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Claims to discuss: 

1. Adversarial 
examples are a 
result of non-robust 
features (... derived 
from patterns in the 
data distribution). 

2. After capturing 
these features 
within a theoretical 
framework, we 
establish their 
widespread 
existence in 
standard datasets. 
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General Ilyas et al. (2019) process

1. Collect data

2. Choose a classification model 

3. Estimate the parameters in the model (fit the model to the data)

4. Estimate a performance metric 

Ilyas et al. (2019) holds the model fixed and varies each other component. 
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First dataset: CIFAR-10

https://www.cs.toronto.edu/~kriz/cifar.html

60000 32x32 color images in 10 classes
with 6000 images per class

https://www.cs.toronto.edu/~kriz/cifar.html
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Ilyas et al. (2019) model: ResNet-50
ResNet-50: A 50 layer CNN with residual connections. 

ResNet 50

• Approx. 800K parameters. 

CIFAR-10

• 50K training images, 10K test images
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The two ways Ilyas et al. estimate parameters 

“Standard”

Choose 𝜃 to minimize 

• Recall for ResNet-50, 𝜃is of dimension 

800K

• 𝜃 is estimated with stochastic gradient 

descent 

This is maximum likelihood. 

“Adversarial”

Choose 𝜃 to minimize 

• Δ ⋅ defines the adversary who is trying 

to maximize the loss

• Δ 𝑥 is 7 steps of a PGD attack with an 

L2 norm, where each step is 𝜖/5 epsilon 

is the adversary budget 

This is empirical minimax estimation. 
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Two metrics Ilyas et al. use to estimate performance

Accuracy

 𝑦 = model( 𝑥,  𝜃 )

Accuracy = count(  𝑦 = y ) / count( all cases ) 

Adversarial Accuracy 

 𝑦𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑑 = model( 𝑥𝑎𝑡𝑡𝑎𝑐𝑘 ,  𝜃)

Where 𝑥𝑎𝑡𝑡𝑎𝑐𝑘 is calculated with ResNet-

50(  𝜃) on 

• 2,500 steps of PGD attack, or

• 1,000 steps of Carlini-Wagner L2 attack 

with grid search

Adversarial Accuracy 

: Replace  𝑦 with  𝑦𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑑
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Experiment #1

Data: CIFAR-10

Model: ResNet-50

Estimation: SGD / maximum likelihood 

Metrics: Accuracy and Adversarial Accuracy

Answer: Well known. Maximum likelihood 

estimators can fail spectacularly when 

evaluated on “worst case” data distributions.  
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Experiment #2

Data: CIFAR-10

Model: ResNet-50

Estimation: Adversarial / Empirical Minimax 

Metrics: Accuracy and Adversarial Accuracy

Answer: Well known. Minimax works well, 

especially when the attack models are 

aligned. 
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An aside: which estimation procedure is better?

Posterior Predictive Checking (PPC): 

• Check a generative model by generating new data and checking if the generated data 

matched the real data

One way to do this for ResNet-50 (which isn’t generative) is to choose an 𝑥𝑟 such that

Where 𝑔(⋅) is the penultimate layer of the neural network 
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For example…

𝑔 ⋅ maximum likelihood (Exp 1) 

𝑥𝑟

𝑔 ⋅ minimax (Exp 2)

𝑥

𝑥

NOTE: The only 

difference 

between these 

is the method of 

training, i.e. 

maximum 

likelihood or 

minimax
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More examples of

𝑥𝑟 with 𝑔 ⋅ minimax 

(Exp 2)

𝑥𝑟with 𝑔 ⋅ maximum 

likelihood (Exp 1) 

𝑥
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Additional Ilyas et al. experiments

Experiment 3

1. Train ResNet-50 on CIFAR to minimize 

𝜃 s.t.

2. Synthesize an approximation to CIFAR 

with 𝑔 ⋅ from Step 1.

3. Train ResNet-50 on the 𝑥𝑟 from steps 1 

and 2. 

4. Check accuracy and adversarial 

accuracy

Experiment 4

1. Train ResNet-50 on CIFAR to minimize 

𝜃 s.t.

2. Synthesize an approximation to CIFAR 

with 𝑔 ⋅ from Step 1.

3. Train ResNet-50 on the 𝑥𝑟 from steps 1 

and 2. 

4. Check accuracy and adversarial 

accuracy
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Ilyas et al. results and discussion

Ilyas claims: 

• “Adversarial examples 

are not bugs, they are 

features ... (derived 

from patterns in the 

data distribution).” 

This does not follow. 

• The only variation 

between Exp 3 and 

Exp 4 is the method of 

training to generate 

the 𝑔(⋅) for 𝑥𝑟
Exp 1

(ML)

Exp 2

(minimax)

Exp 4

(minimax)

Exp 3

(ML)
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Some comments to spark discussion

• The adversarial accuracy metric and PPC results suggest that minimax is a better 

estimation procedure. 

• “Adversarial Examples are not Bugs, the are Features” are NOT features of the data, 

they are properties of the estimation procedure, specifically, the loss.

Claims to discuss: 

1. Adversarial examples are a result of non-robust features (... 
derived from patterns in the data distribution). 

2. After capturing these features within a theoretical framework, 
we establish their widespread existence in standard datasets. 
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