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1. Introduction 

Silicon carbide (SiC) power devices are attracting great interest for next-generation 
pulsed-power and power electronic systems. SiC offers several material advantages 
over its silicon counterpart such as high critical field, fast switching, recovery time, 
high thermal conductivity, and large elastic modulus, making it favorable for pulse-
switching systems and applications.1–4 The US Army Research Laboratory∗ has 
developed an interest in modeling and simulation of the inner workings of high-
pulsed-power SiC devices that are subjected to elevated current densities at unique 
timescales in the microsecond and millisecond regime. Accurate physics-based SiC 
models will enable better optimization of SiC device designs leading to enhanced 
device performance and reliability. These physics-based SiC models will also 
enable the prediction of device performance at various extreme pulsed conditions, 
expanding the application of SiC power devices. This research presents the 
modeling and evaluation of SiC gate turn-offs (GTOs) at extreme pulsed power 
densities and shows direct correlation between measured high-power 
characterization and simulated current and voltage waveforms.1–4 It is speculated 
that recombination-induced stacking faults (SFs) are the underlying mechanism 
that limits the long-term reliability and peak current capability of ultra-high-voltage 
SiC super-gate turn-off thyristors (SGTOs) used in high-current-density pulsed 
applications. Although SF formation at basal plane dislocations (BPDs) is a well-
known degradation mechanism of SiC bipolar devices that results in erratically 
increasing forward voltage drop,5–7 SF formation has been mitigated for standard 
current densities (~100 A/cm2) through advances in processing techniques.6,7 These 
processing techniques include the prevention of interfacial BPDs from growth of 
epilayers that experience conductivity modulation by increasing the efficiency of 
their conversion to threading edge dislocations through potassium hydroxide etch 
preparation of the substrate and by growth of thick buffer layers on the top of the 
substrate to prevent minority carrier injection into the substrate where the high 
density of BPDs reside.6,7 This research presents experimental on-state voltage 
degradation that is characteristic of SFs of 15-kV SiC SGTOs during narrow pulse 
operation. Furthermore, a technology computer-aided design (TCAD) simulation 
was implemented to analyze potential causes of forward voltage (VF) drop 
instability in SiC GTO during extreme pulsed-power operation. 

                                                 
∗ The work outlined in this report was performed while the US Army Research Laboratory (ARL) was part of 
the US Army Research, Development, and Engineering Command (RDECOM). As of 31 January 2019, the 
organization is now part of the US Army Combat Capabilities Development Command (formerly RDECOM) 
and is now called CCDC Army Research Laboratory. 
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2. SiC GTO Structure 

The 15-kV SiC SGTO presented in this report is manufactured by Wolfspeed. It 
has a chip area of 1.05 cm2 and an active area normalized to the anode mesa of 
0.52 cm2. The SGTO has highly interdigitated gate-anode regions that enable the 
device to have an extremely fast turn-on dI/dt capability. Figure 1 shows a 
simplified schematic cross section of the 15-kV SiC SGTO with a 1-µm n+ buffer 
layer. The SGTO is an asymmetric device using a pnpn structure and is grown on 
an n+ 4H-SiC substrate as shown in Fig. 1. This is essential due to the high 
resistance of p-type SiC substrates. The low doped p-type blocking layer of the 
15-kV SGTO is 120 µm thick. The high blocking voltage of the SGTO is enabled 
by this thick epilayer and multizone edge junction termination extension. The SiC 
SGTO displayed in this report is a current-controlled device that transitions from 
the OFF-state to the ON-state when a small current pulse-trigger is applied to the 
anode relative to the gate region. Details of the device fabrication can be found in 
Cheng et al.8  

 

Fig. 1. Simplified schematic cross section of the 15-kV SiC SGTO (diagram not to scale) 

3. Device Modeling Approach 

The SiC SGTO thyristor is a bipolar device that operates at high-level injection 
during high-current forward conduction. It is essential to implement accurate SiC 
physics-based models to characterize the transient characteristics of the SiC devices 
appropriately under extreme pulsed conditions. It is imperative to incorporate 
accurate mobility and lifetime models for both the electrons and holes in order to 
accurately simulate the forward conduction characteristics of the device. To 
simulate the SiC SGTO thyristor, electron and hole physically based mobility and 
lifetime models were implemented in a physics-based numerical simulator called 
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Atlas. These models account for variations in carrier mobility and lifetime as 
functions of impurity concentration, carrier concentration, and temperature. The 
mobility models implemented in the simulation include analytic low-field, 
Conwell-Weisskopf, and Mattheissen’s rule.9 The analytic low-field mobility 
model has the dependent variables of ionized impurity concentration and lattice 
temperature, and it models coulombic and phonon scattering in localized sections 
of the device. The Conwell-Weisskopf mobility model contains the dependent 
variables of carrier concentration and lattice temperature, and it accounts for the 
contribution of carrier-carrier scattering to the overall mobility, which becomes 
significant during high-level injection. Finally, the overall low-field mobility is 
determined by Mattheissen’s rule as a function of the contributions from the 
analytic low-field mobility and Conwell-Weisskopf model. The two primary 
lifetime models implemented in the simulation are the Shockley-Read-Hall (SRH) 
concentration-dependent lifetime model and the Auger recombination lifetime 
model.10–14 The SRH model contains the dependent variables of ionized impurity 
concentration and lattice temperature, and it models lifetime reduction as a function 
of increasing doping concentration. Finally, the Auger recombination lifetime 
model is used for consideration of three particle transitions that occur during high-
level injection.9–14 An impact ionization model is included to account for the carrier 
generation due to high electric fields.9,15 This model is essential in modeling and 
simulating the breakdown voltage of the 15-kV SiC SGTO. Furthermore, the 
temperature-dependent SiC material parameters such as thermal conductivity and 
volumetric specific heat were accounted for in this work to depict accurate 
electrothermal behavior of the device under extreme pulsed-switching conditions. 
The precise modeling of the material thermal conductivity is essential for steady-
state simulation of the device. The accurate modeling of the volumetric specific 
heat is imperative for transient simulation of the device. 

4. Experimental Setup and Simulation Overview 

A pulse-forming network (PFN) was developed in the Atlas MixedMode module 
from discrete L and C components in order to simulate the 120-μs full width half 
maximum pulse used to evaluate the SiC SGTO’s pulse-switching characteristics. 
The gate of the SiC SGTO was driven using a floating voltage pulse source 
referenced to the anode. The gate voltage pulse was implemented with 200-ns rise 
and fall times and a duration of 10 μs, during which it pulled 1 A out of the gate to 
trigger the device on. This gate drive method was used for all transient simulations 
presented in this work. A simplified schematic of the PFN and SiC SGTO as 
implemented in the Atlas MixedMode module is shown in Fig. 2.  
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Fig. 2 MixedMode 10-stage PFN schematic for evaluating the pulsed characteristics of the 
SiC SGTO 

A 10-stage, 0.5-Ω PFN was designed and built for determining the pulse power 
capability, pulse power reliability, safe operating area, and failure modes of 
advanced power semiconductor switches during pulse overcurrent conditions. The 
PFN generates a 120-μs, 2-kA (3.85 kA/cm2) current pulse to meet power 
requirements for survivability and lethality applications. The pulses were applied 
at 0.5 Hz to allow the device to return to room temperature after each pulse by 
minimizing the average power dissipation. The current amplitude was chosen to be 
approximately 2 kA based off of prior work that determined the pulsed overcurrent 
safe operating area of a prior generation of SiC SGTOs.5 The devices were triggered 
with a gate–anode current of 0.5 A. The transient waveforms gathered during the 
current pulses include the anode–cathode voltage, anode–cathode current, gate–
anode current (device triggering current), and on-state voltage. The anode–cathode 
voltage is measured with an Agilent Technologies N2891A 70-MHz differential 
probe; the anode–cathode current is measured with a Power Electronic 
Measurements Rogowski type CWT 15B with a sensitivity of 2.00 mV/A; the gate–
anode current was measured with a Pearson Current Monitor model 2877 with an 
output of 1.0 V/A; the on-state voltage of the device was accurately measured with 
an active high-voltage saturation probe. The details about this pulse power 
evaluation test system are described in Lacouture et al.16 A simplified block 
diagram of the power stage and data acquisition is shown in Fig. 3. During the 
evaluation process, the device under test is removed from the high-energy testbed 
and its static characteristics are measured with an Agilent Technologies B1505A 
Power Device Analyzer/Curve Tracer. The static characteristics measured include 
device forward conduction, gate–anode forward conduction, and gate–anode 
reverse leakage. The device test procedure includes pulse switching the device to a 
pulse current of 2 kA for a few iterations. After a few pulsed iterations, the device 
static characteristics were measured to determine any subtle electrical variation or 
degradation. These electrical characteristics were obtained using the data 
acquisition platform as shown in Fig. 3.  
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Fig. 3 Simplified block diagram of the pulse evaluation system to characterize high-voltage 
SiC SGTO 

A simplified half-cell cross section of the device as simulated in the Silvaco Atlas 
numerical simulator is shown in Fig. 4. The physical device has an active 
conduction area between the edge terminations of 0.52 cm2. The cell width in 
simulation is 23 μm and scaled in the z-direction by 2.3 × 106 μm to emulate the 
simulated current magnitude flowing through the physical device based on its active 
area. In addition, the anode mesa, n gate, p- drift, and p+ buffer layers in simulation 
are doped and have depths according to the device fabrication published in Cheng 
et al.8 

 

Fig. 4 SiC SGTO half unit cell as simulated in Silvaco Atlas 
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5. Results and Discussion 

Figure 5 demonstrates the 15-kV SiC SGTO’s experimentally measured and 
simulated current-voltage (I-V) characteristics. The experimentally measured I-V 
characteristics were analyzed up to 20 A, which was the maximum current 
capability of the Agilent B1505A used to acquire this measurement; the SiC GTO 
static simulation (isothermal) was implemented beyond 2 kA. In addition, the 
subplot of Fig. 5 shows the anode–cathode resistance corresponding to the I-V 
points. Figure 6 depicts a comparison of the experimental device and simulated 
(non-isothermal) device anode voltage and current waveforms plotted during a 
2-kA PFN switching cycle.  

 
Fig. 5 Experimental and simulated (isothermal) 15-kV SiC SGTO forward characteristics 
displaying strong similarity 

 
Fig. 6 Experimental and simulated (non-isothermal) 15-kV SiC SGTO anode voltage and 
current waveforms during a 120-µs 2-kA PFN switching cycle; the concordance between the 
experimental and simulated waveforms demonstrates the accuracy of the TCAD model 
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The simulated device peak temperature was approximately 370 K for the waveform 
shown in Fig. 7 and the device returned to a room termperature of 300 K after 
40 ms. The subplot in Fig. 7 also depicts a peak power disspation of 45 kW from 
the device at 2 kA and at a 120-µs pulse width. The experimental system and TCAD 
simulation were used in conjunction to determine the failure mechanism of three 
15-kV SiC SGTO thyristors during high-current-density (3.85 kA/cm2) pulsed 
applications. Figure 7 displays the experimental VF measured throughout the 2-kA 
narrow (120-µs pulse width) pulse evaluation of each device until failure. In Fig. 8 
the VF of device 1 started at the lowest level and increased until failure at pulse 
iteration of 72,000; the VF of device 2 started at a higher level than device 1 and 
failed more rapidly with a final abrupt increase in VF during pulse iteration of 
48,470; and device 3 started with the highest VF and failed after the fewest number 
of pulses with an abrupt increase in VF during pulse interation of 9,751. Figure 7 
demonstrates that each device exhibited an increasing VF characteristic of SF 
formation and propagation.17–20 The bipolar degradation mechanism of SF 
formation and propagation is due to minority carrier recombination at a BPD. The 
high SF concentration is manifested by the foward votlage increase reducing carrier 
lifetime and forming a potential barrier for carrier transport.20 Based on the 
experimental results, it is believed that the long-term reliability and peak current 
capability of ultra-high-voltage SiC SGTOs for pulsed-power applications can be 
advanced through the utilization of buffer layers specifically designed to meet the 
extremely high-current-density requirements. 

 

Fig. 7 Simulated temperature and dissipated power of SiC SGTO with a 120-µs pulse at 
2 kA 
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Fig. 8 Experimental VF measured throughout the 2-kA, 120-µs pulsed evaluation of SiC 
GTOs until failure 

Figure 9 displays the hole concentration throughout the simulated 15-kV SiC 
SGTO device structure at 91.3 µs into the non-isothermal 2-kA pulse shown in Fig. 
6. Figure 9 demonstrates that injection of ~1014 cm–3 occurs into the substrate 
during the extremely high-current-density pulsed condition of 3.85 kA/cm2. In 
addition, Fig. 10 displays the electron and hole concentrations along the y-axis 
cutline shown in Fig. 9. In Fig. 10, the x-axis origin correlates to the top of the 
anode, and the end of the x-axis (x = 140 µm) correlates to 12.5-µm depth into the 
substrate.  

 

Fig. 9 Simulated hole concentration profile throughout the device structure at a narrow 
current pulse of 2 kA revealing the exposure of high minority carrier injection into the 
substrate 
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Fig. 10 Simulated electron and hole concentrations along the y-axis cutline that further 
demonstrates the high (~1014 cm–3) minority carrier density injected into the substrate 

It is speculated that recombination-induced SF formation occurs in SiC SGTOs 
operating under extremely high current density. This speculation was supported 
experimentally by the rapid increase and instability of the VF drop measured during 
the device pulse evaluation as shown in Fig. 8. Furthermore, the device simulation 
results presents a significant hole injection concentration into the substrate as 
shown in Fig. 10, which could potentially enable the development of SF formation. 
After the SF formed in the substrate because of the insufficiently thick n+ buffer 
layer, the minority carrier recombination would have enabled the SFs to propagate 
up into the epilayers operating under conductivity modulation. It is speculated that 
the SF formations eventually resulted in catastrophic device failure as a result of 
the decreasing device effective active area and corresponding localized increases 
in current density.20 

6. Summary and Conclusion 

This report compares experimental and simulated device behavior to aid in the 
failure analysis of 15-kV SiC SGTOs subjected to extreme pulsed current 
operation. The failure mechanism is suspected to be SF formation because of 
insufficiently thick buffer layers for pulsed-power application regime. This 
conclusion is drawn from experimental VF degradation exhibited during narrow 
pulsed evaluation at 3.85 kA/cm2; TCAD modeling and simulation of the device 
reveals that a fair amount of (~1014 cm–3) minority carrier injection into the 
substrate could be the potential cause of foward voltage degradation in high-voltage 
SiC SGTO. With these simulated results, it is suspected that the long-term 
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reliability and peak current capability of ultra-high-voltage SiC SGTOs for pulsed-
power applications can be improved by optimizing the buffer layer thickness, 
making these devices suitable for the extremely high current densities exceeding 
100 A/cm2. 
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