID. Section 6 re-
views the related work on detection of small-scale primaries,
and Section 7 concludes the report.

2. SYSTEM AND ATTACK MODELS
In this section, we describe the network, spectrum sensing,

and signal-propagation models. We then overview our pri-
mary transmitter tracking model and introduce the attack
model.

2.1 Network Model
We consider a CRN consisting of primary and secondary

users/devices in the same geographical area. The secondary
network is infrastructure-based network, such as IEEE 802.22
WRANs, where each cell consists of a base station (BS) and
multiple sensors.1 We assume that sensors are stationary
and the BS has the location information of the sensors within
its own cell. For example, sensors in 802.22 WRANs, also
called consumer premise equipments (CPEs), are stationary
and the IEEE 802.22 standard draft requires the BS to have
their location information. We assume that the sensors have
been deployed in an area A, e.g., an IEEE 802.22 WRAN
cell, following a point Poisson process with average density
ρ, i.e., nA∼Poi(n; ρ|A|). Unlike the typical wireless sensor
network environment where sensors are densely distributed,
we assume a low sensor density ρ as the typical density of
CPEs in rural areas is only 1.25/km2 [40].2

There are different types of PUs in TV white space, such
as ATV, DTV, and WM, but here we focus on tracking
the location of a WM transmitter. WMs emit very weak
signals3, and they are mobile. While we focus on robust
tracking of WMs’ location in 802.22 WRANs, for the ease of
presentation, the techniques we propose here are generic and
can be used for detecting other types of small-scale primaries
or, in a broader context, target tracking in wireless sensor
networks.

The BS estimates the location of WM transmitters based
on the received signal strengths measured at sensors. We
assume that the initial location of WMs is known to the BS
via cooperative sensing [30], and we focus on tracking their
location using sensor reports. In each sensing period, the BS

1We use the terms secondary user and sensor interchange-
ably because secondary devices also functions as sensors.
2This differs from the conventional wireless sensor networks
where sensors are densely deployed in order to detect events
of interest.
3For example, the equivalent isotropic radiated power
(EIRP) of WMs is around or even below 25mW, with a
corresponding transmission range of 150-200m [34].
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directs a set of sensors St within its cell to measure the re-
ceived primary signal strengths using the well-known energy
detection technique [38]. At the end of sensing period, the
sensors reports their measurement to the BS for estimating
the location of the WM transmitter, as well as for detecting
the disappearance of WM signals.

2.2 Spectrum Sensing and Signal-Propagation
Models

For spectrum sensing, we assume that sensors use energy
detection (ED) [38] at the PHY-layer.4 The test statistics
of ED is an estimate of the sum of received primary signal
power and noise power. We assume that the BS uses only
the sensors located close to the primary transmitter for lo-
cation tracking. This is a reasonable assumption because
the reports from the sensors located far away from the WM
transmitter will be close to the noise level, and thus, do not
contribute to the improvement of localization accuracy.

Thus, assuming that the noise power is much smaller than
the received primary signal strength, the sensor n’s measure-
ment in sensing time slot t can be expressed as (in dB) [15]:

Pt,n = Po + α10 log(do)− α10 log(dt,n) +Xt,n + Yt,n, (1)

where Po is the signal strength at the primary transmitter, α
the path-loss exponent, do the reference distance (e.g., 1m),

and dt,n =
√

(x̂t − xn)2 + (ŷt − yn)2, the distance between
the primary transmitter and sensor n in time slot t. Log-
normal shadow fading is denoted by Xt,n, which is often
characterized by dB-spread, σdB , where Xt,n∼N (0, σ2

dB).
It is important to note that a large variation of the multi-

path fading can hamper the effectiveness of SOLID signifi-
cantly.5 To avoid such detrimental effects, we assume that
sensors perform sensing for longer than the channel coherent
time, thus making the effects of multi-path fading negligi-
ble. We assume non-fading components, such as antenna
and device losses, are approximated as an i.i.d. Gaussian
random variable with zero mean and variance σ2

m, denoted
as Yt,n ∼ N (0, σ2

m) ∀n.
The received primary signal strength at cooperating sen-

sors in Eq. (1) can be expressed in a vector form as:

Pt = h(dt) + X̂t +Yt, (2)

where h(dt)=[h(dt,1), . . . , h(dt,|St|) ]
T represents the chan-

nel gain due to path-loss, where each element is h(dt,n) =
Po+α10 log(do)−α10 log(dt,n). The set of cooperating sen-
sors in time slot t is denoted as St. The shadow fading gain

and multi-path fading gain vectors are denoted as X̂t and
Yt, respectively.

A key feature of SOLID is that it estimates the shadow-

fading gain X̂t in each time slot. So, the randomness in
received primary signal strengths Pt mainly comes from the
multi-path fading components Yt. This allows the BS to
achieve better localization accuracy, while providing a shad-
owing profile for attack detection.

2.3 RSS-based Primary User Tracking Model

4The energy detector is the most widely-used PHY-layer
sensing technique due to its simple design and small sensing
overhead.
5In practice, the standard deviation of Rayleigh fading, σm,
can be as large as 5.5 dB, making it difficult to exploit
shadow fading correlation.

: normal sensor : mobile primary transmitter: compromised sensor

BS

Figure 1: An illustrative example of small-scale pri-
mary transmitter (e.g., a WM) tracking via cooper-
ative sensing/localization in a CRN.

Fig. 1 depicts an example scenario of tracking a mobile
primary transmitter in a CRN. At each sensing period t,
the BS employs a set of sensors St located within the sensing
range, i.e., a unit disc of radius Rs centered at the estimated
location of the primary transmitter for cooperative sensing.
Then, the cooperating sensors in the set St measure the
received signal strength (RSS) on the target channel in a
scheduled sensing period using the ED and report them to
the BS. Based on the sensors’ reports, the BS updates the
location estimate of the primary transmitter, followed by an
action, e.g., admission or transmit-power control, to protect
PUs from the SUs’ interference.

Although the problem of mobile PU detection entails var-
ious challenging issues at the physical and network layers,
we focus on improving the robustness of the PU tracking
process by making the best of the information available to
the secondary system, i.e., measured RSSs, instead of ad-
dressing all of these issues.

2.4 Attack Model
In CRNs, sensors often deployed in unattended and hostile

environments, and thus vulnerable to attacks, such as node
capture and can thus be easily compromised. Or, sensors can
be simply mal-functioning due to hardware/software faults.
The main objective of attackers (compromised sensors) is to
disrupt the primary transmitter localization/tracking pro-
cess by manipulating their (RSS) measurement reports to
the BS. Specifically, we consider the attack scenario where
malicious (or faulty) sensors intentionally (or erroneously)
raise or lower the RSSs with a certain probability. As a
consequence, the above two cases make the sensing reports
to the fusion center (i.e., the BS) inaccurate, degrading
the localization/tracking performance. Unfortunately, it is
not feasible in CRNs to use secure authentication mecha-
nisms such as cryptography-based authentication since the
FCC mandates no modification to the primary (incumbent)
system for accommodation of opportunistic spectrum use
by secondary devices [16]. As a result, secure mechanisms
that require explicit cooperation between the primary and
secondary systems are not realizable. Therefore, we opt
to design an attack-tolerant sensing mechanism that accu-
rately detect such manipulated sensing reports. This allows
the BS to discard the sensing reports or exclude the mali-
cious/faulty sensors in cooperative sensing to achieve high
localization accuracy.
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Figure 2: The SOLID framework : Malicious/faulty
sensors may report falsified measurement data, de-
grading the accuracy of localization. SOLID esti-
mates/monitors the shadow-fading gains between
the primary transmitter and sensors, and detects
and filters out abnormal sensor reports based on the
shadowing-correlation profile.

3. THE PROPOSED APPROACH
In this section, we first describe the overall architecture of

SOLID and present its design rationale. We then introduce
the sequential Monte Carlo (SMC) localization process that
underlies SOLID.

3.1 SOLID Architecture
SOLID consists of the following four building blocks:

• location estimator that tracks the location of a mobile,
small-scale primary transmitter based on sensor reports,

• shadowing estimator that builds and maintains the
profile of normal behavior of the shadow-fading correla-
tion,

• attack detector that detects and discards abnormal sen-
sor reports, and updates the normal profile, and

• sensor manager that selects sensors for cooperative sens-
ing and localization based on the estimated location of the
primary transmitter.6

The above four components closely interact with each
other and constitute an accurate and robust primary user
tracking system. In particular, the shadowing estimator in-
troduced in SOLID offers two main benefits: It

• improves the localization accuracy by mitigating the ran-
domness induced by shadow fading in RSSs, and

• enables the attack detector to accurately detect abnormal
sensor reports by providing the shadow-fading profile.

SOLID also minimizes communication and processing over-
head since it exploits physical-layer signal propagation char-
acteristics, which is readily available from cooperative sens-
ing. The SOLID framework is depicted in Fig. 2.

3.2 Design Rationale for Attack Detection
To maximize attack-tolerance and preserve localization

accuracy, SOLID resides at the BS and exploits the tempo-
ral correlation in shadow fading in received primary signal
strengths. The shadow-fading gains between the primary
transmitter and sensors are estimated by the Kalman filter
(KF), as shown in Fig. 2. The attack detector in SOLID takes
an anomaly-detection approach to identify and discard ab-
normal sensor reports in the localization process. The key

6Although there are many sophisticated sensor-selection
methods for target tracking (e.g., [8]), optimal sensor-
selection is not our focus.

insight behind SOLID is that, in shadow-fading environments,
the sequence of RSSs measured at each sensor is highly likely
to be correlated. So, if attackers aggressively raise or lower
the RSSs reported to the BS in order to influence the local-
ization outcome, the BS can easily detect them by examining
the sensor reports with the predicted value computed based
on the history of the sensor reports. Hence, the attacker
must lower its attack strength (i.e., deviation) so as not to
be detected by the BS.

One important but not so obvious feature of our detec-
tion mechanism is that it is cooperative even though SOLID

independently estimates and monitors the shadowing gains
of individual primary transmitter and sensor pairs. This is
because the accuracy of shadowing-gain estimation depends
heavily on the location estimate, which is updated based on
the reports from all the cooperating sensors. In other words,
the robustness of attack detection is directly correlated with
localization accuracy. Consequently, the BS can improve
the attack detection performance by enhancing localization
accuracy with a larger number of sensors.

3.3 Tracking a Mobile Primary Transmitter
We now describe the mobile primary transmitter track-

ing process. Let {θt |θt = (xt, yt)} denote the sequence
of a mobile primary’s locations in two-dimensional coordi-
nate at time slot t. The BS estimates the location of the
primary transmitter based on the vector of received pri-
mary signal strengths, denoted by mt , Pt where Pt is
defined in Eq. (2). For mobile, small-scale primary track-
ing, the BS performs the following two steps based on the
sensor reports: prediction and estimation [21]. At the end
of each sensing period t, the BS (i) calculates the condi-
tional density p(θt|m1:t) of the state (primary user loca-
tion) θt based on the history of measured RSSs at sensors
m1:t=[m1, . . . ,mt]

T , and (ii) estimates the location of pri-
mary θt=(xt, yt) by taking the expectation E[(xt, yt) |m1:t].

The prediction step can be done according to the following
Chapman-Kolmogorov equation:

p(θt|m1:t−1) =

∫
p(θt|θt−1) p(θt−1|m1:t−1) dθt−1, (3)

where the p.d.f. can be computed via Bayes’ rule, after the
BS collects the measurements mt from the sensors:

p(θt|m1:t) =
p(mt|θt) p(θt|m1:t−1)∫
p(mt|θt) p(θt|m1:t−1) dθt

, (4)

where the denominator is the normalization constant.
Unfortunately, however, the analytical solution of Eq. (4)

is intractable for our problem. Therefore, as an alternative
approach, we use the Sequential Monte Carlo (SMC) with
shadow-fading estimation as we discuss next.

3.4 Sequential Monte Carlo Combined with
Shadow-Fading Estimation

We use Sequential Monte Carlo (SMC) [21] for small-scale
primary user tracking. The SMC has been widely used as a
localization method in mobile wireless systems [2, 35]. The
key idea of SMC is to represent the required posterior den-
sity function by a set of random samples (or particles) with
their associated weights, and then compute the estimated lo-
cation E[(xt, yt)|m1:t] by taking their weighted average. The

particle set is denoted by the set of tuples {(θ(i)
t

, w
(i)
t )}Ns

i=1

4



where each sample θ
(i)
t

is associated with its weight w
(i)
t ,

where
∑Ns

i=1 w
(i)
t =1.

Specifically, SOLID incorporates shadow-fading estimation
into the conventional SMC to achieve high tracking accu-
racy and robustness against malicious (or faulty) sensors.
In SOLID, the entire primary user tracking process consists
of the following five steps:

1. Initially, the BS randomly selects Ns sample points θ0=

{θ(i)
0 }Ns

i=1 in the detection region to represent candidate
locations of the mobile primary user.

2. At the end of sensing period t, the BS draws Ns new

samples using transition probabilities p(θ
(i)
t
|θ(i)

t−1), which
is determined based on the mobility model.

3. The BS then updates the weights {w(i)
t }Ns

i=1 and computes
the expected location of the primary user θt = (x̂t, ŷt) by
taking the weighted average of the samples.

4. Based on the estimated location, the BS estimates the

shadow-fading gains X̂t = [X̂t,1, . . . , X̂t,|St|]
T between

the primary user and the cooperating sensors, constitut-
ing the main contribution of this paper (see Section 4 for
details).

5. The BS terminates the process and waits until the next

sensing period if N̂eff > Nthr; otherwise, go to Step 2
and repeats the process (re-sampling).

We elaborate the above process as follows. First, the tran-
sition probability in Step 2 is given by:

p(θ
(i)
t
|θ(i)

t−1) =

{
1

π(vmax+β)2
if d(θ

(i)
t

,θ
(i)
t−1) < vmax

0 otherwise,

(5)
where vmax is the maximum speed of the mobile primary
user, and β is used to generate better samples [35]. We set
β=0.2 vmax empirically in our simulations.

After generating Ns new samples using Eq. (5), the BS
updates the weights associated with the samples as:

w
(i)
t = w

(i)
t−1 L(mt |θ(i)

t
), (6)

where the likelihood L(mt |θ(i)
t

) can be calculated based

on multivariate Gaussian in Eq. (2), i.e., L(mt | θ(i)
t

) ∼
N (h(dt) + X̂t, σ

2
m I), where h(dt,n) = Po + α10 log(do) −

α10 log(dt,n), and I is an N × N identity matrix where
N= |St| is the number of cooperating sensors in time slot t.

Note that here the shadow-fading gains, X̂t, are estimated
by the Kalman filter, and hence considered as a constant.

The weights are normalized such that
∑Ns

i=1 w
(i)
t =1.

Based on Eqs. (5) and (6), the posterior density p(θt|m1:t)
in Eq. (3) can be approximated as:

p(θt|m1:t) ≈
Ns∑

i=1

w
(i)
t δ(θt − θ

(i)
t

), (7)

where δ(·) is the Dirac delta measure.
Then, the location of the primary user can be estimated

by taking the weighted average of the samples:

θt , (x̂t, ŷt) =
( Ns∑

i=1

w
(i)
t x

(i)
t ,

Ns∑

i=1

w
(i)
t y

(i)
t

)
. (8)

Once the location of the primary user is estimated, the BS

estimates the shadow-fading gains X̂t between the primary

Algorithm 1 SMC with shadow-fading estimation

At the end of each sensing round t ∈ T , the BS does

// Step 1. Localization
1: Initialization
2: θ

(i)
0 ∼ p(θ0), w

(i)
0 = 1/Ns for i = 1, . . . , Ns

3: N̂eff ← 0

4: while (N̂eff < Nthr) do
5: for i = 1 to Ns do
6: Draw θ

(i)
t
∼ p(θt |θ(i)

t−1)

7: Update w
(i)
t using Eq. (6) // w

(i)
t is un-normalized

8: Calculate the total weight Wt =
∑Ns

i=1 w
(i)
t

9: end for
10: for i = 1 to Ns do
11: w

(i)
t = w

(i)
t /Wt // Normalization

12: (x̂t, ŷt) =
(∑Ns

i=1 w
(i)
t x

(i)
t ,

∑Ns

i=1 w
(i)
t y

(i)
t

)

13: N̂eff ← (
∑Ns

i=1(w
(i)
t )2)−1

14: end for
15: end while
16: return (x̂t, ŷt)

// Step 2. Shadowing Estimation

17: Estimate the shadowing gains X̂t using Kalman filter

user and the sensors using the Kalman filter. We will detail
this in Section 4.

The above process repeats until the effective number of

particles, N̂eff , is equal to or greater than a given thresh-
old Nthr. Otherwise, the BS re-samples using the poste-
rior probability in Eq. (7) to replace the current particle

set with this new one, and set the weights w
(i)
t = 1/Ns for

i = 1, . . . , Ns. Algorithm 1 describes the overall process.
Our simulation results shows that the shadowing estima-

tor in SOLID significantly improves localization accuracy over
the conventional SMC. In what follows, we will focus on the
use of shadowing estimation to improve attack-tolerance of
SOLID.

4. DETECTION OF ABNORMAL SENSOR

REPORTS VIA MONITORING SHADOW-

ING CORRELATION
In this section, we describe the generation of temporally-

correlated shadow fading and the shadowing-estimation com-
ponent in SOLID, and discuss the attack-detection algorithm
of SOLID.

4.1 Generation of Temporally-Correlated Shadow
Fading

As we mentioned, SOLID exploits the shadow-fading corre-
lation to improve both localization and attack-detection ac-
curacy. For the analysis and simulation, we need a method
to generate temporally-correlated shadow fading that closely
represents the real-world shadowing environments. Gud-
mundson’s empirical shadow fading model [17] has been widely
used in accounting for the shadow-fading correlation. So, we
use this model to propose a two-step approach for the gener-
ation of temporally-correlated shadowing gains between the
primary transmitter and sensors.

Let Zt,n = eXt,n denote the shadowing gain in RSSs at
sensor n ∈ St where Xt,n ∼ N (0, σ2

dB) ∀t. To simplify the
notation, we will omit the sensor index n if it does not cre-
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ate any confusion. We first derive the conditional p.d.f. of
shadowing gain, i.e., Zt+1, at sensor n at time slot (t + 1)
given the previous measurement Zt at time slot t as in [29]:

fZt+1|Zt
(zt+1 | zt) =
1

zt+1σXt+1|Xt

√
2π

exp

[
− 1

2

(
ln(zt+1)− µXt+1|Xt

σXt+1|Xt

)1/2]
,

(9)

where

µXt+1|Xt
= µXt+1

+ ρ
σXt+1

σXt

[
ln(zt)− µXt

]
, (10)

and

σXt+1|Xt
= σXt+1

√
1− ρ2(dt,t+1), (11)

where the correlation coefficient ρ(∆d)=e∆d/dcorr exponen-
tially decays as the distance ∆d that a primary transmitter
traveled between two consecutive sensing events increases
[17]. The decorrelation distance for shadowing dcorr is as-
sumed to be 150m in simulation studies [1]. Here µXt =0 ∀t,
σXt =σdB ∀t. Then, a time sequence of shadow-fading gains
can be generated using Eq. (9).

To improve the temporal correlation properties of the thus-
generated time sequence, we next apply the moving average
(MA) filter to the generated sequence of samples. We then
correct the sample vales, which are distorted by the filter,
to achieve the desired mean (i.e., 0) and standard devia-
tion (i.e., σdB). A similar method was used in [29], and
it was shown to provide a realistic shadow-fading environ-
ment. Fig. 3 illustrates such an example of shadowing gain,
indicating strong temporal correlations.

4.2 Monitoring Shadow Fading for Attack De-
tection

We now describe the design of an attack detector in SOLID

and present an attack-detection criterion.

4.2.1 Construction of Shadowing Profile

In SOLID, the BS constructs and maintains a profile of nor-
mal shadow-fading behavior for each cooperative sensor n,
based on the history of reports from the sensors during the
primary transmitter tracking process. We define the shad-
owing component in the received primary signal strength of
sensor n, i.e., Xt,n, as a basic profile element (PE) as:

Xn(t) = Pt,n−Po−α10 log(do)+α10 log(d̂t,n)−Yn(t), (12)

where Pt,n is the sensor n’s report at sensing period t, Po the

signal power at primary transmitter, d̂t,n the estimated dis-
tance between the primary transmitter and sensor n, which
is obtained via the SMC, and Yn(t) ∼ N (0, σ2

m) the noise
power.

Recall that the BS monitors shadowing correlation at each
cooperating sensor. In the kth sensing period after sensor n
is employed by the BS for cooperative sensing, the BS has
processed k PEs for sensor n, i.e., {Xn(t)}kt=1. To exploit
the temporal correlation in PEs, we define a profile vector
consisting of the entire history of PE records:

Xn(k; 1) = [Xn(k), . . . , Xn(1)]
T , 1 ≤ n ≤ N. (13)

Note that PEs exhibit a strong temporal correlation, be-
cause the BS keeps track of each sensor’s shadowing gain
at each sensing period, as we observed in Fig. 3. Thus,
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Figure 3: Temporally-correlated shadow fading : An
example of shadow-fading gain between the primary
transmitter moving at speed 10m/s and a fixed sen-
sor under shadowing dB-spread of σdB=3dB.

by monitoring the estimates of the shadowing gain Xn in
reports from each sensor, the BS can construct a compact
description of the normal shadowing profile.

4.2.2 Shadowing Estimation using Kalman Filter

In practice, the observed shadowing gain in Eq. (12) may
not be accurate due to localization error and multi-path fad-
ing. This noisy estimates of shadow fading makes it difficult
for the BS to capture the temporal correlation in shadow
fading, thus degrading SOLID’s attack-detection capability
as well as localization accuracy.

We describe how SOLID accurately estimates the shad-
owing gain from the observed RSSs, achieving high attack-
tolerance. Specifically, the attack-detector in SOLID wants to
find the shadow-fading estimator that minimizes the mean
squared errors (MSE):

MSEn(k) = E

{ k∑

t=1

∣∣Xn(t)− X̂n(t)
∣∣2
}
. (14)

SOLID employs the Kalman filter (KF) [20], a recursive es-
timator that produces optimal estimates in the sense of min-
imizing the mean squared errors (MMSE). First, the system
can be modeled as:

sn(k + 1) = Φn(k) sn(k) +wn(k), (15)

where sn(k) represents the state (i.e., shadowing gain) of the
system, Φn(k) is the state-transition matrix that relates the
state sn(k) to the next state sn(k + 1), wn(k) ∼ N (0,Q)
is system noise vector where the covariance matrix Q repre-
sents the degree of variability in the state variables.

Second, the measurement of the system is defined as:

xn(k) = Hn(k) sn(k) + vn(k), (16)

where the matrix Hn(k) represents an observation model
that relates the true state variable s(k) to the measure-
ments xn(k) and v ∼ N (0,R) is the observation noise where
the covariance matrix R represents the measurement un-
certainty. We consider the measurement noise due to noise
power (i.e., Yt in Eq. (1)) by settingR=σ2

m, and setQ=0.12

empirically.
Our simulation results show that KF accurately predicts

the shadowing gain in the sensor reports by recursively up-
dating the model parameters [20]. See [20] for a detailed
description of KF.

4.3 Attack Detection
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A compromised or malfunctioning sensor node may re-
port a falsified sensing value to the BS. The manipulated
sensor reports may increase the localization error, resulting
in either a waste of spectrum opportunities or excessive in-
terference to the primary communication. Therefore, the BS
must verify the trustworthiness of the sensor reports and fil-
ter out or penalize the bad ones before executing the attack
detection and filtering processes.

For this, the BS activates the attack-detection scheme
when it employs a sensor for cooperating sensing, and mon-
itors the prediction error en(k) in Eq. (17), which quantifies
the deviation of sensor n’s shadowing gain from the value
predicted from its history. The prediction error of KF can
be computed as:

en(k) = xn(k)−Hn(k) ŝn(k | k − 1), (17)

where xn(k) is the observed shadow fading in Eq. (12).
Specifically, we introduce a metric for attack detection,

called prediction error distance (PED), as the difference in
two consecutive prediction errors, which is defined as:

PEDn(k) =
∣∣en(k)− en(k − 1)

∣∣. (18)

This is an efficient metric because the prediction error
is also correlated under no attack, and consequently, the
difference in two consecutive errors is kept small. We also
observed in our simulation study that PEDn(k) is smaller
than the prediction error itself.

In particular, the BS raises a flag on sensor n’s report as
compromised or misbehaving if:

PEDn(k) ≥ η, (19)

where η>0 is a pre-defined threshold for detecting anoma-
lies. The BS classifies a sensor as malicious and excludes
it from the localization process if the cumulative number of
flags raised by the BS is greater than NB .

There is an interesting tradeoff in the design of the detec-
tion threshold η and it must be carefully chosen to maximize
localization accuracy. If the threshold is too small, the local-
ization performance will suffer from lack of sensing samples
due to over-filtering. On the other hand, if the threshold
is too large, the performance will suffer from manipulated
samples due to under-filtering. The impact of the detec-
tion threshold η on tracking performance will be detailed in
Section 5.5. Algorithm 2 describes the pseudocode of the
attack-detection algorithm in SOLID.

5. PERFORMANCE EVALUATION
In this section, we evaluate SOLID using MATLAB-based

simulation. We first describe the simulation setup and then
show the efficacy of SOLID in accurately tracking a small-
scale primary in the absence of attacks. Finally, we demon-
strate the attack-detection/tolerance of SOLID and the trade-
off in determining the attack-detection threshold.

5.1 The Simulation Setup
To demonstrate the effectiveness of SOLID, we consider

a CRN where sensors are randomly distributed according
to a point Poisson process with the average sensor density
5 sensors/km2 in a 6 × 6 km2 area. We assume that a WM
is randomly located in the area with the transmit-power of
250mW, which is the WM’s maximum transmit-power set
by the FCC [10]. We fix the sensing interval to 1 second

Algorithm 2 Attack-Detection Algorithm in SOLID

For every newly joint cooperating sensor n, the BS per-
forms

1: Initialization

2: k ← 0
3: blacklist count(n)← 0
4: while n ∈ Sk do

5: k ← k + 1 // Start the kth iteration
6: The BS estimates Xn(k) using Kalman filter
7: Compute PEDn(k) using Eq. (18)
8: if PEDn(k) > η then

9: if ++ blacklist count(n) ≥ NB then

10: blacklist n
11: end if

12: if Sensor n is blacklisted then

13: Exclude sensor n from localization
14: end if

15: end if

16: end while
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Figure 4: Localization performance of SOLID in vari-

ous fading environments: SOLID lowers the tracking
error significantly, whereas the SMC’s localization
error drastically increases with σdB.

and the path-loss exponent to α = 4. The shadow fading
dB-spread is assumed to be in the range σdB ∈ [0, 6] (dB)7

and the decorrelation distance for shadow fading is assumed
to be dcorr = 150m. We assume the standard deviation
of noise power is assumed to be σm = 0.3 dB. The radius
of cooperative sensing is fixed at Rs = 1km, i.e., the BS
employs the sensors located within a unit-disc of radius Rs

centered at the estimated location of the mobile primary
transmitter. We assume the the sensing interval is 1 second
and, during each sensing period, sensors measure the RSS
using ED for 1ms.

For localization, we set the number of samples for SMC
to ns = 40 and set the re-sampling thresholds Nthr empir-
ically in the range Nthr ∈ [3, 5], depending on the shadow-
fading environment. For primary transmitter mobility, we
assume the Random Waypoint model without pause time
[45]. A mobile primary transmitter moves at a fixed speed
of 10m/s with the moving direction uniformly distributed
in [0, 2π]. The simulation results are generated from 20

7While it is typically assumed σdB = 5.5 dB for the link
between the TV transmitter and CPEs in IEEE 802.22, it
can vary with the distance between transmitter and receiver
[13].
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Figure 5: Impact of shadow fading on localization error : The figure shows that SOLID reduces the tracking
error significantly thanks to its ability to accurately estimate the shadow fading gains.
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Figure 6: The attack-detection capability of SOLID: SOLID can accurately detect even a small deviation in sensor
reports (i.e., RSSs) since such a deviation boosts the prediction error distance (PED), which makes it easy
for SOLID to detect any abnormal sensor reports.

randomly-generated topologies.

5.2 Effects of Shadow-Fading Estimation un-
der No Attack

The attack-detection performance of SOLID hinges on ac-
curate location and shadow-fading estimation, which are de-
signed to refine each other throughout the tracking process.
We first demonstrate the effectiveness of the shadow-fading
estimation introduced in SOLID on localization accuracy in
the absence of attacks. Fig. 5 plots examples of track-
ing a mobile small-scale primary transmitter during a pe-
riod of 100 s under different shadowing environments, i.e.,
σdB=3, 5 dB. The figure shows that SOLID accurately tracks
the location of the mobile primary transmitter, maintaining
small localization error for the entire tracking process. On
the other hand, in the conventional SMC, the tracking be-
comes less accurate as the shadow fading becomes severer,
i.e., a larger dB-spared, as the shadow fading makes the
RSSs more random, which makes the localization difficult.

Fig. 4 plots the average localization error, as well as the

interval (−0.5 σ,+0.5 σ), achieved by SMC and SOLID under
various shadow fading dB-spreads. The figure clearly shows
that the localization accuracy of the conventional SMC suf-
fers from the unpredictability in RSSs due to shadow fading,
resulting in a fast increase of error as shadowing dB-spread
increases. By contrast, SOLID maintains a small average lo-
calization error (< 35m) for all simulated scenarios, thanks
to its ability to accurately estimate the shadow-fading gains
between the mobile primary transmitter and sensors.

The accurate localization provided by SOLID allows the
secondary BS to plan/perform efficient admission and transmit-
power controls of secondary users/devices, thus greatly im-
proving the spectrum efficiency in the space domain.

5.3 Performance of Attack Detector
To evaluate the attack detector in SOLID, we consider at-

tack scenarios where a malicious sensor injects manipulated
sensing reports at time slot 50. A malicious sensor intro-
duces a deviation (or attack strength) from its actual mea-
surements (i.e., RSSs) by 1, 3, 5 dB, where the deviation di-
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Figure 7: Attack-tolerance of SOLID: SOLID success-
fully tolerates attacks thanks to its ability to ex-
ploit temporal shadowing correlation to accurately
detect abnormal sensing reports.
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Figure 8: Impact of detection threshold : There is
a tradeoff in selecting the detection threshold, in-
dicating that the performance of SOLID can be op-
timized by adjusting the detection threshold.

rection (i.e., ±) is randomly chosen. We use the prediction
error distance (PED) as the main detection performance
metric since it effectively identifies/quantifies the deviation
in sensor reports. Fig. 6 clearly shows that the deviation
injected by an attacker at the 50-th iteration increases the
PED proportionally to the attack strength, yielding high
detection accuracy. This high attack-detection accuracy of
SOLID can be used in designing the detection (filter) thresh-
old (see Fig. 8). Moreover, even a small deviation (e.g.,
1 dB) causes an abrupt increase in PED, and can thus be
easily detected by SOLID, thanks to SOLID’s ability to closely
estimate/track temporally-correlated shadow fading in the
measured RSSs.

5.4 Attack-Tolerance
We now demonstrate SOLID’s attack-tolerance by compar-

ing its localization accuracy with the conventional SMC-
based localization under various attack scenarios. In the
simulations in Figs. 7 and 8, we assume that each sensor
is malicious with probability 0.3 and the malicious sensors
launch attacks independently with probability 0.3 in each
time slot. We assume shadowing dB-spread σdB = 3dB
and set the detection and blocking thresholds to η=4 and
NB = 1, respectively. Fig. 7 plots the average as well as
(−0.5 σ,+0.5 σ) interval of localization error, under various
attack strengths. As expected, the localization error of the
SMC increases with increasing attack strength due to the
lack of any counteractive mechanism to sensor-report ma-
nipulation attacks. To cope with this large error and un-
predictability in tracking the primary transmitter, the sec-
ondary users/devices must be conservative when they use
spatial spectrum opportunities. This can significantly un-
dermine the spectrum efficiency or cause excessive interfer-
ence to PUs’ communications.

By contrast, in SOLID, the localization error remains low
(< 35m) regardless of the attack strength for the following
reasons. SOLID successfully withstands weak attacks, e.g.,
below the detection threshold, because they do not influence
the localization outcome even though they are not detected
by the attack detector. On the other hand, SOLID can easily
detect strong attacks, e.g., above the detection threshold,
because the spikes in the prediction error is almost propor-
tional to the attack strength. Although the performance loss

due to the reduced number of measurements is inevitable,
Figs. 4 and 7 indicate that such loss is not significant even
with a very low sensor density of 5/km2.

In summary, the shadow-fading estimator in SOLID allows
the localization and attack detection components to refine
each other. As a result, SOLID improves localization accu-
racy when there is no attack, and it successfully tolerates
the adverse impact of attacks, if any.

5.5 Tradeoff in Determining the Attack De-
tection Threshold

Fig. 8 shows the impact of attack-detection threshold η on
the primary transmitter tracking performance. The figure
indicates that the localization performance of SOLID suffers
in case of low detection thresholds for the following two rea-
sons. First, the attack detector is too aggressive in detect-
ing malicious sensors, resulting in over-filtering, i.e., some
of well-behaving sensors are flagged as malicious and then
excluded from cooperative sensing or their reports are dis-
carded. Second, when the attack detector correctly identifies
all the attackers, the localization performance may degrade
due to lack of RSS samples for localization. On the other
hand, too high a detection threshold also degrades the local-
ization performance because of under-filtering, where some
of the attackers are not detected, adversely influencing the
localization process. The figure indicates that SOLID per-
forms best (in terms of average localization error) when the
detection threshold is 4 dB, with the average error 19.71m.
This error is only slightly higher than the average value un-
der no attack, i.e., 19.39m, observed in Fig. 4.

6. RELATED WORK
In this section, we first review the related work on spatial

opportunistic spectrum reuse and existing sensing-targeted
attacks. We then discuss existing target-tracking schemes in
wireless sensor networks.

Spatial Spectrum Reuse in CRNs: While most previ-
ous work on spectrum sensing focused on exploiting time and
frequency domain spectrum opportunities, efficient reuse of
spatial spectrum opportunities created by small-scale PUs
has received far less attention. Vu et al. [42] characterized
the statistical behavior of the total interference at the pri-
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mary receiver caused by secondary devices in fading envi-
ronments. Hanif et al. [19] addressed the problem of CR de-
ployment under the interference constraints to the primary
receiver. The IEEE 802.22 Working Group (WG) proposed
a coexistence model with a wireless microphone (WM) to
maximize spatial spectrum reuse in 802.22 [9]. While they
aim to improve spatial spectrum reuse, they implicitly as-
sume that the location of the primary transmitter is avail-
able to secondary devices and did not consider the PUs’
mobility. Recently, we proposed a small-scale PU detec-
tion/localization scheme, called DeLOC [30]. It is designed
to accurately detect the existence of a small-scale PU and,
if it exists, provides an estimate of its location. The work
presented in this paper can be considered as a significant
extension of our earlier work.

Secure Spectrum Sensing in CRNs: Security in CRNs
has recently started receiving attention from the research
community. Among the various potential threats, two types
of attack that exploit the vulnerabilities in spectrum sensing
have been studied: primary user emulation attack (PUEA)
and spectrum sensing data falsification (SSDF) attack. The
defense against PUEA has been studied in [26,36]. Chen et
al. [6] proposed an RSS-based location verification scheme,
called LocDef, to detect a fake primary signal. This scheme,
however, requires the deployment of a dense sensor network
for estimating the location of a signal source, and thus,
incurs a high system overhead. Liu et al. [26] developed
a primary signal verification scheme by jointly exploiting
the location-dependent link signature, i.e., multi-path fad-
ing profile, and conventional cryptographic authentication
method. The proposed scheme does not require any modi-
fication to primary system nor training period for link sig-
nature. However, their scheme assumes the availability of a
helper node, which is located closely to each primary trans-
mitter. Moreover, these link signature-based authentication
methods may not be feasible for mobile PUs due to its lo-
cation sensitivity. The problem of ensuring the robustness
in distributed sensing has also been studied [23,29]. Kaligi-
needi et al. [23] presented a pre-filtering scheme based on a
simple outlier method that filters out extremely low or high
sensor reports. However, their method is unsuitable for a
very low SNR environment such as 802.22 WRANs where a
final data-fusion decision is very sensitive to small deviations
in RSSs. Min and Shin [29] proposed an attack-tolerant se-
cure cooperative sensing scheme that exploits shadow-fading
correlation in RSS among close-by sensors.

This paper focuses on a new type of attack, i.e., falsifying
sensor reports to disrupt the location tracking of a mobile
primary transmitter. To the best of our knowledge, this is
the first to study the problem of secure primary tracking in
CRNs.

Secure mobile target tracking: The problem of node
localization and target tracking has been studied extensively
in the area of wireless sensor networks [3,14,18,39,46]. The
primary tracking in CRNs is different from this related work,
since it is not desirable to modify the primary system, and
thus, there is no additional information (except for RSS)
available from the primaries. The solution approach taken
by SOLID to overcome this problem is unique in that it only
relies on the PHY-layer signal propagation characteristics
(i.e., temporally-correlated shadow fading) to accurately de-
tect malicious sensors, which has not been considered be-
fore.

7. CONCLUSION AND FUTURE WORK
Secure tracking of mobile small-scale primary users is im-

portant for efficient spatial reuse of spectrum opportunities,
but has not been studied before. To address this problem, we
proposed a RSS-based secure tracking scheme, called SOLID,
tailored to mobile small-scale PUs in CRNs. The key idea
behind SOLID is that the observed received primary signal
strengths at cooperating sensors exhibit temporal correla-
tion due to slowly-varying shadow fading induced by the PU
mobility. SOLID realizes this idea by jointly performing lo-
calization and shadow-fading estimation, thus improving the
localization accuracy and achieving high sensitivity in at-
tack detection. Our evaluation results in a realistic shadow-
fading environments show that SOLID reduces the localiza-
tion error significantly in the absence of attacks, successfully
detects attacks, and maintains small localization error, thus
being highly tolerant to attacks.

While SOLID achieves high attack-tolerance, our evalua-
tion results indicate that attackers can exploit the inherent
tradeoff in the design of the detection threshold to maxi-
mize their impact on the PU tracking. Therefore, it would
be interesting to study an optimal attack/detection strategy
under various attack scenarios.
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