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I. EXECUTIVE SUMMARY 
 
In today’s digital age, enterprises can easily identify the many potential applications and 
associated benefits of data-driven manufacturing. Pilot programs have demonstrated the 
benefits of data-driven manufacturing, but there are few examples of a digital thread 
establishment in high volume production from which small and medium enterprises can learn 
and leverage. GE Aviation is committed to implementation of the digital thread needed to 
effectively manufacture increasingly complex designs aimed at improving fuel efficiency and 
reducing lifecycle costs of gas turbine engines. In 2014, U.S. air carriers spent $48 billion 
consuming 16.8 billion gallons of fuel [1]. The FAA forecasts that U.S. airline fuel consumption 
will increase by an average of 1.6% each year through 2025 [2]. Thus, a 1% reduction in fuel 
consumption through adaptive manufacturing via the digital thread would equate to over 500 
million dollars per year in U.S. fuel savings. 
 
High performance turbine blades are critical components in aircraft engines which require 
complex internal and external geometries. Their greatest post-casting manufacturing challenges 
are due to the inevitable variations in wall thickness and internal-to-external geometry that occur 
during the casting process. This manufacturing problem is a valuable case study for agile 
compensation to account for production variability, and the infrastructure and methodology 
developed to solve this problem can be applicable to many other manufacturing applications 
within aerospace, automotive and energy industries. 
 
One past response to this variation has been using casting data to manually classify parts into 
simple groups prior to machining. Such classifications have demonstrated appreciable loss 
reductions in low rate production in a Manufacturing Readiness Level 6 (MRL6) environment, 
but that approach is not scalable to higher volume production.  In this report, we describe a 
prototype of a fully automated digital thread for data transfer and methodologies that have been 
operationalized for connecting Arconic casting and GE Aviation turbine blade manufacturing 
facilities at MRL 7. This common digital thread supported the automated adaptive hole drilling 
operations within the GE Aviation enterprise and represents a scalable solution to the problem. 
 
Upstream in the turbine blade casting process, technologies and protocols were developed for 
encapsulating manufacturing data into a flexible xml file format by Arconic.  A robust data 
transfer protocol and techniques between Arconic and GE Aviation were deployed, tested, and 
utilized. Downstream work done within the GE Aviation enterprise established a process for 
receiving, storing, and analyzing the casting digital data in an agile manner. GE Global 
Research Center and University of Wisconsin performed analytical work to process the 
manufacturing variation data and rapidly generate automated part classifications.  These 
algorithms were deployed and demonstrated and enabled adaptive hole drilling.  Agile 
communication protocols to transmit part classification and adaptive drilling data to the CNC 
control software of the hole drilling machines within the GE Aviation production environment 
were successfully demonstrated. Integration of the software developed by International 
TechneGroup Inc. (ITI) for monitoring the state of the drilling machines in a production 
environment to enable optimal machine operation was also demonstrated. 
 
Figure 1 provides a graphical summary of the program and contributors. 
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Figure 1:  Robust Adaptive Turbine Airfoil Manufacturing via the Digital Thread 

 
Finally, the feasibility of more advanced adaptive machining – specifically individualized 
adaptive machining by part – was also evaluated. 

 
Under this program, tools and protocols necessary to assure casting data fidelity were defined 
and demonstrated.  Using the digital thread and classification tools established, that data was 
securely and reliably transferred to, and ingested by, GE Aviation.  Combining those processes 
and technologies with the part classification algorithms developed here, the baseline impact of 
the upstream casting variation on the manufacturing losses in downstream hole drilling 
operations were quantified.  For the primary GE Aviation high pressure turbine blade (HPTB) 
used in this program, 120 parts deemed to be at highest risk for manufacturing loss based on 
their as-cast condition (from over 9000 production castings) were isolated from routine 
production shipments. All 120 parts were adaptively drilled using the digital thread established in 
this program.  Post drill x-ray results demonstrated capability for drilling all 120 parts free of 
defects in the adaptively drilled regions.  The tools and approaches employed here have been 
described in detail, and functionalities that enable the scaling and leveraging of this approach 
have been incorporated into commercially available software tools. 

 
 

II. PROJECT REVIEW 

This effort uses the cooling hole drilling process as a baseline opportunity to demonstrate and 

optimize the digital thread across the value stream for processing turbine airfoils from casting to 

finished parts. Digital toolsets which analyze part variation data and health of machine groups 

have been created and applied to demonstrate and establish requirements for adaptive turbine 

blade hole drilling.  

Problem Statement and DMDII Relevance 

High technology manufacturing, such as production of aircraft engines, remains an economic 

competitive advantage in the United States. According to the Congressional Research Service 

analysis of International Organization for Economic Cooperation and Development data, the 

United States not only “derives a greater share of manufacturing value added from high-tech 

industries,” that share has also been growing in the U.S., as opposed to declining in many other 

OECD member countries. [3] United States manufacturing productivity surpasses that of other 

countries with every $1.00 spent in manufacturing adding $1.37 to the economy. [4]   

High volume manufacturing facilities perceive risk in implementing digital thread infrastructure 

and agile adaptive machining within their fast paced, highly productive environments without 

Benefits 

• Increase process capability & 

reduce manufacturing costs 

• Enable next generation higher 

performance designs 

• Optimize features-based part 

condition instead of nominal  

• Tie field performance to 

manufacturing data 
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first maturing the technology in a representative environment. In 2006, GE Aviation established 

Manufacturing Technology Lean Labs to be the bridge between low Manufacturing Readiness 

and Technology Readiness Level (MRL & TRL) research and development institutions, 

designers of next generation components, and high-volume manufacturing facilities which 

require technologies to be at MRL 8-10 for cost effective and robust operation. 

The GE Aviation Turbine Airfoils Lean Lab works with research and development institutions to 

define requirements for new technologies. Lean Lab engineers and technicians mature and 

industrialize the technologies from proof of concept (TRL/MRL3) through low rate production in 

a representative environment (TRL7/MRL7). Newly designed turbine blade hardware is 

manufactured at low rate initial production by production operators in the Turbine Airfoils Lean 

Lab to truly demonstrate technology maturity. Process engineers manage the process transition 

and train the high-volume facility personnel on the equipment, processes, and quality 

methodologies involved. The GE Aviation Turbine Airfoils Lean Lab is thus uniquely positioned 

to demonstrate and transition to high volume production adaptive turbine blade cooling hole 

drilling using upstream casting data through implementation of the digital thread. 

High Pressure Turbine (HPT) blades are the product of sophisticated manufacturing processes 

and are subject to manufacturing constraints and variations that affect their performance.  

Manufacturing processes include the fabrication of wax and core molds and dies, ceramic core 

formation, casting of metal parts, machining to final dimensions, and the machining of film 

cooling holes and channels.  All manufacturing processes result in deviations from nominal 

design specifications; however, with a balance of state-awareness and production agility, 

downstream processes can be compensated to achieve the designers' desired (i.e. nominal) 

performance. 

Figure 2 illustrates the process flow for a high-pressure turbine blade casting, highlighting sources 

of variation. 

 

Figure 2 Turbine Blade Investment Casting Sources of Variation 

During cooling hole manufacturing, the casting is loaded into a fixture on the drilling machine 

tool which constrains and locates the part relative to an external geometry datum coordinate 

system.  Electro-discharge machining (EDM) and laser drilling are both processes used for 

generating shaped and round cooling holes at shallow incident angles to the airfoil surface. 

Upstream casting variation such as material and geometry variations can have an impact on the 

cooling hole drilling processes. This condition is illustrated in Figure 3. Casting variation results 

in a varying metal wall thickness from part to part due to the shift of the internal ceramic core 

insert during the casting operation.  
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Figure 3 Geometry of Hole Drilling Operation in High Pressure Gas Turbine Components 

Due to the shallow incident angles, the variation of the actual drill length required to punch 

through the metal into the cavity is magnified proportional to the hole incident angle. If the hole 

is not drilled through the complete hole drill length it will result in a blocked hole defect. 

 

If the hole drilling operation is not adequately tuned to anticipate such variation it can result in a 
significant increase of blocked hole defects as shown in 4. The data show that the hole drilling 
operation produced blocked (not-through) holes at locations where the wall thickness was 
significantly greater than the expected norm. Blocked hole defects trigger undesirable drill 
rework and expose the part to additional risk of unintended over-drilling into a back-side cavity 
wall, resulting in a different manufacturing defect. 

  

Figure 4: Casting variation can cause blocked holes due to unexpected metal wall thickness [5] 

Conversely if the actual casting wall thickness is significantly lower than the anticipated wall 

thickness it may result in an unintended over-drill operation, where material is erroneously 

removed at an unintended location near the hole such as at the far end of the cavity.  
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Historically, yield loss at hole drilling operations can result in over 50% of the overall loss from 

post casting operations: 

                Yield loss during hole drilling from post-casting machining operations [5] 

 

Another possible condition caused by the shift of the internal cavity is the intersection of the 

cooling hole electrode in the internal cavity at a location that is substantially different from the 

nominally designed part condition as shown in schematic below. The intersection of the cooling 

hole in the internal cavity of the as-cast part is at radius location with substantially different 

geometry characteristics compared to the nominal condition. If the hole drilling operation is not 

adequately tuned to anticipate such variation it can result in a significant increase of blocked 

hole defects or over-drilling defects as shown in the schematic below. 

 

 
 

 

Laser and EDM systems are often equipped with breakthrough detection technology which 

senses when the beam or electrode has broken through the casting wall and terminates the 

burning cycle accordingly. While this technology has matured in recent years to significantly 

reduce blocked holes and over-drills into the cavity wall, there remain limitations with the 

technology, particularly when there is significant variation in the configuration of the internal 

geometry of the cavity due to upstream casting operations. 
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Shaped diffuser and cylindrical cooling holes in high pressure turbine blade 

As displayed above, cooling holes may be cylindrical or may have a shaped diffuser. The 

purpose of diffuser shapes is to direct and optimize the film cooling on the external surface of 

the blade with the air exiting from inside the blade through the hole. Much research has been 

done demonstrating the effect of geometric variations in diffuser shapes on film effectiveness 

and ultimately performance of the blade in the engine. [6] That is, the ability to tightly control 

diffuser geometry can increase the fuel efficiency and durability of engines in the field. The 

variation of external airfoil geometry and metal wall thickness can significantly impact the 

diffuser geometry produced by the laser and EDM machining operations. 

The most common method for manufacturing cooling holes involves fixturing the part relative to 

set external datums and removing material through EDM or laser without taking actual internal 

or external geometry into account. Design for producibility practices have enabled optimization 

of yield between casting and machining for this approach, but with increasing complexity in 

casting designs and the desire for increased control of diffuser shape geometry it may no longer 

be sufficient in the next generation of turbine blades to ignore casting variation during cooling 

hole drilling operations. While numerous efforts at including upstream casting variation have 

been made in the past, these efforts have been limited in scope involving largely manual data 

transfer and data analysis methods. Furthermore, the methods and implementation of the 

adaptive drilling offsets have also been mostly adjustments done directly on the hole drilling 

machines by process engineers, without automation. Thus, to industrialize and mature this 

methodology for robust, high-volume production, several developments were necessary.  Those 

developments are outlined in Table 1 below. 

Implementation of robust adaptive cooling hole manufacturing results in tighter process control 

of cooling hole manufacturing. The ability to adapt to various casting conditions may allow for 

looser casting tolerances, thus reducing casting costs while also reducing drilling losses and 

rework from blocked holes. Tighter control of shaped diffuser geometry and position can equate 

to greater engine fuel efficiency and durability.  
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Requirement Current State Project Action 

Secure and compliant 
transfer of casting data 
from vendors to GE 
Aviation servers 

- Emailed spreadsheets or print-
outs in boxes of parts per GE 
request from design 
engineering, manufacturing, 
quality, etc 

- Manual store & forward servers 
requiring hard token log in for 
each transfer 
 

- GE and Arconic evaluated 
and implemented a secure 
and compliant data 
transfer methodology 

Establish minimum 
viable casting data set 
size and locations 
needed for adaptive 
machining 
 
Establish minimum 
required repeatability 
and accuracy for 
adaptive machining and 
demonstrate capability 

- Casting data measurement 
requirements established for 
non-adaptive machining based 
on blade mechanical 
requirements 

 
- Measurement of accountable 

characteristics meets quality 
system requirements, additional 
or more stringent requirements 
for adaptive machining (if any 
exist) are unknown 

- GRC and University of 
Wisconsin developed 
software tools to analyze 
manufacturing variation 
data and proposed 
methodology for groupings 
in the amount of variation 
accounted for in different 
dataset designs 

- Validated robustness of 
groupings to gage 
repeatability and accuracy 

Final and accurate as 
shipped casting data 
only 
 

- In process and final data stored 
in same databases, manual 
intervention required to 
separate 

- Arconic established 
appropriate data structures 
and querying routines to 
ensure transfer of final, as-
shipped casting data 

Identify equipment 
health and condition 
requirements for robust 
part class program 
generation and use in 
adaptive machining 

- EDM and laser processes 
conform to established 
technical plan parameter 
requirements.  

- Sensitivity of individual part 
class program outcomes (i.e. 
hole characteristics) to machine 
or machine supporting 
equipment (i.e coolant system, 
chillers, etc) not analyzed  

- ITI enhanced the 
MTConnect4MSVisio 
(renamed ShopFloorIQ) 
application for agile 
analysis of groups of 
equipment in conjunction 
with downstream 
inspection data such as 
airflow, hole position, and 
shaped hole dimensions 

Table 1 Agile adaptive turbine blade cooling hole drilling problem statement 

Project Methodology 

There are several reasons why the upstream casting data have not been utilized in the 

downstream hole drilling operations to date in an automated manner. These include complex 

blade geometry, limited access to internal cavity geometry, and limited availability of the 

upstream inspection data from the casting vendors. This challenge was solved under this 

project effort in two phases. In the first phase, the current practice of manual sorting of parts into 

classifications based on casting data and the manual selection of an appropriate part program 

from the EDM or laser controller has been automated and implemented in the Turbine Airfoils 

Lean Lab. In the second phase, the infrastructure and tools developed in the first phase were 
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utilized to evaluate feasibility of the more advanced individualized adaptive machining by part or 

feature (as opposed to adaptive machining by part class in phase one).  

 

Two phase approach for digital thread agile adaptive cooling hole drilling 

Five tasks were proposed to address the problem statement requirements for adaptive 

machining listed in Table 1. These tasks are shown in Table 2 below and detailed further below. 

Each task comprised key activities in the first phase of adaptive machining through part 

classification which are necessary to enable fully automated adaptive hole drilling by part 

classification. These activities also laid the foundation for evaluating feasibility of the more 

complex and individualized adaptive machining. 
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Task 1: Establish data structure and secure transfer process and architecture 

Task 1.1: Vendor and OEM Data Structure Design 

The critical first step in establishing the data structure was an evaluation by Arconic and GE 

Aviation of the availability of as-produced data that can provide downstream value, in this case 

to enable adaptive machining of film cooling holes. The critical data for this use were those 

which allowed accurate location of the internal cavities in the casting relative to the outer 

contour of the airfoil and any features used to locate the airfoil in the hole drilling equipment. 

The initial airfoil selected for use in this program had a predetermined number of airfoil wall 

measurement locations as well as one measurement of the airfoil tip wall location. Based on 

prior GE efforts, those data were deemed adequate for program efforts. The follow-on GE airfoil 

had a wider array of available measurements that could be used to localize the internal cavities. 

They included airfoil external wall thickness measures, multiple measures of airfoil tip wall 

location, and computed tomography (CT) scans to provide supplementary wall thickness 

measurements. Although use of all these measures of the two components may not have been 

necessary for adaptive hole drilling, Arconic and GE chose to include all the available data in 

the Digital Twin to maximally stress data collection and transmission. This also required that the 

CT data be appropriately digitized post acquisition. 

The selection of format for the Digital Twin data had to fulfill, at least, the following 

requirements: 

• Tailored to the component and use case 

• Agnostic to the various forms of the customer’s Digital Thread 

• No vendor specific software required for interpretation 

• Flexible to handle current and anticipated types of digital data 
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• Easily transmitted through networks 

• Easily interpreted with minimal configuration and expert knowledge. 

In the absence of an industry-standard Digital Twin interoperability format, Extensible Markup 

Language (XML) was chosen for this project as the data format. In addition to providing 

flexibility to accommodate a range of digital data configurations, the format is based on ISO 

8879, is fully documented, and can be viewed and verified with standard editors and browser 

systems.  

The classes of data contained in the programmatic files are described four major xml elements 

below: 

Header Data: This portion of the XML file is used to capture the high-level attributes of part 

identification.  These include a manufacturing tracking number, customer serial number, 

customer part number and file creation date and time.  

DTGeometry: This section described the x,y,z coordinates of the data described in 

DiscreteType. Use of unambiguous coordinates in an agreed upon reference space to 

define a specific measurement location greatly reduce uncertainty in data labeling as 

additional data is added to the Digital Twin. 

DiscreteType: This was the bulk of the Digital Twin as it detailed the values of the Twin 

components such as wall thickness and tip wall location.  

CTLine: One unique aspect of the Digital Twin defined for the follow-on airfoil component 

was the inclusion of digitized Computed Tomography line scans.  These scans were 

digitized into point sets that represent the location of the edges of the exterior of the airfoil 

and the internal cavities. Due to variance in as-built shape of individual airfoils, the number 

of points in each set were not consistent, which was different from the other data in the 

program Digital Twin. The ability to develop an XML schema dealing with variant data 

configurations also drove XML use in this program. 

 

Task 1.2: Secure and Compliant Data Transfer 

Use of a universal schema format like XML allows the delivery mechanism and destination point 

to be specific to the vendor and customer combination. The best practice is to transmit data files 

through secure ftp which includes a provision for confirmation of receipt. There is a plethora of 

commercially available options in addition to numerous customer or supplier developed 

applications. GE chose Globalscape EFT, a Managed File Transfer solution with built in 

compliance controls, auditing, workflow automation, and two-factor authentication.  

 

Task 1.3: Demonstration in a Manufacturing Representative Environment 

Arconic built the program solution based on its current production data solution of aggregating 

multiple data sources into a single contextualized data warehouse. The trigger for the 

generation of Digital Twin data is a scheduled routine which queries the Manufacturing 

Execution System (MES) for shipped part serial numbers on specified jobs.  The returned list of 

serial numbers is queried in the data warehouse for the Digital Twin data that is configured 
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specifically for that part number. The Digital Twin data may, optionally, be visualized in a 

spreadsheet prior to being exported in xml format to a file share.  A Digital Twin file is created 

for each part serial number. A scheduled batch program picks up the files from this share and 

transmits them, via Globalscape.  After successful transfer, the files are moved to a backup 

archive and the process repeats.  The frequency of the process is configurable and is currently 

set to once per day.   

Arconic supplied Digital Twin data in XML format through Globalscape for the initial GE airfoil for 

all production castings for a period of six months. In all, the Digital Twin data was supplied for 

over 2700 airfoil castings. This extensive use of the process allowed Arconic to discover and fix 

minor bugs in the data extraction and XML generation applications.  

Task 1.4: Demonstrate Feasibility of Changing Data Stored and Transferred 

Configuration of the Digital Twin for all components needs to be scalable and manageable.  The 

choice of XML as a data format provided this capability immediately through the XML Schema 

Definition file.  Each transmitted XML-based Digital Twin data file references a schema 

definition (XSD).  The XSD describes the hierarchy and format of the data so that the 

downstream user can parse the contents without ambiguity.  This allows supplier and customer 

to dynamically change the type and extent of the data without having a layer of version control.  

Task 2: Casting Data Fidelity 

Data fidelity critically depends on a number of factors: repeatability and reliability of the 

measurements, accurate attribution of a measurement value to a particular casting or part, 

assurance of completion of all tests and storage of the resultant data, robust systems for 

extraction and packaging of that data from production sources and databases, an unequivocal 

data file structure for correct ingestion of the data on receipt, and a robust and secure data file 

transfer method. The last three items were addressed in the Task 1 discussion.  

The initial data provided to GE Aviation for both program components were the coordinates for 

external casting CMM points, wall thickness points, and the CMM data for a statistically 

significant number of castings. That CMM data allowed GE Aviation to develop a model of the 

average as-built casting, rather than depending on the nominal as-designed casting model. 

Gage R&R data were provided for the airfoil wall thickness measurements and for the airfoil tip 

thickness measurement for the initial GE airfoil. The airfoil wall thickness measurements were 

collected using an ultrasonic probe in an automated measurement unit, with supplemental 

manual ultrasonic measurements at specific, difficult to measure locations. The airfoil tip 

thickness measurements were obtained using a linear probe pushed through the interior of a 

fixtured casting. As described in the Task 3 efforts, the R&R of those measurements was 

adequate for development of adaptive hole drilling algorithms that used that data. 

As described in Task 1, the second GE airfoil is CT scanned for metrology information in 

addition to the ultrasonic and CMM measurements. This required a separate R&R study of wall 

thicknesses measured using CT scanning. A selection of castings was measured multiple times 

after being placed into different locations in the CT unit loading rack. The results of the R&R 

study were supplied to GE Aviation, and again the R&R was adequate for development of 

adaptive hole drilling algorithms. 

While the gage R&R of the various measurements used in this program were adequate for the 

desired application, future uses of the data may require less measurement variability. Currently, 



Final Project Report | August 1, 2019 13 

both ultrasonic wall measurement and CT scan measurement have geometry-based limitations. 

Ultrasonic probes have limits dealing with widely varying metal thicknesses and very small 

internal cavities due to the finite size of the ultrasonic probe. Practical options for widely varying 

wall thicknesses include use of multiple ultrasonic probes (different frequencies), and production 

capable units for cast airfoils are under development. CT wall measurement variability is largely 

driven by limitations of the ability of the reconstruction algorithm in the CT unit to account for 

scattering and beam hardening when scanning highly complex geometries. This can be 

improved by greatly increasing the number of images used in reconstruction at the expense of 

lower throughput and higher cost. Post-processing techniques under development, such as 

Model-Based Reconstruction, show promise to improve CT metrology consistency without large 

numbers of images. 

Although not a part of this DMDII program, efforts continued to improve correct attribution of 

measurement values to a particular casting and thus enable the ability to assure that all 

necessary data has been collected. During this program, Arconic-funded efforts were completed 

on a 2D data matrix application process which eliminates all hand-entry of part serialization. 

Since this technology eliminates misattribution of both process and attribute data, it becomes 

sensible to trigger processing stops when prior process or attribute data has not been collected. 

This assures that product at the shipping dock will have had all Digital Twin data collected for 

transfer to the customer. Productionization of this technology is ongoing. 

Lacking 2D data matrix implementation during the program resulted in reliance on a pre-

shipment data integrity check to assure that all required data was available for transfer at the 

point of casting shipment. This manual overcheck, using existing Arconic software, was 

conducted for all data sets prior to both shipment and data extraction for transmission. 

Task 3: Casting Variation Mapping  

The variation in the geometry of the hollow turbine blade castings can be measured by widely 

accepted dimensional metrology techniques. These techniques can be broadly decomposed 

into two components: (a) Those measuring variation of the external surface geometry; and (b) 

those measuring variation in the metal wall thickness of the blade. 

 

Measurements of the external contour may be conducted via either coordinate measurement 

machines providing data via contact measurements or by optical metrology techniques (laser 

triangulation gages, structured blue light sensors etc.) that provide large point cloud data sets 

representing the geometry of the blade. Normally, these data sets are used to compute the 

feature deviations of the external surface. Generally, data from such measurements would 

comprise part of the digital thread of data that would be transferred by vendors. 

  

Wall thickness measurement of turbine blades can be obtained through several non-destructive 

inspection techniques including ultra-sound probing (UT), computed tomography (CT), infrared 

imaging (IR) etc. with the two most common production methods being UT and CT. In the 

ultrasound probing technique an ultrasound transducer is placed in contact with the airfoil part 

normal to the surface and high frequency sound waves are incident into the part. The incident 

sound waves reflect from the front airfoil and the internal cavity locations as shown in the picture 

below. The time difference between the two reflections and the knowledge of the velocity of 

sound through the material are employed via appropriate calibrations to determine the distance 

travelled by the sound waves between the two reflections. Thus, UT measures local wall 
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thickness at several individual discrete measurement locations on the part.  Conversely, CT 

measurements of parts result in data sets of varying size, due to the natural variations in the 

part.  Therefore, ultimately data transfer protocols and part classification schemes need to be 

able to deal with either fixed or variable length data sets.  Wall data from such thickness 

measurements would combine with the external geometry measurements described earlier to 

comprise the digital thread of data that would be transferred by vendors. 

 

Task 3.1 Variation Mapping Methodology 

 

The availability of external contour and metal wall thickness data for individual castings via the 

digital thread provides for a strong motivation to better quantify the geometric configuration of 

the actual castings on a per serial number basis. This variation methodology should model the 

relationship of the internal cavity of the part with reference to the external airfoil position. The 

term “core-shift” refers to the deviation in position of the cavity in the as-made casting from its 

nominal design position relative to the external airfoil. This variation mapping methodology that 

computes the impact of the casting variation on the hole drilling operation has several steps as 

detailed below: 

 

1. Obtain position and normal of nominal wall measurement location: First, we 
determine the nominal location 𝑃𝑛𝑜𝑚,𝑖 and surface normal 𝑁𝑛𝑜𝑚,𝑖 at which the UT 

measurements are taken on each blade from the part design information in the 
appropriate coordinate system. As illustration, 𝑃1is one of the ultrasound probe points 

where the local wall thickness 𝑤1of the metal wall is measured on the blade along the 
indicated normal direction.  
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2. Obtain airfoil (external) information for a sample of production blades:  While wall 
thickness measurements are available for each part in the production data stream, 
corresponding information with regards to the external airfoil contour are not routinely 

measured for each part. Thus, a surrogate method of computing the external airfoil 
geometry has been devised. To this end detailed CMM inspection is obtained for a 
sample of n production blades. Alternatively, optical scan measurements may also be 
used. CMM measurements are typically obtained at a fixed number of cross-sections 
radially along the airfoil as shown. At each of the probe points the CMM measurements 
are reported as measured (x,y,z) positions on the surface of the airfoil for each nominal 
(x,y,z). The surface deviation 𝑑𝑖 at each measured point relative to the nominal 
measurement is obtained from this procedure as the signed distance between the 
measured and nominal position projected along the local external surface normal. 
 

3. Estimate Airfoil UT measurement location using average CMM deviation: Based 
upon the sample set of n parts we computed the mean (µ𝑖) and sigma (σ𝑖) of the surface 
deviation 𝑑𝑖 at each external measurement location. The figure below shows a sample 
plot of the mean and sigma for the primary airfoil used in this program. In the absence of 
routine inspection of the external airfoils from casting vendor, we estimate the measured 
UT location for each airfoil to be at the surface offset of the nominal UT position along 

the surface normal by the mean surface deviation computed from the sample data set. 
The expression that yields this mean airfoil position as 𝑃𝑎𝑖𝑟𝑓𝑜𝑖𝑙,𝑖 = 𝑃𝑛𝑜𝑚,𝑖 + µ𝑖 ∗ 𝑁𝑛𝑜𝑚,𝑖.  

Here 𝑃𝑎𝑖𝑟𝑓𝑜𝑖𝑙,𝑖  represents the external UT measurement location on the average airfoil. 

Overall the variation, σ𝑖 of the measurements is significantly smaller than the mean 

deviation µ𝑖 for the primary airfoil, enabling the use of the average measurements as an 
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effective surrogate for the external measurements of each individual airfoil. 
 

4. Compute estimated Core UT location using Average CMM location and inspection 
UT wall thickness: With the UT measurement location known from the previous step 
and the corresponding airfoil wall thickness information known from the casting 
inspection data at each measurement location on each blade (by serial number), we can 
compute the location of the internal cavity position 𝑃𝑐𝑎𝑣𝑖𝑡𝑦 at the measured airfoil UT 

location 𝑃𝑎𝑖𝑟𝑓𝑜𝑖𝑙 using the expression: 𝑃𝑐𝑎𝑣𝑖𝑡𝑦,𝑖 = 𝑃𝑎𝑖𝑟𝑓𝑜𝑖𝑙,𝑖 + 𝑤𝑖 ∗ 𝑁𝑎𝑖𝑟𝑓𝑜𝑖𝑙. As, the location 

of the cavity (i.e., core shift) is specified with reference to the external airfoil, errors 
introduced from using the average external position 𝑃𝑎𝑖𝑟𝑓𝑜𝑖𝑙,𝑖 instead of the precise 

measured airfoil surface point do not have a first order impact on core shift estimation. 
The measured wall thickness 𝑤𝑖is the most significant factor in determining the cavity 
position. 

 
5. Compute core shift model by minimization of RMS deviation between model and 

estimated core positions: The process described in the previous step is employed to 
determine the estimated internal cavity position 𝑃𝑐𝑎𝑣𝑖𝑡𝑦,𝑖 at each of the vendor supplied 

UT measurement locations. Thus, discrete positions representing the internal cavity 
position in relation to the external airfoil geometry at all UT measurement locations are 
obtained. Recall, that the nominal cavity CAD model positions are also available in the 
same coordinate system. Thus, the problem of defining the core-shift is formulated as a 
non-linear minimization problem in 6 variables: 𝑅𝑥, 𝑅𝑦, 𝑅𝑧, which represent the rotation of 
the core about the 𝑥, 𝑦, 𝑧 axes and 𝑇𝑥, 𝑇𝑦, 𝑇𝑧 which represent the translation of the core 

about the 𝑥, 𝑦, 𝑧 axes of the coordinate system. We may also include 2 additional scale 
variables 𝑆𝑥 and 𝑆𝑦 to determine scale factors along the 𝑥 and 𝑦 axes. Succinctly, the 
equation representing the core-shift is given as: 

𝑃𝑠ℎ𝑖𝑓𝑡𝑒𝑑,𝑖 = [𝑆] ∗ [𝑅] ∗ 𝑃𝑛𝑜𝑚,𝑖 + [𝑇] 

The objective of the NL minimization is to determine the optimal values of the 8 
parameters that minimize the root mean square distance between the measured internal 
cavity locations 𝑃𝑐𝑎𝑣𝑖𝑡𝑦,𝑖 and the 𝑃𝑠ℎ𝑖𝑓𝑡𝑒𝑑,𝑖 nominal cavity model. This equation is written 

as: 
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𝑀𝑖𝑛: 𝐹(𝑅𝑥 , 𝑅𝑦, 𝑅𝑧, 𝑇𝑥 , 𝑇𝑦, 𝑇𝑧, 𝑆𝑥, 𝑆𝑦) =  (∑ 𝑃𝑠ℎ𝑖𝑓𝑡𝑒𝑑,𝑖 − 𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑖) 

𝑛

𝑖=1

 

A robust Newton-Raphson gradient based technique is used to iteratively converge to 
the optimal solution that determines the optimal values for the rotation, translation and 
scaling parameters. The figure above shows plots of the root mean square deviation of 
the wall thickness before and after NL minimization for over 7700 blades of the primary 
airfoil. This plot shows that the root mean square difference between the measured and 
nominal wall thickness is more than 2X of the root mean square difference between the 
measured and the core-shift model wall thickness. This shows that the core-shift models 
are a better representation of the measurements vs. the nominal blade by a factor of 2. 
  

6. Compute components of the core shift and over-drill O/D distance at each of the 
drilling positions: In this step, we determine the impact of the core shift on hole drilling 
operation. To this end, first the nominal internal pierce point is computed as the 
intersection of the drilling vector 𝑑𝑟𝑖𝑙𝑙𝑛𝑜𝑚with the internal cavity geometry, shown as 

𝑃𝑛𝑜𝑚 in Figure (a) above. Next, we apply the core shift transformation computed above 
on the nominal internal drill pierce point to compute its estimated position in the actual 
part. The vector connecting the nominal pierce point with the shifted pierce point 
represents the estimate of the core-shift at the local drilling location. This is illustrated in 
Figure (b) and (c). Figure (b) shows the moved location of the internal cavity and the 
location of 𝑃𝑛𝑜𝑚 on the moved cavity as point 𝑃𝑛𝑜𝑚_𝑚𝑜𝑣𝑒𝑑 . Note that in general point 

𝑃𝑛𝑜𝑚_𝑚𝑜𝑣𝑒𝑑 does not lie along the drill vector. If no compensation is made, the 

intersection of the drill vector would be found at 𝑃ℎ𝑖𝑡 in the core shifted part instead. The 

vector value of the core shift at the drilling location is shown in Figure (c) as 𝑉𝑒𝑐𝑠ℎ𝑖𝑓𝑡. 

Three components 𝐶1, 𝐶2 and 𝐶3 of the core shift vector are computed: 𝐶2 core shift along 
hole drilling vector; 𝐶1: core shift orthogonal to the drilling; and 𝐶3: Core shift along the 
vector orthogonal to the other two directions as shown in Fig (d). We also compute the 
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distance from the end of the hole to the nearest cavity surface along the hole direction 
as the over drill margin distance 𝑂/𝐷𝑑𝑖𝑠𝑡. 
 

7. Compute offsets at the hole for adaptive drilling operation: In this step, we compute 
the offset values for drilling at the hole. To this end, we first rotate the cooling hole vector 
about the two rotary axes (A and B axis) of the drilling machine such that the hole axis is 
collinear with the drilling axis of the machine as illustrated in the figure below. These 
specific rotation angles and the rotation vector direction are design input information 
obtained from the nominal drilling program data. Next, we determine the offset values of 
the shifted pierce point computed in the previous step with respect to the nominal pierce 
point in this rotated orientation, shown as 𝑂𝑥 and 𝑂𝑦 (𝑂𝑧 along the drill direction is not 

illustrated). Adaptive drilling to target the design internal pierce point requires offsetting 
the drilling command with these computed offset values. Thus, the offset values are 
computed in the coordinate system under which the part is drilled on the machine. The 
computed offset values for each drilled cooling hole of each part (specified serial 
number) may be either written out to a text file and stored or written as entries into a 
relational database. 

 
 

8. Uploading offset values to the drilling machine: In this step, the drill offset values 
computed for each hole being adaptively drilled are loaded into the machining program. 
Two methods can be used for loading the offset values into the CNC program. In the first 
method, all offset values are written to a text file in a predetermined sorted order and the 
text file is copied over to a specified location on the CNC machine folder structure. The 
baseline CNC program is modified to read the offset values from the local offset file. 
Further the G-code to position the drill to the correct XY position at each hole is modified 
to include the computed X and Y offset value for the corresponding hole as shown in the 
figure below. Under this structure, only the computed offset values corresponding to the 
core shift of the blade will change, while the baseline adaptive CNC program stays the 
same for all parts. With individual blades exhibiting varying degrees of core shift as 
reflected in the computed offset values, the same baseline CNC program may thus be 
used to offset the drilling location for each hole in the blade. In the alternative method, 
the offset values are written as database entries into a relational database, identified by 
part serial number and a hole identifier tag. These offset values are then directly written 
to an array on the CNC machine controllers using a machine interface triggered via the 
machine’s MTConnect data feed.  The machine interface watches the MTConnect feed 
for a part serial number update and triggers the interface to load the specific serial 
number hole offsets to the corresponding axis arrays on the CNC machine controller.  
The arrays are created on the machine controller for each axis required.  The part 
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program reads in the array values for each corresponding hole adjusting the drilling 
offsets.  In addition, the machine interface pushes specific row and hole offset values to 
the corresponding array addresses for each specific row and hole, making the offsets 
human readable in the array.  For example, the offset values for Row 3 hole 10 are in 
each array in corresponding position 3, 10.  Either of the two (2) methods described are 
required based upon the vintage and capabilities of the specific machine controller.  The 
machine integration is preferred on machine controllers that can use arrays.  
 

 
 

Validation of the above described core shift procedure is a key step to its usage for part 

classification that will be described later. To that end, three types of validation tests have been 

carried out with production UT data received from the vendor. Those include repeatability, 

accuracy and sensitivity tests as described below. 

 

Repeatability Test: To test the repeatability of the above-mentioned core-shift computation 

procedure, the casting vendor supplied repeat ultra-sound wall thickness measurement data for 

10 blades, with each blade being measured 3 times. Thus, the normal expected gage variation 

with the UT measurement was introduced by this process into the core shift calculation 

procedure. The figure below illustrates the typical gage repeatability for ultrasound wall 

thickness measurement at one specific measurement location. The graph shows that the Gage 

R&R is less than 10% of the part variation, and thus the input ultrasound wall measurements to 

the core-shift calculations has adequate gage capability. It has been validated that the UT gage 

measurements as reported by the vendor has adequate gage performance at all other 

measurement locations for the primary airfoil employed in this program. 
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Next, using the same repeat UT data as input to the core-shift method described in the previous 

section, the repeatability of the core shift computation procedure has been established. The plot 

below shows the repeatability plot of the 𝐶1 component of the core shift at a typical drilled hole 

location. Similar plots are observed for the 𝐶2 and 𝐶3 components of the hole as well as for the 

over-drill margin 𝑂/𝐷𝑑𝑖𝑠𝑡. Likewise, similar gage performance for the core shift computation was 

observed for the other hole locations on the airfoils tested. In these plots, we observe that the 

variability in the core shift component due to variation in the input data as well as computational 

variability (Gage R&R bar) is also less than 10% when compared to the inter part variability 

(Part-to-Part bar). This implies that both the input UT data and the calculation procedure have 

good repeatability metrics to be used as a method for estimating core shift in production parts.  
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Accuracy Test: Accuracy of the core shift models were tested by comparing the hole 

parameters, drop thru distance 𝐷𝑛𝑜𝑚 and local metal wall thickness 𝑊𝑛𝑜𝑚 , from the computed 

model (right figure below) with corresponding information, 𝐷𝑐𝑡 and 𝑊𝑐𝑡 (left figure below), from 

accepted X-ray CT measurements of the same production parts at the same hole drilling 

location for several production blades. The difference in the model vs. CT dimensions of these 

two parameters was observed to be less than 10% of the direct CT measurement values in the 

sample measurements. These sample measurements validated the accuracy of the UT based 

core-shift models of the actual blades as having sufficient accuracy for computing part 

classifications. 

 

Sensitivity Analysis: A third test on the robustness of the core shift computation algorithm was 

conducted via a sensitivity analysis study. Seventy-five blades were chosen for the study. The 

goal of this study was to determine the impact of the uncertainty in the wall measurements on 

the core shift computation. The expected variation (1 sigma) in the wall thickness 

measurements was estimated based upon the Gage R&R study conducted earlier as part of the 

repeatability study. Next, Monte-Carlo simulation was used to propagate the uncertainty in the 

input wall thickness measurements on the core shift computations. Thus, the input wall 

thickness measurements of each blade were perturbed over 1000 runs by a normal distribution 

(gage variation is normal) using the previously computed gage sigma values. The output core 

shift values of the total 75,000 runs were used to estimate the variation in the sensitivity of the 

output values. This idea is illustrated in the figure below. 

 

The adaptive drilling computations would be considered robust if the ratio of the core shift 

variation 𝜎𝑜𝑢𝑡𝑝𝑢𝑡 to the wall thickness input variation 𝜎𝑖𝑛𝑝𝑢𝑡 is approximately unity. 
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The Monte Carlo sensitivity analysis was conducted using ITI’s Link Intelligent Master Model 

Software based upon the work flow shown below. Here the LIMM software was used to 

generate a normal “perturbation” of the input wall thickness for each of the 75 blades using the 1 

sigma values for the wall thickness measurements obtained from the Gage R&R study 

conducted at Arconic. Each perturbation produced an Input Data that was used to call the core 

shift computation procedure and the corresponding Output Data generated was also tabulated 

by the LIMM software. A total of 1000 normally perturbed inputs for each of the 75 blades were 

generated to study the robustness of the core shift procedure to gage uncertainty. Thus, a total 

of 75000 runs over the 75 blades were conducted, and the EDM offset variation (1 sigma 

values) from these runs were computed for each hole considered. 

 

 

The table below is a summary of the ratios of the variation in output core shift 𝐶1, 𝐶2, 𝐶3 and 

distance to over-drill 𝑂/𝐷𝑑𝑖𝑠𝑡 (called Drop-thru in table below) to the variation of the input wall 

thickness values at a typical hole. As seen below, the ratio of the core-shift values to input wall 

variation is close to unity, thereby demonstrating robustness of the core-shift computations. 

Further, the required EDM offsets to track the core-shift are directly proportional to the core-shift 

computations. Thereby, we concluded that the algorithm for computing the EDM offset values is 

stable to the expected gage uncertainty. This implies that any measurement uncertainty in the 

input UT wall measurements will not have a significant impact on the computed core shift 

values. However, the impact of input wall thickness variation is higher on the drop-thru 

computations, indicating lower stability in the calculations of the drop-thru parameter when 

Feature

soutput

/sinput

Core Shift C1 0.7

Core Shift C2 0.4

Core Shift C3 1.2

Drop-thru 3.3

Variation Propagation
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compared to the core-shift values. Since the drop-thru parameter is an indication of safety 

margin, and not directly used for generating the EDM offsets as will be described later, this 

issue does not have significant impact on the adaptive drilling strategy. 

 

In summary, from a repeatability, accuracy and algorithm stability perspective we conclude that 

the above methodology when implemented in production scale will be adequately capable of 

providing individualized offset values for each serialized part of the primary airfoil. 

 

Task 3.2 Validation of Analysis Tools Through Application to Existing Part Classifications 

The potential for an unlimited number of adaptive offset combinations, one for each hole, drive 

up the cost and effort required to validate the individualized adaptive drilling process via 

increased drilling trials. Furthermore, additional effort is required to ensure that part functional 

requirements continue to be met for all permissible adaptive drilling combinations. One 

approach by which this additional validation effort of adaptive drilling can be minimized is by 

grouping the core shift combinations of the entire population of parts into families, with pre-

determined adaptive offset combinations, one for each family. Adaptive drilling for each family 

could then be validated on a sample of parts from that family, as each family would have fixed 

set of offset values for all parts in the family, regardless of their individual core shifts. Part 

families were constructed based upon the following procedure. 

In the initial step, vendor wall thickness measurements on a statistically significant number of 

turbine airfoil parts (2400 parts) were obtained. Hole locations with the highest occurrence of 

drilling defects in the production process of the primary airfoil were identified from shop loss 

data. Eight critical hole locations with the highest occurrence of losses were identified and 

chosen for adaptive drilling on the primary airfoil. Next, using the core-shift and drop-thru 

computation procedure described in the prior section, the local core-shift and drop thru margins 

at each of the eight critical hole locations were computed for the entire set of 2400 parts. A 

strong correlation between the core-shift values and the drop thru margin of the blades were 

observed in the computed data set, as shown in the plot below. 
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Now, increasing the drop thru margin reduces the risk of part over-drilling to the back of cavity. 

From the plot above for 2400 parts we notice that core shift due to casting variation can result 

varying drop thru margins in the part. For this drilling location, positive core-shifts from nominal 

result in decreasing drop thru margins and vice versa. Thus, one strategy for reducing the risk 

for over-drilling is to increase the local drop thru margin by moving the surface drilling point with 

an adaptive shift in a favorable direction. This idea is shown in the plot above where the drop 

thru margin increased with the adaptive shift vs. the nominal condition for the population of 

parts. 

Thus, parts are classified in groups based on their potential risk for over-drilling, with parts in 

each group having a similar over-drilling risk. This is achieved by grouping the parts such that 

blades within a group have numerically similar drop thru margins at the drilled hole locations. 

This procedure for labelling the blades is described below: 

1. Estimate the amounts of adaptive shift to achieve sufficient drop thru margins: As 
mentioned above, the over-drilling risk depends on the drop thru margin. To reduce or 
eliminate that risk, the surface drilling point is moved by a certain amount of adaptive 
shift to increase the drop thru margin to a sufficient value. The amount of adaptive shift 
needed depends on the drop through margin and the geometric property of the hole. 
Therefore, 3 steps are carried out to estimate the amount of adaptive shift needed for 
each hole: 

a. Estimate the functional relationship between drop thru margin and core shift 
value. As shown in the above plot, the amount of adaptive shift can be calculated 
from the relationship between drop thru margin and core shift value. Depending 
on the geometry of the hole, this relationship can be modeled in a variety of 
different ways, such as polynomial regression, semi-parametric smoothing and 
non-parametric smoothing. In this study based on the collected data of 2400 
parts, a quadratic regression presents a good fit for each of the 8 target holes. A 
general formula for the quadratic regression is presented here with specific 
coefficients varying for different holes: 
 

𝑐𝑜𝑟𝑒_𝑠ℎ𝑖𝑓𝑡̂
𝑖 = �̂�𝑜𝑖 + �̂�1𝑖𝑑𝑟𝑜𝑝_𝑡ℎ𝑟𝑢 + �̂�2𝑖𝑑𝑟𝑜𝑝_𝑡ℎ𝑟𝑢2 
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where 𝑖 = 1, 2, … , 8, representing the holes. �̂�𝑜𝑖, �̂�1𝑖 and �̂�2𝑖 are the estimated 

parameters for the quadratic regression for hole 𝑖. 𝑐𝑜𝑟𝑒_𝑠ℎ𝑖𝑓𝑡̂
𝑖 is the estimated 

core shift value on the regression curve at the corresponding 𝑑𝑟𝑜𝑝_𝑡ℎ𝑟𝑢 value. 
b. Specify a target drop thru margin that will sufficiently reduce the over-drilling risk. 

This target value is determined by the accuracy of the drilling machine and shop 
practice. Let 𝑑𝑟𝑜𝑝_𝑡ℎ𝑟𝑢0 denote this target drop thru margin. 

c. Calculate the adaptive shift value based on the above target drop thru margin 
and functional relationship for each hole on each blade: 
 

𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒_𝑠ℎ𝑖𝑓𝑡𝑖,𝑗 = 𝑐𝑜𝑟𝑒_𝑠ℎ𝑖𝑓𝑡̂
𝑖(𝑑𝑟𝑜𝑝_𝑡ℎ𝑟𝑢0) − 𝑐𝑜𝑟𝑒_𝑠ℎ𝑖𝑓𝑡𝑖,𝑗

= �̂�𝑜𝑖 + �̂�1𝑖𝑑𝑟𝑜𝑝_𝑡ℎ𝑟𝑢0 + �̂�2𝑖𝑑𝑟𝑜𝑝_𝑡ℎ𝑟𝑢0
2 − 𝑐𝑜𝑟𝑒_𝑠ℎ𝑖𝑓𝑡𝑖,𝑗 

 
where 𝑖 = 1, 2, … , 8, representing the holes, and 𝑗 = 1, 2, … , 2400, representing 

the parts. 𝑐𝑜𝑟𝑒_𝑠ℎ𝑖𝑓𝑡̂
𝑖(𝑑𝑟𝑜𝑝_𝑡ℎ𝑟𝑢0) is the estimated core shift value from the 

quadratic regression model at the target drop through margin, and 𝑐𝑜𝑟𝑒_𝑠ℎ𝑖𝑓𝑡𝑖,𝑗 is 

the actual core shift value. Note that the direction of the adaptive shift on the 
surface and the core shift in the blade may not be the same and require a one-to-
one mapping. But it doesn’t impact the grouping of parts, and therefore the one-
to-one mapping is omitted in the process. 
 

2. Group the blades by the adaptive shift values: A variety of generic clustering 
algorithms, such as K-means and hierarchical clustering, are applicable to group the 
blades using the adaptive shift values. This study uses K-mean clustering which creates 
K clusters by minimizing the within-cluster sum of squares: 
 

arg min

𝑆
∑ ∑ ‖𝒂𝒅𝒂𝒑𝒕𝒊𝒗𝒆_𝒔𝒉𝒊𝒇𝒕𝑗 − 𝝁𝑖‖

𝟐

𝒂𝒅𝒂𝒑𝒕𝒊𝒗𝒆_𝒔𝒉𝒊𝒇𝒕𝑗∈𝑆𝒊

𝑲

𝒊=𝟏

 

 

where 𝒂𝒅𝒂𝒑𝒕𝒊𝒗𝒆_𝒔𝒉𝒊𝒇𝒕𝑗 = (𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒_𝑠ℎ𝑖𝑓𝑡1,𝑗, 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒_𝑠ℎ𝑖𝑓𝑡2,𝑗, … 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒_𝑠ℎ𝑖𝑓𝑡8,𝑗) 

represents the 𝑗-th blade, 𝝁𝑖 represents the mean or center of cluster 𝑆𝑖, and 𝑆 =
{𝑆1, 𝑆2, … , 𝑆𝐾} represents the 2400 blades. Since 8 holes are analyzed in this study, the 
clustering algorithm is conducted on an 8-dimensional space. Euclidian distance is used 
for the clustering algorithms as the adaptive shift values represent physical values in the 
geometric space. 
 
The cluster centers are used to estimate the common adaptive shift values for blades in 
the same cluster. The number of clusters, K, is calibrated by the accuracy of the drilling 
process. Small values of K result in a small number of large clusters, and large values of 
K result in a large number of small clusters. The areas of interest in the multi-
dimensional space are those representing high over-drilling risk. The drilling process 
allows certain accuracy. An optimal value of K results in clusters that are as accurate as 
possible in the high-risk areas while not creating too many clusters. Therefore, different 
values of K are tested based on the 2400 blades, and the minimum value that 
distinguishes high risk blades at the allowed drilling accuracy is selected. With the data 
collected for the 2400 parts, a clustering model is trained, which is used to classify future 
parts as described next. The following diagram illustrates the clustering algorithm. 
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In the diagram, the left table contains the adaptive shift of the 8 holes for each of the 
2400 blades. The right table shows the trained clustering result – there are 12 clusters 
with the size, i.e. number of parts within a cluster and cluster centers provided. Individual 
parts are grouped into these 12 clusters, as illustrated by parts 1-7 through the arrows. 
 

3. Predict the group for any new blade through core shift values: For any new blade, 
the adaptive shift needed is calculated using the relationship built in step 1.  
 

𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒_𝑠ℎ𝑖𝑓𝑡𝑖,𝑛𝑒𝑤 = 𝑐𝑜𝑟𝑒_𝑠ℎ𝑖𝑓𝑡̂
𝑖(𝑑𝑟𝑜𝑝_𝑡ℎ𝑟𝑢0) − 𝑐𝑜𝑟𝑒_𝑠ℎ𝑖𝑓𝑡𝑖,𝑛𝑒𝑤

= �̂�𝑜𝑖 + �̂�1𝑖𝑑𝑟𝑜𝑝_𝑡ℎ𝑟𝑢0 + �̂�2𝑖𝑑𝑟𝑜𝑝_𝑡ℎ𝑟𝑢0
2 − 𝑐𝑜𝑟𝑒_𝑠ℎ𝑖𝑓𝑡𝑖,𝑛𝑒𝑤 

 
where 𝑖 = 1, 2, … , 8, representing the holes.  Based on the adaptive shift values, the 
distance between this new blade and every cluster center point from step 2 is calculated.  
 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑛𝑒𝑤,𝑖 = ‖𝒂𝒅𝒂𝒑𝒕𝒊𝒗𝒆_𝒔𝒉𝒊𝒇𝒕𝑛𝑒𝑤 − 𝝁𝑖‖𝟐 

 
where 𝒂𝒅𝒂𝒑𝒕𝒊𝒗𝒆_𝒔𝒉𝒊𝒇𝒕𝑛𝑒𝑤 =

(𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒_𝑠ℎ𝑖𝑓𝑡1,𝑛𝑒𝑤, 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒_𝑠ℎ𝑖𝑓𝑡2,𝑛𝑒𝑤, … 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒_𝑠ℎ𝑖𝑓𝑡8,𝑛𝑒𝑤). The new blade is 

grouped to the cluster with the least distance.  
 

arg min

𝑖
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑛𝑒𝑤,𝑖 

 
Note that if the distance is too large, compared to a pre-specified value, then a new 
cluster should be established or a root-cause analysis on the blade should be 
conducted. 

 

Task 3.3 Sensitivity Analysis to Casting Data Gage R&R and Accuracy 

Repeatability of the part labeling procedure described in the previous section was tested using 

casting vendor supplied repeat ultra-sound wall thickness measurement data for 10 blades, with 

each blade being measured 3 times. Thus, the normal expected gage variation with the UT 

measurement was introduced by this process into the part grouping procedure. 

As seen by the table below seven (7) blades were consistently classified into the same group, 

and the remaining three (3) blades had one repeat classified to an adjacent group. Given the 

discrete nature of blade groupings, it may be expected that small numerical differences caused 
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by the input gage variation could result in blades being (mis)classified into adjacent groups, 

particularly when they are near the boundaries of their respective groups. The impact of such 

mis-classification is discussed in the validation drilling trials conducted on grouped parts based 

on this procedure. 

Robustness Study for Part labelling procedure 

Additionally, the robustness of the part labeling procedure was tested via the same 75 blade 

sensitivity analysis study described earlier. The goal of this study was to study the impact of the 

uncertainty in the wall measurements on the part labeling procedure. The expected variation (1 

sigma) in the wall thickness measurements were estimated based upon the Gage R&R study 

conducted earlier as part of the repeatability study. Next, Monte-Carlo simulation was used to 

propagate the uncertainty in the input wall thickness measurements over the part labeling 

procedure. Thus, the input wall thickness measurements of each blade were perturbed over 

1000 runs by a normal distribution (gage variation is normal) using the previously computed 

gage sigma values. The output part label values of the total 75,000 runs were used to estimate 

the variation in the sensitivity of the part labels. Parts belonging to all 12 groups were used for 

the sensitivity analysis.  
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The results of this sensitivity analysis are shown below. It is observed from the first chart that 

parts were labeled > 50% of time within +/- 1 of median group ID for the normal gage variation 

in wall thickness, with all parts being within +/- 2 of the median group ID for the expected normal 

gage variation. Thus, this study provides three (3) observations:  

1) It is unfeasible to expect 100% certainty relative to the group ID of a part: Given the 

discrete nature of part groupings, variations in the input measurement data (due to gage 

uncertainty) may result in parts being (mis)classified into different groups. 
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2) Part (mis)classification is over neighboring groups: Although 100% certainty relative to 

group ID may not be expected, as seen from the plots all parts are classified into 

adjacent groups, thereby demonstrating validity of the labeling scheme.  

3) Given the possibility of (mis)classification of the blade into neighboring groups, the 

adaptive offset strategy should be sensitive to account for and accommodate such part 

(mis)classifications without affecting the overall success criteria of the manufacturing 

operation. 

The table below quantifies the potential misclassification rate via the Monte-Carlo simulation. 

The first column represents the ground truth, whereas the first row represents the computed 

classification for each instance of the measurement data set. Data along the leading diagonal 

represent instances when the ground truth and the computed classifications matched. For 

example, for the first row and column in 9656 instances (out of total of 10000) the ground truth 

matched the computed label leading to an accuracy rate of 93.6%. In 636 instances group 1 

parts were classified as group 2 parts, and in 26 instances group 1 parts were classified as 

group 3. This is because simulated variations in the input measurements can result in the blade 

“missing the cut-off” for group 1 and landing into group 2 or group 3. The overall accuracy rate 

including considering neighbors for the classification is 95.3%. Thus, while the general accuracy 

of classification meets 4-sigma standards, it does not meet 6-sigma standards. We note that the 

small potential uncertainty in the input measurements can have an impact on the part 

classification with parts being classified adjacent to their true groups. This, potential for mis-

classification may be understood from a simple linear example. Suppose we have length 

measurements of a one-dimensional part with the measurement value between 0 and 100 units. 

If we create two groups: one for values between [0, 50] and another for values between [50, 

100], then measurement uncertainties of parts with length measures of 49.9 can result in the 

part being (wrongly) classified into group 2, rather than group 1 if the measurand is above 50. A 

converse condition may occur for parts with length measures of 50.1 if the measurement 

uncertainly causes the measurand to be less than 50. Part mis-classification of turbine blades 

stems from this basic source, albeit in a multi-dimensional setting. 

 

 

Actual\Predict 1 2 3 4 5 6 7 8 9 10 11 12 #total %accuracy

%accuracy 

with 

neighbors

1 9656 636 26 0 0 0 0 0 0 0 0 0 10318 93.6 99.7

2 339 6442 1645 5 0 0 0 0 0 0 0 0 8431 76.4 99.9

3 5 2894 3685 1307 0 4 0 0 0 0 0 0 7895 46.7 99.9

4 0 25 642 5422 220 796 0 0 0 0 0 0 7105 76.3 88.4

5 0 3 1 331 4156 449 281 107 0 0 0 0 5328 78.0 92.6

6 0 0 1 935 254 4217 263 0 0 0 0 0 5670 74.4 83.5

7 0 0 0 0 715 534 3093 100 11 0 0 0 4453 69.5 83.7

8 0 0 0 0 652 0 363 5240 285 0 0 0 6540 80.1 90.0

9 0 0 0 0 3 0 0 553 4219 394 0 0 5169 81.6 99.9

10 0 0 0 0 0 0 0 0 485 3989 119 0 4593 86.8 100.0

11 0 0 0 0 0 0 0 0 0 617 4400 168 5185 84.9 100.0

12 0 0 0 0 0 0 0 0 0 0 0 4832 4832 100.0 100.0

#total 10000 10000 6000 8000 6000 6000 4000 6000 5000 5000 4519 5000 75519 78.6 95.3

Confusion matrix of Monte Carlo Simulation ( #instance: 75519)
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Supervised learning model-based part Classification of turbine blade castings: 

Currently, part classifications are generated through basic statistical analysis of parts received 

in a short timeframe or post mortem analysis of groups of parts that exhibited undesired 

behaviors such as blocked holes or over drills. Parts arriving to the shop that do not fall into one 

of the existing groups for which a drilling part program exists must be set aside until enough 

parts have accumulated to develop a new program. The purpose of this task is to develop a tool 

that can be used, preferably during initial low rate production, to identify the part classifications 

needed to account for the right amount of variation on the turbine blades. 

In this effort, UW Madison focused on the classification of turbine blades for the adaptive hole 

drilling process using wall thickness measurements as features. Supervised learning models 

were built based on a geometric feature, scalar wall thickness profile data, along with gold 

standard labels provided by a project vendor. Naïve Bayes and a regression model (i.e. 

Generalized Linear model (GLM)) are applied as learning methods with support of feature 

selection, regularization, and dimensionality reduction techniques. The accuracy for each 

method/technique is computed and compared by 10-fold cross validation on sample casting wall 

thickness data. The classification methodologies were also tested with new wall thickness data. 

Finally, the blade classification software was implemented based on the GLM algorithm which 

allows the user to easily classify the given input blade instances. While the classification tool is 

tested with dimensional data from turbine blades, its implementation and design principles are 

generic to be applicable to scalar data from other manufacturing operations. 

A. Related work 

There have been various applications of machine learning on machining processes over a few 
decades. Tool condition monitoring is one of those applications which requires well-formulated 
classification. In the work of Leem Cs, et.al. [7], they used self-organized map that projects high-
dimensional data into lower dimension by preserving the input relationships. Such feature map 
was used in neural network for tool condition monitoring along with input feature scaling.  Tsai 
DM, et. al also used neural network for tool wear classification based upon surface roughness 
[8]. On the other hand, support vector machine (SVM) method was applied to classify the fresh 
and worn cutting tool states using an acoustic emission signal [9]. They also performed the 
feature selection based on Bayesian support vector regression.  Elangovan M, et.al. compared 
the performance of decision tree, Naïve Bayes, Bayes Net, ν-support vector classification 
(SVC), and C-SVC for classifying the fresh tool, semi-worn tool, worn tool, and broken tool using 
vibration signal resulting from a turning operation [10].  Apart from vibration or acoustic signal, 
gray-level co-occurrence matrices (GLCM) of machined surface images were utilized as 
features of kernel-based support vector machine (SVM) for multi-classification of tool wear 
states [11].  

 
Even more articles can be found for the part classification or diagnosis in a field of 
manufacturing. If we narrow down the scope into the turbine or turbine blade machining, many 
studies have been carried out on the condition analysis of wind turbine and its blade.  Andrew K. 
et. al. compared neural network, pruning rule-based classification tree (PART), K-nearest 
neighbor (K-NN) and genetic programming (GP) algorithms for monitoring blade pitch faults in 
wind turbine [12]. Huang et.al tested wavelet neural network on vibration fault diagnosis for 
turbine gear box [13]. Meanwhile, multidimensional clustering technique for turbine blade hole 
was introduced in [14]. In their study, optimization of internal hole based on K-means clustering 
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and dimensional reduction of a turbine blade are performed.  Yet, no study regarding supervised 
learning of turbine blade based on geometric scalar profile features has been introduced. In this 
task, Naïve Bayes and regression model (GLM) are applied to the classification of blades based 
on the wall thickness profile feature and the results of their performances are compared. Effects 
of applying dimensionality reduction (PCA), feature selection and regularization for accuracy 
enhancement are also tested and compared.  

 

[Classification of blade instances based on the wall thickness profiles] 

 

 

B. Data and labels 

The dataset is composed of features and labels. Features are wall thickness profile measured at 
48 locations per each instance. 2402 instances are grouped into 12 labels. Therefore, we have 
48 x 2402 matrix of features (X) and 1x2402 vector for the labels (Y) as illustrated above. In 
addition, we have coordinates of nominal exterior positions that correspond to the location of 
wall thickness measurements which we do not consider in the actual classification task. The 12 
labels are defined based on the degree of cavity shift (blue part of the figure below represents 
the cavity) precomputed by GRC.   

 

 

GRC 
Labelswall thickness profiles 

New datasets 
#1

New datasets 
#2

Classified sets 
#1

Classified sets 
#2

Classifier
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[Approximated blade shape using wall thickness profile and coordinates of nominal exterior positions] 

C. Naïve Bayes & regression model applied on the raw data 

Naïve Bayes classifier is one of the most popular methods of supervised learning which is 
based on assumption that all features of the instances are independent of each other [9]. Bayes’ 
theorem (Eqn. 1) and the probability of conditional independence (Eqn. 2) are the key concepts 
applied for this assumption. Then, Naïve Bayes classifier is to learn the posterior conditional 

probability expressed in Eqn. 3, where 1 2 n = (X ,X ,...,X )X  is the input feature vector of the 

instances and Y is the output label. 

(Y|X) (X)
(X | Y)

(Y)

P P
P

P
=                                                                        (Eqn. 1) 

1 2 n 1 2 3 n(X ,X ,...,X | Y) (X | Y) (X | Y) (X | Y)... (X | Y)P P P P P=                      (Eqn. 2) 

1 2 n
1 2 n

1 2 n

(X ,X ,...,X |Y = y ) (Y = y )
(Y = y | X ,X ,...,X )

(X ,X ,...,X )

i i
i

P P
P

P

=
= =

=

k
k

k

X
X

X
(Eqn. 3) 

The algorithm is implemented based on MATLAB and directly tested on the sample wall 
thickness data (X=[48x2402], Y = [1x2402]). Since features are numeric attributes, an 
assumption of gaussian distribution is applied on each feature set for Naïve Bayes. Accuracy is 
checked by 10-fold cross validation with stratified sampling. The accuracy is demonstrated by 
the confusion matrix below. 

Regression model is also applied to the raw data for the classification. Generalized Linear 
model (GLM) which fits linear regression model via maximum likelihood is implemented and 
tested on the same dataset [10]. The key equation is as follow:  

( )
0

2 2T

0 2

1,
1

( ) (1 )1
min

2 2

N
i i

i

i

y x

N 

   
   

=

 − + −
 + +
  

                               (Eqn. 4) 

where ix  is the input feature vector, iy  it the output label,  is the coefficient vectors of the 

features,  N is the number of instances,  is the controller of L1 (
2

2
 )  and L2 (

1
 ) 

regularization terms and  is the overall weight of the penalty terms. Various combinations of 

parameter values are applied and tested. The result shown below is based on the parameter set 

by 1i = , 0 = (no regularization term activated). 
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 [Confusion matrix of Naïve Bayes on raw data. The column ‘% exact’ defines the percentage prediction accuracy of 
the classifier per each label (Numbers in the dark green cells are counted as accurate labeling). The column ‘% 
margined’ indicates the percentage accuracy considering not only the exact labels but also the adjacent classified 
labels when computing the accuracy (Numbers in the both light and dark green cells are counted to compute the 
prediction accuracy)] 

 

[Confusion matrix of GLM on raw data] 

 

Method Accuracy (average of 10-fold cross 
validation) 

Naïve Bayes (NB) 55.9534 % 

Generalized Linear model (GLM) 71.6486 %        
[Accuracy of NB vs. GLM on raw wall thickness data] 

GLM has higher accuracy compared to NB since the algorithm is less biased. In other words, it 
can be deduced that the wall thickness features are relevant to each other so that conditional 
independence assumption of NB acts as incorrect bias. However, GLM still has error on 
prediction due to the small number of features (<50) and small number of instances (<2,500) 
used for building the model. Another source that increases an error is the imbalanced dataset 
(chart below).  The instances are dominantly labeled as #1 (67.8% of total instances) and 
number of instances per each label keeps reducing from #2 to #12. As can be seen in the 
confusion matrices above, marginal percentage accuracy is computed as well as exact 
accuracy. Since the gold standard labels derived from K-means clustering based on cavity shift 
inherently possess small numerical errors, it is reasonable to consider the classified instances in 
the neighboring labels to be also potentially accurate in terms of prediction.   

 

                                                               

         [Imbalanced dataset] 

label ID 1 2 3 4 5 6 7 8 9 10 11 12  #actual % exact % margined

1 1572 10 13 9 8 6 7 0 1 0 2 0 1628 96.6 97.2

2 96 18 20 3 6 5 1 3 2 0 0 0 154 11.7 87.0

3 44 27 17 7 8 7 6 2 2 3 0 1 124 13.7 41.1

4 17 18 12 5 7 3 3 3 0 0 0 0 68 7.4 35.3

5 6 6 14 3 13 2 12 10 2 1 1 1 71 18.3 25.4

6 4 1 11 2 1 11 1 7 1 1 4 1 45 24.4 28.9

7 5 4 14 3 13 3 13 10 6 1 2 0 74 17.6 35.1

8 0 0 7 0 9 8 14 14 13 2 2 0 69 20.3 59.4

9 1 0 1 1 0 5 3 11 13 11 7 0 53 24.5 66.0

10 0 0 0 0 0 0 1 6 10 20 17 0 54 37.0 87.0

11 0 0 1 0 0 2 1 2 3 17 22 4 52 42.3 82.7

12 0 0 0 0 0 0 0 0 0 1 7 2 10 20.0 90.0

# classified 1745 84 110 33 65 52 62 68 53 57 64 9 2402 71.6 84.2

Label# number of instances

1 1628

2 154

3 124

4 68

5 71

6 45

7 74

8 69

9 53

10 54

11 52

12 10

total 2402
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D. Naïve Bayes & regression model on Principal Component (PC) score 

Dimensionality reduction was applied on the raw feature set and its effectiveness was 
examined. Principal Component Analysis (PCA) is used (Eqn. 5) and the most dominant modes 
are extracted as features. The first five PCs explained 75.0% of total shape variability (1st: 
29.8%, 2nd: 18.8%, 3rd: 12.8%, 4th: 9.1%, 5th: 4.6%, …) (below). The shape variability that the 
1st PC represents was cavity translation in orthogonal direction to the chord. The 2nd PC 
corresponded to cavity rotation and cavity shrinkage/expansion, and the 3rd PC corresponded to 
cavity shrinkage/expansion. The instances were normally distributed which can be proved by 
standardized PC score (Figure below). Standardized PC score represents coordinates of each 
instance with respect to the major PC axes, i.e. it describes where each instance lies on each 
PC relative to the centroid of the data (Eqn.6). The accuracies were checked in the same 
manner as section C.   

           1

(where, X : mean of instances, : j-th mode, b :weight(eigenvalue),  :Principal component)

X X b
m

mean j j

j

jmean j j

=



= + 
             (Eqn.5) 

    

T

(where, -th instance, : j-th mode, b :weight(eigenvalue),  :Principal component)

(X X )

b

j i mean

ij

j

i j j j

PCS



 −
=

                            (Eqn.6) 

 

[Scree plot: shape variability] 
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[Standardized PC score] 

 

[Confusion matrix of NB on five most dominant principal components] 

 

 

[Confusion matrix of GLM on five most dominant principal components] 

 

 

 

 

label ID 1 2 3 4 5 6 7 8 9 10 11 12  #actual % exact % margined

1 1497 70 22 9 6 16 4 1 1 2 0 0 1628 92.0 96.3

2 60 56 8 10 6 8 2 1 2 1 0 0 154 36.4 80.5

3 26 35 14 7 14 15 5 4 2 2 0 0 124 11.3 45.2

4 10 24 7 8 15 0 3 0 0 1 0 0 68 11.8 44.1

5 5 16 7 6 2 2 3 4 1 1 1 0 48 4.2 20.8

6 4 3 2 0 3 18 5 5 0 2 2 1 45 40.0 57.8

7 3 11 11 5 16 5 8 9 3 2 1 0 74 10.8 29.7

8 0 1 13 1 14 10 9 12 4 3 2 0 69 17.4 36.2

9 0 0 8 0 5 2 9 9 7 8 5 0 53 13.2 45.3

10 0 0 2 0 5 3 2 2 6 20 12 2 54 37.0 70.4

11 0 0 0 0 0 3 0 4 4 14 24 3 52 46.2 78.8

12 0 0 0 0 0 0 0 0 0 1 4 5 10 50.0 90.0

# classified 1605 216 94 46 86 82 50 51 30 57 51 11 2379 70.2 82.9

label ID 1 2 3 4 5 6 7 8 9 10 11 12  #actual % exact % margined

1 1589 8 15 3 3 2 4 1 2 1 0 0 1628 97.6 98.1

2 121 6 10 3 4 3 2 3 2 0 0 0 154 3.9 89.0

3 52 15 32 2 7 10 2 1 2 0 1 0 124 25.8 39.5

4 18 16 17 4 9 1 2 1 0 0 0 0 68 5.9 44.1

5 6 6 17 4 20 1 6 8 1 1 1 0 71 28.2 35.2

6 2 1 12 0 0 12 8 5 3 1 1 0 45 26.7 44.4

7 4 1 13 1 16 5 15 15 4 0 0 0 74 20.3 47.3

8 0 0 6 0 7 7 10 23 10 4 2 0 69 33.3 62.3

9 1 0 1 0 2 1 7 10 16 12 3 0 53 30.2 71.7

10 0 0 0 0 0 1 1 5 11 23 12 1 54 42.6 85.2

11 0 0 1 0 0 2 0 1 1 16 26 5 52 50.0 90.4

12 0 0 0 0 0 0 0 0 0 0 2 8 10 80.0 100.0

# classified 1793 53 124 17 68 45 57 73 52 58 48 14 2402 73.9 86.5
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Method Accuracy (average of 10-fold cross val.) 

Naïve Bayes (NB) + PC as features 70.2396 % 

Regression model (GLM) + PC as features 73.8551%  
[Accuracy of NB vs. GLM on Principal components] 

 

It is obvious that the accuracy of NB on PC is higher than NB on raw wall thickness data. Since 
each PC mode is orthogonal and independent to the preceding PCs, conditional independence 
assumption of NB fits and works better compared to that of previous section. In terms of GLM 
performance, there was slight increase in accuracy but not as much as NB. From the above 
performance results, it can be concluded that the principal components capture shape variances 
in efficient manner, but it is not strongly correlated to the cavity-shift based labels that are used 
in the supervised learning.  

 

E. Feature selection applied as preprocess 

Feature selection techniques are applied on the raw wall thickness data. The purpose of feature 
selection is to suppress the least interesting features and capture the most significant features 
as well as to enhance model accuracy by reducing overfitting. For our case, it is to filter out wall 
thickness data that are irrelevant to the clusters derived from the cavity shift information. Two 
popular methods, i.e. filtering-based and wrapper-based methods are applied and tested on the 
raw wall thickness data. Information-gain term is used for filtering-based method. Forward 
selection is used for wrapper-based method. The accuracies are listed below.  

 

Method Number of features 
selected 

Accuracy  

Naïve Bayes (NB) + Filtering-based  11 out of 48 features 59.9917 % 

Naïve Bayes (NB) + Wrapper-based  15 out of 48 features 71.3988 % 

Regression model (GLM) + Filtering-
based 

11 out of 48 features 71.5654%  

Regression model (GLM) + Wrapper-
based 

18 out of 48 features 74.0633%  

[Accuracy of NB vs. GLM when feature selection techniques are applied] 

 

For both NB and GLM, wrapper-based performs better than filtering based. It is unlikely that 
filtering-based (information-gain based) method selects features that are highly predictive only 
when combined with other features. Since it can be inferred from Section C that the wall 
thickness features are not independent each other, filtering-based shows its limitation as a 
feature selecting tool. On the other hand, the wrapper-based method has strength on higher 
accuracy but potentially has limitation on computational cost due to its iterative filtering scheme.  

 

F. Regularization applied on Regression model 

In terms of regression models, a regularization technique can be effectively used to create a 
less complex model with implicitly reduced numbers of features in the datasets to alleviate the 
overfittings toward the data. In our classification tool, we applied lasso (L1), ridge (L2), and 
elastic net (L1 + L2) regularization terms as shown in Eqn. 4. For the elastic net, the L1 and L2 

are equally weighted ( 0.5 = ).  L1 regularization term plays a role of an inherent feature filter 
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since it forces the less important feature’s coefficients to zeros. For the blade dataset, L1 term 
efficiently increases the prediction accuracy as can be seen below. 

 

[Confusion matrix of GLM with L1 regularization term] 

 

Method Accuracy (average of 10-fold cross val.) 
Regression model (GLM) without regularization 71.6486 % 

Regression model (GLM) + L1 82.0413 % 

Regression model (GLM) + L2 73.5123%  

Regression model (GLM) + L1 + L2 82.0150%  
[Effect of regularization on GLM model] 

 

G. Validation with additional dataset 

We acquired data on an additional 1544 blades from GE-GRC that could be also trained using 
the above methods. The figure below shows the trained result of the 1544 blades by applying 

GLM with elastic net regularization term ( 0.5 = ). The exact prediction accuracy is lower 

compared to the case using original dataset. However, the margined prediction still shows good 
accuracy (93.7176%). Furthermore, when the original 2402 blades are tested based on the 
trained GLM model from 1544 blades, both exact and margined prediction accuracy are 
satisfactory (below). 

 

[Confusion matrix of GLM on additional 1544 blades] 

 

label ID 1 2 3 4 5 6 7 8 9 10 11 12  #actual % exact % margined

1 1591 29 1 0 0 0 0 0 0 0 0 0 1621 98.1 99.9

2 29 68 31 1 0 0 1 0 0 0 0 0 130 52.3 98.5

3 1 26 80 19 1 4 0 0 0 0 0 0 131 61.1 95.4

4 0 0 25 56 4 15 2 0 0 0 0 0 102 54.9 83.3

5 0 0 2 4 31 6 5 9 0 1 0 0 58 53.4 70.7

6 0 1 2 13 9 39 14 2 0 0 0 0 80 48.8 77.5

7 0 0 0 1 7 13 31 13 1 0 0 0 66 47.0 86.4

8 0 0 0 0 8 1 13 26 11 2 1 3 65 40.0 76.9

9 0 0 0 0 0 0 1 9 19 10 6 7 52 36.5 73.1

10 0 0 0 0 0 0 0 3 5 13 11 12 44 29.5 65.9

11 0 0 0 0 0 0 0 0 0 19 16 7 42 38.1 100.0

12 0 0 0 0 0 0 0 0 0 4 7 0 11 0.0 63.6

# classified 1621 124 141 94 60 78 67 62 36 49 41 29 2402 82.0 95.1

label ID 1 2 3 4 5 6 7 8 9 10 11 12 # actual % exact % margined

1 623 18 1 0 0 0 0 0 0 0 0 0 642 97.0 99.8

2 23 20 27 2 0 0 0 0 0 0 0 0 72 27.8 97.2

3 1 24 63 22 5 2 0 0 0 0 0 0 117 53.8 93.2

4 0 3 31 44 6 10 2 0 0 0 0 0 96 45.8 84.4

5 0 0 1 7 52 7 6 7 0 0 0 0 80 65.0 82.5

6 0 0 1 19 6 24 11 2 0 0 0 0 63 38.1 65.1

7 0 0 0 2 3 9 35 28 0 0 1 0 78 44.9 92.3

8 0 0 0 1 13 4 17 66 18 1 0 0 120 55.0 84.2

9 0 0 0 0 0 0 5 18 39 25 0 0 87 44.8 94.3

10 0 0 0 0 0 0 0 3 22 45 12 1 83 54.2 95.2

11 0 0 0 0 0 0 0 0 0 17 40 14 71 56.3 100.0

12 0 0 0 0 0 0 0 0 0 1 12 22 35 62.9 97.1

# classified 647 65 124 97 85 56 76 124 79 89 65 37 1544 69.5 93.7



Final Project Report | August 1, 2019 38 

 
[Confusion matrix of original 2402 blades tested based on GLM model trained by 1544 blades] 

 

H. Supervised Learning Summary 

This effort focused on the classification of turbine blades for the adaptive hole drilling process 
using scalar wall thickness profile data along with labels derived from cavity shift information. 
Naïve Bayes and regression models were tested as learning methods with the support of 
feature selection, regularization and dimensionality reduction techniques. Among all tests, the 
best performance was shown when using GLM with the L1 regularization term. This can be 
induced by the fact that the wall thickness features are relevant to each other so that the 
conditional independence assumption of NB becomes incorrect while GLM with regularization is 
less biased. The lasso term effectively increased the prediction accuracy thanks to its inherent 
trait of the feature extraction.  

The classifier still possesses incorrect predictions mainly due to the small number of features 
(<50) and small number of instances (<2,500). Furthermore, the imbalanced trait of the dataset 
negatively affects the accuracy of learning models. The gold standard labels derived from K-
means clustering based on cavity shift also inherently possess small numerical errors, which 
typically arises when the instances are not sufficiently close to the center of each cluster. 
Increasing the number of well-balanced instances as well as adding additional informative 
features such as cavity shift and drop thru into the training can be effective ways to further 
enhance the prediction accuracy of the classification task. 

 
The blade classification software is implemented based on the GLM algorithm which provides 
the user to easily classify the given input blade instances. While the classification tool has been 
tested with dimensional data from turbine blades, its implementation and design principles are 
generic to be applicable to scalar data from other manufacturing operations. 

 

Task 4: Agile Communication to Equipment Control 

To ensure the best performance, two methods were developed to support movement of 

offset/classification data to the pilot drilling machines.  The drilling machines in this program 

were equipped with Siemens 840D and Delta Tau controllers.  The Siemens controller could 

handle offset files but was best suited for a data push to an array on the controller.  The Delta 

Tau controller was more suited for an offset file.  A machine interface was used to push the 

offset values from a database table to the respective arrays on the Siemens controller.  The part 

program on the controller could then read in all array values as needed.  A physical offset file 

(txt) was pushed via a DNC system to the Delta Tau controller to be used by the part programs.  

Both processes were triggered by the specific machines’ MTConnect feeds.  When an operator 

label ID 1 2 3 4 5 6 7 8 9 10 11 12 # actual % exact % margined

1 1377 27 3 0 0 0 0 0 0 0 0 0 1407 97.9 99.8

2 25 55 16 2 0 1 1 0 0 0 0 0 100 55.0 96.0

3 0 31 50 13 0 11 0 0 0 0 0 0 105 47.6 89.5

4 0 3 15 47 2 13 0 0 0 0 0 0 80 58.8 80.0

5 0 0 0 5 21 8 1 13 0 0 0 0 48 43.8 70.8

6 0 0 1 21 0 36 10 1 0 0 0 0 69 52.2 66.7

7 0 0 0 2 0 26 22 9 0 0 0 0 59 37.3 96.6

8 0 0 0 0 4 5 8 22 7 5 0 0 51 43.1 72.5

9 0 0 0 0 0 0 0 7 12 27 0 0 46 26.1 100.0

10 0 0 0 0 0 0 0 0 3 29 3 0 35 82.9 100.0

11 0 0 0 0 0 0 0 0 0 9 22 3 34 64.7 100.0

12 0 0 0 0 0 0 0 0 0 0 1 7 8 87.5 100.0

# classified 1402 116 85 90 27 100 42 52 22 70 26 10 2042 83.3 95.7
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scanned the serial number of the current fixtured part, the machine MTConnect Feed was 

updated and triggered the interface to push data to the array or download the offset file.  The 

machine MTConnect feed includes all parameters for the interface to use when selecting the 

correct machine offsets for each part serial number processed or text file download. 

On the Siemens controllers, we created default arrays for each axis and used the corresponding 

array field to designate the row and hole for each offset.  So, array field 3,10 in the x-axis array 

will hold the x offset for row 3, hole 10.  This made the offsets human readable and enabled 

checking the offsets (if needed).  The ability to check data feeds and proper downloads was 

very important to the validation of the digital thread setup and the final leg of data transfer to the 

drilling machine CNC controls.  Once the process had been validated by process engineers, the 

subsequent drilling of the balance of the pilot lot was turned over to operators for completion of 

the demonstration.     

The offset text files used on the Siemens and Delta Tau controller were constructed to be 

human readable by including field tags for each axis offset.  The offset files also contained a 

part serial number, machine type and rotary type to confirm the files for the scanned part serial 

number on the machine.  Each machine holds the value for the current serial number which was 

used in the text file confirmation. 

 

Task 5: Incorporate Machine Condition Monitoring Analysis into the Digital Thread 

The GE Aviation Turbine Airfoils Lean Lab is working with technology providers and non-

conventional machining equipment OEMs to integrate MT Connect machine condition 

monitoring functions directly into EDM and laser equipment. The data collected through these 

systems will be valuable in ensuring that adaptive machining to compensate for geometric 

variation is not confounded with machine condition variation. 

ITI’s MTConnect4MSVisio provides a lightweight capability using Microsoft Office tools typically 

found within the Engineering and Manufacturing communities (Microsoft Visio and Excel).  By 

leveraging Microsoft Visio as the backbone for the MTConnect manufacturing analysis, ITI 

provides a flexible, known interface on which users can visualize their manufacturing 

environment, available parameters, and identified processing which has no boundaries on 

machine type, machine location, or available analysis, as exhibited below. 
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MTConnect4MSVisio Layout File and Stencil Examples 

To support the agile manufacturing environment for GE’s turbine airfoil adaptive manufacturing, 

ITI extended the MTConnect4MSVisio by providing stencils, reports, and templates that allow 

rapid adoption of analysis tools across simultaneous machine environments.  ITI’s process to 

enhance the current capabilities will continue to use a machine / analysis agnostic approach 

such that any machine process supporting MTConnect data streams and any analytical process 

which fits within the Excel environment can be leveraged. The solution provides GE the required 

capabilities to analyze the manufacturing processes, understand the production variability, and 

setup the required real-time monitoring and limit requirements to make machining decisions. 

MTConnect4MSVisio provides flexible data analysis and reporting leveraging the power and 

integration of MS Office Excel.  ITI’s MTConnect4MSVisio software is currently in release 

candidate status and readily available to the community.  The software was one of five selected 

winners of the MTConnect Idea Challenge sponsored by ManTech in 2013 and one of five 

winners of the MTConnect Implementation Challenge in 2014.  It has been demonstrated at 

various conferences gaining attention and continues to grow in function, reliability, and 

production scenarios. 

MTConnect4MSVisio currently consists of the following components (see figure below): 

• Visio Plug-in (1) providing the MTConnect functionalities, menus, and ribbon 

providing the ability to 

• Connect new MTConnect capable machines located within any accessible network 

(2) 

• Recording and Play Back features that stores machining data like a DVR (3) 
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• Ability to start, pause, stop, and step through live or recorded manufacturing data 

defined in the Visio layout (3) 

• Open, save, and work with MTConnect4Visio produced results and templates 

• Data Collection stencils which allows for discovering machine and sensor data 

published within the MTConnect data (2) 

• Processing stencils allow for real-time and post processing of machine(s) and 

multiple parameters (4) 

• Result Visualization stencils providing real-time and post processing graphs and 

visualizations (4) 

ITI extended additional components, highlighted in red below, for this effort: 

• Developed Excel templates which plug-in for rapid learning, evaluation, and usage of 

Excel analysis and visualization based on example environment(s) (5) 

• Developed Visio4MTConnect templates that can be opened and shared for rapid 

learning, evaluation, and usage based on example environment(s) (6) 

• Added additional stencils that will allow for algorithms, limits, and parameters to be 

monitored for report / dashboard views and real-time alert monitoring (7) 

        MICROSOFT VISIO

MTCONNECT4VISIO

Connect 
Machines

Record DVR
Functions

Excel 
Analysis / 

Visualization

Excel 
Templates

Visio4 
MTConnect 
Templates

Alerts / 
Monitoring

2
3 4

5

6
1

7

 

Current and Future Functions available within the MTConnect4MSVisio 

These additional features provide GE the capabilities required for simultaneous analysis of 

machine, sensor, and metrology data for all equipment impacting the turbine airfoil 

manufacturing process and further provides the tools needed to discover requirements and 

trends and turn them into live alert / monitoring strategies that align to the GE agile 

manufacturing business objectives. 
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Furthermore, the enhancements provided the manufacturing community a lightweight, 

affordable tool with live examples and templates to rapidly deploy within their environment 

including small and medium sized enterprises (SMEs). 

 

Task 5 Project Approach 

ITI and GE Aviation Turbine Airfoils Lean Lab met early in the project to establish the base 

functionality of the current MTConnect4Visio software to establish the baseline.  The application 

at that time was still in beta form and the goal was to establish installation, connectivity of GE’s 

current MTConnect enabled equipment, conduct initial training, and begin capturing 

requirements for the software, stencils, and templates for the project.  Initial feedback from the 

training was provided in October 2017 which included usability issues, bugs, enhancement 

requests, and general feedback.  This document along with new stencils and feedback from 

other users and projects was the basis for our first major development release for the project 

(released early 2018).  The figure below shows some of the feedback from the initial usage at 

GE. 

 

In addition to items captured the following stencils were identified as required for the project or 

as part of the ongoing development effort: 
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1) Stencil which provided formula calculations comparable to Excel’s calculation capabilities 

that could be used to compare data, perform calculations, as well as perform conditional 

calculations (if, and, or, etc.) 

2) Stencil which provides the ability to send e-mail alerts based on conditions 

3) Stencil which provides the ability to send text message alerts based on conditions 

4) Stencil which provides a gauge display result for dashboard feedback 

5) Stencil which queries Excel data for user defined information 

 

Formula stencil provides Excel like functions to compute, compare, and perform various logic calculations 

The formula stencil provides comparison, calculations, and string manipulation of incoming data 

items.  This provides the ability to output a color based on conditions to change the background 

color of a stencil, true / false calculations for notifications via e-mail or text, as well as basic and 

complex calculations.  Users can drag and drop data items into the formula and click the buttons 

to add the functions shown. 
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Text message alert stencil provides text messaging when events occur and can include live data from the 
shop floor 

The text message alert stencil uses Twilio for text messaging.  For an application to submit text 

messages a 3rd party application must be used, and it was identified that Twilio was a leader in 

this area with a rich API, affordable costs, and would be best suited for small to large 

companies.  Users can send the data values and based on the formula stencil a condition on 

when the text message is sent including the duration between the next alert. 

 

The e-mail alert stencil provides e-mail notification when conditions occur and includes live data from the 
connected device(s) 
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The e-mail alert stencil provides e-mails to be sent when certain conditions are met.  Using the 

formula stencil users can use if statements and other conditional formulas to calculate when e-

mail alerts should be sent.  Data items available to the stencil can be included in the subject and 

message.  Multiple e-mail accounts (separated by a semi-colon) can be added for bulk e-mail 

notification for machine maintenance, machine errors, or machine status. 

 

Excel import stencil provides access to Excel data for analysis with real-time shop data 

The Excel import stencil provides the ability to read in data from Microsoft Excel file(s).  This 

data can be queried such that a table of information is filtered based on a live value (such as 

getting planned state versus actual state) or read data available for downstream analysis (such 

as machine configuration per part or maintenance states).  This data can then be used by 

formula stencil(s) or alerts to notify the user based on Excel data which can be generated by 

other sources such as equipment, adaptive manufacturing data, or user defined. 

Intermittent updates of the software were provided to GE during the project to conduct 

incremental training and testing of the software and eventually GE and ITI conducted weekly 

onsite installation and reviews as we identified the need to develop the templates.  During the 

weekly reviews ITI and GE installed updates, generated templates, conducted incremental 

training, and tested and troubleshot issues with various MTConnect enabled equipment.  This 

was crucial in the software development as it provided ITI with real-time feedback from users 

and equipment testing as well as a suite of advanced MTConnect data streams with 

conventional and non-conventional data being collected. 

 

Task 5 Project Results 

During the project, ITI renamed the initial beta software MTConnect4Visio to ShopFloorIQ.  This 

name better represents the overall objective of the software to provide a lightweight, quick, and 
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affordable capability to collect, analyze, and alert based on any shop floor data source.  The 

latest version of the software is currently installed at GE’s Aviation Turbine Airfoils Lean Lab and 

future updates are planned as the software continues to be developed and released.  GE and 

ITI collectively generated several templates for the project that GE can use to collect and 

monitor equipment used in the project and beyond.  These templates provide feedback on 

machine health, track part information from the machine, provide operators the ability to monitor 

and analyze machine information, and create dashboard mimic diagrams prior to enterprise 

development. Two examples are Ebbco monitoring and machine status Excel imports. 

A. Ebbco Monitoring 

Stencils were created to provide alerts based on maintenance algorithms identified for pressure 

and conductivity data for GE’s Ebbco deionized water control machines.  This information is 

displayed to the user such that visual inspection can be used to understand current passing 

(green) or failed (red) state.  In addition, e-mail and text message alerts are setup to notify a 

user when something fails the set algorithms.  The algorithms and comparisons are calculated 

using formula stencils and provide the color coding and alert flags when triggered.  This 

information is critical for EDM machines.  Additional stencils for 

Ebbco are executed in parallel and feedback can be provided 

per user, per team, or associated to issue / algorithms 

triggered.  In the close-up diagram, users can leverage existing 

Visio stencils and modify their associated text and background 

colors.  The font, colors, placement, and labels can be easily 
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user modified

 

EBBCO Monitoring alerts and shows current state of equipment. 

 

B. Machine Status Excel Import 

During meetings between ITI and GE, requirements were identified that allow users to bring in 

outside data that can provide user or machine-driven information.  One such requirement was to 

provide planned machine status from Excel integrated with actual status.  Based on this 

information, teams can visualize or receive alerts (text or e-mail) based on the actual status and 

the planned status.  If a machine is planned for maintenance and is down, the users can 

visualize (yellow) this scenario.  For unplanned downtime, users can visualize (red) and be 

notified immediately.  The Excel data can be edited and updated in real-time or can be written to 

from external sources. 
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Excel data can be filtered based on device name and all information queried is available for 

downstream data consumption either viewing information or used within formulas.  In the 

example above, the actual execution state is compared to the planned execution state to 

generate the visualization and alerts.  The Excel information can contain information based on 

machine status, machine maintenance, machine usage, and machine configuration based on 

parts (for adaptive manufacturing). 

As information is updated alerts can be sent via 

text message or e-mail.  The alerts are based on 

text and data provided by the user and can include 

data from the MTConnect data streams or any 

other shop floor data embedded in the diagram 

(Excel, SQL database, etc.).  The image to the right 

shows a sample text message and associated 

data. 
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III. KPI’S & METRICS  
 
As mentioned in the previous sections, upstream casting variation is an expected driver of 
defects during the high-volume drilling of production turbine blades. The strategy of adaptive 
drilling is to accommodate for this casting variation and therefore reduce the occurrence of 
these defects. Consequently, one of the metrics proposed to validate the effectiveness of the 
adaptive drilling strategy is a reduction in the occurrence of over-drills (or un-intentional material 
removal). The validation methodology to demonstrate the reduction of over-drills is by subjecting 
the adaptively machined turbine blade parts to extensive production NDT (non-destructive) 
evaluation using X-ray techniques. 
 
It is anticipated further, that the availability of casting data will also enable reduction of manual 
interventions in hole drilling, for example those needed for reopening of blocked holes during 
automated drilling cycle, through the enhanced consistency of castings within each grouped 
family.  
 
The absence of a digital thread implies that any adaptive drilling operation would involve manual 
drilling program selection at the drilling machine with the risk of incorrect part program selection. 
With the establishment of the digital thread from the casting vendor, the correct part grouping is 
expected to be available automatically during drilling time, and therefore the risk of incorrect part 
program selection (incorrectly compensated program applied to part) is anticipated to be retired. 
We validate this expectation by reviewing the part classification and the compensated drilling 
program used to drill the part as well by evaluating the post-drilled X-ray images of the drilled 
parts.  

Metric Baseline Goal Results Validation Method 

Manual Interventions 
in Cooling Hole 
Drilling 

5/shipment 0-1/shipment 0/120 blades 
Drill engineer 

feedback 

Defect opportunities 
(defect = incorrect part 
program selection) 

4/part 1/engine set 0/120 blades 
Review automated 
program selection 

Over-drill Occurrences 1.01% rate 
Increase hole drill 

first time yield (FTY)  
0/120 blades 

Post-drilling CT and 
Airflow check 

The above table summarizes these metrics, their baseline and goals set at program initiation 
and results achieved at MRL 7 level on a pilot adaptive drilling study conducted on 120 turbine 
blades of the primary airfoil at the GEA Turbine Airfoils Lean Lab.  

 
IV. TECHNOLOGY OUTCOMES 
 
Outcomes from this program can be classified in terms of the overall digital thread 
demonstration, deliverable software, and use cases. 
 

A. Digital Thread Demonstration 
The receipt of supplier digital data requires a seamless digital process for data ingestion and for 
conducting analysis on the data for adaptive manufacturing. An ETL system was used to push 
the supplier data received in the GE Aviation DMZ automatically by serial number into the 
Aviation manufacturing SQL database. An automation platform (Proficy CIMPLICITY) was then 
used to extract the wall thickness data for each part serial number and to execute the part 
classification calculation on the data to obtain the group number as well as the required 
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adaptive offsets for the specific part. These computed values were pushed back into the 
Aviation manufacturing SQL database for subsequent retrieval. The baseline EDM machining 
programs were enhanced to accept adaptive offset values for each cooling hole adaptively 
drilled stored in the control system registers. Bar code scanning at machining time identified the 
specific serial number to be machined and allowed the MTConnect adapter to push the serial 
number data to the MES database, triggering the MTConnect Interface. The EDM offsets were 
downloaded in real time from the database onto the registers of the EDM using the MTConnect 
Interface software on the machine and database server to enable the adaptive machining of the 
part. The 120 adaptively machined parts were found to be defect free in the adaptive region, 
demonstrating a potential 1% reduction in over-drills over the baseline process. ITI’s 
ShopFloorIQ software was used for continuous machine health monitoring of the EDM drilling 
and filtration system processes.  Processing alerts via email or text messaging are now sent for 
any process parameters that are outside of expected ranges.  The systems derived and utilized 
for this outcome are outlined below. 
 

 
 
 
The casting production database from which the Digital Twin data is extracted contains data 
from all part numbers produced in that facility and is available 24x7, allowing extraction 
whenever shipment is triggered. Maximum data volumes associated with adaptive hole drilling 
of all production parts do not approach data processing limits at any production facility and data 
push can be scheduled to adapt to any WAN connection limits. The Digital Thread environment 
is available 24x7 with essentially no limitations on data ingestion limits, supporting active and 
multiple production sites. 
 
The vendor application pulls relevant data from database storage on shipment trigger and 
generates xml Digital Twin data files. The vendor data files (xml) are provided to the SFTP 
application which copies the files to a folder storage within GE on fixed intervals.  After the xml 
files are copied to their specific folders, an ETL (Extract, transform, load) application picks up 
the files and writes the file contents to predefined databases (time series and relational).  After 
the data is transformed into the databases, it is available for analysis or for supporting 
production applications, such as adaptive manufacturing.  The data used for adaptive 
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manufacturing is run through classification software on the database server to generate the 
adaptive offsets for each serial number.  ShopFloorIQ runs integrated within the GE machine 
shop network on a windows server machine.  The diagrams can be shared, data collected, and 
information recorded as desired or over 24/7 execution. 
 
The data is available much sooner using the Digital Thread environment and can be analyzed or 
used to enhance manufacturing operations.  ShopFloorIQ provides immediate feedback, alerts, 
and monitoring from machines in real-time.  
 
 

B. Deliverable Software Development Documentation 
 

The software bladeClass is a machine learning tool for classifying the turbine blades that 
benefits the accuracy of adaptive hole drilling process. The tool uses a regression model (i.e. 
generalized linear model (GLM)) to train the dataset composed of geometric measurements as 
features and their assigned labels. Based on the learned model, the user classifies a new 
dataset to one of the predefined classes. 
 
1. Installation Guide: 

a. Run setupBladeClass.exe to install the application and to install the MATLAB Runtime 
via the web 

b. Install the program in a folder where the user has full administrator right to freely access 
(ex. C:\) 

c. Run the “bladeClass.exe” in your “…\application” folder to start the classification. 

2. Installation requirements (recommended): 

 a. Processors: All Intel-based with an Intel Core 2 or later 

 b. Disk Space: 300MB or larger  

 c. RAM: 1GB or larger 

 d. Graphics: No specific graphics card is required.  

3. Classification tool manual 
 
The tool is largely composed of three modules (user interface shown below): 
a. Training module: 

- load a file(.xlsx) and designate the extent of the dataset that are being trained 
- Set up the parameters for the training model (GLM) and run the training 

 
b. Classification module: 

- Load a file(.xlsx) that contains the testing data, designate the extent of data for 
testing and run the classification 
 

c. Instructions and results module: 
- A window that displays instructions and summaries of training & classification results 
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-  
[User interface of bladeClass software] 

 
a. Training module: 

a.1. Open training file: load a single .xlsx file that contains the training dataset 
a.2. Training file: a window displaying the filename for training 
a.3. Training dataset sheet: type in the name of the excel sheet containing the training 
dataset 

a.3.1. cell extent: designate the cell extent that contains the geometric features 
(left columns) and the labels (rightmost column) 

a.4. Feature selection sheet: type in the name of the sheet containing the information of 
the feature flags (ID/group) 

a.4.1. cell extent: designate the cell column containing the feature flags 
(ID/group) 
a.4.2. Select Features: select the features (ID/group) used for training 
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a.5. Normalize data: decide whether to normalize the dataset by scaling between 0 to 1 
a.6. Number of Folds: define the number of folds being applied while training 
a.7. Alpha: set the weight for regularization terms (α = 1: L1, Lasso / α = 0: L2, Ridge) 
a.8. Max num. iteration: set number of maximum iterations per each fold 
a.9. Start training: execute the training 

 
b. Classification module: 

b.1. Open testing file: load a single .xlsx file that contains the testing dataset 
b.2. Load learned model (if exists): when there exists the trained GLM model, load the 
model (*.mat file format) 
b.3. Testing file: a window displaying the filename for testing 
b.4. Testing dataset sheet: type in the name of the excel sheet containing the testing 
dataset 

b.4.1. cell extent: designate the cell extent that contains the geometric features 
(left) and the labels if exists (rightmost column) 

b.5. Pre-labeled: Shows if the testing dataset have their predefined label 
             (if yes, the accuracy of the testing can be validated) 
b.6. Selected features: displays the feature flag (ID/group) 
b.7. Start classification: execute the testing 

 
c. Instructions and results module: 

c.1. When the training is completed, the computation cost(s) is displayed. The exact and  
margined accuracies (%) are displayed and also saved in accuracy_train.txt file.  
The Confusion matrix is displayed and saved in confusionMatrix_train.txt.  
The learned model (GLM) is saved in learnedMode.mat. 

c.2. When testing is completed, the computation cost(s) is displayed. The exact and 
margined accuracies (%) are displayed and also saved in accuracy_test.txt file.  

The Confusion matrix is displayed and saved in confusionMatrix_test.txt 
 
 
ShopFloorIQ (previously MTConnect4Visio) was developed in 2013 as part of the ManTech 
MTConnect challenge.  Over the years the software has been under initial development while 
interest and stability were added to the software.  One additional feature which was added to 
the software was the ability to add custom stencils.  As part of the project, ITI added additional 
stencils to read in Excel spreadsheet data and alert users via e-mail.  The diagram below shows 
the Visio core application which reads standard Visio files, the ShopFloorIQ .NET application, 
the configurable custom stencil DLLs which are added to the system and associated data flow 
for data analysis, monitoring, and recording. 
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C. Use Cases 
As a use case for the above developed technology we adaptively machined 120 production 
turbine blades of the primary airfoil at the Turbine Airfoils Lean Lab to demonstrate capability of 
adaptive drilling via the digital thread using part classification. The following procedure was 
employed for adaptive machining of 120 turbine blades: 

• Arconic (casting vendor) implemented a digital thread within their enterprise as 
described in the previous sections to integrate the UT wall thickness measurement 
and radial core position data points into an xml data file.  The xml file is used to 
transmit the blade data through the SFTP application for the primary turbine airfoil. 

• UT wall data pushes were performed daily for part shipments completed since the 
prior day’s data push from Arconic.  Each part serial number and UT wall data was 
included in a single xml file and then pushed via the digital network to GE using an 
enterprise SFTP application: Globalscape DMZ intranet servers at GE Aviation. 

• GE Aviation xml parsing scripts extracted the UT wall thickness information off the 
individual xml files for each serial number and then pushed the data into GE Aviation 
database servers. 

• Next, tables containing the wall thickness values were prepared for each serial 
number from the database as input to the part classification algorithm. 

• Across the network on a different server, the part classification algorithm was 
automatically kicked off to operate on the input tables generated. The output part 
classification/groupings as well as the corresponding adaptive offset values for each 
cooling hole were stored in the relational database. 
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• In a fully automated mode the total time taken to compute the adaptive offset values 
for each blade from the initial data transfer from Arconic was less than 15 minutes, 
while the minimum time taken for a casting to arrive at the drilling machine was 12 
hours. 

• At the drilling machine, the bar code scan of the router issued with the part was used 
to identify the part serial number. Simultaneously, the hole offsets stored in the 
relational database (based on the prior part classification step) were downloaded 
onto the drilling machine via MTConnect protocol on to registers on the machine. 

• A “modified” production drilling program including variable offset values for each of 
the cooling hole positions was prepared a-priori and the offset values were linked to 
the offset registers on the machine. 

• After each of the 120 parts were drilled adaptively with the computed offset values, 
all parts were subjected to X-ray and all other production inspection protocols.   

For the purposes of stress testing the adaptive drilling framework, all 120 parts selected were 
chosen from the group exhibiting very high casting variation – group 11 and group 12 based on 
the nomenclature established in the prior sections. Thus, these parts would exhibit high 
potential risk for defect occurrence due to high deviation from nominal. 
 
Post adaptive drilling tests certified that all 120 parts were defect free with no occurrence of 
blocked hole, over drilling, scarfing or other defects in the adaptive region. All parts met blue 
print requirements and are capable of entry into service. On comparison, a 1% over drilling 
defect rate was observed with the parts from group 11 and group 12 casting variation to the 
baseline non-adaptive production drilling operations. 
 

As a use case for individualized adaptive drilling we adaptively machined 30 non-production 
parts of the secondary airfoil in this program. Instead of 1D UT wall thickness measurements, 
3D data points from CT images were generated as inspection data at the casting vendor for 
each airfoil. The measurement data was transferred via xml file format into the GE Aviation DMZ 
servers. At the writing of this report the methods for ingesting the more complex 3D data into the 
data servers at GE Aviation were still being studied. As a parallel track, the 3D data was parsed 
out manually from the XML files for direct ingestion by the core-shift and EDM offset 
computation procedures. 3D inspection data files, similar in format to those to be generated by 
the automated ingestion procedures were generated manually as input for the core-shift 
procedure described above. The following steps were then initiated to compute the EDM offsets 
in each part from the input data: 

• The core shift of the cavity with respect to the airfoil was estimated using the same (UT) 
based non-linear minimization procedure described in the previous section. 

• Next using the same principle as the UT based core shift the impact of the core shift at 
each cooling hole location was determined – specifically the 3 core shift components 𝐶1, 
𝐶2 and 𝐶3. 

• The EDM drilling offsets at each of the cooling holes on the secondary airfoil was 
determined using the same procedure developed for the UT based data. The drilling 
program was updated to receive offset values at each of the cooling holes in the same 
manner as the primary airfoil 

• Instead of classifying blades based on part families and applying offsets based on part 
families, the EDM offsets at each hole were determined individually proportional to the 
magnitude of the 3 core shifts. 

• After the 30 parts were drilled adaptively with the computed offset values, all parts were 
subjected to X-ray inspection checks to determine any over-drilling or scarfing defects. 
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X-ray inspection of the parts subjected to individualized adaptive drilling tests indicated 97% 
FTY at the part level and a 99.99% FTY at the hole level. Furthermore, initial indications of the 
defects in the adaptively drilled parts were not ascribed to the adaptive machining process but 
to hole drilling process tuning.  

GE and ITI developed the following ShopFloorIQ use cases: 

• Monitoring machine settings based on part information provides validation that the 
adaptive manufacturing settings programmatically loaded are equal to the actual 
machine parameters during execution. 

• Using Excel to provide machine planned status, stakeholders can be notified when 
machine data does not meet the expected state. 

• Using ShopFloorIQ and standard operating procedure (SOP) criteria, GE can monitor 
Ebbco data and alert stakeholders when that data does not comply with critical SOP 
criteria. 

 

Implementation 

The following table references the implementation task (A- F) and document section/pages 

detailing effort for each task within this document for an adaptive manufacturing implementation 

as completed in this project to MRL7. 

Description Reference (Section/Pages) 

A - Overview and Methodologies for Adaptive Manufacturing Section 4, pages 50-57 

B - Establish data structure and secure transfer process and 
architecture (Task 1) 

Section 2, pages 10-12 

C - Casting Data Fidelity (Task 2) Section 2, pages 12-13 

D - Casting Variation Mapping (Task 3) Section 2, pages 13-38 

E - Agile Communication to Equipment Control (Task 4) Section 2, pages 38-39 

F - Incorporate Machine Condition Monitoring Analysis into 
the Digital Thread (Task 5) 

Section 2, pages 39-49 

 

 

V. ACCESSING THE TECHNOLOGY 
 

A. Background Intellectual Property 
 
International TechneGroup Incorporated utilized it’s ShopFloorIQ (previously MTConnect4Visio) 
and Linked Intelligent Master Model (LIMM) software as BIP for the project. 
 

B. Technical and Systems Requirements:  
System requirements for transmitting Digital Twin data from vendor to customer are not highly 

restrictive. Of course, there must be a reliable measurement system that collects digitizable data 

and stores that data in some fashion, correctly attributed to an individual component or part. 

There must also be some sort of manufacturing execution system (MES) – commercial or 

otherwise – to track when that individual component or part has been shipped to the customer. 

There are no specific software or hardware requirements for the measurements, the database, 

or the MES. Those are specific to the vendor and to the products being produced.  



Final Project Report | August 1, 2019 58 

While there are no specific requirements for the database, use of Microsoft SQL Server 2016 

with SQL Server Integration Services (SSIS) and .NET programming is a best practice for 

integrating disparate data sources into a single database and extracting Digital Twin data. 

Vendor developed applications that query the MES for shipment data, configure the Digital Twin 

and package the XML files enable automated data transfer. Finally, a Managed File Transfer 

solution such as Globalscape EFT is required for data transfer between vendor and customer. 

The technical and systems requirements both hardware and software needed for the blade 

class program are as follows:  

• Processors: All Intel-based with an Intel Core 2 or later 

• Disk Space: 300MB or larger  

• RAM: 1GB or larger 

• Graphics: No specific graphics card is required. 

 

The CIMPLICITY application provides a supported platform to push and pull data from multiple 
sources providing a standard interface environment for all data aggregation integrations.  
CIMPLICITY provides a set of features and capabilities that can apply to any industry requiring 
data aggregation, data importing and exporting with other systems providing data flow between 
other applications and systems.  GE is using CIMPLICITY as the platform to push serial number 
data from database to the offset algorithm and gather output from algorithm (offsets) into the 
database.  GE Digital’s CIMPLICITY application is a commercially available product for the 
Industrial Internet of Things (IIoT) and proven as an automation platform providing a standard 
data interface access.  The current release is 9.5. 
CIMPLICITY v9.5 Requirements 

• Intel Core 2 Duo 3.0 GHz or greater 

• 4GB RAM Minimum 

• 40GB of free hard drive space 

• Microsoft Windows 7 SP1, 8, 8.1, 10, Server 2012 and R2, Server 2008R2 SP1 

 

ShopFloorIQ will be commercially available including the stencils which were developed.  
Stencils will be used as examples for custom developed stencils and source code will be 
provided as documentation for users.  ITI plans to release the first commercial version of 
ShopFloorIQ upon completion of the project and finalized testing and licensing with key 
customer environments.  The software will be commercially available through ITI and DMDII 
members can receive additional trial license usage for a period of 3 months upon commercial 
release.  Additional licensing can be purchased or extended through agreements with ITI. 

ShopFloorIQ has the following requirements: 

• Microsoft Visio 2010 64-bit or newer (32-bit not supported) 

• 32GB RAM 

• 300MB space (additional space required for large recordings) 

• .NET 4.5 or newer 

• Microsoft Excel (for Excel integration) 

• Access to Twilio account (for text message alerts) 

• Access to e-mail server (for e-mail alerts) 
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ShopFloorIQ provides an API supported by ITI which can be licensed to create additional 

stencils.  These stencils can be custom integrations, logic, visualizations, middleware, export, or 

import capabilities.  The API supports Microsoft .NET 4.5 or later which provides the full .NET 

C# language and libraries available to the stencils.  Stencils have access to all data integrated 

within the diagram and can push data to any other stencil.  This provides a platform to develop 

intelligent shop floor capabilities and roll out to a larger group using easy drag and drop 

capabilities within Visio.  As additional stencils are developed within the ShopFloorIQ 

applications the amount of data available, the ability to analyze, and push to downstream 

capabilities expands.  Companies interested in developing stencils can license these 

capabilities separately. 

 

 

Custom Stencil (Gauge) and Interface documentation from API derived classes 

 

 
 

VI. INDUSTRY IMPACT & POTENTIAL 
 
 
This program was aimed at adaptive drilling of film-cooled airfoils for aviation applications.  In 
the United States, that specific market is roughly $2B per year (with additional volume 
internationally).  Thus, a 1% reduction in overall losses represents a $20M/yr. theoretical 
opportunity.  To realize gains of that magnitude, eventual deployments will have to impact not 
only drilling losses directly, but also allow more tolerance at the casting level to improve those 
yields.  Improved variation compensation at the machining level offers the potential for casting 
yield gains when that casting variation does not adversely impact the design integrity of the 
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components.  In addition to the potential reduction in manufacturing losses, adaptive drilling 
utilizing the digital thread offers the potential to open the design space if certain producibility 
requirements can be relaxed.  If gains can be realized in that area, it offers the potential to 
impact the $30-50B/year US airlines spend on fuel. 
 
The basic infrastructure and methodologies developed in this project could be used in any data 
driven industry where serialized parts are sourced between multiple medium to large enterprises 
to produce the final finished product. Examples of such parts abound in the manufacturing and 
assembly operations in automotive, aerospace, power generation, and transportation industries. 
Often suppliers are required to maintain quality control over part dimensions to ensure that the 
supplied part meet required drawing tolerances. Quality control problems or drift in supplier 
operations may quickly result in yield loss during manufacturing or assembly operations at the 
OEM. The technology & infrastructure developed in this project provides a framework under 
which similar efforts may be duplicated in other industries as follows: 
 
It has been demonstrated that an XML based file structure is capable of being flexible and 
usable for transmitting the digital twin tagged data across the enterprises. Using this file format 
and structured dimensional and non-dimensional data of parts may both be transmitted from 
suppliers to OEMs. Secure FTP protocol enables transmitting the file data in a robust and 
secure manner. Once the data is within the OEM DMZ via the SFTP (ie: Globalscape), an ETL 
system (ie: Talend) monitors the DMZ folders and processes the files as dictated by the job for 
the file and folder.  The task or job requested is to extract the data and load the data into an 
OEM database, with transmitted data associated with each part serial number. The concepts for 
storing and retrieving the digital data later for downstream computations are applicable to all 
industry scenarios without restrictions. With the digital data available, methods for part 
classification and adaptive manufacturing can be deployed. To this end, a supervised learning-
based part classification algorithm was developed in this project. Supervised learning requires 
labeling an adequate sample set of parts from the general part population into the appropriate 
groups based upon manufacturing outcomes.  This machine learning strategy is directly 
extensible to other applications and industries for scalar data-driven adaptive manufacturing. 
Users would generate initial classification labels for a sample set of parts with scalar 
measurement data based upon manufacturing outcomes for their specific applications. Any 
methodology for generating the labels is acceptable, as long as it is sufficiently accurate for the 
given application. For our application, we constructed mathematical models of the geometrical 
condition of the blade as well as the corresponding manufacturing outcomes to generate the 
labels. Other methods, such as expert input or empirical models are approaches for generating 
this labeling scheme as well. Once the labels for a sample set of parts are generated, 
classification of subsequent parts can be obtained using the bladeClass program. 
 
ShopFloorIQ provides an easy to use interface to track machine information and additional shop 

floor data.  Part classification to adaptive machine settings can be verified using ShopFloorIQ 

including additional monitoring and tracking of machine health.  The application supports data 

for any industry, any machine type, and can be customized to include additional data formats, 

integrated environments, databases, spreadsheets, and more.  Users who know machines and 

need monitoring and analysis support can use the software directly with the machine to 

troubleshoot, monitor, alert, mock up reports, etc.  This is idea for small and medium sized 

companies.  It is anticipated that additional data types are integrated to the ShopFloorIQ 

software however since custom stencils can be added by the industry there is no limit to the 

data interfaces (in and out), analysis, shop integration, and customization that can be 

performed. 
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VII. TECH TRANSITION PLAN & COMMERCIALIZATION 
 
The commercialization of supplying Digital Twin data from a manufacturing facility must:  1) 
maintain very high accuracy of the collected data and be minimally invasive to the flow of 
product, and 2) include automation to create and transmit the data.  Arconic is implementing 2D 
part marking in multiple facilities with a goal of 90% completion at a primary high-volume airfoil 
plant by the end of 2019. This effort will largely eliminate errors associated with manual input 
and missing data.  The data automation component is being achieved by upgrading database 
software to facilitate the creation and transmittal portions within the same timeframe. 
 
While this program was confined to a single supplier and a single customer, Arconic anticipates 
initial efforts with other customers in a similar timeframe. This may involve some modification to 
the approach identified in this program, in part due to the nature of the Digital Twin value 
proposition to each customer. The Digital Twin value proposition is a significant factor in speed 
and breadth of adoption, as well as the commercial issues associated with appropriately 
allocating that value. 
 
GE Aviation plans to continue to pursue the adoption of adaptive drilling via the digital thread.  
This program successfully demonstrated the application of digital tools to move data 
seamlessly, apply classification algorithms to the data, and communicate with the actual drilling 
machine tools to adaptively drill at an MRL7 level of readiness.  This program demonstration 
was done on an existing production blade that was selected primarily to allow GE Aviation and 
Arconic to focus on a successful demonstration of the digital thread.  In addition, adjustments to 
hole location were capped to assure that parts drilled with this adaptive scheme were 
conforming to all drawing requirements.  Future activities will leverage the digital infrastructure 
validated in this program and focus on newer, more complicated airfoil designs that require 
more sophisticated adaptive algorithms and classification schemes.  Expectedly, the only 
module that would need to be replaced from the current infrastructure would be the part 
classification computations, one for each blade design. However, while the details of the 
computations would differ between designs, the principles of estimating part classification from 
the core shifts should be the same as what is detailed under this report for the primary airfoil. 
Thus, the extension of adaptive drilling is technically feasible, and would follow the necessary 
business priorities and cost justifications to be extended to other product lines. 
 
This technology has also been demonstrated to validate individualized adaptive drilling for the 
secondary airfoil on this program. In individualized adaptive drilling, part classifications are not 
generated, rather each part gets its unique offset values for adaptive machining based upon the 
input manufacturing data. A limited set of non-production hardware were subjected to 
individualized adaptive drilling. Basic feasibility at MRL 6 level has been established as part of 
these tests. Further testing of the individualized adaptive drilling application for pre-production 
trial parts are currently being planned for the next phase of testing the maturity of individualized 
adaptive drilling. 
 
Three barriers to immediate adoption of this technology across multiple platforms involve how 
products are specified, how hole locations are controlled in manufacturing, and varying ages of 
machine controls and software.  Typically, part drawings specify a nominal hole location and a 
tolerance from nominal, reflected as hole true position.  To allow for extensive adaptive 
machining, the impact on part cooling performance from hole position changes must be carefully 
analyzed and a methodology for how to move holes to better match the underlying casting will 
need to be developed.  This improved methodology will then assure that design intent is 
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maintained on parts while allowing maximum flexibility in manufacturing.  Secondly, the 
machines and fixtures used to drill parts wear over time, and control systems are currently in 
place to monitor that drift and correct the drilling operation prior to parts running out of tolerance.  
When more variation is superimposed via adaptive machining, users will need to back out that 
second-level effect from the process control feedback loop to avoid treating intentional shifts in 
hole position as machine and tool wear that must be corrected.  Thus, the current digital thread 
will need to be extended further downstream in the machining process and better incorporated 
into process control algorithms.  Lastly, machine tools used in manufacturing can have long 
product lives, which results in multiple generations of machines and machine controls being 
deployed in large manufacturing facility.  Older process controllers may not have the capability 
to incorporate all the required digital tools and interfaces, and so a phased roll-out of technology 
may be required as machines are overhauled or replaced.  This is true at both the casting 
foundry and machining facilities, and across product lines both locations must have capable 
controllers and databases to allow implementation on a particular part number. 

 

VIII. WORKFORCE DEVELOPMENT 
 
The Digital Twin data supplier data system has been designed to require a minimum of labor.  
Aside from a one-time configuration and set-up, the system is designed to run in a fully 
automated mode 
 
The data classification techniques developed in this project such as Bayes and regression 
models will be used in mechanical engineering curriculum in three ways. First, the Bayes and 
regression models will be directly used in shape classification in Statistical Shape Modeling 
course where a variety of shapes ranging from manufactured parts to biological objects need to 
be classified. They will be also applied to dimension extractions for parameterizing shape 
populations.  Second, the data classification techniques and the resulting prototype software will 
become a part of the Case Studies repository for new big data and machine learning based 
topic area within mechanical engineering curriculum. Third, these techniques and prototype 
software will be used in Prof. Qian’s new course ME 601 Digital Design and Manufacturing. 

 
 

IX. CONCLUSIONS/RECOMMENDATIONS 
 
The supply of Digital Twin data for adaptive manufacturing requires that the data be shipped 
coincidentally with the parts.  Any further delay risks creating a delay at the customer site where 
time is needed retrieve and operate on the Twin data prior to manufacturing.   The sharing of 
Digital Twin data will spawn efforts to standardize and consolidate the way the customer and 
supplier share attribute labeling, units of measure, and coordinate systems for the purpose of 
removing the possibility of translation errors. Aside, from the technical challenges of collecting 
and transmitting data through the supply chain at scale and speed, the Digital Twin disrupts the 
commercial norm as the supplier is now a source of both parts and data.  
 
This program demonstrated a viable process for utilizing the digital thread across business 
entities to successfully leverage data that is normally discarded, or at the very least, not 
communicated between commercial entities.  The speed and robustness of that digital thread 
was more than adequate, including time required for data analysis and part classification for the 
single component evaluated.  Additionally, robustness of data transfer between servers and 
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machine tools was demonstrated during this program.  With this successful demonstration of the 
technology, it is very likely that adoption and leveraging of this general approach will grow over 
time.  However, it should be noted that technical and cost hurdles will still exist to deployment.  
For example, lower value components may not justify infrastructure investments in the digital 
thread via potential loss reductions, and even improvement in yields on high-value products 
may not be able to overcome required investments in new process controllers and machines if 
current yields realized on older, fully depreciated equipment are reasonable.  Investments in 
data integrity and utilization will have to be selected carefully for both the supplier and consumer 
of the data.  Thus, it may be most advantageous to implement a full digital thread concurrent 
with new product introductions or significant upgrades such that systems can be designed 
during a normal product investment cycle.  
 
 
X. LESSONS LEARNED 
 

A. Data Integrity 
Once the critical steps of aligning supplier/customer terminology, labeling, data formats, etc. 
have been accomplished, the most challenging aspect of Digital Twin data exchange can be the 
complete and accurate collection of data from multiple data sources for every single shipped 
part. Despite enhancements (such as robust part tracking through production) and 
countermeasures in creating Digital Twin data, there is always a possibility that the collected 
data for an individual part may be incomplete. This may require an approach to impute missing 
data values from part population representative data. 
 

B. Data Utilization & Machine Communication 

• Efficient utilization of data at the receiving site may require additional (new) data from 
the sending site.  For example, since some castings get machined at more than one 
location, getting ‘shipped to’ data for a part may be desirable.  As that is new data, there 
is a cost associated with obtaining it. 

• The fact that a normal production shop has multiple models of process controllers and 
multiple generations of each model necessitates development of multiple interfaces and 
data formats.  Additionally, some (especially older) machines have limited ability to allow 
communication for adaptive manufacturing processes.  

• Methodologies must be implemented to deal with missing or obviously erroneous data.  
If data acquisition at the supplier is not 100% robust, data checks and default values 
must be utilized. 

• Extreme care must be taken when defining file formats and data sets.  Initially, 
coordinate system used in xml data files vs part models used for part programs were 
different and required reconciliation.  Standardization across part designs and the entire 
supply base will be critical to smooth introductions of this technology. 

• Some process steps normally controlled by machine operators (rotary axis positions, 
serial number scanning, etc.) were initially overlooked and had to be automated to 
assure algorithm outputs were applied in the proper orientations 

• Any network issue along the digital thread can cause manufacturing interruptions.  All 
systems/application used with the digital thread must have logging and/or alerts, and 
default responses to a complete lack of data at machining operations must be 
considered. 
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• It was important to make offset file formats readily human readable.  That made it easier 

for part programmers to read in all values and for product owners to verify offsets (if 

needed) on the machine. 

C. Part Classification accuracy and potential for mis-classifications: 
The Gage R&R and measurement sensitivity studies demonstrated that the blade wall 
measurement precision is adequate to support the widely accepted 10% Gage R&R 
requirement for measurement repeatability. However, we expanded on this aspect by studying 
the impact of varying gage values on the part classifications. The Monte-Carlo simulation-based 
approach demonstrated the potential for the part to be (mis-)classified into groups adjacent to 
the “ground” truth due to measurement uncertainty. Any part classification-based adaptive 
manufacturing strategy needs to be aware of this potential for mis-classification. For the 
adaptive drilling application, the adaptive offset values were chosen such that part mis-
classification into the adjacent groups would either have no impact or minimal impact on the 
final manufacturing outcome. This was demonstrated in the successful drilling of all the 120 
parts of the primary airfoil. Similar risk reduction strategies may need to be developed for other 
applications of part classification based adaptive manufacturing. 
 

D. Condition Monitoring 
ShopFloorIQ usage at GE helped identify problems in the software in real production use cases.  
The environment was the first application of ShopFloorIQ and was invaluable to the maturity of 
the software.  ITI has identified additional applications such as additional input from database 
and Excel and has identified a need for a more enterprise execution platform for monitoring and 
alerts such that users do not have to be logged in to support IT environments for larger sized 
companies. 
 

E.  General Program Lessons 

• Because the nature of this program is dealing with part variation, to demonstrate 
adequate capability we needed to deal with a very large sample size.  That forced us 
to work on production parts and necessitated an unusually high level of quality and 
process control rigor for a development program 

• Since trial parts were pulled from production manually for transfer to the Turbine 
Airfoils Lean Lab for drilling, timeliness of data feeds from Arconic became vital to 
allow for ‘capture’ of relevant airfoils at the manufacturing facility. 

• Since there was no digital thread to capture relevant airfoils, building the sample parts 
pool for drilling trials proved more difficult than anticipated. 

• Getting functionality added into an existing commercial product may take more time 
than envisioned, if there is a programming backlog or the request is unique and may 
not be viewed as highly leverageable.  Work-arounds may be necessary to keep other 
program elements on track. 

 
XI. DEFINITIONS 
 
What follows are a set of definitions, terms, and acronyms used in this document. These 
definitions were gathered from various source including the internet, reference papers, 
standards organizations, and the authors of these document. 

MTConnect – MTConnect is a protocol designed for the exchange of data between shop floor 
equipment and software applications used for monitoring and data analysis.  Data from shop 
floor devices is presented in XML format, and is retrieved from information providers, called 
Agents, using Hypertext Transfer Protocol (HTTP) as the underlying transport protocol.   

https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Communications_protocol
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SFTP – Secure File Transfer Protocol, a network protocol that provides file access, file transfer, 
and file management over any reliable data stream. 

CIMPLICITY – An off-the-shelve software application from GE Digital.  A software platform for 
manufacturing allowing for the advanced normalization, visualization, and the execution of data. 
Allows an integrated development environment with tools that augment capabilities of 
processing data from a variety of sources. 

ETL – Software application that extracts, transforms and loads data based upon programmed 
criteria 

XML - Extensible Markup Language (XML) is a markup language that defines a set of rules for 
encoding documents in a format that is both human-readable and machine-readable.  

HTTP - The Hypertext Transfer Protocol (HTTP) is an application protocol for distributed, 
collaborative, and hypermedia information systems. 

UT – Ultrasound wall measurement technique, where a high frequency sonic beam is 
transmitted through the metallic part, and reflections from the part/air interface are used to 
report accurate thickness measurements 

CT – Computed Tomography technique, where a part placed between an X-ray source and 
detector is rotated over 360 degrees and measurements of the X-ray received at the detector 
are used to “reconstruct” an image of the part and its internal features, like 2D images from 
vision camera. CT is a mathematical reconstruction process. 

 

XII. APPENDICES 
Appendix A: Programmatic XML Schema Definition Example 

<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified" 
xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
<!--definition of simple elements --> 
  <xs:element name="CTPTName" type="xs:string"></xs:element> 
  <xs:element name="DiscreteName" type="xs:string"/> 
  <xs:element name="TransDate" type="xs:date"/> 
  <xs:element name="TransTime" type="xs:time"/> 
  <xs:element name="Reference" type="xs:int"/> 
  <xs:element name="ValueName" type="xs:string"/> 
  <xs:element name="CartX" type="xs:float"/> 
  <xs:element name="CartY" type="xs:float"/>  
  <xs:element name="CartZ" type="xs:float"/> 
  <xs:element name="Value" type="xs:float"/> 
  <xs:element name="CTLoopID" type="xs:string"/> 
  <xs:element name="CTLoopPTS"> 
 <xs:simpleType> 
  <xs:restriction base="xs:string"> 
   <xs:pattern value="(\s*((([|]\s*[+-]?((\d+(\.\d*)?))\s*){3}[~]\s*))*)\s*"/> 
  </xs:restriction> 
 </xs:simpleType> 
  </xs:element> 
  <xs:element name="CustomerSN" type="xs:string"/> 
  <xs:element name="CustomerPN" type="xs:string"/> 
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  <xs:element name="APPEndItem" type="xs:string"/> 
  <xs:element name="CreationDate" type="xs:date"/> 
  <xs:element name="CreationTime" type="xs:time"/> 
<!-- definition of complex elements --> 
<xs:element name="DTCartesian"> 
 <xs:complexType> 
  <xs:sequence> 
   <xs:element ref="DiscreteName"/> 
   <xs:element ref="ValueName"/>  
   <xs:element ref="CartX" maxOccurs="1" minOccurs="0"/> 
   <xs:element ref="CartY" maxOccurs="1" minOccurs="0"/> 
   <xs:element ref="CartZ" maxOccurs="1" minOccurs="0"/> 
  </xs:sequence> 
 </xs:complexType> 
</xs:element> 
<xs:element name="DTGeometry"> 
 <xs:complexType> 
  <xs:sequence> 
   <xs:element ref="DTCartesian" maxOccurs="unbounded" 
minOccurs="0"/> 
  </xs:sequence> 
 </xs:complexType> 
</xs:element> 
<xs:element name="DiscreteType"> 
 <xs:complexType> 
  <xs:sequence> 
   <xs:element ref="DiscreteName"/> 
   <xs:element ref="TransDate"/>  
   <xs:element ref="TransTime"/>  
   <xs:element ref="Reference"/>  
   <xs:element ref="ValueName"/>  
   <xs:element ref="Value"/>      
  </xs:sequence> 
 </xs:complexType> 
</xs:element> 
<xs:element name="CTLoop"> 
 <xs:complexType> 
  <xs:sequence> 
   <xs:element ref="CTPTName"/> 
   <xs:element ref="TransDate"/>  
   <xs:element ref="TransTime"/>  
   <xs:element ref="Reference"/>  
   <xs:element ref="CTLoopID"/>  
   <xs:element ref="CTLoopPTS"/>      
  </xs:sequence> 
 </xs:complexType> 
</xs:element> 
<xs:element name="DiscreteData"> 
 <xs:complexType> 
  <xs:sequence> 
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   <xs:element ref="DiscreteType" maxOccurs="unbounded" 
minOccurs="0"/> 
  </xs:sequence> 
 </xs:complexType> 
</xs:element> 
<xs:element name="CTLine"> 
 <xs:complexType> 
  <xs:sequence> 
   <xs:element ref="CTLoop" maxOccurs="unbounded" minOccurs="0"/> 
  </xs:sequence> 
 </xs:complexType> 
</xs:element> 
<xs:element name="DigitalTwin"> 
 <xs:complexType> 
  <xs:sequence> 
   <xs:element ref="CreationDate"/> 
   <xs:element ref="CreationTime"/> 
   <xs:element ref="CustomerPN"/> 
   <xs:element ref="CustomerSN"/> 
   <xs:element ref="APPEndItem"/> 
   <xs:element ref="DTGeometry" maxOccurs="1" minOccurs="0"/> 
   <xs:element ref="DiscreteData" maxOccurs="unbounded" minOccurs="0" 
/> 
   <xs:element ref="CTLine" maxOccurs="unbounded" minOccurs="0"/> 
     </xs:sequence> 
   </xs:complexType> 
</xs:element> 
</xs:schema> 
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