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Executive Summary

An approach for automatic detection of the sea ice type in the MIZ from RADARSAT-2 SAR images with
HH polarization and resolution of 50 m has been developed and tested. The approach is based on
texture analysis using the GLCM (Gray-Level Co-occurrence Matrix) method and several additional
functions based on the estimates of the averaged gradient tensor. A machine learning technique
(“Support Vector Machine” or SVM) is applied to imagery of ice taken for the region of the Beaufort Sea
in autumn 2015, with observations of ice type from two ship cruises used as ground truth. It is found
that the method shows promise but the training requires more collocations than is practical at present.
Specifically, the ubiquitous inhomogeneity of ice presents a challenge for colocation, as it limits the
training set.
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1. Introduction.

The type/size of the ice floes and ice thickness are the two most important sea ice characteristics which
control the attenuation of the ocean waves in the marginal ice zone (MIZ). Conventionally, the attenuation
process includes both dissipation and scattering. Recent observations in the ice pack, far from MIZ indicate
that scattering plays a negligible role in the attenuation of long swells (Ardhuin et al., 2016). Early
observation in the Antarctic MIZ shows that amplitude of the short waves significantly decays when sea
waves penetrate into MIZ and almost negligible near the interior boundary of the MIZ (Doble and
Wadhams, 2006). More recent, observations indicate that sea waves (SW) attenuation also significantly
depend on wave frequency, ice thickness and horizontal sizes of the sea ice floes (Doble, 2009, Doble et
al., 2015).

Accurate mapping of the areas with different ice types and thickness is important for accurate modeling
of the propagation of ocean waves in the MIZ, ocean wave forecasting, and validation of different
attenuation models developed during the last decades [Wang and Shen, 2010, Squire and Montiel, 2016,
Williams et al., 2013a,b, 2017, Cheng et al. 2017, Thomson et al. 2018, Rogers et al. 2018, Squire, V.A,,
2018.

Since 1990’s, Synthetic Aperture Radar (SAR) images from various satellites became an important source
of the information of the sea surface state. During the last two decades, SAR images were used for
determination of sea ice edge, and identification of multiyear, young and new ice, leads, ice velocity and
some other ice related parameters ([Zakhvatkina et al, 2013, 2016, Komarov and Barber, 2014)].

Formally, SAR images map the magnitude and phase of the signal backscattered from the ice surface:
normalized backscatter coefficient 6, is the ratio of the radiance of the radar energy reflection back to the
radar with corresponding incident angle. SAR images have a typical spatial resolution of between 20 and
50 m and cover relatively wide swath ~400x600 km, although images with higher resolution (~5 m) and
smaller footprint (50x50 km) are also available (e.g. COSMO-SkyMed, RISAT-1) Therefore, the most
straightforward method for SAR analysis is the development of the microwave scattering model for sea
ice surface and obtaining the corresponding inverse solution. However, this approach has several
technical problems. The most important is that different sea ice type surfaces have similar values of the
backscattering coefficients (Dierking, 2010) and there are many different sea ice characteristics which
affect the backwatering signal. There are also essential problem with proper filtering of the contaminating
noise and necessity to apply incident angle normalization algorithms, which are also different for different
ice types (e.g. Askne et al, 1994, Zakhvatkina et al, 2013)

Because of that, the more advanced method of the ice type identification utilize SAR image texture
analysis, which is usually based on the analysis of the Gray Level Co-occurrence Matrix (GLCM) Analysis
(e.g. Soh et al., 1999, Clausi, 2002) combined with different kinds of supervised classification algorithms
(Support Vector Machine (SVM), Neural Network (NN), and Random Forest (RF)). The efficiency of this
approach for identification of the different ice types was successfully demonstrated several publications
(e.g. Zakhvatkina et al, 2013, 2016, Bogdanov et al., 2005, Murashkin, et al., 2018).

The typical problem when developing supervised classification algorithms arises from the rarity of in situ
observation in the dense ice, which are typically conducted from heavy icebreakers. Because of that, many
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authors (e.g. Zakhvatkina et al, 2013) use results of the expert analysis for the supervised training.
Formally, that allows one to derive the supervised algorithm with multiple degree of freedom, but from
another point of view, expert analysis brings subjectivity into the utilized approach.

In the current report, we analyze applicability of the GLCM analysis and SVM algorithm for identification
ice types in the MIZ in the Beaufort Sea using the ship observations from lcewatch Data Network
(http://icewatch.gina.alaska.edu/) from two cruises. Our approach roughly, but with some exceptions,
followed the strategy proposed by Zakhvatkina et al, (2013) previously applied for the central Arctic for
identification of multiyear ice (MYIl), deformed first-year ice (FYI) (DFYI), and level FYI (LFYI) and open
water/nilas.

The following Sections of the report include description of the in situ observations, available SAR images,
and utilized algorithms (GLCM analysis and SVM). After that we discuss results of the analysis and strategy
for identification of the different ice type. Conclusions and discussion finalize the Report.

2. Seaice observations during and ice condition in Fall, 2015.

In situ ice observations have been collected in two cruises. The light icebreaker CCGS “Sir Wilfrid Laurier”
conducted the survey of the entire Beaufort Gyre between 9/22/2015 and 10/15/2015 (Figure 1). During
this survey, sea ice conditions gradually changed from almost open water conditions extending as far
north as 77°N in places, to an autumn condition, when ice covered the major part of the Beaufort Sea with
ice concentration ranged between 60% and 100% (Figure 2). The ice-capable R/V Sikuliag (Polar Class 5),
worked in the MIZ in the south-western part of the Beaufort Sea between 10/5/2015 and 11/4/2015
(Figure 1). By the end of this period, Beaufort Sea was completely covered by dense ice.

Figure 1. Left: in situ sea ice observation in the Beaufort Sea during Fall, 2015, from R/V Laurier and R/V
Sikuliag and daily averaged ice velocity during October, 15, 2015.

Observation of the sea ice parameters in both cruises were conducted from the ship bridges according to
the SIGRID-3 protocol which is associated with the ASSIST web interface (Arctic Shipborne Sea Ice
Standardization Tool, http://www.iarc.uaf.edu/icewatch/assist) provided by the ‘Ice Watch’ program at




the University of Alaska, Fairbanks. Ice observations include: total ice concentration, ice type, ice
thickness, floe size, snow type/depth, and description of other features such as sea ice topography, ridge
height, topography, melt ponds, etc. The standard set of meteorological parameters include wind speed
and direction, air temperature, visibility, and atmospheric pressure. Taking into account that sizes of the
floes is an important factor that controls ocean wave attenuation, the primary goal of this study was to
map floe sizes observed in the MIZ. Total volume of the sea ice floe size observation was about 400 and
350 from CCGS “Sir Wilfrid Laurier”, and R/V Sikuliaq, respectively. A significant part of the sea ice
observations were collected in the MIZ, so the observations of the medium (100-500 m), large (500-2000
m) and vast (> 2000 m) floes were rather seldom. Table 1 summarizes the number of the observations of
the different ice floe categories. Unfortunately, only about 200 of these observations co-locate with SAR
images available to us sampled within a +1 day temporal window. The critically low (<15) number of the
collocation points was found for open water, new sheet ice, brash/broken ice, small/large and vast flow
categories.

Numerical data assimilative modeling revealed dynamic sea ice conditions in the Beaufort Sea during the
September-December 2015 (Yaremchuk et al., 2018). The experimental sea ice Data Assimilation System
(DAS) uses the CICE5 sea ice model (Hunke and Lipscomb, 2008), NCODA approaches (Cummings and
Smedstad, 2013) forced by atmospheric fields from the Navy Global Environmental Model (NAVGEM 1.2,
Hogan et al., 2014) and oceanic fields from the operational run of the GOFS 3.1 DA system and assimilates
sea ice concentration merged from SSMIS and AMSR2 platforms at approximately 5 km resolution.

The maximum sea ice velocities (~0.6-0.8 m/s) were observed during the initial period of the sea ice
formation (i.e. October 1-10), but in the MIZ sea ice velocities remained relatively high (~0.2-0.3 m/s)
practically for the entire period of our study (e.g. Figure 5 right panel). Detailed analysis of sea ice
observations showed that ice floes categories may change significantly between two stations separated
by only 5-10 km. Taking into account relatively strong ocean currents, the position of “real” observations
can be actually shifted by 10-50 km from the estimated collocation points. That inevitably introduces
significant noise into the available sea ice observations and complicates the classification. Because of that,
we used SAR images which provided accurate (~6 hours) collocation with sea ice observations and specify
an additional set of pseudo-observations in the vicinity of the real sea ice observations overlapping with
these SAR images.

In addition, in our analysis we looked at three sea ice concentration product with different resolution. The
first product is the daily sea ice passive microwave sea ice concentration fields from National Snow and
Ice Data Center (NOAA/NSIDC) with spatial resolution of 25 km https://nsidc.org/data/g02202). The
Second is the MASAM?2 sea ice concentration (https://nsidc.org/data/g10005). MASAM?2 daily 4 km sea
ice concentration is a prototype concentration product that is a blend of two other daily sea ice data
products: ice coverage from the Multisensor Analyzed Sea Ice Extent (MASIE) product at 4 km resolution
and ice concentration from the Advanced Microwave Scanning Radiometer 2 (AMSR2) at 10 km
resolution. Third, we also utilized sea ice concentration from the experimental CICE5-NCODA DA
described above (Yaremchuk et al., 2018). The daily sea ice concentration maps were spatially and
temporally interpolated on the SAR images spatial grid and utilized in the analysis (e.g. Figure 3, 5 right
panels).




Table 1. Distribution of the sea ice observation over the ice floes categories. Number in brackets show
the additional pseudo-observations generated for the SAR images with relatively accurate collocation
with real sea ice observations.

Pancake New Brash/ Cake Small Medium Large Vast Bergy Open
sheetice | Broken Ice Floes, Floes, floes floes floes water
ice <20m 20-100m 100- 500- >2000m
500m 2000m
S.W.Laurier 20 39 15 93 74 74 49 2 0 48
Sikuliaq 90 53 14 60 26 26 19 17 3 60
(86) (158) (43) (97) (235) (107) (10) (125) (313)

Figure 2. Ice condition (concentration) in the Beaufort Sea during the autumn 2015 from CICE5-NCODA
data assimilation system. Dates are indicated within each panel.

3. Acquisition and pre-processing of Satellite Images

In our experiments we used a set (82) of spatially overlapping RADARSAT-2 ScanSAR wide-beam mode
image with pixel spacing of 50m, ~450 km swath width) at HH polarization for a period between
September 7 and November 7 2015. These are obtained via the National Ice Center (NIC); files are
managed and archived by the University of Washington (UW) Applied Physics Laboratory (APL). The
images were requested in advance according to the preliminary research plans of both expeditions
described above. Unfortunately, the SAR acquisition plans made two or more days in advance did not
generally match well the actual ship route. In the case of the R/V Sikuliag, plans were revised daily
(Thomson et al. 2017). Thus, detailed analysis revealed that only 17 images overlap with available in situ
observation within temporal window of +1 day. Only these images were used for the experiments
described below. The left panel of Figure 3 shows spatial positions of the utilized SAR images. Table 2
incorporates the list of the SAR images utilized for the analysis and training of the SVM algorithm.

Note that analysis of the results of the numerical experiments with CICE model conducted for the same
period of time (Yaremchuk et al., 2018) revealed typical ice velocities about 10 cm/s with maximum speed
up to 30-50 cm/s. That results in significant (10-50 km!) inaccuracies in spatial location of the in situ
observations taken within £1 day temporal window with respect to the time of the SAR image. Because
of that, relatively high resolution (50 m) SAR images were spatially averaged with 500 m spatial window
and resampled. This procedure also decreased speckle noise of the original SAR images. Figure 3 (right
panel) shows an example of the spatially averaged SAR with resolution of 500 m. Note, that western part




of the image is blurred due to different backscattering at different incident angles. That is a well-known
problem which significantly complicates the image analysis of the SAR images with HH polarization (Lee
and Pottier, 2009). In order to address this problem, the available in situ ice floe observations were
collocated with SAR images and corresponding 6° values were plotted against the corresponding incident
angle. Unfortunately, the available set of visual sea ice observations allows reliable estimations of angular
dependence of the backscattering coefficient only for open water and pancake ice and is less reliable for
the cake and medium floes (Figure 4). The volume and/or spatial spreads of other sea ice floes
observations were non-sufficient for estimation 6° dependence of the incident angle.
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Figure 3. Left panel: Positions of the all images utilized for the training SVM algorithm. Right panel:
Radarsat-2 SAR image near the Alaskan coast Oct 10, 2015. All data are provided in GeoTIFF format with
auxiliary XML files. Red contours designate the daily sea ice concentration derived from passive
microwave sensor according to NSIDC (www.nsdic.org). RADARSAT-2: © MDA 2015.

Typically, 6° decreases linearly as a function of incident angle. The open water backscattering coefficient
has the largest decrease rate (-0.67 dB/°) with respect to the incident angle. The backscattering
coefficients for pancake, cake and medium floes decrease with the rates -0.48 dB/°, 0.14 dB/° and -0.58
dB/° respectively. With exception for the cake floes, which probably are not very reliable due to relatively
small number of the visual observations, these values are larger than estimated by Kwok and Cunningham,
(1994) and Zakhvatkina et al., (2013) for the winter conditions and for the SAR images acquired from
different satellites. That is probably due to presence of the open water, which reveal the highest decrease
rate, which is comparable with similar estimates conducted by Topouzelis et al. (2016).

The derived quasi-linear angular dependences allows simple re-normalization of 6° of original SAR images.
As an example, Figure 5 shows normalized SAR image derived using the open water 6° angular
dependence (Figure 4). Note, that re-normalization significantly decreased the blurring over the open
water regions, while there is still some moderate blurring in the ice covered regions due to different 6°
angular dependence.
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Figure 5. Left: Re-normalized SAR Image with respect open water 6° angular dependence. Right —sea ice
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Table 2. List of the SAR images (Pixel spacing of 50x50m, 520-km swath width), at HH polarization

acquired for the Beaufort Sea region between 9 Sep. and 7 Nov. 2015 and used for analysis in this study.

SAR images for angular dependencies, 6° derivations and SVM training/ SAR images for angular dependencies, 6° derivations and SVM

classification training/ classification
1 RS2_0K68419_PK633278_DK562983_SCWA_20151022_162006_HH_SGF 32 RS2_0K69418 PK630229_DK559422_SCWA_20151016_022043_HH_SGF
2 RS2_OK68420_PK626204_DK554294 SCWA_20151002_022838_HH_SGF/ 33 RS2_0K69418 PK630233_DK559434_SCWA_20151017_152554_HH_SGF
3 RS2_0K68420_PK626206_DK554303_SCWA_20151003_015808_HH_SGF 34 RS2_0K69418 PK630238_DK559443_SCWA_20151019_023205_HH_SGF
4 RS2_0K68420_PK626207_DK554321_SCWA_20151007_014123_HH_SGF 35 RS2_0OK69418 PK630239_DK559452_SCWA_20151020_020243_HH_SGF
5 RS2_0OK68656_PK625345_DK556405_SCWA_20151024_170237_HH_SGF 36 RS2_0K69418 PK630240_DK559455_SCWA_20151020_020351_HH_SGF
6 RS2_0OK68656_PK625762_DK556372_SCWA_20151002_022756_HH_SGF 37 RS2_0OK69418 PK630337_DK559437_SCWA_20151018_012210_HH_SGF
7 RS2_0OK68656_PK625763_DK556374_SCWA_20151003_171508_HH_SGF 38 RS2_0OK69418 PK631965_DK559488 SCWA_20151025_163242_HH_SGF
9 RS2_0K68656_PK625765_DK556376_SCWA_20151006_172741_HH_SGF 39 RS2_0K69418 PK632729_DK559497_SCWA_20151026_160328_HH_SGF
10 RS2_0K68656_PK625766_DK556377_SCWA_20151007_032220_HH_SGF 40 RS2_0K69418 PK633158_DK559473_SCWA_20151023_021630_HH_SGF
11 RS2_0OK67811_PK621868_DK551800_SCWA_20150930_170202_HH_SGF 41 RS2_0K69418_PK633303_DK562989_SCWA_20151022_162009_HH_SGF
12 RS2_0OK68656_PK625784_DK556385_SCWA_20151015_024847_HH_SGF 42 RS2_0K69482_PK630268_DK559754_SCWA_20151017_033046_HH_SGF
13 RS2_0OK68656_PK625810_DK556402_SCWA_20151020_034324_HH_SGF 43 RS2_0OK69616_PK635392_DK560718 SCWA_20151106_020633_HH_SGF
14 RS2_0OK68656_PK625814_DK556584_SCWA_20151012_023552_HH_SGF 44 RS2_0OK69636_PK631259_DK561023_SCWA_20151020_171900_HH_SGF




15 RS2_OK68656_PK629310_DK556379_SCWA_20151009_022346_HH_SGF 45 | RS2_OK69636_PK631259_DK561037_SCWA_20151020_171900_HH_SGF

16 RS2_0OK68656_PK629312_DK556380_SCWA_20151010_033459_HH_SGF 46 | RS2_OK69729_PK632815_DK561483_SCWA_20151102_174013_HH_SGF
17 RS2_OK68656_PK629823_DK556384_SCWA_20151013_034737_HH_SGF 47 | RS2_0K69729 _PK632816_DK561489_SCWA_20151104_030527_HH_SGF
18 RS2_0OK68656_PK630313_DK556397_SCWA_20151016_155548_HH_SGF 48 | RS2_0K69729 PK632817_DK561492_SCWA_20151105_023613_HH_SGF
19 RS2_0OK68656_PK630324_DK556400_SCWA_20151019_023205_HH_SGF 49 RS2_0K69730_PK632835_DK561588_SCWA_20151102_155916_HH_SGF
20 RS2_0K68656_PK630638_DKS556403_SCWA_20151022_024436_HH_SGF 50 | RS2_OK69730_PK632840_DK561606_SCWA_20151104_030533_HH_SGF
21 RS2_0K68656_PK631962_DK556407_SCWA_20151026_022755_HH_SGF 51 RS2_0OK69730_PK632841_DK561609_SCWA_20151104_030640_HH_SGF

22 RS2_OK68656_PK632790_DK556409_SCWA_20151027_033923_HH_SGF
23 RS2_0K69226_PK629293_DK558604_SCWA_20151009_022457_HH_SGF
24 RS2_0K69226_PK629298_DK558629_SCWA_20151015_024958_HH_SGF
25 RS2_0K69226_PK629301_DK558644_SCWA_20151018_030231_HH_SGF
26 RS2_0K69226_PK629453_DK558614_SCWA_20151011_030642_HH_SGF
27 RS2_0K69226_PK629891_DK558624_SCWA_20151014_031919_HH_SGF
28 RS2_0K69226_PK631608_DK561460_SCWA_20151021_031414_HH_SGF
29 RS2_0K69226_PK631609_DK561465_SCWA_20151021_031521_HH_SGF
30 RS2_0K69264_PK629447_DK558857_SCWA_20151010_171023_HH_SGF
31 RS2_0K69322_PK629903_DK559203_SCWA_20151013_172311_HH_SGF

4. Texture analysis

4.1 Texture analysis using the Gray-Level Co-Occurrence Matrix (GLCM)
Texture analysis refers to the characterization of regions in an image by their texture content. Texture
analysis attempts to quantify intuitive qualities described by terms such as rough, smooth, silky, or bumpy
as a function of the spatial variation in pixel intensities. Conventionally, texture analysis is based on the
examining the gray-level co-occurrence matrix (GLCM). The GLCM functions characterize the texture of
an image by calculating how often pairs of pixel with specific values and in a specified spatial relationship
occur in an image, creating a GLCM, and then extracting statistical measures from this matrix.

As given by Haralick et al. (1973) (and other publications such as Soh and Tsatsoulis (1999)), the definition
of GLCM is summarized as follows: For any grey image or part of the image / with pixel dimensions /N,
N,J we first quantize a scale of the grey levels G=/0:Ng-1] for each pixels of the image. Thus, the image /
can be viewed as a function that assigns some gray level to every pair of the coordinates in 2D space /N,
, NyJ: I: [N,, N,J—G. The texture information can be determined as a matrix or relative frequencies
B, (i,j) with two pixels separated by distance d that can be found in the image. Such matrices of gray-
level co-occurrence frequencies are a function of the angular relationship y and distance » between the
neighboring pixels. Typically, all angles are quantized by 45°, and additional averaging over the directions
can be applied:

Ky ()
N N ., .
Zi;g1 Zj;ql Ky (@)

Pr,y(ivj) =

After the calculation GLCM for each element of the image, multiple features can be estimated for each
GLCM, such as for example (Soh and Tsatsoulis, 1999):

1) Energy:f |, = Zi 2]_ P(i,j)?

Ng-1 N o
2.) Contrast: f , = Z n? {le-vzgl ijlP(z,J)Ill —jl=n}

n=0



3.) Correlation: f , = {Z 2 GHPE) —p 1 y 1/{6,6 y }, where p and 6 are the mean
i J

and standard deviations for the rows and columns of the matrix.

, § 1 .
4.) Homogeneity: f , =Z_ (W)P @J)
l .
j

5.) Entropy: f . = —Zi Zj P (i, Nlog(P(i, )

6.) Autocorrelation: f , = Z Z (G, HP3,))
i j

and others. The available, MATLAB image processing toolbox and GLCM Features1 (or 4) codes?® allows
calculation of 22 different GLCM features (Table 3).

The set of these features estimated for each sub-image [N, , N,] finally provides the corresponding two-
dimensional maps, which can be collocated and correlated with available sea ice observation and after
that utilized for the identification different types of floes.

After GLCM analysis, the available in situ dataset can collocated with maps of different GLCM features
and analyzed in order to define the GLCM features which can be used for ice floe type identification. The
combination of the most successful GLCM features can be further used for the training supervised learning
algorithm.

The spatial dimensions [Ny, N,] of the sub-image inherently define the spatial resolution of the GLCM
analysis. Obviously, [N, N,] should be large enough in order to derive the statistically meaningful matrix
Pj. In our particular case, we utilized Ny = N,=60. It is necessary to note that GLCM analysis is not a fast
computational procedure due to necessity of the massive summations for multiple sub-images. At the
same time, GLCM analysis algorithm can be easily parallelized for multi-CPU workstations. Also, due to
inherent averaging with order ~ O(Ny), the estimation of the GLCM matrix can be done for every Ny —th
pixel of the SAR image. That significantly reduces computational resources needed for the analysis of the
SAR images.

4.2 Texture analysis using gradient tensor analysis.
In addition to the “conventional” GLCM-texture analysis, we investigated several additional features to
classify SAR images, which are described below. In particular we estimated 6° values, spatial function of
the anisotropy, gradient and coherence directly from the normalized grey-level images. After the incident
angle normalization, the estimation of the 6° is straightforward. The estimation of the anisotropy, squared
gradient and coherence can be derived from the eigenvalues of the of the autocovariance matrix of the
gradient vector pairs (Vliet and Verbeek, 1995, Bazen and Gerez, 2000):

1 For example, https://www.mathworks.com/matlabcentral/fileexchange/22354-glcm features4-m-vectorized-
version-of-glcm featuresl-m-with-code-changes, recovered April 24 2019.
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The corresponding spatial maps were derived through the analysis of the autocovariance matrix of the
gradient calculated for the each sub-image [N, , N,].
The list of all features (GLCMs and gradient tensor analyses) utilized in present work is shown in Table 3.

Table 3. The list of all features calculated for SAR images. The features estimated from GLCM and
gradient tensor are shown by bold and italic fonts respectively.

1. | Autocorrelation 14 | Sum average

2. | Contrast 15 | Sum variance

3. | Correlation(1) 16 | Sum entropy

4. | Correlation(2) 17 | Difference variance

5. | Cluster Prominence 18 | Difference entropy

6 | Cluster Shade 19 | Information measure of correlation(1)
7 | Dissimilarity 20 | Informaiton measure of correlation(2)
8 | Energy 21 | Inverse difference (INV)

9 | Entropy 22 | Inverse difference normalized (INN)
10 | Homogeneity(1): 23 | Sigma°

11 | Homogeneity(2): 24 | Anisotropy

12 | Maximum probability 25 | Gradient

13 | Sum of squares: Variance 26 | Coherence

5. Support Vector Machine

“Support Vector Machine” (SVM) is a supervised machine learning algorithm which is mostly used for
solving the classification problems (Vapnik, 1982, 1995). The method has been widely applied to different
machine vision application and satellite image classifications ( Joachims, 1998, Gualtiery and Cromp, 1998)
including ice classification (Subashini et al., 2014, Su et al., 2015).

Formally, SVM finds the maximum margin hyperplane that separates the two classes, and can be
formulated as a constrained quadratic minimization problem (Vapnik , 1982). The application of the SVM
results in two datasets that can be separated by a linear classifier. The process enables the classification
of remote sensing datasets which are usually nonlinearly separable in the input space. In case of non-
separable data sets, the risk of mis-classification is minimized by maximizing the margin between the two
data sets and the separable boundary (Mashao, 2004). It is possible to show that SVM algorithm can be
considered as a two-layer neural network.



Advantages of SVM include: (1) SVM solves a quadratic minimization problem, so its solution will be
formally unique and available minimization algorithms will be more efficient; (2) SVM automatically
defines the number of neurons in the hidden layer, which is equal to the number of support vectors; (3)
The definition of the optimal hyperplane which separate two classes results in the more efficient
classification. The major disadvantage of SVM is the instability with respect to the noise in the available
datasets.

SVM classification is essentially a binary (two-class) classification approach. The most common approach
to adopt SVM for multivariate classification problem is to subdivide the space of the N classes into several
two-classes problems. If, for example, the image includes open water, small floes and large floes, we may
first separate water and after that provide classification for different ice categories. In practice that
requires sequential construction of several SVM algorithms. Currently, SVM toolboxes are available in
Matlab, Python and other programming languages. Matlab SVM toolbox was used in this study. The
schematic of the application outlined above is shown at Figure 6.

Visual in situ SAR images
ice observations |

’ Sub-sampling (averaging)

Incident angle normalization

|

Identification potential texture feature#

I

SVM training and SAR classification

Figure 6. Flow chart of the SAR processing and SAR classification.

6. Results

6.1 Analysis of SAR image texture features at the collocations points

Texture feature analysis depends on the spatial scale of the sea ice surface based on the spatial
inhomogeneity of the grey colored image. Formally, SYM may use any number of the texture features,
but it is useful to define the most perspective candidates among all available texture features. Ideally
perspective texture features should be different for different ice categories and do not correlate between
each other.

The available sea ice observations were collocated with available SAR images within + 1 day temporal
window and GLCM analysis was applied to the collocated part of the SAR image with dimension 60x60
pixels. This dimension (30 km) defines the spatial resolution of the GLCM features. Note, that relatively
large dimension is consistent with spatial inconsistency between SAR image and collocated ice
observation due to time difference and intensive sea ice velocities in the MIZ. Figure 7 show normalized
texture values against the different ice floe type. Due to insufficient amount of the vast and large ice floes
observations, we combined these sets of the observations together.
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Analysis of the Figure 7 show that multiple texture features can be used for identification of the ice edge.
However, the most promising separation between ice and water can be obtained for following texture
features: dissipation (7), energy (8), entropy (9), homogeneity (10, 11), maximum probability (12), sum
and difference of the entropy (16, 18). But even for these texture features there is some intersection
between open water and ice categories.

Another, relatively well-separated category is the combination of the large and vast ice floes category. For
this type of the ice, the promising texture features are autocorrelation (1), sum of squares (13), sum of
averages (14) and sum of variance (15). Other sea ice floe types cannot be separated from each other
using the texture analysis because they have a similar texture values and relatively high STD of the
classification, which is based on the available ice floes observations. The large STD is the result of the
inconsistency between time of the observation and time of the SAR image which can be within + 1 day
and relatively large sea ice velocity. Besides that, there is extremely high spatial variability of the sea ice
floes observations discussed above. Despite this rather disappointing result, the texture features
autocorrelation (1) , sum of squares (13), sum of averages (14) and sum of variance (15) have a minimum
for the group of the ice types included: pancake ice, new sheet ice, brash/broken ice and cake ice. The
typical size of these ice floes categories is less than 20 m. This group of the sea ice floes is the most
associated with the MIZ and its identification is important for the proper modeling of the ocean wave
attenuation there.
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The good identification of the ice edge is obviously due to significant difference in the roughness of the
open water surface and ice covered regions. Also, open water regions are well seen on the SAR images
and that allows us to provide “open water” observations even without any expert knowledge: the only
limitation is the availability of SAR imagery. That allows statistically reliable separation of the open water
areas from the ice covered region. The relatively good separation of the large/vast floes is probably due
to less intensive variability of the ice field with large/vast floes. That allows one to conduct more accurate
collocation between SAR images and sea ice observations.

6.2 Identification of ice floe regions using the SVM

The multiple SVM numerical experiments and visual analysis of the results showed that homogeneity (11)
and entropy difference (18) texture features provide the most accurate identification of the open water
areas and ice edge. In addition we utilized sea ice passive microwave concentration above 0.4 as the
categorical prediction for sea ice classification. The constructed SVM includes linear kernel and uses
Sequential Minimal Optimization solver for minimization. The more advanced L1QP solver provided the
similar results but require more computational time.

Green lines on Figure 8 shows several examples of the open water-ice classification during the period 10-
27 October 2015, and sea ice passive microwave concentration from NOAA/NSIDC. Visual analysis show
relatively good overall agreement between SAR based sea ice edge and 0.15 passive microwave sea ice
concentration, which is usually treated as an ice edge in the various analyses (Lindsay and Zhang, 2006,
Dukhovskoy, et al, 2015). At the same time, in some locations, SAR ice edge differs from microwave 0.15
sea ice concentration by 20-40 km (e.g. 2015/10/15 SAR image at Figure 8b, near 72.4°N, 213°E). Overall,
visual analysis of the SAR images suggests that SAR ice edge is more accurate and have a higher resolution.

The next step of our classification is to define the region covered by large-vast floes. The autocorrelation
(1) and sum of squares (13) texture features were used for classification. The utilized SVM includes
quadratic kernel and uses the L1QP minimization solver. We found that a quadratic solver provides more
stable results than conventional Sequential Minimal Optimization algorithm utilized in Matlab. That is
probably due to the small volume of the large-vast floes observations available for the SVM training.
Several examples of the large-vast floes classification are shown by thick black lines in Figure 8. Note that
area of the large-vast floes in the SAR image for 2015/19/27 clearly correspond to the observed large-vast
floes.

Finally, the areas covered by category of relatively small (<20 m, pancake-cake) sea ice floes are defined
using the SVM with linear kernel and Sequential Minimal Optimization minimization solver. The
autocorrelation (1) and average of 14 texture features were used for classification. Previously defined
open water and areas covered by large-vast floes were used as a categorical predictor. Several examples
of the large-vast floes classification are show in Figure 8: red lines indicate the boundary of this ice type.
Note, that area of the relatively small floes at SAR images for 2015/10/10 and 2015/10/15 agrees well
with the sea ice observations shown by yellow circles.

The constructed SVMs were applied for all available SAR images for the period of the sea ice observations.
Analysis of the agreement between available sea ice observations and SAR images classification revealed
that the utilized approach misclassifies about 23% of the relatively small (<20 m, pancake-cake) sea ice
floes, 53% of the small-medium sea ice floes observation and 17% of the large-vast sea ice floes
observations. 90% of the misclassification of the relatively small (<20m, pancake-cake) sea ice floes are
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related to the open water, i.e. these sea ice observations were near the ice edge. All misclassifications of
the small-medium floes observations are due to classification of these observations as relatively small
(<20 m, pancake-cake) seaice floes. The misclassifications of the large-vast floes observations are typically
due to classification as small-medium sea ice floes. The large volume of small-medium floes
misclassifications is probably due to large errors in the texture features values corresponding to the small
sea ice floes (Figure 7). Also, as we mentioned above, the spatial distribution of the sea ice floes is very
irregular and different sea ice floes were often observed within the distance less than 10-15 km (e.g. SAR
2015/10/27 at Figure 8.). Note also, that 30 km spatial resolution of the calculated GLCMs and relatively
small volume of the small/medium floes observations should inevitably result in misclassifications.

Despite the significant levels of misclassifications, the evolution of the sea ice fields at SAR images looks
in a reasonable agreement with sea ice velocity fields. Figure 8a, shows that in 10 October 2018, large-
vast floes were near 75°N, 200°E. The all sea ice system drifted toward the north-west, but would probably
return back to the south according to the sea ice velocities pattern during the 19-27 October 2018.
Similarly, the large-vast floes near 74°N, 220°E could drift southward gradually covering the entire region
as it seen at Figure 8c,d. This very simple interpretation of the four SAR image pertains to ice advection
and does not take into account ice growth/melt and floe welding/fracturing, e.g., the thermodynamic
processes which may be responsible for transformation of small sea ice floes into the larger categories.
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Figure 8. Ice type classification for 20-day period in the Beaufort Sea. Colored lines designate the ice
boundaries. Green: boundary between pancake-cake and small-medium ice floes. Red: boundary between
small-medium and large-vast ice floes. Yellow circles, red asterisk and black crosses show the observation
of the pancake-cake, small-medium and large-vast floes respectively. Blue arrows designate ice velocities
from CICE5 model. Dashed lines show the microwave sea ice concentration according to NOAA/NSDIC.

The structure of the GLCM is key component of the applied texture analysis. In order to understand
significant level of misclassifications and evaluate future potential of the application of texture analysis
for sea ice observations in the MIZ, we calculated mean and corresponding std(GLCM) for each of the sea
ice floes categories and open water (Figure 8). Analysis in Figure 8 indicate that open water GLCM have
three distinct local peaks, while sea ice categories typically have one or two maximums. This significant
GLCM difference explain the rather accurate ice edge classification. Interestingly, the pancake ice GLCM
has two local maximums. Location of the first of these maximums coincide with first maximum in open
water GLCM. That is probably due to significant presence of the open water in the areas covered by
pancake ice and similarity in the backscattering. Note, that new sheet ice GLCM does not have this
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maximum and corresponds well to the description of the new sheet ice category, which do not suggest
the presence of the open water. Maxima in the broken and cake ice (floes< 20m) GLCMs are only slightly
shifted from the first maximum in the open water GLCM suggesting the essential presence of the open
water between ice floes.

Figure 9. GLCM matrices (64x64) and corresponding STD for open water (top row) and different sea ice
floes categories derived from the analysis of the collocated SAR images and sea ice observations.

Location of the maximums in the small and medium floes GLCMs agrees relatively well with the location
of the second maximum in the open water GLCM. Similarity of these GLCMs explains similarity of the
texture features for these sea ice floe categories. This makes it difficult to separate these ice floes
categories in the SAR images. Note also, that medium ice floes GLCMs significantly overlap with pancake
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GLCM. That explains why all misclassifications in the identification of the small/medium floes observation
are related to the smaller sea ice floes categories.

Large and especially vast sea ice floes GLCMs have a maximums which are significantly shifted from all
open water and other sea ice floes categories GLSMs. That explains the relatively good identification of
regions covered by large/vast sea ice floes and lower level of misclassification.

The estimated STD of the GLCMs have the similar shape, but typically 1.5-3 times larger than the
corresponding GLCMs. Interestingly, open water and pancake have the largest ratio max(STD(GLCM))/
max(GLCM), while for the large and ice floes the similar ratio is minimal. That could be due to intensive
dynamical processes (such as ocean waves and ocean currents) which affect backscattering coefficient
more intensively in the regions covered by relatively small sea ice floes. Note, that amplitude of the model
sea ice velocity in Figure 8 agrees well with this hypothesis. Another impact which probably enlarges STD
is variability of the sea ice concentrations, which was not taken into account in our study, due to relatively
small volume of the observations.

Besides, these “natural” effects, the most significant errors are probably due to relatively high (20-50
cm/s) sea ice velocities and necessity to use relatively large temporal window (+1 day) for collocating sea
ice observations and SAR images. As we mentioned above, that may result in to up to 20-50 km shift and
thus contaminate GLCMS by the GLCM from different sea ice categories. Meanwhile, despite all errors
and large STDs, Figure 8 shows that there are several groups of the sea ice floes which produce the clearly
distinctive GLCM, which can be used for accurate ice floes identifications if we find the way to decrease
errors in the GLCM classification.

6.3 Sea ice concentration in the MIZ

Visual sea ice observation from ships (currently in SIGRID-3 format) are the largest available set of the in
situ (visual) sea ice concentration (IC) observation and formally these data can be used for validation of
the available satellite IC products. The scatter plots of the visual IC and IC from three different products
with different spatial resolution are shown at Figure 10a,b,d. Coarse resolution IC typically overestimate
the visual observation for the IC less than 0.5, while the higher resolution products agree relatively well
with visual IC observations for this IC range. Conversely, for IC between 0.5 and 1, coarse resolution IC
(Figure 10a) agrees well with visual IC, while higher resolution products typically underestimate IC by 0.1-
0.4. The worse agreement was found for MASAM?2 IC which underestimates IC by 0.3-0.4 for the visual IC
range 0.7-1 (Figure 10b).

The scattered plot for visual IC and IC from CICE5-NCODA DA model run (Figure 10c) suggest that CICE5-
NCODA significantly overestimate the IC for the IC range 0.1-0.5. CICE5-NCODA assimilates two kinds
(SSMI and AMSR2) of the preprocessed IC shown at Figure 10e, respectively. Interestingly, that for the IC
range between 0.1 and 0.5, IC from these products are significantly smaller than CICE5-NCODA output.
This suggests that CICE5 model has a significant bias and generates an excessive volume of the ice that
result for higher IC and ice thickness. That agrees with the similar conclusion made by Allard at al. 2018
and Yaremchuk at al., 2018. Rogers et al. 2018 also remark on the overprediction of ice by the CICE5
model, specifically for the ONR Sea State case, though the overprediction is not universal: regions of locally
underpredicted ice are also noted. The reasons for significant bias in CICE5 model solution are not clear
and may be related to the bias in coarse resolution atmospheric forcing which would suggest a necessity
for development and application an advanced DA algorithm that would be able to correct CICE5 model
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solution. However, if the origin of the errors are in the assimilated fields themselves, this would not help.
In fact, this is the conclusion in Rogers et al. (2018) for the October 11-14 case: the CICE5 model is
assimilating fields which have not been updated during a period of rapid observed ice retreat, so the
retreat is erroneously prevented in the model analyses.
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Figure 10. Scattered plot of the visual sea ice observations against: (a) microwave sea ice concentration
with 25km resolution;(b) MASAM?2 sea ice concentration with 4km resolution; (c) results of the CICE5-
NCODA DA model run 5km resolution (c); (d) AMSR-2 sea ice concentration (3.km resolution); (e-f) SSMI
and AMSR-2 sea ice concentration utilized for CICE5-NCODA DA respectively. Mean values and STD bars
are shown by red circles and triangles respectively.

7. Summary and Conclusions

An approach for automatic detection of the type of the sea ice floes in the MIZ from RADARSAT-2 SAR
images with resolution of 50 m has been developed and tested. The approach is based on analysis of the
texture features using the GLCM and several additional functions based on the estimates of the averaged
gradient tensor and SVM classification algorithm. The major source of the sea ice observation were
obtained during the ONR-supported ‘Sea State and Boundary Layer Physics’ cruise conducted in the
Beaufort Sea during September-October 2015 (Thomson et al. 2018). The RADARSAT-2 SAR were
specifically acquired through the NIC and UW/APL in order to maximize the size of the collocated points
between visual sea ice observations and SAR images.

The preprocessing of the RADARSAT-2 SAR images includes the spatial averaging with spatial window of

ten pixels and linear incident angle normalization procedure (Zakhavtkina et al, 2012). The basic goal of
our study was to find a way for accurate identification of the sea ice edge and ice type in the MIZ. Because
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of that, the backscattering normalization procedure was accomplished for a reference angle of 35° using
the linear approximation of the backwatering angular dependence for open water. The type of the ice
floes selected for classification included eight types (including open water type and large and vast floes as
a one group) according to the SIGRID 3 format (JCOM-TR-023, 2014).

The set of the observations used for SVM training includes the visual observation from ship bridges and
“artificial” sea ice floes observations, which were defined after analysis of the real observation and
collocated SAR images. The artificial observations were selected in the reasonable spatial and temporal
proximity to the real observations in the regions with similar texture properties in the collocated SAR
image. The artificial set of the sea ice floes observations was needed because of insufficient volume of the
collocated pairs needed for training SVMs.

Twenty two GLCMs and four gradient tensor texture features were calculated for every observation
collocated with SAR image in space and 1 day temporal window. The analysis of texture features and sea
ice floe types showed that only open water and large/vast floes are relatively well separated from other
floe types for multiple texture features. It was also found that the categories of pancake, new sheet ice,
brash/broken ice and cake ice have a reasonable separation from categories of small and medium floes
using several texture features. Based on this analysis, the first step of the classification algorithm included
sequential identification of the open water, large/vast floes using the conventional SVM. In case of ice
edge identification, we also included condition of sea ice concentration larger than 0.4 as an indicator for
the presence of the sea ice. After that, the group of the pancake and cake ice was identified using
additional SVM. The remaining part of the SAR image was treated as area covered by small and medium
floes, whose texture features are similar and cannot be separated.

SAR images taken during October 2015 were used for the sea ice floe identification. The visual analysis
revealed that the utilized approach allows accurate identification of the open water which is more
accurate than retrieved from the sea ice concentration maps derived from different satellites. In some
regions by the location of the ice edge identified from SAR images may differ by 20-50 km from the
conventional ice edge identified as 0.15 sea ice concentration.

Statistical analysis showed that that error in large/vast floes observation misclassification do not exceed
17%. The rate of the misclassification for the group of the observations of the pancake-sheet-broken-cake
ice was about 26%, with a major portion (70%) of the misclassification related to the open water category.
The highest (53%) rate of the misclassification was with the small-medium ice floe observations with the
most of the misclassification related to the pancake-sheet-broken-cake categories. Despite a significant
rate of misclassification of pancake-sheet-broken-cake ice floes and especially small-medium floes, the
visual analysis of the temporal evolution of areas covered by different ice floe groups agrees well with the
sea ice velocities from CICE5 model configured for the Beaufort Sea region (Figure 8).

The major source of the inaccuracies in the utilized approach comes from the errors in the spatial and
temporal colocation between visual sea ice observations and SAR images. Due to relatively small number
of the collocated pairs we had to increase the temporal collocation window up to +1 day. That, due to
30-60 cm/s velocities in the marginal ice zone may result in differences up to 60 km in the spatial location
of the visual sea ice observation and SAR image.

Visual observations of the IC provide the opportunity for the analysis of the available satellite IC product

utilized for assimilation. We found that 3.1 km resolution AMSR-2 IC concentration provide fair estimates
of the IC in the MIZ with small bias for the 0.6-1.0 IC range (Figure 10d,f). SSMI IC observations are less
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accurate. The worse agreement was obtained for the MASAM?2 IC observations (Figure 10b). The results
of the CICE5-NCODA DA model run (Figure 10c) shows that despite the assimilation of the AMSR2 and
SSMI IC observation, CICE5-NCODA DA system generate excessive sea ice volume. Overestimation of ice
in the MIZ will inevitable affect the attenuation of the ocean waves and because of that, this problem
should be addressed using alternative products in order to achieve more accurate ocean wave hindcast
in the MIZ.
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