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FOREWORD 
 
 

Navigation systems typically contain a Kalman filter, whose function is to develop a 
current optimal estimate of the state of a system based on the previous state, a system 
model, and measurements, while incorporating measurement noise statistics and 
instrumentation error characteristics. Modern navigation systems use extended Kalman 
filters, a real-time non-linear application of Kalman filters. However, for simplicity, a 
description of the processes typical of generic linear Kalman filters is presented along 
with hazards in the event of a Kalman filter malfunction. Hazards are considered from the 
viewpoint of an air vehicle application; although, this analysis can also be applied to 
arguably less hazardous applications such as an autonomous vehicle. A list of hazards to 
consider is presented for use by safety engineers. 
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1.0 INTRODUCTION 

A typical hazard associated with a failed Kalman filter is the inability to furnish 
navigation aids. For an air vehicle, this could result in the inconvenience of having to 
navigate visually, to navigate using noisy sensors, or losing the ability to perform critical 
maneuvers such as landing or navigating through heavy air traffic. 

 
The purpose of this report is to give the safety engineer a means to understand the 

structure of a typical linear Kalman filter. Even though filters found in current navigation 
systems are typically “extended,” which means “non-linear,” studying a linear filter will 
give the engineer a basic understanding of the Kalman filter so that s/he can associate 
aberrant behavior in the operation of an air vehicle navigation system with defects in the 
Kalman filter. 

 
After a short chapter “What is Filtering?” in which filtering is defined, this report 

discusses Kalman filter design in the chapter “Design of a Typical Linear Kalman Filter.” 
A chapter with the title “Kalman Filter Symbols” presents the notation used to represent 
the parts of the filter, along with a description. “Kalman Filter Processes” describes the 
two processes that Kalman filters typically exhibit. There are several possible Kalman 
filter errors that are described in the chapter “Kalman Filter Navigation Errors.” This is 
the heart of the report and is designed to give the safety engineer the knowledge s/he 
needs to judge what the hazards associated with a particular navigator design might be. 
The chapter “Aberrant Behavior” describes some of the behaviors that a defective 
Kalman filter can exhibit. The “What Are the Hazards?” chapter describes the observable 
hazardous behavior that is possible if the design is faulty in the way described in the 
“Kalman Filter Navigation Errors” chapter. A mitigation is a feature that helps to 
alleviate the bad effects of a hazard. The chapter “What Are Some of the Mitigations?” is 
included to indicate possible mitigations. A list of behaviors and their associated causes 
appears in the “Behavior – Causes Relationship” chapter. Finally, examples of a single 
state filter with defects discussed in this report are displayed in the chapter “Some 
Examples of Aberrant Behavior Related to Filter Defects.” 

 
Error state variables rather than state variables are employed in the formulation of 

the Kalman filter state vector. 
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2.0 WHAT IS FILTERING? 

Filtering, as used in this report, refers to a process of estimating the state of a system 
at the current time based on past history and measurements (Reference 1, pp. 2-3). Since 
measurements are usually noisy, a means for estimating the effect on the state of the 
system due to the measurement noise is appropriate. A navigation system typically has as 
sources of errors process noise (due to inaccuracies in the accelerometers and gyroscopes, 
round off and chopping errors), instrument misalignment (due to assembly errors), 
measurement noise and biases, and other error sources. A Kalman filter is a mechanism 
for determining how much the measurements should influence the estimate of the state of 
a system, given the previous estimate, a model, the covariance of the state errors and 
measurement noise statistics. 

 
Filtering should not be confused with smoothing or predicting. While filtering 

estimates the system state at the time of the last measurements, smoothing estimates the 
system state given measurements both in the past and in the future time of the estimate, 
and predicting uses past history to estimate the system state past the end of the 
measurements available. 

 
Filtering has another meaning that of extracting a signal from noise. In Signal 

Processing, a filter is a process that reduces the amplitude of unwanted frequencies from 
a signal. This should not be confused with the word filtering as used in this report, which 
is a process of estimating. 

 
Every Kalman filter is designed to be recursive, which means that all the past history 

is incorporated in the latest state and covariance estimates. Therefore, in a recursive filter, 
it is unnecessary to store the past states or measurements. 

3.0 DESIGN OF A TYPICAL LINEAR KALMAN FILTER 

A Kalman filter that is linear in both the state propagation and measurement update 
can be described typically as two processes working in parallel: a propagation or 
extrapolation process and an update process. For Kalman filters found in navigation 
systems, the propagation process is based on a model that predicts navigation quantities 
such as position and velocity at the current time by using previous position, velocity, 
gyroscope, and accelerometer information. The update process corrects this prediction 
using measurement data. Instrumentation and measurement errors are estimated and 
considered in the propagation and update process. 

 
The filter assumes Gaussian noise in the accelerometer, gyroscope, and measurement 

sensors. 
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4.0 KALMAN FILTER SYMBOLS 

The following list contains the symbols used to represent the parts of the filter. 
 
X Error State Vector: Contains the difference between propagated state and the 

updated state due to measurements. Initially set to zero. 
F System Dynamics Matrix: Dynamics of the system. 

Φ State Transition Matrix: Φ = 𝑒𝐹∆𝑡. 

H Measurements Matrix: (aka Measurement Sensitivity Matrix) Transformation 
between state space and measurement space. 

R Measurements Noise Matrix: Sensor noise characteristics. If measurements are 
independent, then off-diagonal terms are 0. 

Z Observations Vector: Vector of measurements. 

r Measurements Residual Vector: 𝑟 = 𝑍 − 𝐻𝑋− (𝑋− is the a priori state vector). 
P System Covariance Matrix: Contains variances of the errors of each of the 

states on the main diagonal and covariance between the states at the 
off-diagonal positions. 

K Kalman Gain Matrix: Answers the question of how much of the measurements 
to incorporate into the propagated state estimate. 

Q Process Noise Covariance Matrix: Contains accelerometer, gyroscope errors, 
round-off, chopping, computational errors in the states. Often, this matrix can 
be used to tune the filter. 

𝐶𝐸𝐿 Direction Cosine Matrix (DCM) from earth-centered inertial (ECI) frame of 
reference to local level frame of reference. 

𝐶𝐵𝐿 DCM from body frame of reference to local level frame of reference. 

𝜒2  Statistic associated with the measurement residual. 
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5.0 KALMAN FILTER PROCESSES 

This section defines propagation and update of both the error state vector and the 
system covariance matrix. This section also demonstrates calculation of the Kalman gain 
matrix during the update process. 

5.1 STATE TRANSITION MATRIX 

The state transition matrix Φ (t2, t1) transforms or propagates a state vector solution 
X(t1) at time t1 to the state vector solution X(t2) at time t2. The state transition matrix is 
derived from the model as it appears in the system dynamics matrix F. 

5.2 PROPAGATION OF THE ERROR STATE VECTOR 
AND THE SYSTEM COVARIANCE MATRIX 

In a Kalman filter, the values of the error state vector X and system covariance 
matrix P are extrapolated, or propagated, in time by use of the state transition matrix Φ. 
If there is no measurement update, the state vector X and the system covariance matrix P 
are still propagated in time. 

 
The equations of propagation are as follows: 
 

Propagation of error state vector: 𝑋𝑛− = 𝛷𝑛−1𝑛 𝑋𝑛−1+  
 
Propagation of system covariance matrix:  𝑃𝑛− = 𝛷𝑛−1𝑛 𝑃𝑛−1+ (𝛷𝑛−1𝑛 )𝑇 + 𝑄𝑛  (T= transpose) 
 

In the above propagation of error equation, 𝑋𝑛− is the error state vector after the last 
propagation cycle and before the next update, called the a priori state vector; 𝑋𝑛−1+  is the 
state vector before the next propagation and after the last update, called the a posteriori 
state vector; the subscript n-1 corresponds to time tn-1 before the state update; the 
subscript n corresponds to time tn          after the state update (Reference 2, p. 143, 
Table 8.1). 

 
The system covariance matrix  𝑃𝑛− reflects the opinion of the filter about the 

accuracy of the state variables. The initialization of this matrix is the estimated variances 
along the main diagonal. If an initialization error of this matrix is made, the values in this 
matrix should adjust quickly to more accurate values as each measurement is made. If the 
initial values of some state vector elements are unknown, the variances of the unknown 
state vector elements should be set to large values. The superscripts and subscripts carry 
the same implication as with the propagation of error equation. 
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The process noise covariance matrix 𝑄𝑛 reflects the confidence of the designer that 
the model is accurate (the transition equations are correct and there are no missing states). 
Smaller values along the diagonal in this matrix reflect a higher confidence. (Reference 3, 
p. 574). 

5.3 UPDATE OF THE ERROR STATE VECTOR AND 
THE SYSTEM COVARIANCE MATRIX 

The update process begins with the collection of a measurement. This measurement 
is collected in measurement space, which is a coordinate system that may be different 
from state space, the coordinate system in which the state vector is defined. For example, 
a radar system locates a vehicle in a polar coordinate frame of reference using range and 
direction. The estimated state vector (in a Cartesian coordinate system) will be 
transformed to polar coordinates using an appropriate H matrix, so that the measurements 
may be compared to the estimated states. 

 
A comparison between the measurements and the estimate of the current state is 

performed. The purpose is an estimate of the reasonableness of the measurements. This 
guards against incorporation of spurious measurements due to instrument failure but may 
also neglect to incorporate measurements associated with high dynamics maneuvers. See 
the chapter “Reasonableness Tests may be too Stringent or too Lenient” for details on 
how this is done. If the decision is that the measurements are not reasonable, they are 
ignored, and the update cycle is skipped. If the measurements are reasonable, the Kalman 
gain is then calculated. 

 
The Kalman gain is a matrix that computes the weight which is applied to the 

measurements. Equation 5-1 shows computation of the Kalman gain matrix:  
 
 𝐾𝑛 =  𝑃𝑛−𝐻𝑛𝑇(𝐻𝑛 𝑃𝑛−𝐻𝑛𝑇 + 𝑅)−1 (5-1) 
 

Once the Kalman gain matrix has been computed, the decision having been made 
that the measurements are to be incorporated, the system covariance matrix and error 
state vector are updated. That is, the states and covariance are updated using information 
provided by the measurements. The measurement incorporation is weighted by the 
Kalman gain matrix. If only low weight is given to the measurements, this reflects the 
filter’s belief that the measurements are not very reliable, and the filter tends to trust its 
propagation more than the measurements. High weight given to the measurements 
reflects the filter trusting the measurements as much as or more than the propagation. 

 
In the state and covariance measurement update, the superscript “–” is used before a 

measurement update takes place, and “+” is used after the measurement update. 
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The update of the error state vector is shown in Equation 5-2 (Reference 1, p. 110): 
 
 𝑋𝑛+ = 𝑋𝑛− + 𝐾𝑛[𝑍𝑛 − 𝐻𝑛𝑋𝑛−] (5-2) 
 
where 𝑋𝑛− is the error state vector after the last propagation cycle, 𝐻𝑛 transforms the state 
space to measurement space, and the quantity in the brackets is the difference between 
the last propagation and the corresponding measurements, called the measurement 
residual vector. 

 
In an analogous way, the update of the system covariance matrix is performed as in 

Equation 5-3, where I is a unit matrix (Reference 1, p. 110): 
 
 𝑃𝑛+ = (𝐼 − 𝐾𝑛𝐻𝑛)𝑃𝑛− (5-3) 
 

If the elements of the Kalman gain matrix are effectively 0, the system covariance 
will not be changed. The larger the elements of the Kalman gain matrix, the more change 
will be incorporated into the covariance. 

6.0 KALMAN FILTER NAVIGATION ERRORS 

6.1 ILL-CONDITIONING 

One of the symptoms of an ill-conditioned problem is the behavior of the solution 
with respect to variations of the input data. In an ill-conditioned problem, wild and 
chaotic behavior of the solution is possible with small changes in the input data. Such 
changes can occur from random variations, such as noisy data. Ill-conditioning is not 
only a result of noisy data but also of faulty algorithms. For example, there are ways that 
the computation of the Kalman gain can be affected by modeling errors in the Φ, Q, H, 
and R matrix parameters, large ranges of values of these matrix parameters, 
ill-conditioning of intermediate results, computer round-off errors, and large number of 
states (Reference 4, p. 195). 

 
Ill-conditioning can play a part in determining observability of a dynamic system. 

One of the characteristics of an unobservable system is the inability to invert the 
observability matrix because it is singular. However, arbitrarily small changes in the 
elements of a singular matrix can make it nonsingular. These small changes can occur 
because of round-off or truncation errors. Then, what one has is a dynamic system that is 
“almost observable.” Various schemes, such as using the reciprocal of the condition 
number of the Gramian matrix as a quantitative measure of un-observability, can be 
employed (Reference 4, p. 43). 
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6.2 INITIALIZATION OF THE SYSTEM 
COVARIANCE MATRIX 

The effect of initialization errors is not a crucial factor in the performance of the 
filter. The initial value of the variances along the main diagonal of the System 
Covariance Matrix (P) reflects the knowledge (or lack thereof) of the initial values in the 
state vector. For example, if wind buffeting of a vehicle is estimated to cause a variation 
of 1 degree (1σ) in the tilt errors of the instrument platform, the variance of the tilt error 
state should be set to 1. After a few filter cycles, the system covariance matrix should 
converge to more reasonable values. 

6.3 INITIALIZATION OF THE PROCESS NOISE 
COVARIANCE MATRIX 

The initialization of the process noise covariance (Q) matrix is crucial for a 
satisfactory behavior of the filter. If the accelerometers and gyroscopes are used in a self-
alignment process, statistics from the data sheets of these instruments can be included on 
the main diagonal. Otherwise, the values in the Q matrix reflect the noise associated with 
round-off or truncation errors that appear in the state estimates.  

 
Adjusting these values may help the filter behave in a way to facilitate the estimation 

process. In other words, the Q matrix can be used to tune the filter so that its performance 
shows the appropriate confidence in the model. If too much confidence (small Q) is 
shown in the model, the resulting Kalman gain will allow too little a percentage of the 
measurements and too much of the propagated states to influence the next state vector 
values. Too little confidence (large Q) will on the other hand weigh on the side of 
incorporating too low a percentage of the propagated states and too high a percentage of 
the noisy measurements in the next state vector values. This occurs because the values in 
the Q matrix add directly to the system covariance matrix. 

 
However, be aware that although a low value in the Q matrix can result in the filter 

diverging from reality by ignoring the measurements in favor of a possibly faulty model, 
larger values in the Q matrix can result in the filter overly relying on the measurements 
and ignoring the model propagation. 

6.4 ASYMMETRY OF THE SYSTEM COVARIANCE MATRIX 

If the Kalman filter is implemented using the entire system covariance matrix rather 
than an upper triangular mechanization, computer round-off and/or truncation error can 
cause asymmetry in the system covariance matrix. Over a long period of time, this 
asymmetry can result in zero or negative variances along the main diagonal of the system 
covariance matrix. Since the variances are theoretically positive definite, this will 
eventually cause significant errors in the calculation of the states. In order to forestall this 
possibility, it is recommended that the system covariance matrix be symmetrized after 
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each propagation. The simplest method for making a matrix symmetric is accomplished 
by copying the upper triangular to the lower triangular portion of the matrix. Another 
possibility is to average each term with its image across the main diagonal. 

6.5 REASONABLENESS TESTS MAY BE TOO STRINGENT 
OR TOO LENIENT 

The 𝜒2statistic associated with the measurement residual r, shown in Equation 6-1: 
 
 𝑟 = 𝑍 − 𝐻𝑋−, (6-1) 
 
where 𝑋− is the a priori state vector, can be used to protect the filter from spurious 
measurements. It can be designed to protect against large deviations from the expected 
measurements, for example, on the order of five or more times standard deviation. This 
will ensure that spurious measurements, due to instrument failure or noise spikes, which 
are most likely to appear as extremely large deviations from the expected measurements, 
will be rejected, while fairly unlikely measurements will still be accepted. The risk is that 
measurements during times of large maneuvers may be rejected. 

 
The measurement residual (Equation 6-1) is assumed to be normally distributed with 

mean zero. If r is the measurement residual vector with d degrees of freedom (number of 
measurements), and S is its covariance matrix in Equation 6-2, 
 
 𝑆 = 𝐻𝑃−𝐻𝑇 + 𝑅 (6-2) 
 
then the quadratic form in Equation 6-3 
 
 𝜒2 = 𝑟𝑇𝑆−1𝑟 (6-3) 
 
is known to be 𝜒2 distributed with d degrees of freedom (DOF) (Reference 5). This scalar 
can be compared to a critical chi-squared value that corresponds to a preselected 
significance level for the number of DOF, i.e., the dimension of the measurement residual 
vector. 
 

The usual approach is to choose a significance level and form the null hypothesis 
“The current measurement is valid.” 
 

For example, assume a filter with two independent measurements and that all 
measurements generating a residual farther than 3σ from the expected measurements are 
to be rejected. Since 99.73% of the area under a Gaussian distribution lies in the 3σ 
range, 99.73% is the confidence level; the significance level 0.27% is the percent of 
measurements rejected. 
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From a chi-squared table, it is seen that this corresponds to a 𝜒2 statistic of 
approximately 12 for 2 DOF, so the 𝜒2 statistic is established at 12. If the computed 𝜒2 
statistic exceeds the established limit, the null hypothesis is rejected, and no update is 
performed. In Table 6-1, the probability level of 0.0027 has an associated 𝜒2 statistic 
somewhere around 12 for 2 DOF (see  in Table 6-1). 
 

TABLE 6-1. 𝜒2 Table (Reference 5), 3σ, 2 DOF. 

DOF 
Significance Level 

0.5 0.10 0.05 0.02 0.01 0.001 
1 0.455 2.706 3.841 5.412 6.635 10.827 
2 1.386 4.605 5.991 7.824 9.210 13.815 
3 2.366 6.251 7.815 9.837 11.345 16.268 

 
If the significance level is too small, the rejection rate will be too low. The result is 

that the Kalman filter will tend to accept all measurements, and the filter will be exposed 
to spurious measurements if a sensor fails. If the significance level is too large, the 
rejection rate will be too high. The result is that the filter will tend to reject all 
measurements as though it has become smart and has more confidence in its 
extrapolations than in the measurements, and it will continue uncorrected. 

6.6 LOSS OF ORTHONORMALIZATION 

Coordinate transformations use DCMs. The accelerometers and gyroscopes give 
outputs relative to an inertial frame of reference. In order for the dynamics equations to 
be solved, a transformation from the inertial frame to the earth-centered earth-fixed 
(ECEF) frame is needed, followed by a transformation from the ECEF to the local level 
frame in a tangent plane at the location of the aircraft. Finally, a transformation from the 
local level to the body frame of the aircraft is needed. The inertial measurement unit 
(IMU) is fixed to the body frame, but there may be alignment errors, called tilts, which 
can be modeled as error quantities in the error state vector. 

 
The body frame to local level frame DCM should be an orthonormal matrix. This 

DCM can be determined from the vehicle Euler angles by considering the yaw, roll, and 
pitch angles of the vehicle. Round-off errors contribute to a deviation from the 
orthonormal condition during propagation and update. Therefore, it would be prudent to 
install a method to preserve the orthonormalization of this matrix. A normal matrix is a 
square matrix that can be diagonalized with real eigenvalues on the diagonal. Orthogonal 
matrices have the useful property that their inverses are identical to their transposes. This 
makes it possible to calculate the inverse of an orthogonal matrix without risking the 
numerical chaos that ill-conditioning would bring. 
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Suppose 𝐶 is a 3x3 DCM. A formal analysis (Reference 6) shows that post-
multiplication by (𝐶𝑇𝐶)− 12 will orthogonalize the matrix 𝐶. A useful modification can be 
developed as follows. 
 

Assuming that 𝐶 is almost orthonormal, 𝐶𝑇𝐶 can be written as 𝐶𝑇𝐶 = 𝐼 + ∆𝐶 where 
𝐼 is the 3x3 identity matrix, and ∆𝐶 is a 3x3 matrix whose terms are small when 
compared to 𝐶. Then, if M is the modified (i.e., orthonormal) 𝐶 matrix, 
 
 𝑀 = 𝐶(𝐼 + ∆𝐶)− 12 (6-4) 
 
which becomes, to a first order approximation, 
 
 𝑀 = 1

2
𝐶(3𝐼 − 𝐶𝑇𝐶) (6-5) 

 
The body to local level DCM should be orthogonalized periodically. The period is a 

tunable parameter. Note that orthogonal matrices are normal. 

6.7 INCOMPLETE MODEL 

Unknown and unmodeled forces will cause the behavior of the system to diverge 
from the modeled behavior. This will eventually result in the rejection of the 
measurements because the measurement residual r will become very large, and the 
solution will not be corrected. An example is the failure to model drag on an earth 
satellite due to ballooning of the atmosphere because of uneven heating of the 
earth’s surface. 

6.8 INADEQUATE ALIGNMENT 

The reason for the alignment process is to determine where level is and the direction 
of north is. Level and north are stored in a DCM that determines the relationship between 
the IMU and the body axes of the vehicle. The longer the alignment process lasts, the 
more accurate the level and north will be. Navigation with an inaccurate north direction 
accumulates error the farther one travels in the north-south direction. 

6.9 INAPPROPRIATE SAMPLING RATE 

Accelerometer and gyroscope integration are used during alignment and in some 
models to form the transition matrix. Integration of accelerometer and gyro outputs 
generally is noisy, resulting in a potential for poor propagation. The problem is worsened 
when the readings are either held constant or averaged in the interval between samples.  
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It is reasonable that the integration interval of the accelerometer and gyro outputs 
should be small to facilitate accurate integration. Trapezoidal integration or the use of 
Simpson’s Rule for integration of the accelerometer and gyro outputs also helps towards 
accurate integration when data throughput limits the size of the integration interval. 
Otherwise, integration errors may result in erroneous propagations. 

6.10 ABSENCE OF IN-AIR RESTART OF 
THE KALMAN FILTER 

If the Kalman filter ceases working, a possible mitigation is to restart the filter while 
the vehicle is in the air. The process is actually an in-air realignment of the navigation 
system. In-air alignment has the advantage (over on-ground alignment) of being able to 
use the last known heading and leveling information if attempted soon enough after the 
Kalman filter ceases working. 

7.0 ABERRANT BEHAVIOR 

The Kalman filter can suffer a fatal exception and cease working (i.e., crash). If this 
occurs, look for loss of symmetry in the system covariance matrix caused perhaps by 
round-off or truncation error, particularly in single precision applications. Fatal 
exceptions are typically caused by a lack of exception handling for errors such as square 
roots of negative numbers, stack overflow, null pointers, and other errors associated with 
risky constructs in various high-level computer languages. 

 
The Kalman filter can reject all measurements and continue to propagate. If this 

occurs, look for a significance level that is too large, or the process noise covariance 
matrix values are too small. 

 
The Kalman filter can accept all measurements and operate as a recursive least 

squares estimator. If this occurs, look for a significance level that is too small, or the 
process noise covariance matrix values are too large. 

 
The Kalman filter can operate smoothly but diverge from the real solution. If this 

occurs, look for a missing state, i.e., a force or bias that is not modeled, or inadequate 
alignment, or faulty accelerometer/gyroscope integration. 

 
If the navigation system accumulates error in its solution rapidly, look for inadequate 

alignment. The accumulation of error may actually take place slowly if the alignment is 
only moderately faulty, for example, as caused by not enough time in the alignment 
mode. 
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If the solution deviates from reality during periods of high maneuvering, one can 
expect to find that the significance level used in the reasonable test is too large, resulting 
in too many measurements being rejected. 

 
The values in the process noise covariance matrix can reflect confidence, or lack 

thereof, in the accuracy of the model. Generally, large values in the Q matrix reflect a 
lack of confidence in the model, as evidenced by the solution tending to follow the 
measurement at the expense of the extrapolation via the model. The opposite is true for Q 
values being too small. 

 
If there is an error in the recursive design resulting in the old measurements not 

being discarded, that could result in memory overflows. 
 
Ill-conditioning problems can result in wild variations of the state vector. 
 
If DCM orthonormalization is lost, this may be evidenced by chaotic orientation of 

body axes. This is not a direct result of a Kalman filter fault, but can occur in connection 
with navigation operation and can be difficult to diagnose. 

 
Some navigation systems do not have the capability for in-air alignment in the event 

that the navigation system ceases operation. Then, once Global Positioning System (GPS) 
aiding is lost, it cannot be restored while in flight. 

8.0 WHAT ARE THE HAZARDS? 

The observable hazardous behavior that is possible if the filter design is faulty in the 
way described in Section 6.0 may include the following: 

 
1. Position, time, and velocity references supplied by the navigation system are 

missing. (Navigator ground and inflight routing not needed with GPS.) 
2. The position and timing accuracy reverts to thousands of feet instead of the 

centimeter accuracy sent from the navigation hardware and software to the 
mission computers. 

3. Time accuracy synchronization is only to the second instead of to the millionth of 
a second. 

4. Landing capability lost in areas where no landing systems exist, and there is 
limited visibility because of weather conditions, darkness, or vehicle design. 

5. Flights to any point in the Continental United States (CONUS) would become 
problematic. Routing is longer, necessitating waypoint planning, using excessive 
fuel and time. 
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6. In military applications, target error increases without GPS. 
7. In some unmanned applications, loss of GPS can result in the inability to locate 

landing strips, and so result in damage to or destruction of the vehicle if this 
hazard is not mitigated. 

9.0 WHAT ARE SOME OF THE MITIGATIONS? 

A mitigation is a feature that helps to alleviate the bad effects of a hazard. Possible 
mitigations include the following: 

 
1. In-air restart of the Kalman filter (in-air alignment) 
2. Instrument landing system (ILS) 
3. Pilot visuals 
4. On top position fixes 
5. Lengthening filter alignments 
6. Simpson’s rule during samplings 

10.0 BEHAVIOR – CAUSES RELATIONSHIP 

Aberrant behavior of a navigation system is most likely found in the testing 
environment. However, if the behavior is not detected during tests because of inadequate 
testing, a hazard may exist that, without mitigation, could put personnel and/or an 
expensive piece of equipment at risk. Table 10-1 ties observed aberrant behavior to 
possible flaws in the design of the Kalman filter. This will give safety engineers a tool 
that can be used to identify possible causes of aberrant behavior. 
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TABLE 10-1. Observed Aberrant Behavior and Their Possible Causes. 

Observed Behavior Possible Causes 

Fatal exception Loss of symmetry in the system covariance 
eventually results in negative variances 

All measurements rejected 
Too large a significance level in the 
reasonableness test 
Q values too small 

All measurements accepted Too small a significance level 
Q values too large 

Smooth operation but diverges from the 
real solution 

Missing state (faulty model) 
Inadequate alignment 
Faulty accelerometer/gyroscope integration 

The navigation system accumulates error in 
its solution rapidly Inadequate alignment 

Solution deviates from reality during 
periods of high maneuvering 

Too many measurements rejected due to 
too large a significance level in the 
reasonable test 

Solution tends to follow measurements, 
ignoring the extrapolation 

Lack of confidence in the model, indicated 
by Q being too large 

Solution tends to follow the extrapolation 
at the expense of the measurements Q values too small 

Stack/heap overflow Old measurements not discarded; recursive 
design has an error 

Wild variations of state vector Ill-Conditioning 
Chaotic orientation of body axes DCM orthonormalization lost 
Inability to restore GPS Absence of in-air realignment 

11.0 SOME EXAMPLES OF ABERRANT BEHAVIOR 
RELATED TO FILTER DEFECTS 

Some of the following experiments are a modification of examples found in 
Reference 7. There are others that were formulated by the authors. 

 
The experiments are described in the following sections. 
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11.1 EXPERIMENT 1 – STATIONARY VEHICLE, 
MEASUREMENTS WITH GAUSSIAN NOISE 

An estimate of the location of a vehicle believed to be stationary is desired. A 
Kalman filter with a single state (position) is used to derive this estimate. Noisy sensor 
measurements of this position are used to attempt to establish the location of the vehicle. 
The issues are as follows: 
 

1. The position is completely unknown. Relative to a local coordinate system, the 
location is assumed at 0.0. To reflect the lack of confidence in this assumption, the 
variance (𝑃−) of the position is set at 1,000 ft2. There is an external measurement every 
1 second. 

 
2. One of the critical assumptions of a Kalman filter is that the noise characteristics 

of the measurements are Gaussian. Considering that the number of sample points is 
small, a normal probability plot can be used to verify this assumption, using the Normal 
Probability Plot Maker (Reference 8). The measurements are normalized N(0,1) 
(Table 11-1). 

 
TABLE 11-1. Measurements File 

for Experiment 1. 

t, sec Z, ft 
1 0.9 
2 0.8 
3 1.1 
4 1.0 
5 0.95 
6 1.05 
7 1.2 
8 0.9 
9 0.85 

10 1.15 
 

If Figure 11-1 even remotely resembles a straight line, it can reasonably be 
concluded that the measurements are a sample from a data set with Gaussian noise. 
 

The filter is not expected to perform correctly if the measurement noise does not 
reflect accurately the measurement statistics. The initial measurement variance (R) is set 
at 0.1 ft2. 

 
Another approach at this analysis is to compute the variance of the measurements, 

but remember that these measurements are merely a sample of a universe of 
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measurements with the stated variance, so the variance of the actual measurement set 
may vary. This is one of the problems in working with such a small sample, that the 
variance of the sample may be so different from that of the universe from which the 
sample is derived. For those interested in sample theory, consult the Central Limit 
Theorem in any reference on statistics. 
 

 

FIGURE 11-1. Normal Probability Plot, Experiment 1. 

 
3. A model for the propagation of the state and system covariance is created. 

Confidence in the correctness of this model is high. To reflect this high confidence, the 
process noise covariance (Q) is set to a very small value 0.0001. The filter will not 
perform satisfactorily if the process noise covariance does not reflect the expected error 
model. Q can be used to tune the filter. Q is a constant scalar in this application. 
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11.1.1 Analysis 

Even with a terrible original position estimate and noisy measurements, one can see 
in Figure 11-2 that the estimate converges quickly to the truth. Note that one of the 
characteristics of a good Kalman filter is that the estimate noise is much less than the 
measurement noise. 
 

 

FIGURE 11-2. Result of Experiment 1. 

11.2 EXPERIMENT 2 – ERRONEOUS MODEL 
WITH HIGH CONFIDENCE 

In this navigation experiment, the vehicle is moving. We are trying to establish the 
position using noisy measurements (Table 11-2). This navigation system is subject to the 
following two major error sources: 
 

1. Initial position error. The initial values of the system covariance reflect the 
confidence in the accuracy of the initial values of the position. The system covariance 
also reflects round-off and other process errors. As in Experiment 1, the initial position is 
unknown, estimated at 0, and the variance of the position is set at a large value, 1000 ft2. 
 

2. Model error. The model of Experiment 1 is retained. Since the filter is attempting 
to track a moving vehicle, the underlying model, which assumes a stationary vehicle, is 
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erroneous. The process noise covariance reflects the confidence in the accuracy of the 
model. The filter will not perform correctly if the process noise covariance does not 
reflect the expected error model. Q can be used to tune the filter. Q is constant with a 
small value in this application (0.001). This reflects a moderate confidence in the 
erroneous model. 
 

TABLE 11-2. Measurements File 
for Experiment 2. 

t, sec Z, ft 
1 0.11 
2 0.29 
3 0.32 
4 0.50 
5 0.58 
6 0.54 
7 0.75 
8 0.79 
9 0.90 

10 1.09 
11 0.98 
12 1.35 
13 1.42 
14 1.58 
15 1.45 
16 1.50 
17 1.59 
18 1.83 
19 1.84 
20 2.15 

 

11.2.1 Analysis 

The solution is seen to proceed smoothly, except that it bears no resemblance to the 
truth (Figure 11-3). The solution drifts slowly away from the truth.  
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FIGURE 11-3. Result of Experiment 2. 

11.3 EXPERIMENT 3 – ERRONEOUS MODE 
WITH SOME LACK OF CONFIDENCE 

If one is not sure what the correct model is, one can enlarge the value of the process 
noise covariance, which will reflect some lack of confidence in the accuracy of the 
model. Let us try 0.01, keeping everything else the same (Figure 11-4). 

11.3.1 Analysis 

Now the solution follows the truth better, except that the noise of the estimated 
position is still larger than the measurement noise. Not good. 
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FIGURE 11-4. Result of Experiment 3. 

11.4 EXPERIMENT 4 – ERRONEOUS MODEL WITH 
SERIOUS LACK OF CONFIDENCE 

So let us enlarge the value of the process noise covariance by another factor of 10, to 
0.1, and see what happens. We are telling the filter that we have a serious lack of 
confidence in the design of the model (Figure 11-5). 

11.4.1 Analysis 

The estimated solution seems to follow the data, not putting much trust in the 
propagation at all. Now the noise in the estimated solution is actually less than the 
measurement noise. Are we getting somewhere? 
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FIGURE 11-5. Result of Experiment 4. 

 

11.5 EXPERIMENT 5 – ERRONEOUS MODEL WITH 
NO CONFIDENCE IN MODEL 

In one last try, we enlarge the value of the process noise covariance to 1, announcing 
that we just do not trust the model. And sure enough, the estimated solution follows the 
data almost exactly, ignoring the propagation from the model altogether (Figure 11-6). 
So, why have a filter? Just trust the measurements! 

11.5.1 Analysis 

If your model is not correct, you will not get a good estimate. However, if you 
suspect this, you can increase Q, which feeds into the system covariance matrix and 
influences the Kalman gain, which in turn determines how much of the model state vs. 
the measurements to include in the updated value of the state. The risk is that the filter 
will tend to disregard the model propagation and believe the noisy measurements. You 
can see this when the estimate of the state begins to resemble the measurements. 
 

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Experiment 4 

Estimated State Measurements Truth 



NAWCWD TP 8832 

26 
 

Distribution Statement A. 

 

FIGURE 11-6. Result of Experiment 5. 

 

11.6 EXPERIMENT 6 – MEASUREMENTS WITH 
NON-GAUSSIAN NOISE 

What if the measurement noise is not Gaussian? Let us consider the following 
measurements (Table 11-3). 
 

TABLE 11-3. Measurements File 
for Experiment 6. 

t, sec Z, ft 
1 1.20 
2 0.75 
3 1.25 
4 0.25 
5 0.23 
6 0.85 
7 0.25 
8 0.76 
9 1.45 

10 1.50 
11 10.0 
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The model assumes a stationary vehicle at 1.0 foot. A normal probability plot of the 
measurements reveals that a straight line is hardly indicated by the standardized 
measurements. See Figure 11-7. 
 

 

FIGURE 11-7. Normal Probability Plot, Experiment 6. 

11.6.1 Analysis 

It is not clear that the estimated solution (blue line in Figure 11-8) will ever converge 
to the truth, but if the measurements continue mainly to be biased to one side of the truth, 
there will probably be no convergence. 
 

The last measurement reflects a sensor gone bad. That measurement was rejected. 
One can see that the estimated solution is not affected by the spurious measurements. The 
rejection of measurements criterion is set up so that all measurements beyond 3σ are to 
be rejected, but except for the last measurement, all measurements were accepted. This is 
called the data confidence level, not to be confused with the confidence in the model. 
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FIGURE 11-8. Result of Experiment 6. 
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11.7 EXPERIMENT 7 – REJECTION OF MEASUREMENTS 

The model assumes that the vehicle at 1.0, stationary, and that the measurements are 
very noisy. The measurement distribution is not Gaussian, similar to Experiment 6 
(except no spurious measurement at t = 11). 
 
Q is small (Q = 0.0001), reflecting confidence in the model. 
 

Initial position is completely unknown, 0 assumed with large variance (P = 1000 ft2). 
All measurements beyond 2σ are to be rejected. Table 11-4 shows how to establish the 
𝜒2 limit for 1 DOF at 2σ. The data confidence level is set at 95% while the significance 
level is at 5% (100% – data confidence level). The 𝜒2 limit is set therefore at 3.841. 
 

TABLE 11-4. 𝜒2 Table, 2σ, 1 DOF. 

DOF 
Significance Level 

0.5 0.10 0.05 0.02 0.01 0.001 
1 0.455 2.706 3.841 5.412 6.635 10.827 
2 1.386 4.605 5.991 7.824 9.210 13.815 
3 2.366 6.251 7.815 9.837 11.345 16.268 

 

11.7.1 Analysis 

Measurements at t = 4, 5, and 7 seconds were rejected. The estimated solution 
appears much more reasonable relative to the truth (Figure 11-9). But what if these were 
valid measurements during maneuvers? 2σ may cause a rejection of too many valid 
measurements. This can be detected by observing that the solution deviates from reality 
during periods of high maneuvering. 
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FIGURE 11-9. Result of Experiment 7. 

 

11.8 EXPERIMENT 8 – REJECTION OF NOISY MEASUREMENTS 
DUE TO LOW DATA CONFIDENCE LEVEL 

The model assumes that the vehicle at 1.0, stationary, and that the measurements are 
very noisy. See Table 11-5. 
 

The measurement distribution is Gaussian. 
 
Q is small (Q = 0.0001), reflecting confidence in the model. 
 

Initial position is completely unknown, 0 assumed with large variance (P = 1000 ft2). 
All measurements beyond 1σ are to be rejected. Table 11-6 shows how to establish the 𝜒2 
limit for 1 DOF at 1σ. The confidence level is set at 68.27% while the significance level 
is at 31.73%. The 𝜒2 limit is set therefore at 1.0095. 
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TABLE 11-5. Measurements File 

for Experiment 8. 

t, sec Z, ft 
1 0.60 
2 0.20 
3 1.40 
4 1.00 
5 0.80 
6 1.20 
7 1.80 
8 0.60 
9 0.40 

10 1.60 
 
 

TABLE 11-6. 𝜒2 Table, 1σ With 1 DOF. 

DOF 
 Significance Level 

0.5 0.3173 0.10 0.05 0.02 0.01 0.001 
1 0.455 1.0095 2.706 3.841 5.412 6.635 10.827 
2 1.386 2.28 4.605 5.991 7.824 9.210 13.815 
3 2.366 3.51 6.251 7.815 9.837 11.345 16.268 

 

11.8.1 Analysis 

The only measurements accepted are at times 1, 2, 8, and 9 seconds. However, the 
Kalman gain is fairly high at times 1 and 2, but low at 8 and 9 seconds, so the estimated 
state tends to follow the measurement at times 1 and 2, and the extrapolation (i.e., the 
model) in the remainder of the problem (Figure 11-10). Clearly the confidence level is set 
at much too low a level. 
 



NAWCWD TP 8832 

32 
 

Distribution Statement A. 

 

FIGURE 11-10. Result of Experiment 8. 

12.0 SUMMARY 

Kalman filtering has been used in a wide variety of aided inertial navigation systems. 
This report provides the system safety engineer a means to understand the structure of a 
typical Kalman filter found in the navigation system so that s/he can associate aberrant 
behavior in the operation of an air vehicle with defects in the Kalman filter. Kalman 
filtering and its overall role in the integrated system is still not well understood by many 
in the navigation safety community. This report is largely directed toward defining a tool 
for the safety engineer who is presented with the problem of including Kalman filtering 
into the design of a navigation system. This perspective is particularly useful in helping 
the engineer understand potential observed aberrant behaviors and their possible causal 
factors (see Table 10-1). Aberrant behavior is most likely observed in the software or 
hardware integration lab, but can be observed in the field if lab testing is not adequate. 
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ACRONYMS 

CONUS 
 

Continental United States 

DCM Direction Cosine Matrix 
DOF 

 
Degrees of Freedom 

ECEF Earth-Centered Earth-Fixed 
ECI 

 
Earth-Centered Inertial 

GPS 
 

Global Positioning System 

ILS Instrument Landing System 
IMU 

 
Inertial Measurement Unit 
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