
1

Final Project Report

COORDINATED HOLISTIC ALIGNMENT OF MANUFACTURING PROCESSES (CHAMP)

Principle Investigator / Email Address Barry Smith – phismith@buffalo.edu

Project Team Lead
The Research Foundation for SUNY on behalf of the University at
Buffalo

Project Designation DMDII-15-11-03

UI LABS Contract Number 0220160023

Project Participants CUBRC Inc

DMDII Funding Value $626,223.00

Project Team Cost Share $629,037.00

Award Date December 30, 2016

Completion Date June 30, 2018

Ercie.Legaspi
Typewritten text
SPONSORSHIP DISCLAIMER STATEMENT: This project was completed under the Cooperative Agreement W31P4Q-14-2-0001, between U.S. Army - Army Contracting Command - Redstone and UI LABS on behalf of the Digital Manufacturing and Design Innovation Institute. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Department of the Army.

Ercie.Legaspi
Typewritten text
DISTRIBUTION STATEMENT A. Approved for public release; distribution unlimited.

CHAMP Base Year Final Report January 2018

i | P a g e

Contents
Acronyms and Abbreviations .. iv

1 Introduction ... 1

2 CHAMP Ontologies .. 3

2.1 Constraints ... 3

2.1.1 Web Ontology Language (OWL) .. 3

2.1.2 Basic Formal Ontology as Top-Level Ontology .. 3

2.1.3 Common Core Ontologies as Mid-Level Ontologies .. 4

2.1.4 Ontological Realism ... 6

2.2 Requirements ... 6

2.2.1 Consistency .. 7

2.2.2 Principle of Single Inheritance ... 7

2.2.3 Definitions .. 7

2.2.4 Preservation of Meaning of Higher-Level Ontology Terms ... 8

2.3 Accomplishments ... 9

2.3.1 The Industry Ontology Foundry ... 9

2.3.2 Education ... 9

2.3.3 The Product Life Cycle Ontologies ... 10

2.4 Lessons Learned ... 12

3 Working with Data: Alignment and Ingestion ... 13

3.1 OntoView .. 14

3.1.1 Overview .. 14

3.1.2 Requirements ... 17

3.1.3 Architecture ... 17

3.1.4 Accomplishments ... 18

3.1.5 Lessons Learned ... 18

3.2 Process Workflow ... 20

3.2.1 Overview .. 20

3.2.2 Requirements ... 22

3.2.3 Architecture ... 22

3.2.4 Accomplishments ... 23

3.2.5 Lessons Learned ... 23

CHAMP Base Year Final Report January 2018

ii | P a g e

3.3 Natural Language Processing ... 24

3.3.1 Overview .. 24

3.3.2 Lessons Learned ... 24

4 References ... 25

CHAMP Base Year Final Report January 2018

iii | P a g e

Table of Figures
Figure 1 The Common Core development methodology .. 5
Figure 2 The import structure among the seven ontologies of the product life cycle suite 11
Figure 3: OntoView landing page .. 14
Figure 4: OntoView taxonomy search ... 15
Figure 5: OntoView search result .. 15
Figure 6: OntoView data exploration breadcrumb ... 15
Figure 7: OntoView query builder ... 16
Figure 8: OntoView function editor ... 16
Figure 9: OntoView architecture ... 17
Figure 10: Process Workflow landing page ... 20
Figure 11: Process Workflow processes table ... 20
Figure 12: Process Workflow process editor ... 21
Figure 13: Process Workflow legacy data input landing page ... 21
Figure 14: Process Workflow legacy data input .. 22
Figure 15: Process Workflow architecture .. 22

CHAMP Base Year Final Report January 2018

iv | P a g e

Acronyms and Abbreviations
Acronyms Terms

BFO Basic Formal Ontology

CCO Common Core Ontologies

CHAMP Coordinated Holistic Alignment of Manufacturing Processes

CRUD Create-Read-Update-Delete

GUI Graphical User Interface

IOF Industry Ontology Foundry

IRI International Resource Identifier

JSON JavaScript Object Notation

JSON-API JSON Abstract Public Interface

MVC Model-View-Controller Framework

NLP Natural Language Processing

OWL Web Ontology Language

RDF Resource Description Framework

REST Representational State Transfer

SPARQL SPARQL Protocol and RDF Query Language

URL Uniform Resource Locator

URN Uniform Resource Name

YAML YAML Ain’t Markup Language

CHAMP Base Year Final Report January 2018

1 | P a g e

1 Introduction
The University at Buffalo, CUBRC, and Cobham Industries, performed the Coordinated Holistic

Alignment of Manufacturing Processes (CHAMP) project with the objective of enabling

manufacturing organizations to overcome some of the issues caused by data heterogeneity. In

particular, the CHAMP project sought to provide remedies to situations in which disparate data

sources cannot be used in combination because of differences in their underlying conceptual

schemas. This semantic heterogeneity is often cited in research in the model based development

community as having deleterious effects on the fruition of the objectives of model based

engineering.

At the organizational level, the introduction of semantic heterogeneity is due, as described in one

of the Gartner research articles on the “Postmodern ERP” [4], by the shift away from single

vendor ERP megasuites towards a more loosely coupled modular ERP environment. Despite the

rigid nature of single vendor ERP suites, they provided for consistency and integrity of data and

processes. In the modular ERP environment, the gain in flexibility comes at the price of needing

to integrate the data among the modules. Gartner concludes that failing to address such issues

could quickly erode the value users expect to get from the postmodern ERP.

In [5], Shen, et al. describe how computer supported collaborative design enables product

designers to interact with a wide range of other designers of the product lifecycle. But although

interaction is possible, the authors find that actual collaboration is often hindered because of a

lack of uniform interpretation of product and process modeling languages and terminologies.

In [2], Frechette concludes that the biggest barrier to utilizing model data effectively throughout

the enterprise is moving model data between the various engineering and business applications

that make up the enterprise. The solution he proposes is a data format that is independent of the

software applications used by the enterprise.

The CHAMP project was motivated by observations such as these to produce a data curation

pipeline that would resolve semantic heterogeneity in the enterprise. The foundational

component of this pipeline is a set of tiered ontologies that can be used to semantically model the

products and processes across the product lifecycle. In addition to developing ontologies, the

CHAMP project used, explored, and developed data management tools including the Ontological

Semantic Concept Alignment and Refinement (OSCAR), natural language processing (NLP),

optical character resolution (OCR), Process Workflow and Ontoview. In combination, these tools

provide a prototype capability to ingest structured data into the semantically consistent

ontological model and build reports based upon the aligned data.

In the remaining sections, we describe the components of CHAMP in the following
order:

• Ontologies

• OSCAR

• NLP and OCR

• Process Workflow

• Ontoview

CHAMP Base Year Final Report January 2018

3 | P a g e

2 CHAMP Ontologies

2.1 Constraints
We begin by describing the set of tools and the modeling methodology used to develop the

CHAMP ontologies. We classify these as constraints, since they are external to the design and

development processes, yet they limit those processes in significant ways.

2.1.1 Web Ontology Language (OWL)

We follow the W3C recommendation that ontologies be published for exchange as OWL files

(more precisely: as files using the OWL 2 Web Ontology Language). However, our conformance

with the W3C recommendation regarding the use of OWL is not an endorsement of that

language as being ideally suited to the task of publishing ontologies. Rather, it is a recognition

that OWL is the current standard and the ecosystem of tools surrounding it makes it the current

best choice. As technology evolves, other languages may replace OWL’s role as the standard.

For example, ISO has sanctioned an additional language, Common Logic (CL)

(http://www.iso.org/iso/catalogue_detail.htm?csnumber=39175), and its use for ontology

formulation is increasing (http://stl.mie.utoronto.ca/colore/ontologies.html). CL has greater

expressive power than OWL, but lacks certain computational features and tooling that make it

less attractive than OWL.

Similarly, work in the research field of ontology, such as the specification of Basic Formal

Ontology (see below), is often written in first-order logic, but first-order logic lacks

decidability—a feature of logical systems that is required for reasoners to detect violations of

consistency. Because OWL is a decidable fragment of first-order logic, we take it as best practice

that the canonical statement of an ontology be made in first-order logic, and its implementation

in a particular language, such as OWL, be made conformant with the canonical representation,

such that nothing said in OWL is in violation of what is said in the canonical representation in

first-order logic. In this way, we attempt to balance the need to be formally exact in our

expression with the practical need to implement ontologies that may be used according to

adopted standards.

2.1.2 Basic Formal Ontology as Top-Level Ontology

Ontologies are classified according to level: top-level, mid-level, and domain-level. The lowest

level ontologies are called ‘application ontologies’.

The level of an ontology is determined by the level of generality of the types in reality that it

represents. Object, for example, is a very general type and so the class ‘Object’ should belong to

a top-level ontology; Living Thing and Person are less general types that belong to a mid-level

ontology, since they are common across many but not all domains. Still less common types, such

as Blue Eye Color, belong to a lower-level ontology, such as a domain ontology (i.e. the domain

of eye colors). At the lowest level, application ontologies are built that service the needs of a

particular application. For instance, an application may require a class ‘Blue Eye Color with

Shade RGB Value Range .20-.75’. Such a class would be particular to the needs of the

application that requires the gathering of data according to the parameters of the class. Thus, a

CHAMP Base Year Final Report January 2018

4 | P a g e

class like ‘Blue Eye color with Shade RGB Value Range .20-.75’ would belong to an application

ontology.

As will be explained more fully in the section on design principles below, we recommend a

tiered architecture of ontologies starting with a single top-level ontology that forms the base of

all other ontologies. The purpose of the top-level ontology is to provide a high-level, domain-

neutral representation of distinctions such as that between objects and events, and between

objects and their attributes (e.g. qualities and roles).

There are many benefits provided by a top-level ontology. One of the main benefits is that a top-

level ontology’s high-level distinctions impose a certain amount of control on those ontologies

that descend it, requiring these ontologies to continue to use their vocabularies in a controlled

and precise manner. This means that if a top-level ontology distinguishes Processes from

Objects, that a domain ontology that has a class such as ‘Person’, which it asserts to be a subclass

of Object, cannot at a later time treat instances of processes as instances of ‘Person’; trying to do

so would create inconsistencies that could be detected with the use of ontology reasoners, such as

FaCT++ and Hermit. In such a way, use of top-level ontologies prohibits a tendency at semantic

drift that leads to a lack of interoperability over the lifetime of an ERP system.

We recommend Basic Formal Ontology 2.0 (BFO) as the top-level ontology [1]. BFO is a small,

highly abstract, top-level ontology designed for use ‘under the hood’. Its role is to provide a

framework that can serve as a common starting point for representing types that are more

specific in order to ensure consistent ontology development at lower levels in a way that

maximizes the degree of interoperability among ontologies developed by different collaborating

groups.

One reason for the success of BFO is that it is a strict top-level ontology. As such, it is domain

neutral and does not contain its own representations of physical, chemical, biological,

psychological, social, or other types of entities that would properly fall within mid- or lower-

level domains. BFO is correspondingly very small, with a narrowly focused task: that of

providing a top-level ontology that supports the integration of multiple heterogeneous domain

ontology plug and play modules at lower levels.

2.1.3 Common Core Ontologies as Mid-Level Ontologies

The purpose of the Common Core Ontologies (CCO) is to extend BFO to a structured

vocabulary that can be easily extended to represent the content of any specific data source

whatsoever. The design of CCO is such that explicit connections between classes are not

typically asserted. For example, the CCO class ‘Person’ does not have a number of axioms that

relate it to other classes, such as ‘Weight’ or ‘Occupation’, in a way that would be analogous to

the way attributes of entities are linked in a logical model of a relational database. The reason for

this is that a guiding principle in the development and application of the CCO is to produce a

vocabulary that can integrate all information from any data source about every type of entity, and

not to prescribe, and thus limit, the types of information that should be collected or queried about

a particular type of entity. To provide this functionality, the CCO defines a modular set of

CHAMP Base Year Final Report January 2018

5 | P a g e

extensible classes and relations that can be connected as needed at the instance level to translate

information from data sources.

The Common Core Ontologies comprise a suite consisting of twelve ontologies that have been

designed to cover particular domains. These domains include: agents (organizations and

persons), artifacts, events, geospatial, time, qualities, and information. Whatever content from a

particular data source that is not found in the Common Core Ontologies is then added to domain

ontologies that extend from those in the common core. Building ontologies in this manner

reproduces patterns of expression across domains that reduce the amount of time and effort

required by analysts, query writers, and algorithm developers to acclimate themselves and their

products to different content. As new data sources are encountered, existing semantic content

from already built ontologies is re-used to the extent possible. Building ontologies in this

controlled manner greatly reduces the proliferation of ontologies, which in turn reduces the

amount of time and effort required to find content and build mappings between content.

Importantly, the method enables rapid development by creating a cycle of ever diminishing

extent of new content that needs to be ontologized. Figure 1 provides a visualization of the

method.

Figure 1 The Common Core development methodology

 Each of the ontologies in the Common Core was developed alongside the others in the

suite, allowing the files and their import ontologies to be used independently or in conjunction

with one another. For this reason, the Common Core Ontologies have a modular design, and each

ontology in the suite may be referred to an ‘ontology module’. The CHAMP ontologies, in turn,

extend from the Common Core ontologies and retain the modular design, such that each

CHAMP Base Year Final Report January 2018

6 | P a g e

CHAMP ontology module and its imported ontologies may be used independently of other

CHAMP ontology modules.

 However, the CHAMP ontologies, like those of the Common Core, were designed to

retain their status as mid-level ontologies. This is because they were built to be reference

ontologies that might impose conformity on ontologies that extend from them. Such ontologies

include the lowest level ontologies: application ontologies. Application ontologies extend mid-

level and top-level ontologies to provide terminologies that might service a particular application

or purpose.

2.1.4 Ontological Realism

To maximize both utility and stability, the modeling process of ontology development should

rest on what in [6] is called ‘ontological realism’, which amounts to the idea that an ontology

should be analogous not to a data model, but rather to a reality model. Under this constraint,

ontologies are representations not of the data to be integrated, but rather of the entities to which

those data refer. Some ontologies will indeed need to contain terms referring to data items – for

example, to types of images, or types of email, or of other text documents. By following the

practice of ontological realism these ontologies will treat these data items as entities in reality in

their own right.

Employing the methodology of ontological realism results in ontologies that are the best

candidates for serving as common models of all the data sources within a complex information

ecosystem. Realist ontologies serve as a proxy for some portion of the world, employing, as far

as possible, consensus expressions from natural language, including scientific vocabularies. Data

sources are descriptions of the world, but they also add a layer of perspective in order to serve

the application specific needs of their users. Realist ontologies enable enterprise-wide data

integration by circumventing this layer of perspective from each of the several data sources

involved and thereby arrive at a depiction of the domain that can serve as benchmark for their

integration.

Adopting the method of ontological realism also contributes to improved governance. In order

for an ontology to adhere to the realist approach, all of its assertions must be true of the world; if

they are not, they must be corrected in order to be so. Using the world as a basis for determining

the correctness of an ontology provides a clear methodology for adjudicating disputes and

continually improving an ontology’s content; this is an important benefit for long-term

management.

2.2 Requirements

We have now described four constraints: the use of OWL, the use BFO as a top-level ontology,

the use of the CCO a set of mid-level ontologies, and the use of method of ontological realism.

These four constraints provide the basis for building high-quality ontologies. In this section, we

describe the requirements of that the CHAMP ontologies fulfill.

CHAMP Base Year Final Report January 2018

7 | P a g e

2.2.1 Consistency

An ontology is consistent if and only if every one of the classes denoted by its terms can have

instances. In its simplest form, an inconsistent ontology would define a class such that any

instances would need to have a set of incompatible characteristics, X and not-X. Of course,

inconsistent ontologies are not built intentionally. More often than not, they are the result of

oversights caused by the complexity inherent in formalizing some domain. As the number of

terms, relationship expressions, and axioms within an ontology grows, so too does the likelihood

of introducing an inconsistency. This likelihood is increased further as the number of ontologies

within an enterprise grows, as ontology developers are provided with the need, and the

opportunity, to import terms from multiple sources.

To test an ontology for consistency, there are a number of automated reasoners available that can

trace through all of the relationships in the ontology and detect any inconsistencies. The majority

of these reasoners are capable of performing consistency tests on ontologies written in the Web

Ontology Language (OWL) DL dialect of OWL (OWL 2 DL).

2.2.2 Principle of Single Inheritance

The principle of single inheritance prescribes that each ontology class should be a subclass of

one and only one ontology class. The resultant chain of single inheritance forms what is called

the asserted taxonomy. Adherence to this principle ensures that everything that holds of a parent

term holds also of (is inherited by) all descendant terms at lower levels. This means that each

asserted taxonomy has a single root node and that every ontology will contain one or more

asserted taxonomies as proper parts. All non-root terms will have exactly one parent, from which

it descends via a subclass of or is_a relation.

This principle does not prohibit the use of subclass or equivalent class axioms whereby a class is

defined to be a subclass or equivalent class of an anonymous class. The OWL language provides

the means to express facts about entities using relations to other entities at the instance-level. For

example, a fact such as “Automobile has part some Engine” uses the has_part relation to relate

instances of automobiles to at least one instance of engine. The semantics of this fact is that

Automobile has been made a subclass of the anonymous class “thing having at least one engine

as part”. The class is anonymous because it is not part of the asserted taxonomy. The set of

subclass and equivalent class axioms forms the inferred taxonomy of an ontology. In this inferred

taxonomy, classes previously anonymous become explicit and the principle of single inheritance

is no longer in force.

2.2.3 Definitions

Every class in an ontology (other than the root) should be provided with an associated human-

readable definition. Standardly, this association is achieved by adding annotation properties,

which are a means for associating metadata with elements in an ontology file. Whereas the use of

the RDFS annotation property ‘comment’ is acceptable, it is preferable that a new annotation

property be created expressly for this purpose.

CHAMP Base Year Final Report January 2018

8 | P a g e

The human-readable definitions of classes in the ontology are required to be always of the genus-

species form:

an S = Def. a G that Ds

where ‘S’ (for: species) is the term to be defined, ‘G’ (for: genus) is the immediate parent term of

‘S’ in the relevant ontology, and ‘D’ (for: differentia) provides the species-criterion; that is, it

specifies what it is about certain G’s that makes them S’s. As ontologies evolve, it is expected

that the human readable definitions will be translated into subclass or equivalent class axioms as

described above in the section on single inheritance.

Examples:

• Natural Event =def. a Process that is not caused by any human act.

• Geographic Event = def. a Natural Event that affects some Geographic feature

• Landslide =def. a Geographic Event in which there is a rapid descent of soil or rock down

a mountainside.

As more specific terms are defined through the addition of ever more detailed differentiae, their

definitions encapsulate the information regarding child-parent links connecting each class all the

way back to the corresponding root. At the same time, the task of formulating definitions serves

as a check on the correctness of the constituent hierarchies in these ontologies.

Use of the genus-species definition structure helps to ensure that definitions are not circular

(when the term defined appears in its own definition), and thus that they communicate

information that is of value to the user – in conformity with the principle that a definition should

use only terms that are easier to understand than the term defined.

Definitions are required also for (non-root) object properties, and these two should as far as

possible be defined using the genus-species rule.

2.2.4 Preservation of Meaning of Higher-Level Ontology Terms

It is a fundamental principle of best practice that one re-use terms from other ontologies, since

re-use contributes to the interoperability of ontology modules and thus also of the information

systems that these modules support. However, if not performed carefully, the reuse of terms can

bring the risk of altering the meaning of the re-used term. The most common way in which this

type of problem occurs is when an ontology reuses a term from a higher-level ontology, but adds

to its content through the addition of an axiom. An example is reusing the term Organization but

adding an axiom that asserts that every such organization has exactly one leader. To be

conformant, the creator of the lower-level ontology should either request that the curators of the

top-level ontology add the axiom, or introduce into the lower-level ontology a subtype of

Organization (e.g. Single Leader Organization) to which the axiom could then be added without

altering the meaning of the original.

CHAMP Base Year Final Report January 2018

9 | P a g e

2.3 Accomplishments

2.3.1 The Industry Ontology Foundry

Despite its early termination by DMDII, the CHAMP project has succeeded in having a

significant impact on industry work in ways both large and small. In the Spring of 2017, Clare

Paul at the Air Force Research Laboratory and Hedi Karray at the University of Toulouse were

invited to the University of Buffalo for workshops dedicated to representing the domain of

materials. These discussions resulted in a re-orientation of their work, which now uses Basic

Formal Ontology as a top-level ontology, along with our series of design principles and methods

drawn from the BFO framework. The researchers at the University of Buffalo are grateful that

CHAMP has supported these partnerships.

However, the greatest impact of the CHAMP project on industry will be to seed the Industry

Ontology Foundry—an initiative modeled on the Open Biomedical Ontology Foundry [7]—

whose purpose is to create a large, expert-curated suite of interoperable high-quality ontologies

covering the domain of industrial (especially manufacturing) engineering. These ontologies will

be developed in tandem to ensure that they promote interoperability, and each will be small but

easily extensible for different companies concerned with particular domains. In parallel to the

CHAMP project, planning discussions have been occurring among individuals at a number of

different organizations.

Organizations participating in the Industry Ontology Foundry presently include:
• NIST

• Air Force Research Laboratory

• Airbus

• Autodesk

• Cambridge Semantics

• CIMData

• CUBRC

• Dassault Industrie

Following the present discussions among IOF participants, the IOF will provide an online

repository for vetted and curated ontologies of industry. Each of these ontologies will be

committed to a series of shared design principles, whose purpose is to both raise the quality of

the ontologies and to ensure a greater degree of interoperability and thereby to encourage re-use.

The CHAMP project was conceived as a stepping stone in achieving this vision, with its mid-

level reference ontologies to be used as drafts that will undergo refinement among members of

the IOF. The software produced by CUBRC as a result of CHAMP will also be disseminated

among IOF members and its integration encouraged within the future IOF platform.

2.3.2 Education

The CHAMP project has also made substantial contributions to engineering education by

providing funding for three students attached to the CHAMP project, with an additional three

engineering students attached to the project as well. These six graduate students, five of whom

are from the engineering school at the University of Buffalo, gained experience: building

ontologies in OWL using the ontology editor Protégé; mapping tabular data structures to OWL

CHAMP Base Year Final Report January 2018

10 | P a g e

ontologies to create RDF triple stores; and doing so within the domain of the product life cycle.

This experience has already opened up opportunities for some of them to continue this work by

collaborating with other researchers elsewhere on related projects.

In addition to the opportunities offered to students, CHAMP has led to collaboration among an

international network of academic partners, who are now active collaborators on the IOF.

 These institutions and their members include:

• INP-ENIT, University of Toulouse (Hedi Karray)

• Clemson University (Venkat Krovi)

• École polytechnique fédérale de Lausanne (Dimitris Kiritsis)

• Loughborough University, UK (Bob Young)

• National Center for Ontological Research (Kemper Lewis, Rahul Rai, and Barry

Smith)

• Penn State (Timothy Simpson)

• Texas State (Farhad Ameri)

• UMass Amherst (Ian Grosse)

• University of Toronto (Michael Grüninger)

2.3.3 The Product Life Cycle Ontologies

As we began to plan out the ontologies we were to design, we took as our domain the
product-life cycle, from the initial product design phase through production, testing, use,
and the end-of-life phase. To approach a domain of such significant scope, we began
by working in the constraints described above, re-using other ontologies (namely, BFO
and those of the CCO) and conceiving of more general, mid-level ontologies that may
be extended in other ontologies under development, or by others for particular purposes
in application ontologies. This was carried out in order to complete the goal, specified in
our contract, to: “construct a semantic model establishing a manufacturing domain
ontology (vocabulary and relationships) representative of the prevalent concepts and
associations that are common across small to mid-sized manufacturing companies
holistically.”

Our representations of the domain of product-life cycle were constructed in dialogue with

experts in industry and engineering at the University of Buffalo, the Air Force Research

Laboratories, and NIST, as well as with our industry partner, Cobham. Cobham provided us with

data from the domains of manufacturing and design, which were used to construct particular

application ontologies to which we hoped to align data in order to create RDF triple-stores that

could be load tested. These alignment and load testing tasks did not occur due to the early

termination of the project. However, these application ontologies were also generalized in the

creation of mid-level ontologies of design and manufacturing, such that they could be both useful

and publically available. As a result of working both from expert-level descriptions of the

domain, as well as from the vocabulary particular to Cobham, we were able to test our initial

representations of the product life-cycle against the coverage necessary to service lower-level

domain ontologies particular to the vocabulary of Cobham’s many data sources.

CHAMP Base Year Final Report January 2018

11 | P a g e

There are seven mid-level ontologies in the product-lifecycle ontology suite developed under

CHAMP that are in a sufficient state of completion that they merit a public release. Stating

clearly their state of completion would be impossible, given that there are no explicit standards

for evaluating the readiness of ontologies according to which they could be rated. The seven

include ontologies that cover the following domains: commercial entities (e.g. products and

economic goods), design, maintenance, manufacturing processes, the product life cycle, testing

processes, and tools. Each contains classes and object properties relevant to the representation of

their domain, and each class has a definition conforming the genus-species form detailed above.

Furthermore, the commercial entities ontology makes use of axioms in OWL to distinguish many

of its defined classes, including Product, Economic Good, and Service, from the asserted

taxonomy containing Material Entity, Software, and Intentional Action.

Each of these seven files constitutes a mid-level ontology that imports the whole of the CCO, as

well as BFO, while continuing the modular approach of the CCO. The import structure among

the files themselves can be seen in Figure 2 below. Each file imports the Common Ontologies

and Basic Formal Ontology, but individual files vary; for example, with the Commercial Entities

Ontology having no other imports, while the Maintenance Ontology imports both the Product

Life Cycle Ontology and its import, the Commercial Entities Ontology.

Figure 2 The import structure among the seven ontologies of the product life cycle suite

As part of this project, we had also been working on an ontology of Unix permissions, which

was designed to facilitate the integration of access permissions in a system relying solely on an

RDF back end. Second, we had also been aiding in the construction of an ontology of materials

properties, aiding Clare Paul at the Air Force Research Laboratory in its development. This

ontology covers material properties such as stress, hardness, as well as phase states of matter

(e.g. liquid, plasma, and solid) and would have been integrated with the ontologies we had

developed, and it would have become the parent ontology of two other ontologies we had

CHAMP Base Year Final Report January 2018

12 | P a g e

developed independently of the CHAMP project: an ontology of additive manufacturing and an

ontology of functionally graded materials. Third, we had planned to also engineer an ontology

concerning what we informally called ‘business flow’ that would have represented the domain of

documentation, including processes of signatory approval, forms, templates, budgets, contract

evaluation processes, and budgeting, all of which is vital to the representation of ownership,

commerce, and planning. Such work would have re-used portions of the Document Acts

Ontology—a publically available, open source ontology presently used in many projects in

bioinformatics. Finally, we had planned to continue developing the ontologies that carried

through to the end of the product life-cycle, including ontologies of recycling and disposal, the

use of artifacts, and logistics. These projects will not be carried out under CHAMP as a result of

the early termination decision, but we hope later efforts, including those of the IOF, will revive

some of them.

The seven ontology files completed as part of CHAMP will continue to evolve following their

public release as part of the IOF effort as they are critiqued and re-worked by others working in

the field. In our review, we found no comparable set of modular ontologies developed for

industry that are rooted in a principled approach to ontology design, and thus that share in our

long-term vision of open-source ontology curation and re-use. The participant organizations in

the IOF know this as well, and the need for such work remains a driving motivation behind their

endeavors.

2.4 Lessons Learned

There are well-known problems in ontological engineering that were made more salient in

working in the domain of industry. Here, we describe two that we encountered, with which any

project adopting ontological realism will also contend.

First, the domain of materials requires the tracking of portions of material (e.g. a portion of

laminate composite, a stack of steel beams, a volume of water in a tank) as they undergo change.

Change in a portion of material can occur both as a result of molecular change (for instance, a

change in its material phase state) or as a result of the gain or loss of a material part. Basic

Formal Ontology provides resources for tracking such entities as they undergo change (see [3]

for discussion), but even here we uncovered two limitations. The first of these concerns the issue

of ‘gappy’ objects, as when a watch at time 1 is disassembled at time 2 and put back together at

time 3. The issue of gappiness concerns whether or not we should affirm that portions of

material, like the watch, endure through their dissolution or not; i.e. should an ontology affirm

that it is the same watch at time 3 that it was at time 1 or a new watch at time 3, with the original

watching permanently ceasing to exist at time 1 (similarly, is a portion of material that is divided,

then brought together again, the same portion). Second, BFO is committed to a

nonmultiplicativist philosophy according to which instances rigidly belong to asserted classes,

such that an instance of Object is always an object, and if it ceases to be an object, it thereby

ceases to exist. However, there is a significant need to acknowledge that materials are both

objects at one level of description, while also object aggregates composed of molecules at

another level of description. Given BFO’s commitment to nonmultiplicativism, it remains an

open question how best to account for the fact that objects appear to belong to distinct classes at

different levels of description. This is an issue for which further experimentation is necessary.

CHAMP Base Year Final Report January 2018

13 | P a g e

Second, in our research, we encountered no ontology or taxonomy of artifacts (i.e. tools,

instruments, machines, computers, etc) that seemed sufficiently motivated by principle to count

as superior to every other ontology of taxonomy. In our review, most were either very poor, or

were built around an excellent standard that was, nonetheless, not common across industry, or

consisted of a mere list of artifact types whose classification seemed boldly open to critique. In

the future, the domain of artifacts requires special attention, since a taxonomy of artifacts and a

taxonomy of artifact functions is often doing double-duty within an ontology (representing the

same domain in overlapping ways) when one taxonomy could do both. In addition, other features

of artifacts, such as the domain in which an artifact typically operates (e.g. kitchen tools,

carpentry tools, injection molding tools), the type of process in which the artifact is typically

employed (e.g. screwing, molding, sanding), or the certification necessary for the prescribed

operation of the tool (e.g. fork-lift license) are, in addition to many others, alternative ways of

querying a tool catalog that are over and above the work performed by a taxonomy of artifacts

alone.

Although these issues occur across domains, they are somewhat more pressing in industry, which

is particularly concerned with artifacts and materials. Thus, they reveal deeper problems with

ontologizing data across the product life cycle than has been appreciated elsewhere by those

tasked with developing modeling standards that may serve the end of data integration. Had we

time, this section may have articulated steps toward practically addressing these issues in our

implementation, but due to our earlier termination, we only articulate them here in the hopes that

others may see them clearly and address them forthrightly.

3 Working with Data: Alignment and Ingestion

A primary concern of the CHAMP project was making semantic technologies practical to

implement. If a company is to make day-to-day use of our ontologies to create, store, and interact

with data in the form of RDF triples, then at least two general capabilities are required.

 First, a company must have a way of aligning the future data it acquires, as well as its

existing data, to our ontologies in order to produce RDF triples, so that queries may be run across

their data. We suspect most companies are not so different from Cobham in having data that

appeared in the following forms: relational databases (SQL), tabular data in the form of Excel

files, specifications and reports in the form of unstructured documents containing tables and

other elements (e.g. Word documents), CAD files stored in a variety of formats, and image

formats (e.g. TIFF).

 For many mid-sized companies, the majority of their data is likely stored in a relational

database, but for many day-to-day activities, employees likely continue to work with a windows-

folder hierarchy accessed via series of hyperlinks, where key documents were stored that both

reported on and prescribed various work processes. CHAMP was well-prepared to deal with

relational databases, as there are already many tools available for linking relational databases to

ontologies. CUBRC’s in-house application, OSCAR, provides enhancements to the open source

application ‘KARMA’—a program used for aligning tabular data sources to ontologies to

produce RDF. However, in order to accommodate data in other formats, other tools were

needed—in particular, what was required was an alignment tool that could save and call back

RDF triples to be used in further alignment tasks. For this task, we created the application

‘Process Workflow’, which we describe below.

CHAMP Base Year Final Report January 2018

14 | P a g e

 Second, employees of the company must have the ability to browse and query their data

without being experts in semantic technologies. In particular, the query language for semantic

web, SPARQL, has a steep learning curve, and would not be practical for day-to-day users to

learn and work in. For this reason, we created ‘OntoView’, a technology that allows users to

browse and query data by providing a GUI on top of a SPARQL engine.

 These two technologies are prototypes, but they address—like no other technology with

which we are familiar—the concern of how companies are to work and interact with data stored

in RDF. Because CHAMP is interested in providing a very low-cost option for increasing

interoperability for companies, we are excited by the direction of these technologies.

 In an effort to explore how granular we could get in our data alignment, we also explored

NLP as a solution to extracting data from unstructured text (e.g. Word documents). These results

are also reported below.

3.1 OntoView

3.1.1 Overview

OntoView is a technology that exposes data stored within a Resource Description Framework

(RDF) triple store and provides a web-based graphical user interface (GUI) to view and query

that data. Users build SPARQL Protocol and RDF Query Language (SPARQL) queries

containing basic graph patterns derived from the traversal of relationships between International

Resource Identifiers (IRIs), and alter that query using a guided syntax editor GUI. This

technology leverages the CCO for resource identification and a taxonomy-based IRI search

capability.

Knowledge of data schema is a key factor in building queries. When the data schema is

sufficiently large, exploring data of interest is critical to understanding the data schema and is

useful for refreshing the data analyst’s mental model. OntoView provides a GUI that facilitates

data exploration and query building through data exploration.

Figure 3: OntoView landing page

CHAMP Base Year Final Report January 2018

15 | P a g e

Figure 4: OntoView taxonomy search

Figure 5: OntoView search result

Figure 6: OntoView data exploration breadcrumb

CHAMP Base Year Final Report January 2018

16 | P a g e

Figure 7: OntoView query builder

Figure 8: OntoView function editor

CHAMP Base Year Final Report January 2018

17 | P a g e

3.1.2 Requirements

OntoView fulfills the following high-level requirements:

• Provide “one-hop” navigation through data stored in RDF format

• Provide real-time configuration of triple store access parameters

• Meet the following CHAMP specific requirements:

o Provide improvements on SPARQL query building:

▪ Provide ad-hoc SPARQL query building capabilities

▪ Provide complex SPARQL query clause building capabilities, such

as FILTER, BIND, OPTIONAL, and UNION clauses

▪ Provide query variable management

▪ Provide SPARQL 1.1 function reference information

o Provide taxonomy search through class exposure

3.1.3 Architecture

The OntoView architecture consists of a browser-based front-end GUI and a Java server

backend. The front end communicates with an external REST-enabled triple store, with the

requirement that the triple store communicates results in SPARQL 1.1 Query Results JSON

Format. The back end primarily serves the endpoints that the front end displays, and also

provides CRUD operations for front-end configuration. The following diagram illustrates the

architecture:

Figure 9: OntoView architecture

OntoView has the following library and system dependencies:

• Front end

o Node and NPM: JavaScript build platform and package manager

o Ember: client side MVC framework

o Foundation: responsive front end CSS and JavaScript framework

CHAMP Base Year Final Report January 2018

CUBRC, Inc. 18 | P a g e

o Font-Awesome: font and CSS toolkit

o ChosenJS: plugin providing functionality on top of select boxes

• Back end

o Java 8

o Maven: Java project management and build tool

o Spring and Spring Boot: framework used for dependency injection and

web servlet implementation

o FasterXML Jackson: library used for JSON manipulation

o SnakeYAML: library used to process YAML 1.1

o Apache Jena: Semantic Web framework

o Various Apache Commons projects

o Jetty and JBoss Wildfly: enterprise application containers

The front end is built on top of the Ember MVC framework. Data primarily flows from an RDF

triple store straight to the front end through an Ember service, rendered through GUI

components. As the user navigates through data, another Ember service tracks progress through

the dataset and passes that state to the query builder should the user choose to end progress

tracking.

There exist four distinct user flows:

• Data browsing without progress tracking

• Data browsing with progress tracking, leading to a query built on the exploration

breadcrumb

• Building ad hoc queries

• Editing OntoView settings configurations

All user flows are accessible by direct route by the user, or navigable by interface controls from

the landing page.

3.1.4 Accomplishments

OntoView, as improved through CHAMP, replaced an earlier version of itself by
adding usability improvements and the features listed above.

OntoView allowed for faster turnaround of Process Workflow (see below) feature
development. The data transparency provided by both the taxonomy search and
data browsing was instrumental in verifying instance data created by Process
Workflow.

3.1.5 Lessons Learned

“One-hop” data browsing is good for exploration, but requires many clicks to get to
multiple end results, i.e. a collection of literals for an entity. An entity view based
browsing solution was designed and partially implemented, but there wasn’t
sufficient time to complete nor demonstrate the capability.

CHAMP Base Year Final Report January 2018

19 | P a g e

The query builder interface was designed for an intermediate to advanced user;
novice users would have built queries using the entity view based browsing solution
mentioned above.

CHAMP Base Year Final Report January 2018

20 | P a g e

3.2 Process Workflow

3.2.1 Overview

Process Workflow is a collection of prototypical technologies that provide manufacturing

process creation, storage, retrieval, and display with GUI. The software leverages process,

product life cycle, tool, and design ontologies, as well as the CCO for common representation.

Process Workflow provides a prototypical GUI for creating processes using the CCO as the

common format, as well as a translation layer providing CRUD operations for process records.

Figure 10: Process Workflow landing page

Figure 11: Process Workflow processes table

CHAMP Base Year Final Report January 2018

21 | P a g e

Figure 12: Process Workflow process editor

Figure 13: Process Workflow legacy data input landing page

CHAMP Base Year Final Report January 2018

22 | P a g e

Figure 14: Process Workflow legacy data input

3.2.2 Requirements

Process Workflow fulfills the following high-level requirements:

• Provide a user workflow to create manufacturing processes using CCO

semantics

• Provide legacy data input for alignment of existing realized process data to the

CCO

3.2.3 Architecture

The Process Workflow architecture consists of a browser-based GUI backed by a Java server

responsible for data persistence and serving endpoints that the displays. The following diagram

illustrates the architecture:

Figure 15: Process Workflow architecture

CHAMP Base Year Final Report January 2018

23 | P a g e

Data flows primarily from an external triple store through the Java server back end where it is

condensed to process records, then flows out as JSON-API to the client front end. The client

consumes the JSON-API through data adapters at the application level and converts it to Ember

model records for display by Ember components.
Process Workflow has the following library and system dependencies:

• Front end

o Node and NPM: JavaScript build platform and package manager

o Ember: client side MVC framework

o Foundation: responsive front end CSS and JavaScript framework

o Font-Awesome: font and CSS toolkit

o ChosenJS: plugin providing functionality on top of select boxes

o MomentJS: library used for parsing, validating, manipulating, and

displaying datetimes

o Pikaday: plugin providing calendar picker functionality and GUI elements

• Back end

o Java 8

o Maven: Java project management and build tool

o Spring and Spring Boot: framework used for dependency injection and

web servlet implementation

o FasterXML Jackson: library used for JSON manipulation

o SnakeYAML: library used to process YAML 1.1

o Apache Jena: Semantic Web framework

o Various Apache Commons projects

o Jetty and JBoss Wildfly: enterprise application containers

 There are three distinct user flows:

• Creating a new process

• Editing an existing process

• Entering legacy data

All user flows are accessible by direct route by the user, or navigable by interface
controls from the landing page.

3.2.4 Accomplishments

Process Workflow provided a representative data translation layer between objects
used by the front end client and the CCO common representation. This is useful and
applicable outside of the current usage.

3.2.5 Lessons Learned

Early iterations of the software followed loosely-defined user workflows; this caused
some undue constraints on the user while creating processes. These were mitigated
through usability improvements and interface transparency into available data
records.
The original requirements specified prototypical GUI components for creating and
generating data reports; insufficient development time was available to include these
features.

CHAMP Base Year Final Report January 2018

24 | P a g e

3.3 Natural Language Processing

3.3.1 Overview

‘Natural language processing’ (NLP) refers to a collection of technologies required to parse

unstructured and natural language documents for the purposes of extracting and exploiting

information from those documents. The extracted information typically falls into four areas: events,

entities, locations, and dates. NLP is a fairly mature technology that is founded on the known

fundaments of language structures (e.g., English sentence canon is subject-predicate-object),

orthographic principles (e.g., conventional rules of written text, cf. spoken dialogue), and semantic

compositionality (e.g., figurative and literal uses of language).

‘NLP pipeline’ refers to the chained sequence of analytics through which data progresses

during an extraction task. A common first step in an NLP pipeline is tokenization, which is the

identification of each individual token in the text. At a basic level, a token can be thought of as a

word, but tokens are also punctuation marks, abbreviations, numerals, units of measurement, etc.,

which are not typically considered words in the strictest sense. A standard pipeline, after

tokenizing a document, is then able to identify or make conjectures about sentence boundaries,

assign part of speech attributes to each token, identify syntactic constituency, assign semantic roles

to the arguments of verbal phrases, and finally present the semantic proposition(s) of each sentence,

in whatever format has been specified.

As a part of CHAMP, we explored the use of NLP for ingesting documents whose contexts

consist largely of specifications frequently used in standards and work instructions. Our research

was carried out on a work instructions document provided by Cobham.

3.3.2 Lessons Learned

 For a full account of the lessons learned, see a full report included in our documentation,

where we describe our experiment process and provide examples from the Work Instructions

provided by Cobham using the JET NLP engine. The basic finding was that NLP did not work

well on the work instructions because the instructions cannot reasonably be considered natural

language. Rather than having the ‘subject-predicate-object’ form of natural language sentences,

many instructions lacked a subject (e.g. ‘Apply lubricant to the gear shaft’) and contained nested

or bulleted lists that represented an order of operations to be executed by a worker. These

elements, together with all the part numbers and references throughout, made these documents

poor candidates for NLP.

 Although it would have been nice to have easily extracted specifications from these

documents using NLP, for Cobham engineers, this would have been an over delivery. From their

perspective, merely finding the documents that specify standards and other information relevant

to a planned manufacturing process is itself a win, and our ontologies already make this possible.

This is done by representing the document as an instance of Specification, and relating it at the

instance level to an instance of Process (e.g. a Manufacturing Process). This link already

facilitates the representation of industrial processes and the documents that contain standards,

instructions, and other prescriptions that guide these processes.

CHAMP Base Year Final Report January 2018

25 | P a g e

 Because NLP was not a fruitful approach to the extraction of data from unstructured

documents, where such extraction is valuable, we suggest using a solution such as M-Turk, and

paying workers a fee to paste unstructured document elements into a template whose columns

are already mapped to terms in the ontology. For companies seeking a low-cost solution to this

highly granular level of data extraction, this may be a quick, valuable investment that has the

potential to replace large manuals containing standards and instructions.

4 References
[1] Arp, R., Smith, B. and Spear, A., 2015. Building Ontologies with Basic Formal Ontologies.

[2] Frechette, S.P., 2011. Model based enterprise for manufacturing. Duffie, ed., Omnipress,

Madison, WI

[3] Otte, J. N., Ruttenberg. A. “BFO: Basic Formal Ontology”. Applied Ontology [Forthcoming]

[4] Pettey, C, 2016, 5 Ugly Truths About Postmodern ERP,

https://www.gartner.com/smarterwithgartner/5-ugly-truths-about-postmodern-erp/

[5] Shen, W, et al, 2008, Computer supported collaborative design: Retrospective and

perspective, Computers in Industry, 59/9: 855-862.

[6] Smith, B. and Ceusters, W., 2010. Ontological realism: A methodology for coordinated

evolution of scientific ontologies. Applied ontology, 5(3-4), pp.139-188.

[7] Smith, Barry et al. “The OBO Foundry: Coordinated Evolution of Ontologies to
Support Biomedical Data Integration.” Nature biotechnology 25.11 (2007): 1251. PMC.
Web. 10 Jan. 2018.

https://www.gartner.com/smarterwithgartner/5-ugly-truths-about-postmodern-erp/

	Acronyms and Abbreviations
	1 Introduction
	2 CHAMP Ontologies
	2.1 Constraints
	2.1.1 Web Ontology Language (OWL)
	2.1.2 Basic Formal Ontology as Top-Level Ontology
	2.1.3 Common Core Ontologies as Mid-Level Ontologies
	2.1.4 Ontological Realism

	2.2 Requirements
	2.2.1 Consistency
	2.2.2 Principle of Single Inheritance
	2.2.3 Definitions
	2.2.4 Preservation of Meaning of Higher-Level Ontology Terms

	2.3 Accomplishments
	2.3.1 The Industry Ontology Foundry
	2.3.2 Education
	2.3.3 The Product Life Cycle Ontologies

	2.4 Lessons Learned

	3 Working with Data: Alignment and Ingestion
	3.1 OntoView
	3.1.1 Overview
	3.1.2 Requirements
	3.1.3 Architecture
	3.1.4 Accomplishments
	3.1.5 Lessons Learned

	3.2 Process Workflow
	3.2.1 Overview
	3.2.2 Requirements
	3.2.3 Architecture
	3.2.4 Accomplishments
	3.2.5 Lessons Learned

	3.3 Natural Language Processing
	3.3.1 Overview
	3.3.2 Lessons Learned

	4 References

