

NORTH ATLANTIC TREATY
ORGANIZATION

 SCIENCE AND TECHNOLOGY
ORGANIZATION

AC/323(MSG-136)TP/834 www.sto.nato.int

STO TECHNICAL REPORT TR-MSG-136-Part-VII

Modelling and Simulation as a Service
Volume 4: Experimentation Report
(Modélisation et Simulation en tant que service,

Volume 4 : rapport d’expérimentation.)

Developed by NATO MSG-136.

Published July 2019

 Distribution and Availability on Back Cover

http://www.sto.nato.int/

NORTH ATLANTIC TREATY
ORGANIZATION

 SCIENCE AND TECHNOLOGY
ORGANIZATION

AC/323(MSG-136)TP/834 www.sto.nato.int

STO TECHNICAL REPORT TR-MSG-136-Part-VII

Modelling and Simulation as a Service
Volume 4: Experimentation Report
(Modélisation et Simulation en tant que service,

Volume 4 : rapport d’expérimentation.)

Developed by NATO MSG-136.

http://www.sto.nato.int/

ii STO-TR-MSG-136-Part-VII

The NATO Science and Technology Organization

Science & Technology (S&T) in the NATO context is defined as the selective and rigorous generation and application of
state-of-the-art, validated knowledge for defence and security purposes. S&T activities embrace scientific research,
technology development, transition, application and field-testing, experimentation and a range of related scientific
activities that include systems engineering, operational research and analysis, synthesis, integration and validation of
knowledge derived through the scientific method.

In NATO, S&T is addressed using different business models, namely a collaborative business model where NATO
provides a forum where NATO Nations and partner Nations elect to use their national resources to define, conduct and
promote cooperative research and information exchange, and secondly an in-house delivery business model where S&T
activities are conducted in a NATO dedicated executive body, having its own personnel, capabilities and infrastructure.

The mission of the NATO Science & Technology Organization (STO) is to help position the Nations’ and NATO’s S&T
investments as a strategic enabler of the knowledge and technology advantage for the defence and security posture of
NATO Nations and partner Nations, by conducting and promoting S&T activities that augment and leverage the
capabilities and programmes of the Alliance, of the NATO Nations and the partner Nations, in support of NATO’s
objectives, and contributing to NATO’s ability to enable and influence security and defence related capability
development and threat mitigation in NATO Nations and partner Nations, in accordance with NATO policies.

The total spectrum of this collaborative effort is addressed by six Technical Panels who manage a wide range of
scientific research activities, a Group specialising in modelling and simulation, plus a Committee dedicated to
supporting the information management needs of the organization.

• AVT Applied Vehicle Technology Panel

• HFM Human Factors and Medicine Panel

• IST Information Systems Technology Panel

• NMSG NATO Modelling and Simulation Group

• SAS System Analysis and Studies Panel

• SCI Systems Concepts and Integration Panel

• SET Sensors and Electronics Technology Panel

These Panels and Group are the power-house of the collaborative model and are made up of national representatives as
well as recognised world-class scientists, engineers and information specialists. In addition to providing critical
technical oversight, they also provide a communication link to military users and other NATO bodies.

The scientific and technological work is carried out by Technical Teams, created under one or more of these eight
bodies, for specific research activities which have a defined duration. These research activities can take a variety of
forms, including Task Groups, Workshops, Symposia, Specialists’ Meetings, Lecture Series and Technical Courses.

The content of this publication has been reproduced directly from material supplied by STO or the authors.

Published July 2019

Copyright © STO/NATO 2019
All Rights Reserved

ISBN 978-92-837-2160-4

Single copies of this publication or of a part of it may be made for individual use only by those organisations or
individuals in NATO Nations defined by the limitation notice printed on the front cover. The approval of the STO
Information Management Systems Branch is required for more than one copy to be made or an extract included in
another publication. Requests to do so should be sent to the address on the back cover.

STO-TR-MSG-136-Part-VII iii

Table of Contents

 Page

List of Figures xiii

List of Tables xv

List of Acronyms xvi

MSG-136 Membership List xvii

Executive Summary and Synthèse ES-1

Chapter 1 – Introduction 1-1
1.1 Background 1-1
1.2 Objective 1-1
1.3 Document Overview 1-2

Chapter 2 – Approach 2-1
2.1 Experiments to Test the Reference Architecture 2-1
2.2 Experiments to Test Solutions of Simulation Services 2-2
2.3 Schema of Test Case Description 2-2

Chapter 3 – Experiment on Containerized HLA Based Simulation Environment 3-1
3.1 Overview 3-1
3.2 Test Case 1: Container Networking (NLD) 3-1

3.2.1 Objective/Topic/Question 3-1
3.2.2 Assumptions/Preconditions/Boundary Conditions 3-1
3.2.3 Systems and Interfaces 3-1
3.2.4 Test Setup 3-2
3.2.5 Processes and Activities 3-2
3.2.6 Observations 3-3
3.2.7 Outcome/Analysis 3-4

3.3 Test Case 2: Containerization of HLA Federates (AUS, NLD) 3-4
3.3.1 Objective/Topic/Question 3-4
3.3.2 Assumptions/Preconditions/Boundary Conditions 3-5
3.3.3 Systems and Interfaces 3-5
3.3.4 Test Setup 3-5
3.3.5 Processes and Activities 3-5
3.3.6 Observations 3-5
3.3.7 Outcome/Analysis 3-6

3.4 Test Case 3: Metadata Repositories and Discovery (GBR, DEU) 3-6
3.4.1 Objective/Topic/Question 3-6

3.4.1.1 Scope 3-6

iv STO-TR-MSG-136-Part-VII

3.4.2 Assumptions/Preconditions/Boundary Conditions 3-7
3.4.3 Systems and Interfaces 3-7
3.4.4 Experimental Setup 3-7
3.4.5 Processes and Activities 3-8
3.4.6 Observations 3-9
3.4.7 Outcome/Analysis 3-9

3.5 Test Case 4: Simulation Composition and Deployment (GBR) 3-9
3.5.1 Objective/Topic/Question 3-9

3.5.1.2 Scope 3-9
3.5.2 Assumptions/Preconditions/Boundary Conditions 3-9
3.5.3 Systems and Interfaces 3-9
3.5.4 Test Setup 3-10

3.5.4.1 Definitions 3-10
3.5.4.2 Composition 3-11
3.5.4.3 Deployment 3-11
3.5.4.4 Composition Concepts 3-11

3.5.5 Processes and Activities 3-15
3.5.5.1 Test #1 3-15
3.5.5.2 Test #2 3-21
3.5.5.3 Test #3 3-26
3.5.5.4 Test #4 3-28

3.6 Test Case 5: Container Orchestration Environments (NLD) 3-30
3.6.1 Objective/Topic/Question 3-30
3.6.2 Assumptions/Preconditions/Boundary Conditions 3-31
3.6.3 Systems and Interfaces 3-31
3.6.4 Test Setup 3-31
3.6.5 Processes and Activities 3-33
3.6.6 Observations 3-33
3.6.7 Outcome/Analysis 3-35

Chapter 4 – Simulation Services Experiments 4-1
4.1 Overview 4-1
4.2 Test Case 1: RPS, SES, and SimSys (DEU, NOR) 4-1

4.2.1 Objective/Topic/Question 4-1
4.2.2 Assumptions/Preconditions/Boundary Conditions 4-1
4.2.3 Used Systems and Interfaces 4-1
4.2.4 Test Setup 4-1
4.2.5 Processes and Activities 4-2
4.2.6 Observations 4-2
4.2.7 Outcome/Analysis 4-2

4.3 Test Case 2: Individual and Team Training for Naval C4ISTAR Operation 4-3
(NATO-MSCOE)
4.3.1 Objective/Topic/Question 4-3
4.3.2 Assumptions/Preconditions/Boundary Conditions 4-3
4.3.3 Systems and Interfaces 4-3
4.3.4 Test Setup 4-3

STO-TR-MSG-136-Part-VII v

4.3.5 Processes and Activities 4-4
4.3.6 Observations 4-4
4.3.7 Outcome/Analysis 4-5

4.4 Test Case 3: Individual Training of Radio/C2 Operator (NATO-MSCOE) 4-5
4.4.1 Objective/Topic/Question 4-5
4.4.2 Assumptions/Preconditions/Boundary Conditions 4-5
4.4.3 Systems and Interfaces 4-5
4.4.4 Test Setup 4-5
4.4.5 Processes and Activities 4-6
4.4.6 Observations 4-7
4.4.7 Outcome/Analysis 4-7

Chapter 5 – Summary and Conclusions 5-1

Chapter 6 – References 6-1

Annex A – Simulation Environment Agreements A-1
A.1 Metadata A-1

A.1.1 Identification A-1
A.2 Design A-1

A.2.1 Scenario A-1
A.2.1.1 Exercise Background A-1
A.2.1.2 Situation A-2
A.2.1.3 Phase 1: Small Craft Threat A-3
A.2.1.4 Phase 2: Threat Intelligence Report A-3
A.2.1.5 Phase 3: Course of Action Analysis A-3
A.2.1.6 Phase 4: Direct Action Against Threats A-6
A.2.1.7 Phase 5: SOF Secure Target Area A-6

A.2.2 Conceptual Model A-7
A.2.3 Architecture A-16
A.2.4 Services A-16

A.2.4.1 Weapon Service A-16
A.2.4.2 Sensor Service A-16
A.2.4.3 Damage Service A-16
A.2.4.4 RWO Generation Service A-18

A.2.5 Member Applications A-19
A.3 Execution A-19

A.3.1 Execution States A-19
A.3.2 Time Management A-19
A.3.3 Join and Resign A-19
A.3.4 Update Rates A-19
A.3.5 Performance Thresholds A-19
A.3.6 Data Logging A-19
A.3.7 Data Replay A-19
A.3.8 Monitoring A-20
A.3.9 Middleware Agreements A-20
A.3.10 Member Configuration A-20

vi STO-TR-MSG-136-Part-VII

A.4 Management A-20
A.5 Data A-20

A.5.1 Encodings A-20
A.5.2 Data Exchange Models A-20
A.5.3 Naming Conventions A-20
A.5.4 Publish/Subscribe Responsibilities A-20

A.6 Infrastructure A-21
A.7 Modeling A-21
A.8 Variances A-21

Annex B – Docker Container Image Descriptions B-1
B.1 General B-1

B.1.1 Home B-1
B.1.1.1 MSaaS Docker Registry B-1
B.1.1.2 Service Descriptions B-1

B.1.2 MSaaS Docker Registry (TNO) B-2
B.1.2.1 Obtain Access to the MSaaS Docker Registry B-2
B.1.2.2 Request a User Account B-2
B.1.2.3 Login to the MSaaS Docker Registry via the Web UI and Change B-2

Your Initial Password
B.1.2.4 Login to MSaaS Docker Registry via the Docker Command B-2

Line Interface
B.1.2.5 Push and Pull Images B-2
B.1.2.6 Delete Images B-3

B.2 Docker Image Descriptions B-3
B.2.1 Cesium Image (TNO) B-3

B.2.1.1 Image B-3
B.2.1.2 Description B-3
B.2.1.3 Synopsis B-3
B.2.1.4 Docker Options B-3
B.2.1.5 Container Options B-3
B.2.1.6 Web Address B-3
B.2.1.7 Example B-3

B.2.2 Damage Server Image (TNO) B-4
B.2.2.1 Image B-4
B.2.2.2 Description B-4
B.2.2.3 Synopsis B-4
B.2.2.4 Docker Options B-4
B.2.2.5 Container Options B-5
B.2.2.6 Other Information B-5
B.2.2.7 Example B-6

B.2.3 EPIC Enhanced Perception and Integrated Control Image (LM) B-7
B.2.3.1 Image B-7
B.2.3.2 Description B-7
B.2.3.3 Synopsis B-8
B.2.3.4 Docker Options B-9

STO-TR-MSG-136-Part-VII vii

B.2.3.5 Container Options B-9
B.2.3.6 Other Information B-9
B.2.3.7 Example B-9

B.2.4 FEAT Editor Image (TNO) B-9
B.2.4.1 Image B-9
B.2.4.2 Description B-9
B.2.4.3 Synopsis B-9
B.2.4.4 Docker Options B-10
B.2.4.5 Container Options B-10
B.2.4.6 Other Information B-10
B.2.4.7 Example B-10

B.2.5 Google Chrome Image (TNO) B-10
B.2.5.1 Image B-10
B.2.5.2 Description B-10
B.2.5.3 Synopsis B-11
B.2.5.4 Docker Options B-11
B.2.5.5 Container Options B-11
B.2.5.6 Other Information B-11
B.2.5.7 Example B-11

B.2.6 Google Earth Image (TNO) B-11
B.2.6.1 Image B-11
B.2.6.2 Description B-12
B.2.6.3 Synopsis B-12
B.2.6.4 Docker Options B-12
B.2.6.5 Container Options B-12
B.2.6.6 Other Information B-12
B.2.6.7 Example B-12

B.2.7 KML Server Image (TNO) B-13
B.2.7.1 Image B-13
B.2.7.2 Description B-13
B.2.7.3 Synopsis B-14
B.2.7.4 Docker Options B-14
B.2.7.5 Container Options B-14
B.2.7.6 Other Information B-14
B.2.7.7 Example B-15

B.2.8 Logger Service Image (IFAD) B-17
B.2.8.1 Image B-17
B.2.8.2 Description B-18
B.2.8.3 Synopsis B-18
B.2.8.4 Docker Options B-18
B.2.8.5 Container Options B-18
B.2.8.6 Service Interface B-18
B.2.8.7 Examples B-19
B.2.8.8 Other Information B-20

B.2.9 LRC Base Image (TNO) B-20
B.2.9.1 Image B-20

viii STO-TR-MSG-136-Part-VII

B.2.9.2 Description B-21
B.2.9.3 Other Information B-26
B.2.9.4 Example B-28

B.2.10 MSaaS Portal Image (TNO) B-28
B.2.10.1 Image B-28
B.2.10.2 Description B-28
B.2.10.3 Synopsis B-28
B.2.10.4 Docker Options B-28
B.2.10.5 Container Options B-28
B.2.10.6 Other Information B-29
B.2.10.7 Example B-29

B.2.11 Munition Server Image (AUS, DST Group) B-30
B.2.11.1 Image B-30
B.2.11.2 Description B-30
B.2.11.3 Synopsis B-30
B.2.11.4 Docker Options B-30
B.2.11.5 Container Options B-31
B.2.11.6 Other Information B-31
B.2.11.7 Example B-31

B.2.12 MÄK License Manager Image (AUS, DST Group) B-31
B.2.12.1 Image B-31
B.2.12.2 Description B-31
B.2.12.3 Synopsis B-31
B.2.12.4 Docker Options B-31
B.2.12.5 Container Options B-31
B.2.12.6 Other Information B-31
B.2.12.7 Example B-32

B.2.13 MÄK RTI Image Structure (AUS, DST Group) B-32
B.2.13.1 Overview B-32
B.2.13.2 mak-rti:4.4.2 B-32
B.2.13.3 ma-lm B-32
B.2.13.4 mak-rti-base B-32
B.2.13.5 mak-rti-base B-33
B.2.13.6 mak-rtiexec B-33
B.2.13.7 ma-lrc-base B-33
B.2.13.8 tl;dr B-34

B.2.14 MÄK rtiexec Image (AUS, DST Group) B-34
B.2.14.1 Image B-34
B.2.14.2 Description B-34
B.2.14.3 Synopsis B-35
B.2.14.4 Docker Options B-35
B.2.14.5 Container Options B-35
B.2.14.6 Other Information B-35
B.2.14.7 Example B-35

B.2.15 MÄK VR Forces Image (TNO) B-36
B.2.15.1 Image B-36

STO-TR-MSG-136-Part-VII ix

B.2.15.2 Description B-36
B.2.15.3 Synopsis B-36
B.2.15.4 Docker Options B-36
B.2.15.5 Container Options B-36
B.2.15.6 Other Information B-37
B.2.15.7 Example B-37

B.2.16 Pacer Image (TNO) B-37
B.2.16.1 Image B-37
B.2.16.2 Description B-38
B.2.16.3 Synopsis B-38
B.2.16.4 Docker Options B-38
B.2.16.5 Container Options B-38
B.2.16.6 Other Information B-39
B.2.16.7 Example B-39

B.2.17 PDA Image (IFAD) B-40
B.2.17.1 Image B-40
B.2.17.2 Description B-40
B.2.17.3 Synopsis B-40
B.2.17.4 Docker Options B-40
B.2.17.5 Container Options B-40
B.2.17.6 Other Information B-40
B.2.17.7 Example B-40

B.2.18 Pitch CRC Image (TNO) B-41
B.2.18.1 Image B-41
B.2.18.2 Description B-41
B.2.18.3 Synopsis B-41
B.2.18.4 Docker Options B-41
B.2.18.5 Container Options B-42
B.2.18.6 Other Information B-42
B.2.18.7 Example B-42

B.2.19 Pitch DIS Adapter Image (TNO) B-43
B.2.19.1 Image B-43
B.2.19.2 Description B-43
B.2.19.3 Synopsis B-43
B.2.19.4 Docker Options B-43
B.2.19.5 Environment Variables B-43
B.2.19.6 Container Options B-43
B.2.19.7 Other Information B-43
B.2.19.8 Example B-43

B.2.20 Pitch Recorder Image (TNO) B-44
B.2.20.1 Image B-44
B.2.20.2 Description B-44
B.2.20.3 Synopsis B-44
B.2.20.4 Docker Options B-44
B.2.20.5 Container Options B-45
B.2.20.6 Other Information B-45

x STO-TR-MSG-136-Part-VII

B.2.20.7 Example B-45
B.2.21 Pitch WebGUI Image (TNO) B-49

B.2.21.1 Image B-49
B.2.21.2 Description B-50
B.2.21.3 Synopsis B-50
B.2.21.4 Docker Options B-50
B.2.21.5 Container Options B-50
B.2.21.6 Webview Session Information B-50
B.2.21.7 Example B-50

B.2.22 Proxy Image (TNO) B-50
B.2.22.1 Image B-50
B.2.22.2 Description B-50
B.2.22.3 Synopsis B-51
B.2.22.4 Docker Options B-51
B.2.22.5 Container Options B-51
B.2.22.6 Other Information B-51
B.2.22.7 Example B-51

B.2.23 Sensor Server Image (TNO) B-51
B.2.23.1 Image B-51
B.2.23.2 Description B-51
B.2.23.3 Synopsis B-52
B.2.23.4 Docker Options B-52
B.2.23.5 Sensor Properties File B-52
B.2.23.6 Used FOM Modules B-53
B.2.23.7 How to Run the Sensor Server B-53

B.2.24 SES Gulf (Service) Image (CPA ReDev GmbH) B-54
B.2.24.1 Image B-54
B.2.24.2 Description B-54
B.2.24.3 Synopsis B-54
B.2.24.4 Docker Compose Options B-54
B.2.24.5 Container Options B-54
B.2.24.6 Other Information B-54
B.2.24.7 Example B-54

B.2.25 SES Meppen (Service) Image (CPA ReDev GmbH) B-55
B.2.25.1 Image B-55
B.2.25.2 Description B-55
B.2.25.3 Synopsis B-55
B.2.25.4 Docker Compose Options B-55
B.2.25.5 Container Options B-55
B.2.25.6 Other Information B-55
B.2.25.7 Example B-55

B.2.26 SESDatabase Gulf Image (CPA ReDev GmbH) B-56
B.2.26.1 Image B-56
B.2.26.2 Description B-56
B.2.26.3 Synopsis B-56
B.2.26.4 Docker Options B-56

STO-TR-MSG-136-Part-VII xi

B.2.26.5 Container Options B-56
B.2.26.6 Other Information B-56
B.2.26.7 Example B-56

B.2.27 SESDatabase Meppen Image (CPA ReDev GmbH) B-56
B.2.27.1 Image B-56
B.2.27.2 Description B-56
B.2.27.3 Synopsis B-56
B.2.27.4 Docker Options B-57
B.2.27.5 Container Options B-57
B.2.27.6 Other Information B-57
B.2.27.7 Example B-57

B.2.28 ShipSim Image (AUS, DST Group) B-57
B.2.28.1 Image B-57
B.2.28.2 Description B-57
B.2.28.3 Synopsis B-57
B.2.28.4 Docker Options B-58
B.2.28.5 Container Options B-58
B.2.28.6 HTTP Server B-60
B.2.28.7 Example B-60

B.2.29 ShipUI Image (AUS, DST Group) B-61
B.2.29.1 Image B-61
B.2.29.2 Description B-61
B.2.29.3 Synopsis B-61
B.2.29.4 Docker Options B-61
B.2.29.5 Container Options B-62
B.2.29.6 Other Information B-62
B.2.29.7 Example B-62

B.2.30 Start Image (TNO) B-62
B.2.30.1 Image B-62
B.2.30.2 Description B-63
B.2.30.3 Synopsis B-63
B.2.30.4 Docker Options B-63
B.2.30.5 Container Options B-63
B.2.30.6 Other Information B-63
B.2.30.7 Example B-64

B.2.31 Symbol Service Image (IFAD) B-66
B.2.31.1 Image B-66
B.2.31.2 Description B-66
B.2.31.3 Synopsis B-66
B.2.31.4 Docker Options B-67
B.2.31.5 Container Options B-67
B.2.31.6 Service Interface B-67
B.2.31.7 Examples B-67

B.2.32 Syslog Image (TNO) B-68
B.2.32.1 Image B-68
B.2.32.2 Description B-68

xii STO-TR-MSG-136-Part-VII

B.2.32.3 Synopsis B-68
B.2.32.4 Docker Options B-68
B.2.32.5 Container Options B-68
B.2.32.6 Other Information B-68
B.2.32.7 Example B-68

B.2.33 X Server Image (TNO) B-69
B.2.33.1 Image B-69
B.2.33.2 Description B-69
B.2.33.3 Synopsis B-69
B.2.33.4 Docker Options B-69
B.2.33.5 Container Options B-70
B.2.33.6 Other Information B-70
B.2.33.7 Example B-70

B.3 FOMs B-70
B.3.1 Sensor FOM B-70

B.3.1.1 Module Overview B-70
B.3.1.2 Object Classes Overview B-71
B.3.1.3 Identification B-71
B.3.1.4 Object Classes B-72
B.3.1.5 Data Types B-75

B.3.2 Damage FOM B-79
B.3.2.1 Module Overview B-79
B.3.2.2 Interaction Classes Overview B-80
B.3.2.3 Identification B-80
B.3.2.4 Interaction Classes B-81

B.4 Compositions B-82
B.4.1 Composition A: Big Single Node B-82

STO-TR-MSG-136-Part-VII xiii

List of Figures

Figure Page

Figure 2-1 Experiment Environment 2-1

Figure 3-1 Single Docker Host 3-2
Figure 3-2 Multi Docker Host 3-2
Figure 3-3 AWS Cloud 3-3
Figure 3-4 Hybrid 3-3
Figure 3-5 Containerization by ‘Extension’ 3-4
Figure 3-6 Containerization by ‘Composition’ 3-5
Figure 3-7 The Ultimate Goal of the Work Carried Out in This Experiment is the 3-7
 Exchange of Data Between the UK and German Registry-Repository Capabilities
Figure 3-8 Experimental Setup 3-10
Figure 3-9 Example Composition 3-12
Figure 3-10 Sub-Composition Example 3-12
Figure 3-11 Sub-Composition Re-Use 3-13
Figure 3-12 MSaaS Information Model 3-13
Figure 3-13 Discover, Evaluate and Use 3-14
Figure 3-14 Harvesting Tool 3-15
Figure 3-15 Create Composition Process 3-15
Figure 3-16 Experiment Composition 3-16
Figure 3-17 Prototype HTTP Client Web Tool 3-16
Figure 3-18 Search and Discovery using HTTP Client Tool 3-19
Figure 3-19 Evaluate Associations Using HTTP Client Tool 3-19
Figure 3-20 Automate Using HTTP Client Tool 3-20
Figure 3-21 Exercise Control Sub-Composition 3-20
Figure 3-22 Composer Tool 3-21
Figure 3-23 Composition WPS 3-22
Figure 3-24 MSaaS Composer 3-23
Figure 3-25 MSaaS Composer, with Graphical Illustration 3-23
Figure 3-26 Topology View 3-24
Figure 3-27 MSaaS Composer 3-25
Figure 3-28 Topology View 3-25
Figure 3-29 Experiment Setup 3-26
Figure 3-30 AIMS Deployment Tool 3-27
Figure 3-31 Infrastructure as Code Deployment 3-28

xiv STO-TR-MSG-136-Part-VII

Figure 3-32 Concurrent Event Setup 3-29
Figure 3-33 View of Event 1 Simulation 3-30
Figure 3-34 Test Setup 3-31
Figure 3-35 Docker Native Setup 3-32
Figure 3-36 Kubernetes Setup 3-32
Figure 3-37 Docker Native X-Server Composition 3-33
Figure 3-38 Kubernetes X-Server Replication Controller Specification 3-34
Figure 3-39 Kubernetes X-Server Service Specification 3-34
Figure 3-40 Compose UI 3-35
Figure 3-41 ElasticKube UI 3-35

Figure 4-1 Experimental Setup 4-2
Figure 4-2 Naval C4ISTAR Session Setup 4-3
Figure 4-3 Naval C4ISTAR Operations 4-4
Figure 4-4 Radio/C2 Operations 4-5
Figure 4-5 Radio/C2 Morpheus Operations 4-6

Figure A-1 Exercise Background A-1
Figure A-2 Exercise Area: Strait of Hormuz and Gulf of Oman A-2
Figure A-3 Situation Overview A-2
Figure A-4 Phase 1 Situation A-4
Figure A-5 Phase 2 Situation A-4
Figure A-6 Phase 3 Situation A-5
Figure A-7 Phase 4 Situation A-6
Figure A-8 Phase 5 Situation A-7
Figure A-9 Weapon Service Interactions A-17
Figure A-10 Sensor Service Interactions A-17
Figure A-11 Damage Service Interactions A-18
Figure A-12 RWO Service Interactions A-18

Figure B-1 MSaaS Portal UI B-29
Figure B-2 Sensor Module Overview B-71
Figure B-3 Sensor Object Classes Overview B-71
Figure B-4 Sensor Object Classes B-72
Figure B-5 Damage Module Overview B-80
Figure B-6 Damage Interaction Classes Overview B-80
Figure B-7 Damage Interaction Classes B-81

STO-TR-MSG-136-Part-VII xv

List of Tables

Table Page

Table 3-1 Test Cases Relation to Architecture Building Blocks 3-1
Table 3-2 Summary of Combinations 3-4
Table 3-3 List of Definitions 3-10

Table A-1 Exercise Entity List A-3
Table A-2 List of Events A-8

Table B-1 Environment Variables B-21
Table B-2 Environment Variables B-23
Table B-3 Environment Variables B-24
Table B-4 Environment Variables B-24
Table B-5 Environment Variables B-26
Table B-6 Environment Variables B-34
Table B-7 Web API B-61
Table B-8 Module Description B-71
Table B-9 Sensor Module Identification B-71
Table B-10 HLAobjectRoot.Track Attributes B-72
Table B-11 HLAobjectRoot.Track.AbsoluteTrack Attributes B-73
Table B-12 Simple Data Types B-75
Table B-13 TrackQualityEnum Enumerations B-75
Table B-14 TrackIdentificationEnum Enumerations B-76
Table B-15 TrackStatusEnum Enumerations B-77
Table B-16 Array Data Types B-77
Table B-17 TrackClassificationStruct Data Types B-78
Table B-18 TrackPositionStruct Data Types B-78
Table B-19 TrackVelocityStruct Data Types B-79
Table B-20 TrackEntityTypeStruct Data Types B-79
Table B-21 Module Overview B-80
Table B-22 Damage Module Identification B-80
Table B-23 HLAinteractionRoot.DamageReport.EntityDamageReport Parameters B-81

xvi STO-TR-MSG-136-Part-VII

List of Acronyms

ABB Architecture Building Block

C2 Command and Control

DIS Distributed Interactive Simulation
DSEEP Distributed Simulation Engineering and Execution Process

FEAT Federation Engineering Agreements Template
FOM Federation Object Model

HLA High Level Architecture

M&S Modelling and Simulation
MOM Message Oriented Middleware
MSaaS M&S as a Service

RA Reference Architecture
RTI Run Time Infrastructure

SOA Service Oriented Architecture

STO-TR-MSG-136-Part-VII xvii

MSG-136 Membership List

CO-CHAIRS

Dr. Robert SIEGFRIED
aditerna GmbH

GERMANY
Email: robert.siegfried@aditerna.de

Mr. Tom VAN DEN BERG
TNO Defence, Security and Safety

NETHERLANDS
Email: tom.vandenberg@tno.nl

MEMBERS

LtCdr Tevfik ALTINALEV
Turkish Navy
TURKEY
Email: taltinalev@hotmail.com

Mr. Gultekin ARABACI
NATO JFTC
POLAND
Email: gultekin.arabaci@jftc.nato.int

Mr. Anthony ARNAULT
ONERA
FRANCE
Email: anthony.arnault@onera.fr

Col Thierry BELLOEIL
NATO ACT
UNITED STATES
Email: thierry.belloeil@act.nato.int

Dr. Michael BERTSCHIK
DEU Bundeswehr
GERMANY
Email: MichaelBertschik@bundeswehr.org

LtCol Dr. Marco BIAGINI
NATO M&S Centre of Excellence
ITALY
Email: mscoe.cde01@smd.difesa.it

Mr. Maxwell BRITTON
Department of Defence
AUSTRALIA
Email: maxwell.britton1@defence.gov.au

Dr. Solveig BRUVOLL
Norwegian Defence Research Establishment
NORWAY
Email: solveig.bruvoll@ffi.no

Dr. Pilar CAAMANO SOBRINO
CMRE
ITALY
Email: Pilar.Caamano@cmre.nato.int

Prof. Dr. Erdal CAYIRCI
Research Center for STEAM
TURKEY
Email: erdal@dataunitor.com

Mr. Turgay CELIK
MILSOFT Software Technologies
TURKEY
Email: tcelik@milsoft.com.tr

LtCol Roberto CENSORI
NATO M&S CoE
ITALY
Email: mscoe.ms08@smd.difesa.it

Maj Fabio CORONA
NATO M&S Centre of Excellence
ITALY
Email: mscoe.cde04@smd.difesa.it

Dr. Anthony CRAMP
Department of Defence
AUSTRALIA
Email: anthony.cramp@dst.defence.gov.au

Mr. Raphael CUISINIER
ONERA
FRANCE
Email: raphael.cuisinier@onera.fr

Mr. Efthimios (Mike) DOUKLIAS
Space and Naval Warfare Systems Center Pacific
UNITED STATES
Email: mike.d.douklias@navy.mil

mailto:robert.siegfried@aditerna.de
mailto:tom.vandenberg@tno.nl
mailto:taltinalev@hotmail.com
mailto:gultekin.arabaci@jftc.nato.int
mailto:anthony.arnault@onera.fr
mailto:thierry.belloeil@act.nato.int
mailto:MichaelBertschik@bundeswehr.org
mailto:mscoe.cde01@smd.difesa.it
mailto:maxwell.britton1@defence.gov.au
mailto:solveig.bruvoll@ffi.no
mailto:Pilar.Caamano@cmre.nato.int
mailto:erdal@dataunitor.com
mailto:tcelik@milsoft.com.tr
mailto:mscoe.ms08@smd.difesa.it
mailto:mscoe.cde04@smd.difesa.it
mailto:anthony.cramp@dst.defence.gov.au
mailto:raphael.cuisinier@onera.fr
mailto:mike.d.douklias@navy.mil

xviii STO-TR-MSG-136-Part-VII

Ing Christian FAILLACE
LEONARDO S.p.a.
ITALY
Email: christian.faillace@leonardocompany.com

Dr. Keith FORD
Thales
UNITED KINGDOM
Email: keith.ford@uk.thalesgroup.com

LtCol Stefano GIACOMOZZI
General Defence Staff
ITALY
Email: mscoe.ds02@smd.difesa.it

Mr. Sabas GONZALEZ GODOY
NATO ACT
UNITED STATES
Email: Sabas.Gonzalez@act.nato.int

Ms. Amy GROM
Joint Staff J7
UNITED STATES
Email: amy.m.grom.civ@mail.mil

Mr. Yannick GUILLEMER
French MoD
FRANCE
Email: yannick.guillemer@intradef.gouv.fr

Dr. Jo HANNAY
Norwegian Defence Research Establishment (FFI)
NORWAY
Email: jo.hannay@ffi.no

Mr. Andrew HOOPER
MOD
UNITED KINGDOM
Email: andy.hooper321@mod.uk

Mr. Willem (Wim) HUISKAMP
TNO Defence, Security and Safety
NETHERLANDS
Email: wim.huiskamp@tno.nl

Dr. Frank-T. JOHNSEN
Norwegian Defence Research Establishment (FFI)
NORWAY
Email: frank-trethan.johnsen@ffi.no

LtCol Jason JONES
NATO M&S CoE
ITALY
Email: mscoe.dr02@smd.difesa.it

Lt Angelo KAIJSER
Dutch Ministry of Defence
NETHERLANDS
Email: AJ.Kaijser@mindef.nl

Mr. Daniel KALLFASS
EADS Deutschland GmbH/CASSIDIAN
GERMANY
Email: daniel.kallfass@airbus.com

Col Robert KEWLEY
West Point
UNITED STATES
Email: Robert.Kewley@usma.edu

LtCol Gerard KONIJN
Dutch Ministry of Defence
NETHERLANDS
Email: gerard.konijn@gmail.com

Mr. Niels KRARUP-HANSEN
MoD DALO
DENMARK
Email: nkh@mil.dk

Mr. Vegard Berg KVERNELV
Norwegian Defence Research Establishment (FFI)
NORWAY
Email: vegard.kvernelv@ffi.no

Capt Peter LINDSKOG
Swedish Armed Forces
SWEDEN
Email: peter.j.lindskog@mil.se

Mr. Jonathan LLOYD
Defence Science and Technology Laboratory (Dstl)
UNITED KINGDOM
Email: jplloyd1@dstl.gov.uk

Mr. Jose-Maria LOPEZ RODRIGUEZ
Nextel Aerospace, Defence and Security (NADS)
SPAIN
Email: jmlopez@nads.es

Mr. Rene MADSEN
IFAD TS A/S
DENMARK
Email: Rene.Madsen@ifad.dk

Ms. Sylvie MARTEL
NCIA
NETHERLANDS
Email: Sylvie.Martel@ncia.nato.int

mailto:christian.faillace@leonardocompany.com
mailto:keith.ford@uk.thalesgroup.com
mailto:mscoe.ds02@smd.difesa.it
mailto:Sabas.Gonzalez@act.nato.int
mailto:amy.m.grom.civ@mail.mil
mailto:yannick.guillemer@intradef.gouv.fr
mailto:jo.hannay@ffi.no
mailto:andy.hooper321@mod.uk
mailto:wim.huiskamp@tno.nl
mailto:frank-trethan.johnsen@ffi.no
mailto:mscoe.dr02@smd.difesa.it
mailto:AJ.Kaijser@mindef.nl
mailto:daniel.kallfass@airbus.com
mailto:Robert.Kewley@usma.edu
mailto:gerard.konijn@gmail.com
mailto:nkh@mil.dk
mailto:vegard.kvernelv@ffi.no
mailto:peter.j.lindskog@mil.se
mailto:jplloyd1@dstl.gov.uk
mailto:jmlopez@nads.es
mailto:Rene.Madsen@ifad.dk
mailto:Sylvie.Martel@ncia.nato.int

STO-TR-MSG-136-Part-VII xix

Mr. Gregg MARTIN
Joint Staff J7
UNITED STATES
Email: gregg.w.martin.civ@mail.mil

Mr. Jose Ramon MARTINEZ SALIO
Nextel Aerospace, Defence and Security (NADS)
SPAIN
Email: jrmartinez@nads.es

LtCdr Mehmet Gokhan METIN
Navy Research Centre
TURKEY
Email: m_gokhan_metin@yahoo.com

Mr. Aljosa MILJAVEC
MoD, Slovenian Armed Forces
SLOVENIA
Email: Aljosa.Miljavec@mors.si

Mr. Brian MILLER
U.S. Army
UNITED STATES
Email: brian.s.miller116.civ@mail.mil

Dr. Katherine MORSE
John Hopkins University/APL
UNITED STATES
Email: Katherine.Morse@jhuapl.edu

LtCol Ales MYNARIK
NATO JCBRN Defence COE
CZECH REPUBLIC
Email: mynarika@jcbrncoe.cz

Mr. Rick NEWELL
JFTC
POLAND
Email: rick.newell@jftc.nato.int

Mr. Jeppe NYLOKKE
IFAD TS A/S
DENMARK
Email: jeppe.nylokke@ifad.dk

Mr. Robbie PHILIPPS
Lockheed Martin Corporation
AUSTRALIA
Email: robbie.phillips@lmco.com

Mr. Marco PICOLLO
Finmecanica
ITALY
Email: marco.picollo@finmeccanica.com

Dr. LtCol (Ret) Dalibor PROCHAZKA
University of Defence
CZECH REPUBLIC
Email: dalibor.prochazka@unob.cz

Mr. Tomasz ROGULA
NATO Joint Force Training Centre
POLAND
Email: tomasz.rogula@jftc.nato.int

Dr. Martin ROTHER
IABG mbH
GERMANY
Email: rother@iabg.de

Mr. Angel SAN JOSE MARTIN
NATO ACT
UNITED STATES
Email: Angel.SanJoseMartin@act.nato.int

Maj Alfio SCACCIANOCE
NATO M&S CoE
ITALY
Email: mscoe.cde05@smd.difesa.it

LtCol Wolfhard SCHMIDT
JFTC
POLAND
Email: wolfhard.schmidt@jftc.nato.int

Mr. Barry SIEGEL
SPAWAR Systems Center – Pacific
UNITED STATES
Email: Barry.Siegel@navy.mil

Mrs. Louise SIMPSON
Thales
UNITED KINGDOM
Email: louise.simpson@uk.thalesgroup.com

Mr. Neil SMITH
UK MoD Dstl
UNITED KINGDOM
Email: nsmith@dstl.gov.uk

Mr. Per-Philip SOLLIN
Pitch Technologies AB
SWEDEN
Email: per-philip.sollin@pitch.se

Dr. Ralf STÜBER
CPA ReDev mbH
GERMANY
Email: stueber@supportgis.de

mailto:gregg.w.martin.civ@mail.mil
mailto:jrmartinez@nads.es
mailto:m_gokhan_metin@yahoo.com
mailto:Aljosa.Miljavec@mors.si
mailto:brian.s.miller116.civ@mail.mil
mailto:Katherine.Morse@jhuapl.edu
mailto:mynarika@jcbrncoe.cz
mailto:rick.newell@jftc.nato.int
mailto:jeppe.nylokke@ifad.dk
mailto:robbie.phillips@lmco.com
mailto:marco.picollo@finmeccanica.com
mailto:dalibor.prochazka@unob.cz
mailto:tomasz.rogula@jftc.nato.int
mailto:rother@iabg.de
mailto:Angel.SanJoseMartin@act.nato.int
mailto:mscoe.cde05@smd.difesa.it
mailto:wolfhard.schmidt@jftc.nato.int
mailto:Barry.Siegel@navy.mil
mailto:louise.simpson@uk.thalesgroup.com
mailto:nsmith@dstl.gov.uk
mailto:per-philip.sollin@pitch.se
mailto:stueber@supportgis.de

xx STO-TR-MSG-136-Part-VII

Capt Colin TIMMONS
Department of National Defence
CANADA
Email: colin.timmons@forces.gc.ca

Maj Dennis VAN DEN ENDE
Ministry of Defence
NETHERLANDS
Email: d.vd.ende@mindef.nl

Mr. Martin Dalgaard VILLUMSEN
IFAD TS A/S
DENMARK
Email: Martin.Villumsen@ifad.dk

Mr. Brian WARDMAN
Dstl Portsdown West
UNITED KINGDOM
Email: bwardman@dstl.gov.uk

Mr. Andrzej WNUK
Joint Warfare Centre
NORWAY
Email: andrzej.wnuk@jwc.nato.int

ADDITIONAL CONTRIBUTORS

Mr. Andy BOWERS
US Joint Staff J7
UNITED STATES
Email: francis.bowers@gdit.com

Mr. Brent MORROW
US Military Academy
UNITED STATES
Email: Brent.Morrow@usma.edu

Mr. Cory SAYLES
Lockheed Martin
UNITED STATES
Email: Cory.d.sayles@lmco.com

Mr. Roy SCRUDDER
The University of Texas at Austin
UNITED STATES
Email: roy.scrudder@arlut.utexas.edu

Mr. Dennis WILDE
European IAD Centre
UNITED STATES
Email: dennis.wilde@us.af.mil

mailto:colin.timmons@forces.gc.ca
mailto:d.vd.ende@mindef.nl
mailto:Martin.Villumsen@ifad.dk
mailto:bwardman@dstl.gov.uk
mailto:andrzej.wnuk@jwc.nato.int
mailto:francis.bowers@gdit.com
mailto:Brent.Morrow@usma.edu
mailto:Cory.d.sayles@lmco.com
mailto:roy.scrudder@arlut.utexas.edu
mailto:dennis.wilde@us.af.mil

STO-TR-MSG-136-Part-VII ES - 1

Modelling and Simulation as a Service –
Volume 4: Experimentation Report

(STO-TR-MSG-136-Part-VII)

Executive Summary
NATO and nations use simulation environments for various purposes, such as training, capability
development, mission rehearsal and decision support in acquisition processes. Consequently, Modelling and
Simulation (M&S) has become a critical capability for the alliance and its nations. M&S products are highly
valuable resources and it is essential that M&S products, data and processes are conveniently accessible to a
large number of users as often as possible. However, achieving interoperability between simulation systems
and ensuring credibility of results currently requires large efforts with regards to time, personnel and budget.

Recent developments in cloud computing technology and service-oriented architectures offer opportunities
to better utilize M&S capabilities in order to satisfy NATO critical needs. M&S as a Service (MSaaS) is
a new concept that includes service orientation and the provision of M&S applications via the as-a-service
model of cloud computing to enable more composable simulation environments that can be deployed and
executed on-demand. The MSaaS paradigm supports stand-alone use as well as integration of multiple
simulated and real systems into a unified cloud-based simulation environment whenever the need arises.

NATO MSG-136 (“Modelling and Simulation as a Service – Rapid deployment of interoperable and credible
simulation environments”) investigated the new concept of MSaaS with the aim of providing the technical
and organizational foundations to establish the Allied Framework for M&S as a Service within NATO and
partner nations. The Allied Framework for M&S as a Service is the common approach of NATO and nations
towards implementing MSaaS and is defined by the following documents:

• Operational Concept Document;

• Technical Reference Architecture (including service discovery, engineering process and
experimentation documentation); and

• Governance Policies.

MSG-136 evaluated the MSaaS concept in various experiments. The experimentation results and initial
operational applications demonstrate that MSaaS is capable of realizing the vision that M&S products,
data and processes are conveniently accessible to a large number of users whenever and wherever needed.
MSG-136 strongly recommends NATO and nations to advance and to promote the operational readiness
of M&S as a Service, and to conduct required Science & Technology efforts to close current gaps.

This document describes the MSG-136 experimentation activities that evaluated the MSaaS concept in
two experiments with overall eight test cases. The Reference Architecture approach of MSG-136 proved
to be valid; the technology MSG-136 used was well manageable.

The experimentation results demonstrate that MSaaS is capable of realizing the vision that M&S products,
data and processes are conveniently accessible to a large number of users whenever and wherever needed.

ES - 2 STO-TR-MSG-136-Part-VII

Modélisation et Simulation en tant que service –
Volume 4 : Rapport d’expérimentation

(STO-TR-MSG-136-Part-VII)

Synthèse
L’OTAN et les pays membres utilisent les environnements de simulation à différentes fins, telles que la
formation, le développement capacitaire, l’entraînement opérationnel et l’aide à la décision dans les
processus d’acquisition. Par conséquent, la modélisation et simulation (M&S) est devenue une capacité
cruciale pour l’Alliance et ses pays membres. Les produits de M&S sont des ressources extrêmement
précieuses ; il est essentiel que les produits, données et procédés de M&S soient facilement accessibles à un
grand nombre d’utilisateurs aussi fréquemment que possible. Toutefois, l’interopérabilité entre les systèmes
de simulation et la crédibilité des résultats ne sont pas encore acquises et nécessitent beaucoup de temps, de
personnel et d’argent.

Les évolutions récentes du cloud informatique et des architectures orientées service offrent l’occasion
de mieux utiliser les capacités de M&S afin de répondre aux besoins cruciaux de l’OTAN. La M&S en tant
que service (MSaaS) est un nouveau concept qui inclut l’orientation service et la fourniture d’applications
de M&S via le modèle « en tant que service » du cloud informatique, dans le but de proposer
des environnements de simulation plus faciles à composer et pouvant être déployés et exécutés à la demande.
Le paradigme du MSaaS permet aussi bien une utilisation autonome que l’intégration de multiples
systèmes simulés et réels au sein d’un environnement de simulation dans le cloud, chaque fois que le besoin
s’en fait sentir.

Le MSG-136 de l’OTAN (« Modélisation et simulation en tant que service (MSaaS) – Déploiement rapide
d’environnements de simulation crédibles et interopérables ») a étudié le nouveau concept de MSaaS afin de
fournir les bases techniques et organisationnelles permettant d’établir le « cadre allié de M&S en tant que
service » au sein de l’OTAN et des pays partenaires. Le cadre allié de M&S en tant que service est la
démarche commune de l’OTAN et des pays visant à mettre en œuvre la MSaaS. Il est défini dans les
documents suivant :

• Document de définition opérationnelle ;
• Architecture de référence technique (incluant la communication du service, le processus

d’ingénierie et la documentation d’expérimentation) ; et
• Politiques de gouvernance.

Le MSG-136 a évalué le concept de MSaaS au moyen de diverses expériences. Les résultats
d’expérimentation et les premières applications opérationnelles démontrent que la MSaaS est capable
de rendre les produits, données et processus de M&S commodément accessibles à un grand nombre
d’utilisateurs, quels que soient l’endroit et le moment où le besoin s’en fait sentir. Le MSG-136 recommande
vivement à l’OTAN et aux pays de faire progresser et d’améliorer l’état de préparation opérationnelle
de la M&S en tant que service et de mener les travaux de science et technologie requis pour combler
les lacunes actuelles.

Ce document décrit les activités d’expérimentation du MSG-136 qui ont évalué le concept de MSaaS lors
de deux expériences couvrant au total huit cas d’essai. La démarche d’architecture de référence du MSG-136
a prouvé sa validité ; la technologie utilisée était très maniable.

STO-TR-MSG-136-Part-VII ES - 3

Les résultats d’expérimentation démontrent que la MSaaS est capable de rendre les produits, données et
processus de M&S commodément accessibles à un grand nombre d’utilisateurs, quels que soient l’endroit et
le moment où le besoin s’en fait sentir.

ES - 4 STO-TR-MSG-136-Part-VII

STO-TR-MSG-136-Part-VII 1 - 1

Chapter 1 – INTRODUCTION

1.1 BACKGROUND

NATO and the nations use distributed simulation environments for various purposes, such as training,
mission rehearsal, or decision support in acquisition processes. Achieving interoperability between
participating simulation systems and ensuring credibility of results still requires enormous efforts with
regards to time, personnel, and budget.

Recent technical developments in the area of cloud computing technology and Service Oriented
Architectures (SOA) may offer opportunities to better utilize M&S capabilities to satisfy NATO critical
needs. A new concept that includes service orientation and the provision of M&S applications via
as-a-service cloud computing may enable more composable simulation environments that can also be
deployed more rapidly and on-demand. This new concept is known as “M&S as a Service”. (MSaaS).

NATO MSG-136 (“Modelling and Simulation as a Service – Rapid deployment of interoperable and
credible simulation environments”) investigates this new concept with the aim to provide the technical and
organizational foundations for a future permanent service-based M&S Ecosystem within NATO and partner
nations.

MSG-136 focuses on several areas of M&S as a Service within NATO:

• Governance: The governance concept and roadmap for M&S as a Service within NATO;

• Operational: The operational concept of M&S as a Service: how does it work from the user point
of view; and

• Technical: The technical concept of M&S as a Service, covering reference architecture, reference
services and reference engineering process.

This document, Volume 4, Experimentation, provides details regarding experiments conducted in support of
the technical concept development. Other technical area documents developed are:

• Volume 1, Technical Reference Architecture;

• Volume 2, Service Discovery and Metadata; and

• Volume 3, Reference Engineering Process.

1.2 OBJECTIVE

This document presents the M&S as a Service (MSaaS) Experimentation Plan and Experimentation Results
for the experiments conducted by MSG-136. Plan and results are combined in a single document to reduce
the amount of documentation, and to keep related information closely together.

The objective of the experimentation is to test Architecture Building Blocks (ABBs) from the MSaaS
Technical Reference Architecture (Volume 1) and associated approaches for Discovery Service and
Metadata (Volume 2).

Key questions to be answered are:

1) What Solution Building Blocks can be identified for Architecture Building Blocks?

2) Do the Architecture Building Blocks sufficiently cover the Solution Building Blocks used in the
experiments?

INTRODUCTION

1 - 2 STO-TR-MSG-136-Part-VII

1.3 DOCUMENT OVERVIEW

In Chapter 2, we describe the general approach for doing tests and experiments. Chapter 3 is about the
containerized HLA experiments, Chapter 4 about the simulation services experiments. In Chapter 5, we draw
a summary and conclusions.

STO-TR-MSG-136-Part-VII 2 - 1

Chapter 2 – APPROACH

The experimentation plan defines two strands of experiments: experiments to test the Reference
Architecture, and experiments to test solutions for the Simulation Services. Experiment test cases are defined
and performed, and results recorded. A brief overview of the two strands of experiments is provided in the
following sections.

2.1 EXPERIMENTS TO TEST THE REFERENCE ARCHITECTURE

This strand of experiments concerns the testing of the Reference Architecture, which is the enabling
technology for ABBs in the Reference Architecture. In summary the experiment is characterized as follows:

• Experiment: “Containerized HLA based simulation environment”:

• Simulation Services Implementation: Containerized HLA federates, containerized web
services;

• Simulation Services Interfaces: HLA-RTI, web service interfaces; and

• M&S Message-Oriented Middleware Services: HLA-RTI.

The experiment environment for the experiment is illustrated in Figure 2-1. The experiment environment is a
collection of private clouds and a common cloud. The common cloud1 can be used by MSG-136 members
for tests performed in each experiment.

Figure 2-1: Experiment Environment.

1 Sponsored by NATO CSO.

APPROACH

2 - 2 STO-TR-MSG-136-Part-VII

In addition, the following common components are provided in the experiment environment:

• Docker Registry and web-based front-end for the exchange of Docker container images (provided
by NLD); and

• GitHub repository for the description of services in the Docker Registry, and for the exchange of
software, configuration files and other developmental data (provided by USA).

Container technology is beneficial since it provides a process execution contract between solution providers
and consumers. A software solution is provided as a container along with necessary dependencies with the
solution consumer only required to provide a host system running the relevant container engine. This
removes the need for the solution provider to account for all possible consumer environment or,
alternatively, for the solution consumer to specifically tailor a host system for a specific provided solution.
In the NATO context with multiple, diverse nations, having this common process execution environment
greatly simplifies the infrastructure aspects of these experiments.

Docker is the container technology used throughout these experiments. While container concepts have
existed for a few decades, it was the release of Docker in 2013 that has spurred its use. The rapid uptake of
container technology has spawned a cross industry standards activity known as the Open Container Initiative
(OCI). The fact that the OCI based its work from the Docker technology stack is testament to the popularity
and usefulness of the Docker container implementation.

2.2 EXPERIMENTS TO TEST SOLUTIONS OF SIMULATION SERVICES

The second strand of experiments tests solutions for Simulation Services, one of the main ABBs in the
Reference Architecture. These experiments focus on service interfaces and service interactions.

This strand of experiments includes tests with the following solutions for the Simulation Services:

• Synthetic Environment Service (i.e., GER SES);

• Route Planning Service (i.e., NOR RPS);

• Cloud Orchestration Solution (i.e., MSCOE – Leonardo ITA OCEAN); and

• Computer Generated Forces Service and C2-Sim gateway Service (i.e., ITA SGA and Gateway).

2.3 SCHEMA OF TEST CASE DESCRIPTION

The test cases and test results are described by using the following standard structure:

• Objective/Topic/Question: Objective of the test case, what parts of the Reference Architecture
are addressed.

• Assumptions/Preconditions/Boundary Conditions: Assumptions etc. necessary to conduct
the test.

• Systems and Interfaces: Systems/member applications that are involved in the test.

• Test Setup: Description of the test setup (e.g., picture of network or simulation environment).

• Processes and Activities: Events and activities conducted during the test.

• Observations: Any observations on system response, system behavior, planned and unplanned
intervention by experimenter, etc.

• Outcome/Analysis: Has the objectives of the test case been achieved, and was the initial question
answered? Any problems, difficulties, etc.

STO-TR-MSG-136-Part-VII 3 - 1

Chapter 3 – EXPERIMENT ON CONTAINERIZED
HLA BASED SIMULATION ENVIRONMENT

3.1 OVERVIEW
The Experiment “Containerized HLA Based Simulation Environment” is broken down in several test cases,
where each test case addresses specific parts of the Reference Architecture. An overview of test cases and
related Architecture Building Blocks is provided in Table 3-1.

Table 3-1: Test Cases Relation to Architecture Building Blocks.

Test Case Related Architecture Building Blocks
Test Case 1:
Container Networking

• Communication Services (RA Layer 1)
• M&S Message-Oriented Middleware Services

Test Case 2:
Containerization of HLA Federates

• Modelling Services

Test Case 3:
Metadata Repositories and Discovery

• M&S Repository Services
• M&S Registry Services

Test Case 4:
Simulation Composition

• M&S Composition Services

Test Case 5:
Container Orchestration Environments

• Communication Services (RA Layer 1)
• M&S Composition Services
• M&S Repository Services
• Security Services (RA Layer 1 and 2)
• Service Management and Control Services (RA Layer 2)

3.2 TEST CASE 1: CONTAINER NETWORKING (NLD)

3.2.1 Objective/Topic/Question
Federates in an HLA federation typically rely on network connections to enable communication. Depending on
the RTI, a mixture of connection and connection less and directed or broadcast connections may be used.
Docker provides a number of networking options by default and the ability to write custom network plug-ins
where required. Docker supports several different methods for networking containers: host, bridge, and overlay.

The objective of this test is to investigate the bridge and overlay networking models for connecting
containerized HLA federate applications.

3.2.2 Assumptions/Preconditions/Boundary Conditions
None.

3.2.3 Systems and Interfaces
Simple HLA federate applications are used, since the objective is to merely investigate Docker
network models.

EXPERIMENT ON CONTAINERIZED
HLA BASED SIMULATION ENVIRONMENT

3 - 2 STO-TR-MSG-136-Part-VII

3.2.4 Test Setup
The test environment consists of:

• Two Linux VMs with a Docker Engine, running on one host system; and
• One Amazon AWS Linux VM with a Docker Engine.

3.2.5 Processes and Activities
The following combinations have been setup and tested.

3.2.5.1 Single Docker Host

As shown in Figure 3-1:
• Simulation environment composed of containers running in a single Docker Host.
• Network: Default docker bridge.
• HLA-RTI: Pitch (TCP), Portico (Multicast).

Docker Host

Container CContainer A Container B

HLA Run Time Infrastructure

Application

Figure 3-1: Single Docker Host.

3.2.5.2 Multi Docker Host

As shown in Figure 3-2:
• Simulation environment composed of containers running in a cluster of Docker Hosts in a LAN.
• Network: Default docker overlay.
• HLA-RTI: Pitch (TCP), Portico (Multicast).

Figure 3-2: Multi Docker Host.

EXPERIMENT ON CONTAINERIZED
HLA BASED SIMULATION ENVIRONMENT

STO-TR-MSG-136-Part-VII 3 - 3

3.2.5.3 AWS Cloud

As shown in Figure 3-3:
• Simulation environment composed of containers running in a cluster of Docker Hosts both in the

Amazon Cloud and in a LAN.
• Network: Weave overlay network (http://weave.works).
• HLA-RTI: Pitch (TCP), Portico (Multicast).

Figure 3-3: AWS Cloud.

3.2.5.4 Hybrid

As shown in Figure 3-4:
• Simulation environment composed of containerized federates running in a Docker Host and of non-

containerized federates running on the host system, all in a LAN.
• Network: Weave overlay network (http://weave.works).
• HLA-RTI: Pitch (TCP), Portico (Multicast).

Figure 3-4: Hybrid.

3.2.6 Observations
Multicast is not supported by the default docker overlay network. Only Weave overlay supports multicast.

For the AWS Cloud case the Weave network setup has to be instantiated from the local system due to a
corporate firewall.

Weave allows the network endpoint to be extended to the host (Linux) operating system, allowing
non-containerized applications to connect to the overlay network.

http://weave.works/
http://weave.works/

EXPERIMENT ON CONTAINERIZED
HLA BASED SIMULATION ENVIRONMENT

3 - 4 STO-TR-MSG-136-Part-VII

By manually editing IP routes and IP tables it is possible to extend the number of combinations, e.g., mixing
non-containerized Windows applications with containerized Linux applications.

3.2.7 Outcome/Analysis
A summary of successful combinations is provided in Table 3-2.

Table 3-2: Summary of Combinations.

Network Driver Single Host Multi Host AWS Cloud Hybrid

Docker bridge TCP, Multicast – – –

Docker overlay – TCP TCP –

Weave overlay – TCP, Multicast TCP, Multicast TCP, Multicast

3.3 TEST CASE 2: CONTAINERIZATION OF HLA FEDERATES (AUS, NLD)

3.3.1 Objective/Topic/Question
The objective of this test case is to evaluate approaches in containerizing HLA federate applications.

Two approaches – design patterns – to containerize an HLA federate application are:
• Containerization by ‘extension’ (as shown in Figure 3-5):
• Makes use of the Docker Image hierarchy to link a federate application with a base LRC.

• One Image: build Federate Application Image from an LRC base image and add the application
code in a new file system layer.

• LRC combined with federate application at image build time.

Figure 3-5: Containerization by ‘Extension’.

• Containerization by ‘composition’ (as shown in Figure 3-6):

• Makes use of Docker Volumes to achieve the linkage.

• Two Images: LRC Base Image and Federate Application Image.

• Federate Application Image just contains the federate application; based on a small base image
that provides rudimentary file system operations.

• Installed directory is exposed as a volume that is mounted into the LRC container acting as a
plugin manager for application code.

• LRC combined with federate application at image run time.

EXPERIMENT ON CONTAINERIZED
HLA BASED SIMULATION ENVIRONMENT

STO-TR-MSG-136-Part-VII 3 - 5

Figure 3-6: Containerization by ‘Composition’.

The design patterns aim at modularity and reuse, especially when ‘linking’ with a Local RTI Component
(LRC). Changing LRC should be seamless to the federate application.

These patterns are described in Ref. [1].

3.3.2 Assumptions/Preconditions/Boundary Conditions
LRC base containers for Pitch, MaK and Portico are available.

3.3.3 Systems and Interfaces
Several federate applications are used in the test case:

• MaK VR-Forces;
• Pitch Recorder; and
• A number of Java federate applications, including KML Server and Shipsim.

3.3.4 Test Setup
The test environment consists of a single Linux VM running a Docker Engine.

3.3.5 Processes and Activities
Activities for both approaches:

• Create Dockerfile;
• Build container image;
• Create Docker compose file; and
• Start simulation composition.

3.3.6 Observations
For all federate applications it was fairly easy to create a Dockerfile and build a Docker image.

A MaK VR-Forces container image was only built with the extension pattern, using the Pitch LRC base image.

The Pitch Recorder container image was only built with the extension pattern, using both the Pitch LRC base
image and the Portico LRC base image. However, it was not possible to get the Portico based image to work
with other federates (Recorder federate could create/join a federation execution, but did not discover other
federates).

Container images for the other Java applications were built with both patterns, for all available LRC
base images.

EXPERIMENT ON CONTAINERIZED
HLA BASED SIMULATION ENVIRONMENT

3 - 6 STO-TR-MSG-136-Part-VII

3.3.7 Outcome/Analysis
Both patterns are very useful, in particular the extension pattern. It takes away the burden to install an LRC
and provides a standardized set of environment variables to interact with the LRC. The extension pattern is
most easy to use and results in fewer containers in a simulation execution plus smaller Docker compose files.

Various useful features are present in the LRC base images, some are generic (independent of RTI type),
others are dependent on RTI type, such as:

• Bootstrapping of federate applications (generic);

• Randomized start times of federate applications (generic); and

• Network adapter and log level settings.

3.4 TEST CASE 3: METADATA REPOSITORIES AND DISCOVERY (DEU,
GBR)

3.4.1 Objective/Topic/Question
• Assess overall approach to discovery and identify complete approach for describing, defining and

specifying M&S resources.

• Evaluate MSG-136 Service Description Template (SST) (in terms of structure, completeness,
unambiguity, etc.) as a method of producing encoded simulation objects:

• Review MSG-136 SST.

• Evaluate the ability to exchange metadata between Registries/Repositories from different nations, and to
share M&S resources between MSaaS ecosystems:

• Provide advice on approach to metadata, its role within a wider SOA ecosystem, and required
metadata standards; and

• Provide advice on how discovery enables resource sharing and simulation composition.

• Evaluate ability to Discover and obtain M&S Resources (Service/Data/Asset) using Registries/
Repositories from different nations:

• Identify limitations, issues;

• Provide advice on required standards e.g., interfaces; and

• Compare GBR/Aditerna approaches to Discovery.

3.4.1.1 Scope

• Evaluate MSaaS ecosystem elements relevant to discovery.

• MSaaS ABBs to be evaluated:

• M&S Metadata Repository Services; and

• M&S Discovery Services.

• Cross-cutting elements to be evaluated:

• Information layer; and

• Governance layer.

EXPERIMENT ON CONTAINERIZED
HLA BASED SIMULATION ENVIRONMENT

STO-TR-MSG-136-Part-VII 3 - 7

3.4.2 Assumptions/Preconditions/Boundary Conditions
• UK MSaaS GeoRegistry operating in cloud environment with external documented API. Accessible to

external users who are cleared for use and allocated an account.

• Aditerna SRP Registry/Repository operating in cloud environment with external documented API.
Accessible to external users who are cleared for use and allocated an account.

• An agreed set of simulation resources with associated encoded simulation objects and metadata.

3.4.3 Systems and Interfaces
• Systems:

• UK GeoRegistry; and

• Aditerna SRP Tool.

• Interfaces:
• GeoRegistry API.

• Data:
• Schema for MSG-136 Service Description Template;

• Schema for AIMs M&S information objects and metadata; and

• Metadata for national resources in the format defined by the generating nation.

3.4.4 Experimental Setup
The purpose of the experimentation is to demonstrate the feasibility of sharing information between different
Registries (see Figure 3-7). However, as the German capability does not have an external API, two-way
querying cannot be achieved.

Figure 3-7: The Ultimate Goal of the Work Carried Out in This Experiment is the Exchange of
Data Between the UK and German Registry-Repository Capabilities.

EXPERIMENT ON CONTAINERIZED
HLA BASED SIMULATION ENVIRONMENT

3 - 8 STO-TR-MSG-136-Part-VII

3.4.5 Processes and Activities
The experimentation is split into two phases. During Phase 1, the following activities will be carried out:

• Evaluate MSG-136 Service Specification Template:

• Map MSG-136 Service Description Template to AIMS metadata:

• Compare the two approaches and produce a high-level mapping between them;

• Document any differences; and

• Document issues/limitations/gaps.

• Document any limitations with MSG-136 Service Description Template.

The intention during Phase 2 is to carry out activities involving machine-to-machine communication
between the UK registry and Aditerna software as follows:

• Evaluate the ability to exchange metadata between Registries from different nations:

• Manually harvest service(s) defined by MSG-136 Service Description Template into
GeoRegistry;

• Define above service(s) using AIMS metadata and manually harvest into GeoRegistry;

• Explore different ways of Discovering M&S Resource using both metadata descriptions of
M&S Resource; and

• Document issues/limitations.

• Evaluate ability to Discover and obtain M&S Resources (Service/Data/Asset) using Registries/
Repositories from different nations:

• Perform Human-Machine Discovery of M&S Resources using GeoRegistry and SRP Tool;

• Discover M&S Resource(s) common to both GeoRegistry and SRP Tool;

• Document differences/limitations/issues/gaps; and

• Use SRP Tool to perform a machine-machine query on GeoRegistry.

The ability to perform this second phase in full is limited by the lack of an API for the Aditerna software.
Without this, no machine-to-machine communication is available, exchange of data is limited to manual
additions, and searches are limited to those that can be performed via its graphical user interface. Tasks that
could still be carried out within the list above are highlighted in bold; these do not involve machine-to-machine
communication, just manual harvesting. However, it isn’t clear what benefits these tasks would provide to
MSG-136 in isolation. They were originally intended as test cases for the automated work that was to be
completed later on. In themselves, they merely demonstrate in more detail what we have already shown by
performing the mapping and review of the Service Specification Template included later in this document.

In order to implement the second phase of experimentation as envisaged, a complete and documented
external API would be required for the Aditerna software.

It is suggested that as an alternative, time could be spent on developing the material produced during Phase 1
to document the two alternative approaches, and understanding the differences in more detail. In particular,
the mapping produced that shows the relationship between the SST and the UK information model
components could be of use in understanding the differences in the two approaches as well as the areas in
which the two different approaches complement each other.

EXPERIMENT ON CONTAINERIZED
HLA BASED SIMULATION ENVIRONMENT

STO-TR-MSG-136-Part-VII 3 - 9

3.4.6 Observations
These are recorded in Section 5.4 and Appendix 5-1 of TR-MSG-136-Part-V, Modelling and Simulation as a
Service, Volume 2: MSaaS Discovery Service and Metadata [2]. Appendix 5-1 provides a mapping of the
MSG-136 Service Descriptions with the UK AIMS metadata.

3.4.7 Outcome/Analysis
N/A

3.5 TEST CASE 4: SIMULATION COMPOSITION AND DEPLOYMENT (GBR)

3.5.1 Objective/Topic/Question
• Determine how ‘Service Compositions’ can be stored and discovered.

• Determine how services can be composed.

• Determine how ‘Service Deployments’ can be stored and discovered.

• Determine how to deploy the same simulation deployment for concurrent multiple events.

3.5.1.2 Scope

ABBs to be evaluated:

• M&S Composition Services.

3.5.2 Assumptions/Preconditions/Boundary Conditions
• GeoRegistry operating in a cloud environment.

• Metadata available for simulation resources.

3.5.3 Systems and Interfaces
• Systems

• UK GeoRegistry.

• HTTP Query Tools (COTS).

• Infrastructure as Code Tools (COTS).

• Prototype Composer Tool.

• Prototype Deployment Tool.

• Interfaces

• GeoRegistry: ebRIM.

• HTTP/HTTPS.

• Web Processing Service (WPS).

• Data

EXPERIMENT ON CONTAINERIZED
HLA BASED SIMULATION ENVIRONMENT

3 - 10 STO-TR-MSG-136-Part-VII

• Example metadata for Simulation Compositions, Services and Deployment objects.

• Example Information Objects for Compositions and Services.

• GeoRegistry/Repository populated with example M&S Simulation Compositions and Simulation
Deployments.

3.5.4 Test Setup
Figure 3-8 provides an overview of the experimental setup.

Figure 3-8: Experimental Setup.

3.5.4.1 Definitions

A list of definitions is provided in Table 3-3.

Table 3-3: List of Definitions.

Annotation Supporting documents or data used to evaluate a resource. An annotation is stored in the
Registry’s Repository whereas other supporting documents are stored in an external repository.

Composition A set of services which work together to provide a simulation environment for a defined event.

Event An instance of the execution of a particular simulation deployment.

External
Link

A link to supporting documents or data used to evaluate a resource. An external link is stored
in an external repository.

Sub-
composition

A group of re-usable services that have been composed and integrated and can be readily
deployed on-demand, as a composition or as part of a larger composition.

EXPERIMENT ON CONTAINERIZED
HLA BASED SIMULATION ENVIRONMENT

STO-TR-MSG-136-Part-VII 3 - 11

3.5.4.2 Composition

Test #1: Determine how can ‘Service Compositions’ be stored and discovered:

• Evaluate different types of complex queries for discovering Simulation Compositions and sub-
Compositions;

• Produce sub-Compositions;
• Define additional attributes for a ‘Service Composition’ in the MSaaS information model; and
• Document approach.

Test #2: Determine how services can be composed:

• Develop and evaluate different approaches to service composition;

• Develop prototype Composition tool to concatenate sub-compositions; and
• Document approach.

3.5.4.3 Deployment

Test #3: Determine how ‘Service Deployments’ can be stored and discovered:

• Perform Human-Machine and Machine-Machine queries to Discover Simulation Deployments;
• Deploy ‘Infrastructure as Code’ for stored example ‘Service Deployments’ in the Registry/

Repository;

• Define additional attributes for a ‘Service Deployment’ in the MSaaS information model; and
• Document approach.

Test #4: Determine how to deploy the same simulation deployment for concurrent multiple events:

• Determine approach;
• Develop prototype Simulation Deployment tool for controlling/monitoring Simulation Deployments;
• Enhance prototype Simulation Deployment tool for deploying concurrently running deployments;
• Demonstrate simultaneous execution of Simulation Deployments; and

• Document approach.

3.5.4.4 Composition Concepts

The proposed sub-composition concept is to describe a group of re-usable services that have been composed
and integrated and can be readily deployed on-demand, as a composition or as part of a larger composition.

A composition is a set of services which work together to provide a simulation environment for a defined
event. It should be noted that the structure of a Composition and sub-Composition Resource Information
object is the same i.e., there is no master Resource Information Composition object. An example
composition is shown in Figure 3-9.

Sub-Compositions can be overlaid onto the previous diagram to show the concept of grouping services in a
verified sub-composition.

In Figure 3-10, the ‘Exercise Control’ composition is a group of integrated services providing the capability
to control an exercise from a single Reconfigurable User Interface (RUI).

EXPERIMENT ON CONTAINERIZED
HLA BASED SIMULATION ENVIRONMENT

3 - 12 STO-TR-MSG-136-Part-VII

Figure 3-9: Example Composition.

Each service is described as an individual supporting service within the registry, but has been pulled together
into a single sub-composition, to be used in combination with other sub-compositions to meet an Event’s
requirement.

An Event is an instance of the execution of a particular simulation deployment.

Figure 3-10: Sub-Composition Example.

3.5.4.4.1 Defining Sub-Compositions

How a group of integrated services are divided into sub-compositions needs to be carefully considered
in order to provide the best reuse potential. They can be integrated in a hierarchical manner as shown in
Figure 3-11.

EXPERIMENT ON CONTAINERIZED
HLA BASED SIMULATION ENVIRONMENT

STO-TR-MSG-136-Part-VII 3 - 13

• Sub-Compositions are integrated services
created by simulation developers or service
providers

• Composition 4 is comprised of sub-
compositions 1 and 2

• Composition 4 is re-used, as a sub-
composition in Composition 5

Figure 3-11: Sub-Composition Re-Use.

3.5.4.4.2 Deployment Concepts

The proposed deployment concept is to support automation of deployments by describing deployments as code.

Previous research has highlighted the difficulties of porting virtual machines between different clouds
(although common standards were used). As a result, it is recommended that the use of ‘Infrastructure as
Code (IaC)’ is used for defining how the services should be deployed for a simulation.

Infrastructure as Code enables infrastructure to be provided on demand. Infrastructure is treated as code and
uses templates and a descriptive language to define the infrastructure.

These templates are used to automate the creation and setup of the infrastructure, providing consistency,
repeatability and removal of manual errors. This also allows infrastructure elements to be easily shared and
reused between different cloud environments.

3.5.4.4.3 MSaaS Information Model

In Figure 3-12, the three-layered MSaaS Information Model is made up of a Registry, Metadata and an
Information layer.

Figure 3-12: MSaaS Information Model.

EXPERIMENT ON CONTAINERIZED
HLA BASED SIMULATION ENVIRONMENT

3 - 14 STO-TR-MSG-136-Part-VII

The layers support the ecosystem processes for searching, discovering, evaluating and automating, as follows:

a) The registry layer to search for, and discover resources within the Ecosystem;

b) The metadata layer to evaluate the suitability of resources against the simulation requirements; and

c) The Information layer contains Information Objects that provide additional information specific to a
Registry object that can extend the search, discovery, evaluate and automation capabilities.

The process for reusing simulation resources is to discover them, evaluate their suitability and to use them as
shown in Figure 3-13.

Figure 3-13: Discover, Evaluate and Use.

3.5.4.4.4 Supporting Registry Tools

To support the process of harvesting objects into the registry, the following tools have been developed and
deployed by Envitia:

1) An FTP Server was setup on the GeoRegistry VM on the UKCloud. This allows developers to upload
metadata, annotations, associations and information objects to the staging area, ready for harvesting.

2) A supporting Harvesting Tool was developed to allow developers to harvest metadata into
the Registry.

3) A supporting Annotation Tool was developed to allow developers to load annotations into the
Registry’s Repository.

4) A supporting Association Tool was developed to allow developers to load associations between
objects in the Registry.

5) A supporting Information Object Tool was developed to allow developers to load information
objects into the Registry.

These tools were successfully used to harvest the metadata, load associations and information objects for the
services, compositions, sub-compositions and deployments required for these experiments as shown in
Figure 3-14.

EXPERIMENT ON CONTAINERIZED
HLA BASED SIMULATION ENVIRONMENT

STO-TR-MSG-136-Part-VII 3 - 15

Figure 3-14: Harvesting Tool.

3.5.5 Processes and Activities

3.5.5.1 Test #1

3.5.5.1.1 Test #1 Experimental Setup

This test case evaluated different types of complex queries for discovering simulation compositions and sub-
compositions. Example sub-compositions were produced as Information Objects that could be harvested into
the Registry’s Repository, as shown in Figure 3-15.

Figure 3-15: Create Composition Process.

3.5.5.1.1.1 Sub-Compositions

Figure 3-16 shows one of the compositions (and sub-compositions) added to the registry to support
this experiment.

EXPERIMENT ON CONTAINERIZED
HLA BASED SIMULATION ENVIRONMENT

3 - 16 STO-TR-MSG-136-Part-VII

Figure 3-16: Experiment Composition.

A prototype HTTP Client Web tool was developed as part of this experiment, which was used to query the
registry and display the results as shown in Figure 3-17. The prototype Web tool was developed using the
Java Spring framework, with an Angular front end.

Figure 3-17: Prototype HTTP Client Web Tool.

3.5.5.1.1.2 Storing Sub-Compositions

Example compositions (and Sub-compositions) were created as XML files. Metadata files and association
files were manually created to describe the compositions and define the relationships between them.

The supporting registry tools described earlier, were used to harvest compositions, sub-compositions into
the registry.

EXPERIMENT ON CONTAINERIZED
HLA BASED SIMULATION ENVIRONMENT

STO-TR-MSG-136-Part-VII 3 - 17

3.5.5.1.1.3 Complex Queries

A complex query combines a number of simple queries in order to discover compositions that meet an
Event’s requirements. They exploit one of the benefits of the Registry Information Model. This task explored
the types of complex queries required to discover compositions.

These complex queries supported the processes to:

a) Search and discover resources;

b) Evaluate resources; and

c) Automate (or semi-automate) composition of simulations.

3.5.5.1.1.4 Search and Discovery

When searching for, and discovering resources within the Ecosystem, the resources are matched against a
required capability, a characteristic or a specific resource. Information that supports search and discovery is
stored as metadata, keywords, associations or classifications within the registry.

Example queries include:

a) Search for events in the Air domain;

b) Search for all scenarios based in the UK;

c) Search for scenarios created by me;

d) Search for compositions using HLA-Evolved with NETN FOM;

e) Search for services delivering Close Air Support (CAP) capability;

f) Search for services delivering terrain databases in the UK;

g) Search for deployments using the UKCloud infrastructure;

h) Search for deployments associated with <event id>; and

i) Search for events used for Test and Evaluation.

3.5.5.1.1.5 Evaluate

When evaluating the suitability of resources, the queries performed provide the user with additional data in
order to assess the resource against the simulation event requirements.

This information is stored as a combination of metadata, associations and supporting documents or data
within the registry.

Additional supporting information is stored as either an annotation or as an external link. These are
documents or data that can be used to evaluate the resource, for example, a video of a scenario, an interface
control document or simulation developers’ experience of using a resource.

Examples of queries include:

a) Evaluate the compositions using <scenario id>;

b) Evaluate the data services delivering terrain databases in the UK;

c) Evaluate the capabilities provided by <service id>;

d) Evaluate the interfaces provided by <service id>;

EXPERIMENT ON CONTAINERIZED
HLA BASED SIMULATION ENVIRONMENT

3 - 18 STO-TR-MSG-136-Part-VII

e) Evaluate the information captured for <event id>;

f) Evaluate the lessons learnt captured for <event id>; and

g) Evaluate the constraints of <composition id>.

3.5.5.1.1.6 Automation

One of the goals of MSaaS is to provide as much automation as possible to the process of creating,
composing and deploying simulations.

When automating the composition, multiple queries are required that traverse the Registry’s Resource
Information model. These combined queries perform the search and discover functions that return
information to be evaluated. The evaluation is currently performed by a human and enables a decision to be
made as to the suitability of a simulation resource. The resulting decision selects a suitable combination of
resources that best meet the event requirements.

The ‘decide’ function is not provided by the registry, but requires a management layer or suite of automation
tools to support this, which use the power of the registry.

The proposed concept is to:

a) Combine services into sub-compositions, in order to pull in a group of integrated services providing
a required capability, for example ‘Exercise Control’, or ‘Data Capture’.

b) Apply rules to decide on a suitable combination of resources and compositions which best meet the
simulation event requirements, for example, select services with the highest user rating, or select
services which can be deployed within a required budget.

Sub-compositions combine services, as a group of re-usable services that have been composed and integrated
and can be readily deployed on-demand.

These sub-compositions can then be used by automation tools to pull together a suitable combination of
resources as part of a larger composition, which best meet the requirements.

Example requests include:

a) Build me a simulation for a Test and Evaluation event using <service id>;

b) Build me a simulation for a collective training event, to support a joint ‘Tactical Engagement’
exercise, using <conceptual model id> and <scenario id>;

c) Build me a simulation for specific simulator training using <simulator id>;

d) Build me a simulation based on <event id> using <scenario id> with the capability to capture and
analyse the data;

e) Build me a simulation using a ‘desert’ terrain environment to support a land exercise; and

f) Build me a simulation using <service id> and <service id> with HLA-E and NETN FOM.

3.5.5.1.2 Test #1 Observations

3.5.5.1.2.1 Search and Discovery

The prototype HTTP Client Web tool can be used to search for, and discover resources within the
Ecosystem, as shown in Figure 3-18.

EXPERIMENT ON CONTAINERIZED
HLA BASED SIMULATION ENVIRONMENT

STO-TR-MSG-136-Part-VII 3 - 19

Figure 3-18: Search and Discovery using HTTP Client Tool.

3.5.5.1.2.2 Evaluate

The prototype HTTP Client Web tool can be used to perform some simple evaluation based on associations
between resources, as shown in Figure 3-19.

Ideally this would also cover additional evaluation against metadata, annotations or external links. This
capability does not form part of the experiment.

Figure 3-19: Evaluate Associations Using HTTP Client Tool.

3.5.5.1.2.3 Automation

The prototype HTTP Client Web tool can be used to perform a combination of queries. These queries can be
used by automation tools to perform the search, discover and evaluation tasks, as shown in Figure 3-20.

Sub-compositions can be used to pull in a group of integrated services providing a required capability, for
example ‘Exercise Control’, or ‘Data Capture’, as shown in Figure 3-21.

EXPERIMENT ON CONTAINERIZED
HLA BASED SIMULATION ENVIRONMENT

3 - 20 STO-TR-MSG-136-Part-VII

Rules can be applied by an automation tool to decide on a suitable combination of resources which best meet
the event requirements, for example, select services with the highest user rating, or select services which can
be deployed within a required budget.

Figure 3-20: Automate Using HTTP Client Tool.

Figure 3-21: Exercise Control Sub-Composition.

3.5.5.1.3 Test #1 Outcome/Analysis

The objective was to determine how ‘Service Compositions’ can be stored and discovered.

The experiment has:
a) Developed the composition (and sub-composition) concept;
b) Reviewed and extended the MSaaS Information model to support composition concepts;
c) Developed additional supporting tools to allow developers to harvest into the registry; and
d) Demonstrated how complex queries can be used to support automation of composition.

The test has shown that semi-automation of compositions for a simulation should be possible. Combining a
number of queries is the first step towards this goal.

There is a need for a suite of composition automation tools to be integrated with the registry, in order to
succeed in simplifying the complexity of composing an event.

EXPERIMENT ON CONTAINERIZED
HLA BASED SIMULATION ENVIRONMENT

STO-TR-MSG-136-Part-VII 3 - 21

3.5.5.2 Test #2

Determine how services can be composed using the event requirements to search the registry for candidate
services, sub-compositions and compositions.

The focus is on compositions created by the simulation user e.g., Front Line Commands, using existing
services, sub-compositions and compositions, as opposed to new services or sub-compositions created by the
simulation developer or service provider.

3.5.5.2.1 Test #2 Experimental Setup

This test case evaluated different approaches to service composition and developed a prototype composition
tool to concatenate discovered sub-compositions.

This task explored options to concatenate sub-compositions discovered via complex queries. The issues
explored included:

a) Can event requirements be used to create a composition?
b) What information can be used to decide which sub-compositions to use?
c) How can requirement gaps be resolved?
d) Can rules be used to apply supporting sub-compositions?
e) How can the selection/choices be presented to the user?

In order to explore these questions, a prototype composer tool and Web Processing Service (WPS) were
developed to incorporate querying the registry and display the results (see Figure 3-22).

Figure 3-22: Composer Tool.

Example Information Objects that described services and compositions (and sub-compositions) were created
as JSON files. The supporting registry tools described earlier were used to harvest these Information Objects
into Information layer of the registry.

EXPERIMENT ON CONTAINERIZED
HLA BASED SIMULATION ENVIRONMENT

3 - 22 STO-TR-MSG-136-Part-VII

3.5.5.2.2 Test #2 Observations

3.5.5.2.2.1 Composition Web Processing Service (WPS)

The Composer WPS uses complex queries to identify matching or closely matching (ranked) compositions
(which also include supporting services) from user defined system requirements, as shown in Figure 3-23.

Figure 3-23: Composition WPS.

The WPS could also apply rules to decide on a suitable combination of resources which best meet the event
requirements, for example, select services with the highest user rating, or select services that can be deployed
within a required budget. This has not been implemented for this initial version of the WPS.

For this experiment, the user defined requirements were described in terms of one or more of the following:

1) Conceptual Entity:

a) Entity Type e.g., UAV.

b) Property e.g., Range.

c) Behaviour e.g., Follow.

2) Environment Entity:

a) Entity Type e.g., Map.

b) Property e.g., WMS.

3) Support Capability:

a) Property:

i) Function e.g., Exercise Control.

ii) Type e.g., Rich Internet App.

iii) Protocol e.g., HLA-E.

iv) FOM e.g., NETN v1

EXPERIMENT ON CONTAINERIZED
HLA BASED SIMULATION ENVIRONMENT

STO-TR-MSG-136-Part-VII 3 - 23

3.5.5.2.2.2 Composer Tool

The Composer tool is shown in Figure 3-24. The tool queries the WPS with a pre-defined user requirement
and displays the results.

The table on the left-hand side is a ranked list of compositions and services, returned from the WPS, which
match or partially matches the requirements fed into the WPS.

Figure 3-24: MSaaS Composer.

Each item (Composition or Service) can be added (or removed) from/to the topology view (displayed on the
right-hand side). When an item is added, the Composer Tool queries the registry for the Information Object
associated with the selected Composition or Service, and displays a graphical illustration of this object as a
number of linked nodes in the topology view (see Figure 3-25).

For a composition (or sub-composition) this shows the services that make up the composition and how they
are associated.

Figure 3-25: MSaaS Composer, with Graphical Illustration.

EXPERIMENT ON CONTAINERIZED
HLA BASED SIMULATION ENVIRONMENT

3 - 24 STO-TR-MSG-136-Part-VII

Each sub-composition is initially shown as a single node (collapsed view). By selecting the + (plus) icon,
the sub-composition is expanded to show its contents. For example, the expanded sub-composition in
Figure 3-26 shows that ‘Exercise Control’ consists of the following services:

a) WebLVC Server;

b) GeoServer;

c) ICOVICS RUI; and

d) ArcGIS Online.

Figure 3-26: Topology View.

The Topology view can be added to, by selecting additional results from the list and adding them to the
topology view. In Figure 3-27, OneSAF Service has been added.

As shown in Figure 3-28, the new Service (OneSAF) can then be linked to (associated with) another Service
(Pitch RTI), ready to be saved as a new composition. In the current implementation no check is made as to
whether the new service can viably be integrated with the selected node.

The prototype composer provides basic functionality e.g., collapsed/expanded sub-compositions, individual
services and links (associations) can be removed or added, nodes can be renamed.

EXPERIMENT ON CONTAINERIZED
HLA BASED SIMULATION ENVIRONMENT

STO-TR-MSG-136-Part-VII 3 - 25

Figure 3-27: MSaaS Composer.

Figure 3-28: Topology View.

EXPERIMENT ON CONTAINERIZED
HLA BASED SIMULATION ENVIRONMENT

3 - 26 STO-TR-MSG-136-Part-VII

3.5.5.2.3 Test #2 Outcome/Analysis

The objective was to determine how services can be composed.

This experiment has:

a) Developed a Composition Web Processing Services (WPS) to identify matching or closely
matching (ranked) compositions (which also include supporting services) from user defined system
requirements.

b) Developed a prototype Composer tool to graphically view selected sub-compositions and services.

There is a need for a suite of composition automation tools to be integrated with the registry, in order to
succeed in simplifying the complexity of composing an event.

This prototype tool has allowed the concept to be explored and enabled requirements for such a tool to be
developed and understood.

3.5.5.3 Test #3

Determine how ‘Service Deployments’ can be stored and discovered.

3.5.5.3.1 Test #3 Experimental Setup

This test case created and deployed Infrastructure as Code for stored example ‘Service Deployments’ in the
Registry/Repository, as shown in Figure 3-29.

Figure 3-29: Experiment Setup.

A prototype deployment tool has been developed to query the registry for available deployments and deploy
events, which are described using Infrastructure as Code.

EXPERIMENT ON CONTAINERIZED
HLA BASED SIMULATION ENVIRONMENT

STO-TR-MSG-136-Part-VII 3 - 27

3.5.5.3.1.2 Storing Deployments

Example deployments were created as XML files using a text editor. Metadata files and association files
were then manually created to describe the deployments and define the relationships to other objects in
the registry.

The supporting registry tools described earlier were used to harvest deployments into the registry.

3.5.5.3.1.2 Infrastructure as Code

Infrastructure as Code enables infrastructure to be provided on demand. Infrastructure is treated as code and
uses templates and a descriptive language to define the infrastructure.

These templates are used to automate the creation and setup of the infrastructure, providing consistency,
repeatability and removal of manual errors. This also allows infrastructure elements to be easily shared and
reused between cloud environments.

3.5.5.3.2 Test #3 Observations

3.5.5.3.2.1 Deployment Tool

The Deployment Tool is shown in Figure 3-30. The tool queries the registry for all deployments and allows
the user to deploy or un-deploy each event. Each event may have a number of links to applications available
to the user, which have been deployed for this event.

Figure 3-30: AIMS Deployment Tool.

EXPERIMENT ON CONTAINERIZED
HLA BASED SIMULATION ENVIRONMENT

3 - 28 STO-TR-MSG-136-Part-VII

The deployment process uses the following tools:

a) Terraform to create the Infrastructure.

b) Puppet to install and configure the applications.

c) Docker Compose to launch and run the required combination of Docker containers.

These tools support both AWS and VMware (used by UKCloud). Figure 3-31 summarises the deployment
process using ‘Infrastructure as Code’ approaches.

3.5.5.3.3 Test #3 Outcome/Analysis

The objective was to determine how ‘Service Deployments’ can be stored and discovered.

This experiment has:

a) Demonstrated the ability to define a simulation ‘stack’ as code.

b) Demonstrated the ability to create (and re-create) a simulation deployment from scratch.

There needs to be a suite of deployment automation tools sitting between the registry (for defining
deployments) and the infrastructure providers (for delivering deployments) in order to succeed in automating
(or semi-automating) the deployment of simulations.

The prototype deployment tool, along with the creation Infrastructure as code, is good step towards semi-
automating the deployment of simulations.

Figure 3-31: Infrastructure as Code Deployment.

3.5.5.4 Test #4

Determine how to deploy the same simulation deployment for concurrent multiple events.

3.5.5.4.1 Test #4 Experimental Setup

This test case will develop a prototype simulation deployment tool for deploying concurrently running
deployments, as shown in Figure 3-32.

EXPERIMENT ON CONTAINERIZED
HLA BASED SIMULATION ENVIRONMENT

STO-TR-MSG-136-Part-VII 3 - 29

Figure 3-32: Concurrent Event Setup.

3.5.5.4.1.2 Concurrent Events

The aim of this task is to deploy the same Federation multiple times in the same cloud.

Infrastructure as Code templates created in test #3 were reused to demonstrate simultaneous execution of
Simulation Deployments.

Each event ran concurrently but separated from each other. Access to the Simulation services for each event
was via a browser and/or local site tools, e.g., Google Earth.

3.5.5.4.2 Test #4 Observations

Each simulation event runs concurrently but separated from each other at the network level. The following
tools are used for the deployment of each event. The scripts are tailored for each event configuration:

a) Terraform to create the Infrastructure.

b) Puppet to install and configure the applications.

c) Docker Compose to launch and run the required combination of Docker containers.

Access to the Simulation services for each event is via a browser (Pitch Web GUI) and via Google Earth, as
shown in Figure 3-33.

EXPERIMENT ON CONTAINERIZED
HLA BASED SIMULATION ENVIRONMENT

3 - 30 STO-TR-MSG-136-Part-VII

Figure 3-33: View of Event 1 Simulation.

3.5.5.4.3 Test #4 Outcome/Analysis

The objective was to determine how to deploy the same simulation deployment for concurrent multiple events.

This experiment has:

a) Demonstrated the ability to run multiple con-current events.

b) Demonstrated the ability to monitor key parameters across cloud services remotely.

Dynamically creating multiple con-current events is possible. The prototype deployment tool, along with
the deployment process using Infrastructure as code, is good step towards semi-automating the deployment
of simulations.

3.6 TEST CASE 5: CONTAINER ORCHESTRATION ENVIRONMENTS (NLD)

3.6.1 Objective/Topic/Question
Container orchestration covers generally automated configuration, coordination, and management of
services. There are actually quite a number of container orchestration environments. Popular ones are Docker
Native and Kubernetes.

As applications grow bigger, it is actually impossible to do without a proper container orchestration
environment.

EXPERIMENT ON CONTAINERIZED
HLA BASED SIMULATION ENVIRONMENT

STO-TR-MSG-136-Part-VII 3 - 31

The objective of this test case is to test if Docker simulation images1 can be used unchanged in both the
Docker Native and Kubernetes orchestration environments.

This test case the described extensively in Ref. [3].

3.6.2 Assumptions/Preconditions/Boundary Conditions
None.

3.6.3 Systems and Interfaces
The following Docker images in the MSG-136 MSaaS Registry are used in this test case:

• Pitch CRC;
• Pitch WebGUI;
• Damage Server;
• KML Server;
• MaK VR Forces;
• Pacer;
• Sensor Server;
• Shipsim; and
• Start.

3.6.4 Test Setup
The test setup for Docker Native and Kubernetes is:

• Two small 5-node clusters;
• Images are pulled from private 136 Docker Registry or Docker Hub;
• Compositions/Charts are obtained from a GIT repository (here GitHub); and
• Access to services in cluster is via username/password protected http/https endpoints.

Figure 3-34 illustrates the test setup. One setup is for Docker Native, another setup for Kubernetes.

Figure 3-34: Test Setup.

1 Based on the Docker LRC base images.

EXPERIMENT ON CONTAINERIZED
HLA BASED SIMULATION ENVIRONMENT

3 - 32 STO-TR-MSG-136-Part-VII

Figure 3-35 shows the Docker Native and Figure 3-36 the Kubernetes test setup in detail.

• Docker Native:

• Master Node 01 runs management components (all containers).

• Weave overlay network btween hosts 02 – 05.

• User/Password access to services via Nginx reverse proxy.

• Docker compose files are obtained from GitHub and can be started via the Compose UI.

Figure 3-35: Docker Native Setup.

• Kubernetes:

• Master Node 01 runs management components (all containers).

• Weave overlay network between hosts 01 – 05.

• User/Password access to services via Nginx reverse proxy.

• Kubernetes chart files are obtained from GitHub and can be started via the ElasticKube UI.

Figure 3-36: Kubernetes Setup.

EXPERIMENT ON CONTAINERIZED
HLA BASED SIMULATION ENVIRONMENT

STO-TR-MSG-136-Part-VII 3 - 33

3.6.5 Processes and Activities
The use case for the text case is:

• The Modeler:
• Logs into the GIT repository.
• Creates Docker composition or Kubernetes chart for a simulation (see Figure 3-37, Figure 3-38,

and Figure 3-39).
• Commits the composition/chart to the GIT repository.

• The Simulation Controller:
• Logs into orchestration environment.
• Navigates to the available compositions/charts.
• Initiates a simulation execution by clicking on a composition/chart in the Compose UI (see

Figure 3-40) or ElasticKube UI (see Figure 3-41).
• The containers are pulled on demand from the Docker Registry and deployed in the cloud.
• Monitors the simulation execution.
• Terminates the simulation execution.

3.6.6 Observations
Some technical observations:

• Kubernetes does not support user defined MAC addresses for container network interfaces; work
around by running the Pitch CRC and VR-Forces on host 11 on the same Weave network, but
‘outside’ Kubernetes. The CRC is added as external service to the Kubernetes DNS and the
Kubernetes pods will find the CRC in the usual way via its DNS entry.

• Multicast between Kubernetes pods is not enabled by default in the Weave overlay network.

• In Docker Native containers with external facing interfaces must be scheduled on specific hosts for
access through Nginx (e.g., KML Server). In Kubernetes these constraints do not matter and
containers can be scheduled on any host.

Figure 3-37: Docker Native X-Server Composition.

EXPERIMENT ON CONTAINERIZED
HLA BASED SIMULATION ENVIRONMENT

3 - 34 STO-TR-MSG-136-Part-VII

Figure 3-38: Kubernetes X-Server Replication Controller Specification.

Figure 3-39: Kubernetes X-Server Service Specification.

EXPERIMENT ON CONTAINERIZED
HLA BASED SIMULATION ENVIRONMENT

STO-TR-MSG-136-Part-VII 3 - 35

Figure 3-40: Compose UI.

Figure 3-41: ElasticKube UI.

3.6.7 Outcome/Analysis
The (Simulation) containers can run in either environment unchanged.

Both Pitch (TCP) and Portico (Multicast) RTIs can be used in either environment.

However:

• Kubernetes requires more verbose configuration to define a composition.

• Differences in dealing with data volumes.

• Differences in networking models.

EXPERIMENT ON CONTAINERIZED
HLA BASED SIMULATION ENVIRONMENT

3 - 36 STO-TR-MSG-136-Part-VII

• Important for performance is the overlay network (e.g., Docker default, Flannel, Weave, etc.).

• Some technical caveats (e.g., use of proxies, overlay network configuration, DNS issues).

• Docker Native Orchestration easiest to set up.

• But Kubernetes offers more functionality and more concepts to use (too much to discuss here).

STO-TR-MSG-136-Part-VII 4 - 1

Chapter 4 – SIMULATION SERVICES EXPERIMENTS

4.1 OVERVIEW

In this strand of experiments, the aim is to collect a set of available services provided by the members and
test their interfaces accessing them as a potential user/consumer. This activity should then produce valuable
feedback both for architecture and for service instructions and definitions.

A first set of services has been identified as follows and can be viewed as a list of ABBs:

• Synthetic Environment Service (i.e., GER SES);

• Route Planning Service (i.e., NOR RPS);

• Cloud Orchestration Solution (i.e., MSCOE – Leonardo ITA OCEAN); and

• Computer Generated Forces Service and C2-Sim gatewaying Service (i.e., ITA SGA and Gateway).

These services are connected via VPN over the Internet and a series of point-to-point/service-to-service tests
is performed: if a common cloud environment for testing is available, it is used as a hub for these tests.

Depending on each service owner’s decision, the services can be deployed directly into the cloud provider’s
infrastructure or made available over the Internet through it.

4.2 TEST CASE 1: RPS, SES, AND SIMSYS (DEU, NOR)

4.2.1 Objective/Topic/Question
“Is it possible to build a simulation environment that connects RPS, SES and a SimSys (according to
MSG-136 MSaaS approach)?”

4.2.2 Assumptions/Preconditions/Boundary Conditions
• Working cloud environment.

• Services/SimSys available (esp. security/access issues solved).

4.2.3 Systems and Interfaces
• NOR RPS.

• DEU SES.

• DEU SimSys 1 (PAXSEM).

• VPN/SOAP/WFS/http.

4.2.4 Test Setup
The test setup is shown in Figure 4-1.

SIMULATION SERVICES EXPERIMENTS

4 - 2 STO-TR-MSG-136-Part-VII

Figure 4-1: Experimental Setup.

4.2.5 Processes and Activities
Scenario:

• The scenario is located in Meppen, Germany – the terrain data for the SimSys PAXSEM and RPS is
provided by the SES.

• A squad team of 2 blue tanks simulated by PAXSEM has to move to a destination taking into
account known threats.

• The route is computed using the RPS service which is then used by the squad team.

• During the movement, the squad team detects other hostile units which force the squad team to
replan their route using the RPS.

Tests:

• Test#1: Cloud environment (SES, RPS) online and available.

• Test#2: RPS can connect to SES.

• Test#3: RPS can fetch data from SES.

• Test#4: SimSys can connect to RPS.

• Test#5: SimSys can call RPS and get route from RPS.

4.2.6 Observations
• Errors during service calls.

• Service calls sometimes interrupted. Manual call necessary.

4.2.7 Outcome/Analysis
• Yes, a simulation environment that connects RPS, SES and a SimSys is possible.

• Infrastructure has to be improved to run stable.

• Service calls have to be implemented exactly according to description.

SIMULATION SERVICES EXPERIMENTS

STO-TR-MSG-136-Part-VII 4 - 3

4.3 TEST CASE 2: INDIVIDUAL AND TEAM TRAINING FOR NAVAL
C4ISTAR OPERATION (NATO-MSCOE)

4.3.1 Objective/Topic/Question
Individual, Collective (Team) Combat Management System (CMS) operators task trainer.

4.3.2 Assumptions/Preconditions/Boundary Conditions
None.

4.3.3 Systems and Interfaces
A simulation user can instantiate a training session in seconds and access to the web based Equipment
Simulators (i.e., navigation system, radars and other sensors) directly from the OCEAN MS-IaaS/PaaS
Orchestrator interface.

The following services/images (provided by Leonardo) are used: CMS Naval Simulator, Sensors and
Equipment Simulators (NAVS, RAN21S, LRAS, OAS) using DIS/HLA, SGA (Scenario Generator and
Animator).

The simulation suite reproduces main onboard ship C4ISTAR equipment in order to stimulate ship’s combat
management system (simulated or real).

4.3.4 Test Setup
The test setup for Naval C4ISTAR Operation session, as shown in Figure 4-2, is:

• Discovery of needed resources for C4ISTAR operational;
• Compose a training session based on discovered resources; and
• Execute the session in seconds/minutes.

Figure 4-2: Naval C4ISTAR Session Setup.

SIMULATION SERVICES EXPERIMENTS

4 - 4 STO-TR-MSG-136-Part-VII

4.3.5 Processes and Activities
• Discovery/Composition and Execution with OCEAN MS-IaaS/PaaS Orchestrator:

• Logs into the web interface of the orchestrator;
• Creates a new session;
• Create DIS simulation network;
• Add sensors containers from the dropdown menu;
• Add CMS and SGA vms from the dropdown menu;
• Connect container and virtual nodes to the simulation network; and
• Press start session to build the overall virtual environment.

• CMS activities:
• Right click on the generated nodes and open the web interface of each service; and
• Use the interfaces for C4ISTAR operations, as shown in Figure 4-3.

Figure 4-3: Naval C4ISTAR Operations.

4.3.6 Observations
Some technical observations:

• Mixing virtual machines and containers is possible.
• Virtual SDN networks (VXLAN) are shared between virtual and containers nodes.
• In this demo VMware Integrated Containers subsystem was used, but in the future Kubernetes will

be used.

SIMULATION SERVICES EXPERIMENTS

STO-TR-MSG-136-Part-VII 4 - 5

4.3.7 Outcome/Analysis
OCEAN is a third party (Leonardo Company) software build on top of OpenStack for rapid and agile
orchestration.

Simulation users can execute training and exercise without any additional support personnel whenever needed.

Multi-tenancy (more users can perform the same training session at the same time)

4.4 TEST CASE 3: INDIVIDUAL TRAINING OF RADIO/C2 OPERATOR
(NATO-MSCOE)

4.4.1 Objective/Topic/Question
Train (Task Trainer) how to operate radio and C2 system.

4.4.2 Assumptions/Preconditions/Boundary Conditions
None.

4.4.3 Systems and Interfaces
A radio operator (Simulation User) accesses a MS-SaaS Virtual Immersive application through the OCEAN
MS-IaaS/PaaS Orchestrator.

The following services (provided by Leonardo) are used: Morpheus (Synthetic/Virtual Immersive
Environment), SVC (Radio Communication Networking Service), SGA (Scenario Generator and Animator)

4.4.4 Test Setup
The test setup for RADIO/C2 Operator session, as shown in Figure 4-4, is:

• Discovery of needed resources for RADIO/C2 Operator session;
• Compose a training session based on discovered resources; and
• Execute the session in seconds/minutes.

Figure 4-4: Radio/C2 Operations.

SIMULATION SERVICES EXPERIMENTS

4 - 6 STO-TR-MSG-136-Part-VII

4.4.5 Processes and Activities
• Discovery/Composition and Execution with OCEAN MS-IaaS/PaaS Orchestrator:

• Logs into the orchestrator Web Interface;

• Creates a new Session;

• Create HLA Simulation Network;

• Connect Morpheus to HLA network;

• Add SVC and SGA virtual nodes from the dropdown menu;

• Connect virtual nodes to the simulation network; and

• Start session to build the overall Virtual/Physical Environment.

• CMS activities:

• Right click on the generated nodes and open the RDP Web Interface of each node.

• Start SVC and SGA to stimulate Morpheus Virtual Environment.

• The Scenario to be simulated is composed by soldiers moving on a land map and each one equipped
with a Radio device.

• The user is immersed into a virtual environment (Morpheus) representing a military wagon
(i.e., Lince, VBM 4 x 4) located at a given point on the map.

• The wagon is equipped with a radio and a C2 panel in order to track the movements of soldiers.

• On the C2 panel a map will be displayed with a real time tracking of soldiers.

• As shown in Figure 4-5, the Simulation user (Morpheus) can interact with the radio equipment
(SVC) and the C2 panel in order to: switch on/off the radio; increase/reduce the power; change the
frequency; manage the map (i.e., zoom-in/zoom-out).

Figure 4-5: Radio/C2 Morpheus Operations.

SIMULATION SERVICES EXPERIMENTS

STO-TR-MSG-136-Part-VII 4 - 7

4.4.6 Observations
Some technical observations:

• Mixing Virtual Machines and Physical nodes is possible.

• Physical VLAN networks are shared between virtual and physical nodes.

4.4.7 Outcome/Analysis
OCEAN is a third party (Leonardo Company) software build on top of OpenStack for rapid and agile
orchestration.

Simulation users can execute training and exercise without any additional support personnel whenever
needed.

Training as a Service is possible mixing also real and virtual worlds.

SIMULATION SERVICES EXPERIMENTS

4 - 8 STO-TR-MSG-136-Part-VII

STO-TR-MSG-136-Part-VII 5 - 1

Chapter 5 – SUMMARY AND CONCLUSIONS

MSG-136 evaluated the MSaaS concept in two experiments with overall eight test cases and various tests
associated with the test cases. The first experiment dealt with test cases to test the Reference Architecture,
and the second experiment tested solutions for the Simulation Services.

The Reference Architecture approach of MSG-136 proved to be valid; the technology MSG-136 used was
well manageable. Some minor problems that occurred in the experiments were mainly due to the use of new
technologies (i.e., Docker) and therefore due to reduced maturity of the technical system and due to to-be-
grown experience of the experimenter.

The experimentation results demonstrate that MSaaS is capable of realizing the vision that M&S products,
data and processes are conveniently accessible to a large number of users whenever and wherever needed.

Next steps (e.g., experiments in a follow-on group) should:

• Conduct MSaaS experiments in a fully operational environment;

• Include commonly used cyber security technologies and methods;

• Create ‘best practices’ for developing services for an MSaaS implementation;

• Create initial MSaaS implementations for operational use that are accessible to all NATO nations; and

• Investigate how to best address legacy systems in an MSaaS environment.

SUMMARY AND CONCLUSIONS

5 - 2 STO-TR-MSG-136-Part-VII

STO-TR-MSG-136-Part-VII 6 - 1

Chapter 6 – REFERENCES

[1] van den Berg, T.W., Cramp, A., and Siegel, B. “Guidelines and best practices for using Docker in
support of HLA federations”, 2016-SIW-031, SISO SIW Fall 2016.

[2] NATO STO: TR-MSG-136-Part-V, Modelling and Simulation as a Service, Volume 2: MSaaS
Discovery Service and Metadata.

[3] van den Berg, T.W. and Cramp, A., “Container orchestration environments for M&S”, 2017-SIW-006;
SISO SIW Fall 2017.

CHAPTER 6 – REFERENCES

6 - 2 STO-TR-MSG-136-Part-VII

STO-TR-MSG-136-Part-VII A - 1

Annex A – SIMULATION ENVIRONMENT AGREEMENTS

This section summarizes the simulation environment agreements used for the test cases in Chapter 3.

A.1 METADATA

Information about the federation agreements document itself.

A.1.1 Identification
This section describes the simulation environment agreements for Experiment A. This section follows the
structure of the SISO Federation Agreements Template (FEAT).

Only the FEAT elements that are applicable to the test cases of Experiment A are addressed in this section.

A.2 DESIGN

Agreements about the basic purpose and design of the federation.

A.2.1 Scenario

A.2.1.1 Exercise Background

Combined Task Force 152 (CTF-152), working with various ships and headquarters staff from across the
Gulf Cooperation Council (GCC), recently conducted a dedicated, coordinated maritime security operation
in the Gulf (see Figure A-1). These types of operations are designed to track, counter and build an
understanding of any illicit activity in the Gulf in order to ensure stability in these important waters.

CTF Regional Jurisdictions

USS Squall from the US Navy

Figure A-1: Exercise Background.

The Saudi-led CTF-152, based in Bahrain, as shown in Figure A-2, used naval and air assets from the United
States, United Kingdom, New Zealand and Saudi Arabia to conduct joint operations in support of Combined
Maritime Forces’ (CMF) mission of deterring criminal and terrorist activity in the Gulf and maintaining
regional maritime security.

ANNEX A – SIMULATION ENVIRONMENT AGREEMENTS

A - 2 STO-TR-MSG-136-Part-VII

Figure A-2: Exercise Area: Strait of Hormuz and Gulf of Oman.

A.2.1.2 Situation

Friendly surface combatants are anchored in the Arabian Gulf within UAE territorial waters, off the shore of
Ras Al Khaimah. These consist of a carrier and frigate, as shown in Figure A-3. The Commander’s intent is
to protect commercial shipping from pirates and acts of terrorism within the territorial waters of Kuwait,
Bahrain, Qatar, the United Arab Emirates, Oman and Saudi Arabia. See Table A-1 for the exercise entity list.

Figure A-3: Situation Overview.

ANNEX A – SIMULATION ENVIRONMENT AGREEMENTS

STO-TR-MSG-136-Part-VII A - 3

Table A-1: Exercise Entity List.

Entity Alliance Type App6 Symbol

CARRIER_1 Friendly Aircraft Carrier

FRIGATE_1 Friendly Frigate

UAV_1, UAV_2 Friendly UAV
MH60_1, MH60_2 Friendly Rotary Wing

MISSILE_1, MISSILE_2 Friendly Missile (S to S)

CARGOSHIP_1 Neutral Cargo Vessel

CIVAIR_1, CIVAIR_2, CIVAIR_3 Friendly Fixed Wing

FASTBOAT_1, FASTBOAT_2 Enemy Light Vessel

STAGINGAREA_1 Enemy Port

CIVPOP_1 Neutral City Population

A.2.1.3 Phase 1: Small Craft Threat

As shown in Figure A-4:

1) A small surface vessel approaches the friendly formation at a high speed from the north eastern
coast line. The Frigate takes steps to identify the vessel as an imminent threat.

2) Following warnings, the Frigate fires upon the small craft, destroying it.

A.2.1.4 Phase 2: Threat Intelligence Report

As shown in Figure A-5:

1) The Commander requests vessel tracking information from the regional coastal surveillance
authority which indicates that the vessel left a small island port in the Gulf of Oman.

2) Allied ground forces control a UAV asset to gather imagery of the location and forward intelligence
to the Frigate. Another fast boat is monitored leaving the location on a similar course.

3) The Commander assesses additional status reports, weather conditions, and the relative position of
the Frigate and the threat locations within the relevant territorial waters and countries.

A.2.1.5 Phase 3: Course of Action Analysis

As shown in Figure A-6:

1) The Commander prepares several Courses of Action, including a Direct Action against the fast boat
and the enemy forces identified on the island staging area.

2) Weapon pairing to targets is performed on the combat system, including an assessment of the
indirect firing lines relative to the terrain.

ANNEX A – SIMULATION ENVIRONMENT AGREEMENTS

A - 4 STO-TR-MSG-136-Part-VII

3) Airspace de-confliction is undertaken with government authorities and regional air traffic control.
Both governments provide specific ROEs for firing a surface launched weapon over UAE waters
and an Omani civilian populated area (Khasab).

4) A solution is available to engage both threats within a short window of opportunity.

Figure A-4: Phase 1 Situation.

Figure A-5: Phase 2 Situation.

ANNEX A – SIMULATION ENVIRONMENT AGREEMENTS

STO-TR-MSG-136-Part-VII A - 5

Figure A-6: Phase 3 Situation.

ANNEX A – SIMULATION ENVIRONMENT AGREEMENTS

A - 6 STO-TR-MSG-136-Part-VII

A.2.1.6 Phase 4: Direct Action Against Threats

As shown in Figure A-7:

1) Air Task Orders are issued to air assets to position to provide real time Fire Control and Battle
Damage Assessment.

2) The Commander gives orders to the Combat Officer to engage the designated threats in accordance
with the planned mission time.

3) The Commander maneuvers the Frigate to the required launch point.

4) Friendly air assets enter an observation orbit/point at a safe distance from the target area.

5) The Commander confirms de-confliction, and the surface to surface weapons are launched from the
Frigate. The missiles impact the targets.

6) Friendly air assets report Battle Damage Assessment to the Commander.

Figure A-7: Phase 4 Situation.

A.2.1.7 Phase 5: SOF Secure Target Area

As shown in Figure A-8:

1) The Commander informs allied Special Forces they are clear to enter the airspace and engage on the
ground.

2) Allied SOF units fly rotary wing platforms onto the island to secure the area.

ANNEX A – SIMULATION ENVIRONMENT AGREEMENTS

STO-TR-MSG-136-Part-VII A - 7

Figure A-8: Phase 5 Situation.

A.2.2 Conceptual Model
An event-service matrix (see Table A-2) is used to describe the tasks that would need to be performed by
exercise participants, and to describe the events that may occur during an exercise.

The event-service matrix is in fact a tabular representation of an activity model, showing the tasks, events
and some of the main information items over time.

The event-service is not complete and has been used in the engineering process walkthrough to identify
potential services. The identification of potential services is an activity in DSEEP step 3.

ANNEX A – SIMULATION ENVIRONMENT AGREEMENTS

A - 8 STO-TR-MSG-136-Part-VII

Table A-2: List of Events.

SERIAL ID EVENT # EVENT/TASK DESCRIPTION PARTICIPANT/S ACTIVITIES SERVICE/S

0 0 Populate Registry Registry Administrator Create 10 dummy simulation compositions in
the registry

Repository service

0 0 Manage Registry Registry Administrator

0 0 Maintain Registry Registry Administrator

0 0 Create Repository Repository Administrator

0 0 Populate Repository Repository Administrator

0 0 Maintain Repository Repository Administrator

0 0 Create Service Service Provider

0 0 Validation Test Service Service Provider

0 0 Supply Service Service Provider

0 0 Initiate event planning and define
requirements

0 0 Create new event Exercise Controller User logs in to MSaaS Portal and creates new
event (name, date, etc.)

Event planning
service/WORKFLOW

0 0 Assign roles Exercise Controller User assigns roles to persons (like event
director, support staff, etc.)

0 0 Specify event objectives Exercise Controller User specifies event objectives etc.

0 0 Specify operational scenario Exercise Controller User specifies operational scenario (selects an
existing scenario from the scenario library)

0 0 Specify event partners Exercise Controller User specifies event partners (e.g., other
nations, organizations)

ANNEX A – SIMULATION ENVIRONMENT AGREEMENTS

STO-TR-MSG-136-Part-VII A - 9

SERIAL ID EVENT # EVENT/TASK DESCRIPTION PARTICIPANT/S ACTIVITIES SERVICE/S

0 0 Define simulation requirements
and discover services

Sim Controller 0

0 0 Specify simulation requirements Sim Controller User specifies simulation requirements to
achieve event objectives

WORKFLOW

0 0 Identify networks and connections Sim Controller User identifies required networks and
connections (e.g., national networks, coalition
networks)

WORKFLOW

0 0 Identify available services Sim Controller User searches MSaaS Portal for available
simulation services (local, remote)

Repository service

0 0 Select required services Sim Controller User selects most appropriate services WORKFLOW

100 0,1 Exercise Orchestration (Develop
simulation environment)

0 0

0 0 Configure services 0 User configures services (ORBAT, etc.) Composition
service/WORKFLOW

110 0,11 Initialise CGF (load terrain, create
entities, create weapons, create
routes, set behaviors)

Sim Controller Sim Controller configures and launches CGF Composition
service/WORKFLOW

120 0,12 Initialise EXCON software interface Sim Controller Sim Controller launches EXCON Composition
service/WORKFLOW

130 0,13 Initialise event logging Sim Controller Sim Controller launches Logging Logging service

140 0,14 Initialise WebCOP (exercise SA for
players)

Sim Controller Sim Controller configures and launches
WebCOP

COP SERVICE

150 0,15 Initialise player controls Sim Controller Sim Controller launches player controls (Sense
target, select target, sound horn, fire weapon,
issue orders, request report)

Composition
service/WORKFLOW

ANNEX A – SIMULATION ENVIRONMENT AGREEMENTS

A - 10 STO-TR-MSG-136-Part-VII

SERIAL ID EVENT # EVENT/TASK DESCRIPTION PARTICIPANT/S ACTIVITIES SERVICE/S

151 0,151 Configure sensors Sim Controller Sim Controller configures and launches
sensor/weapon simulators

Sensor service, Weapon
Service

200 0,2 Create all surface vessel tracks Sim Controller CGF moves all vessels according to routes Traffic Generation service

310 0,31 Create COA mission tactical
graphics in KML

Sim Controller Push KML graphics into WebCOP/CGF COP service, Viewing
Service, Icon Service

333 0,333 Prepare Rules Of Engagement from
HICON

Sim Controller Event triggered by target selection on
WebCOP

COP service

0 0 Verify simulation environment Sim Controller, Exercise
Controller

User verifies that the simulation environment
satisfies the event requirements

WORKFLOW

0 0 Store and Publish the simulation
composition

Registry Administrator,
Sim Controller

User saves the simulation composition and
publishes it the Registry

REGISTRY SERVICE

0 0 Service Discovery Sim Controller, Exercise
Controller, Participant

Find updated services Repository service

0 0,01 Search for a training scenario Participant User searches for an individual training
exercise

SEARCH
SERVICE/WORKFLOW

0 0 Select training scenario Participant User selects the individual training exercise WORKFLOW

0 0 Send training event request Sim Controller, Exercise
Controller, Participant

User sends request to run training exercise
(services and humans are notified)

WORKFLOW

0

1000 1 Execute Scenario FASTBOATs, UAVs, Civil
Aircraft, Civil Cargo Ships

CGF moves all entities throughout Phase 1 COP SERVICE

1100 1,1 Small surface vessel approaches
the friendly formation at a high
speed

FASTBOAT_1, FRIGATE_1 CGF to move vessel position iaw route and
terrain

Fastboat (ship) service

1110 1,11 Detect surface vessel FASTBOAT_1, FRIGATE_1 Sensor simulation and/or WebCOP Sensor service

ANNEX A – SIMULATION ENVIRONMENT AGREEMENTS

STO-TR-MSG-136-Part-VII A - 11

SERIAL ID EVENT # EVENT/TASK DESCRIPTION PARTICIPANT/S ACTIVITIES SERVICE/S

1120 1,12 Identify surface vessel as friend or
foe

FASTBOAT_1, FRIGATE_1 Vessel marked as threat on combat
system/WebCOP

COP SERVICE

1200 1,2 Frigate warns fast boat FASTBOAT_1, FRIGATE_1 Participant operates horn, CGF determines
fastboat action

Frigate (ship) service

1300 1,3 Frigate fires at fast boat FASTBOAT_1, FRIGATE_1 Participant selects weapon and ammunition,
selects target

Weapon service

1310 1.3.1 Combat Officer fires weapon FASTBOAT_1, FRIGATE_1 Participant fires weapon, weapon effects
determined

Weapon service

1320 1.3.2 Fastboat under fire FASTBOAT_1, FRIGATE_1 CGF to determine weapon effects on fastboat Weapon Effect service

2100 2,1 Commander requests vessel
tracking information

FASTBOAT_1, FRIGATE_1 Vessel track information displayed on
WebCOP/Combat System

Vessel traffic service, COP
service

2200 2,2 Commander requests intelligence
report from allied UAV

FRIGATE_1, UAV_1,
Exercise
Controller/Roleplayer

Participant interacts with IntelOperations
roleplayer over voicenet

WORKFLOW

2210 2.2.1 Move UAV UAV_1 CGF moves the UAV into position relative to
target area

UAV service

2220 2.2.2 Collect imagery UAV_1 Stealthviewer captures synthetic view of Area
Of Interest

UAV service

2230 2.2.3 Send imagery / intelligence report FRIGATE_1, UAV_1,
Exercise
Controller/Roleplayer

IntelOperations roleplayer sends imagery/
Intel report to Commander

WORKFLOW

2300 2,3 Commander assesses additional
status reports, weather conditions,
and the relative position

FASTBOAT_2,
FRIGATE_1, UAV_1

Commander relies on C4iSR and WebCOP for
this information

COP service

ANNEX A – SIMULATION ENVIRONMENT AGREEMENTS

A - 12 STO-TR-MSG-136-Part-VII

SERIAL ID EVENT # EVENT/TASK DESCRIPTION PARTICIPANT/S ACTIVITIES SERVICE/S

3100 3,1 Commander prepares several
Courses of Action

FASTBOAT_2,
FRIGATE_1, UAV_1

Commander performs/selects pre-prepared
COA: Direct Action

COA SERVICE

3200 3,2 Weapon pairing to targets are
performed

FASTBOAT_2,
STAGINGAREA_1,
MISSILE_1,2, FRIGATE_1

0 Weapon Pairing service

3210 3.2.1 Weapon pairing to targets are
performed on the combat system

FASTBOAT_2,
STAGINGAREA_1,
MISSILE_1,2, FRIGATE_1

Commander selects targets on WebCOP
and/or via player controls

COP service

3220 3.2.2 Assessment of the indirect firing
lines relative to the terrain

FASTBOAT_2,
STAGINGAREA_1,
MISSILE_1,2, FRIGATE_1

CGF calculates weapon routes iaw terrain ROUTE PLANNING
SERVICE

3300 3,3 Airspace de-confliction is
undertaken

FASTBOAT_2,
STAGINGAREA_1,
MISSILE_1,2, FRIGATE_1,
UAV_1,2, CIVAIR_1,2,3,
CARGOSHIP_1

CGF determines shoot/no shoot iaw entity
positions

Airspace Deconfliction
service

3310 3.3.1 Airspace de-confliction is
undertaken with government
authorities

FASTBOAT_2,
STAGINGAREA_1,
MISSILE_1,2, FRIGATE_1,
CARGOSHIP_1

CGF determines shoot/no shoot iaw entity
positions

Airspace Deconfliction
service

3320 3.3.2 Airspace de-confliction is
undertaken with regional air traffic
control

FASTBOAT_2,
STAGINGAREA_1,
MISSILE_1,2, FRIGATE_1,
CIVAIR_1,2,3

CGF determines shoot/no shoot iaw entity
positions

Airspace Deconfliction
service

ANNEX A – SIMULATION ENVIRONMENT AGREEMENTS

STO-TR-MSG-136-Part-VII A - 13

SERIAL ID EVENT # EVENT/TASK DESCRIPTION PARTICIPANT/S ACTIVITIES SERVICE/S

3330 3.3.3 Governments provide specific ROEs
for launching air weapons in
civilian airspace/territory

FASTBOAT_2,
STAGINGAREA_1,
MISSILE_1,2, FRIGATE_1,
CIVAIR_1,2,3, CIVPOP_1,
Exercise
Controller/Roleplayer

HICON roleplayer provides ROEs to
Commander

WORKFLOW

3400 3,4 Weapon engagement solutions for
both targets are provided with a
specific timeframe

FASTBOAT_2,
STAGINGAREA_1,
MISSILE_1,2, FRIGATE_1

CGF provides solution on WebCOP COP service

4100 4,1 Air Task Orders are issued to air
assets

FRIGATE_1, UAV_1,
UAV_2

Commander issues orders to air assets on
WebCOP and/or via player controls

UAV service

4200 4,2 Commander gives orders to engage
the designated threats

FRIGATE_1 Commander selects targets on WebCOP
and/or via player controls

COP Service

4300 4,3 Commander maneuvers the Frigate
to the required launch point

FRIGATE_1 Commander selects launch point and orders
Frigate to move to point

Frigate service

4400 4,4 Friendly air assets enter an
observation orbit/point

UAV_1, UAV_2,
FASTBOAT_2,
STAGINGAREA_1

CGF moves friendly air assets iaw with issued
ATOs

UAV service

4500 4,5 Commander confirms de-
confliction and launches missiles at
targets

FASTBOAT_2,
STAGINGAREA_1,
MISSILE_1,2, FRIGATE_1

0 Weapon Service

4510 4.5.1 Commander confirms de-
confliction

FASTBOAT_2,
STAGINGAREA_1,
MISSILE_1,2, FRIGATE_1,
CIVPOP_1, CIVAIR_1,2,3,
CARGOSHIP_1

0

ANNEX A – SIMULATION ENVIRONMENT AGREEMENTS

A - 14 STO-TR-MSG-136-Part-VII

SERIAL ID EVENT # EVENT/TASK DESCRIPTION PARTICIPANT/S ACTIVITIES SERVICE/S

4520 4.5.2 Commander launches the surface
to surface weapons from the
Frigate

FASTBOAT_2,
STAGINGAREA_1,
MISSILE_1,2, FRIGATE_1

Commander gives order to attack targets
and/or uses player controls to fire weapons

Weapon Service

4530 4.5.3 The missiles impact the targets FASTBOAT_2,
STAGINGAREA_1,
MISSILE_1,2

0

4600 4,6 Friendly air assets report Battle
Damage Assessment to the
Commander

UAV_1, UAV_2,
FASTBOAT_2,
STAGINGAREA_1,
FRIGATE_1

0 Damage Assessment
service?

5100 5,1 Commander informs allied Special
Forces they are clear to enter the
airspace

FRIGATE_1, MH60_1,
MH60_2

0

5200 5,2 Allied SOF units fly rotary wing
platforms onto the island to secure
the area

MH60_1, MH60_2,
STAGINGAREA_1

0

0 1 Exercise Controller presents After
Action Review using;

Exercise Controller,
Participant

0 Recording service

0 a Simulation logging Exercise Controller 0

0 b Simulation playback Exercise Controller 0

0 c Simulation entity end states and
exercise measures

Exercise Controller 0

0 d Simulation stealth views Exercise Controller 0

0 e Decision Matrix for
exercise/participant evaluation

Exercise Controller 0

0 f Participant feedback form Participant 0

ANNEX A – SIMULATION ENVIRONMENT AGREEMENTS

STO-TR-MSG-136-Part-VII A - 15

SERIAL ID EVENT # EVENT/TASK DESCRIPTION PARTICIPANT/S ACTIVITIES SERVICE/S

0 g Documented execution problems Exercise Controller

0 h Exercise results logging Exercise Controller 0

0 2 Exercise Controller stores all
necessary exercise products
including;

Exercise Controller

0 a Exercise report Exercise Controller

0 b Lessons learned Exercise Controller

0 c Reusable products (exercise
materials such as ROEs, imagery
etc.)

Exercise Controller

ANNEX A – SIMULATION ENVIRONMENT AGREEMENTS

A - 16 STO-TR-MSG-136-Part-VII

A.2.3 Architecture
The simulation environment consists of a set of containerized components, distributed across various
compute nodes. Two types of components are distinguished: infrastructure components and simulation
components. The infrastructure components manage the simulation components, whereas the simulation
components provide the required simulation functionality. The simulation components can be assembled in
different configurations, called compositions.

Containerized infrastructure components include:

• MSaaS Docker Registry;

• Docker Compose UI;

• Portainer; and

• Kubernetes.

Containerized simulation components are described in Annex B

A.2.4 Services

This section details (to a certain extent) some of the simulation services identified in the architecture section.

Service interaction (NSOV-4) models are used to specify how a service interacts with external agents, and
the sequence and dependencies of those interactions. The NSOV-4 models used here do not specify the
sequencing of an orchestrated set of services. Their purpose is to specify the general sequence of interactions
that are possible for the given services.

Several other models (not shown) may be used to detail the service agreements. The date exchange model
for simulation services is described in Section A.5.

More information about each service can be found in the container image descriptions in Annex B.

A.2.4.1 Weapon Service

The Weapon Service generates Munition messages upon the receipt of a WeaponFire message. The
information in the WeaponFire message determines range and flight time of the munition. A sequence of
Munition messages is concluded with a MunitionDetonation message, as shown in Figure A-9.

A.2.4.2 Sensor Service

The Sensor Service generates Track messages for messages about physical entities. The sensor capabilities
and performance depend on the underlying sensor model, but in general the sequence of interactions is
shown in Figure A-10. The service is for one sensor.

A.2.4.3 Damage Service

The Damage Service has two options to provide damage status to a physical entity:

• Via an update of the damage state attribute of the physical entity; and

• Via a damage report to the entity.

ANNEX A – SIMULATION ENVIRONMENT AGREEMENTS

STO-TR-MSG-136-Part-VII A - 17

The first option involves attribute ownership transfer once the physical entity is discovered. The Damage
Service uses option 1, and defaults to option 2 in case the ownership transfer fails.

The sequence of interactions for option 2 is shown in Figure A-11.

SOV-4c Weapon Service Interaction Specification

:Weapon ServiceClient

WeaponFire()

«ServiceMessage»

Munition()

«ServiceMessage»

MunitionDetonation()

«ServiceMessage»

Figure A-9: Weapon Service Interactions.

SOV-4c Sensor Service Interaction Specification

:Sensor ServiceClient

*PhysicalEntity()

«ServiceMessage»

*Track()

«ServiceMessage»

Figure A-10: Sensor Service Interactions.

ANNEX A – SIMULATION ENVIRONMENT AGREEMENTS

A - 18 STO-TR-MSG-136-Part-VII

SOV-4c Damage Service Interaction Specification

:Damage ServiceClient

*MunitionDetonation()

«ServiceMessage»

*DamageReport()

«ServiceMessage»

*PhysicalEntity()

«ServiceMessage»

Figure A-11: Damage Service Interactions.

A.2.4.4 RWO Generation Service
The RWO Generation Service generates messages about physical entities, weapon fire and munition
detonations. The sequence of interactions is shown in Figure A-12.

SOV-4c RWO Generation Service Interaction Specification

:RWO Generation
Service

Client

*DamageReport()

«ServiceMessage»

*PhysicalEntity()

«ServiceMessage»

*WeaponFire()

«ServiceMessage»

*MunitionDetonation()

«ServiceMessage»

Figure A-12: RWO Service Interactions.

ANNEX A – SIMULATION ENVIRONMENT AGREEMENTS

STO-TR-MSG-136-Part-VII A - 19

A.2.5 Member Applications
See container image descriptions in Annex B – Section B.2.

A.3 EXECUTION

A.3.1 Execution States
The simulation environment (consisting of containerized simulation components) has two states:

• Bootstrap: The central bootstrap component has not started yet. Each Local RTI component waits
for central bootstrap component to start; once the bootstrap component has started, each Local RTI
component will start the federate application and transitions to Execution.

• Executing: The central bootstrap component has started; federate applications execute.

A.3.2 Time Management
The simulation environment supports two time management modes: wall-clock time and logical time.

All federate applications support these two modes. By default, each federate application executes in
wall-clock time.

Use of RPR-FOM depends on mode:

• In time management mode: TSO variant of RPR-FOM (the standard SISO FOM, but where all
object instance attributes and interactions are marked TSO).

• In wall-clock time: RO variant of RPR-FOM (the standard SISO FOM).

A.3.3 Join and Resign
Federate applications may join and resign as needed (in both time management modes).

This is also required to have the ability to scale up simulation services.

A.3.4 Update Rates
As per GRIM.

A.3.5 Performance Thresholds
N/A.

A.3.6 Data Logging
Depending on the composition a recording component may be present.

A.3.7 Data Replay
N/A.

ANNEX A – SIMULATION ENVIRONMENT AGREEMENTS

A - 20 STO-TR-MSG-136-Part-VII

A.3.8 Monitoring
Monitoring of simulation components is provided via the infrastructure components (such as Portainer).

More detailed monitoring may be provided via the HLA LRC/CRC components.

A.3.9 Middleware Agreements
By default, the Pitch RTI is used for connecting federate applications.

Many federate applications are also provided for the Portico RTI.

A.3.10 Member Configuration
Through container command line options and environment variables. See Annex B – Section B.2.

A.4 MANAGEMENT

Container descriptions, example compositions and some of the source code for container images are
maintained on GitHub.

A.5 DATA

A.5.1 Encodings
As per GRIM.

A.5.2 Data Exchange Models
• HLA RPR-FOM 2.0 and GRIM;

• HLA Damage FOM module;

• HLA Sensor FOM module; and

• HLA Empty FOM module.

A.5.3 Naming Conventions
• Default federation name: TheWorld;

• Default federate name: assigned by RTI; and

• Default object instance name: assigned by RTI.

A.5.4 Publish/Subscribe Responsibilities
These are not defined explicitly. Some of the responsibilities are captured in the description of the services in
Annex B and in the service sequence diagrams in subsection A.2.4.

ANNEX A – SIMULATION ENVIRONMENT AGREEMENTS

STO-TR-MSG-136-Part-VII A - 21

A.6 INFRASTRUCTURE

Simulation components are containerized.

Besides the HLA-RTI, protocols used are:

• DIS (EPIC);

• Websockets (EPIC, XServer);

• X11 (XServer); and

• HTTP/HTTPS (SES, KML Server).

A.7 MODELING

N/A.

A.8 VARIANCES

N/A.

ANNEX A – SIMULATION ENVIRONMENT AGREEMENTS

A - 22 STO-TR-MSG-136-Part-VII

STO-TR-MSG-136-Part-VII B - 1

Annex B – DOCKER CONTAINER IMAGE DESCRIPTIONS

This section contains a copy of the Docker container image descriptions that were maintained on GitHub
for the test cases in Chapter 3.

B.1 GENERAL

B.1.1 Home

B.1.1.1 MSaaS Docker Registry

The Docker container images in the MSaaS Docker Registry are described in the Wiki of this GitHub
project.

Users (with sufficient access rights) can push or pull Docker images to or from the MSaaS Docker Registry.
The registry also has a web UI. The addresses are as follows:

- MSaaS Docker Registry UI: https://app-docker136.hex.tno.nl.

- MSaaS Docker Registry for docker push/pull commands: https://app-docker136.hex.tno.nl:443.

For more information about accessing the registry, see MSaaS-Docker-Registry-access at https://github.com/
globalsim/msaas-A/wiki/MSaaS-Docker-Registry-access.

To go directly to the MSaaS Docker Registry UI, navigate to https://app-docker136.hex.tno.nl.

B.1.1.2 Service Descriptions

Each service description has the following elements:

• Title;

• Image (registry URIs for the Docker images containing the service);

• Description;

• Synopsis;

• Docker options;

• Container options;

• Other information; and

• Examples.

The following container images require license agreements:

• EPIC container images (check supplier: Lockheed Martin); and

• Pitch container images (check supplier: Pitch).

When a container image from the MSaaS Docker Registry is used in a demo (either as a
foreground service or merely as a background service), please confirm use with the supplier and
provide credits to the supplier for use of the container image.

https://app-docker136.hex.tno.nl/
https://app-docker136.hex.tno.nl:443
https://github.com/globalsim/msaas-A/wiki/MSaaS-Docker-Registry-access
https://github.com/globalsim/msaas-A/wiki/MSaaS-Docker-Registry-access
https://app-docker136.hex.tno.nl/

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 2 STO-TR-MSG-136-Part-VII

B.1.2 MSaaS Docker Registry (TNO)

B.1.2.1 Obtain Access to the MSaaS Docker Registry

The first thing you need to do is arrange access to the MSaaS Docker Registry. Access to the registry is via
https and is password protected. The MSaaS Docker Registry has a web UI and a Docker command line
interface.

B.1.2.2 Request a User Account

Request a user account for the MSaaS Docker Registry. Send an email to tom.vandenberg@tno.nl and
provide your GitHub username in the email. An account will be created for you.

B.1.2.3 Login to the MSaaS Docker Registry via the Web UI and Change Your Initial Password

Once you have an account, login to the MSaaS Docker Registry UI via a webbrowser. The URL is:
https://app-docker136.hex.tno.nl. Change your password by selecting the Account Settings link under your
user name, and click Change Password.

B.1.2.4 Login to MSaaS Docker Registry via the Docker Command Line Interface

Login and provide your username and password:
docker login app-docker136.hex.tno.nl:443

Username: <YOUR USER NAME>

Password: <YOUR PASSWORD>

B.1.2.5 Push and Pull Images

Role based access controls determine for what project repositories you can push or pull images.

• You can anonymously pull images from the public project repository:

docker pull app-docker136.hex.tno.nl:443/public/<IMAGE NAME>

• Once you are logged in you can push/pull container images to/from project repositories.
For example, you can push images to a project repository <REPO NAME> for which you have the
Developer role:

docker push app-docker136.hex.tno.nl:443/<REPO NAME>/<IMAGE NAME>

• If you are logged in as an NLD developer, you can for example do:
docker push app-docker136.hex.tno.nl:443/msaas-nld/myimagename:2.0

• You can pull images from a project repository <REPO NAME> for which you have the Guest role:
docker pull app-docker136.hex.tno.nl:443/<REPO NAME>/<IMAGE NAME>

• For example:
docker pull app-docker136.hex.tno.nl:443/library/xserver

mailto:tom.vandenberg@tno.nl
https://app-docker136.hex.tno.nl/

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 3

B.1.2.6 Delete Images

You can delete images and repositories via the MSaaS Web Registry web UI, provided you have the proper
access rights.

B.2 DOCKER IMAGE DESCRIPTIONS

B.2.1 Cesium Image (TNO)

B.2.1.1 Image
app-docker136.hex.tno.nl:443/msaas-nld/cesium

B.2.1.2 Description

This image is a simple (and probably inefficient) cesiumjs.org webbased viewer for KML data on a map,
such as produced by the KML Server.

B.2.1.3 Synopsis
docker run <docker options> msaas-nld/cesium <container options>

B.2.1.4 Docker Options

-p <port number>:8080 (Required for viewing)

B.2.1.5 Container Options

None.

B.2.1.6 Web Address

The web address is: http://<host>:<port>/Cesium/index.jsp

The web address parameters are:

• kmlserver: one er more URLs for fetching KML data (default is http://127.0.0.1:8090/
kmlserver/entities).

• interval: the interval (in seconds) for doing this or zero for fetching the data only once (default is: 5).

B.2.1.7 Example

The following example displays a map and fetches KML data from the default address:
http://<host>:<port>/Cesium/index.jsp

The following example displays a map and fetches KML data from two addresses (entities and tracks), and
only once:
http://<host>:<port>/Cesium/index.jsp?kmlserver=http://127.0.0.1:8090/km
lserver/entities&kmlserver=http://127.0.0.1:8090/kmlserver/tracks&interv
al=0

The address 127.0.0.1 should be replaced by the host address or name of the KML Server.

http://127.0.0.1:8090/kmlserver/entities
http://127.0.0.1:8090/kmlserver/entities

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 4 STO-TR-MSG-136-Part-VII

B.2.2 Damage Server Image (TNO)

B.2.2.1 Image
app-docker136.hex.tno.nl:443/msaas-nld/damageserver:pi

app-docker136.hex.tno.nl:443/msaas-nld/damageserver:po

app-docker136.hex.tno.nl:443/msaas-nld/damageserver:none

The Pitch (pi) and Portico (po) images are based on LRC version 2. The none image (none) can be mounted
as a volume to either one of the LRC base images.

B.2.2.2 Description

The Damage Server contributes to fair fight by providing entity damage reports in response to munition
detonations for all federates in the federation. Damage reports are provided via an EntityDamageReport
interaction for all affected entities.

The Damage Server requests ownership of each physical entity damageState attribute so it can update the
damage state on behalf of the entity. If a federate does not divest ownership of this attribute then it is
expected that the federate will accumulate damage reports for the entity and update the attribute accordingly.

Damage calculations by the Damage Server are simple and distance based. Obviously more advanced
implementations can make use of munition type, velocity, etc.

The Damage Server can be started in different configurations, optimized for different RTIs. The following
configurations are available out of the box:

• default.config (any RTI): the default configuration where the DamageServer runs in wall-clock
time.

• pitch-logicaltime.config (Pitch RTI): the Damage Server runs in logical time (event driven).

• portico-logicaltime.config (Portico RTI): the Damage Server runs in logical time (time stepped).

With the configuration for the Pitch RTI the Damage Server sends damage reports and damageState updates
at the same logical time as the munition detonation. This means that other federates will see a munition
detonation and the resulting damage report and possible damageState update happening at the same logical
time.

B.2.2.3 Synopsis
docker run <docker options> msaas-nld/damageserver:pi <container options>

docker run <docker options> msaas-nld/damageserver:po <container options>

B.2.2.4 Docker Options

-p 4000 : socket port number for remote debugging. Optional.

-e DEBUG=<some value> : allow a remote debugger to connect via a socket. Optional.

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 5

B.2.2.5 Container Options

-h, --help : Optional (no help)

-F, --federation <federation name> : Optional ($FEDERATIONNAME)

-f, --federate <federate name> : Optional (-)

-L, --logfile <log filename> : Optional (-)

-l, --loglevel <log level> : Optional (SEVERE)

-c, --configfile <configuration filename> : Optional (default.config)

B.2.2.6 Other Information

B.2.2.6.1 Federation Object Models

The Damage Server uses the following FOM modules:

• wall-clock time: RPR_FOM_v2.0_1516-2010.xml, Damage.xml

• logical time: RPR_FOM_v2.0_1516-2010-TSO.xml, Damage.xml

B.2.2.6.1.1 Configuration

An example of the configuration file is shown below. The configured time scheme in this example is
WALLCLOCKTIME, so the logical time settings are ignored. At the end of the file are the ranges for
damage calculation.

DAMAGE SERVER CONFIGURATION FILE

--
Federation management related configuration
--

directory with foms to use (foms for RO, tsofoms for TSO)
fomDirectory = foms

number of RTI connect attempts (negative value for indifinite)
connectAttempts = -1

--
Time management related configuration
--

time scheme: LOGICALTIME or WALLCLOCKTIME
time.scheme = WALLCLOCKTIME

Logical time settings

logical time advancement scheme: NMR, NMRA, TAR, TARA
logicaltime.scheme = NMRA
lookahead
logicaltime.lookahead = 0
step size for TAR/TARA scheme
logicaltime.stepsize = 1

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 6 STO-TR-MSG-136-Part-VII

Wallclock time settings

scaled real time factor
wallclocktime.scale = 1
start at 0 (true) or at current wallclock time (false)
wallclocktime.isZeroStartTime = true

Callback settings

RTI Callback scheme used: SINGLE or MULTIPLE
callback.scheme = MULTIPLE
callback.mintime = 1
callback.maxtime = 1

--
Ownership management related configuration
--

attempt to acquire ownership of the damageState attribute
acquireDamageAttribute = false

--
Damage calculation related configuration
--

range (m) for DESTROYED
detonation.destroyedRange = 100
range (m) for MODERATE_DAMAGE
detonation.moderateDamageRange = 200
range (m) for SLIGHT_DAMAGE
detonation.slightDamageRange = 300

--
Time related configuration
--

use tag to determine time of spatial as per GRIM 2.0
usetimetag = false

B.2.2.7 Example

B.2.2.7.1 Pitch Composition (Wall-Clock Time)

In the following composition the Damage Server is started with the default configuration, i.e., runs
wall-clock time. Note that shipsim in this composition is started with all --fom-modules-dir allrofoms to use
all RO FOM modules instead of the default RPR_FOM_v2.0_1516-2010-TSO.xml FOM.

version: ‘2’

services:
 crc:
 image: app-docker136.hex.tno.nl:443/pitch/crc:5.3.2.1L
 mac_address: 00:18:8B:0D:4F:0B

 web:
 image: app-docker136.hex.tno.nl:443/pitch/web:2.1.1
 ports:
 - “8080:8080”

 shipsim:
 image: app-docker136.hex.tno.nl:443/msaas-aus/shipsim:pi
 command: -f ShipSim --fom-modules-dir allrofoms

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 7

 damsim:
 image: app-docker136.hex.tno.nl:443/msaas-nld/damageserver:pi
 command: -f DamageSim

B.2.2.7.2 Portico Composition (Logical Time)
In the following composition the federates are started in logical time, using the Portico RTI. With the Portico
RTI, one federate application must create the federation execution with all FOM modules before the other
federate applications join the federation execution; this is a known issue. The order in which federate
applications are started is loosely determined with the LRC_MINSLEEP setting. A better way to manage
this is by using a bootstrap federate (for more information see Section B.2.9).

version: ‘2’

services:
 shipsim:
 image: app-docker136.hex.tno.nl:443/msaas-aus/shipsim:po
 command: -f ShipSim -timemanaged --fom-modules-dir alltsofoms

 damsim:
 image: app-docker136.hex.tno.nl:443/msaas-nld/damageserver:po
 command: -f DamageSim -c portico-logicaltime.config
 environment:
 - LRC_MINSLEEP=10

B.2.2.7.3 Configuration Files
The Damage Server image contains three ready-made configuration files. You can configure the Damage
Server with your own configuration file by mounting your configuration file with the Docker volume option:

 damsim:
 image: app-docker136.hex.tno.nl:443/msaas-nld/damageserver:pi
 command: -f DamageSim -c myconfig.txt
 volumes:
 - ./myconfig.txt:/root/application/myconfig.txt

B.2.2.7.4 Additional FOMs
In a similar way additional FOM modules can be added to the default FOM directory of the Damage Server,
in this example a Sensor FOM module:

 damsim:
 image: app-docker136.hex.tno.nl:443/msaas-nld/damageserver:pi
 command: -f DamageSim
 volumes:
 - ./Sensor.xml:/root/application/foms/Sensor.xml

B.2.3 EPIC Enhanced Perception and Integrated Control Image (LM)

B.2.3.1 Image
app-docker136.hex.tno.nl:443/msaas-usa/epic:dis

B.2.3.2 Description
EPIC is a web-based application that provides Common Operating Picture (COP) functionality to exercise
controllers and role players of joint staff and coalition training exercises. This image of EPIC provides

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 8 STO-TR-MSG-136-Part-VII

connectivity to other MSaaS services (ShipSim, VR-Forces, etc.) via a DIS interface. This image relies on
the DISWebGateway (provided by open-dis) to forward the DIS traffic to a WebSocket that EPIC is
listening on. It also depends on the DIS-HLA Adapter to convert the HLA Objects/Interactions into specific
DIS PDUs.

This image of EPIC also has connectivity to the SES Gulf imagery via a WMS imagery layer to provide an
enhanced perception of the training area. It is assumed that the SES imagery is running on port 8080. This
can be configured using the -e option. See the Docker Options section below.

EPIC is released to the MSG-136 group with a limited set of licenses. If you would like to use EPIC for the
purposes of this experiment and require a license please contact Robbie Phillips (robbie.phillips@lmco.com).
The license agreement can be found here.

B.2.3.3 Synopsis
An example composition to run this image with the ShipSim and vr-forces images. See also: EPIC
Compositions at https://github.com/globalsim/msaas-A/tree/master/composefiles/EPIC.

version: ‘3’

services:
 dis:
 image: app-docker136.hex.tno.nl:443/pitch/dis:2.6.0L
 command: -auto
 mac_address: 00:18:8B:0D:4F:1B
 environment:
 - DISPLAY=xserver:0
 - MINSLEEP=5

 crc:
 image: app-docker136.hex.tno.nl:443/pitch/crc:5.3.0.0L
 mac_address: 00:18:8B:0D:4F:0B

 web:
 image: app-docker136.hex.tno.nl:443/pitch/web:2.1.1
 ports:
 - “8080:8080”

 shipsim:
 image: app-docker136.hex.tno.nl:443/msaas-aus/shipsim:pi
 command: -f ShipSim --fom-modules-dir allrofoms

 xserver:
 image: app-docker136.hex.tno.nl:443/library/xserver
 ports:
 - “8081:8080”

 dis-web-gw
 image: app-docker136.hex.tno.nl:443/msaas-usa/dis-web-gw:epic
 ports:
 - “8282:8282”
 - “8283:8283”

 epic:
 image: app-docker136.hex.tno.nl:443/msaas-usa/epic:dis
 environment:
 - ses_url=http://10.10.10.11:8080/SgjWMS/WMS
 - dis_gw_url=10.10.10.11
 ports:
 - “7070:7070”

mailto:robbie.phillips@lmco.com
https://github.com/globalsim/msaas-A/tree/master/composefiles/EPIC

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 9

B.2.3.4 Docker Options

-e, --env : Environment Variable options for epic

• ses_url: Allows for setting the SES url so EPIC can connect to the WMS service. ** Default
is http://localhost:8080/SgjWMS/WMS so you only need to specify when using different
URL:PORT

• dis_gw_url: Specifies the address of the DIS websocket.

Example:
-e ses_url=“http://192.168.99.1:8081/SgjWMS/WMS

-e dis_gw_url=“192.168.99.1

B.2.3.5 Container Options

None.

B.2.3.6 Other Information

B.2.3.6.1 Browser Info

EPIC is best used/most tested in Google Chrome using incognito mode. EPIC requires that WebGL is
enabled in your browser.

Navigate to localhost:7070/epic and login as ExCon using the following credentials:

• User: Exercise Controller.

• Password: admin.

B.2.3.7 Example

N/A.

B.2.4 FEAT Editor Image (TNO)

B.2.4.1 Image
app-docker136.hex.tno.nl:443/msaas-nld/feat

B.2.4.2 Description

The MSaaS Registry could not be complete without a dockerized FEAT editor. You can use this image to
capture your federation agreements.

For more information see SourceForge FEAT Editor at https://sourceforge.net/projects/feateditor/.

B.2.4.3 Synopsis
docker run <docker options> msaas-nld/feat:latest <container options>

https://sourceforge.net/projects/feateditor/

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 10 STO-TR-MSG-136-Part-VII

B.2.4.4 Docker Options

-e DISPLAY=<X11 display> : X display to use. Required if you want to see anything.

B.2.4.5 Container Options

None.

B.2.4.6 Other Information

N/A.

B.2.4.7 Example

In the following Docker Compose file run.yml the FEAT Editor is started together with an X Server. Start
the composition with:
docker-compose -f run.yml up

Open up a web browser and navigate to
http://DOCKER_HOST:8080/vnc.html

Next login.

Note that the directory where the FEAT Editor starts from is mounted to the Docker Host so that files are
saved to persistent storage on the Docker Host.

version: ‘2’

services:
 xserver:
 image: app-docker136.hex.tno.nl:443/library/xserver
 ports:
 - “8080:8080”

 feat:
 image: app-docker136.hex.tno.nl:443/msaas-nld/feat
 environment:
 - DISPLAY=xserver:0
 depends_on:
 - xserver
 volumes:
 - .:/root

B.2.5 Google Chrome Image (TNO)

B.2.5.1 Image
app-docker136.hex.tno.nl:443/library/gc

B.2.5.2 Description

This image holds Google Chrome (GC). The GC GUI can be accessed via an X Server.

This image can be used to display a web UI via an X Server. Although it does not seem logical to display a
web UI via an X Server, there are use cases where this approach comes to aid.

http://docker_host:8080/vnc.html

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 11

One use case is where a web UI connects as a websocket client back to a websocket server. If the web UI
also runs in the container network, there is no need to publish the websocket server address outside this
network. A firewall between websocket client and server may otherwise block this. Also, data
communication between websocket client and server remains local and larger amounts of data (such as map
data) can be transferred much quicker than in the case where websocket client and server are connected via a
WAN.

B.2.5.3 Synopsis
docker run <docker options> app-docker136.hex.tno.nl:443/library/gc <container
options>

B.2.5.4 Docker Options

-e DISPLAY=<x display> : Address of X Server display. Required.

B.2.5.5 Container Options

--homepage <URL> : set the GC home page

For more options see https://peter.sh/experiments/chromium-command-line-switches.

B.2.5.6 Other Information

N/A.

B.2.5.7 Example

Start the composition below named example.yml with the command docker-compose -f example.yml up.
The GUI of GC can be accessed via the X Server: http://<HOSTADDRESS>:8080/vnc.html.

Note that the URL for the GC homepage can also refer to a service in the composition, e.g., homepage
http://epic:7070/epic for a service named epic.

version: ‘2’

services:
 gc:
 image: app-docker136.hex.tno.nl:443/library/gc
 command: --homepage http://tno.nl
 environment:
 - DISPLAY=xserver:0

 xserver:
 image: app-docker136.hex.tno.nl:443/library/xserver
 ports:
 - “8080:8080”

B.2.6 Google Earth Image (TNO)

B.2.6.1 Image
app-docker136.hex.tno.nl:443/library/ge

https://peter.sh/experiments/chromium-command-line-switches
http://epic:7070/epic
http://<HOSTADDRESS>:8080/vnc.html

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 12 STO-TR-MSG-136-Part-VII

B.2.6.2 Description

This image holds Google Earth (GE). The GE GUI can be accessed via an X Server.

This image can be used to display KML data from the KML Server, using the address of the KML Server as
link name. An example is provided below.

It is possible to start up multiple GE containers, all using the same or different X Servers as display.

B.2.6.3 Synopsis
docker run <docker options> app-docker136.hex.tno.nl:443/library/ge <container
options>

B.2.6.4 Docker Options

-e DISPLAY=<x display> : Address of X Server display. Required.

B.2.6.5 Container Options

-h : display this help and exit.

-v : verbose mode.

-r <refreshtime> : refresh time in seconds for the GE view (non-negative integer, default 0).

-f : fly to the view on start of GE (default: no). The view is defined by the entities supplied via the network
link.

-w <attempts> : Number of attempts to wait for X Server, before starting GE (non-negative integer,
default is indefinite).

<place name> : place name (string, default no name).

<link name> : network link name (URL, default no URL).

Both the place name and link name must be provided for the -r and -f options to have effect.

B.2.6.6 Other Information

Google Earth (7.1.1 and as far as known also more recent versions) does not work behind a proxy. It ignores
the HTTP_PROXY and HTTPS_PROXY settings. This is a known issue, see also https://productforums.go
ogle.com/forum/#!topic/maps/CbNfteQnEUI.

B.2.6.7 Example

Start the composition below named example1.yml with the command docker-compose -f example1.yml
up. The GUI of GE can be accessed via the X Server: http://<host-address>:8081/vnc.html.

version: ‘2’

services:
 crc:

https://productforums.google.com/forum/%23!topic/maps/CbNfteQnEUI
https://productforums.google.com/forum/%23!topic/maps/CbNfteQnEUI
http://<host-address>:8081/vnc.html

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 13

 image: app-docker136.hex.tno.nl:443/pitch/crc:5.3.0.0L
 mac_address: 00:18:8B:0D:4F:0B

 web:
 image: app-docker136.hex.tno.nl:443/pitch/web:2.1.1
 ports:
 - “8080:8080”

 kml:
 image: app-docker136.hex.tno.nl:443/msaas-nld/kmlserver:pi
 command: -f KMLServer

 ge:
 image: app-docker136.hex.tno.nl:443/library/ge
 command: -t 5 -f -r 10 Gulf http://kml:8080/kmlserver/entities
 environment:
 - DISPLAY=xserver:0

 xserver:
 image: app-docker136.hex.tno.nl:443/library/xserver
 ports:
 - “8081:8080”

 shipsim:
 image: app-docker136.hex.tno.nl:443/msaas-aus/shipsim:pi
 command: -f ShipSim

 shipbackground:
 image: app-docker136.hex.tno.nl:443/msaas-aus/shipsim:pi
 command: -f TrafficSim -background background.json -background-count 200

A few points to highlight about this example:

• No external port for the kml service is declared. The ge service accesses the kml service via
the internal port.

• The URL for the link name (GE) and the icon server (KML Server) use the service name; there is no
need to specify hostnames or IP addresses, and it is transparent where in the network the service runs.

• The ge service uses a sleeptime to allow the X Server to start first. A better practice is to have the
X Server always running.

• Multiple ge services may be started, using different options.

B.2.7 KML Server Image (TNO)

B.2.7.1 Image
app-docker136.hex.tno.nl:443/msaas-nld/kmlserver:pi

app-docker136.hex.tno.nl:443/msaas-nld/kmlserver:po

app-docker136.hex.tno.nl:443/msaas-nld/kmlserver:none

The Pitch (pi) and Portico (po) images are based on LRC version 2. The none image (none) can be mounted
as a volume to either one of the LRC base images.

B.2.7.2 Description

This KML Server generates KML data for display in Google Earth or other KML enabled clients. Both
RPR-FOM entities and Sensor FOM tracks can be displayed in two different layers in Google Earth. The
KML Server can also be used as an Icon Server, serving icons for entity types.

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 14 STO-TR-MSG-136-Part-VII

The KML Server can be started in different configurations, optimized for different RTIs. The following
configurations are available out of the box:

• default.config (any RTI): the default configuration where the KML Server runs in wallclock time
(RO RPR-FOM).

• pitch-logicaltime.config (Pitch RTI): the KML Server runs in logical time (event driven, TSO
RPR-FROM).

• portico-logicaltime.config (Portico RTI): the KML Server runs in logical time (time stepped, TSO
RPR-FOM).

B.2.7.3 Synopsis
docker run <docker options> msaas-nld/kmlserver:pi <container options>

docker run <docker options> msaas-nld/kmlserver:po <container options>

B.2.7.4 Docker Options

-p <port number>:<kml port number> : Google Earth port number. Required.

-p <port number>:4000 : socket port number for remote debugging. Optional.

-e DEBUG=<some value> : allow a remote debugger to connect via a socket. Optional.

B.2.7.5 Container Options

-h, --help : Optional (no help)

-F, --federation <federation name> : Optional ($FEDERATIONNAME)

-f, --federate <federate name> : Optional (-)

-L, --logfile <log filename> : Optional (-)

-l, --loglevel <log level> : Optional (SEVERE)

-c, --configfile <configuration filename> : Optional (default.config)

-i, --iconurl <icon server> : URL of the Icon Server. Optional
(http://<hostname>:8080/kmlserver), where hostname is the hostname of the icon server container

-k, --kmlport <kml port number> : KML Server port number. Optional (8080)

B.2.7.6 Other Information

B.2.7.6.1 Federation Object Models

The KML Server uses the following FOM modules:

• wall-clock time: RPR_FOM_v2.0_1516-2010.xml, Sensor.xml

• logical time: RPR_FOM_v2.0_1516-2010-TSO.xml, Sensor.xml

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 15

B.2.7.6.2 Icon Server

Each icon in the KML file generated by the KML Server is identified by a URL. The syntax of the URL for
an entity and track are as follows:
<icon server>/<force id>/<entity type>
<icon server>/tracks/<track identification>/<track classification>

And where:

<icon server> ::= http://<host>:<port> [/<base>]

KML Server has an icon server built in and the base of this icon server is by definition kmlserver where:

• <force id> : 0..3 (Other, Friendly, Opposing, Neutral).

• <entity type> : a sequence of 7 digits separated by dots (Entitykind, Domain, CountryCode,
Category, Subcategory, Specific, Extra).

• <track identification> : 0..6 (pending, unknown, assumed friend, friend, neutral, suspect,
hostile).

• <track classification> : see entity type.

B.2.7.6.3 Google Earth Configuration

To view entities in Google Earth, add a Google Earth network place with one of the two following URLs:

http://<host>:<port number>/kmlserver/entities

To view sensor tracks in Google Earth, add a Google Earth network place with the following URL:

http://<host>:<port number>/kmlserver/tracks

B.2.7.6.4 Proxy

All URLs for the KML Server have as base the name kmlserver in the URL. A proxy can redirect all KML
Server requests using this base name.

B.2.7.7 Example

B.2.7.7.1 Pitch Composition (Wall-Clock Time)

Example of a Pitch RTI based federation. The UI of the CRC and GE can be viewed via a webbrowser:
http://<HOSTADDRESS>:8080/vnc.html.

version: ‘2’

services:
 crc:
 image: app-docker136.hex.tno.nl:443/pitch/crc:5.3.2.1L
 mac_address: 00:18:8B:0D:4F:0B
 environment:
 - DISPLAY=xserver:0

 kml:
 image: app-docker136.hex.tno.nl:443/msaas-nld/kmlserver:pi
 command: -f KMLServer

http://<HOSTADDRESS>:8080/vnc.html

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 16 STO-TR-MSG-136-Part-VII

 shipsim:
 image: app-docker136.hex.tno.nl:443/msaas-aus/shipsim:pi
 command: -f ShipSim --fom-modules-dir allrofoms

 ge:
 image: app-docker136.hex.tno.nl:443/library/ge
 command: -f -r 10 Gulf http://kml:8080/kmlserver/entities
 environment:
 - DISPLAY=xserver:0

 xserver:
 image: app-docker136.hex.tno.nl:443/library/xserver
 ports:
 - “8080:8080”

B.2.7.7.2 Portico Composition (Wall-Clock Time)

Example of a Portico RTI based federation, using a bootstrap federate called master to manage the creation
of the federation execution with all FOM modules. The UI of GE can be viewed via a webbrowser:
http://<HOSTADDRESS>:8080/vnc.html.

version: ‘2’

services:
 master:
 image: app-docker136.hex.tno.nl:443/msaas-nld/start:po
 command: -p 6666 -d allrofoms

 kml:
 image: app-docker136.hex.tno.nl:443/msaas-nld/kmlserver:po
 command: -f KMLServer
 environment:
 - LRC_MASTERADDRESS=master:6666

 shipsim:
 image: app-docker136.hex.tno.nl:443/msaas-aus/shipsim:po
 command: -f ShipSim --fom-modules-dir foms
 environment:
 - LRC_MASTERADDRESS=master:6666

 ge:
 image: app-docker136.hex.tno.nl:443/library/ge
 command: -f -r 10 Gulf http://kml:8080/kmlserver/entities
 environment:
 - DISPLAY=xserver:0

 xserver:
 image: app-docker136.hex.tno.nl:443/library/xserver
 ports:
 - “8080:8080”

B.2.7.7.3 Icon Server

Example of a Pitch RTI based federation, using a separate icon server. The UI of the CRC and GE can be
viewed via a webbrowser: http://<HOSTADDRESS>:8080/vnc.html.

version: ‘2’

services:
 crc:
 image: app-docker136.hex.tno.nl:443/pitch/crc:5.3.2.1L
 mac_address: 00:18:8B:0D:4F:0B
 environment:

http://<HOSTADDRESS>:8080/vnc.html
http://<HOSTADDRESS>:8080/vnc.html

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 17

 - DISPLAY=xserver:0

 kml:
 image: app-docker136.hex.tno.nl:443/msaas-nld/kmlserver:pi
 command: -f KMLServer -iconurl http://icon:80/app6b-symbolpng

 icon:
 image: app-docker136.hex.tno.nl:443/msaas-dnk/disenumerationsymbolservice:2.2

 shipsim:
 image: app-docker136.hex.tno.nl:443/msaas-aus/shipsim:pi
 command: -f ShipSim --fom-modules-dir allrofoms

 ge:
 image: app-docker136.hex.tno.nl:443/library/ge
 command: -f -r 10 Gulf http://kml:8080/kmlserver/entities
 environment:
 - DISPLAY=xserver:0

 xserver:
 image: app-docker136.hex.tno.nl:443/library/xserver
 ports:
 - “8080:8080”

B.2.7.7.4 Remote Google Earth Client

Example of a Pitch RTI based federation, using a remote Google Earth client. Entities can be displayed in the
remote Google Earth client using the following network place for entities:

http://10.10.10.11:8081/kmlserver/entities

The address 10.10.10.11 should be replaced by your Docker Host address.

version: ‘2’

services:
 crc:
 image: app-docker136.hex.tno.nl:443/pitch/crc:5.3.2.1L
 mac_address: 00:18:8B:0D:4F:0B
 environment:
 - DISPLAY=xserver:0

 kml:
 image: app-docker136.hex.tno.nl:443/msaas-nld/kmlserver:pi
 command: -f KMLServer -iconurl http://10.10.10.11:8081/kmlserver
 ports:
 - “8081:8080”

 shipsim:
 image: app-docker136.hex.tno.nl:443/msaas-aus/shipsim:pi
 command: -f ShipSim --fom-modules-dir allrofoms

 xserver:
 image: app-docker136.hex.tno.nl:443/library/xserver
 ports:
 - “8080:8080”

B.2.8 Logger Service Image (IFAD)

B.2.8.1 Image
app-docker136.hex.tno.nl:443/msaas-dnk/ifadloggerservice:1.1-alpine

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 18 STO-TR-MSG-136-Part-VII

B.2.8.2 Description

The IFAD Logger Service image provides a Web Client, an HTTP interface and a download portal for the
IFAD Logger Server v4.0. The IFAD Logger Server is a logging server supporting record/playback of DIS
messages over a network.

The Web Client provides a standard set of control functions for the IFAD Logger Server while the HTTP
service interface gives an increased level of control.

Note: The IFAD Logger Server is controlled via the XML-RPC protocol whereas the IFAD Logger Service
Image uses an HTTP approach. Documentation for the XML-RPC interface is not provided in this context.

B.2.8.3 Synopsis
Docker run <docker options> app-docker136.hex.tno.nl/msaas-dnk/
ifadloggerservice:1.1-alpine

B.2.8.4 Docker Options

Recommended:

-d: Run container in background

Required:
-p <port1>:80

-p <port2>:8080

Optional:
-p <port3>:50000

B.2.8.5 Container Options

Nil.

B.2.8.6 Service Interface
• /<port1>

• /<port1>/storage

• /<port1>/about (same as /<port1>/help)

• /<port1>/<instruction>

• /<port1>/<instruction>[/<value1>/<value2>/...]

• /<port2>/lwc (same as /<port2>/lwc/logger)

• /<port2>/lwca (same as /<port2>/lwca/logger)

Where,

• about and help points to the manual for the HTTP interface.

• storage points to the download portal.

• port1 is publishing container port 80 for the HTTP interface.

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 19

• port2 is publishing container port 8080 for the Web Clients.

• port3 is publishing container port 50000 for the IFAD Logger XML-RPC server.

• instruction is one of deletelog, getconnectionparameters, getcurrentlogid,
getelapsedplaybacktime, killloggerservice, listlogs, load, loadwithallinfo ,
pause, playback, productversion, record, resume, save, setupdisparameters,
setupdisparameters, startloggerservice, status, stop, storage, viewfullloginfo
and viewsimpleloginfo.

• value1, value2, ... are required values for a subset of the above instructions (see /<port1>/about for
further details)

• lwc points to a Web Client for the containerized IFAD Logger server

• lwca points to an autonomous Web Client for an IFAD Logger server (v4.0)

B.2.8.7 Examples

Start the services on e.g., port 9080 and 90 on localhost.
docker run -d -p 9080:8080 -p 90:80 -d app-docker136.hex.tno.nl/msaas-
dnk/ifadloggerservice:1.1-alpine

The integrated Web Client is at
http://localhost:9080/lwc

A service manual for the HTTP interface is found at
http://localhost:90/about

where parameters such as logID and XML-RPC_port are described.

To request the status of the IFAD Logger Server, use
http://localhost:90/status

The logger service can be (re)started with new parameters – for example XML-RPC_port=50000,
Broadcast_address=10.11.12.13, Exercise_ID=47, Object_time_out=3, Site_ID=56,
Application_ID=545 and Heatbeat=0 – via the request:
localhost:90/startloggerservice/50000/10.11.12.13/47/3/56/545/0

Note: It is advised to always use XML-RPC_port=50000.

To change connection parameters – say Port=23500, Broadcast_address=255.255.255.255,
Exercise_ID=1 and Object_time_out=10 – use,
localhost:90/setupdisparameters/23500/255.255.255.255/1/10

Connection parameters are listed via,
localhost:90/getconnectionparameters

To start a logger recording, use
localhost:90/record

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 20 STO-TR-MSG-136-Part-VII

A recording is stopped with,
localhost:90/stop

A recording can be saved with the request
localhost:90/save

The /save request changes the current logID as stressed by
localhost:90/getcurrentlogid

Recordings saved under the DIS catalog are found via
localhost:90/listlogs/DIS

Recordings are downloaded via the portal
localhost:90/storage/

The logger service plays back is from currently loaded logID. To play back from beginning, use
localhost:90/playback/0

It is possible to pause and resume via
localhost:90/pause

respectively
localhost:90/resume

To play back from different recording, first stop any playback or recording
localhost:90/stop

then load a new logID via the /load request,
localhost:90/load/<name>/DIS

where name is in the response of the /listlogs/DIS request.

B.2.8.8 Other Information

None.

B.2.9 LRC Base Image (TNO)

B.2.9.1 Image

LRC version 1:
app-docker136.hex.tno.nl:443/pitch/lrc:5.3.0.0-<platform>

app-docker136.hex.tno.nl:443/portico/lrc:nightly-20160528-<platform>

app-docker136.hex.tno.nl:443/vtmak/ma-lrc-base:latest

• platform for Pitch: alpine, debian, centos (version 6)

• platform for Portico: alpine, debian

• platform for MaK: centos

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 21

LRC version 2:
app-docker136.hex.tno.nl:443/pitch/lrc:2-5.3.2.1-<platform>

app-docker136.hex.tno.nl:443/portico/lrc:2-nightly-20160528-<platform>

• platform for Pitch: alpine, debian, centos6, centos7

• platform for Portico: alpine, debian

B.2.9.2 Description

These images are LRC base images for HLA federate applications. An HLA federate application is the
federate code without any RTI libraries. The LRC base images are based on Alpine Linux, Debian or
CentOs, and include a Java JRE. Currently supported RTIs: Pitch, Portico, MaK.

Two approaches – design patterns – for the containerization of HLA federate applications using an LRC base
image are described in SISO SIW paper 2016-SIW-031, available from the SISO Digital Library. The
patterns are named:

• Containerization via extension; and

• Containerization via composition.

Please read the SIW paper to learn more.

B.2.9.2.1 LRC Settings

LRC settings are environment variables used to configure the LRC (see Table B-1). There are general
environment variables applicable to any RTI, and RTI specific variables.

B.2.9.2.1.1 General

Table B-1: Environment Variables.

LRC
Version Environment Variable Description Default if Not

Specified

1 ENTRYPOINT Shell script to start the federate
application Container exit

2+1 LRC_MASTERHOST Master hostname or host address i)

1 LRC_MASTERPORT Master port number ii)

1 MINSLEEP
Minimum sleep time in integer
seconds before the LRC base image
starts the federate application

0

1 MAXSLEEP
Maximum sleep time in integer
seconds before the LRC base image
starts the federate application

$MINSLEEP

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 22 STO-TR-MSG-136-Part-VII

LRC
Version Environment Variable Description Default if Not

Specified

2 LRC_ENTRYPOINT Shell script to start the federate
application Container exit

2 LRC_MASTERADDRESS Master hostname and portnumber
as <name>:<port> iii)

2 LRC_MASTERATTEMPTS Number of attempts to connect to
master

-1

2 LRC_MINSLEEP
Minimum sleep time in integer
seconds before the LRC base image
starts the federate application

0

2 LRC_MAXSLEEP
Maximum sleep time in integer
seconds before the LRC base image
starts the federate application

$LRC_MINSLEEP

i) Dependent on LRC base image:

• Pitch: if LRC_MASTERHOST is unset or empty string then defaults to $PITCH_CRCHOST; and

• Portico: unset for Portico.

ii) Dependent on LRC base image:

• Pitch: if LRC_MASTERPORT is unset or empty string then defaults to $PITCH_CRCPORT; and

• Portico: unset for Portico.

iii) Dependent on LRC base image:

• Pitch: if LRC_MASTERADDRESS is unset or empty string then defaults to
$PITCH_CRCADDRESS; and

• Portico: unset for Portico.

If LRC_MASTERHOST and LRC_MASTERPORT (for version 1) or LRC_MASTERADDRESS (for Version 2) is set
to a non-empty string, then the LRC base image does a maximum of LRC_MASTERATTEMPTS attempts to
connect to the master address, before starting the federate application. The design pattern is that a master
component bootstraps on the master host, creates/joins the federation execution, and opens the master port
when ready. Once the port is open, an LRC base image can then start the federate application. For a Pitch
LRC base image the Pitch CRC is by default the master component; this can be changed by providing other
values for master host/port.

For version 1 LRC_MASTERATTEMPTS can be regarded as -1. For version 2 LRC_MASTERATTEMPTS is the
number of attempts that is made to connect to the master address. If this is a negative value, then the number
of attempts is indefinite. If this is a zero value, then no attempt is made. If this is a positive value, then this
number of attempts is made. After the specified number of attempts is made the Federate Application
specified in LRC_ENTRYPOINT is started.

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 23

The MIN-MAX sleep period applies from the point in time where the master host/port is open (if master
host/port set), or from the point in time where the container is started (if master host/port unset).

B.2.9.2.1.2 Pitch

Table B-2 outlines the environment variables for Pitch.

Table B-2: Environment Variables.

LRC
Version Environment Variable Description Default if Not

Specified

1 PITCH_CRCHOST CRC hostname or hostaddress. crc

1 PITCH_CRCPORT CRC portnumber. 8989

2 PITCH_CRCADDRESS
CRC address in the format
of <host>:<port> or <crc-
nickname>@<boost host>:<boost
port>

crc:8989

2 PITCH_BOOSTADAPTER The network adapter that the LRC
should use for the Booster network.

Current setting
(all)

2 PITCH_ADVERTISE_ADDRE
SS

Use this address to advertise the LRC.
The format is <host
address>[:[<mintcpport>]-
[<maxtcpport>][:[<minudpport>
]-[<maxudpport>]]]

Host address

 PITCH_LRCADAPTER The network adapter that the LRC
should use.

Current setting
(all)

 PITCH_ENABLETRACE
Set to any value to enable. Enable RTI
and Federate Ambassador tracing to
console.

No tracing

When using PITCH_ADVERTISE_ADDRESS with a port range, make sure that the same port range is also
provided in the container -p option. For example:

docker run \
 -e PITCH_ADVERTISE_ADDRESS=10.10.10.11:6100-6110 \
 -p 6100-6110:6100-6110 \
 app-docker136.hex.tno.nl:443/imagename

B.2.9.2.1.3 Portico

Table B-3 outlines environment variables for Portico.

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 24 STO-TR-MSG-136-Part-VII

Table B-3: Environment Variables.

LRC
Version Environment Variable Description Default if Not

Specified

 PORTICO_RTI_RID_FILE File path to the Portico RID file $LRC_HOME/RTI
.rid

 PORTICO_LOGLEVEL
Specify the level that Portico will log
at. Valid values are: TRACE, DEBUG,
INFO, WARN, ERROR, FATAL,
OFF.

Current setting
(WARN)

 PORTICO_UNIQUEFEDERA
TENAMES

Ensure that all federates in a federation
have unique names. When false,
Portico will change the requested name
from “name” to “name (handle)” thus
making it Unique. Valid values are:
true, false.

Current setting
(true)

 PORTICO_LRCADAPTER
The network adapter (network
interface) that the LRC should use. The
name must be an exact match.

Whatever
JGroups selects

B.2.9.2.1.4 MÄK RTI

Table B-4 outlines environment variables for Portico.

Table B-4: Environment Variables.

LRC
Version Environment Variable Description Default if Not

Specified

 MAK_RTI_RID_FILE

The path to a custom RID file. Note that such a
custom file needs to conform to certain RID
properties used by the rtiexec. Two RID
files are supplied in the mak-rti-baseimage
at /etc/makrti/rid.mtland /etc/makrt
i/rid-lm.mtl. See MÄK rtiexec Image at
https://github.com/globalsim/msaas-A/wiki/
M%C3%84K-rtiexec-Image for more details.

/etc/makrt
i/rid.mtlas
set by
the mak-rti-
base image.

 MAK_RTIEXEC_ADDR
The IP address of the endpoint supplying
the rtiexec (or, more accurately, the IP
address of an RTI forwarder, which, by
default, runs with the rtiexec).

Not set. See
environment
variable MAK_
RTIEXEC_HO
STNAME.

https://github.com/globalsim/msaas-A/wiki/M%C3%84K-rtiexec-Image
https://github.com/globalsim/msaas-A/wiki/M%C3%84K-rtiexec-Image

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 25

LRC
Version Environment Variable Description Default if Not

Specified

 MAK_RTIEXEC_HOSTNAME

The hostname (container name) of the
endpoint running the rtiexec (see
MAK_RTIEXEC_ADDR).
If MAK_RTIEXEC_ADDR is not set, the IP
address of the endpoint running
the rtiexec will be looked up
within /etc/hostsusing the value of
the MAK_RTIEXEC_HOSTNAMEenvironment
variable. It is necessary to start a container
using ma-lrc-base with a link option so
that an entry is written into /etc/hosts. The
IP address is written into the RID file (located
via environment variable RTI_RID_FILE) for
parameter RTI_tcpForwarderAddr.

rtiexec

 MAK_LOG_LEVEL
Change the level of logging detail generated
by the LRC. Values in the range 0 – 4 are valid
with 0 being no logging and 4 being the most
detailed

2

 MAK_LOGFILE_DIR
Specify a directory into which LRC log files
will be written. This is most useful if it is a
volume mount so that the log file becomes
visible on the host system

Working
directory of
the federate

 MAK_FEDERATE_LOGFILE

The name of the log file to be written by the
LRC. The file is written
into MAK_LOGFILE_DIR. Logging to file is
not enabled unless this environment variable is
set.

Not set

B.2.9.2.1.5 Java Federate

For a Java federate LRC_CLASSPATH must be added to the Java CLASSPATH environment variable or to the
java -cp command line option. In addition, for the MÄK LRC, the contents of LRC_LIBRARYPATH must be
added to the LD_LIBRARY_PATH environment variable. This is required as the MÄK RTI implementation of
the Java HLA Interface Specification is a binding layer over a C++ implementation and those C++ libraries
need to be on the LD_LIBRARY_PATH at runtime.

B.2.9.2.1.6 C++ Federate

For a C++ federate LRC_LIBRARYPATH must be added to the LD_LIBRARY_PATH environment
variable.

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 26 STO-TR-MSG-136-Part-VII

B.2.9.2.2 Federate Application Settings

Federate settings are environment variables to use by or to initialize the federate application (see Table B-5).

Table B-5: Environment Variables.

LRC
Version Environment Variable Description

 FEDERATIONNAME

The federate shall use this name as the name of the
federation to join. This variable is by default set to
“TheWorld”. The setting can be overridden by the user
by setting the variable to some value.

1 LRC_CONNECTATTEMPTS
The federate shall use this value as the number of
attempts to connect to the RTI, with one attempt per
second. Default is 0, meaning attempt indefinite.

 LRC_HOME Home directory in which the LRC include files and
libraries are stored.

 LRC_CLASSPATH RTI class path files for Java applications.

 LRC_LIBRARYPATH RTI library search path for shared objects for C++
applications.

 JAVA_HOME Installation directory of the Java Runtime Environment.

 LRC_VERSION Version identification of the LRC image.

B.2.9.3 Other Information

B.2.9.3.1 Containerization via Extension

Linking by extension takes the traditional approach of building a federate application image based on an
LRC image. In this pattern, the container image of the federate application is built using the Dockerfile
FROM instruction. The FROM instruction sets the base image for the federate application, in this case an
LRC image. The LRC is combined with the federate application at image build time. As an example,
consider building a federate application image based on msaas/pi-lrc-base:5.3.0.0-alpine, a small image
based on Alpine Linux, with Pitch LRC version 5.3.0.0 and Java Runtime Engine 8 installed. The Dockerfile
for building the federate application image looks as follows:

FROM app-docker136.hex.tno.nl:443/pitch/lrc:5.3.0.0-alpine

#Install application
COPY ./application /root/application

#Set entrypoint
ENV ENTRYPOINT=/root/application/start.sh

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 27

This Dockerfile does the following three things:

• It sets the base image to pitch/lrc:5.3.0.0-alpine;

• It copies the application directory, containing the federate application, to the filesystem of the
container at /root/application; and

• It defines the environment variable ENTRYPOINT, setting it to the name of a shell script that is used
to start the federate application (in this example start.sh).

The installation directory can be anywhere in the container’s filesystem, so long as the ENTRYPOINT
environment variable points to a shell script that starts the federate application.

The start script is federate application specific and will receive all the container command line options
(if any) from the callee (the launch.sh script in the base LRC image). For a Java federate application, the start
script may be as follows:

#!/bin/sh
java -cp MyApplication.jar:$LRC_CLASSPATH myapplication.Main $@

The environment variable LRC_CLASSPATH is set by the base LRC image and has all the necessary LRC
jar files for interacting with the RTI (equivalent environment variables would be set in the LRC base image
for sourcing C++ shared object libraries). The command line options are passed on to the federate
application via “$@”.

B.2.9.3.2 Gracefully Stopping a Containerized HLA Federate Application

When a container is stopped (with the docker stop command) the signal SIGTERM is sent to the process
with PID 1 running inside the container. If this process does not terminate within 10 seconds, Docker will
kill the process with the signal SIGKILL. This means that an HLA federate application will “disappear”
abruptly from the federation execution and any resources that the container process holds are not released in
an orderly fashion. Thus, to gracefully stop a container and its containing process(es), the process with PID 1
must handle the SIGTERM signal.

As mentioned earlier the federate application is started through the shell script defined by the environment
variable ENTRYPOINT. The LRC launch.sh script ensures that this shell script runs in a shell with PID 1.

When the start script listed in the previous section is used to start the application, the application will not be
terminated by the SIGTERM. This is because the application is actually executed in a new shell, forked from
the shell with PID 1. The new shell will not receive the SIGTERM signal.

For a Java federate application, the following start script can be used to forward the SIGTERM signal to the
application, running inside a Java Virtual Machine (JVM):

#!/bin/sh

Initialise the PID of the application
pid=0

define the SIGTERM-handler
term_handler() {
 echo ‘Handler called’
 if [$pid -ne 0]; then
 kill -SIGTERM “$pid”
 wait “$pid”
 fi
 exit 143; # 128 + 15 -- SIGTERM

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 28 STO-TR-MSG-136-Part-VII

}

on signal execute the specified handler
trap ‘term_handler’ SIGTERM

run application in the background and set the PID
java -cp MyApplication.jar:$LRC_CLASSPATH myapplication.Main $@ &
pid=“$!”

wait “$pid”

The start script forwards the SIGTERM to the JVM, where it is up to the application running inside the JVM
to handle the SIGTERM. The application running inside the JVM should use a Shutdown Hook to catch the
shutdown of the JVM. For more information on handling SIGTERM and JVM shutdown, see Shutdown
Hook.

B.2.9.4 Example

None.

B.2.10 MSaaS Portal Image (TNO)

B.2.10.1 Image
app-docker136.hex.tno.nl:443/msaas-nld/portal

B.2.10.2 Description

This image provides an implementation of an MSaaS portal. The portal provides access to services that are
organized in user configurable tabs in the portal. Most common services are Docker Compose UI and
Portainer; an example of a portal configuration is provided below.

B.2.10.3 Synopsis
docker run <docker options> app-docker136.hex.tno.nl:443/msaas-nld/portal
<container options>

B.2.10.4 Docker Options

-p <port>:8080 : port number where portal can be accessed on.

-e PORTAL_TITLE=<name> : title of the web page (optional; default is MSaas Portal)

-e PORTAL_TAB<n>_NAME=<tab name> : name of the tab

-e PORTAL_TAB<n>_ADDR=<url> : address of the service under this tab

Where <n> is the tab index. Tabs are indexed from 0 onwards.

B.2.10.5 Container Options

None.

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 29

B.2.10.6 Other Information

N/A.

B.2.10.7 Example

Start a MSaaS portal that includes Docker Compose UI, Weave Scope, and Portainer using the docker-
compose file shown below. The host address PORTAL_ADDR of the portal is passed in to the composition as
an environment variable.

The source files for this example can be found in the code repository, at this location.

The composition can be started with the following command:
PORTAL_ADDR=`hostname -i` docker-compose up

Next, in your web browser, navigate to http://$PORTAL_ADDR:4000 and Figure B-1 should appear:

Figure B-1: MSaaS Portal UI.

The composition is as follows:

version: ‘2’

services:
 portal:
 image: app-docker136.hex.tno.nl:443/msaas-nld/portal
 ports:
 - “4000:8080”
 environment:
 - PORTAL_TITLE=My Portal
 - PORTAL_TAB0_NAME=Compose Projects
 - PORTAL_TAB0_ADDR=http://$PORTAL_ADDR:4001
 - PORTAL_TAB1_NAME=Inspect Network
 - PORTAL_TAB1_ADDR=http://$PORTAL_ADDR:4040
 - PORTAL_TAB2_NAME=Inspect Components
 - PORTAL_TAB2_ADDR=http://$PORTAL_ADDR:4002

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 30 STO-TR-MSG-136-Part-VII

 composeui:
 image: app-docker136.hex.tno.nl:443/msaas-nld/docker-compose-ui:1.8.1
 ports:
 - “4001:5000”
 volumes:
 - ./projects:/opt/docker-compose-projects
 - $HOME/.docker/config.json:/root/.docker/config.json:ro
 - /var/run/docker.sock:/var/run/docker.sock

 scope:
 image: weaveworks/scope
 command: --probe.docker=true
 privileged: true
 container_name: weavescope
 network_mode: “host”
 pid: “host”
 volumes:
 - /var/run/docker.sock:/var/run/docker.sock

 portainer:
 image: portainer/portainer
 command: -H unix:///var/run/docker.sock --no-auth
 ports:
 - “4002:9000”
 volumes:
 - /var/run/docker.sock:/var/run/docker.sock

B.2.11 Munition Server Image (AUS, DST Group)

B.2.11.1 Image
app-docker136.hex.tno.nl:443/msaas-aus/munition:none

app-docker136.hex.tno.nl:443/msaas-aus/munition:pi

app-docker136.hex.tno.nl:443/msaas-aus/munition:po

The Pitch (pi) and Portico (po) images are based on LRC version 2. The none image (none) can be mounted
as a volume to either one of the LRC base images.

B.2.11.2 Description

Contains a federate that receives WeaponFire interactions, models the flight of a fired Munition, and sends a
Detonation interaction once the Munition reaches the target.

At present, the munition modelling is solely event based. At WeaponFire, the distance from source to target
is calculated. This distance is used, along with a default munition speed of 200 m/s, to determine the time the
munition would take to get from source to target. A Detonation interaction is sent after that amount of time
has elapsed.

B.2.11.3 Synopsis
docker run <docker options> app-docker136.hex.tno.nl:443/msaas-aus/munition:pi
<container options>

B.2.11.4 Docker Options

None.

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 31

B.2.11.5 Container Options

-F, --federation-name
-f, --federate-name
--fom-modules
--fom-modules-dir
-r, --realtime-rate
--timemanaged
--timestep
--lookahead

B.2.11.6 Other Information

None.

B.2.11.7 Example

None.

B.2.12 MÄK License Manager Image (AUS, DST Group)

B.2.12.1 Image
app-docker136.hex.tno.nl:443/vtmak/ma-lm

B.2.12.2 Description

Provides the MÄK License Manager server that serves licenses to MÄK Technologies products. Most
notably, these licenses are required when federates connect to the rtiexec.

B.2.12.3 Synopsis
docker run <docker options> --mac-address 02:C9:96:5B:12:B7 msaas-
registry.cloudapp.net:5000/msaas/ma-lm

B.2.12.4 Docker Options
--mac-address 02:C9:96:5B:12:B7

The license included with this License Manager image is locked to MAC address 02:C9:96:5B:12:B7.
Therefore, the container needs to be started with this MAC address.
--name <container name>

It is recommended that a container name be specified since it is needed when starting other MÄK
Technologies products. For example, the MÄK rtiexec Image requires a link mapping from an internal
license server name (maklm by default) to the actual name of the container running the License Manager.

B.2.12.5 Container Options

Nil.

B.2.12.6 Other Information

Nil.

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 32 STO-TR-MSG-136-Part-VII

B.2.12.7 Example
docker run -d --name maklm --mac-address 02:C9:96:5B:12:B7 app-
docker136.hex.tno.nl:443/vtmak/ma-lm

B.2.13 MÄK RTI Image Structure (AUS, DST Group)

B.2.13.1 Overview

The MÄK RTI consists of a number of components: the rtiexec, RTI forwarder, RTI assistant and LRC.
In addition, licensing requires a license manager server. The image structure composing these elements is
illustrated below. The image names are all in the namespace app-docker136.hex.tno.nl:443/msaas/.

The image tree is based from CentOS 6.

 | |
 | centos:6 |
 | |

 ^
 ---------------------------------+
 | |
 ------------------------- -------------------------
 | | | |
 | ma-lm | | mak-rti:4.4.2 |
 | | | |
 ------------------------- -------------------------
 ^
 |

 | |
 | mak-rti-base |
 | |

 ^
 |

 | |
 ------------------------- -------------------------
 | | | |
 | ma-lrc-base | | mak-rtiexec |
 | | | |
 ------------------------- -------------------------

B.2.13.2 mak-rti:4.4.2
Image mak-rti:4.4.2 adds MÄK RTI 4.4.2 and installs dependencies necessary for running the rtiexec.
No entrypoint is defined so this can be used to create a terminal container. Environment variable
MAK_RTIDIR is set to the installation directory.

B.2.13.3 ma-lm

Image ma-lm provides the MÄK License Manager. The installed license is locked to MAC
address 02:C9:96:5B:12:B7.

B.2.13.4 mak-rti-base
Image mak-rti-base adds two RID files for MSG-136 federations.

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 33

• /etc/makrti/rid.mtl: enables full HLA compliance, forces connection configuration via the
RID file, and enables the rtiexec to perform license management for connected federates (this
removes the requirement for federates to connect to the license manager).

• /etc/makrti/rid-lm.mtl: is the same as /etc/makrti/rid.mtl except that licence management for federates
is not supported by the rtiexec. Instead, federates need to point to the MÄK Licence Manager by
assigning a value to the environment variable MAKLMGRD_LICENSE_FILE. The value is of the
form @hostname where hostname is the name of the computer running the license manager.

The mak-rti-base image sets environment variable RTI_RID_FILE to point to
the /etc/makrti/rid.mtl RID file and defines RTI_ASSISTANT_DISABLE to turn off the MÄK RTI
Assistant.

B.2.13.5 mak-rti-base

Image mak-rti-base adds two RID files for MSG-136 federations.

• /etc/makrti/rid.mtl: enables full HLA compliance, forces connection configuration via the
RID file, and enables the rtiexec to perform license management for connected federates (this
removes the requirement for federates to connect to the license manager).

• /etc/makrti/rid-lm.mtl: is the same as /etc/makrti/rid.mtl except that licence management for
federates is not supported by the rtiexec. Instead, federates need to point to the MÄK Licence
Manager by assigning a value to the environment variable MAKLMGRD_LICENSE_FILE. The value is
of the form @hostname where hostname is the name of the computer running the license manager.

The mak-rti-base image sets environment variable RTI_RID_FILE to point to
the /etc/makrti/rid.mtl RID file and defines RTI_ASSISTANT_DISABLE to turn off the MÄK RTI
Assistant.

B.2.13.6 mak-rtiexec

Image mak-rtiexec adds an entrypoint to launch the rtiexec. Launching is performed with shell script
(/root/rtiexec/rtexec.sh) via supervisord (since the rtiexec exits immediately and causes a
started container to stop immediately). Environment variable MAKLMGRD_LICENSE_FILE is set
to @maklm requiring the rtiexec container to be started with a link definition mapping maklm to the name
of the container running the license manager (the name of the licence manager can be overridden by
specifying a new value for MAKLMGRD_LICENSE_FILE but a link statement is still required so that the
name of the license manager is inserted into the /etc/hosts file of the rtiexec container).

B.2.13.7 ma-lrc-base

Image ma-lrc-base provides the base image for launching federates. It includes the
standard launch.sh and a MÄK RTI specific settings.sh. Most notably, the settings.sh will process
environment variables to identify the IP address of the container running the rtiexec (more accurately, it is
the IP address of the container running the RTI Forwarder, which can be started by the rtiexec). This can be
done by explicitly setting the IP address via environment variable MAK_RTIEXEC_ADDR, but, this is not robust
since container IP addresses are dynamically assigned. The alternative is to set a hostname for
the rtiexec container via environment variable MAK_RTIEXEC_HOSTNAME (the default name is rtiexec).
However, the MÄK RTI seems to not like using hostnames for identifying endpoints so settings.sh looks
for the IP address of MAK_RTIEXEC_HOSTNAME in /etc/hosts. This requires a link statement when
launching a container so that an entry is written into /etc/hosts. (See Section B.2.9 for more information.)

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 34 STO-TR-MSG-136-Part-VII

Note that containers of image ma-lrc-base are not started by themselves. Either a derived image (such
as ma-shipsim) is started or ma-lrc-base is started in conjunction with a secondary container (such
as shipsim).

B.2.13.8 tl;dr
docker run -d --name maklm --mac-address 02:C9:96:5B:12:B7 msaas-registry.cloud
app.net:5000/msaas/ma-lm

docker run -d --name rtiexec --link maklm:maklm msaas-registry.cloudapp.net:5000
/msaas/mak-rtiexec

docker run -d --name shipsim --link rtiexec:rtiexec msaas-registry.cloudapp.
net:5000/msaas/ma-shipsim

docker run -d --name shipsim2 --link rtiexec:rtiexec msaas-registry.cloudapp.
net:5000/msaas/ma-shipsim -subscribe

Running these commands should result in a two federate federation with shipsim publishing a single surface
vessel and shipsim2 reflecting those values.

B.2.14 MÄK rtiexec Image (AUS, DST Group)

B.2.14.1 Image
app-docker136.hex.tno.nl:443/vtmak/mak-rtiexec

B.2.14.2 Description

This image provides an executable container for starting the MÄK RTI rtiexec process.
The rtiexec connects to an RTI forwarder, which will be started automatically within the same container.
This image derives from the mak-rti-base image which provides a default RID file.

The environment variables, listed in Table B-6, exist in an rtiexec container:

Table B-6: Environment Variables.

Environment
Variable Description Default

Value Image

MAK_LOG_LEVEL
The level of detail provided in console/log
output. Can be a value in the range 0 – 4
with 0 being no detail and 4 the most detail.

2 mak-rtiexec

MAK_LOGFILE_DIR The directory into which an rtiexec log file
will be written.

Working
directory

mak-rtiexec

MAK_RTIEXEC_LOGFI
LE

The name of the log file written by the
rtiexec. This needs to be defined for a log
file to be written
(into MAK_LOGFILE_DIR).

Not defined mak-rtiexec

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 35

Environment
Variable Description Default

Value Image

MAK_RTI_RID_FILE Can be used to override the RID file used
by the rtiexec Not defined mak-rtiexec

MAKLMGRD_LICENSE_
FILE

The hostname (container name) of the
MÄK License Manager server

@maklm mak-rti-base

RTI_RID_FILE The name of the RID file to use /etc/makrt
i/rid.mtl mak-rti-base

RTI_ASSISTANT_DIS
ABLE

Disable the RTI Assistant that normally
starts when the rtiexec and each federate
start

1 mak-rti-base

MAK_RTIDIR The installation directory of the MÄK RTI
/usr/local
/makRti4.4
.2

mak-rti

B.2.14.3 Synopsis
docker run <docker options> app-docker136.hex.tno.nl:443/vtmak/mak-rtiexec

B.2.14.4 Docker Options
--name <container name>

The name of the rtiexec container will be used by federate containers to find the rtiexec. Explicitly
specifying the name of the container makes this easier, although, the automatically assigned container name
could be used.

--link <internal license manager name>:<license manager container name>

The rtiexec needs to connect to the MÄK Licence Manager. It does this by connecting to the server name
specified by the value stored in the MAKLMGRD_LICENSE_SERVER environment variable. The default value,
as set in the mak-rti-base image, for this environment variable is @maklm. Thus, the simplest way to
specify this mapping, with a License Manager container name of lm, is --link maklm:lm.

B.2.14.5 Container Options

Nil.

B.2.14.6 Other Information

N/A.

B.2.14.7 Example
docker run -d --name rtiexec --link maklm:maklm app-
docker136.hex.tno.nl:443/vtmak/mak-rtiexec

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 36 STO-TR-MSG-136-Part-VII

This assumes that the MÄK Licence Manager has been started in a container named maklm. If the Licence
Manager is started with container name licman, use the following:

docker run -d --name rtiexec --link maklm:licman app-
docker136.hex.tno.nl:443/vtmak/mak-rtiexec

Both these examples rely on the value of the MAKLMGRD_LICENSE_SERVER environment variable being set
to @maklm internal to the mak-rti-base image (from which, mak-rtiexec derives). If, for some reason,
you want to change this, do the following (note that the --link is still required)
docker run -d --name rtiexec --link licman:maklm -e
“MAKLMGRD_LICENSE_SERVER=@licman” app-docker136.hex.tno.nl:443/vtmak/mak-
rtiexec

Again, this example assumes that the container running the License Manager is named maklm ... it is aliased
within the rtiexec container to be licman.

B.2.15 MÄK VR Forces Image (TNO)

B.2.15.1 Image
app-docker136.hex.tno.nl:443/msaas-nld/vrf:pi

This image is based on LRC version 2.

B.2.15.2 Description

VR Forces (VRF) is a CGF from MaK that can be configured with many different simulation scenarios. This
image version has a pre-configured demo scenario, but other VRF scenarios can be mounted via the docker
volumes option. The scenario will start as soon as the container image is started.

By default, a demo scenario is started in wall clock time, using the FOM RPR_FOM_v2.0_1516-2010.xml.
The scenario to be used and the way time is managed can be controlled via the container commandline options.

This image is currently only built against the Pitch LRC base image and requires a user defined MAC
address to run (for more information, check image provider).

B.2.15.3 Synopsis
docker run <docker options> msaas-nld/vrf:pi <container options>

B.2.15.4 Docker Options

--mac-address=<MAC address> : MAC address for license purposes. Required.

-h mak : set the hostname to mak. Required.

-e DISPLAY=<xserver>:<displaynr> : set address of X-Server and display number to use. While
nothing is actually going to be displayed, VRF requires a valid setting in order to run. Required.

B.2.15.5 Container Options

-v : verbose mode (default: no verbose mode).

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 37

-F <federation name> : join this federation (default: TheWorld).

-f <federate name> : use this federate name (default: VRF).

-s <scenario> : name of VRF scenario to use (default scenario for wall clock time). The
corresponding scenario for logical time is called demo.logicaltime.

-t : start the VRF scenario in logical time and use TSO FOM RPR_FOM_v2.0_1516-2010-TSO.xml
(default: start in wall clock time and use RO FOM RPR_FOM_v2.0_1516-2010.xml). When using logical
time, the advancement of simulation time can be controlled by an external time pacer (see Pacer).

B.2.15.6 Other Information

N/A.

B.2.15.7 Example

The following Docker Compose file shows how to start VRF with a scenario called demo in wall clock time.

version: ‘2’

services:
 crc:
 image: app-docker136.hex.tno.nl:443/pitch/crc:5.3.2.1L
 mac_address: 00:18:8B:0D:4F:0B
 environment:
 - DISPLAY=xserver:0

 xserver:
 image: app-docker136.hex.tno.nl:443/library/xserver
 ports:
 - “8080:8080”

 kml:
 image: app-docker136.hex.tno.nl:443/msaas-nld/kmlserver:pi
 command: -f KMLServer

 ge:
 image: app-docker136.hex.tno.nl:443/library/ge
 command: -f -r 10 Gulf http://kml:8080/kmlserver/entities
 environment:
 - DISPLAY=xserver:0

 vrf:
 image: app-docker136.hex.tno.nl:443/msaas-nld/vrf:pi
 mac_address: 8C:70:5A:0B:58:7E
 hostname: mak
 environment:
 - DISPLAY=xserver:0

B.2.16 Pacer Image (TNO)

B.2.16.1 Image
app-docker136.hex.tno.nl:443/msaas-nld/pacer:pi

app-docker136.hex.tno.nl:443/msaas-nld/pacer:po

app-docker136.hex.tno.nl:443/msaas-nld/pacer:none

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 38 STO-TR-MSG-136-Part-VII

The Pitch (pi) and Portico (po) images are based on LRC version 2. The none image (none) can be mounted
as a volume to either one of the LRC base images.

B.2.16.2 Description

The Pacer is an application that can be used to control the advancement of simulation time in a time
managed federation. The Pacer is controlled via a webbrowser providing buttons to:

• Pause/resume the simulation;

• Increase the simulation rate;

• Decrease the simulation rate; and

• Run the simulation as fast as possible.

The simulation rate is defined as simulation time / wallclock time. The rate = 1 corresponds to
real-time.

The Pacer should join the federation as the first federate in order to control time advancement from the start.
The Pacer starts in pause mode (time advanced state), that is, there is no time advancement. The resume
button should be pressed in the webbrowser to start advancement.

B.2.16.3 Synopsis
docker run <docker options> msaas-nld/pacer:pi <container options>

docker run <docker options> msaas-nld/pacer:po <container options>

B.2.16.4 Docker Options

-e ADVERTISED_ADDRESS=<address>:<portnumber> : Optional (default: 127.0.0.1:8080)

The pacer will advertise its service on the given advertised address.

B.2.16.5 Container Options
-h, --help : Optional (no help)

-F, --federation <federation name> : Optional ($FEDERATIONNAME)

-f, --federate <federate name> : Optional (-)

-L, --logfile <log filename> : Optional (-)

-l, --loglevel <log level> : Optional (SEVERE)

-c, --configfile <configuration filename> : Optional (default.config)

-p, --port <port> : Optional (0)

With the -p option the application is instructed to open this port once it has created/joined the federation
execution; can be used for bootstrapping (see LRC base image). If port number is zero then no port will be
opened.

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 39

B.2.16.6 Other Information

B.2.16.6.1 Federation Object Models Modules

The Pacer uses the following FOM modules depending on configuration:

• default.config (default): Empty.xml

• alltsofroms.config: RPR_FOM_v2.0_1516-2010-TSO.xml, Sensor.xml, Damage.xml

• allrofroms.config: RPR_FOM_v2.0_1516-2010.xml, Sensor.xml, Damage.xml

B.2.16.6.2 Pacer Home Page

The home page of the pacer is http://<ADVERTISED_ADDRESS>/pacer/index.html.

B.2.16.6.3 Proxy

All URLs for the Pacer have as base URL pacer. A proxy can redirect all pacer requests based on this base
URL.

B.2.16.6.4 Time Advancement

The Pacer is a time-stepped federate. The step size and look ahead is (in this implementation) fixed to 1. By
increasing or decreasing the rate, the wall clock time between time advance requests is decreased cq
increased. Future versions of the Pacer may provide additional time control options.

B.2.16.7 Example

The following Docker Compose file defines a two-federate federation. The Pacer joins as the first federate
and advertises its service on localhost, port 8081.

For Portico the first federate (the Pacer in this case) needs to join with all FOM modules that will be used in
the federation (this is due to a FOM merging issue); the allrofoms.config or alltsofoms.config
configuration of the Pacer needs to be used.

The -p option of the Pacer is used to signal other applications that the Pacer is ready for service. The LRC of
DamageServer waits for this port to be opened before starting the federate application, i.e., DamageServer.
This is indicated with the LRC_MASTERADDRESS environment variable.

version: ‘2’

services:
 pacer:
 image: app-docker136.hex.tno.nl:443/msaas-nld/pacer:po
 command: -f Pacer -c alltsofoms.config -p 6666
 environment:

- ADVERTISED_ADDRESS=10.10.10.11:8081
ports:
- “8081:8080”

 damsim:
 image: app-docker136.hex.tno.nl:443/msaas-nld/damageserver:po
 command: -f DamageSim -c portico-logicaltime.config
 environment:

- LRC_MASTERADDRESS=pacer:6666

http://<ADVERTISED_ADDRESS>/pacer/index.html

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 40 STO-TR-MSG-136-Part-VII

Open a webbrowser and navigate to the address http://10.10.10.11:8081/pacer/index.html. The
web page of the Pacer should appear. Replace 10.10.10.11 by your host address.

B.2.17 PDA Image (IFAD)

B.2.17.1 Image
app-docker136.hex.tno.nl:443/msaas-dnk/pda:0.2

B.2.17.2 Description
The IFAD PDA (Pitch DIS Adapter) image provides the Pitch DIS Adapter Professional as a service. The
default config settings are for the IFAD Logger Service to record via the HLA standard (connection
‘crc:8989’ and federation TheWorld) and to please the dockerized version of IFAD ISIM Monotor (DIS Port
3200).

The image contains a VNC server for accessing the Pitch DIS Adapter GUI.

The PDA is MAC-address-licensed, therefore a running instance of the image needs a specific MAC address.

B.2.17.3 Synopsis
docker run <docker options> app-docker136.hex.tno.nl:443/msaas-dnk/pda:0.2<

B.2.17.4 Docker Options
Recommended:
-d : Run container in background

--name <container name> : Assign a container name for simple startup of Pitch DIS Adapter service.

Required:
--mac-address=“00:19:9B:75:9F:7C” : MAC address for license purposes

--link <Pitch RTI host name: crc

Optional:
-p <port1>:5900 : VNC port number

B.2.17.5 Container Options
Nil.

B.2.17.6 Other Information
None.

B.2.17.7 Example
To start a container with the name pda and published port 5900 for the VNC server, use
docker run -d -p 5900:5900 --mac-address=“00:19:9B:75:9F:7C” --link crc:crc --
name pda app-docker136.hex.tno.nl:443/msaas-dnk/pda:0.2

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 41

To use the Pitch DIS Adapter GUI, connect via a VNC client on port 5900 and run the following from the
provided terminal
./usr/local/PitchDISAdapter/bin/pitchdisadapter

To use the default settings and run the Pitch DIS Adapter service use
docker exec -it pda bin/sh -c ‘/usr/local/PitchDISAdapter/bin/pitchdisadapter-
cmd’

This will connect the Pitch DIS Adapter to the Pitch RTI host crc via the HLA Federation TheWorld using
the DIS port 3200 and DIS Broadcast Address 255.255.255.255.

B.2.18 Pitch CRC Image (TNO)

B.2.18.1 Image
app-docker136.hex.tno.nl:443/pitch/crc:5.3.0.0L

app-docker136.hex.tno.nl:443/pitch/crc:5.3.2.1L

B.2.18.2 Description

This image is the Pitch CRC (Central RTI Component). The CRC is licensed against a certain MAC address;
hence the container must have this mac-address.

B.2.18.3 Synopsis
docker run <docker options> pitch/crc:<tag> <container options>

B.2.18.4 Docker Options

--mac-address=00:18:8B:0D:4F:0B : MAC address for license purposes. Required.

-v <my settings file>:/root/prti1516e/prti1516eCRC.settings : use the given settings file
as base rather than the default settings file. Optional.

-e CRC_NICKNAME=<crc name> : Use this as the nickname for the CRC. Default is crc-<container
hostname>. Optional

-e CRC_PORT=<crc port> : Use this CRC port number. Default is 8989. Optional.

-e CRC_SKIP_CONNECTIVITY_CHECK=<boolean> : Skip connectivity test back to connecting LRC.
Default is false. Optional.

-e CRC_REJECT_MISMATCHED_VERSIONS=<boolean> : Reject LRCs with miss-matching version.
Default is true. Optional.

-e CRC_BOOSTERADDRESS=<booster host>:<booster port> : Start in Booster Mode, using the
given booster host address and port number. Default is Direct Mode. Optional.

-e DISPLAY=<XServer host>:<Display number> : if set, use this XServer display as GUI. For
example, xserver:0. Optional.

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 42 STO-TR-MSG-136-Part-VII

If CRC_BOOSTERADDRESS and/or DISPLAY is set then the container will wait for the XServer and Booster to
start. The number of wait attempts is determined by the -w option.

B.2.18.5 Container Options

-h : Display help information. Optional.

-l <key> : run license activator with the given key.

-i : Set interactive mode. This option should be used in combination with the docker option -i in order to use
the container TTY. Default is non-interactive. Optional.

-w <attempts> : Number of attempts to wait for XServer (if DISPLAY set) and Booster (if
CRC_BOOSTERADDRESS set), before starting the CRC (non-negative integer, default is indefinite).

B.2.18.6 Other Information

None.

B.2.18.7 Example

B.2.18.7.1 Example A: Run CRC as a Daemon

Run the CRC as a daemon and give the container the name “crc”; other containers can use this name to link to:
docker run -d \

 --mac-address=00:18:8B:0D:4F:0B \
 --name crc app-docker136.hex.tno.nl:443/pitch/crc:5.3.0.0L

B.2.18.7.2 Example B: Run CRC with Interactive Command Line

Run the CRC in interactive mode to use the CRC command line prompt:

docker run -it \
 --rm \
 --mac-address=00:18:8B:0D:4F:0B \
 --name crc app-docker136.hex.tno.nl:443/pitch/crc:5.3.0.0L -i

B.2.18.7.3 Example C: Run CRC with a GUI

Run the CRC as in example A, but using a GUI:

Start XServer first:

docker run -d \
 -p 8080:8080 \
 --name xserver app-docker136.hex.tno.nl:443/library/xserver

Start CRC:

docker run -d \
 --mac-address=00:18:8B:0D:4F:0B \

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 43

 --link xserver \
 -e DISPLAY=xserver:0 \
 --name crc app-docker136.hex.tno.nl:443/pitch/crc:5.3.0.0L

And now open the web page http://<HOSTADDRESS>:8080/vnc.html.

B.2.19 Pitch DIS Adapter Image (TNO)

B.2.19.1 Image
app-docker136.hex.tno.nl:443/pitch/dis:2.6.0L

This image is based on LRC version 2.

B.2.19.2 Description

This image is the Pitch DIS Adapter (a DIS-HLA GW). The DIS Adapter is licensed against a certain mac-
address, hence the container must have this MAC address. The Pitch DIS Adapter GUI can be accessed via an
X Server.

B.2.19.3 Synopsis
docker run <docker options> app-docker136.hex.tno.nl:443/pitch/dis:2.6.0L
<container options>

B.2.19.4 Docker Options

--mac-address=00:18:8B:0D:4F:1B : MAC address for license purposes. Required.

B.2.19.5 Environment Variables

-e DISPLAY=<x display> : Address of X Display. Required.

B.2.19.6 Container Options

See also Pitch DIS Adapter manual.

-auto : Starts the DIS Adapter in autoconnect mode.

-config <file> : Give the config file to use in the DIS Adapter. NOTE that the config file must be
mounted into the container to become accessible to the application.

B.2.19.7 Other Information

None.

B.2.19.8 Example

Start the composition below named pi-run.yml with the command docker-compose -f pi-run.yml up

version: ‘2’

services:
 dis:
 image: app-docker136.hex.tno.nl:443/pitch/dis:2.6.0L
 command: -auto

http://<HOSTADDRESS>:8080/vnc.html

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 44 STO-TR-MSG-136-Part-VII

 mac_address: 00:18:8B:0D:4F:1B
 environment:
 - DISPLAY=xserver:0
 - MINSLEEP=5

 crc:
 image: app-docker136.hex.tno.nl:443/pitch/crc:5.3.0.0L
 mac_address: 00:18:8B:0D:4F:0B

 web:
 image: app-docker136.hex.tno.nl:443/pitch/web:2.1.1
 ports:
 - “8080:8080”

 shipsim:
 image: app-docker136.hex.tno.nl:443/msaas-aus/shipsim:pi
 command: -f ShipSim --fom-modules-dir allrofoms

 xserver:
 image: app-docker136.hex.tno.nl:443/library/xserver
 ports:
 - “8081:8080”

Notes:

• The Pitch DIS Adapter connects in this example automatically to the federation execution, hence the
CRC is started in the composition as well.

• A MINSLEEP sleep period is used to allow the X Server to start before the DIS Adapter. A better
practice is to have the X Server always running.

• The GUI of the DIS Adapter can be accessed via the X Server: http://<HOSTADDRESS>:8080/
vnc.html.

• The DIS Adapter starts with a default configuration; settings can be changed via the GUI or via the
config option.

B.2.20 Pitch Recorder Image (TNO)

B.2.20.1 Image
app-docker136.hex.tno.nl:443/pitch/rec:2.2.0L

This image is based on LRC version 2.

B.2.20.2 Description
This image is the Pitch Recorder for the recording and replay of simulation data. The Pitch Recorder GUI can
be accessed with a XServer.

B.2.20.3 Synopsis
docker run <docker options> pitch/rec:2.2.0L <container options>

B.2.20.4 Docker Options
--link <crc-name> : Reference to name of the CRC container. Default name is crc. Optional.

--mac-address=D4:BE:D9:26:AD:EB : MAC address for license purposes. Required.

-e DISPLAY=<XServer display> : Address of X Display. Required, unless Pitch Recorder uses the
nogui option.

http://<HOSTADDRESS>:8080/vnc.html
http://<HOSTADDRESS>:8080/vnc.html

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 45

B.2.20.5 Container Options

The container options are passed on to Pitch Recorder unchanged and have the following syntax:

<Recorder options> [<project file> [<project file options>]]

B.2.20.5.1 Project File Options

Project File Options are:

-p, --play : Start Playback of the loaded project

-l, --loop : Start Loop Playback of the loaded project

-r, --rec : Start Recording of the loaded project

--crc <host[:port]> : Override CRC host in project file

--lsd <designator> : Override Local Settings Designator in project file

--federation <name> : Override federation name in project file

B.2.20.5.2 Recorder Options

Recorder Options are:

-n, --nogui : Do not display GUI

-c, --config <file> : Load config from (default is recorder.config)

-s, --system Look and Feel : Use System Look and Feel (default on Windows OS)

-j, --java Look and Feel : Use Java Look and Feel (default on non Windows OS)

-d, --debug : Show debug info

-h, --help : Display help info

-v, --version : Display version info

B.2.20.6 Other Information
None.

B.2.20.7 Example

B.2.20.7.1 Start Pitch Recorder with Docker Run Commands

B.2.20.7.1.1 Start XServer

docker run -d \
 -p 8080:8080 \
 --name xserver app-docker136.hex.tno.nl:443/library/xserver

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 46 STO-TR-MSG-136-Part-VII

B.2.20.7.1.2 Start CRC

docker run -d \
 --mac-address=00:18:8B:0D:4F:0B \
 --name crc app-docker136.hex.tno.nl:443/pitch/crc:5.3.2.1L

B.2.20.7.1.3 Start Recorder

docker run -d \
 --link xserver \
 --link crc \
 -e DISPLAY=xserver:0 \
 --mac-address=D4:BE:D9:26:AD:EB \
 --name rec app-docker136.hex.tno.nl:443/pitch/rec:2.2.0L

The Pitch Recorder will not connect automatically to a federation execution and is therefore not visible in the
Pitch Webviewer. The Recorder needs to be configured and connected to a federation via its GUI.

B.2.20.7.1.4 Create a Data Image from a Recording

This example explains how to create a container data image from a data recording.

B.2.20.7.1.5 Create Directory Structure for Recordings

In this example Pitch Recorder will be configured to store the recorded data on the host filesystem rather
than in the container. The following directory structure needs to be created in the directory where the
compositions used in this example are started from:

mkdir -p ./recordings/projects
mkdir -p ./recordings/foms
mkdir -p ./recordings/databases

Copy the FOMs that you need for the recording into the foms directory.

B.2.20.7.1.6 Create a Recorder Project

Start Pitch Recorder to create a recorder project. Also, the CRC is started for project configuration reasons.

Start the composition: docker-compose -f create-project.yml up

Where the composition file is:

version: ‘2’

services:
 rec:
 image: app-docker136.hex.tno.nl:443/pitch/rec:2.2.0L
 mac_address: D4:BE:D9:26:AD:EB
 volumes:
 - ./recordings/projects:/usr/local/PitchRecorder/projects
 - ./recordings/foms:/usr/local/PitchRecorder/foms
 - ./recordings/databases:/usr/local/PitchRecorder/databases
 environment:
 - DISPLAY=xserver:0

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 47

 crc:
 image: app-docker136.hex.tno.nl:443/pitch/crc:5.3.2.1L
 mac_address: 00:18:8B:0D:4F:0B
 environment:
 - CRC_REJECT_MISMATCHED_VERSIONS=false
 - DISPLAY=xserver:0

 xserver:
 image: app-docker136.hex.tno.nl:443/library/xserver
 ports:
 - “8080:8080”

In Pitch Recorder do the following:

• Create a new project called test

• Add a datastream for HLA FOM Data:

• Set the datastream name to hlastream

• Set the Federation Name to TheWorld

• Set the Pitch CRC Host to crc and

• HLA FOM data as needed for the recording from the foms directory

• Press OK and Apply; the datastream should show connected (this is why the CRC needs to be
running)

• Press OK to leave panel

• Add a channel for the datastream from Channel > New:

• Set the channel name to hlachannel and press OK (i.e., everything will be recorded)

• Make sure that the hlachannel is on Rec

• Save the project in the recordings > projects directory, and name the file test.recorder

Terminate the composition with: docker-compose -f create-project.yml down.

B.2.20.7.1.7 Record Data

In this step a recording composition with Pitch Recorder is started. When the composition is started Pitch
Recorder automatically starts recording. Note that the composition file assumes that the recorder project is
saved as test.recorder.

Start the recording composition: docker-compose -f record-data.yml up.

Where the composition file is:

version: ‘2’

services:
 rec:
 image: app-docker136.hex.tno.nl:443/pitch/rec:2.2.0L
 mac_address: D4:BE:D9:26:AD:EB
 command: ./projects/test.recorder -r
 volumes:

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 48 STO-TR-MSG-136-Part-VII

 - ./recordings/projects:/usr/local/PitchRecorder/projects
 - ./recordings/foms:/usr/local/PitchRecorder/foms
 - ./recordings/databases:/usr/local/PitchRecorder/databases
 environment:
 - DISPLAY=xserver:0

 crc:
 image: app-docker136.hex.tno.nl:443/pitch/crc:5.3.2.1L
 mac_address: 00:18:8B:0D:4F:0B
 environment:
 - CRC_REJECT_MISMATCHED_VERSIONS=false
 - DISPLAY=xserver:0

 xserver:
 image: app-docker136.hex.tno.nl:443/library/xserver
 ports:
 - “8080:8080”

 shipsim:
 image: app-docker136.hex.tno.nl:443/msaas-aus/shipsim:pi
 command: --fom-modules-dir allrofoms --scalable

Go to the Pitch Recorder window to see the progress. After some time stop the recording.

The project needs to be saved again before terminating Pitch Recorder. Before you save, select the
 Play setting for the hlachannel. Save the project under recordings > projects as test.recorder.

Terminate the composition: docker-compose -f record-data.yml down.

Note that step 2 can also be done manually without a composition file, i.e., by manually opening the project
and starting the recording.

B.2.20.7.1.8 Build Data Image

In this step a data image is created from the recording just done.

Do this with: docker-compose -f build-dataimage.yml build

Where the composition file is:

version: ‘2’

services:
 recordings:
 build:
 context: .
 dockerfile: Dockerfile
 image: app-docker136.hex.tno.nl:443/my/recording

And the Dockerfile:

FROM alpine:3.3

#copy data
COPY ./recordings/projects /usr/local/PitchRecorder/projects/
COPY ./recordings/foms /usr/local/PitchRecorder/foms/

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 49

COPY ./recordings/databases /usr/local/PitchRecorder/databases/

#Make application available as a volume
VOLUME [“/usr/local/PitchRecorder/projects”]
VOLUME [“/usr/local/PitchRecorder/foms”]
VOLUME [“/usr/local/PitchRecorder/databases”]

#Dummy command
CMD [“/bin/true”]

Note that in this example the data image is called app-docker136.hex.tno.nl:443/my/recording.
For the creation of the data container image we use a small base image (Alpine Linux in this case).

B.2.20.7.1.9 Play Data

The data from the data image can be played with: docker-compose -f play-data.yml up

Where the composition file is:

version: ‘2’

services:
 rec:
 image: app-docker136.hex.tno.nl:443/pitch/rec:2.2.0L
 mac_address: D4:BE:D9:26:AD:EB
 command: ./projects/test.recorder -p
 volumes_from:
 - data
 environment:
 - DISPLAY=xserver:0

 data:
 image: app-docker136.hex.tno.nl:443/my/recording

 crc:
 image: app-docker136.hex.tno.nl:443/pitch/crc:5.3.2.1L
 mac_address: 00:18:8B:0D:4F:0B
 environment:
 - CRC_REJECT_MISMATCHED_VERSIONS=false
 - DISPLAY=xserver:0

 xserver:
 image: app-docker136.hex.tno.nl:443/library/xserver
 ports:
 - “8080:8080”

Go to the Pitch Recorder window to see progress.

B.2.20.7.1.10 Remove Recordings

Recordings can be removed from the databases and projects directories if they are not needed anymore.

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 50 STO-TR-MSG-136-Part-VII

B.2.21 Pitch WebGUI Image (TNO)

B.2.21.1 Image
app-docker136.hex.tno.nl:443/pitch/web:2.1.1

B.2.21.2 Description

This image is the Pitch Web GUI. The Web GUI can be used to monitor and control CRCs, federations
and federates.

B.2.21.3 Synopsis
docker run <docker options> pitch/web:2.2.1 <container options>

B.2.21.4 Docker Options

--link <crc-name>[:<crc-name-alias>] : Reference to the name of the CRC container. Default
name is crc. Optional.

-p 8080 : Web GUI port. Required.

B.2.21.5 Container Options

-h : displays help information. Optional.

-v : displays verbose output. Optional.

B.2.21.6 Webview Session Information
http://<docker-host>:<port>/Pitchwebview

Login: Administrator

Password: admin

B.2.21.7 Example

Run the Webviewer as a daemon and link to the CRC container.

docker run -d -p 8080:8080 --link crc:crc --name web app-docker136.hex.tno.nl:
443/pitch/web:2.1.1

In a webbrowser open the Webviewer page:

http://<docker-host>:8080/Pitchwebview

B.2.22 Proxy Image (TNO)

B.2.22.1 Image

app-docker136.hex.tno.nl:443/lbrary/proxy

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 51

B.2.22.2 Description

This image is a simple nginx based proxy that directs data from an external port to an internal service port.
This can be useful in a multi-node cluster where it is not known where the service will be scheduled and a
proxy can provide a fixed address and port to external clients.

Note that this proxy is most useful when running services in a cluster with Docker Swarm standalone.
A proxy is not needed when using docker in Docker Swarm mode. In Swarm mode a service is accessible
via its external port from every node.

B.2.22.3 Synopsis
docker run <docker options> library/proxy <container options>

B.2.22.4 Docker Options
-p <external port>:<internal port> : port specifications.

B.2.22.5 Container Options
{ [<internal port>]:<service name>:<internal service port>[:ws] }*

If the internal port is not provided then it defaults to the internal service port.

If ws is provided then the connection is for a websocket.

Multiple service mappings can be provided in the command. Only http is supported.

B.2.22.6 Other Information
N/A.

B.2.22.7 Example
A simple example where the xserver (internal service port 8080) is serviced via a proxy on port 8082.

version: ‘2’

services:
 xserver:
 image: app-docker136.hex.tno.nl:443/library/xserver

 proxy:
 image: app-docker136.hex.tno.nl:443/library/proxy
 command: 8082:xserver:8080:ws
 ports:
 - “8082:8082”

B.2.23 Sensor Server Image (TNO)

B.2.23.1 Image
app-docker136.hex.tno.nl:443/msaas-nld/sensorserver:pi

app-docker136.hex.tno.nl:443/msaas-nld/sensorserver:po

app-docker136.hex.tno.nl:443/msaas-nld/sensorserver:none

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 52 STO-TR-MSG-136-Part-VII

The Pitch (pi) and Portico (po) images are based on LRC version 2. The none image (none) can be mounted
as a volume to either one of the LRC base images.

B.2.23.2 Description
This Sensor Server creates a cookie cutter Sensor based on the JROADS simulation environment. The
Federate subscribes to Physical Entities from the RPR FOM and produces AbsoluteTracks for these entities
as described in the Sensor FOM module.

The sensor may either be connected to an existing PhysicalEntity based on the HLA Object Instance name or
placed at a static position. The update rate, range, azimuth and elevation are configurable using the properties
file described below.

The sensor federate will always run in time stepped mode, but can be configured to be either (HLA)
timemanaged or to run in (scaled) realtime.

B.2.23.3 Synopsis
docker run <docker options> msaas-nld/sensorserver:pi <container options>

docker run <docker options> msaas-nld/sensorserver:po <container options>

B.2.23.4 Docker Options

-h, --help : Optional (no help)

-p, --platform : Optional (HLA Object Instance name of the host platform)

-F, --federation <federation name> : Optional ($FEDERATIONNAME)

-f, --federate <federate name> : Optional (-)

-c, --connectattempts <number> : Optional ($LRC_CONNECTATTEMPTS)

-d, --directory <fom directory> : Optional (foms)

The RPR-FOM in the foms directory is ReceiveOrder (all interaction classes and object attributes are
marked RO); alternatively use the directory tsofoms for Timestamp Order interaction classes and object
attributes.

-timemanaged: Optional (false), run in time managed mode (both constrained and regulating)

-simtimestep <timestep in seconds> : Optional (1.0), in time managed mode, use this simulation
time step

-realtimestep <timestep in seconds> : Optional (1.0), wallclock time step for dead reckoning of
RO spatials

-L, --logfile <logfilename> : Optional (-)

-l, --loglevel <loglevel> : Optional (SEVERE)

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 53

B.2.23.5 Sensor Properties File

The properties of the sensor are configured in the sensorfederate.properties file that is provided with the
image (at root/application/sensorfederate.properties). The properties file below is the standard file that is
provided. It contains all available properties and a corresponding description.

Sensor options

Adds the Sensor to a dummy platform at specified [Lat Lon Alt] in [Degrees Meters]
latLonAlt = 51; 12; 1000

Adds the sensor to the entity corresponding to the provided objectinstance name
platform = HLA-Object-Instance-Name

When a host platform is set this parameter can be used to configure the relative position [Forward
Lateral Upward]
specified in [Meters Meters] of the sensor with respect to the host platform
relativePosition = 0 0 0

Sets the update rate for the sensor, expressed in simulation time
updaterate = 2.5

Sets the sensor range (from, to) in meters
rangeFrom = 0
rangeTo = 250000

Sets the sensor elevation angle range (from, to) in degrees
elevationFrom = -90
elevationTo = 90

Sets the sensor azimuth angle range (from, to) in degrees
azimuthFrom = -180
azimuthTo = 180

B.2.23.6 Used FOM Modules

The Sensor federate makes use of a custom Sensor FOM module (https://github.com/globalsim/msaas-
A/tree/master/FOMfiles/Sensor). The Sensor FOM module describes AbsoluteTrack objects that are
published by the Sensor federate.

The Sensor federate listens for published PhysicalEntities as defined by the RPR FOM (https://github
.com/globalsim/msaas-A/tree/master/FOMfiles/RPR).

B.2.23.7 How to Run the Sensor Server

You can configure a docker-compose file to run the Federate in a small scenario. The example below starts
the Ship Simulator, a Sensor Server, and a KML Server. The iconurl needs to be set to the host address of the
KML Server, i.e., replace 10.10.10.11 by your host address.

All federates in this example use the Portico RTI. The example also shows how to configure the sensor with
a properties file using volumes; the properties file is in this example located in the directory where docker-
compose is started from.

version: ‘2’

services:
 sensorserver:
 image: app-docker136.hex.tno.nl:443/msaas-nld/sensorserver:po
 command: -f SensorServer
 volumes:
 - ./sensorfederate.properties:/root/application/sensorfederate.properties

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 54 STO-TR-MSG-136-Part-VII

 kml:
 image: app-docker136.hex.tno.nl:443/msaas-nld/kmlserver:po
 command: -f KMLServer -iconurl http://10.10.10.11:8090
 ports:
 - “8090:8080”
 environment:
 - LRC_MINSLEEP=5

 shipsim:
 image: app-docker136.hex.tno.nl:443/msaas-aus/shipsim:po
 command: -f ShipSim
 environment:
 - LRC_MINSLEEP=5

B.2.24 SES Gulf (Service) Image (CPA ReDev GmbH)

B.2.24.1 Image
app-docker136.hex.tno.nl:443/msaas-ger/ses:gulf

B.2.24.2 Description
The SES-Service now consists of three services. The first on is an OGC-Web Feature Service (WFS) and a
SESTextureService for providing the connected imagery. The SES image always depends on an image of the
SESDatabase There is no standalone usage possible since a database is required.

B.2.24.3 Synopsis
Checkout the example docker-compose.yml and move to that folder with Powershell (or your preferred
terminal). Then type:
docker-compose up <docker-compose up options>

In an isolated environment, it will work as is. Otherwise, check the ports, which are defined in the yml-File.

B.2.24.4 Docker Compose Options
-d : Detached mode: getting back to terminal input while the services are running

B.2.24.5 Container Options
N/A.

B.2.24.6 Other Information
The initial start takes a little while. After downloading the images, the contained dump of the database
content has to be restored into the DBMS. The imagery is stored with the service, as we wanted to have it as
simple as possible. Otherwise we would have to add chargeable software.

B.2.24.7 Example

version: ‘3’
services:
 sesdb:
 restart: always
 image: app-docker136.hex.tno.nl:443/msaas-ger/sesdatabase:gulf
 #command: postgres -c config_file=/etc/postgresql.conf
 ports:
 - “5432:5432”
 environment:

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 55

 - POSTGRES_PASSWORD=postgres
 volumes:
 - sesdata:/var/lib/postgresql/data

 ses:
 image: app-docker136.hex.tno.nl:443/msaas-ger/ses:gulf
 ports:
 - “8080:8080”
 environment:
 - JAVA_OPTIONS=-Xmx2048m
 depends_on:
 - sesdb

volumes:
 sesdata:
 external: false

B.2.25 SES Meppen (Service) Image (CPA ReDev GmbH)

B.2.25.1 Image
app-docker136.hex.tno.nl:443/msaas-ger/ses:meppen

B.2.25.2 Description

The SES-Service yet consists of two services. The first on is an OGC-Web Feature Service (WFS) and a
SESTextureService for providing the connected imagery. The SES image always depends on an image of the
SESDatabase. There is no standalone usage possible since a database is required.

B.2.25.3 Synopsis

Checkout the example docker-compose.yml and move to that folder with Powershell (or your preferred
terminal). Then type:
docker-compose up <docker-compose up options>

In an isolated environment it will work as is. Otherwise check the ports, which are defined in the yml-File.

B.2.25.4 Docker Compose Options

-d : Detached mode: getting back to terminal input while the services are running

B.2.25.5 Container Options

N/A.

B.2.25.6 Other Information

The initial start takes a while. After downloading the images, the contained dump of the database content has
to be restored into the DBMS. To check the progress, it is helpful to display the console output. As the data
folder of the DBMS is mapped to a docker volume, the dump must be read only once.

B.2.25.7 Example

version: ‘3’
services:
 sesdb:
 image: app-docker136.hex.tno.nl:443/msaas-ger/sesdatabase:meppen
 ports:

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 56 STO-TR-MSG-136-Part-VII

 - “5432:5432”
 environment:
 - POSTGRES_PASSWORD=postgres
 volumes:
 - sesdata:/var/lib/postgresql/data

 ses:
 image: app-docker136.hex.tno.nl:443/msaas-ger/ses
 ports:
 - “8080:8080”
 environment:
 - JAVA_OPTIONS=-Xmx2048m
 depends_on:
 - sesdb

volumes:
 sesdata:
 external: false

B.2.26 SESDatabase Gulf Image (CPA ReDev GmbH)

B.2.26.1 Image
app-docker136.hex.tno.nl:443/msaas-ger/sesdatabase:gulf

B.2.26.2 Description
The images of this kind contain data to be provided by the Synthetic Environment Service (SES). The tag
describes the content of the included PostGIS-Database. As the imagery of the Gulf-Region-SES is delivered
with the service, you cannot use this image standalone. It only contains the database part of an SES. You
have to combine this database images with an image of the SES-Service. The compose file is located here.

B.2.26.3 Synopsis
docker run app-docker136.hex.tno.nl:443/msaas-ger/sesdatabase:gulf

B.2.26.4 Docker Options
-p 5432:5432 : socket port number for remote access. Optional.

-e POSTGRES_PASSWORD=postgres : set the postgres password.

B.2.26.5 Container Options

N/A.

B.2.26.6 Other Information

None.

B.2.26.7 Example

None.

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 57

B.2.27 SESDatabase Meppen Image (CPA ReDev GmbH)

B.2.27.1 Image
app-docker136.hex.tno.nl:443/msaas-ger/sesdatabase:meppen

B.2.27.2 Description

The images of this kind contain data to be provided by the Synthetic Environment Service (SES). The tag
describes the content of the included PostGIS-Database. It is not recommended – but possible – to use this
image standalone. It only contains the database part of an SES. The recommended usage is to combine this
database images with an image of the SES-Service. An example for the Meppen-Database is stored in the
code section.

B.2.27.3 Synopsis
docker run app-docker136.hex.tno.nl:443/msaas-ger/sesdatabase:meppen

B.2.27.4 Docker Options

-p 5432:5432 : socket port number for remote access. Optional.

-e POSTGRES_PASSWORD=postgres : set the postgres password.

-v sesdata:/var/lib/postgresql/data : define a volume for the storage of the data. (The volume
must be created manually)

B.2.27.5 Container Options

N/A.

B.2.27.6 Other Information

None.

B.2.27.7 Example

None.

B.2.28 ShipSim Image (AUS, DST Group)

B.2.28.1 Image
app-docker136.hex.tno.nl/msaas-aus/shipsim:none

app-docker136.hex.tno.nl/msaas-aus/shipsim:pi

app-docker136.hex.tno.nl/msaas-aus/shipsim:po

The Pitch (pi) and Portico (po) images are based on LRC version 2. The none image (none) can be mounted
as a volume to either one of the LRC base images.

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 58 STO-TR-MSG-136-Part-VII

B.2.28.2 Description

Contains a federate that simulates one or more ships. There are three behaviours for the generated ships:
1) A single ship will sail a straight line from an initial latitude and longitude with a given speed and

course. This is the default.

2) A single ship will sail a set of waypoints in a loop.
3) Multiple ships will sail a set of waypoints in a loop with each ship having a random starting position

along the set of waypoints.

See below for more information on these options.

B.2.28.3 Synopsis
docker run <docker options> app-docker136.hex.tno.nl/msaas-aus/shipsim:pi
<container options>

B.2.28.4 Docker Options

-p <host port>:8088: The container starts a http server on port 8088 for reading ship data.

B.2.28.5 Container Options

B.2.28.5.1 Federate Options

-F, -federation-name: The name of the federation to create/join (default is ‘Federation’).

-f, -federate-name: The name of the federate joining. Defaults to Platform. This is actually provided as
the FederateType, rather than FederateName. The RTI is relied upon to provide a unique federate name,
which is important when scaling multiple instances of the ShipSim federate.

-r, -realtime-rate: The number of one second platform state steps to take per one second of wallclock
time (updates to the federation occur once per wallclock second), i.e., a value of n will make the ship move
at n times realtime (approximately). (default is ‘2’).

-timemanaged: Enable the use of HLA time management. The federate will be both time constrained and
time regulating. Default is to not be time managed.

-timestep: When time managed, the value supplied to this option will be used as the time step for time
advance requests. Defaults to 0.5.

-lookahead: The lookahead to use when the federate is time managed. Defaults to 0.1.

-connection-attempts: The number of times to attempt to connect to the CRC before quitting. This is
necessary in contexts where the start of federation components is automated and the federate may begin
before the CRC has fully started and begun accepting connections (default is ‘5’).

-subscribe: An instance of ShipSim started with this option will not create any entities. Instead, it will
subscribe to SurfaceVessel object instances and print to console all reflectAttributeValues callbacks
received.

-c, -crc-host-name: The name/ip address of the host running the CRC (default is ‘crc’).

-p, -crc-port: The port on which the crc is listening (default is ‘8989’).

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 59

--scalable: This option will have ShipSim allow the RTI to generate object instance names when
registering platforms in the federation. These names are guaranteed to be unique and, so, allows a ShipSim
federate to be scaled up using docker-compose commands. The default operation of ShipSim (when not
specifying --scalable) is to use the marking (see -marking below) as the object instance name. Trying to
use docker-compose to scale in this configuration will result in an attempt to register multiple object
instances with the same name, which is not allowed by the RTI.

--fom-modules <fom module 1> <fom module 2> ...: allows you to specify FOM modules on the
command line.

--fom-modules-dir <dir>: lets you specify a directory and ShipSim will load all files in that directory
as FOM modules. The ShipSim image ships with the allrofoms and alltsofoms directories. The
allrofoms directory contains the RO versions of the RPR, Damage, Empty and Sensor FOMs. The
alltsofoms directory contains the TSO versions of the same FOMs.
Both options --fom-modules and --fom-modules-dir can be used together. If neither are used,
ShipSim loads the RPR_FOM_v2.0_1516-2010.xml FOM.

B.2.28.5.2 Model Options

-e, -entity-type: The value of the EntityType attribute when creating a single ship (either straight
running or waypoint following) (default is ‘1:3:13:6:1:1:0’). Note the use of colons to separate values ... this
is required.

-E, -entity-identifier: The value of the EntityIdentifier attribute when creating a single ship (either
straight running or waypoint following) (default is ‘1:1:1’). Note the use of colons to separate values ... this
is required. The centre value is the Application ID and will be overwritten with the federate handle obtained
by the joined federate to ensure the whole identifier is unique across all federates.

-m, -marking: The value of the Marking attribute when creating a single ship (either straight running or
waypoint following) (default is ‘Ship’). This value is used as the object instance name of the registered
SurfaceVessel and, therefore, needs to be unique within the federation.

-latitude: Initial latitude in decimal degrees when creating a single straight running ship (default is
‘26.573106’).

-longitude: Initial longitude in decimal degrees when creating a single straight running ship (default is
‘56.590209’).

-speed: Initial speed in m/s when creating a single straight running ship (default is ‘10.0’).

-course: Initial course in degrees from north when creating a single straight running ship (default is
‘270.0’).

-path-file <waypoint path filename>: Specify a file that contains a waypoint path for a single
created ship to follow. Supplying a waypoint path file results in any values supplied to -latitude, -
longitude, -speed and -course to be ignored.

The waypoint is defined by three whitespace separated values: latitude (decimal degrees), longitude (decimal
degrees), speed (m/s). One waypoint is defined per line. When the ship reaches the final waypoint, it will
loop back to the first waypoint. The msaas/shipsim image contains two waypoint files in its working
directory: hormuz.txt and shortpath.txt. hormuz.txt is a long loop from the Gulf of Oman through

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 60 STO-TR-MSG-136-Part-VII

the Strait of Hormuz into the Persian Gulf and back again, transiting the defined shipping lanes for that area.
shortpath.txt is a square path approximately 30 nautical miles (0.5 degrees) per side. hormuz.txt is
copied below for information:

25.612728 57.034723 10.0
26.512129 56.779510 10.0
26.673069 56.542583 10.0
26.577908 56.261343 10.0
26.369344 55.303031 10.0
26.372698 54.392558 10.0
26.173276 54.381525 10.0
26.176957 55.332729 10.0
26.439587 56.331878 10.0
26.456717 56.510735 10.0
26.392737 56.591607 10.0
25.700720 56.871214 10.0

-background <background configuration filename>: Specify a file that contains parameter
values used to generate a large number of ships with random initial conditions and motions. Specifying a
background configuration file causes any values supplied to -path-file, -latitude, -longitude, -
speed, -course, -entity-type, -entity-identifier, and -marking to be ignored.

An example background configuration file is below. This file is included in the msaas-aus/shipsim
image as background.json.

{
 numberOfShips: 100,
 countries: [13, 16, 45, 57, 100, 101, 102, 121, 153, 178, 189, 223, 224, 225],
 categories: {
 80: [1, 2, 3, 4, 5],
 81: [1, 2, 3, 4, 5, 6, 7],
 82: [1, 2, 3, 4, 5, 6, 7, 8],
 83: [1, 2, 3, 4, 5],
 84: [1, 2, 3, 4],
 85: [1, 2, 3, 4],
 86: [1, 2, 3, 4, 5]
 },
 paths: [
 “hormuz.txt”
]
}

The numberOfShips key specifies the number of ships to create in the simulation (this can be overriden with
the -background-count option described below). The countries key provides a list of country codes.
The categories key provides a mapping from category codes to lists of subcategory codes valid for the
respective category code. A random value is chosen from each of these lists and used in the EntityType
attribute for created ships. Finally, the paths key maps to a list of waypoint path filenames (as described
above). Again, each ship created is assigned a random value from this list.

-background-count <n>: Override the value for numberOfShips sourced from the background
configuration file.

B.2.28.6 HTTP Server

The federate runs a HTTP server on port 8088 (internal to the container). Navigating to the mapped port
(also 8088 in the above command line) in a browser will show the ship attribute values being updated to the
federation. (TODO: let the values be set via the browser at runtime).

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 61

B.2.28.7 Example

B.2.28.7.1 Straight Running Single Ship

docker run -d --name ship -p 8088:8088 \
 app-docker136.hex.tno.nl/msaas-aus/shipsim:pi
 -F TheWorld -f Ship

B.2.28.7.2 Waypoint Path Following Single Ship

docker run -d --name ship -p 8088:8088
 app-docker136.hex.tno.nl/msaas-aus/shipsim:pi
 -F TheWorld -f Ship -path-file hormuz.txt

B.2.28.7.3 200 Random Ships

docker run -d --name ship -p 8088:8088
 app-docker136.hex.tno.nl/msaas-aus/shipsim:pi
 -F TheWorld -f Ship -background background.json -background-count 200

B.2.29 ShipUI Image (AUS, DST Group)

B.2.29.1 Image
app-docker136.hex.tno.nl:443/msaas-aus/shipui:none

app-docker136.hex.tno.nl:443/msaas-aus/shipui:pi

app-docker136.hex.tno.nl:443/msaas-aus/shipui:po

The Pitch (pi) and Portico (po) images are based on LRC version 2. The none image (none) can be mounted
as a volume to either one of the LRC base images.

B.2.29.2 Description

Contains a federate that provides an interface for visualising ship state and requesting weapon fire against
other ships.

The interface is presented as a web based API and an HTML front end. The front end is accessible at
localhost:8089 and makes use of the Web API that is available as subpaths below
localhost:8089/api. The Web API is as follows, in Table B-7:

Table B-7: Web API.

Endpoint Method Argument Return Description

http://localhost
:8089/api/ships GET Nil {ships: [Ship1,

Ship2, ...]}
Returns a list of ships known
to the ShipUI federate.

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 62 STO-TR-MSG-136-Part-VII

Endpoint Method Argument Return Description

http://localhost
:8089/api/fire POST

{source:
Ship1,
target:
Ship2}

Nil

Request a WeaponFire
interaction be sent. A
WeaponFire will only be sent
if the source and target are
known to the ShipUI federate
and are different.

B.2.29.3 Synopsis
docker run <docker options> app-docker136.hex.tno.nl:443/msaas-aus/shipui:pi
<container options>

B.2.29.4 Docker Options

-p <host port>:8089: The container starts a http server on port 8089 for reading ship data.

TIP: The user interface is stored in /root/application/ui. Using a volume mount to a host location
allows for the UI to be changed and played with in realtime.

B.2.29.5 Container Options

-F, --federation-name: Set the name of the federation to create/join. Defaults to “Federation”.

-f, --federate-name: Set the name to use for the federate when joining the federation. Defaults to
“ShipUI”.

--fom-modules: Specify a list of FOM modules for this federate to use.

--fom-modules-dir: Specify a directory that contains FOM modules for this federate to use.

--timemanaged: Run this federate in time managed mode, both time constrained and time regulating. If
this option is not specified, the federate runs at realtime from the system clock.

--timestep: Specify the timestep for this federate to use when running time managed. Defaults to 0.5.

--lookahead: Specify the lookahead for this federate to use when running time managed. Defaults to 0.1.

B.2.29.6 Other Information

None.

B.2.29.7 Example

None.

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 63

B.2.30 Start Image (TNO)

B.2.30.1 Image
app-docker136.hex.tno.nl:443/msaas-nld/start:none

LRC Version 1:
app-docker136.hex.tno.nl:443/msaas-nld/start:pi

app-docker136.hex.tno.nl:443/msaas-nld/start:pi-centos

app-docker136.hex.tno.nl:443/msaas-nld/start:pi-debian

app-docker136.hex.tno.nl:443/msaas-nld/start:po

app-docker136.hex.tno.nl:443/msaas-nld/start:po-debian

app-docker136.hex.tno.nl:443/msaas-nld/start:ma

LRC Version 2:
app-docker136.hex.tno.nl:443/msaas-nld/start:pi-alpine-2

app-docker136.hex.tno.nl:443/msaas-nld/start:pi-centos-2

app-docker136.hex.tno.nl:443/msaas-nld/start:pi-debian-2

app-docker136.hex.tno.nl:443/msaas-nld/start:po-alpine-2

app-docker136.hex.tno.nl:443/msaas-nld/start:po-debian-2

B.2.30.2 Description

This is a simple federate, called start, that (optionally) provides an X Window GUI in which it displays all of
the joined federates. Images (pi, po, ma) are provided for three RTIs, and one image (none) that can be
mounted as a volume to either of the three LRC base images.

B.2.30.3 Synopsis
docker run <docker options> msaas-nld/start:<tag> <container options>

B.2.30.4 Docker Options

-e DISPLAY=<host address>:<display number> : use this X display. Optional.

If DISPLAY is invalid (e.g., the X Server is not up) then the application continues without X display.

-v ./foms:/root/application/foms : create/join federation with the FOM modules under the
directory foms. Optional.

B.2.30.5 Container Options

-h, --help : Optional (no help)

-F, --federation <federation name> : Optional ($FEDERATIONNAME)

-f, --federate <federate name> : Optional (-)

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 64 STO-TR-MSG-136-Part-VII

-L, --logfile <log filename> : Optional (-)

-l, --loglevel <log level> : Optional (SEVERE)

-c, --connectattempts <connect attempts> : Optional ($LRC_CONNECTATTEMPTS).

-d, --directory <FOM directory> : Optional (foms)

With the -d option the application can be started with different FOMs, i.e., the application creates/joins the
federation execution with the following FOMs:

• foms (default) : Empty.xml

• allfoms : Empty.xml, Damage.xml, Sensor.xml, RPR_FOM_v2.0_1516-2010-TSO.xml

• allrofoms : Empty.xml, Damage.xml, Sensor.xml, RPR_FOM_v2.0_1516-2010.xml

-p, --port <port> : Optional (0)

With the -p option the application is instructed to open this port once it has created/joined the federation
execution; can be used for bootstrapping (see LRC base image). If port number is zero then no port will be
opened.

B.2.30.6 Other Information

None.

B.2.30.7 Example

For an X Server example, see X Server.

In the following example one master and three slaves are started. The slaves will wait for the master to
create/join the federation execution.

version: ‘2’

services:
 master:
 image: app-docker136.hex.tno.nl:443/msaas-nld/start:po
 command: -p 8990

 start1:
 image: app-docker136.hex.tno.nl:443/msaas-nld/start:po
 environment:
 - LRC_MASTERHOST=master
 - LRC_MASTERPORT=8990

 start2:
 image: app-docker136.hex.tno.nl:443/msaas-nld/start:po
 environment:
 - LRC_MASTERHOST=master
 - LRC_MASTERPORT=8990

 start3:
 image: app-docker136.hex.tno.nl:443/msaas-nld/start:po
 environment:
 - LRC_MASTERHOST=master
 - LRC_MASTERPORT=8990

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 65

The output is something like:

Creating examples_start3_1
Creating examples_start1_1
Creating examples_start2_1
Creating examples_master_1
Attaching to examples_start3_1, examples_start1_1, examples_start2_1, examples_master_1
start3_1 | LRC: Version: portico/lrc:nightly-20160528-alpine-v0.3
start3_1 | LRC: Process settings: /root/lrc/settings.sh
start3_1 | LRC: Wait for master at master:8990
start1_1 | LRC: Version: portico/lrc:nightly-20160528-alpine-v0.3
start1_1 | LRC: Process settings: /root/lrc/settings.sh
start1_1 | LRC: Wait for master at master:8990
start2_1 | LRC: Version: portico/lrc:nightly-20160528-alpine-v0.3
start2_1 | LRC: Process settings: /root/lrc/settings.sh
start2_1 | LRC: Wait for master at master:8990
master_1 | LRC: Version: portico/lrc:nightly-20160528-alpine-v0.3
master_1 | LRC: Process settings: /root/lrc/settings.sh
master_1 | LRC: No sleep period
master_1 | LRC: Start: /root/application/start.sh
master_1 | 1::20:16:00.520::federate.Main::main::federationName = TheWorld
master_1 | 1::20:16:00.522::federate.Main::main::federateName = null
master_1 | 1::20:16:00.522::federate.Main::main::connectAttempts = 0
master_1 | 1::20:16:00.522::federate.Main::main::fomDirectory = foms
master_1 | 1::20:16:00.522::federate.Main::main::logFile = null
master_1 | 1::20:16:00.522::federate.Main::main::logLevel = INFO
master_1 | 1::20:16:00.522::federate.Main::main::port = 8,990
master_1 | 1::20:16:00.523::federate.Federate::connect::Attempt #1 of INFINITE to connect ...
master_1 | 1::20:16:00.523::federate.Federate::connect::Connected to RTI
master_1 | 1::20:16:00.523::federate.Federate::getFOMs::FOM: found 1 FOMs
master_1 | 1::20:16:00.524::federate.Federate::getFOMs::FOM[1]: file:/root/application/foms/Empty.xml
master_1 |
master_1 | ---
master_1 | GMS: address=a14d7bc8e60c-12629, cluster=TheWorld, physical address=172.21.0.5:42527
master_1 | ---
start3_1 | LRC: Wait for master at master:8990
start1_1 | LRC: Wait for master at master:8990
start2_1 | LRC: Wait for master at master:8990
start3_1 | LRC: Wait for master at master:8990
start1_1 | LRC: Wait for master at master:8990
start2_1 | LRC: Wait for master at master:8990
start3_1 | LRC: Wait for master at master:8990
start1_1 | LRC: Wait for master at master:8990
start2_1 | LRC: Wait for master at master:8990
master_1 | 1::20:16:04.848::federate.Federate::join::Created Federation
master_1 | 1::20:16:04.862::federate.Federate::join::Joined Federation
master_1 | 1::20:16:04.865::federate.Federate::publishAndSubscribe::Published and Subscribed
master_1 | 1::20:16:04.868::federate.Federate::start::Start ...
master_1 | 1::20:16:04.868::federate.Federate::addFederate::Added Federate MOM.Federate(Federate-
1483128960331)
master_1 | 22::20:16:04.871::federate.Main$1::run::Waiting for clients on port: 8990
start3_1 | LRC: Wait for master at master:8990
master_1 | 22::20:16:05.054::federate.Main$1::run::Knock knock from: 172.21.0.3
start1_1 | LRC: Wait for master at master:8990
master_1 | 22::20:16:05.133::federate.Main$1::run::Knock knock from: 172.21.0.2
start2_1 | LRC: Wait for master at master:8990
master_1 | 22::20:16:05.205::federate.Main$1::run::Knock knock from: 172.21.0.4
start3_1 | LRC: Master master:8990 is up
start3_1 | LRC: No sleep period
start3_1 | LRC: Start: /root/application/start.sh
start1_1 | LRC: Master master:8990 is up
start1_1 | LRC: No sleep period
start1_1 | LRC: Start: /root/application/start.sh
start2_1 | LRC: Master master:8990 is up
start2_1 | LRC: No sleep period
start2_1 | LRC: Start: /root/application/start.sh
start3_1 | 1::20:16:06.646::federate.Main::main::federationName = TheWorld
start3_1 | 1::20:16:06.647::federate.Main::main::federateName = null
start3_1 | 1::20:16:06.650::federate.Main::main::connectAttempts = 0

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 66 STO-TR-MSG-136-Part-VII

start3_1 | 1::20:16:06.651::federate.Main::main::fomDirectory = foms
start3_1 | 1::20:16:06.651::federate.Main::main::logFile = null
start3_1 | 1::20:16:06.652::federate.Main::main::logLevel = INFO
start3_1 | 1::20:16:06.653::federate.Main::main::port = 0
start3_1 | 1::20:16:06.654::federate.Federate::connect::Attempt #1 of INFINITE to connect ...
start3_1 | 1::20:16:06.654::federate.Federate::connect::Connected to RTI
start3_1 | 1::20:16:06.656::federate.Federate::getFOMs::FOM: found 1 FOMs
start3_1 | 1::20:16:06.658::federate.Federate::getFOMs::FOM[1]: file:/root/application/foms/Empty.xml
start1_1 | 1::20:16:06.755::federate.Main::main::federationName = TheWorld
start1_1 | 1::20:16:06.756::federate.Main::main::federateName = null
start1_1 | 1::20:16:06.756::federate.Main::main::connectAttempts = 0
start1_1 | 1::20:16:06.757::federate.Main::main::fomDirectory = foms
start1_1 | 1::20:16:06.760::federate.Main::main::logFile = null
start1_1 | 1::20:16:06.760::federate.Main::main::logLevel = INFO
start1_1 | 1::20:16:06.760::federate.Main::main::port = 0
start1_1 | 1::20:16:06.761::federate.Federate::connect::Attempt #1 of INFINITE to connect ...
start1_1 | 1::20:16:06.761::federate.Federate::connect::Connected to RTI
start1_1 | 1::20:16:06.761::federate.Federate::getFOMs::FOM: found 1 FOMs
start1_1 | 1::20:16:06.763::federate.Federate::getFOMs::FOM[1]: file:/root/application/foms/Empty.xml
start2_1 | 1::20:16:06.962::federate.Main::main::federationName = TheWorld
start2_1 | 1::20:16:06.966::federate.Main::main::federateName = null
start2_1 | 1::20:16:06.967::federate.Main::main::connectAttempts = 0
start2_1 | 1::20:16:06.969::federate.Main::main::fomDirectory = foms
start2_1 | 1::20:16:06.970::federate.Main::main::logFile = null
start2_1 | 1::20:16:06.970::federate.Main::main::logLevel = INFO
start2_1 | 1::20:16:06.971::federate.Main::main::port = 0
start2_1 | 1::20:16:06.972::federate.Federate::connect::Attempt #1 of INFINITE to connect ...
start2_1 | 1::20:16:06.974::federate.Federate::connect::Connected to RTI
start2_1 | 1::20:16:06.975::federate.Federate::getFOMs::FOM: found 1 FOMs
start2_1 | 1::20:16:06.980::federate.Federate::getFOMs::FOM[1]: file:/root/application/foms/Empty.xml
start3_1 |
start3_1 | ---
start3_1 | GMS: address=65eb972c1c27-13467, cluster=TheWorld, physical address=172.21.0.3:57944
start3_1 | ---
start1_1 |
start1_1 | ---
start1_1 | GMS: address=1f1a8cb4cf79-6660, cluster=TheWorld, physical address=172.21.0.2:41383
start1_1 | ---
start2_1 |
start2_1 | ---
start2_1 | GMS: address=78ea1a7d9a40-32339, cluster=TheWorld, physical address=172.21.0.4:60833
start2_1 | ---
start3_1 | ERROR [main] portico.lrc.jgroups: FAILURE createFederation: already exists, name=TheWorld
start3_1 | 1::20:16:09.557::federate.Federate::join::Didn’t create federation, it already existed
start1_1 | ERROR [main] portico.lrc.jgroups: FAILURE createFederation: already exists, name=TheWorld
start1_1 | 1::20:16:09.576::federate.Federate::join::Didn’t create federation, it already existed
master_1 | 1::20:16:09.615::federate.Federate::addFederate::Added Federate MOM.Federate(Federate-
1483128966144)
master_1 | 1::20:16:09.642::federate.Federate::addFederate::Added Federate MOM.Federate(Federate-
1483128966247)
start3_1 | 1::20:16:09.649::federate.Federate::join::Joined Federation
start1_1 | 1::20:16:09.652::federate.Federate::join::Joined Federation
start3_1 | 1::20:16:09.652::federate.Federate::publishAndSubscribe::Published and Subscribed
start3_1 | 1::20:16:09.653::federate.Federate::start::Start ...
start3_1 | 1::20:16:09.653::federate.Federate::addFederate::Added Federate MOM.Federate(Federate-
1483128966144)
start3_1 | 1::20:16:09.654::federate.Federate::addFederate::Added Federate MOM.Federate(Federate-
1483128966247)
start3_1 | 1::20:16:09.654::federate.Federate::addFederate::Added Federate MOM.Federate(Federate-
1483128960331)
start1_1 | 1::20:16:09.659::federate.Federate::publishAndSubscribe::Published and Subscribed
start1_1 | 1::20:16:09.659::federate.Federate::start::Start ...
start1_1 | 1::20:16:09.660::federate.Federate::addFederate::Added Federate MOM.Federate(Federate-
1483128966247)
start1_1 | 1::20:16:09.661::federate.Federate::addFederate::Added Federate MOM.Federate(Federate-
1483128966144)
start1_1 | 1::20:16:09.662::federate.Federate::addFederate::Added Federate MOM.Federate(Federate-
1483128960331)
start2_1 | ERROR [main] portico.lrc.jgroups: FAILURE createFederation: already exists, name=TheWorld
start2_1 | 1::20:16:10.650::federate.Federate::join::Didn’t create federation, it already existed

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 67

start1_1 | 1::20:16:10.702::federate.Federate::addFederate::Added Federate MOM.Federate(Federate-
1483128966340)
start3_1 | 1::20:16:10.703::federate.Federate::addFederate::Added Federate MOM.Federate(Federate-
1483128966340)
master_1 | 1::20:16:10.705::federate.Federate::addFederate::Added Federate MOM.Federate(Federate-
1483128966340)
start2_1 | 1::20:16:10.741::federate.Federate::join::Joined Federation
start2_1 | 1::20:16:10.746::federate.Federate::publishAndSubscribe::Published and Subscribed
start2_1 | 1::20:16:10.746::federate.Federate::start::Start ...
start2_1 | 1::20:16:10.747::federate.Federate::addFederate::Added Federate MOM.Federate(Federate-
1483128966340)
start2_1 | 1::20:16:10.747::federate.Federate::addFederate::Added Federate MOM.Federate(Federate-
1483128966144)
start2_1 | 1::20:16:10.748::federate.Federate::addFederate::Added Federate MOM.Federate(Federate-
1483128966247)
start2_1 | 1::20:16:10.748::federate.Federate::addFederate::Added Federate MOM.Federate(Federat

B.2.31 Symbol Service Image (IFAD)

B.2.31.1 Image
app-docker136.hex.tno.nl:443/msaas-dnk/disenumerationsymbolservice:2.2

B.2.31.2 Description

The service translates Distributed Interactive Simulation (DIS) enumeration values to APP6(B) symbol
codes and unit symbols. It also translates to an APP6(C) 20 digit description.

B.2.31.3 Synopsis
docker run <docker options> app-docker136.hex.tno.nl:443/msaas-
dnk/disenumerationsymbolservice:2.2
B.2.31.4 Docker Options

Recommended:

-d: Run container in background

Required:

-p <host port>:80

B.2.31.5 Container Options

Nil.

B.2.31.6 Service Interface
• /<service>/<forceidentifier>/<entitytype>

• /<service>/<entitytype> (same as /<service>/0/<entitytype>)

Where,

• forceidentifier is 0, 1, 2 or 3.

• entitytype is a sequence of zero to seven dot separated digits.

• service is one of app6b-symbolcode, dis-kind, dis-domain, dis-country, dis-category,
dis-subcategory, dis-extra, dis-xml, app6c-description, app6c-code20digit,

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 68 STO-TR-MSG-136-Part-VII

app6b-symbolpng, app6b-symbolpng<N>, app6b-symbolsvg and app6b-symbolsvgXXXX,
where each X ranges in 0-9 and N is one of 0030, 0035, 0050, 0055, 0060, 0065, 0070 and 0100.

Further details once container is running (see Examples below) at: http://<host>:<port>/about.

B.2.31.7 Examples

Start the service on e.g., port 953 on localhost.
docker run -d -p 953:80 app-docker136.hex.tno.nl:443/msaas-
dnk/disenumerationsymbolservice:2.2

A service manual is now found at
http://localhost:953/about

Take forceidentifier as 1 and entitytype as 1.2.78.1.6.1.0 then:

• http://localhost:953/app6b-symbolcode/1/1.2.78.1.6.1.0 returns
SFAPMFF-------S

• http://localhost:953/dis-kind/1/1.2.78.1.6.1.0 returns
Platform

• http://localhost:953/dis-xml/1/1.2.78.1.6.1.0 returns

<dis>
 <kind>Platform</kind>
 <domain>Air</domain>
 <country>Germany</country>
 <category>Fighter/Air Defense</category>
 <subcategory>Eurofighter</subcategory>
 <specific>Eurofighter GS</specific>
 <extra></extra>
</dis>

• http://localhost:953/app6b-symbolsvg/1/1.2.78.1.6.1.0 returns

<svg baseProfile=“tiny” height=“46.2” version=“1.2” viewBox=“41 26 122 132” width=“42.7”
xmlns=“http://www.w3.org/2000/svg”>
 <path d=“M 155,150 C 155,50 115,30 100,30 85,30 45,50 45,150” fill=“rgb(128,224,255)” fill-opacity=“1”
stroke=“black” stroke-width=“4”></path>
 <text fill=“black” font-family=“Arial” font-size=“45” font-weight=“bold” stroke=“none” stroke-width=“4”
text-anchor=“middle” x=“100” y=“115”>F</text>
</svg>

B.2.32 Syslog Image (TNO)

B.2.32.1 Image
app-docker136.hex.tno.nl:443/library/syslog

B.2.32.2 Description

This syslog image can be used as general logging service for container output. Container output can be
directed to the syslog service by setting the container logging driver to syslog.

https://linux.die.net/man/8/rsyslogd

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 69

B.2.32.3 Synopsis
docker run <docker options> library/syslog <container options>

B.2.32.4 Docker Options

-p <syslog port number>:514 (Required to use syslog)

B.2.32.5 Container Options

See rsyslog at https://linux.die.net/man/8/rsyslogd.

B.2.32.6 Other Information

N/A.

B.2.32.7 Example

Docker compose file compose-syslog.yml to start the syslog service:

version: ‘2’

services:
 log:
 image: app-docker136.hex.tno.nl:443/library/syslog
 container_name: syslog
 ports:
 - “5000:514”

Docker compose file compose-sim.yml to start a few simulation services:

version: ‘2’

Example to demonstrate the use of the log driver.
In this example we use the syslog driver, and confiure it to use format rfc3164
so that logstash can interpret to data correctly as well.
For the syslog address 127.0.0.1 is used, which is interpreted by the docker daemon
as the address of the local Docker Host. If syslog runs on another Docker Host,
the address of that host should be used instead.

services:
 kml:
 image: app-docker136.hex.tno.nl:443/msaas-nld/kmlserver:po
 command: -f KMLServer -iconurl http://127.0.0.1:8090 -l FINEST
 ports:
 - “8090:8080”
 logging:
 driver: syslog
 options:
 syslog-address: “tcp://127.0.0.1:5000”
 syslog-format: rfc3164
 tag: “kml”

 start:
 image: app-docker136.hex.tno.nl:443/msaas-nld/start:po
 command: -f Start -l FINEST
 logging:
 driver: syslog
 options:
 syslog-address: “tcp://127.0.0.1:5000”
 syslog-format: rfc3164
 tag: “start”

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 70 STO-TR-MSG-136-Part-VII

To run the example, do the following:

• Start syslog service: docker-compose -f compose-syslog.yml up -d

• Start simulation services: docker-compose -f compose-sim.yml up -d

• Look at the log: docker exec syslog tail -f /var/log/messages

B.2.33 X Server Image (TNO)

B.2.33.1 Image
app-docker136.hex.tno.nl:443/library/xserver

B.2.33.2 Description

This image is an X Server for use by any X11 based application. The user can connect to the X Server with a
VNC Client or with any modern webbrowser that supports websockets. Simultaneous connections from
multiple clients are supported. Optionally a password can be configured that the user must supply to connect.

B.2.33.3 Synopsis
docker run <docker options> library/xserver <container options>

B.2.33.4 Docker Options

-p <VNC port number>:5900 (optional)

-p <Websocket port number>:8080 (optional)

-p <Supervisor port number>:9001 (optional)

-e DISPLAY=<X11 DISPLAY value> (optional, default :0)

-e PASSWORD=<Password value> (optional, default no password)

-e DISPLAY_WIDTH=<display width> (optional, default 1024)

-e DISPLAY_HEIGHT=<display height> (optional, default 768)

B.2.33.5 Container Options

N/A.

B.2.33.6 Other Information

None.

B.2.33.7 Example

The following Docker Compose file provides an example with a Portico federate that links with the X
Server. The helloworld service starts with a delay of MINSLEEP seconds in order to allow the X Server to
start. The xserver service exposes port 8080 so that the user can connect to the X Server from a webbrowser.
Browser URL is http://<Docker Host address>:8080/vnc.html.

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 71

version: ‘2’

services:
 helloworld:
 image: app-docker136.hex.tno.nl:443/msaas-nld/start:po
 environment:

- DISPLAY=xserver:0
- MINSLEEP=5

 xserver:
 image: app-docker136.hex.tno.nl:443/library/xserver
 ports:

- “8080:8080”

To run these containers directly from the command line, do:
docker run -d --name xserver -p 8080:8080 app-
docker136.hex.tno.nl:443/library/xserver

docker run -d --link xserver -e DISPLAY=xserver:0 app-
docker136.hex.tno.nl:443/msaas-nld/start:po

B.3 FOMS

B.3.1 Sensor FOM

B.3.1.1 Module Overview

See Figure B-2 and Table B-8 for an overview and description of the module.

Figure B-2: Sensor Module Overview.

Table B-8: Module Description.

Module Description

Sensor Provides a simple FOM for the communication of sensor tracks.

B.3.1.2 Object Classes Overview

Figure B-3 provides an overview of the sensor object classes.

Figure B-3: Sensor Object Classes Overview.

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 72 STO-TR-MSG-136-Part-VII

B.3.1.3 Identification

Table B-9 lists sensor module identification.

Table B-9: Sensor Module Identification.

Name Sensor Module

Type FOM

Version 1.0

Modification Date 2016-07-05

Security Classification Unclassified

Purpose

Application Domain Analysis

Description Provides a simple FOM for the communication of sensor tracks.

Use Limitation

Other

B.3.1.4 Object Classes

Figure B-4 shows sensor object classes.

Figure B-4: Sensor Object Classes.

B.3.1.4.1 Track

B.3.1.4.1.1 HLAobjectRoot.Track

Table B-10 shows a base class used to represent tracks. These are principally those generated and output
from sensors but tracks formed through a fusion of data may also be represented. Its attributes are those
common to all tracks.

Table B-10: HLAobjectRoot.Track Attributes.

Attribute Datatype Semantics

TrackTime HLAfloat64Time Optional attribute (default: time of receipt). The time
at which the current track attributes are associated
with.

TrackTimeOfInitiation HLAfloat64Time Optional attribute (default: unknown). The time at
which the track was initiated.

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 73

Attribute Datatype Semantics

TrackStatus TrackStatusEnum Optional attribute (default: DETECTED). Indicates
the status of the track.

TrackDescription HLAASCIIstring Optional attribute (default: none). A user defined
description of the track.

TrackNumber TrackNumber Required attribute. The track number assigned by the
sensor generating the track.

TargetObjectSetValid HLAboolean Optional attribute (default: false). If true, indicates
that the value of the TargetObjectInstanceNameSet
attribute is valid. If false, the value of the
TargetObjectInstanceNameSet must be ignored.

TargetObjectSet ObjectInstanceNameArray Optional attribute (default: none). The object
instance names of the objects that may give rise to
this track. This can be used as a shortcut for track
correlation or for visualisation purposes. Ideally,
there is only one such object associated with the
track. However, given that some sensors may not be
able to resolve nearly collocated entities, there may
be more than one object instance associated with it.
The set may also be empty, indicating that no object
gave rise to this track (a ‘false’ track). This attribute
is optional if the TargetObjectInstanceNameSetValid
attribute is false.

TrackGenerator ObjectInstanceName Optional attribute (default: none). The name of the
object instance that generates the track. This will
typically be a Sensor object instance.

TrackQuality TrackQualityEnum Optional attribute (default: TQ0). Provides a
somewhat subjective – to the sensor generating the
track – measure of the reliability of the track data.
The number refers to a measure of uncertainty 1
(high uncertainty) to 15 (little uncertainty).

TrackClassification TrackClassificationArray Optional attribute (default: no classification). An
estimate of the classification of the tracked object.
This attribute does not include information about the
intent of the tracked object, i.e., hostile, friendly etc.
This attribute consists of a list of possible entity
types along with a measure of the confidence in each
possible value.

TrackIdentification TrackIdentificationEnum Optional attribute (default: PENDING). A
classification of the intention of the object that is
being tracked.

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 74 STO-TR-MSG-136-Part-VII

B.3.1.4.2 AbsoluteTrack

B.3.1.4.2.1 HLAobjectRoot.Track.AbsoluteTrack

This class represents tracks that are defined in terms of the earth centred, earth fixed coordinate system that
defines the WGS84 ellipsoid (see Table B-11).

Table B-11: HLAobjectRoot.Track.AbsoluteTrack Attributes.

Attribute Datatype Semantics

PositionValid HLAboolean Optional attribute (default: false). A flag with value
true if the Position attribute can be relied upon.

Position TrackPositionStruct Required attribute if PositionValid is true. An
estimate of the position of the track.

PositionError TrackPositionStruct Required attribute if PositionValid is true. The
error with which the position is given.

VelocityValid HLAboolean Optional attribute (default: false). A flag with value
true if the Velocity attribute can be relied upon.

Velocity TrackVelocityStruct Required attribute if VelocityValid is true. An
estimate of the velocity of the track.

VelocityError TrackVelocityStruct Required attribute if VelocityValid is true. The
error with which the velocity is given.

TrackTime HLAfloat64Time Optional attribute (default: time of receipt). The
time at which the current track attributes are
associated with.

TrackTimeOfInitiation HLAfloat64Time Optional attribute (default: unknown). The time at
which the track was initiated.

TrackStatus TrackStatusEnum Optional attribute (default: DETECTED). Indicates
the status of the track.

TrackDescription HLAASCIIstring Optional attribute (default: none). A user defined
description of the track.

TrackNumber TrackNumber Required attribute. The track number assigned by
the sensor generating the track.

TargetObjectSetValid HLAboolean Optional attribute (default: false). If true, indicates
that the value of the TargetObjectInstanceNameSet
attribute is valid. If false, the value of the
TargetObjectInstanceNameSet must be ignored.

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 75

Attribute Datatype Semantics

TargetObjectSet ObjectInstanceNameArray Optional attribute (default: none). The object
instance names of the objects that may give rise to
this track.

This can be used as a shortcut for track correlation
or for visualisation purposes. Ideally, there is only
one such object associated with the track.
However, given that some sensors may not be able
to resolve nearly co-located entities, there may be
more than one object instance associated with it.
The set may also be empty, indicating that no
object gave rise to this track (a ‘false’ track).

This attribute is optional if the
TargetObjectInstanceNameSetValid attribute is
false.

TrackGenerator ObjectInstanceName Optional attribute (default: none). The name of the
object instance that generates the track. This will
typically be a Sensor object instance.

TrackQuality TrackQualityEnum Optional attribute (default: TQ0). Provides a
somewhat subjective – to the sensor generating the
track – measure of the reliability of the track data.
The number refers to a measure of uncertainty
1 (high uncertainty) to 15 (little uncertainty).

TrackClassification TrackClassificationArray Optional attribute (default: no classification). An
estimate of the classification of the tracked object.
This attribute does not include information about
the intent of the tracked object, i.e., hostile,
friendly etc. This attribute consists of a list of
possible entity types along with a measure of the
confidence in each possible value.

TrackIdentification TrackIdentificationEnum Optional attribute (default: PENDING). A
classification of the intention of the object that is
being tracked.

B.3.1.5 Data Types

B.3.1.5.1 Simple Data Types

Table B-12 shows simple data types.

Table B-12: Simple Data Types.

Name Units Semantics

TrackNumber NA Track number, a non-negative integer.

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 76 STO-TR-MSG-136-Part-VII

Name Units Semantics

TrackConfidenceMeasure NA Measure of confidence between 0.0 and 1.0.

TrackDistance meter Distance in meters.

TrackVelocity meter/second Velocity in m/s.

TrackCountryCode NA Country code in TrackEntityTypeStruct.

B.3.1.5.2 Enumerated Data Types

B.3.1.5.2.1 TrackQualityEnum

An enumeration of TrackQuality attribute values can be seen in Table B-13.

Representation: HLAinteger32BE.

Table B-13: TrackQualityEnum Enumerations.

Enumerator Value

TQ0 0

TQ1 1

TQ2 2

TQ3 3

TQ4 4

TQ5 5

TQ6 6

TQ7 7

TQ8 8

TQ9 9

TQ10 10

TQ11 11

TQ12 12

TQ13 13

TQ14 14

TQ15 15

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 77

B.3.1.5.2.2 TrackIdentificationEnum

An enumeration that indicates the identification of a track, as shown in Table B-14.
* Pending – A track which has not been subjected to the identification process.
* Unknown – An evaluated track which has not been identified.
* Assumed Friend – A track which is assumed to be a friend because of its characteristics, behavior,

or origin.
* Friend – A track belonging to a declared friendly nation.
* Neutral – A track whose characteristics, behavior, origin, or nationality indicate that it is neither

supporting nor opposing friendly forces
* Suspect – A track which is potentially hostile because of its characteristics, behavior, origin or

nationality.
* Hostile – A track declared to belong to any opposing nation, party, group, or entity, which by virtue

of its behavior or information collected on it such as characteristics, origin or nationality contributes
to the threat to friendly forces.

Representation: HLAinteger32BE.

Table B-14: TrackIdentificationEnum Enumerations.

Enumerator Value

PENDING 0

UNKNOWN 1

ASSUMED_FRIEND 2

FRIEND 3

NEUTRAL 4

SUSPECT 5

HOSTILE 6

B.3.1.5.2.3 TrackStatusEnum

An enumeration that indicates the status of the track, as shown in Table B-15. The sequence is DETECTED
=> CONFIRMATION => TRACKING => LOST.

* DETECTED: initial state of track. The track is in this state for the first N detections of the RWO.

* CONFIRMATION: next state of track. The track is in this state for the next M detections of the
RWO.

* TRACKING: The track enters this state once it is confirmed.

* LOST: The track has been lost. A track that has been lost may still have value as it provides an
indicator of an entity’s presence and motion at some time in the past.

Representation: HLAinteger32BE.

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 78 STO-TR-MSG-136-Part-VII

Table B-15: TrackStatusEnum Enumerations.

Enumerator Value

DETECTED 0

CONFIRMATION 1

TRACKING 2

LOST 3

B.3.1.5.3 Array Data Types

As shown in Table B-16.

Table B-16: Array Data Types.

Name Element Datatype Cardinali
ty Encoding Semantics

ObjectInstanceName HLAASCIIchar Dynamic HLAvariableArray The instance name
of an object
registered with the
RTI.

ObjectInstanceNameArray ObjectInstanceName Dynamic HLAvariableArray Array of
ObjectInstance
Name elements.

TrackClassificationArray TrackClassificationStruct Dynamic HLAvariableArray Array of
Classification
Struct elements.

B.3.1.5.4 Fixed Record Data Types

B.3.1.5.4.1 TrackClassificationStruct

Table B-17 defines a structure representing the potential entities being tracked as well as a measure of
confidence in the platform classification.

Encoding: HLAfixedRecord.

Table B-17: TrackClassificationStruct Data Types.

Name Datatype Semantics

EntityType TrackEntityTypeStruct This field provides a possible identity for the
platform being tracked.

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 79

Name Datatype Semantics

ConfidenceMeasure TrackConfidenceMeasure This field provides a measure, as a number between 0
and 1, of the degree of confidence in the platform
classification.

B.3.1.5.4.2 TrackPositionStruct

The location of an object in the world coordinate system, as specified in IEEE Std 1278.1-1995 Section
1.3.2, as shown in Table B-18.

Encoding: HLAfixedRecord.

Table B-18: TrackPositionStruct Data Types.

Name Datatype Semantics

X TrackDistance Distance from the origin along the X axis.

Y TrackDistance Distance from the origin along the Y axis

Z TrackDistance Distance from the origin along the Z axis

B.3.1.5.4.3 TrackVelocityStruct

Table B-19 shows the rate at which the position is changing over time.

Encoding: HLAfixedRecord.

Table B-19: TrackVelocityStruct Data Types.

Name Datatype Semantics

XVelocity TrackVelocity Velocity component along the X axis.

YVelocity TrackVelocity Velocity component along the Y axis.

ZVelocity TrackVelocity Velocity component along the Z axis.

B.3.1.5.4.4 TrackEntityTypeStruct

Type of entity. Based on the Entity Type record as specified in IEEE 1278.1-1995 Section 5.2.16, as shown
in Table B-20.

Encoding: HLAfixedRecord.

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 80 STO-TR-MSG-136-Part-VII

Table B-20: TrackEntityTypeStruct Data Types.

Name Datatype Semantics

EntityKind HLAbyte Kind of entity.

Domain HLAbyte Domain in which the entity operates.

CountryCode TrackCountryCode Country to which the design of the entity is attributed.

Category HLAbyte Main category that describes the entity.

Subcategory HLAbyte Subcategory to which an entity belongs based on the Category field.

Specific HLAbyte Specific information about an entity based on the Subcategory field.

Extra HLAbyte Extra information required to describe a particular entity.

B.3.2 Damage FOM

B.3.2.1 Module Overview
Figure B-5 and Table B-21 provide an overview of the damage module.

Figure B-5: Damage Module Overview.

Table B-21: Module Overview.

Module Description

Damage Provides a simple FOM for the communication of damage reports on entities in
response to detonations.

B.3.2.2 Interaction Classes Overview

Figure B-6 provides an overview of the damage interaction classes.

Figure B-6: Damage Interaction Classes Overview.

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 81

B.3.2.3 Identification

Table B-22 outlines the damage module identification.

Table B-22: Damage Module Identification.

Name Damage Module

Type FOM

Version 1.0

Modification Date 2016-10-11

Security Classification Unclassified

Purpose

Application Domain Analysis

Description Provides a simple FOM for the communication of damage reports on entities
in response to detonations.

Use Limitation

Other

B.3.2.4 Interaction Classes

Figure B-7 shows damage interaction classes.

Figure B-7: Damage Interaction Classes.

B.3.2.4.1 DamageReport

B.3.2.4.1.1 HLAinteractionRoot.DamageReport

This is the base class for damage reports.

B.3.2.4.2 EntityDamageReport

B.3.2.4.2.1 HLAinteractionRoot.DamageReport.EntityDamageReport

This class represents a damage report for an entity. It should only be sent for entities that are affected by a
detonation and there can be multiple damage reports on a single detonation. Most of the parameters are

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 82 STO-TR-MSG-136-Part-VII

copied from the Munition Detonation interaction. Specific to the report are the DamageLocation,
DamageState and TargetObjectIdentifier (see Table B-23).

Table B-23: HLAinteractionRoot.DamageReport.EntityDamageReport Parameters.

Parameter Datatype Semantics

DamageLocation WorldLocationStruct The location at which the damage is assessed.

DamageState DamageStatusEnum32 Damage status.

FiringObjectIdentifier RTIobjectId The identifier of the object instance firing the
munition, if any. From the MunitionDetonation.

TargetObjectIdentifier RTIobjectId The identifier of the object instance to which this
damage report applies.

MunitionObjectIdentifier RTIobjectId The identifier of the munition, if any. From the
MunitionDetonation.

MunitionType EntityTypeStruct Type of munition (if any), from
MunitionDetonation.

WarheadType WarheadTypeEnum16 Warhead type (if any), from MunitionDetonation.

EventIdentifier EventIdentifierStruct Identifier to track WeaponFire and
MunitionDetonations (if any), from
MunitionDetonation.

B.4 COMPOSITIONS

B.4.1 Composition A: Big Single Node
An example of a composition where all services run on a single node, connected via a bridge network. The
only interface to the outside world is a X Server display accessible on host address port 8080.

The composition includes:

• EPIC as COP Viewer.

• Synthetic Environment Service.

• Several scenario generation services (VRF, Shipsim).

• Infrastructure components (CRC, DIS/HLA GW, Google Earth, Google Chrome, XServer, IFAD
Icon Server).

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

STO-TR-MSG-136-Part-VII B - 83

version: ‘2’

Docker compose file where all components run on a single host

services:

EPIC components
 diswebgw:
 image: app-docker136.hex.tno.nl:443/msaas-usa/dis-web-gw:epic

 epic:
 image: app-docker136.hex.tno.nl:443/epic/epic:cax
 environment:
 - dis_gw_url=diswebgw
 - ses_url=http://ses:8080/SgjWMS/WMS

SES components
 sesdb:
 image: app-docker136.hex.tno.nl:443/msaas-ger/sesdatabase:gulf
 environment:
 - POSTGRES_PASSWORD=postgres
 volumes:
 - sesdata:/var/lib/postgresql/data

 ses:
 image: app-docker136.hex.tno.nl:443/msaas-ger/ses:gulf
 environment:
 - JAVA_OPTIONS=-Xmx2048m
 depends_on:
 - sesdb

HLA components
 crc:
 image: app-docker136.hex.tno.nl:443/pitch/crc:5.3.2.1L
 mac_address: 00:18:8B:0D:4F:0B
 environment:
 - DISPLAY=xserver:0

 dis:
 image: app-docker136.hex.tno.nl:443/pitch/dis:2.6.0L
 command: -auto
 mac_address: 00:18:8B:0D:4F:1B
 environment:
 - DISPLAY=xserver:0

 shipsim:
 image: app-docker136.hex.tno.nl:443/msaas-aus/shipsim:pi
 command: --fom-modules-dir allrofoms --scalable

 kml:
 image: app-docker136.hex.tno.nl:443/msaas-nld/kmlserver:pi
 command: -f KMLServer -iconurl http://icon:80/app6b-symbolpng

 vrf:
 image: app-docker136.hex.tno.nl:443/msaas-nld/vrf:pi
 mac_address: 8C:70:5A:0B:58:7E
 hostname: mak
 environment:
 - DISPLAY=xserver:0

General components
 icon:
 image: app-docker136.hex.tno.nl:443/msaas-dnk/disenumerationsymbolservice:2.2

 ge:
 image: app-docker136.hex.tno.nl:443/library/ge
 command: -f -r 10 Gulf http://kml:8080/kmlserver/entities
 environment:
 - DISPLAY=xserver:0

ANNEX B – DOCKER CONTAINER IMAGE DESCRIPTIONS

B - 84 STO-TR-MSG-136-Part-VII

 gc:
 image: app-docker136.hex.tno.nl:443/library/gc
 command: --homepage http://epic:7070/epic
 environment:
 - DISPLAY=xserver:0

 xserver:
 image: app-docker136.hex.tno.nl:443/library/xserver
 ports:
 - “8080:8080”

volumes:
 sesdata:
 external: false

STO-TR-MSG-136-Part-VII

REPORT DOCUMENTATION PAGE

1. Recipient’s Reference 2. Originator’s References 3. Further Reference 4. Security Classification
of Document

STO-TR-MSG-136-Part-VII
AC/323(MSG-136)TP/834

ISBN
978-92-837-2160-4 PUBLIC RELEASE

5. Originator Science and Technology Organization
North Atlantic Treaty Organization
BP 25, F-92201 Neuilly-sur-Seine Cedex, France

6. Title

Modelling and Simulation as a Service, Volume 4: Experimentation Report
7. Presented at/Sponsored by

Developed by NATO MSG-136.
8. Author(s)/Editor(s) 9. Date

Multiple July 2019

10. Author’s/Editor’s Address 11. Pages

Multiple 188

12. Distribution Statement There are no restrictions on the distribution of this document.
Information about the availability of this and other STO
unclassified publications is given on the back cover.

13. Keywords/Descriptors

Cloud computing
Composability
Distributed simulation
Interoperability
Live, Virtual, Constructive (LVC) Modelling
Modelling and Simulation (M&S)
Modelling and Simulation as a Service (MSaaS)
M&S Services

NATO C3 Classification Taxonomy
Reference architecture
Service-Oriented Architecture (SOA)
Simulation
Simulation Architecture
Simulation Environments
Simulation Interoperability

14. Abstract

M&S as a Service (MSaaS) is a concept that combines service orientation and the provision of M&S
applications via the as-a-service model of cloud computing to enable more composable simulation
environments that can be deployed and executed on-demand. NATO MSG-136 investigated the
concept of MSaaS and provided technical and organizational foundations to establish the Allied
Framework for M&S as a Service within NATO and partner nations. The Allied Framework for
M&S as a Service is the common approach of NATO and nations towards implementing MSaaS and
is defined by the Operational Concept Document, Technical Reference Architecture, and MSaaS
Governance Policies.

This document describes the MSG-136 experimentation activities that evaluated the MSaaS concept
in two experiments with eight test cases in total. The MSaaS Reference Architecture of MSG-136
proved to be valid; the technology MSG-136 used was well manageable. The experimentation
results demonstrate that MSaaS is capable of realizing the vision that M&S products, data and
processes are conveniently accessible to a large number of users whenever and wherever needed.

 STO-TR-MSG-136-Part-VII

NORTH ATLANTIC TREATY ORGANIZATION SCIENCE AND TECHNOLOGY ORGANIZATION

BP 25

F-92201 NEUILLY-SUR-SEINE CEDEX • FRANCE
Télécopie 0(1)55.61.22.99 • E-mail mailbox@cso.nato.int

DIFFUSION DES PUBLICATIONS
STO NON CLASSIFIEES

Les publications de l’AGARD, de la RTO et de la STO peuvent parfois être obtenues auprès des centres nationaux de distribution indiqués ci-
dessous. Si vous souhaitez recevoir toutes les publications de la STO, ou simplement celles qui concernent certains Panels, vous pouvez demander
d’être inclus soit à titre personnel, soit au nom de votre organisation, sur la liste d’envoi.
Les publications de la STO, de la RTO et de l’AGARD sont également en vente auprès des agences de vente indiquées ci-dessous.
Les demandes de documents STO, RTO ou AGARD doivent comporter la dénomination « STO », « RTO » ou « AGARD » selon le cas, suivi du
numéro de série. Des informations analogues, telles que le titre est la date de publication sont souhaitables.
Si vous souhaitez recevoir une notification électronique de la disponibilité des rapports de la STO au fur et à mesure de leur publication, vous pouvez
consulter notre site Web (http://www.sto.nato.int/) et vous abonner à ce service.

CENTRES DE DIFFUSION NATIONAUX
ALLEMAGNE FRANCE PORTUGAL

Streitkräfteamt / Abteilung III O.N.E.R.A. (ISP) Estado Maior da Força Aérea
Fachinformationszentrum der Bundeswehr (FIZBw) 29, Avenue de la Division Leclerc SDFA – Centro de Documentação
Gorch-Fock-Straße 7, D-53229 Bonn BP 72 Alfragide
 92322 Châtillon Cedex P-2720 Amadora

BELGIQUE
Royal High Institute for Defence – KHID/IRSD/RHID GRECE (Correspondant) REPUBLIQUE TCHEQUE
Management of Scientific & Technological Research Defence Industry & Research General Vojenský technický ústav s.p.
for Defence, National STO Coordinator Directorate, Research Directorate CZ Distribution Information Centre
Royal Military Academy – Campus Renaissance Fakinos Base Camp, S.T.G. 1020 Mladoboleslavská 944
Renaissancelaan 30, 1000 Bruxelles Holargos, Athens PO Box 18
 197 06 Praha 9

BULGARIE HONGRIE
Ministry of Defence Hungarian Ministry of Defence ROUMANIE
Defence Institute “Prof. Tsvetan Lazarov” Development and Logistics Agency Romanian National Distribution
“Tsvetan Lazarov” bul no.2 P.O.B. 25 Centre
1592 Sofia H-1885 Budapest Armaments Department
 9-11, Drumul Taberei Street

CANADA ITALIE Sector 6
DGSlST 2 Ten Col Renato NARO 061353 Bucharest
Recherche et développement pour la défense Canada Capo servizio Gestione della Conoscenza
60 Moodie Drive (7N-1-F20) F. Baracca Military Airport “Comparto A” ROYAUME-UNI
Ottawa, Ontario K1A 0K2 Via di Centocelle, 301 Dstl Records Centre

 00175, Rome Rm G02, ISAT F, Building 5
DANEMARK Dstl Porton Down

Danish Acquisition and Logistics Organization LUXEMBOURG Salisbury SP4 0JQ
 (DALO) Voir Belgique
Lautrupbjerg 1-5 SLOVAQUIE
2750 Ballerup NORVEGE Akadémia ozbrojených síl gen.

 Norwegian Defence Research M.R. Štefánika, Distribučné a
ESPAGNE Establishment informačné stredisko STO

Área de Cooperación Internacional en I+D Attn: Biblioteket Demänová 393
SDGPLATIN (DGAM) P.O. Box 25 031 06 Liptovský Mikuláš 6
C/ Arturo Soria 289 NO-2007 Kjeller
28033 Madrid SLOVENIE

 PAYS-BAS Ministry of Defence
ESTONIE Royal Netherlands Military Central Registry for EU & NATO

Estonian National Defence College Academy Library Vojkova 55
Centre for Applied Research P.O. Box 90.002 1000 Ljubljana
Riia str 12 4800 PA Breda
Tartu 51013 TURQUIE

 POLOGNE Milli Savunma Bakanlığı (MSB)
ETATS-UNIS Centralna Biblioteka Wojskowa ARGE ve Teknoloji Dairesi

Defense Technical Information Center ul. Ostrobramska 109 Başkanlığı
8725 John J. Kingman Road 04-041 Warszawa 06650 Bakanliklar – Ankara
Fort Belvoir, VA 22060-6218

AGENCES DE VENTE

The British Library Document Canada Institute for Scientific and
Supply Centre Technical Information (CISTI)

Boston Spa, Wetherby National Research Council Acquisitions
West Yorkshire LS23 7BQ Montreal Road, Building M-55

ROYAUME-UNI Ottawa, Ontario K1A 0S2
 CANADA

Les demandes de documents STO, RTO ou AGARD doivent comporter la dénomination « STO », « RTO » ou « AGARD » selon le cas, suivie du numéro
de série (par exemple AGARD-AG-315). Des informations analogues, telles que le titre et la date de publication sont souhaitables. Des références
bibliographiques complètes ainsi que des résumés des publications STO, RTO et AGARD figurent dans le « NTIS Publications Database »
(http://www.ntis.gov).

mailto:mailbox@cso.nato.int
http://www.sto.nato.int/
http://www.ntis.gov/

NORTH ATLANTIC TREATY ORGANIZATION SCIENCE AND TECHNOLOGY ORGANIZATION

BP 25

F-92201 NEUILLY-SUR-SEINE CEDEX • FRANCE
Télécopie 0(1)55.61.22.99 • E-mail mailbox@cso.nato.int

DISTRIBUTION OF UNCLASSIFIED
STO PUBLICATIONS

AGARD, RTO & STO publications are sometimes available from the National Distribution Centres listed below. If you wish to receive all STO
reports, or just those relating to one or more specific STO Panels, they may be willing to include you (or your Organisation) in their distribution.
STO, RTO and AGARD reports may also be purchased from the Sales Agencies listed below.
Requests for STO, RTO or AGARD documents should include the word ‘STO’, ‘RTO’ or ‘AGARD’, as appropriate, followed by the serial number.
Collateral information such as title and publication date is desirable.
If you wish to receive electronic notification of STO reports as they are published, please visit our website (http://www.sto.nato.int/) from where you
can register for this service.

NATIONAL DISTRIBUTION CENTRES

BELGIUM GERMANY PORTUGAL
Royal High Institute for Defence – Streitkräfteamt / Abteilung III Estado Maior da Força Aérea

KHID/IRSD/RHID Fachinformationszentrum der SDFA – Centro de Documentação
Management of Scientific & Technological Bundeswehr (FIZBw) Alfragide

Research for Defence, National STO Gorch-Fock-Straße 7 P-2720 Amadora
Coordinator D-53229 Bonn

Royal Military Academy – Campus ROMANIA
Renaissance GREECE (Point of Contact) Romanian National Distribution Centre

Renaissancelaan 30 Defence Industry & Research General Armaments Department
1000 Brussels Directorate, Research Directorate 9-11, Drumul Taberei Street

 Fakinos Base Camp, S.T.G. 1020 Sector 6
BULGARIA Holargos, Athens 061353 Bucharest

Ministry of Defence
Defence Institute “Prof. Tsvetan Lazarov” HUNGARY SLOVAKIA
“Tsvetan Lazarov” bul no.2 Hungarian Ministry of Defence Akadémia ozbrojených síl gen
1592 Sofia Development and Logistics Agency M.R. Štefánika, Distribučné a
 P.O.B. 25 informačné stredisko STO

CANADA H-1885 Budapest Demänová 393
DSTKIM 2 031 06 Liptovský Mikuláš 6
Defence Research and Development Canada ITALY
60 Moodie Drive (7N-1-F20) Ten Col Renato NARO SLOVENIA
Ottawa, Ontario K1A 0K2 Capo servizio Gestione della Conoscenza Ministry of Defence

 F. Baracca Military Airport “Comparto A” Central Registry for EU & NATO
CZECH REPUBLIC Via di Centocelle, 301 Vojkova 55

Vojenský technický ústav s.p. 00175, Rome 1000 Ljubljana
CZ Distribution Information Centre
Mladoboleslavská 944 LUXEMBOURG SPAIN
PO Box 18 See Belgium Área de Cooperación Internacional en I+D
197 06 Praha 9 SDGPLATIN (DGAM)

 NETHERLANDS C/ Arturo Soria 289
DENMARK Royal Netherlands Military 28033 Madrid

Danish Acquisition and Logistics Organization Academy Library
(DALO) P.O. Box 90.002 TURKEY

Lautrupbjerg 1-5 4800 PA Breda Milli Savunma Bakanlığı (MSB)
2750 Ballerup ARGE ve Teknoloji Dairesi Başkanlığı
 NORWAY 06650 Bakanliklar – Ankara

ESTONIA Norwegian Defence Research
Estonian National Defence College Establishment, Attn: Biblioteket UNITED KINGDOM
Centre for Applied Research P.O. Box 25 Dstl Records Centre
Riia str 12 NO-2007 Kjeller Rm G02, ISAT F, Building 5
Tartu 51013 Dstl Porton Down, Salisbury SP4 0JQ

 POLAND
FRANCE Centralna Biblioteka Wojskowa UNITED STATES

O.N.E.R.A. (ISP) ul. Ostrobramska 109 Defense Technical Information Center
29, Avenue de la Division Leclerc – BP 72 04-041 Warszawa 8725 John J. Kingman Road
92322 Châtillon Cedex Fort Belvoir, VA 22060-6218

SALES AGENCIES

The British Library Document Canada Institute for Scientific and
Supply Centre Technical Information (CISTI)

Boston Spa, Wetherby National Research Council Acquisitions
West Yorkshire LS23 7BQ Montreal Road, Building M-55

UNITED KINGDOM Ottawa, Ontario K1A 0S2
 CANADA

Requests for STO, RTO or AGARD documents should include the word ‘STO’, ‘RTO’ or ‘AGARD’, as appropriate, followed by the serial number
(for example AGARD-AG-315). Collateral information such as title and publication date is desirable. Full bibliographical references and abstracts of
STO, RTO and AGARD publications are given in “NTIS Publications Database” (http://www.ntis.gov).

ISBN 978-92-837-2160-4

mailto:mailbox@cso.nato.int
http://www.sto.nato.int/
http://www.ntis.gov/

	Cover
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	MSG-136 Membership List
	Executive Summary
	Synthèse
	Chapter 1 – INTRODUCTION
	1.1 BACKGROUND
	1.2 OBJECTIVE
	1.3 DOCUMENT OVERVIEW

	Chapter 2 – APPROACH
	2.1 EXPERIMENTS TO TEST THE REFERENCE ARCHITECTURE
	2.2 EXPERIMENTS TO TEST SOLUTIONS OF SIMULATION SERVICES
	2.3 SCHEMA OF TEST CASE DESCRIPTION

	Chapter 3 – EXPERIMENT ON CONTAINERIZED HLA BASED SIMULATION ENVIRONMENT
	3.1 OVERVIEW
	3.2 TEST CASE 1: CONTAINER NETWORKING (NLD)
	3.2.1 Objective/Topic/Question
	3.2.2 Assumptions/Preconditions/Boundary Conditions
	3.2.3 Systems and Interfaces
	3.2.4 Test Setup
	3.2.5 Processes and Activities
	3.2.6 Observations
	3.2.7 Outcome/Analysis

	3.3 TEST CASE 2: CONTAINERIZATION OF HLA FEDERATES (AUS, NLD)
	3.3.1 Objective/Topic/Question
	3.3.2 Assumptions/Preconditions/Boundary Conditions
	3.3.3 Systems and Interfaces
	3.3.4 Test Setup
	3.3.5 Processes and Activities
	3.3.6 Observations
	3.3.7 Outcome/Analysis

	3.4 TEST CASE 3: METADATA REPOSITORIES AND DISCOVERY (DEU, GBR)
	3.4.1 Objective/Topic/Question
	3.4.2 Assumptions/Preconditions/Boundary Conditions
	3.4.3 Systems and Interfaces
	3.4.4 Experimental Setup
	3.4.5 Processes and Activities
	3.4.6 Observations
	3.4.7 Outcome/Analysis

	3.5 TEST CASE 4: SIMULATION COMPOSITION AND DEPLOYMENT (GBR)
	3.5.1 Objective/Topic/Question
	3.5.2 Assumptions/Preconditions/Boundary Conditions
	3.5.3 Systems and Interfaces
	3.5.4 Test Setup
	3.5.5 Processes and Activities

	3.6 TEST CASE 5: CONTAINER ORCHESTRATION ENVIRONMENTS (NLD)
	3.6.1 Objective/Topic/Question
	3.6.2 Assumptions/Preconditions/Boundary Conditions
	3.6.3 Systems and Interfaces
	3.6.4 Test Setup
	3.6.5 Processes and Activities
	3.6.6 Observations
	3.6.7 Outcome/Analysis

	Chapter 4 – SIMULATION SERVICES EXPERIMENTS
	4.1 OVERVIEW
	4.2 TEST CASE 1: RPS, SES, AND SIMSYS (DEU, NOR)
	4.2.1 Objective/Topic/Question
	4.2.2 Assumptions/Preconditions/Boundary Conditions
	4.2.3 Systems and Interfaces
	4.2.4 Test Setup
	4.2.5 Processes and Activities
	4.2.6 Observations
	4.2.7 Outcome/Analysis

	4.3 TEST CASE 2: INDIVIDUAL AND TEAM TRAINING FOR NAVAL C4ISTAR OPERATION (NATO-MSCOE)
	4.3.1 Objective/Topic/Question
	4.3.2 Assumptions/Preconditions/Boundary Conditions
	4.3.3 Systems and Interfaces
	4.3.4 Test Setup
	4.3.5 Processes and Activities
	4.3.6 Observations
	4.3.7 Outcome/Analysis

	4.4 TEST CASE 3: INDIVIDUAL TRAINING OF RADIO/C2 OPERATOR (NATO-MSCOE)
	4.4.1 Objective/Topic/Question
	4.4.2 Assumptions/Preconditions/Boundary Conditions
	4.4.3 Systems and Interfaces
	4.4.4 Test Setup
	4.4.5 Processes and Activities
	4.4.6 Observations
	4.4.7 Outcome/Analysis

	Chapter 5 – SUMMARY AND CONCLUSIONS
	Chapter 6 – REFERENCES
	Annex A – SIMULATION ENVIRONMENT AGREEMENTS
	A.1 METADATA
	A.1.1 Identification

	A.2 DESIGN
	A.2.1 Scenario
	A.2.2 Conceptual Model
	A.2.3 Architecture
	A.2.4 Services
	A.2.5 Member Applications

	A.3 EXECUTION
	A.3.1 Execution States
	A.3.2 Time Management
	A.3.3 Join and Resign
	A.3.4 Update Rates
	A.3.5 Performance Thresholds
	A.3.6 Data Logging
	A.3.7 Data Replay
	A.3.8 Monitoring
	A.3.9 Middleware Agreements
	A.3.10 Member Configuration

	A.4 MANAGEMENT
	A.5 DATA
	A.5.1 Encodings
	A.5.2 Data Exchange Models
	A.5.3 Naming Conventions
	A.5.4 Publish/Subscribe Responsibilities

	A.6 INFRASTRUCTURE
	A.7 MODELING
	A.8 VARIANCES

	Annex B – DOCKER CONTAINER IMAGE DESCRIPTIONS
	B.1 GENERAL
	B.1.1 Home
	B.1.2 MSaaS Docker Registry (TNO)

	B.2 DOCKER IMAGE DESCRIPTIONS
	B.2.1 Cesium Image (TNO)
	B.2.2 Damage Server Image (TNO)
	B.2.3 EPIC Enhanced Perception and Integrated Control Image (LM)
	B.2.4 FEAT Editor Image (TNO)
	B.2.5 Google Chrome Image (TNO)
	B.2.6 Google Earth Image (TNO)
	B.2.7 KML Server Image (TNO)
	B.2.8 Logger Service Image (IFAD)
	B.2.9 LRC Base Image (TNO)
	B.2.10 MSaaS Portal Image (TNO)
	B.2.11 Munition Server Image (AUS, DST Group)
	B.2.12 MÄK License Manager Image (AUS, DST Group)
	B.2.13 MÄK RTI Image Structure (AUS, DST Group)
	B.2.14 MÄK rtiexec Image (AUS, DST Group)
	B.2.15 MÄK VR Forces Image (TNO)
	B.2.16 Pacer Image (TNO)
	B.2.17 PDA Image (IFAD)
	B.2.18 Pitch CRC Image (TNO)
	B.2.19 Pitch DIS Adapter Image (TNO)
	B.2.20 Pitch Recorder Image (TNO)
	B.2.21 Pitch WebGUI Image (TNO)
	B.2.22 Proxy Image (TNO)
	B.2.23 Sensor Server Image (TNO)
	B.2.24 SES Gulf (Service) Image (CPA ReDev GmbH)
	B.2.25 SES Meppen (Service) Image (CPA ReDev GmbH)
	B.2.26 SESDatabase Gulf Image (CPA ReDev GmbH)
	B.2.27 SESDatabase Meppen Image (CPA ReDev GmbH)
	B.2.28 ShipSim Image (AUS, DST Group)
	B.2.29 ShipUI Image (AUS, DST Group)
	B.2.30 Start Image (TNO)
	B.2.31 Symbol Service Image (IFAD)
	B.2.32 Syslog Image (TNO)
	B.2.33 X Server Image (TNO)

	B.3 FOMS
	B.3.1 Sensor FOM
	B.3.2 Damage FOM

	B.4 COMPOSITIONS
	B.4.1 Composition A: Big Single Node

	Report Documentation Page

