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1. Introduction and Problem Setting
Since its original formulation by Thompson,1 the multi-armed bandit (MAB) prob-
lem has received much study in its various forms. However, the overwhelming ma-
jority of MAB research focuses on instances of the problem in which rewards are
assumed to arrive instantaneously after choosing an action. Such an assumption is
ill suited to many real-world problems. For example, in medical applications, it is
typically unreasonable to assume that the impact of a chosen treatment, out of a
set of possible treatments for a patient, will be immediately observable or observ-
able after some known delay.2 Moreover, in the case of testing multiple treatments
sequentially, it is often difficult to determine the specific treatment (or treatments)
that induced a change in patient health. Such problems are well modelled as a MAB
problem with delayed, aggregated anonymous feedback.

In this work, we focus on the setting considered in Pike-Burke et al.3 We have
K > 1 arms in the setA available to the agent at each timestep. As in the canonical
setting, we have a reward distribution ζj associated with each arm. Importantly,
with each arm, we also have a delay distribution δj defined on N from which we
assume delays are drawn independent and identically distributed (i.i.d.) with each
arm choice. Let µj denote the mean of ζj and µ∗ = µj∗ = maxj µj . We define
∆j = µ∗−µj to be the reward gap between the j th and optimal arm. Let Rl,j follow
the distribution ζj and τl,j follow δj , where l = 1, 2, . . . denotes the timestep. We
define Jl ∈ A to denote the action chosen by the agent at time l. The observation
received at the end of the tth play is given by

Xt =
t∑
l=1

K∑
j=1

Rl,j × 1{l + τl,j = t, Jl = j}. (1)

We emphasize the aggregated nature of the received rewards in the previous defini-
tion: the agent does not learn the individual contributions that compose the received
reward at each timestep but instead observes their aggregation (summation).

As in Pike-Burke et al.,3 we consider the loss of all generated rewards and define
the regret by

RT =
T∑
t=1

(µ∗ − µJt) = Tµ∗ −
T∑
t=1

µJt . (2)
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Under degenerate delay distributions, the setting described in the previous subsec-
tion reduces to the canonical MAB problem with instantaneous feedback. Such
problems have been widely studied in statistics, with the celebrated upper confi-
dence bound (UCB) algorithm taking principal focus in the majority of the literature
since its original introduction by Lai.4 Roughly, UCB maintains upper confidence
bounds on all arms, and at any moment in time, the arm with the highest bound
is chosen. A characteristic of UCB is frequent switching of sequential arm choices
before an optimal arm becomes apparent. Consequently, UCB is ill suited to the
delayed aggregated anonymous feedback setting, where rapid switching of arms is
likely to introduce excessive difficulty in reward–action assignment. Recently, Pike-
Burke et al.3 proposed Optimism for Delayed, Anonymous, Aggregated Feedback
(ODAAF), a batch/round-based algorithm capable of accommodating anonymous
delays under certain strict delay distribution assumptions:

Assumption 1 (Bounded expectation). E[τ ] is bounded and known to the algo-

rithm.

Assumption 2 (Bounded support). There exists some constant d > 0 known to the

algorithm such that the support of the delay distribution is bounded by d.

Assumption 3 (Bounded variance). V(τ) is bounded and known to the algorithm.

In essence, the core focus of this work involves extending results in Pike-Burke et
al.3 to accommodate milder assumptions on delay. Sections 3 and 4 discuss this
direction more concretely.

2. Related Works and Baseline Algorithms
The delayed feedback MAB setting has only recently received attention in the MAB
literature, with the first major theoretical contribution from Joulani et al.5 and later
followed up by Mandel et al.6 As discussed in the previous subsection, the first work
to study the delayed, aggregated, anonymous feedback setting is by Pike-Burke et
al.3 In this section, we briefly review the contributions of relevant related works and
discuss the baseline algorithms chosen for our experiments.

The baseline algorithms chosen for this experiment are UCB, delayed UCB, and
ODAAF (with three variations). We propose two new algorithms that build upon
ODAAF to improve efficiency and accumulate less regret.
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2.1 Upper Confidence Bound
The UCB algorithm proposed by Auer7 is well known and commonly used. Here,
we use it as a “sanity” check, because due to the environment, this should act simi-
larly to taking random actions at every step.

2.2 Queued Partial Monitoring with Delays
Queued partial monitoring with delays (QPMD)5 is a black-box meta-algorithm
that adapts algorithms for the stochastic i.i.d. partial monitoring setting8 to handle
delayed, but not anonymous, feedback. In the MAB setting, QPMD queues rewards
observed from past actions, before updating a base MAB algorithm such as UCB
with the delayed rewards.

2.3 Optimism for Delayed, Aggregated, Anonymous Feedback
The ODAAF algorithm was proposed by Pike-Burke et al.3 and is the only existing
algorithm developed specifically for the delayed, aggregated, anonymous feedback
MAB setting. This procedure uses an iterated phased approach. Each iteration con-
sists of three phases. The first phase samples each arm. The second phase uses the
data gathered in phase one to compute estimates of the mean reward for each arm,
eliminate suboptimal arms based on a tolerance factor, and then update the toler-
ance factor for the next iteration. Lastly, the third phase is a bridge period where the
estimated best arm is pulled for some number of steps before repeating this process
until the horizon is reached.

The most important aspect of this algorithm is how the constant that determines how
many times to pull each arm is determined. There are three methods for determin-
ing these, each of which uses different assumptions. Equation 3 uses the assump-
tion that the expected delay of the arm with the largest expected delay is known.
Equation 4 assumes the same expectation is known as in Eq. 3, but also that there
exists an upper bound on the delay. Lastly, Eq. 5 makes the same assumptions as
Eq. 4 but also assumes the variance is known. These are referred to as “odaaf_ed”,
“odaaf_ebd”, and “odaaf_bdev”, respectively.
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(5)2.4 Phaseless Hedger

Here we propose our algorithms for the delayed, aggregated, anonymous feedback
setting. Roughly, our algorithms are inspired by the original ODAAF algorithm
modified to pull arms in a more conservative fashion. More specifically, we take
advantage of previous observations to trade off exploring a new arm with exploiting
a previously determined good arm while waiting for the delayed rewards to arrive.

Algorithm 1 Hedger (No Phases)
1: A: Set of Arms, T : Horizon
2: K := |A|, n := bT/Kc, ∆2

m = 0.5, m :=
√

2 log(T∆2
m)

3: procedure NOPHASEHEDGER(A, T )
4: Sample arm a1 n times

5: Set µ̂1 = 1
n

n∑
t=1

Xt

6: Sample arm a2 n times

7: Set µ̂2 = 1
n

2n∑
t=n+1

Xt

8: for i = 3, . . . , K do
9: Sample ai m times

10: Sample aimax = max{a1, . . . , ai−1} (n−m) times

11: Set µ̂i =

i·n∑
t=(i−1)n

Xt−nµ̂imax

(n−m)

12: end for
13: Sample arm max{a1, . . . , aK} (T − kbT/kc) times
14: end procedure

4



Algorithm 2 Hedger
1: A: Set of Arms, T : Horizon
2: K := |A|, n as in Equation 3, ∆2

m = 0.5, m :=
√

2 log(T∆2
m)

3: procedure HEDGER(A, T )
4: while t < T do
5: Sample arm a1 n times

6: Set µ̂1 = 1
n

n∑
t=1

Xt

7: Sample arm a2 n times

8: Set µ̂2 = 1
n

2n∑
t=n+1

Xt

9: for i = 3, . . . , K do
10: Sample ai m times
11: Sample aimax = max{a1, . . . , ai−1} (n−m) times

12: Set µ̂i =

i·n∑
t=(i−1)n

Xt−nµ̂imax

(n−m)

13: end for
14: Remove arms i which satisfy µ̂i + ∆2

m < maxj µ̂j

15: Set ∆2
m = ∆2

m/2

16: end while
17: end procedure

3. Theory
In this section, we discuss the theoretical results we were able to prove. We prove
expected regret bounds on the phaseless hedger. The following is the main result:

Theorem 3.1. The expected regret of Algorithm 1 after T timesteps is upper-bounded

by

E[RT ] ≤ 2E(1)[RT ] + (K − 2)E(2)[RT ]

K
, (6)

where E(1) is as defined in Eq. 7 and E(2) is as defined in Eq. 12.

To upper-bound the expected regret, we consider two cases: 1) when the optimal
arm a∗ is either the first or second arm and 2) when the optimal arm a∗ = aj for
some j ≥ 3. Then, after proving the regret bounds in each of the two cases, we take
the average over the cases to obtain an upper bound for the overall algorithm.
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Lemma 3.2 (Regret Bound for Case 1). Suppose that a∗ = a1 or a∗ = a2 and that

with probability at least 1 − δ(1)
i , a∗ = max{a1, . . . , ai} for each i ∈ {3, . . . , K},

then we observe an expected regret of

E[RT ] ≤ ∆̃m(n(1 + δ(1)(K − 2)) +m(K − 2)(1− δ(1))). (7)

Proof. First, we have that either arm 1 or arm 2 is nonoptimal. In this case, we
observe a regret contribution of n∆̃m. Then, for each arm ai for i = 3, . . . , K

we observe a regret of m∆̃m + δ
(1)
i ∆̃m(n − m). Letting δ(1) = maxi∈{3,...K} and

summing over these terms, our expected regret is upper-bounded by

E(1)[RT ] ≤ n∆̃m + (K − 2)[m∆̃ + δ(1)∆̃m(n−m)] (8)

= ∆̃m(n+ (K − 2)[m+ δ(1)(n−m)]) (9)

= ∆̃m(n+ (K − 2)[δ(1)n+m(1− δ(1))] (10)

= ∆̃m(n(1 + δ(1)(K − 2)) +m(K − 2)(1− δ(1))). (11)

Lemma 3.3 (Regret Bound for Case 2). Suppose that a∗ = aj for j ≥ 3 and

that with probability at least 1 − δ(2)
j , a∗ = max{a1, . . . ai−1} for each i ∈ {j +

1, . . . , K}, then the expected regret of Algorithm 1 after T timesteps is upper-

bounded by

E[RT ] ≤ ∆̃m(n(j(1− δ(2)) + δ(2)k) +m(1 + δ(2)(K − j))). (12)

Proof. For i ∈ {1, . . . , j}, we observe a regret of n∆̃m. Multiplying by j, we ob-
serve a total regret of j · n∆̃m. Letting δ(2) = maxi∈{j+1,...,K}m, we observe an
expected regret of m∆̃m + δ(2)∆̃m(n − m) so that we observe a total expected
regret of m∆̃m + δ(2)∆̃m(n−m)(K − j). Summing these two terms, we have

E(2)[RT ] ≤ j · n∆̃m +m∆̃m + δ(2)∆̃m(n−m)(K − j) (13)

= ∆̃m(jn+m+ δ(2)Kn− δ(2)Km− δ(2)jn+ δ(2)jm) (14)

= ∆̃m(n(j(1− δ(2)) + δ(2)k) +m(1 + δ(2)(K − j))). (15)

We are now ready to prove Theorem 3.1.
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Proof of Theorem 3.1. We can see that for each arm, with probability 1/K, the fol-
lowing holds:

a∗ = ai ∀i ∈ [K].

Therefore, with probability 2/K, Case 1 will occur and, with probability (K−2)K,
Case 2 will occur. Taking a weighted average, we get that the expected regret is
upper-bounded by

E[RT ] ≤ 2E(1)[RT ] + (K − 2)E(2)[RT ]

K
. (16)

3.1 Discussion
In Lemmas 3.2 and 3.3, we make the assumption that the event of interest occurs
with probability 1 − δ(1) and 1 − δ(2), respectively. While we were not able to
derive nontrivial lower bounds on these probabilities, we breifly discuss potential
directions for deriving these lower bounds following the proofs from Pike-Burke
et al.3 We restate the result of interest from Pike-Burke et al.3 and highlight the
techniques they use in deriving the result that we believe to be pertinent to our
use-case.

Lemma 3.4 (Lemma 1 from3). For every fixed arm j and phase m, with probability

1− 3
T∆2

m
, either j 6∈ Am or X̄m,j − µj ≤ ∆̃m/2.

The general idea in this is to decompose and upper-bound X̄m,j−µj as a sum of two
martginale terms and then use Freedman’s Inequality9 to provide high-probability
bounds on these events. This martingale decomposition implicitly deals with the
delays in the problem and we believe that a similar decomposition can be found for
our algorithm.

3.2 New Notions of Regret
One goal is to remove Assumptions 1, 2, and/or 3. Suppose we do not know the
expected value of delay (Assumption 1), and the best possible arm has a very high
delay. It is clearly impossible to achieve low regret with respect to this arm. We
argue that in practice, instead of waiting for the optimal but highly delayed arm, it
is best to ignore that arm. To this end, we consider new notions of the best possible
arm:

7



• The best arm normalized with the expected value of delay:

arg maxi{µi/E [τi]]}. (17)

• The best arm with expected delay within a certain delay tolerance D:

arg maxi {µiI [E [τi] < D]} . (18)

• The best arm with delay smaller than a delay tolerance D with high probabil-
ity:

arg maxi {µiI [P (τi < D) ≥ δ]} . (19)

One way to decide D is to set it to be a monotonically increasing function of a
fixed horizon T , for example, 1) D = C

√
T or 2) D = C log T . Suppose we define

µ∗(D) using one of these strategies, then the new notion of “tolerance-aware” regret
with respect to a tolerance D is given by

RT (D) = Tµ∗(D)−
T∑
t=1

µJt . (20)

4. Experiments
4.1 Environment
Each of the algorithms mentioned in Section 2 along with the baseline algorithms
of UCB,10 QPMD5 using UCB as the baseline (referred to as delayed UCB), and
ODAAF3 were implemented. Using the following environment, we developed sev-
eral experiments to test the algorithms performance according to different envi-
ronment dynamics. All experiments use a 10-arm bandit problem where the re-
wards of each arm are distributed as truncated normal distributions with means
linearly spaced between 0.2 and 0.8, variance= 0.1, and truncated so that all re-
wards ∈ [0, 1]. The result of each experiment is averaged over 50 separate trials,
where the order of the arms is randomly shuffled each time. Delay distributions are
randomly assigned to arms each trial, unless otherwise noted. The performance of
delayed UCB represents a sort of lower bound on performance, as the rewards are
nonanonymous for this algorithm. Our implementations of delayed bandit environ-
ments and algorithms can be found at https://github.com/JacobTyo/gym-bandits/tr

8



ee/AnonymousDelayedBandits.

4.2 Experiment 1
The first experiment (referred to as Experiment 1) is aimed at understanding the
performance of each algorithm in a simple case adhering to the delayed, aggre-
gated, anonymous MAB ideology. Here, the delays are Poisson distributed with
λ ∈ {1, 2, . . . 10}. The results of this can be seen in Fig. 1.

Fig. 1 This figure displays the cumulative regret vs. time on the environment described for
Experiment 1

4.3 Experiment 2
Experiment 2 aims to investigate the performance of each algorithms when the de-
lay is large. Thus, it is identical to Experiment 1, but the delays are instead Poisson
distributed with λ ∈ {100, 200, . . . , 1000}. The results can be seen in Fig. 2.

Fig. 2 This figure displays the cumulative regret vs. time on the environment described for
Experiment 2. We use the same legend as in Fig. 2.

4.4 Experiment 3
Experiment 3 investigates how the presence of outliers affected each algorithm. The
setup in this case was again the same as Experiment 1, except a random arm has

9



delays distributed as Poisson(100) instead of Poisson(10). The results are shown in
Fig. 3.

(a) Nonoptimal outlier arm (b) Optimal outlier arm

Fig. 3 Results from Experiment 3 with an outlier arm that las very long delays. a) shows
results where the long-delayed arm is not the optimal arm, while b) shows results where the
long-delayed arm also gives the highest expected reward. The Y-axis shows cumulative regret
while the X-axis represents time steps.

4.5 Experiment 4
The previous algorithms have assumed that all of the information presented to each
algorithm was correct (i.e., the expected delay was actually the expected delay).
However, in some cases (such as in advertising), this information can only be ap-
proximated. As noted in Section 3, we can redefine our notion of regret to account
for our uncertainty. Experiment 4 tests each algorithm when the expected delay pa-
rameter is approximated incorrectly. Specifically, we use the bandit problem from
Experiment 3, but with the false assumption that there is no outlier (the assumptions
are based off of the bandit problem from Experiment 1). We use the notion of regret
as defined in Eq. 18. The results are shown in Fig. 4.

10



(a) Nonoptimal outlier arm (b) Optimal outlier arm

Fig. 4 Results from Experiment 4 with false assumptions on delay distribution and alternate
definition of regret. The Y-axis shows cumulative regret while the X-axis represents timesteps.

4.6 Experiment 5
The Hedger algorithm has an intrinsic dependency on the ordering of the arms.
Experiment 5 highlights that this dependency results in some failure cases. This
experiment was set up in the same manor as Experiment 1, except the arms were
ordered from worst to best. This forced the Hedger algorithm to pull suboptimal
arms more and often resulted in the wrong estimate for the optimal arm. These
results can be seen in Fig. 5.

Fig. 5 This figure displays the cumulative regret vs. time on the environment described for
Experiment 5.

5. Discussion and Conclusion
Hedger outperforms ODAAF in almost every experiment we ran by converging
to the optimal arm more quickly (Figs. 1–5). It only accumulated more regret than
ODAAF in Experiment 4 with a high-delay outlier arm, which was also suboptimal,
under false assumtions (Fig. 4). As expected, delayed UCB outperformed all other

11



algorithms in every setting. Unexpectedly, the UCB algorithm performed well in
settings where the expected delay was small (Figs. 1 and 5).

We expected Hedger to outperform ODAAF by accumulating less regret early on.
However, it seems that instead Hedger is able to find the optimal arm more quickly.
This is likely related to the phase length parameter nm, which is chosen to achieve
certain bounds on total regret. It would be interesting to instead investigate more
empirically motivated choices of nm for both Hedger and ODAAF.

One of the most interesting observations of this research was the performance of the
UCB algorithm. This algorithm was implemented as a baseline and was expected
to do no better than random guessing. However, this is not the case. This seems to
be because UCB becomes confident enough in a single arm relatively quickly, and
therefore, begins pulling it continuously. However, as this happens, it builds a good
representation of the true mean reward of the arm. In doing this, it will often switch
to another arm and repeat this process until it becomes confident that it has selected
the correct arm. In other words, it seems that UCB implicitly takes on a phase-
like approach in the delayed, aggregated, anonymous feedback setting. It would be
interesting to compare this to the performance of the phase-based improved UCB.11

Before this report, the only existing algorithm to the delayed, aggregated, anony-
mous MAB setting proved to be effective, but often accumulated needless regret.
We present a new method that builds on this original work by differentiating be-
tween the number of samples needed per arm to get an accurate estimate of said
arm versus the number of pulls required to ensure that the delayed rewards are ob-
served and correctly attributed.

12
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