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1 Introduction 
The University at Buffalo, CUBRC, and Cobham Industries, performed the Coordinated Holistic 

Alignment of Manufacturing Processes (CHAMP) project with the objective of enabling 

manufacturing organizations to overcome some of the issues caused by data heterogeneity.  In 

particular, the CHAMP project sought to provide remedies to situations in which disparate data 

sources cannot be used in combination because of differences in their underlying conceptual 

schemas. This semantic heterogeneity is often cited in research in the model based development 

community as having deleterious effects on the fruition of the objectives of model based 

engineering.   

 

At the organizational level, the introduction of semantic heterogeneity is due, as described in one 

of the Gartner research articles on the “Postmodern ERP” [4], by the shift away from single 

vendor ERP megasuites towards a more loosely coupled modular ERP environment. Despite the 

rigid nature of single vendor ERP suites, they provided for consistency and integrity of data and 

processes. In the modular ERP environment, the gain in flexibility comes at the price of needing 

to integrate the data among the modules. Gartner concludes that failing to address such issues 

could quickly erode the value users expect to get from the postmodern ERP. 

 

In [5], Shen, et al. describe how computer supported collaborative design enables product 

designers to interact with a wide range of other designers of the product lifecycle. But although 

interaction is possible, the authors find that actual collaboration is often hindered because of a 

lack of uniform interpretation of product and process modeling languages and terminologies.  

In [2], Frechette concludes that the biggest barrier to utilizing model data effectively throughout 

the enterprise is moving model data between the various engineering and business applications 

that make up the enterprise. The solution he proposes is a data format that is independent of the 

software applications used by the enterprise.  

 

The CHAMP project was motivated by observations such as these to produce a data curation 

pipeline that would resolve semantic heterogeneity in the enterprise. The foundational 

component of this pipeline is a set of tiered ontologies that can be used to semantically model the 

products and processes across the product lifecycle.  In addition to developing ontologies, the 

CHAMP project used, explored, and developed data management tools including the Ontological 

Semantic Concept Alignment and Refinement (OSCAR), natural language processing (NLP), 

optical character resolution (OCR), Process Workflow and Ontoview. In combination, these tools 

provide a prototype capability to ingest structured data into the semantically consistent 

ontological model and build reports based upon the aligned data. 

 

In the remaining sections, we describe the components of CHAMP in the following 
order: 

• Ontologies 

• OSCAR 

• NLP and OCR 

• Process Workflow 

• Ontoview 



CHAMP Base Year Final Report  January 2018 

3 | P a g e  

2 CHAMP Ontologies 

2.1 Constraints 
We begin by describing the set of tools and the modeling methodology used to develop the 

CHAMP ontologies. We classify these as constraints, since they are external to the design and 

development processes, yet they limit those processes in significant ways.  

 

2.1.1 Web Ontology Language (OWL) 

 

We follow the W3C recommendation that ontologies be published for exchange as OWL files 

(more precisely: as files using the OWL 2 Web Ontology Language). However, our conformance 

with the W3C recommendation regarding the use of OWL is not an endorsement of that 

language as being ideally suited to the task of publishing ontologies. Rather, it is a recognition 

that OWL is the current standard and the ecosystem of tools surrounding it makes it the current 

best choice. As technology evolves, other languages may replace OWL’s role as the standard. 

For example, ISO has sanctioned an additional language, Common Logic (CL) 

(http://www.iso.org/iso/catalogue_detail.htm?csnumber=39175), and its use for ontology 

formulation is increasing (http://stl.mie.utoronto.ca/colore/ontologies.html). CL has greater 

expressive power than OWL, but lacks certain computational features and tooling that make it 

less attractive than OWL.  

 

Similarly, work in the research field of ontology, such as the specification of Basic Formal 

Ontology (see below), is often written in first-order logic, but first-order logic lacks 

decidability—a feature of logical systems that is required for reasoners to detect violations of 

consistency. Because OWL is a decidable fragment of first-order logic, we take it as best practice 

that the canonical statement of an ontology be made in first-order logic, and its implementation 

in a particular language, such as OWL, be made conformant with the canonical representation, 

such that nothing said in OWL is in violation of what is said in the canonical representation in 

first-order logic. In this way, we attempt to balance the need to be formally exact in our 

expression with the practical need to implement ontologies that may be used according to 

adopted standards.  

 

2.1.2 Basic Formal Ontology as Top-Level Ontology 

 

Ontologies are classified according to level: top-level, mid-level, and domain-level. The lowest 

level ontologies are called ‘application ontologies’.  

 

The level of an ontology is determined by the level of generality of the types in reality that it 

represents. Object, for example, is a very general type and so the class ‘Object’ should belong to 

a top-level ontology; Living Thing and Person are less general types that belong to a mid-level 

ontology, since they are common across many but not all domains. Still less common types, such 

as Blue Eye Color, belong to a lower-level ontology, such as a domain ontology (i.e. the domain 

of eye colors). At the lowest level, application ontologies are built that service the needs of a 

particular application. For instance, an application may require a class ‘Blue Eye Color with 

Shade RGB Value Range .20-.75’. Such a class would be particular to the needs of the 

application that requires the gathering of data according to the parameters of the class. Thus, a 
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class like ‘Blue Eye color with Shade RGB Value Range .20-.75’ would belong to an application 

ontology.   

 

As will be explained more fully in the section on design principles below, we recommend a 

tiered architecture of ontologies starting with a single top-level ontology that forms the base of 

all other ontologies.  The purpose of the top-level ontology is to provide a high-level, domain-

neutral representation of distinctions such as that between objects and events, and between 

objects and their attributes (e.g. qualities and roles).  

 

There are many benefits provided by a top-level ontology. One of the main benefits is that a top-

level ontology’s high-level distinctions impose a certain amount of control on those ontologies 

that descend it, requiring these ontologies to continue to use their vocabularies in a controlled 

and precise manner. This means that if a top-level ontology distinguishes Processes from 

Objects, that a domain ontology that has a class such as ‘Person’, which it asserts to be a subclass 

of Object, cannot at a later time treat instances of processes as instances of ‘Person’; trying to do 

so would create inconsistencies that could be detected with the use of ontology reasoners, such as 

FaCT++ and Hermit. In such a way, use of top-level ontologies prohibits a tendency at semantic 

drift that leads to a lack of interoperability over the lifetime of an ERP system. 

 

We recommend Basic Formal Ontology 2.0 (BFO) as the top-level ontology [1]. BFO is a small, 

highly abstract, top-level ontology designed for use ‘under the hood’. Its role is to provide a 

framework that can serve as a common starting point for representing types that are more 

specific in order to ensure consistent ontology development at lower levels in a way that 

maximizes the degree of interoperability among ontologies developed by different collaborating 

groups. 

 

One reason for the success of BFO is that it is a strict top-level ontology. As such, it is domain 

neutral and does not contain its own representations of physical, chemical, biological, 

psychological, social, or other types of entities that would properly fall within mid- or lower-

level domains. BFO is correspondingly very small, with a narrowly focused task: that of 

providing a top-level ontology that supports the integration of multiple heterogeneous domain 

ontology plug and play modules at lower levels.  

 

2.1.3 Common Core Ontologies as Mid-Level Ontologies 

 

The purpose of the Common Core Ontologies (CCO) is to extend BFO to a structured 

vocabulary that can be easily extended to represent the content of any specific data source 

whatsoever. The design of CCO is such that explicit connections between classes are not 

typically asserted.  For example, the CCO class ‘Person’ does not have a number of axioms that 

relate it to other classes, such as ‘Weight’ or ‘Occupation’, in a way that would be analogous to 

the way attributes of entities are linked in a logical model of a relational database. The reason for 

this is that a guiding principle in the development and application of the CCO is to produce a 

vocabulary that can integrate all information from any data source about every type of entity, and 

not to prescribe, and thus limit, the types of information that should be collected or queried about 

a particular type of entity. To provide this functionality, the CCO defines a modular set of 
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extensible classes and relations that can be connected as needed at the instance level to translate 

information from data sources. 

 

The Common Core Ontologies comprise a suite consisting of twelve ontologies that have been 

designed to cover particular domains. These domains include: agents (organizations and 

persons), artifacts, events, geospatial, time, qualities, and information. Whatever content from a 

particular data source that is not found in the Common Core Ontologies is then added to domain 

ontologies that extend from those in the common core. Building ontologies in this manner 

reproduces patterns of expression across domains that reduce the amount of time and effort 

required by analysts, query writers, and algorithm developers to acclimate themselves and their 

products to different content. As new data sources are encountered, existing semantic content 

from already built ontologies is re-used to the extent possible. Building ontologies in this 

controlled manner greatly reduces the proliferation of ontologies, which in turn reduces the 

amount of time and effort required to find content and build mappings between content. 

Importantly, the method enables rapid development by creating a cycle of ever diminishing 

extent of new content that needs to be ontologized. Figure 1 provides a visualization of the 

method. 

 
Figure 1 The Common Core development methodology 

 Each of the ontologies in the Common Core was developed alongside the others in the 

suite, allowing the files and their import ontologies to be used independently or in conjunction 

with one another. For this reason, the Common Core Ontologies have a modular design, and each 

ontology in the suite may be referred to an ‘ontology module’. The CHAMP ontologies, in turn, 

extend from the Common Core ontologies and retain the modular design, such that each 
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CHAMP ontology module and its imported ontologies may be used independently of other 

CHAMP ontology modules.  

 

 However, the CHAMP ontologies, like those of the Common Core, were designed to 

retain their status as mid-level ontologies. This is because they were built to be reference 

ontologies that might impose conformity on ontologies that extend from them. Such ontologies 

include the lowest level ontologies: application ontologies. Application ontologies extend mid-

level and top-level ontologies to provide terminologies that might service a particular application 

or purpose.  

 

2.1.4 Ontological Realism 

 

To maximize both utility and stability, the modeling process of ontology development should 

rest on what in [6] is called ‘ontological realism’, which amounts to the idea that an ontology 

should be analogous not to a data model, but rather to a reality model. Under this constraint, 

ontologies are representations not of the data to be integrated, but rather of the entities to which 

those data refer. Some ontologies will indeed need to contain terms referring to data items – for 

example, to types of images, or types of email, or of other text documents. By following the 

practice of ontological realism these ontologies will treat these data items as entities in reality in 

their own right.  

 

Employing the methodology of ontological realism results in ontologies that are the best 

candidates for serving as common models of all the data sources within a complex information 

ecosystem. Realist ontologies serve as a proxy for some portion of the world, employing, as far 

as possible, consensus expressions from natural language, including scientific vocabularies. Data 

sources are descriptions of the world, but they also add a layer of perspective in order to serve 

the application specific needs of their users.  Realist ontologies enable enterprise-wide data 

integration by circumventing this layer of perspective from each of the several data sources 

involved and thereby arrive at a depiction of the domain that can serve as benchmark for their 

integration.  

 

Adopting the method of ontological realism also contributes to improved governance. In order 

for an ontology to adhere to the realist approach, all of its assertions must be true of the world; if 

they are not, they must be corrected in order to be so. Using the world as a basis for determining 

the correctness of an ontology provides a clear methodology for adjudicating disputes and 

continually improving an ontology’s content; this is an important benefit for long-term 

management. 

2.2 Requirements 
 

We have now described four constraints: the use of OWL, the use BFO as a top-level ontology, 

the use of the CCO a set of mid-level ontologies, and the use of method of ontological realism. 

These four constraints provide the basis for building high-quality ontologies. In this section, we 

describe the requirements of that the CHAMP ontologies fulfill.  
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2.2.1 Consistency 

 

An ontology is consistent if and only if every one of the classes denoted by its terms can have 

instances. In its simplest form, an inconsistent ontology would define a class such that any 

instances would need to have a set of incompatible characteristics, X and not-X. Of course, 

inconsistent ontologies are not built intentionally. More often than not, they are the result of 

oversights caused by the complexity inherent in formalizing some domain. As the number of 

terms, relationship expressions, and axioms within an ontology grows, so too does the likelihood 

of introducing an inconsistency. This likelihood is increased further as the number of ontologies 

within an enterprise grows, as ontology developers are provided with the need, and the 

opportunity, to import terms from multiple sources. 

 

To test an ontology for consistency, there are a number of automated reasoners available that can 

trace through all of the relationships in the ontology and detect any inconsistencies. The majority 

of these reasoners are capable of performing consistency tests on ontologies written in the Web 

Ontology Language (OWL) DL dialect of OWL (OWL 2 DL).  

 

2.2.2 Principle of Single Inheritance 

 

The principle of single inheritance prescribes that each ontology class should be a subclass of 

one and only one ontology class. The resultant chain of single inheritance forms what is called 

the asserted taxonomy. Adherence to this principle ensures that everything that holds of a parent 

term holds also of (is inherited by) all descendant terms at lower levels. This means that each 

asserted taxonomy has a single root node and that every ontology will contain one or more 

asserted taxonomies as proper parts. All non-root terms will have exactly one parent, from which 

it descends via a subclass of or is_a  relation.   

 

This principle does not prohibit the use of subclass or equivalent class axioms whereby a class is 

defined to be a subclass or equivalent class of an anonymous class. The OWL language provides 

the means to express facts about entities using relations to other entities at the instance-level. For 

example, a fact such as “Automobile has part some Engine” uses the has_part relation to relate 

instances of automobiles to at least one instance of engine. The semantics of this fact is that 

Automobile has been made a subclass of the anonymous class “thing having at least one engine 

as part”. The class is anonymous because it is not part of the asserted taxonomy. The set of 

subclass and equivalent class axioms forms the inferred taxonomy of an ontology. In this inferred 

taxonomy, classes previously anonymous become explicit and the principle of single inheritance 

is no longer in force. 

 

2.2.3 Definitions  

Every class in an ontology (other than the root) should be provided with an associated human-

readable definition. Standardly, this association is achieved by adding annotation properties, 

which are a means for associating metadata with elements in an ontology file. Whereas the use of 

the RDFS annotation property ‘comment’ is acceptable, it is preferable that a new annotation 

property be created expressly for this purpose.  
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The human-readable definitions of classes in the ontology are required to be always of the genus-

species form: 

 

an S = Def. a G that Ds 

 

where ‘S’ (for: species) is the term to be defined, ‘G’ (for: genus) is the immediate parent term of 

‘S’ in the relevant ontology, and ‘D’ (for: differentia) provides the species-criterion; that is, it 

specifies what it is about certain G’s that makes them S’s. As ontologies evolve, it is expected 

that the human readable definitions will be translated into subclass or equivalent class axioms as 

described above in the section on single inheritance.  

 

Examples:  

 

• Natural Event =def. a Process that is not caused by any human act. 

• Geographic Event = def. a Natural Event that affects some Geographic feature 

• Landslide =def. a Geographic Event in which there is a rapid descent of soil or rock down 

a mountainside. 

As more specific terms are defined through the addition of ever more detailed differentiae, their 

definitions encapsulate the information regarding child-parent links connecting each class all the 

way back to the corresponding root. At the same time, the task of formulating definitions serves 

as a check on the correctness of the constituent hierarchies in these ontologies.  

 

Use of the genus-species definition structure helps to ensure that definitions are not circular 

(when the term defined appears in its own definition), and thus that they communicate 

information that is of value to the user – in conformity with the principle that a definition should 

use only terms that are easier to understand than the term defined.  

 

Definitions are required also for (non-root) object properties, and these two should as far as 

possible be defined using the genus-species rule. 

 

2.2.4 Preservation of Meaning of Higher-Level Ontology Terms  

 

It is a fundamental principle of best practice that one re-use terms from other ontologies, since 

re-use contributes to the interoperability of ontology modules and thus also of the information 

systems that these modules support. However, if not performed carefully, the reuse of terms can 

bring the risk of altering the meaning of the re-used term.  The most common way in which this 

type of problem occurs is when an ontology reuses a term from a higher-level ontology, but adds 

to its content through the addition of an axiom. An example is reusing the term Organization but 

adding an axiom that asserts that every such organization has exactly one leader. To be 

conformant, the creator of the lower-level ontology should either request that the curators of the 

top-level ontology add the axiom, or introduce into the lower-level ontology a subtype of 

Organization (e.g. Single Leader Organization) to which the axiom could then be added without 

altering the meaning of the original. 
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2.3 Accomplishments 
 

2.3.1 The Industry Ontology Foundry 

 

Despite its early termination by DMDII, the CHAMP project has succeeded in having a 

significant impact on industry work in ways both large and small. In the Spring of 2017, Clare 

Paul at the Air Force Research Laboratory and Hedi Karray at the University of Toulouse were 

invited to the University of Buffalo for workshops dedicated to representing the domain of 

materials. These discussions resulted in a re-orientation of their work, which now uses Basic 

Formal Ontology as a top-level ontology, along with our series of design principles and methods 

drawn from the BFO framework. The researchers at the University of Buffalo are grateful that 

CHAMP has supported these partnerships. 

 

However, the greatest impact of the CHAMP project on industry will be to seed the Industry 

Ontology Foundry—an initiative modeled on the Open Biomedical Ontology Foundry [7]—

whose purpose is to create a large, expert-curated suite of interoperable high-quality ontologies 

covering the domain of industrial (especially manufacturing) engineering. These ontologies will 

be developed in tandem to ensure that they promote interoperability, and each will be small but 

easily extensible for different companies concerned with particular domains. In parallel to the 

CHAMP project, planning discussions have been occurring among individuals at a number of 

different organizations.  

 

Organizations participating in the Industry Ontology Foundry presently include: 
• NIST 

• Air Force Research Laboratory 

• Airbus  

• Autodesk 

• Cambridge Semantics  

• CIMData 

• CUBRC  

• Dassault Industrie

Following the present discussions among IOF participants, the IOF will provide an online 

repository for vetted and curated ontologies of industry. Each of these ontologies will be 

committed to a series of shared design principles, whose purpose is to both raise the quality of 

the ontologies and to ensure a greater degree of interoperability and thereby to encourage re-use. 

The CHAMP project was conceived as a stepping stone in achieving this vision, with its mid-

level reference ontologies to be used as drafts that will undergo refinement among members of 

the IOF. The software produced by CUBRC as a result of CHAMP will also be disseminated 

among IOF members and its integration encouraged within the future IOF platform.  

 

2.3.2 Education 

 

The CHAMP project has also made substantial contributions to engineering education by 

providing funding for three students attached to the CHAMP project, with an additional three 

engineering students attached to the project as well. These six graduate students, five of whom 

are from the engineering school at the University of Buffalo, gained experience: building 

ontologies in OWL using the ontology editor Protégé; mapping tabular data structures to OWL 
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ontologies to create RDF triple stores; and doing so within the domain of the product life cycle. 

This experience has already opened up opportunities for some of them to continue this work by 

collaborating with other researchers elsewhere on related projects.  

 

In addition to the opportunities offered to students, CHAMP has led to collaboration among an 

international network of academic partners, who are now active collaborators on the IOF.  

 

 These institutions and their members include:  
 

• INP-ENIT, University of Toulouse (Hedi Karray) 

• Clemson University (Venkat Krovi) 

• École polytechnique fédérale de Lausanne (Dimitris Kiritsis) 

• Loughborough University, UK (Bob Young) 

• National Center for Ontological Research (Kemper Lewis, Rahul Rai, and Barry 

Smith) 

• Penn State (Timothy Simpson) 

• Texas State (Farhad Ameri) 

• UMass Amherst (Ian Grosse) 

• University of Toronto (Michael Grüninger) 

2.3.3 The Product Life Cycle Ontologies 

 

As we began to plan out the ontologies we were to design, we took as our domain the 
product-life cycle, from the initial product design phase through production, testing, use, 
and the end-of-life phase. To approach a domain of such significant scope, we began 
by working in the constraints described above, re-using other ontologies (namely, BFO 
and those of the CCO) and conceiving of more general, mid-level ontologies that may 
be extended in other ontologies under development, or by others for particular purposes 
in application ontologies. This was carried out in order to complete the goal, specified in 
our contract, to: “construct a semantic model establishing a manufacturing domain 
ontology (vocabulary and relationships) representative of the prevalent concepts and 
associations that are common across small to mid-sized manufacturing companies 
holistically.” 
 

Our representations of the domain of product-life cycle were constructed in dialogue with 

experts in industry and engineering at the University of Buffalo, the Air Force Research 

Laboratories, and NIST, as well as with our industry partner, Cobham. Cobham provided us with 

data from the domains of manufacturing and design, which were used to construct particular 

application ontologies to which we hoped to align data in order to create RDF triple-stores that 

could be load tested. These alignment and load testing tasks did not occur due to the early 

termination of the project. However, these application ontologies were also generalized in the 

creation of mid-level ontologies of design and manufacturing, such that they could be both useful 

and publically available. As a result of working both from expert-level descriptions of the 

domain, as well as from the vocabulary particular to Cobham, we were able to test our initial 

representations of the product life-cycle against the coverage necessary to service lower-level 

domain ontologies particular to the vocabulary of Cobham’s many data sources.   
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There are seven mid-level ontologies in the product-lifecycle ontology suite developed under 

CHAMP that are in a sufficient state of completion that they merit a public release. Stating 

clearly their state of completion would be impossible, given that there are no explicit standards 

for evaluating the readiness of ontologies according to which they could be rated. The seven 

include ontologies that cover the following domains: commercial entities (e.g. products and 

economic goods), design, maintenance, manufacturing processes, the product life cycle, testing 

processes, and tools. Each contains classes and object properties relevant to the representation of 

their domain, and each class has a definition conforming the genus-species form detailed above. 

Furthermore, the commercial entities ontology makes use of axioms in OWL to distinguish many 

of its defined classes, including Product, Economic Good, and Service, from the asserted 

taxonomy containing Material Entity, Software, and Intentional Action.  

 

Each of these seven files constitutes a mid-level ontology that imports the whole of the CCO, as 

well as BFO, while continuing the modular approach of the CCO. The import structure among 

the files themselves can be seen in Figure 2 below. Each file imports the Common Ontologies 

and Basic Formal Ontology, but individual files vary; for example, with the Commercial Entities 

Ontology having no other imports, while the Maintenance Ontology imports both the Product 

Life Cycle Ontology and its import, the Commercial Entities Ontology.  

 

 
Figure 2 The import structure among the seven ontologies of the product life cycle suite 

 

As part of this project, we had also been working on an ontology of Unix permissions, which 

was designed to facilitate the integration of access permissions in a system relying solely on an 

RDF back end. Second, we had also been aiding in the construction of an ontology of materials 

properties, aiding Clare Paul at the Air Force Research Laboratory in its development. This 

ontology covers material properties such as stress, hardness, as well as phase states of matter 

(e.g. liquid, plasma, and solid) and would have been integrated with the ontologies we had 

developed, and it would have become the parent ontology of two other ontologies we had 



CHAMP Base Year Final Report  January 2018 

12 | P a g e  

developed independently of the CHAMP project: an ontology of additive manufacturing and an 

ontology of functionally graded materials. Third, we had planned to also engineer an ontology 

concerning what we informally called ‘business flow’ that would have represented the domain of 

documentation, including processes of signatory approval, forms, templates, budgets, contract 

evaluation processes, and budgeting, all of which is vital to the representation of ownership, 

commerce, and planning. Such work would have re-used portions of the Document Acts 

Ontology—a publically available, open source ontology presently used in many projects in 

bioinformatics. Finally, we had planned to continue developing the ontologies that carried 

through to the end of the product life-cycle, including ontologies of recycling and disposal, the 

use of artifacts, and logistics. These projects will not be carried out under CHAMP as a result of 

the early termination decision, but we hope later efforts, including those of the IOF, will revive 

some of them. 

 

The seven ontology files completed as part of CHAMP will continue to evolve following their 

public release as part of the IOF effort as they are critiqued and re-worked by others working in 

the field. In our review, we found no comparable set of modular ontologies developed for 

industry that are rooted in a principled approach to ontology design, and thus that share in our 

long-term vision of open-source ontology curation and re-use. The participant organizations in 

the IOF know this as well, and the need for such work remains a driving motivation behind their 

endeavors.  

2.4 Lessons Learned 
 

There are well-known problems in ontological engineering that were made more salient in 

working in the domain of industry. Here, we describe two that we encountered, with which any 

project adopting ontological realism will also contend. 

 

First, the domain of materials requires the tracking of portions of material (e.g. a portion of 

laminate composite, a stack of steel beams, a volume of water in a tank) as they undergo change. 

Change in a portion of material can occur both as a result of molecular change (for instance, a 

change in its material phase state) or as a result of the gain or loss of a material part. Basic 

Formal Ontology provides resources for tracking such entities as they undergo change (see [3] 

for discussion), but even here we uncovered two limitations. The first of these concerns the issue 

of ‘gappy’ objects, as when a watch at time 1 is disassembled at time 2 and put back together at 

time 3. The issue of gappiness concerns whether or not we should affirm that portions of 

material, like the watch, endure through their dissolution or not; i.e. should an ontology affirm 

that it is the same watch at time 3 that it was at time 1 or a new watch at time 3, with the original 

watching permanently ceasing to exist at time 1 (similarly, is a portion of material that is divided, 

then brought together again, the same portion). Second, BFO is committed to a 

nonmultiplicativist philosophy according to which instances rigidly belong to asserted classes, 

such that an instance of Object is always an object, and if it ceases to be an object, it thereby 

ceases to exist. However, there is a significant need to acknowledge that materials are both 

objects at one level of description, while also object aggregates composed of molecules at 

another level of description. Given BFO’s commitment to nonmultiplicativism, it remains an 

open question how best to account for the fact that objects appear to belong to distinct classes at 

different levels of description. This is an issue for which further experimentation is necessary. 
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Second, in our research, we encountered no ontology or taxonomy of artifacts (i.e. tools, 

instruments, machines, computers, etc) that seemed sufficiently motivated by principle to count 

as superior to every other ontology of taxonomy. In our review, most were either very poor, or 

were built around an excellent standard that was, nonetheless, not common across industry, or 

consisted of a mere list of artifact types whose classification seemed boldly open to critique. In 

the future, the domain of artifacts requires special attention, since a taxonomy of artifacts and a 

taxonomy of artifact functions is often doing double-duty within an ontology (representing the 

same domain in overlapping ways) when one taxonomy could do both. In addition, other features 

of artifacts, such as the domain in which an artifact typically operates (e.g. kitchen tools, 

carpentry tools, injection molding tools), the type of process in which the artifact is typically 

employed (e.g. screwing, molding, sanding), or the certification necessary for the prescribed 

operation of the tool (e.g. fork-lift license) are, in addition to many others, alternative ways of 

querying a tool catalog that are over and above the work performed by a taxonomy of artifacts 

alone.  

 

Although these issues occur across domains, they are somewhat more pressing in industry, which 

is particularly concerned with artifacts and materials. Thus, they reveal deeper problems with 

ontologizing data across the product life cycle than has been appreciated elsewhere by those 

tasked with developing modeling standards that may serve the end of data integration. Had we 

time, this section may have articulated steps toward practically addressing these issues in our 

implementation, but due to our earlier termination, we only articulate them here in the hopes that 

others may see them clearly and address them forthrightly.    

3 Working with Data: Alignment and Ingestion 
 

A primary concern of the CHAMP project was making semantic technologies practical to 

implement. If a company is to make day-to-day use of our ontologies to create, store, and interact 

with data in the form of RDF triples, then at least two general capabilities are required. 

 First, a company must have a way of aligning the future data it acquires, as well as its 

existing data, to our ontologies in order to produce RDF triples, so that queries may be run across 

their data. We suspect most companies are not so different from Cobham in having data that 

appeared in the following forms: relational databases (SQL), tabular data in the form of Excel 

files, specifications and reports in the form of unstructured documents containing tables and 

other elements (e.g. Word documents), CAD files stored in a variety of formats, and image 

formats (e.g. TIFF).  

 For many mid-sized companies, the majority of their data is likely stored in a relational 

database, but for many day-to-day activities, employees likely continue to work with a windows-

folder hierarchy accessed via series of hyperlinks, where key documents were stored that both 

reported on and prescribed various work processes. CHAMP was well-prepared to deal with 

relational databases, as there are already many tools available for linking relational databases to 

ontologies. CUBRC’s in-house application, OSCAR, provides enhancements to the open source 

application ‘KARMA’—a program used for aligning tabular data sources to ontologies to 

produce RDF. However, in order to accommodate data in other formats, other tools were 

needed—in particular, what was required was an alignment tool that could save and call back 

RDF triples to be used in further alignment tasks. For this task, we created the application 

‘Process Workflow’, which we describe below.  
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 Second, employees of the company must have the ability to browse and query their data 

without being experts in semantic technologies. In particular, the query language for semantic 

web, SPARQL, has a steep learning curve, and would not be practical for day-to-day users to 

learn and work in. For this reason, we created ‘OntoView’, a technology that allows users to 

browse and query data by providing a GUI on top of a SPARQL engine. 

 These two technologies are prototypes, but they address—like no other technology with 

which we are familiar—the concern of how companies are to work and interact with data stored 

in RDF. Because CHAMP is interested in providing a very low-cost option for increasing 

interoperability for companies, we are excited by the direction of these technologies.   

 In an effort to explore how granular we could get in our data alignment, we also explored 

NLP as a solution to extracting data from unstructured text (e.g. Word documents). These results 

are also reported below.  

 

3.1 OntoView 

3.1.1 Overview 

OntoView is a technology that exposes data stored within a Resource Description Framework 

(RDF) triple store and provides a web-based graphical user interface (GUI) to view and query 

that data. Users build SPARQL Protocol and RDF Query Language (SPARQL) queries 

containing basic graph patterns derived from the traversal of relationships between International 

Resource Identifiers (IRIs), and alter that query using a guided syntax editor GUI. This 

technology leverages the CCO for resource identification and a taxonomy-based IRI search 

capability. 

Knowledge of data schema is a key factor in building queries. When the data schema is 

sufficiently large, exploring data of interest is critical to understanding the data schema and is 

useful for refreshing the data analyst’s mental model. OntoView provides a GUI that facilitates 

data exploration and query building through data exploration. 

 
Figure 3: OntoView landing page 
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Figure 4: OntoView taxonomy search 

 
Figure 5: OntoView search result 

 
Figure 6: OntoView data exploration breadcrumb 
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Figure 7: OntoView query builder 

 
Figure 8: OntoView function editor 
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3.1.2 Requirements 

OntoView fulfills the following high-level requirements: 

• Provide “one-hop” navigation through data stored in RDF format 

• Provide real-time configuration of triple store access parameters 

• Meet the following CHAMP specific requirements: 

o Provide improvements on SPARQL query building: 

▪ Provide ad-hoc SPARQL query building capabilities 

▪ Provide complex SPARQL query clause building capabilities, such 

as FILTER, BIND, OPTIONAL, and UNION clauses 

▪ Provide query variable management 

▪ Provide SPARQL 1.1 function reference information 

o Provide taxonomy search through class exposure 

3.1.3 Architecture 

The OntoView architecture consists of a browser-based front-end GUI and a Java server 

backend. The front end communicates with an external REST-enabled triple store, with the 

requirement that the triple store communicates results in SPARQL 1.1 Query Results JSON 

Format. The back end primarily serves the endpoints that the front end displays, and also 

provides CRUD operations for front-end configuration. The following diagram illustrates the 

architecture: 

 
Figure 9: OntoView architecture 

OntoView has the following library and system dependencies: 

• Front end 

o Node and NPM: JavaScript build platform and package manager 

o Ember: client side MVC framework 

o Foundation: responsive front end CSS and JavaScript framework 
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o Font-Awesome: font and CSS toolkit 

o ChosenJS: plugin providing functionality on top of select boxes 

• Back end 

o Java 8 

o Maven: Java project management and build tool 

o Spring and Spring Boot: framework used for dependency injection and 

web servlet implementation 

o FasterXML Jackson: library used for JSON manipulation 

o SnakeYAML: library used to process YAML 1.1 

o Apache Jena: Semantic Web framework 

o Various Apache Commons projects 

o Jetty and JBoss Wildfly: enterprise application containers 

The front end is built on top of the Ember MVC framework. Data primarily flows from an RDF 

triple store straight to the front end through an Ember service, rendered through GUI 

components. As the user navigates through data, another Ember service tracks progress through 

the dataset and passes that state to the query builder should the user choose to end progress 

tracking. 

 

There exist four distinct user flows: 

• Data browsing without progress tracking 

• Data browsing with progress tracking, leading to a query built on the exploration 

breadcrumb 

• Building ad hoc queries 

• Editing OntoView settings configurations 

All user flows are accessible by direct route by the user, or navigable by interface controls from 

the landing page. 

 

3.1.4 Accomplishments 

 
OntoView, as improved through CHAMP, replaced an earlier version of itself by 
adding usability improvements and the features listed above. 
 
OntoView allowed for faster turnaround of Process Workflow (see below) feature 
development. The data transparency provided by both the taxonomy search and 
data browsing was instrumental in verifying instance data created by Process 
Workflow. 

3.1.5 Lessons Learned 

 
“One-hop” data browsing is good for exploration, but requires many clicks to get to 
multiple end results, i.e. a collection of literals for an entity. An entity view based 
browsing solution was designed and partially implemented, but there wasn’t 
sufficient time to complete nor demonstrate the capability. 
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The query builder interface was designed for an intermediate to advanced user; 
novice users would have built queries using the entity view based browsing solution 
mentioned above. 
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3.2 Process Workflow 

3.2.1 Overview 

Process Workflow is a collection of prototypical technologies that provide manufacturing 

process creation, storage, retrieval, and display with GUI. The software leverages process, 

product life cycle, tool, and design ontologies, as well as the CCO for common representation. 

Process Workflow provides a prototypical GUI for creating processes using the CCO as the 

common format, as well as a translation layer providing CRUD operations for process records.  

 
Figure 10: Process Workflow landing page 

 
Figure 11: Process Workflow processes table 



CHAMP Base Year Final Report  January 2018 

21 | P a g e  

 
Figure 12: Process Workflow process editor 

 
Figure 13: Process Workflow legacy data input landing page 
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Figure 14: Process Workflow legacy data input 

 

3.2.2 Requirements 

Process Workflow fulfills the following high-level requirements: 

• Provide a user workflow to create manufacturing processes using CCO 

semantics 

• Provide legacy data input for alignment of existing realized process data to the 

CCO 

3.2.3 Architecture 

The Process Workflow architecture consists of a browser-based GUI backed by a Java server 

responsible for data persistence and serving endpoints that the displays. The following diagram 

illustrates the architecture: 

 
Figure 15: Process Workflow architecture 



CHAMP Base Year Final Report  January 2018 

23 | P a g e  

Data flows primarily from an external triple store through the Java server back end where it is 

condensed to process records, then flows out as JSON-API to the client front end. The client 

consumes the JSON-API through data adapters at the application level and converts it to Ember 

model records for display by Ember components. 
Process Workflow has the following library and system dependencies: 

• Front end 

o Node and NPM: JavaScript build platform and package manager 

o Ember: client side MVC framework 

o Foundation: responsive front end CSS and JavaScript framework 

o Font-Awesome: font and CSS toolkit 

o ChosenJS: plugin providing functionality on top of select boxes 

o MomentJS: library used for parsing, validating, manipulating, and 

displaying datetimes 

o Pikaday: plugin providing calendar picker functionality and GUI elements 

• Back end 

o Java 8 

o Maven: Java project management and build tool 

o Spring and Spring Boot: framework used for dependency injection and 

web servlet implementation 

o FasterXML Jackson: library used for JSON manipulation 

o SnakeYAML: library used to process YAML 1.1 

o Apache Jena: Semantic Web framework 

o Various Apache Commons projects 

o Jetty and JBoss Wildfly: enterprise application containers 

 There are three distinct user flows: 

• Creating a new process 

• Editing an existing process 

• Entering legacy data 

All user flows are accessible by direct route by the user, or navigable by interface 
controls from the landing page. 
 

3.2.4 Accomplishments 

Process Workflow provided a representative data translation layer between objects 
used by the front end client and the CCO common representation. This is useful and 
applicable outside of the current usage. 

3.2.5 Lessons Learned 

Early iterations of the software followed loosely-defined user workflows; this caused 
some undue constraints on the user while creating processes. These were mitigated 
through usability improvements and interface transparency into available data 
records. 
The original requirements specified prototypical GUI components for creating and 
generating data reports; insufficient development time was available to include these 
features. 
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3.3 Natural Language Processing 

3.3.1 Overview  

 

‘Natural language processing’ (NLP) refers to a collection of technologies required to parse 

unstructured and natural language documents for the purposes of extracting and exploiting 

information from those documents. The extracted information typically falls into four areas: events, 

entities, locations, and dates. NLP is a fairly mature technology that is founded on the known 

fundaments of language structures (e.g., English sentence canon is subject-predicate-object), 

orthographic principles (e.g., conventional rules of written text, cf. spoken dialogue), and semantic 

compositionality (e.g., figurative and literal uses of language). 

‘NLP pipeline’ refers to the chained sequence of analytics through which data progresses 

during an extraction task. A common first step in an NLP pipeline is tokenization, which is the 

identification of each individual token in the text. At a basic level, a token can be thought of as a 

word, but tokens are also punctuation marks, abbreviations, numerals, units of measurement, etc., 

which are not typically considered words in the strictest sense. A standard pipeline, after 

tokenizing a document, is then able to identify or make conjectures about sentence boundaries, 

assign part of speech attributes to each token, identify syntactic constituency, assign semantic roles 

to the arguments of verbal phrases, and finally present the semantic proposition(s) of each sentence, 

in whatever format has been specified.  

As a part of CHAMP, we explored the use of NLP for ingesting documents whose contexts 

consist largely of specifications frequently used in standards and work instructions. Our research 

was carried out on a work instructions document provided by Cobham.  

 

3.3.2 Lessons Learned 

 

 For a full account of the lessons learned, see a full report included in our documentation, 

where we describe our experiment process and provide examples from the Work Instructions 

provided by Cobham using the JET NLP engine. The basic finding was that NLP did not work 

well on the work instructions because the instructions cannot reasonably be considered natural 

language. Rather than having the ‘subject-predicate-object’ form of natural language sentences, 

many instructions lacked a subject (e.g. ‘Apply lubricant to the gear shaft’) and contained nested 

or bulleted lists that represented an order of operations to be executed by a worker. These 

elements, together with all the part numbers and references throughout, made these documents 

poor candidates for NLP. 

  Although it would have been nice to have easily extracted specifications from these 

documents using NLP, for Cobham engineers, this would have been an over delivery. From their 

perspective, merely finding the documents that specify standards and other information relevant 

to a planned manufacturing process is itself a win, and our ontologies already make this possible. 

This is done by representing the document as an instance of Specification, and relating it at the 

instance level to an instance of Process (e.g. a Manufacturing Process). This link already 

facilitates the representation of industrial processes and the documents that contain standards, 

instructions, and other prescriptions that guide these processes.  
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 Because NLP was not a fruitful approach to the extraction of data from unstructured 

documents, where such extraction is valuable, we suggest using a solution such as M-Turk, and 

paying workers a fee to paste unstructured document elements into a template whose columns 

are already mapped to terms in the ontology. For companies seeking a low-cost solution to this 

highly granular level of data extraction, this may be a quick, valuable investment that has the 

potential to replace large manuals containing standards and instructions.  
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