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Major Goals:  The recent exponential increase in the applications of machine learning is based on algo- rithms that 
were already well known in the second half of the 20th century. These recent successes became possible due to 
the increased availability of computing resources, which allowed for a new level of complexity in the algorithms, as 
well as the increased availability of large datasets, which allowed these algorithms to be fit in very high dimensional 
parameter spaces without overfitting. While these methods have been very successful, two fundamen- tal 
challenges remain. The first challenge lies in evaluating how well an algorithm works a priori, and in providing 
bounds on the predictions emanating from the algorithm. We aim to present research directions that may address 
these ideas at the algorithmic level (Task 1), then show how information theory can help address this constraint at 
the abstract learning level, independently of the algorithm (Task 2). The second challenge is to overcome the 
energetic constraints that are currently the principal limits on the size of the computational tasks required by the 
training of these algorithms. We will outline how information ther- modynamics may help the emerging approximate 
computation paradigms produce energy efficient frameworks for learning (Task 3).

Statistical learning is the acquisition of knowledge about a previously unknown system or concept from data. 
Classification, regression, clustering, and density estimation are classic statistical learning problems. The most 
successful machine learning applications all have in common the very high dimensionality of either the data, the 
parameter space, or both. An adverse consequence of the availability of large amounts of data is the presence of 
noise. These two structural features of statistical learning, high dimensionality and presence of randomness, are 
also fundamental in statistical mechanics, suggesting that the tools of statistical mechanics would provide a solid 
theoretical grounding for learning algorithms. Indeed, deep ties between inference, machine learning, and statistical 
mechanics have already been investigated.

Simultaneously, recent breakthroughs at the interface of information theory and statisti- cal physics have shed light 
on the nature of irreversibility far from equilibrium, extended those results to processes featuring information 
exchange, provided an explicit framework for non-equilibrium process using master equation formalism, and finally 
extended those concepts to any process that can be described using a Bayesian network. This line of research, 
often referred to as information thermodynamics, yields tighter bounds than traditional approaches for processes 
that operate far from equilibrium in environments where thermal fluctuations are relevant.

Statistical mechanics and machine learning share common theoretical ground; recent breakthroughs in non-
equilibrium statistical mechanics have successfully investigated the thermodynamics of processes featuring 
information processing. We propose to investigate the existence of theoretical bridges between these two lines of 
research through an information theoretic approach. Information theory is at the base of information 
thermodynamics and can be used as a general framework for learning. 



In summary, although the progress of machine learning is undeniable, the field faces several challenges that we 
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seek to address: 



Task 1: We aim to use the tools of statistical physics and information theory to provide bounds on the efficiency of 
popular learning algorithms in a practical setting, while also gaining insight on the confidence levels of predictions. 
These theoretical bounds should also enable the machine learning practitioner to determine which action is the 
most efficient to improve the prediction confidence level, for example by determining the amount of data needed to 
achieve a certain confidence level. 



Task 2: We aim to generalize the results of Task 1 to an abstract learning process that is independent of the 
chosen learning algorithm. This will require the abstraction of different types of learning as information theoretic 
processes to exploit the framework of information thermodynamics. 



Task 3: We aim to investigate the possibility of relaxing the deterministic constraints in processors in order to 
harness the randomness of the processes underlying computation, while improving the efficiency of these 
processors by reducing the dissipation caused by irreversible computations.
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Accomplishments:  During the reporting period, we completed the Tasks set out above and established a solid 
framework for the exploration of statistical mechanics concepts as applied to modern Deep Learning algorithms. 



In terms of literature review and formulation of more specific sub-problems, we have identified one area as being 
the most promising: A learning problem is almost always expressible as the estimation of a probability density 
function relying on several parameters. A significant issue in function estimation is the exponential increase in 
complexity as the number of parameters grow. The most common way of dealing with this exponential growth is the 
factorization of the function; a simple example is the family of Naïve Bayes algorithms, where – conditional on the 
allocated class – the function to estimate is factorized as a product of single parameter functions. However, this is 
often too simple and fails to capture many features of more complex density functions. In these cases, factorization 
is often expressed as a directed or undirected graph, where dependencies between parameters are expressed 
using edges and parameters are nodes of the graph. Then, optimization techniques, such as the Gibbs algorithm or 
the message-passing algorithms are used on such graphs. The convergence of such algorithms bears strong 
resemblance to the convergence of thermodynamic process to equilibrium; and we are focused on the application 
of stochastic thermodynamics to the analysis of such processes. 

To facilitate the investigation of Gibbs and message passing algorithm on graphs, many open-source libraries 
already exist. These libraries are reasonably efficient to solve real world problems, However, we noted in our initial 
experiments that we needed an order of magnitude more computational time, as we are not trying to solve a single 
real world problem, but trying to simulate a class of real world problems. We therefore decided to reimplement an 
easily extendable, simple network graph library in Julia, a language whose features make it as fast as C++, but as 
easy to read, modify and write as high level scripting languages such as Python or Matlab. We collaborated on this 
project with the Stanford Intelligent Systems Laboratory, who had an initial version of a software package entitled 
BayesNets. We extended that package to deal with undirected graphs or Markov Random Fields, in a package 
called MarkovNets.jl. This software package is already available online at the following address: 

 https://github.com/henripal/MarkovNets.jl/blob/master/doc/MarkovNets.ipynb



Our main contribution was to reframe Stochastic Gradient Descent in Bayesian Neural Networks as a 
thermodynamic relaxation from an initial non-equilibrium state. These results are described in the Ph.D. thesis 
“Application of Modern Statistical Mechanics: Molecular Transport and Statistical Learning”. The thesis focuses on 
building an understanding of statistical learning as a thermodynamic relaxation process in a high-dimensional 
space: in the same way that a statistical mechanical system is composed of a large number of particles relaxing to 
their equilibrium distribution, a statistical learning system is a parametric function whose optimal parameters 
minimize an empirical loss. We present this process as a trajectory in a high-dimensional probability Riemannian 
manifold, and show how this conceptual framework can lead to practical improvements in learning algorithms for 
large scale neural networks.



We then evaluated the accuracy, performance, and practical use cases of current methods for the reframing of 
state of the art algorithms in a statistical mechanics framework. These methods transform deterministic neural 
netwoks into Bayesian, or probabilistic neural networks. This review was conducted using concepts rooted in 
information thermodynamics and concluded that simple constant rate SGD was the best performing Bayesian 
neural network method. This method has direct applications in “critical areas” for the applications of the algorithm 
for which it is important for the network to be able to determine when it is not sure of its output. These results are 
described in the conference paper “Scalable Natural Gradient Langevin Dynamics in Practice”.
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Molecular Transport and Statistical Learning" and was awarded a Ph.D. by the Department of Biomedical 
Engineering at Columbia University.

Results Dissemination:  Henri Palacci “Applications of Modern Statistical Mechanics: Molecular Transport and 
Statistical Learning”, Ph.D. Thesis submitted to Columbia University 2018



H. Palacci, H. Hess: “Scalable Natural Gradient Langevin Dynamics in Practice”, arXiv:1806.02855 (2018) 



H. Palacci, H. Hess: “Scalable Natural Gradient Langevin Dynamics in Practice”, accepted by the International 
Conference on Machine Learning 2018 Workshop “Modern Trends in Nonconvex Optimization for Machine 
Learning”, Stockholm Sweden (7/14/2018)



H. Palacci: “Physics: A Gateway to Bayesian Deep Learning”

Scientific Computing with Python (SciPy) Conference 2018, Austin Texas, 7/9-15/2018 accessible at https://www.
youtube.com/watch?v=WUs0u2PJ2UU
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Major Goals 
 
The recent exponential increase in the applications of machine learning is based on algorithms that 
were already well known in the second half of the 20th century. These recent successes became 
possible due to the increased availability of computing resources, which allowed for a new level 
of complexity in the algorithms, as well as the increased availability of large datasets, which 
allowed these algorithms to be fit in very high dimensional parameter spaces without overfitting. 
While these methods have been very successful, two fundamental challenges remain. The first 
challenge lies in evaluating how well an algorithm works a priori, and in providing bounds on the 
predictions emanating from the algorithm. We aim to present research directions that may address 
these ideas at the algorithmic level (Task 1), then show how information theory can help address 
this constraint at the abstract learning level, independently of the algorithm (Task 2). The second 
challenge is to overcome the energetic constraints that are currently the principal limits on the size 
of the computational tasks required by the training of these algorithms. We will outline how 
information thermodynamics may help the emerging approximate computation paradigms produce 
energy efficient frameworks for learning (Task 3). 
Statistical learning is the acquisition of knowledge about a previously unknown system or concept 
from data. Classification, regression, clustering, and density estimation are classic statistical 
learning problems. The most successful machine learning applications all have in common the 
very high dimensionality of either the data, the parameter space, or both. An adverse consequence 
of the availability of large amounts of data is the presence of noise. These two structural features 
of statistical learning, high dimensionality and presence of randomness, are also fundamental in 
statistical mechanics, suggesting that the tools of statistical mechanics would provide a solid 
theoretical grounding for learning algorithms. Indeed, deep ties between inference, machine 
learning, and statistical mechanics have already been investigated. 
Simultaneously, recent breakthroughs at the interface of information theory and statistical physics 
have shed light on the nature of irreversibility far from equilibrium, extended those results to 
processes featuring information exchange, provided an explicit framework for non-equilibrium 
process using master equation formalism, and finally extended those concepts to any process that 
can be described using a Bayesian network. This line of research, often referred to as information 
thermodynamics, yields tighter bounds than traditional approaches for processes that operate far 
from equilibrium in environments where thermal fluctuations are relevant. 
Statistical mechanics and machine learning share common theoretical ground; recent 
breakthroughs in non-equilibrium statistical mechanics have successfully investigated the 
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thermodynamics of processes featuring information processing. We propose to investigate the 
existence of theoretical bridges between these two lines of research through an information 
theoretic approach. Information theory is at the base of information thermodynamics and can be 
used as a general framework for learning.  
 
In summary, although the progress of machine learning is undeniable, the field faces several 
challenges that we seek to address:  
 
Task 1: We aim to use the tools of statistical physics and information theory to provide bounds on 
the efficiency of popular learning algorithms in a practical setting, while also gaining insight on 
the confidence levels of predictions. These theoretical bounds should also enable the machine 
learning practitioner to determine which action is the most efficient to improve the prediction 
confidence level, for example by determining the amount of data needed to achieve a certain 
confidence level.  
 
Task 2: We aim to generalize the results of Task 1 to an abstract learning process that is 
independent of the chosen learning algorithm. This will require the abstraction of different types 
of learning as information theoretic processes to exploit the framework of information 
thermodynamics.  
 
Task 3: We aim to investigate the possibility of relaxing the deterministic constraints in processors 
in order to harness the randomness of the processes underlying computation, while improving the 
efficiency of these processors by reducing the dissipation caused by irreversible computations. 
 
 
Accomplished: 
 
During the reporting period, we completed the Tasks set out above and established a solid 
framework for the exploration of statistical mechanics concepts as applied to modern Deep 
Learning algorithms.  
 
In terms of literature review and formulation of more specific sub-problems, we have identified 
one area as being the most promising: A learning problem is almost always expressible as the 
estimation of a probability density function relying on several parameters. A significant issue in 
function estimation is the exponential increase in complexity as the number of parameters grow. 
The most common way of dealing with this exponential growth is the factorization of the function; 
a simple example is the family of Naïve Bayes algorithms, where – conditional on the allocated 
class – the function to estimate is factorized as a product of single parameter functions. However, 
this is often too simple and fails to capture many features of more complex density functions. In 
these cases, factorization is often expressed as a directed or undirected graph, where dependencies 
between parameters are expressed using edges and parameters are nodes of the graph. Then, 
optimization techniques, such as the Gibbs algorithm or the message-passing algorithms are used 
on such graphs. The convergence of such algorithms bears strong resemblance to the convergence 
of thermodynamic process to equilibrium; and we are focused on the application of stochastic 
thermodynamics to the analysis of such processes.  
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To facilitate the investigation of Gibbs and message passing algorithm on graphs, many open-
source libraries already exist. These libraries are reasonably efficient to solve real world problems, 
However, we noted in our initial experiments that we needed an order of magnitude more 
computational time, as we are not trying to solve a single real world problem, but trying to simulate 
a class of real world problems. We therefore decided to reimplement an easily extendable, simple 
network graph library in Julia, a language whose features make it as fast as C++, but as easy to 
read, modify and write as high level scripting languages such as Python or Matlab. We collaborated 
on this project with the Stanford Intelligent Systems Laboratory, who had an initial version of a 
software package entitled BayesNets. We extended that package to deal with undirected graphs or 
Markov Random Fields, in a package called MarkovNets.jl. This software package is already 
available online at the following address:  
 https://github.com/henripal/MarkovNets.jl/blob/master/doc/MarkovNets.ipynb 
 
Our main contribution was to reframe Stochastic Gradient Descent in Bayesian Neural Networks 
as a thermodynamic relaxation from an initial non-equilibrium state. These results are described 
in the Ph.D. thesis “Application of Modern Statistical Mechanics: Molecular Transport and 
Statistical Learning”. The thesis focuses on building an understanding of statistical learning as a 
thermodynamic relaxation process in a high-dimensional space: in the same way that a statistical 
mechanical system is composed of a large number of particles relaxing to their equilibrium 
distribution, a statistical learning system is a parametric function whose optimal parameters 
minimize an empirical loss. We present this process as a trajectory in a high-dimensional 
probability Riemannian manifold, and show how this conceptual framework can lead to practical 
improvements in learning algorithms for large scale neural networks. 

 
We then evaluated the accuracy, performance, and practical use cases of current methods for the 
reframing of state of the art algorithms in a statistical mechanics framework. These methods 
transform deterministic neural netwoks into Bayesian, or probabilistic neural networks. This 
review was conducted using concepts rooted in information thermodynamics and concluded that 
simple constant rate SGD was the best performing Bayesian neural network method. This method 
has direct applications in “critical areas” for the applications of the algorithm for which it is 
important for the network to be able to determine when it is not sure of its output. These results 
are described in the conference paper “Scalable Natural Gradient Langevin Dynamics in Practice”. 

 
Results Dissemination 
 
Henri Palacci “Applications of Modern Statistical Mechanics: Molecular Transport and 
Statistical Learning”, Ph.D. Thesis submitted to Columbia University 2018 
 
H. Palacci, H. Hess: “Scalable Natural Gradient Langevin Dynamics in Practice”, 
arXiv:1806.02855 (2018)  
 
H. Palacci, H. Hess: “Scalable Natural Gradient Langevin Dynamics in Practice”, accepted by 
the International Conference on Machine Learning 2018 Workshop “Modern Trends in 
Nonconvex Optimization for Machine Learning”, Stockholm Sweden (7/14/2018) 
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H. Palacci: “Physics: A Gateway to Bayesian Deep Learning” 
Scientific Computing with Python (SciPy) Conference 2018, Austin Texas, 7/9-15/2018 
accessible at https://www.youtube.com/watch?v=WUs0u2PJ2UU 
 
MarkovNets.jl. This software package is publicly available online at the following address: 
https://github.com/henripal/MarkovNets.jl/blob/master/doc/MarkovNets.ipynb 
 

 

Honors and Awards 
 
n/a 

 

Technology Transfer (patent applications, inventions, licenses, interaction with DoD 
laboratories) 
 
n/a 
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Number of students receiving STEM degrees during the reporting period:  1 Ph.D. 
Number of undergraduate and graduate STEM participants during the reporting period : 1 

 

 



Scalable Natural Gradient Langevin Dynamics in Practice

Henri Palacci 1 Henry Hess 1

Abstract
Stochastic Gradient Langevin Dynamics (SGLD)
is a sampling scheme for Bayesian modeling
adapted to large datasets and models. SGLD relies
on the injection of Gaussian Noise at each step of
a Stochastic Gradient Descent (SGD) update. In
this scheme, every component in the noise vector
is independent and has the same scale, whereas
the parameters we seek to estimate exhibit strong
variations in scale and significant correlation struc-
tures, leading to poor convergence and mixing
times. We compare different preconditioning ap-
proaches to the normalization of the noise vector
and benchmark these approaches on the follow-
ing criteria: 1) mixing times of the multivariate
parameter vector, 2) regularizing effect on small
dataset where it is easy to overfit, 3) covariate
shift detection and 4) resistance to adversarial ex-
amples.

1. Introduction
Deep Learning is moving into fields for which errors are
potentially lethal, such as self-driving cars, healthcare, and
biomedical imaging. For these applications, being able to
estimate errors is essential. Bayesian methods provide a
way to expand scalar predictions to full posterior probabil-
ities (Gelman et al., 2014). Stochastic Gradient Langevin
Dynamics (SGLD), is one of the solutions to the issue of
probabilistic modeling on large datasets. Gaussian noise
is added to the SGD updates (Welling & Teh, 2011). It
was proposed to pre-condition the Gaussian noise with a
diagonal matrix to adapt to the changing curvature of the
parameter space (Li et al., 2016a). Using a full precondi-
tioning matrix corresponding to the metric tensor of the
parameter space was previously proposed (Girolami Mark
& Calderhead Ben, 2011), but the computation of this tensor
is impossible for large-scale neural networks. It was fur-
ther proposed to use the Kronecker-factored block diagonal
approximation of this tensor, first introduced in (Martens

1Department of Biomedical Engineering, Columbia University.
Correspondence to: Henri Palacci <hp2393@columbia.edu>.

Copyright 2018 by the author(s).

& Grosse, 2015a) and (Grosse & Martens, 2016) as the
preconditioning tensor for the Langevin noise (Nado et al.,
2018). Fixed learning rate vanilla gradient descent also in-
troduces noise in the learning process. Hence, fixed learning
rate SGD can also be seen as a variant on the same method
(Mandt et al., 2017).

In this paper, we conduct a comparison of all these ap-
proaches in a practical setting with a fixed hyperparameter
optimization budget. We compare these approaches using
traditional Markov Chain Monte Carlo (MCMC) diagnostic
tools, but will also evaluate the: performance of models in
recognizing data points that are not in the sample distribu-
tion, the reduction of overfitting in small data settings, and
the robustness to adversarial attacks. We find that Langevin
approaches, with a reasonable computing budget for hy-
perparameter tuning, do not improve overfitting or help
with adversarial attacks. However, we do find a significant
improvement in the detection of out-of-sample data using
Langevin methods.

2. Related Work
SGLD was introduced in (Welling & Teh, 2011) and was
further refined using a diagonal preconditioning matrix (pS-
GLD) in (Li et al., 2016a). The natural gradient method
was introduced by (Amari, 1998). Girolami and Calderhead
proposed to extend the natural gradient method to neural net-
works in (Girolami Mark & Calderhead Ben, 2011), and a
practical application to probability simplices was presented
in (Patterson & Teh, 2013). Finally, the interpretation of
fixed rate SGD (FSGD) as a Bayesian approximation was
shown in (Mandt et al., 2017). The Kronecker-Factored
block-diagonal approximation of the inverse Fisher infor-
mation matrix was presented for dense layers in (Martens
& Grosse, 2015b), then extended to convolutional layers in
(Grosse & Martens, 2016). This was used as a precondition-
ing matrix in SGLD (KSGLD) for smaller scale experiments
in (Nado et al., 2018).

3. Preliminaries
3.1. Probabilistic Neural Networks

We consider a supervised learning problem, where we have
data x1, ...,xn ∈ Rp, and labels y1, ..., yn drawn from a
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Scalable Natural Gradient Langevin Dynamics in Practice

distribution P . Our goal is to approximate the distribution
p(y|x) by empirical risk minimization of a family of distri-
butions parametrized by a vector θ.

In the non-probabilistic setting, this is done by defining
an appropriate loss function L(yi|xi;θi) and minimizing
it with respect to θ. Optionally, a regularizing term R(θ)
is added to the minimization problem which can therefore
be written as: θ̂ = argmax

∑
i−L(yi, xi;θ) +R(θ). This

can be understood as the MAP estimate of the probabilistic
model p(θ|x) = p(θ)

∏
i p(yi, xi|θ), where p(θ|x) is the

posterior probability of the parameters, ln p(θ) = R(θ) is
the log-prior, and ln p(yi,xi|θ) = L(yi, xi;θ) is the log-
likelihood.

3.2. Stochastic Gradient Langevin Dynamics

The workhorse algorithm for loss minimization for
neural networks is mini-batch stochastic gradient de-
scent (SGD). The data x1, ...xn is grouped into mini
batches B1, ..., Bj , ... of size J such that (x1, ...xJ) ∈
B1, (xJ+1, ...,x2J) ∈ B2, ...

Stochastic Gradient Langevin Dynamics (SGLD)
(Welling & Teh, 2011) updates modifies SGD
by adding Gaussian noise at each update step:
∆θt = λt∇θ

(
log p(θ) +

∑
j log p(Bj ,θ)

)
+ ε, where

ε ∼ N (0, λtI).

3.3. Riemaniann Manifold Langevin Dynamics

The space formed by the parameters of a probability
distribution is a Riemaniann manifold (Amari, 1998).
Its Riemaniann metric is the Fisher information matrix.
This means that the parameter space is curved, and
that a local measure of curvature is the Fisher informa-
tion matrix: F (θ) = E

[
∂θp(y|x; θ)∂θp(y|x; θ)T

]
. Rie-

maniann Manifold Langevin Dynamics (Marceau-Caron
& Ollivier, 2017) preconditions the SGD update with
the inverse of the Fisher information matrix: ∆θt =

F−1λt∇θ
(

log p(θ) +
∑
j log p(Bj ,θ)

)
+ F−1ε. Unfor-

tunately, the computation of the inverse Fisher information
matrix is impossible in very high dimensional spaces.

3.4. Kronecker-Factored Approximate Curvature

The Kronecker-Factored Appoximate Curvature (KFAC)
is a compact and efficiently invertible block-diagonal ap-
proximation of the Fisher information matrix proposed in
(Martens & Grosse, 2015a) for dense layers of neural net-
works and in (Grosse & Martens, 2016) for convolutional
layers. Each block corresponds to a layer of the neural net-
work, hence this approximation correctly takes into account
within-layer geometric structure. Each layer i’s activations
ai can be computed from the previous layer’s activations

by a matrix product si = Wai−1. A non-linear activation
function φ such that ai = φ(si) is applied. The K-FAC
approximation can then be written using the Kronecker
product ⊗: F̃ = diag (A1 ⊗G1, ..., Ai ⊗Gi, ..., Al ⊗Gl),
where Ai = E

[
aia

T
i

]
is the estimated covariance ma-

trix of activations for layer i, and Gi = E
[
gig

T
i

]
where

gi = ∇sL(y, x; θ). We can invert the Kronecker product of
two matrices by (A⊗B)−1 = A−1 ⊗B−1, and can there-
fore compute the approximate inverse Fisher information
matrix as F̃−1 = diag

(
{A−1

i ⊗G
−1
i }i=1...l

)
.

3.5. Scalable Natural Gradient Langevin Dynamics

To implement a tractable preconditioning inverse matrix, (Li
et al., 2016a) used a diagonal preconditioning matrix rescal-
ing the noise by the inverse of its estimated variance (pS-
GLD). Although this improves on SGLD, it still neglects the
off-diagonal terms of the metric. A quasi-diagonal approxi-
mation was proposed in (Marceau-Caron & Ollivier, 2017).
Here, we follow the results presented in (Nado et al., 2018)
and use the K-FAC approximation to the inverse Fisher
information matrix as our preconditioning matrix:

∆θt = F̃−1λt∇θ

log p(θ) +
∑
j

log p(Bj ,θ)

+F̃−1ε

(1)

Notice that when changing preconditioning matrices in prac-
tice, it is unclear if any improvement in convergence of the
algorithms comes from preconditioning the gradient term
above, or from preconditioning the noise. It is one of the
questions that we aim to answer with our experiments.

3.6. Fixed Learning Rate Stochastic Gradient Descent

It has been suggested that traditional SGD, using a decreas-
ing schedule for the learning rate and early stopping per-
forms Bayesian updates (Mandt et al., 2017). The noise
introduced by the variability in the data also prevents the
posterior from collapsing to the MAP.

4. Experiments
In order for the model comparisons to be fair, we used
the same neural network architecture for all experiments:
two convolutional layers with 32 and 64 layers and max-
pooling, followed by one dense layer with 1024 units. All
nonlinearities are ReLU. The hyperparameter optimization
was run using grid search, and the computational time for
hyperparameter optimization was limited to 5 times that of
the standard SGD algorithm for all other algorithms. Batch
size for all experiments was 512.

Note that we did not apply the preconditioning matrix to
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the gradient term. It is otherwise impossible to tell if the
performance improvements come from better gradient up-
dates in the initial, non-Langevin part of training or from
the improvement of the latter, steady-state part of training.
Our SGD updates are therefore:

∆θt = λt∇θ

log p(θ) +
∑
j

log p(Bj ,θ)

+ G̃ε (2)

Where G = 0 for SGD, G = I for SGLD, G is the diagonal
RMSprop matrix for pSGD, G = F̃−1 for KSGD, and
λt = λ for fixed learning rate SGD (FSGD).

4.1. Test Set Accuracy

We first compare the test set accuracy for all methods on
10 epochs of training on the MNIST dataset (LeCun et al.,
2010). The results are shown in Figure 1; accuracies for all
models are very close and, for a reasonable hyperparameter
tuning budget, Bayesian averaging of models does not seem
to improve test set accuracy.

Figure 1. Test set accuracy over ten epochs on the MNIST dataset.
SGD: Stochastic Gradient Descent, SGLD: Stochastic Gradient
Langevin Dynamics, pSGLD: preconditioned SGLD, KSGLD: K-
FAC preconditioned SGLD, FSGD: Fixed rate SGD. Inset: Test
set accuracy for the last three epochs.

For the SGLD, pSGLD, and KSGLD methods, the results
were very sensitive to the learning rate schedule decrease
and most of the hyperparameter optimization computation
time was spent on the optimizing it. A longer time spent
optimizing the learning rate schedule improved the test rate
accuracies slightly.

4.2. Mixing Performance

We approximate (Vats et al., 2015) and estimate the effective

sample size as: mESS = n
(
|Λ|
|Σ|

)1/p

, with n the number

of samples in the chain, p the parameter space dimension,
|Σ| is the covariance matrix of the chain, and |Λ| the co-
variance of matrix of samples. We approximate this by
the diagonal approximation of both these matrices, where
the ratio of the diagonal terms essi is computed as follows
essi = n

1+2
∑

k ρk
, where ρk is the autocorrelation at lag k

truncated to the highest lag with positive autocorrelation
(Gelman et al., 2014).

Figure 2. Multivariate Sample Size over epochs for each model
over 10 epochs of MNIST training.

The results, shown in Figure 2, all indicate that the MCMC
chain mixes poorly in practical settings. Further inspection
of the traces shows that almost none of the parameters are
stationary. Increasing the run length, or increasing the rate
of decrease of the step λt, did not improve the aspect of the
traces or the effective sample size. These results are con-
sistent with the theoretical analysis of (Betancourt, 2015),
who shows that data subsampling is incompatible with any
HMC procedure. This is also consistent with (Vollmer et al.,
2015) highlighting the problem of stopping while step sizes
are still finite.

4.3. Reduction of Overfitting

To test the implicit regularization for the Langevin dynamic
models, we truncated the MNIST train set to 5,000 examples
(from 60,000). The CNN overfits to the small training set
promptly, resulting in decreases in the test set accuracy.

The results, shown in Figure 3, show that the dynamic mod-
els underperform SGD on smallMNIST. The only dynamic
Bayesian method that matches SGD is SGDA. We hypoth-
esize that adding Gaussian noise on such a small amount
of data dramatically deteriorates the initial period of con-
vergence, thus forcing the dynamic Langevin methods to
settle for the Langevin period in a local minimum of the
loss surface.
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Figure 3. Test set accuracy for all models on ten epochs of training
on the reduced MNIST dataset, smallMNIST

4.4. Resistance to Adversarial Attacks

Adversarial attacks are imperceptible modifications to data
that cause a model to fail (Goodfellow et al., 2014). We
compute adversarial modifications to the test set using
the Fast Gradient Sign Method from (Goodfellow et al.,
2014). It has previously been shown in (Rawat et al., 2017)
that other Bayesian deep learning methods such as Monte
Carlo dropout,(Gal & Ghahramani, 2015), Bayes by Back-
prop (Blundell et al., 2015), matrix variational gaussian
(Louizos & Welling, 2016), and probabilistic backpropa-
gation (Hernández-Lobato & Adams, 2015) are vulnerable
to adversarial attacks. Our results, presented in Table 1,
show that all Langevin dynamic methods also fail to detect
adversarial attacks.

Table 1. Classification accuracies for naive Bayes and flexible
Bayes on various data sets.

MODEL TEST ACCURACY ON
ACCURACY ADVERSARIAL EXAMPLES

SGD 96.0 2.9
FSGD 96.5 2.0
SGLD 97.2 1.8
PSGLD 97.1 1.9
KSGLD 97.0 2.0

4.5. Detection of Out of Sample Examples

We assess the epistemic uncertainty inherent in our Bayesian
deep neural networks by training it on MNIST but evaluating
the network on a completely different dataset, notMNIST
(Bulatov). The notMNIST dataset is similar in format to the
MNIST dataset, but consists of letters from different fonts.

We expect a network trained on MNIST to give relatively
low class probabilities when given examples from the notM-
NIST dataset. Figure 4 shows the distribution of the highest

probability for each example. Vanilla SGD gives very confi-
dent predictions for this dataset, whereas all other methods
present a similar distribution of uncertainties. This suggests
that Langevin dynamics and fixed learning rate SGD are a
relatively straightforward way to detect covariate shift in
practical classification tasks.
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Figure 4. Probability distribution for the most likely class on the
notMNIST dataset for all models trained on the MNIST dataset.

5. Discussion
Langevin Stochastic Dynamics provide a scalable way to
compute Bayesian posteriors on deep neural network archi-
tectures. The noise in stochastic gradient Langevin dynam-
ics is not isotropic due to the geometry of the parameter
space. To render the Gaussian noise isotropic, diagonal (Li
et al., 2016b), quasi-diagonal (Marceau-Caron & Ollivier,
2017), and block-diagonal (Martens & Grosse, 2015a) ap-
proximations have been used. These preconditioning matri-
ces have been proven to work very well as preconditioners
for the gradient term, but their use as preconditioners for
the Gaussian term in SGLD is subject to significant conver-
gence issues, especially in the transition from the learning
phase, where the mini-batch noise dominates.

By contrast, leveraging the mini-batch noise by a constant
learning rate to prevent posterior collapse seems to work
just as well as the Langevin methods for the experiments
described above. This could suggest that the ’data noise’ is
already appropriately scaled to the manifold structure of the
parameter space. This will be the subject of future research.

In practice, our experiments suggest to use Bayesian aver-
aging with a fixed learning rate; this doesn’t require any
modification to the standard training workflows used by
practitioners, and provides implicit protection against co-
variate shift.
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ABSTRACT

Applications of Modern Statistical Mechanics:

Molecular Transport and Statistical Learning

Henri Palacci

Statistical Mechanics describes the macroscopic behavior of a system through the

analysis of its microscopic components. It is therefore a framework to move from

a probabilistic, high-dimensional description of a system to its macroscopic descrip-

tion through averaging. This approach, now one of the pillars of physics, has seen

successes in other fields, such as statistics or mathematical finance. This broadening

of the applications of statistical physics has opened new avenues of research in the

field itself. Ideas from information theory, differential geometry, and approximate

computation are making their way into modern statistical physics. The research pre-

sented in this dissertation straddles this boundary: we start by showing how concepts

from statistical physics can be applied to statistical learning, then show how modern

statistical physics can provide insights into molecular transport phenomena.

The first three chapters focus on building an understanding of statistical learning

as a thermodynamic relaxation process in a high-dimensional space: in the same way

that a statistical mechanical system is composed of a large number of particles relaxing

to their equilibrium distribution, a statistical learning system is a parametric function

whose optimal parameters minimize an empirical loss. We present this process as a

trajectory in a high-dimensional probability Riemannian manifold, and show how this

conceptual framework can lead to practical improvements in learning algorithms for



large scale neural networks.

The second part of this thesis focuses on two applications of modern statisti-

cal mechanics to molecular transport. First, I propose a statistical mechanical in-

terpretation of metabolon formation through cross-diffusion, a generalization of the

reaction-diffusion framework to multiple reacting species with non-diagonal terms in

the diffusion matrix. These theoretical results are validated by experimental results

obtained using a microfluidic system. Second, I demonstrate how fluctuation analysis

in motility assays can allow us to infer nanoscale properties from microscale measure-

ments. I accomplish this using computational Langevin dynamics simulations and

show how this setup can be used to simplify the testing of theoretical non-equilibrium

statistical mechanics hypotheses.
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Introduction

The methods of statistical mechanics have permeated fields such as statistics, math-

ematical finance, and approximate computation. In parallel, the discipline itself

has seen great breakthroughs, particulary in the understanding of dynamic non-

equilibrium processes. In this dissertation, we leverage the tools of modern statistical

mechanics to reframe statistical learning as a dynamical process. We then show ap-

plications of modern statistical mechanics to directed enzyme motion and fluctuation

analysis of microtubule motion in motility assays.

Statistical Physics of Learning

Over the past ten years, the exponential increase in the availability of computational

resources and large datasets has allowed industry and academia to leverage machine

learning in increasingly productive ways. The parallels between statistical mechan-

ics and machine learning algorithms were already well-established in the nineties [1].

However, the development of machine learning as an applied engineering discipline

combined with recent breakthroughs in the understanding of non-equilibrium thermo-

dynamic states through information theory concepts [2] calls for a reexamination of

the bridges between the two disciplines. We will demonstrate the analogies between

1



statistical mechanical systems and statistical learning and propose ways in which the

theoretical results from statistical mechanics can allow us to improve the convergence

of learning algorithms.

We first present the notation and concepts for both statistical learning and sta-

tistical mechanics in Chapter 1. In Chapter 2, we discuss historical approaches of

statistical learning inspired from statistical mechanics and sketch some promising but

ultimately unsuccessful approaches we attempted. Finally, chapter 3 is an in-depth

exploration of Stochastic Gradient Langevin Dynamics (SGLD) and its variants.

Background and Significance

Statistical learning is the acquisition of knowledge about a previously unknown system

or concept from data [3]. Classification, regression, clustering, and density estimation

are classic statistical learning problems [4]. The most successful machine learning

applications have in common the very high dimensionality of either the data, the

parameter space, or both. An adverse consequence of the availability of large amounts

of data is the presence of noise. These two structural features of statistical learning,

high dimensionality and presence of randomness, are also fundamental in statistical

mechanics, suggesting that the tools of statistical mechanics would provide a solid

theoretical grounding for learning algorithms. Indeed, deep ties between inference,

machine learning, and statistical mechanics have already been investigated, see for

example [1], [5]–[7] and references therein.

Simultaneously, recent breakthroughs at the interface of information theory and

2



statistical physics have shed light on the nature of irreversibility far from equilibrium

[8], [9] and extended those results to processes featuring information exchange [2].

They have provided an explicit framework for non equilibrium processes using mas-

ter equation formalism [10], and extended those concepts to any process that can be

described using a Bayesian network [11]. This line of research, often referred to as

information thermodynamics, yields tighter bounds than traditional approaches for

processes that operate far from equilibrium in environments where thermal fluctua-

tions are relevant.

Learning as a Thermodynamic Relaxation Process and

Stochastic Gradient Langevin Dynamics

The connections between statistical learning and statistical mechanics can be made at

several different levels, which we review in Chapter 2. In this dissertation, we choose

to model the learning process as the relaxation from a non-equilibrium initial state,

to an equilibrium state. An initial, or prior probability distribution is chosen on the

parameters of our model. Then, at each step, this probability distribution is modified

to minimize the emrpirical loss (or energy). The final parameter distribution is the

one that minimizes the empirical loss, equivalent to the equilibrium distribution in

statistical mechanics.

We frame this dynamic learning process as a path on the high dimensional sta-

tistical manifold, a Riemannian manifold whose metric is shown to be the Fisher

information matrix [12].

3



Most tractable algorithms for optimization collapse to a single or maximum a

posteriori (MAP) solution. To avoid the collapse of the posterior, we need to inject

thermal noise. This class of methods, that we will refer to as Stochastic Gradient

Langevin Dynamics (SGLD) was initially proposed in [13]. We evaluate this method

and variants and discuss potential pitfalls and improvements.

Chemotaxis in Enzyme Cascades

Enzymes that participate in reaction cascades have been shown to assemble into

multi-enzyme structures, or metabolons, in response to the presence of the first en-

zyme’s substrate [14]. We will show experimental evidence for directed chemotactic

movement of enzymes towards their substrate gradients, and propose a theoretical

diffusion model to explain this phenomenon for the purine synthesis cascade. The

resulting metabolon, or purinosome, has been experimentally observed previously

[14]. A better understanding of its assembly mechanism could potentially allow for

new treatments of purine synthesis disorders that target the purinosomes or factors

triggering its assembly. I present experimental results from my collaborators showing

directional movement of enzymes up their substrate gradient, as well as a theoretical

statistical physics model for this directed migration in Chapter 4.

Background and Significance

The interaction between enzymes in living cells is an area of active research. The

formation of metabolons in response to the presence of the initial substrate is believed

4



to facilitate substrate channeling [15]–[18] . Substrate channeling promotes sequential

reactions with high yield and high selectivity by directing reaction intermediates along

a specific pathway from one enzyme to the next. The diffusive motion of enzymes has

been shown to increase as a function of substrate concentration and reaction rate [19]–

[22]. Here, we present evidence that suggests that enzymes along the purine synthesis

metabolic pathway in which the product of one is the substrate for the next tend to

associate through a process of sequential, directed chemotactic movement. Such a

process may contribute to the formation of metabolons in living cells co-localized

around mitochondria that serve as sources of ATP [23].

We show experimental evidence for the diffusion of an enzyme up the gradient of

its substrate, resulting in the formation of regions of higher enzyme concentrations.

This phenomenon, called self-diffusiophoresis, or cross-diffusion, has been investigated

in both theoretical [24] and experimental [25]–[27] studies.

The mechanisms underlying purinosome formation are likely to also explain meta-

bolon formation, and could provide an understanding of how the cell uses spatial

control to regulate enzymes and enzyme complexes and increase metabolic efficiency.

A better understanding of these mechanisms might allow for the development of

better drug targets for metabolic diseases[28].

Experimental Design

In order to study the movement of enzymes in a cascade in response to a substrate

gradient, my collaborators fabricated a microfluidic flow device through photolithog-
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raphy. The first and fourth enzymes of the glycolitic cascade, hexokinase (HK) and al-

dolase (Ald) were fluorescently labeled with distinct amine-reactive and thiol-reactive

Dylight dyes. The migration of these enzymes across the channel was measured using

confocal microscopy.

Cross diffusion model

We propose that the chemotactic aggregation of enzymes in regions of high substrate

concentrations is due to cross-diffusion effects. The substrate-gradient induced ag-

gregation by cross-diffusion counteracts Fickian diffusion of enzymes, which transfers

enzymes from regions with high enzyme concentration to those with low enzyme con-

centration. Cross-diffusion is different from the enhanced diffusion of an enzyme in

presence of its substrate, which is also observed for uniform substrate concentrations

and accelerates the equilibration of the enzyme concentration by Fickian diffusion.

The complete theoretical description of diffusion in a multicomponent system com-

bines the flow of the same species in proportion to its concentration gradient (Fick’s

law) and the flow of the same species in response to the concentration gradients of

other species in solution. The diffusive flow for the concentration ce of unbound

enzyme E in the presence of its substrate S can then be written as:

Je = −D∆ce −DXD∆cs (1)

where D is the Fick’s law diffusion coefficient, DXD is the “cross-diffusion” coefficient,

and ∆ce and ∆cs are gradients in enzyme and substrate concentrations, respectively.

6



We will show that this model explains the migration of enzymes up their substrate

gradient and can promote the formation of metabolons in enzyme cascades.

Recover nanoscale information through microscale

measurements using motility assays

Quantifying the behavior of coupled molecular motors is critical to our understanding

of systems such as cellular cargo transport, muscle contraction, cell division, and en-

gineered nanodevices. Using the gliding motility assay as model system, we will show

through the combination of experimental data and Brownian dynamics simulations

that quantitative results about the behavior of the nanoscale motors can be obtained

from fluctuation analysis of the microscale microtubule motion. More specifically, we

are interested in a factor α quantifying the heterogeneity in motor force production.

The theoretical output of the model will be compared to experimental data. These

results on the efficiency of collective motor protein action, presented in Chapter 5, will

also serve as proof of concept of an experimental methodology to quantify nanoscale

dynamics using observed microscale fluctuations.

The recent theoretical breakthroughs in non-equilibrium thermodynamics hold for

energies of the order of several kT , which are readily available at the nanoscale, but

whose contributions become rapidly undetectable for larger length scales. Nanoscale

measurement techniques often require the observed object to be still, or in a specific

medium; making the experimental verification of these results more difficult. Building

7



a system which reflects nanoscale dynamics at the microscale, such as the motility

assay, could help with the design of other experiments that yield nanoscale insight

from microscale observations.
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Chapter 1

Introduction to Statistical Physics and Statistical Learning

Statistical physics aims to characterize the probabilistic laws governing the equilib-

rium state of a random system with many degrees of freedom. The aim of parametric

statistical learning is to learn a rule by minimizing an objective function with respect

to a high dimensional parameter vector.

A mechanical system will evolve towards the state minimizing its energy. At fixed

temperature, and for that minimal energy, the system’s microscopic configuration

will evolve into its equilibrium distribution, which will have the maximum entropy

for the given energy.

In this chapter, I provide an introductory overview of the bridges between statis-

tical learning and statistical physics, with a special emphasis on simulation methods

and geometric approaches.

1.1 Statistical Mechanics

In this section I briefly introduce the notations and terms I will use to present the

links between statistical mechanics and statistical learning throughout the next two

chapters.
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Equilibrium Statistical Mechanics

Equilibrium Thermodynamics I will write the differential first law as:

dE = −PdV + TdS −
∑
i

µidNi (1.1)

where E is the energy of the system under consideration, P the pressure, V the

volume, T the temperature, S the entropy, µi and Ni the chemical potential and

number of species i.

Choice of an ensemble In thermodynamics, the choice of the ensemble is dictated

by the experimental conditions. In statistical learning, the definition of the appropri-

ate ensemble is more problematic. We will suppose the “correct” ensemble to be the

canonical ensemble and will return to this point later.

Boltzmann distribution We follow the derivation from [29]:

We suppose the system under consideration to be in the canonical ensemble, thus

to be maintainted at a constant temperature T by its contact with a large heat

bath R. Let’s consider two distinct states s1 and s2 for the system. The number of

configurations available to the system and reservoir in these two states is equal to the

number of configurations ΩR(s1) and ΩR(s2) available to the reservoir only (since we

select a specific state for the system).

The probability of the system being in the given state is proportional to the

number of microstates of the reservoir for that given state, so we can write:
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p∗(s1)

p ∗ (s2)
=

ΩR(s1)

ΩR(s2)
(1.2)

We also have S(si) = −k ln ΩR(si), so:

p∗(s1)

p ∗ (s2)
= exp

1

k
(SR(s1)− SR(s2)) (1.3)

Finally, since s1 and s2 are both equilibrium states, we can integrate Eq. 1.1 at

constant temperature and volume between these two states: ∆SR = 1/T∆ER. We

also know that the total energy is conserved so ∆ER = −∆Es:

p∗(s1)

p ∗ (s2)
=
e−E(S1)/kT

e−E(S2)/kT
(1.4)

Since this is valid for any two states, we can now write the Boltzmann probability

distribution p∗ in the canonical ensemble:

p∗(s) =
e−E(s)/kT

Z
(1.5)

where Z =
∑

s exp{−E(s)/kT} is the partition function.

Notice that in the typical case of a system with a well-defined energy function,

but a very high number of degrees of freedom, the numerator is easy to compute, but

the partition function is often intractable.
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Microscopic thermodynamic quantities, and another view of

the Boltzmann distribution

In macroscopic thermodynamics, the energy E is a well-defined scalar. Since we are

now considering a probabilistic system, we can understand this quantity as an average

of energies under the canonical distribution p∗:

E =

∫
s

ε(s)p∗(s)ds (1.6)

where ε(s) is the energy of the system in a given microstate s. We will consider

this function constant, and linked to the conditions of the experiment, but in a driven

system with driving parameter λ, the function ε will depend on λ and change over

the course of the experiment.

In the microscopic setting, entropy can be written:

S(p∗) = −
∫
s

p∗(s) ln p∗(s)ds (1.7)

Note that in the above we assume the Boltzmann constant k to be unity. We

will keep that assumption throughout the rest of this chapter. It can easily be shown

that p∗ is the probability distribution that maximizes S for the given E. This fact is

integral to our understanding of non-equilibrium dynamics of learning.
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1.2 Non-equilibrium statistical physics

Over the past twenty years, significant inroads have been made in the theoretical

understanding of non-equilibrium processes in statistical physics. The Crooks [9]

and Jarzynski [8] fluctuation theorems link equilibrium free-energy differences to the

fluctuations during a non-equilibrium process. These theorems rekindled interest in

non-equilibrium statistical physics, both experimental [30]–[33] and theoretical [34]–

[38].

The key to the theoretical understanding of non-equilibrium states lies in how

much more (or less) information the non-equilibrium state has compared to the cor-

responding equilibrium state. We will make this notion more precise in the following

sections.

Shannon Information

In information theory, the term information refers to how much we learn about a

random variable when we sample from it [39]. For example, sampling from a constant

random variable never provides any information. By contrast, observing the outcome

of a coin toss provides a certain amount of information. The outcome of this coin

toss can be represented using one bit (0 for heads, and 1 for tails).

If we now consider a fair 8-sided die, we now need log2 8 = 3 bits of information

to represent the outcome. If the die was not fair, we could shorten the average

description length by using shorter representations for the more likely outcomes.

This concept of information as the average number of bits that we need to repre-
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sent the outcome of a random variable is central to non-equilibrium thermodynamics.

This average quantity of information, or Shannon information closely resembles Eq.

1.7:

H(p) = −
∑
i

p(i) log p(i) (1.8)

Non-equilibrium thermodynamic quantities

In this approach, the system has a well-defined Hamiltonian. It also has a well-

defined equilibrium probability distribution p∗. We now consider the non-equilibrium

case when the distribution of the system is initially out of equilibrium and has a

probability distribution p 6= p∗.

We define our non equilibrium energy:

E(p) =

∫
p(s)ε(s)ds (1.9)

And extend the definition of entropy to this non-equilibrium probability:

S(p) =

∫
p(s) log p(s)ds (1.10)

Relaxation from an initial non-equilibrium state

We will restrict our discussion of non-equilibrium statistical mechanics to the case in

which a system is initially not in equilibrium with respect to its Hamiltonian, then
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relaxes into its equilibrium state. We will see that this corresponds to the statistical

learning process.

We have seen in the previous sections that what characterizes the non-equilibrium

state, is its non-equilibrium probability distribution p. In information theory, the

Kullback-Leibler Divergence DKL(p, p∗) is the additional number of bits needed to

encode the outcome of a random variable following p when the encoding method was

optimized for a random variable following p∗ [39]:

DKL(p, p∗) =

∫
p(x) ln

p(x)

p∗(x)
ds (1.11)

It can be shown that, although DKL is not a distance (it is not symmetric), it is

always positive (by Jensen’s inequality) and is zero only when p = p∗.

We now define the relaxation dynamics as the dynamics of a time dependent

probability distribution pt from an initial non-equilibrium state p0 to the equilibrium

state p∞ = p∗. We follow [40] and define a weakly relaxing dynamics as a sequence

such that

lim
t→∞

DKL(p, p∗) = 0 (1.12)

By contrast, a strongly relaxing dynamics is always discarding information with

respect to the encoding defined by the equilibrium probability distribution [40]:

∂DKL(pt, p
∗)

∂t
≤ 0 (1.13)

It can be shown [40] that any Markovian memoryless dynamics converging to an
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equilibrium distribution is strongly relaxing. Therefore Langevin dynamics describe a

strongly relaxing process, and we can assume our relaxation dynamics to be strongly

relaxing.

Entropy, entropy production, and non-equilibrium second

law

The second law states that the entropy of an isolated system can only increase. For

our system s in contact with a reservoir, we can write: ∆Stot = ∆SR + ∆Ss ≥

0. Furthermore, the only changes in entropy associated with the reservoir are heat

exchanges at constant T , so ∆SR = Q/T , where Q is the heat from the system to

the reservoir. We can therefore write:

∆Ss = ∆Sexchange
s + ∆Sirr

s (1.14)

with ∆Sexchange
s = −Q/T . The second law ∆Stot ≥ 0 can then be rewritten as:

∆Sirrs ≥ 0 (1.15)

It can be shown that under the assumption of strongly relaxing dynamics [40], the

irreversible entropy production is also the time derivative of the KL divergence be-

tween the non-equilibrium probability distribution and the corresponding equilibrium

distribution:

16



∂Sirr

∂t
= −∂D(pt, p

∗)

∂t
≤ 0 (1.16)

We can see that a strongly relaxing dynamics constantly discards information

(information here can be understood as the average description length of the state

when the encoding was optimized for the equilibrium distribution).

From this notion of trajectory in phase space where the KL divergence is reduced

at every step, we can now naturally formulate the question: What is the optimal

trajectory in phase space that will lead us to the equilibrium distribution? To answer

this we need to develop basic notions of differential geometry.

1.3 Basic Differential Geometry

We have seen in the previous section that the relaxation from a non-equilibrium

distribution to an equilibrium distribution can be seen as a trajectory in a space of

parametrized probability distributions pt where the parameters are the positions (and

velocities) of all the particles in the system.

In this section, we will place ourselves in the slightly more general framework of

a space of parametrized probability distributions pt parametrized by any parameter

set θ.
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Motivating example

To understand why we need notions from differential geometry to analyze a space

of probability distributions, consider the space of Gaussian probability distributions,

parametrized by their mean µ and standard deviation σ. Our first intuition would be

to consider that space to be like R2 equipped with the traditional Euclidian distance.

With this metric, the distance between N (0, 0.1) and N (1, 0.1) is simply (0− 1)2 +

(.1 − 0.1)2 = 1. The distance between N (0, 1000) and N (1, 1000) is identical, (0 −

1)2 + (1000− 1000)2 = 1.

The problem with the Euclidian distance is now apparent. The two low-variance

Gaussians are very different from each other. Their mean is over ten standard de-

viations apart, and it would be extremely rare to mistake a sample from one of the

low-variance Gaussians with a sample from the other. By contrast, the high variance

Gaussians are very similar, and it would be very hard to distinguish samples from

the two distributions.

We’ve already introduced a better notion of similarity between distributions in

equation 1.11: the KL divergence. The KL-divergence, however, is not symmetric,

so cannot be used as a distance. This problem can be solved by introducing the

symmetrized KL divergence, D̃ [12] :

D̃KL(p, p∗) =
DKL(p, p∗) +DKL(p∗, p)

2
(1.17)

For our 2-dimensional space of 1-dimensional gaussians, it can be shown that this
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is:

D̃KL(N (µ, σ),N (µ∗, σ∗)) =
1

4σ2σ∗2
[
(µ∗ − µ)2(σ2 + σ∗2) + (σ∗2 − σ2)2

]
(1.18)

and the distance between the two low-variance Gaussian of our motivating example

can be computed to be 50, while the distance between the two high-variance Gaussians

can be computed to be 0.5.10−6, which is much more in line with intuition.

We now see that the space of one-dimensional Gaussian distributions is curved :

the distance between a distributions with two means separated by the same interval

depends on the level of the standard deviation. A natural way to define distance

in such a space is by using the symmetrized KL divergence 1.17. We will make one

step in the direction of formalization of these concepts, to see how paths between

distributions can be optimized in such spaces.

Fisher Information

In classical statistics, the Fisher Information is used to compute the Cramer-Rao

bound on the variance of any unbiased maximum likelihood estimator θ̂ [41]:

Var θ̂ ≥ 1

I(θ)
(1.19)

where I(θ) is the Fisher Information, usually defined as:

I(θ) = E

[(
∂.

∂θ
log f(X; θ)

)2
∣∣∣∣∣ θ
]

(1.20)
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where f is the likelihood of the data X given parameters θ.

It can be shown that the Fisher Information matrix is also the Hessian of the

symmetrized KL divergence. In other words, the Fisher Information is a way to

quantify curvature in the space of parametrized probability distributions:

I(θ) = ∇2
θD̃KL (pθ, pθ∗)|θ=θ∗ (1.21)

Distance on a Riemannian Manifold

So far, we have seen that the space of probability distributions is a curved space. It

can be shown [12] that it is a Riemannian manifold, which can be informally defined

as a curved space that locally resembles Rn. For example, a sphere in R3 is curved,

but at each point locally resembles R2.

On such a space, notions of angles, dot products, and distances are all local:

distances in a patch with higher curvature are not the same as distances in patches

with lower curvature.

In Euclidean spaces, all notions of angles and distances depend on the dot product

of two vectors 〈u,v〉. In a Riemannian manifold, this vector product at a point θ is

corrected for the curvature using the metric tensor F: 〈u,Fv〉, and a length is locally

defined as ||u|| =
√
〈u,Fu〉.

The distance between two points pθ and pθ∗ is therefore a geodesic, the minimum

curve length of paths between these two points, where the curve length along a path
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λ(t) such that λ(0) = pθ and λ(T ) = pθ∗ is calculated as:

lλ(θ, θ
∗) =

∫ T

0

||λ′(t)||dt (1.22)

where the norm ||.|| is defined using the Riemannian metric tensor seen above. There-

fore the distance is:

d(pθ, pθ∗) = min
λ
lλ(θ, θ

∗) (1.23)

For our space of probability distributions, the appropriate metric F is the Fisher

information matrix:

Fθ = I(θ) (1.24)

It is important to note that even if I have introduced the notion of distance on a

parametric probability space using the symmetrized KL divergence, and that the local

curvature of the space is the second derivative of this distance, the distance between

two points on our probability manifold is not exactly equal to the symmetrized KL

divergence (as it is a result of the minimization program in 1.23).

The Natural Gradient

The Natural Gradient method, first proposed as applied to neural networks in [12],

is an efficient method to find minima of a function of parametrized probability distri-

butions. Going back to the example of a non-equilibrium relaxation process, we start

with an initial probability distribution p and relax into the the equilibrium probabil-
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ity distribution p∗ that minimizes the energy of our system. The distance between p

and p∗ is the minimum path length between the two distributions. Determining the

optimal path pt would be computationally expensive, especially for a large number

of particles.

The standard way to compute an optimal path locally would be at each step to use

the steepest descent: compute the local gradient, then make a step in that direction:

θt+∆t = θt + λ∇θE(θ) (1.25)

where λ is a small step size.

However, the equation above only describes the steepest descent method in an

Euclidean space. The probability space is curved, so we need to modify the above

update to take the curvature into account. What is the direction that will maximize

the change in E? We can formalize this as a maximization problem:

maxE(θ + δθ) u.c. ||δθ|| < ε (1.26)

which can be rewritten:

maxE(θ) + εvT∇E(θ) u.c. 〈v,Fθv〉 = 1 (1.27)

Solving this equation with the standard method of Lagrange multipliers yields the

Natural Gradient method:
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θt+∆t = θt + λF−1
θ ∇θE(θ) (1.28)

Note that in the case of a simple Euclidean space, the Riemannian metric tensor

is the identity and we recover the classic steepest descent method.

Geodesics on the Probability Manifold and Thermodynamic

Length

In [36], Crooks makes the connection between fluctuations and thermodynamic length,

and shows that the distance between two equilibrium distributions, which can also be

understood as the number of natural fluctuations along the finite-time path between

the two distributions is a geodesic on a Riemannian manifold. He also computes

the corresponding Riemannian metric and shows that it is equivalent to the Fisher

information metric - therefore the natural Riemaniann manifold for thermodynamics

is the statistical Riemannian manifold we have described above.

1.4 Bayesian Machine Learning and Connections

to Statistical Physics

We will now introduce a subset of machine learning: parametrized supervised learn-

ing. This encompasses a vast subset of machine learning, but to fix ideas and show

the limitations of computational approaches, we will show examples in deep neural

networks.
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Learning formalism

We choose this formalism as it can readily be generalized to most forms of supervised

learning. In the most general formalism possible, we have a matrix of observed

variables X ∈ Rn×p, where n is the number of observations and p is the dimension

of the observed variables. For example, X could be a set of n images representing

animals, and the 1× p row vectors would be some encoding of the pixel values of the

image. We also have a vector y ∈ Rn containing the labels for each example (for

example, a number identifying which animal is in which picture).

The goal of statistical learning is to find a function f(X,θ) of the inputs X

parametrized by a vector θ whose output approximates y. Note that we do not specify

the dimension of θ, as the infinite dimensional case corresponds to non-parametric

estimation.

In probabilistic terms, each example (X, y) is a random variable generated from

an unknown probability distribution. Our goal is then to minimize the risk function:

R(f,X, y,θ) = E [L (f (X,θ) , y)] (1.29)

where L is some predefined loss function (for example the L2 norm of f(X)−y) and E

is the expectation with respect to the true joint distribution of (X, y). Unfortunately,

we do not have acess to this joint distribution. Therefore, the main focus of statistical

learning becomes the minimization with respect to θ of the empirical risk R̂; this is
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the ERM, Empirical Risk Minimization principle [42]:

R̂(f,X,y,θ) = 〈L (f (X,θ) ,y)〉 (1.30)

where the brackets represent the average over all examples. Minimizing the empirical

risk, or learning from examples, is typically done using gradient descent (computing

the gradient over all examples at the same time, then adjusting the parameters θ

accordingly) or more commonly stochastic gradient descent (computing the gradient

and updating the parameters successively for each example).

We note that the ERM minimization principle is not perfect, even for large num-

bers of examples. If the number of parameters is very large, typically larger than the

number of examples, the learning function can simply memorize the outcomes. This

would lead to an empirical risk of zero, but does not guarantee good performance on

out of sample examples (overfitting) [4].

Neural networks are a special class of functions f representable by layers of “neu-

rons”, which are simply a linear transformation of the previous output layer followed

by a non-linear “activation function” σ. Common examples of activation functions

are the hyperbolic tangent or the sigmoid. For layers i = 0, 1, ..., I, we can write:

Oi+1 = σ(WiOi) (1.31)

Where Oi is the output of layer i, O0 = X, and OI is the output, to be compared

to y. The matrices Wi are the weights of the neural network and are of dimension
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hi−1 × hi, where hi is the number of neurons on layer i. Note that it is common to

add an additive bias to each layer, that we omit here for conciseness.

Stochastic Gradient Descent for Empirical Risk Minimization

We define the loss function L(yi|xi;θi) and minimize it with respect to θ. Optionally,

a regularizing term R(θ) is added to the minimization problem. The minimization

problem can therefore be written as:

θ̂ = arg max
∑
i

−L(yi, xi;θ) +R(θ) (1.32)

For deep neural networks, this minimization is done using Minibatch Stochastic

Gradient Descent.

θt+∆t = θt + λt∇LMB(t) (1.33)

where LMB(t) is the loss computed only on a random subset (or minibatch) of the

data, and λt is a decreasing function such that
∑
∞ λt = +∞ and

∑
∞ λ

2
t < +∞ [43].

This method has proven to work very well to minimize the loss of deep neural

networks. In addition, it scales very well, as it does not require to fit the entire

dataset in memory.
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Probabilistic or Bayesian Neural Networks

In the section above, we outlined a way to estimate the vector of parameters θ that

approximately minimizes the loss L on our data (X,y). In most applications, having

a point estimate is fine. However, it is often desirable to estimate a probability

distribution on our parameter vectore θ, as it would provide us with 1) a means to

estimate the error on our predictions 2) an implicit regularization scheme and 3)

potentially a way to identify out-of-sample data.

Bayesian Estimation

If we can describe our model for the data as a parametric conditional probability

function p((y,X)|θ), we can use Bayes’ theorem to write:

p((y,X)|θ)p(θ) = p(θ|(y,X))p((y,X)) (1.34)

where p((y,X)|θ), seen as a function of θ is the likelihood, p(θ) is the prior prob-

ability of the parameters (often chosen to be uninformative), and p(θ|(y,X)) is the

posterior probability of the parameters given the data.

A specification of the priors on the parameters along with the probabilistic model

allows us to compute the likelihood, and therefore gives us the posterior on θ. The

posterior is our target distribution as it gives us the ability to compute errors over

the parameters, but also to use the model for prediction by taking expectations of

the likelihood over the parameters using the posterior.
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Loss as Energy

I will now hypothesize a form for the probabilistic model attached to our parameters

as following the Boltzmann distribution as defined in equation 1.5, where the energy

is replaced by the loss function L:

p(θ|(X, y)) = (exp[−L(θ)]) /Z (1.35)

where Z =
∫

exp[−L(θ)]dθ normalizes the expression to a probability.

If we now recast both the loss term and regularizing term as energies, with Gibbs

probability distributions p(E) = (exp−E) /Z, the above equation can be understood

as the MAP estimate of the following probabilistic model:

p(θ|x) = p(θ)
∏
i

p(yi, xi|θ) (1.36)

where p(θ|x) is the posterior probability of the parameters, log p(θ) = R(θ) is

the log-prior, and log p(yi,xi|θ) = L(yi, xi;θ) is the log-likelihood.

In a traditional Bayesian probabilistic approach, the likelihood is computed using

the MCMC (Markov Chain Monte-Carlo) method. For deep neural networks, the

computation of p(yi,xi|θ) is intractable, as the dimension of the parameter vector θ is

very high (often more than millions), and each MCMC sample would require iterating

through the entire datase. We will show in Chapter 3 how Langevin dynamics on a

Riemannian manifold can help us compute posteriors for deep neural networks with

very large datasets.
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Chapter 2

Statistical Physics of Learning

In thermodynamics, a non-equilibrium relaxation process can be described as a trans-

formation from an initial probability distribution p to a final Boltzmann equilibrium

probability distribution p∗. A strongly relaxing transformation discards information

continuously, thus reducing the distance between p and p∗ continuously. In statistical

learning, the prior probability on the parameters θ define an initial distribution p

on these parameters. Through a sequential optimization scheme, these parameters

are changed progressively towards an approximation of the minimum empirical loss

distribution p∗.

These two dynamical process are very similar in their dynamics. This analogy

between statistical learning and statistical physics is but one of the possible connec-

tions between the two fields that have been made over the past twenty years. In

this chapter, we will first outline the different historical approaches to the connec-

tions between statistical mechanics and statistical learning. We will then make more

precise our approach to this connection, and show some unsucessful attempts at lever-

aging statistical mechanic results to provide theoretical insights or better practical

methodologies in statistical learning. Succesful experiments are presented in the next

chapter.
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2.1 Previous Work

The past twenty years have seen many succesful attempts to use statistical mechanical

tools and concepts in machine learning. We outline these connections below.

Monte Carlo Evaluation of High Dimensional Integrals

The partition function Z =
∫

exp [−E(s)/T ] ds is the central quantity in equilibrium

statistical physics. The state vector s is always high-dimensional, and the evaluation

of this integral is non-trivial. In simple cases, saddle point approximations are used

[29], but in most practical settings, these integrals are evaluated using Monte Carlo

approximations. This evaluation problem is similar to the estimation of posteriors in

probabilistic models. Indeed, given a probabilistic model, it is easy to sample from

the posterior but difficult to evaluate integrals, since the parameter space is often

ten- to a hundred-dimensional [44].

Markov Chain Monte Carlo approximations attempt to efficiently sample from the

the state space by prioritizing sampling in high-probability regions. This is done using

a Markov “walker” whose next step is proposed at random in the state space, and

is more likely to be accepted if the proposed state’s energy is lower. This algorithm,

the Metropolis-Hastings [45] sampling scheme, can get stuck in local energy minima

and sometimes fail to effectively sample the state space. Moreover, its mixing times

are typically slow as the walker only steps locally.

Hamiltonian Monte-Carlo, a physics-inspired, significantly more efficient sampling

scheme was initially devised by physicists as “Hybrid Monte Carlo” then later redis-
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covered and popularized in the mathematical statistics community by Radford Neal

[46]. The main idea behind Hamiltonian Monte Carlo (HMC) is to sample from the

state space, but also to sample momenta, and to use the momenta to propose the

next step, allowing for bigger jumps and a more efficient exploration of state space.

A very thorough exploration of HMC can be found in [47].

However, these sampling methods still fail for integrals in millions of dimensions,

which would be necessary to compute for modern deep learning models. They also

fail if the dataset is large, since a single MCMC step requires a pass through the

entire dataset. Alternatives to these MCMC sample schemes in very high dimensions

for large datasets will be discussed in the next chapter.

Combinatorial Statistical Physics of Learning

The combinatorial approach to statistical physics of learning [48] attempts to com-

pute generalization curves for machine learning problems given a model, such as the

perceptron, and a learning rule, such as the Hebbian rule [49].

The generalization curve is defined as the validation error (error on examples not

in the training set) as a function of the size of the training set. In the combinatorial

approach, the rule to be learned is parametrized as a “teacher” vector in state space.

Initially, the candidate space for admissible “student” vectors spans the entire state

space. As more examples from the training set are added, the candidate space is

restricted to student vectors that are compatible with these examples. When training

is finished, the volume of admissible vectors is postulated to be proportional to the
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generalization errors. This problem is treated as a statistical mechanical problem,

and the entropy, as the logarithm of the size of phase space, gives a theoretical value

for the generalization error.

Spin Glasses and Learning on Networks

This approach linking statistical physics and statistical learning has been the most

fruitful and is still actively pursued today; see the textbook [50] or a more recent

review [51].

In this approach, connections are drawn by likening learning problems to the

description of spin glasses in statistical physics. We informally describe the approach

below.

The Ising Model

In statistical physics, the Ising Model describes a symmetrical model of interacting

spins on a lattice [29]. The spin at site i, σi = ±1 interacts with neighboring spins j

according to the Hamiltonian:

H(σ) =
∑
i,j

i,j neighbors

Jσiσj + h
∑
i

σi (2.1)

where J ∈ R is the interaction energy constant and h is an external field. If J > 0 the

interaction is ferromagnetic, if J < 0 the interaction is antiferromagnetic. It can be

shown that in two dimensions or more, this system exhibits a phase transition between

an ordered phase at low temperature and a disordered phase at higher temperatures.
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Spin Glasses

Spin Glasses are a more general case of the Ising model, where the interaction energy

constant J = Jij is now a random variable, whose values are fixed at the beginning of

the experiment. There are now two levels of randomness: the quenched randomness

due to the coefficients Jij and the randomness due to the rapid fluctuations of the

spins σi.

We are interested in the general behavior of the system, that is, we are interested

in the values of thermodynamic quantities averaged over both levels of fluctuations

[52].

Connection with statistical learning

The connection between Spin Glass models and statistical learning can be formalized

following several different approaches. Mezard’s book [50] is an in-depth review of

these connections. Here, we will outline the connection between probabilistic graph-

ical models and spin glasses.

Probabilistic Graphical Models: Probabilistic Graphical Models are a subset

of probabilistic models. The model is represented by a graph specifying the depen-

dency structure between variables. Some standard graphical structures are Bayesian

networks, directed graphs whose dependencies are hierarchical, or Conditional Ran-

dom Fields (CRFs), whose graphs are undirected [53]. For CRFs, the probability of

a given state is given by an energy function defined as a function of the values of the

nodes of each maximum clique. Probabilistic graphical models are a way to express
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a complex probabilistic model of many variables in a tractable form. Indeed, specify-

ing the complete joint distribution for all variables in the model is often impossible.

Probabilistic graphical models (PGMs) allow for the factorization of the joint, thus

greatly reducing the dimensonality of the problem.

Looking back at our description of the Ising model, it is easy to see that the

specification of interaction energies for neighboring nodes on the lattice is equivalent

to specifying a graphical model on a lattice. The Ising model is homogeneous, but

actual probabilistic models will not be. Therefore probabilistic models will have

random interaction energies that depend on the specification of the problem.

The two levels of randomness in learning problems (thermal fluctuations of the

weights, quenched fluctuations of the examples) also have their counterpart in the

two levels of randomness in spin glass systems: Spins fluctuate thermally, while there

is an experiment-specific, quenched randomness in the interaction parameters, linked

to the distribution of impurities in the system. Methods that have proven successful

in spin glass analysis, such as the replica method or cavity method [50], [54], have

also given rise to interesting results in optimization and learning settings.

MarkovNets.jl: To investigate further the links between statistical mechanics and

statistical learning on conditional random fields, I developed, in collaboration with the

Stanford Artificial Intelligence Laboratory, the library MarkovNets.jl. This library

is written in the high level language Julia, so it is very easy to extend and modify.

Moreover, Julia is one of the only high-level scripting scientific languages to perform

type-inference and just in time compilation, which allows it to run just as fast as
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lower level languages, such as C++. The package and its documentation are available

at https://github.com/henripal/markovnets.jl.

2.2 Learning as a quenched thermodynamic

relaxation

As we have seen in the previous chapter, learning and thermodynamic relaxation can

be seen as very similar processes. Both start with an initial probability distribution,

the prior on the parameters. Then, at each step, both processes converge to the

equilibrium, or Boltzmann, distribution, by minimizing the KL divergence between

the equilibrium distribution and the current distribution.

We propose to use a fundamental result of information thermodynamics, and to

apply it to statistical learning. The fundamental result of information thermodynam-

ics, best explained in [2], is that the relaxation from a non-equilibrium state to an

equilibrium state produces work (or negative work). The maximum absolute amount

of work produced by this relaxation will be when the Hamiltonian is quenched to

match the initial, non-equilibrium work distribution (transforming this distribution

to an equilibrium distribution), then deformed quasi-statically to the target equilib-

rium distribution. We propose to investigate the performance of this procedure as

applied to the learning procedure of a neural network.

As we will see, this method does not improve the convergence or optimality of the

learning process in our experiments, simply slowing down the convergence process
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compared to traditional SGD.

Methodology and Results

To be able to test ou hypotheses, we unfortunately cannot use pre-existing frameworks

such as TensorFlow, PyTorch, or Keras, as we need to monitor and access every step

of the internals and radically change the way traditional convergence is achieved (we

cannot use built-in loss functions). Therefore, we developed our own simplified neural

network library, toyNN. It is an open source, modular, neural network library. This

package, implemented in Python, is available at https://github.com/henripal/toynn.

Figure 2.1: The generated examples (dots) follow a random normal bivariate distribu-
tion. The classes for each point are generated through the XOR rule. The background
colors show how points would be classified by the neural network after training. The
neural network has three layers with 20 hidden neurons and was trained for 40,000
epochs using SGD.

We tried out this methodology on a simple XOR classification problem (see 2.1).

We used a three layer neural network with 20 units each (multilayer perceptron). To

emulate the quenching behavior, we used a weighted average of the current output

of the MLP with the real data labels to calculate the quenched loss function. Unfor-

36



tunately, this procedure did not have the desired effect: it did not allow us to avoid

overfitting or local minima - it essentially reproduced the results of the non-quenched

procedure, albeit at a linearly slower rate.

In the next chapter, we will see that the thermodynamic view of machine learning

as a dynamic process on a Riemannian manifold can however produce positive results.
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Chapter 3

Stochastic Langevin Dynamics

Stochastic Gradient Langevin Dynamics (SGLD) is a statistical-physics-inspired sam-

pling scheme for Bayesian modeling adapted to large datasets and models. SGLD

relies on the injection of Gaussian Noise at each step of a traditional Stochastic Gra-

dient Descent (SGD) optimization algorithm. In this scheme, every component in the

multi-dimensional noise vector is independent and has the same scale, whereas the

parameters we seek to estimate exhibit strong variations in scale and significant cor-

relation structures, leading to poor convergence and mixing times. In this chapter,

we compare different preconditioning approaches to the normalization of the noise

vector and benchmark the viability of SGLD approaches on the following criteria:

1) mixing times of the multivariate parameter vector, 2) regularizing effect on small

dataset where it is easy to overfit, 3) covariate shift detection and 4) resistance to

adversarial examples.

3.1 Introduction

Deep Learning is moving into fields for which errors are potentially lethal, such as

self-driving cars, healthcare, and biomedical imaging. For these particular applica-

tions, being able to estimate errors is essential. Bayesian methods provide a way to
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expand scalar predictions to full posterior probabilities [44]. Standard techniques for

the estimation of intractable integrals in Bayesian statistics can be simulation-based

Monte-Carlo [46] or variational [55]. Standard Monte-Carlo techniques break down

for larger datasets, as one sample from the posterior distribution requires a pass over

the entire dataset. By contrast, Stochastic Gradient Descent (SGD) allows to split

the optimization into mini-batches over the dataset [43].

Stochastic Gradient Langevin Dynamics (SGLD), is one of the proposed solutions

to the issue of large datasets. In SGLD, Gaussian noise is added to the SGD updates

[13]. This method closely resembles Langevin dynamics, originally an approximation

of the random dynamics of microscopic particles. Given an appropriate learning rate

schedule, and under assumptions of normality, it has been shown that this method

converges towards the correct posterior.

To improve convergence and speed up mixing, it was proposed to pre-condition

the Gaussian noise with a diagonal matrix to adapt to the changing curvature of the

parameter space [56]. This only captures a fraction of the curvature as all multivari-

ate effects are neglected. Using a full preconditioning matrix corresponding to the

metric tensor of the underlying parameter space was previously proposed [57], but

the computation of the metric tensor is impossible for large-scale neural networks

with millions of parameters.

It was further we proposed to use the Kronecker-factored block diagonal approx-

imation of the metric tensor, first introduced in [58] and [59] as the preconditioning

tensor for the Langevin noise [60]. In these approaches, the step size or learning rate

is reduced according to a Robbins-Monro schedule such that the noise introduced by
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the varying batches becomes dominated by the Gaussian noise.

These methods all prevent the posterior from collapsing to the maximum a-priori

(MAP) estimate by adding Gaussian noise. However, it was recently argued that fixed

learning rate vanilla gradient descent also introduces noise in the learning process.

Hence, fixed learning rate SGD can also be seen as a variant on the same method

[61].

In this chapter, we conduct a reasoned comparison of all these approaches in a

practical setting, with a fixed hyperparameter optimization budget. We compare

these approaches using traditional Markov Chain Monte Carlo (MCMC) diagnostic

tools, but we will also present the results of experiments for which Bayesian posteriors

are desired and evalutate the:

1. Performance of models in recognizing data points that are not in the sample

distribution,

2. Reduction of overfitting in small data settings,

3. Robustness to adversarial attacks.

We find that Langevin approaches, with a reasonable computing budget for hyper-

parameter tuning, do not improve overfitting or help with adversarial attacks. How-

ever, we do find a significant improvement in the detection of out-of-sample data

using Langevin methods. Within the Langevin methods, we find that the simple

fixed learning rate approach [61] performs the best, with no need for modification of

existing neural network libraries.
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3.2 Related Work

The computation of Bayesian posteriors for Neural Networks was pioneered in [62],

using a Monte Carlo approach, by MacKay [63] through a Gaussian approximation

of the posterior, and Le Cun [64]. Neal also introduced a Physics-inspired Markov

Chain Monte-Carlo (MCMC) method, Hamiltonian MCMC ([46]).

Welling and Teh introduced SGLD in [13] and this method was further refined us-

ing a diagonal preconditioning matrix (pSGLD) in [56]. The natural gradient method

and relationship between the geometry of the parameter space and the Fisher infor-

mation matrix was introduced by [65]. Girolami and Calderhead proposed to extend

the natural gradient method to Riemannian manifolds in [57], and a practical appli-

cation to probability simplices was presented in [66]. A quasi-diagonal approximation

of the Fisher information matrix applicable to neural networks was proposed in [67].

Finally, the interpretation of fixed rate SGD (FSGD) as a Bayesian approximation

was shown in [61].

The Kronecker-Factored block-diagonal approximation of the inverse Fisher infor-

mation matrix was presented for dense layers in [68], then extended to convolutional

layers in [59]. This was used as a preconditioning matrix in SGLD (KSGLD) for

smaller scale experiments in [60].
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3.3 Preliminaries

Probabilistic Neural Networks

We consider a supervised learning problem, where we have data x1, ...,xn ∈ Rp, and

labels y1, ..., yn drawn from a distribution P . Our goal is to approximate the distribu-

tion p(y|x) by empirical risk minimization of a family of distributions parametrized

by a vector θ.

In the non-probabilistic setting, this is done by defining an appropriate loss func-

tion L(yi|xi;θi) and minimizing it with respect to θ. Optionally, a regularizing term

R(θ) is added to the minimization problem which can therefore be written as:

θ̂ = arg max
∑
i

−L(yi, xi;θ) +R(θ) (3.1)

If we now recast both the loss term and regularizing term as energies, with Gibbs

probability distributions p(E) = exp−E/Z, the above equation can be understood

as the MAP estimate of the following probabilistic model:

p(θ|x) = p(θ)
∏
i

p(yi, xi|θ) (3.2)

where p(θ|x) is the posterior probability of the parameters, ln p(θ) = R(θ) is the

log-prior, and ln p(yi,xi|θ) = L(yi, xi;θ) is the log-likelihood.

For a traditional Bayesian probabilistic approach, the likelihood is computed using

the MCMC method. For deep neural networks, the computation of p(yi,xi|θ) is

intractable, as the dimension of the parameter vector θ is very high (often more than
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millions), and each MC sample would require iterating through the entire dataset.

We will now tackle some proposed methods to compute the posterior in this high-

dimensional large-data setting.

Stochastic Gradient Langevin Dynamics

The workhorse algorithm for loss minimization for neural networks is mini-batch

stochastic gradient descent (SGD). The data x1, ...xn is grouped into mini batches

B1, ..., Bj, ... of size J such that (x1, ...xJ) ∈ B1, (xJ+1, ...,x2J) ∈ B2, ...

Stochastic Gradient Descent updates are then computed as follows:

∆θt = λt∇θ

(
R(θ) +

∑
j

L(Bj,θ)

)
(3.3)

where λt is a decreasing learning rate. The gradient is computed by backpropa-

gation [69]. Using the probabilistic formulation from Eq. 3.2, this becomes:

∆θt = λt∇θ

(
log p(θ) +

∑
j

log p(Bj,θ)

)
(3.4)

Stochastic Gradient Langevin Dynamics (SGLD) [13] slightly modifies this update

by adding Gaussian noise at each update step:

∆θt = λt∇θ

(
log p(θ) +

∑
j

log p(Bj,θ)

)
+ ε (3.5)

where ε ∼ N (0, λtI). It has been shown that if λt decreases according to a

Robbins-Monro [43] schedule (
∑∞

i λt = +∞ and
∑∞

i λ2
t < +∞), then θ converges
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to its true posterior [70].

Intuitively, randomness in these updates comes from both the Gaussian noise

term and the randomness in the gradient term coming from the stochasticity of the

mini-batches. However, the variance of the gradient term decreases with λ2
t , while

the variance in the Gaussian term decreases in λt. Therefore the Gaussian noise will

dominate for large t.

SGLD therefore provides a method to compute a posterior distribution for the

parameters, while not requiring computation of gradients over the whole dataset.

This method is therefore tractable and applicable to deep neural networks. However,

both in physics and machine learning, an important requisite is that the noise be

isotropic. There is no guarantee of isotropicity in SGLD, as the parameter vector can

have a complex dependence structure (correlations, or order of magnitude variations

in individual variances).

Riemaniann Manifold Langevin Dynamics

The space formed by the parameters of a probability distribution is a Riemaniann

manifold [65]. Its Riemaniann metric is the Fisher information matrix. This means

that the parameter space is curved, and that a local measure of curvature is the Fisher

information matrix:

F (θ) = E
[
∂θp(y|x; θ)∂θp(y|x; θ)T

]
(3.6)

Amari’s natural gradient method proposes to pre-condition gradient updates by
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the inverse of the Fisher information matrix. This ensures that the gradients are

scaled appropriately. For example, if one of the parameters was changing with a

larger order of magnitude than the others, the curvature of the manifold would be

higher in that direction and the updates should be scaled down for this parameter

to maintain the locality of updates. Riemaniann Manifold Langevin Dynamics [67]

follows this principle and preconditions the SGD update with the inverse of the Fisher

information matrix:

∆θt = F−1λt∇θ

(
log p(θ) +

∑
j

log p(Bj,θ)

)
+ F−1ε (3.7)

Unfortunately, the computation of the inverse Fisher information matrix is im-

possible in very high dimensional spaces. In our example neural network, it would

require the storage and evaluation of a three million by three millon matrix, which is

not feasible.

Kronecker-Factored Approximate Curvature

The Kronecker-Factored Appoximate Curvature (KFAC) is a compact and efficiently

invertible block-diagonal approximation of the Fisher information matrix proposed

in [58] for dense layers of neural networks and in [59] for convolutional layers. Each

block corresponds to a layer of the neural network, hence this approximation correctly

takes into account within-layer geometric structure. Each layer i’s activations ai can

be computed from the previous layer’s activations by a matrix product si = Wai−1.

A non-linear activation function φ such that ai = φ(si) is applied. The K-FAC
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approximation can then be written using the kronecker product ⊗:

F̃ = diag (A1 ⊗G1, ..., Ai ⊗Gi, ..., Al ⊗Gl) (3.8)

where Ai = E
[
aia

T
i

]
is the estimated covariance matrix of activations for layer i,

and Gi = E
[
gig

T
i

]
where gi = ∇sL(y, x; θ). We can invert the Kronecker product of

two matrices by (A⊗B)−1 = A−1⊗B−1, and can therefore compute the approximate

inverse Fisher information matrix as:

F̃−1 = diag
(
{A−1

i ⊗G−1
i }i=1...l

)
(3.9)

Scalable Natural Gradient Langevin Dynamics

To implement a tractable preconditioning inverse matrix in equation 3.7, [56] used

a diagonal preconditioning matrix rescaling the noise by the inverse of its estimated

variance (pSGLD). Although this improves on SGLD, it still neglects the off-diagonal

terms of the metric. A quasi-diagonal approximation was proposed in [67]. Here, we

follow the results presented in [60] and use the K-FAC approximation to the inverse

Fisher information matrix as our preconditioning matrix in equation 3.7:

∆θt = F̃−1λt∇θ

(
log p(θ) +

∑
j

log p(Bj,θ)

)
+ F̃−1ε (3.10)

Notice that when changing preconditioning matrices in practice, it is unclear if

any improvement in convergence of the algorithms comes from preconditioning the

gradient term above, or from preconditioning the noise. It is one of the questions
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that we aim to answer with our experiments.

Fixed Learning Rate Stochastic Gradient Descent

We have described in 3.3 how the Robbins-Monro learning rate schedule ensures that

the Gaussian noise dominates the mini-batch noise in the gradient updates for large t.

Recently, it has been suggested that traditional SGD, using a decreasing schedule for

the learning rate and early stopping, also indirectly performs Bayesian updates [61].

Indeed, the noise introduced by the variability in the data also prevents the posterior

from collapsing to the MAP. This indirect Bayesian updating would be responsible

for the effective regularization of modern neural networks through simple SGD.

3.4 Experiments

Our objective is to evaluate the performance of these scalable dynamic methods for

Bayesian updating in deep neural networks. Our criteria for evaluation are closely

aligned with the well-known benefits of Bayesian statistics:

1. Mixing times. We evaluate each method’s mixing time using a multivariate

estimated sample size criteria (mESS) following [71].

2. Implicit Regularization. We evaluate each method’s resistance to overfitting

using a subset of MNIST, smallMNIST.

3. Resistance to adversarial attacks. Bayesian averaging of parameters could, in

theory, provide resistance to adversarial attacks [72]. We evaluate each method’s

resistance to adversarial attacks.
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4. Ability of model to detect changes in data distribution. If new examples do not

match the training distribution, it would be desirable for the model to output

lower prediction probabilities. We test this using the notMNIST dataset, which

has the same format as MNIST but with letters instead of numbers [73].

In order for the model comparisons to be fair, we used the same neural network

architecture for all experiments: two convolutional layers with 32 and 64 layers and

max-pooling, followed by one dense layer with 1024 units. All nonlinearities are ReLU.

The hyperparameter optimization was run using grid search, and the computational

time for hyperparameter optimization was limited to 5 times that of the standard

SGD algorithm for all other algorithms. Batch size for all experiments was 512.

Note that we did not apply the preconditioning matrix to the gradient term in

Equation 3.7. It is otherwise impossible to tell if the performance improvements

come from better gradient updates in the initial, non-Langevin part of training or

from the improvement of the latter, steady-state part of training. Our SGD updates

are therefore:

∆θt = λt∇θ

(
log p(θ) +

∑
j

log p(Bj,θ)

)
+ G̃ε (3.11)

Where G = 0 for SGD, G = I for SGLD, G is the diagonal RMSprop matrix for

pSGD, G = F̃−1 for KSGD, and λt = λ for fixed learning rate SGD (FSGD).
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Test Set Accuracy

We first compare the test set accuracy for all methods on 10 epochs of training on the

MNIST dataset [74]. The results are shown in Figure 3.1; accuracies for all models are

very close and, for a reasonable hyperparameter tuning budget, Bayesian averaging

of models does not seem to improve test set accuracy.

Figure 3.1: Test set accuracy over ten epochs on the MNIST dataset. SGD: Stochastic
Gradient Descent, SGLD: Stochastic Gradient Langevin Dynamics, pSGLD: precon-
ditioned SGLD, KSGLD: K-FAC preconditioned SGLD, FSGD: Fixed rate SGD.
Inset: Test set accuracy for the last three epochs.

For the SGLD, pSGLD, and KSGLD methods, the results were very sensitive to

the learning rate schedule decrease, and most of the hyperparameter optimization

computation time was spent on optimizing it. A longer time spent optimizing the

learning rate schedule improved the test rate accuracies slightly.

Mixing Performance

The very high dimension of the parameter space and impossibility of computing

over the entire dataset at once are specific to Bayesian Neural Networks. Therefore,

50



the measures of Monte-Carlo convergence usually used for probabilistic models, such

as [75], which compares within and between chains, are not applicable. Here, we

approximate [76] and estimate the effective sample size as:

mESS = n

(
|Λ|
|Σ|

)1/p

(3.12)

with n the number of samples in the chain, p the parameter space dimension, |Σ|

the covariance matrix of the chain, and |Λ| the covariance of matrix of samples. We

approximate this by the diagonal approximation of both these matrices, where the

ratio of the diagonal terms essi is computed as follows:

essi =
n

1 + 2
∑

k ρk
(3.13)

where ρk is the autocorrelation at lag k truncated to the highest lag with positive

autocorrelation [44].

Figure 3.2: Multivariate Sample Size over epochs for each model over 10 epochs of
MNIST training.

The results, shown in Figure 3.2, all indicate that the MCMC chain mixes poorly
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in practical settings. Further inspection of the traces shows that almost none of

the parameters are stationary. Increasing the run length, or increasing the rate of

decrease of the step λt, did not improve the aspect of the traces or the effective sample

size. These results are consistent with the theoretical analysis of [77], who shows that

data subsampling is incompatible with any HMC procedure. This is also consistent

with [78] highlighting the problem of stopping while step sizes are still finite.

Overfitting Reduction

Bayesian models implicitly regularize the objective, which helps models avoid overfit-

ting. This is especially true for smaller datasets. In order to test this for the Langevin

dynamic models, we truncated the MNIST train set to 5,000 examples (from 60,000).

The CNN overfits to the small training set promptly, resulting in decreases in the

test set accuracy.

Figure 3.3: Test set accuracy for all models on ten epochs of training on the reduced
MNIST dataset, smallMNIST

The results, shown in Figure 3.3, show that the dynamic models dramatically un-
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derperform SGD on smallMNIST. The only dynamic Bayesian method that matches

SGD is SGDA. We hypothesize that adding Gaussian noise on such a small amount

of data dramatically deteriorates the initial period of convergence, thus forcing the

dynamic Langevin methods to settle for the Langevin, or stationary period in a local

minimum of the loss surface.

Resistance to Adversarial Attacks

Adversarial attacks are imperceptible modifications to data that cause a model to fail

[72]. After training our CNN, we compute adversarial modifications to the test set

using the Fast Gradient Sign Method from [72]. It has previously been shown in [79]

that other Bayesian deep learning methods such as Monte Carlo dropout [80], Bayes

by Backprop [81], matrix variational Gaussian [82], and probabilistic backpropagation

[83] are vulnerable to adversarial attacks. Our results, presented in Table 3.1 show

that all Langevin dynamic methods also fail to detect adversarial attacks.

Table 3.1: Classification accuracies for naive Bayes and flexible Bayes on various data
sets.

Model Test Accuracy on
Accuracy Adversarial Examples

SGD 96.0 2.9
FSGD 96.5 2.0
SGLD 97.2 1.8
pSGLD 97.1 1.9
KSGLD 97.0 2.0
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Detection of Out of Sample Examples

A key advantage of Bayesian probabilistic modeling over simple MAP estimation

is the better representation of uncertainty. The distinction between epistemic un-

certainty, the uncertainty in our model’s parameters and aleatoric uncertainty, the

uncertainty linked to noise, and their relationship to Bayesian uncertainty was pre-

sented in [84].

Here, we assess the epistemic uncertainty inherent in our Bayesian deep neural

networks by training it on MNIST but evaluating the network on a completely dif-

ferent dataset, notMNIST [73]. The notMNIST dataset is similar in format to the

MNIST dataset, but consists of letters from different fonts (see Figure 3.4.)

Figure 3.4: Some example images from the notMNIST dataset.

We expect a network trained on MNIST to give relatively low class probabilities

when given examples from the notMNIST dataset. Figure 3.5 shows the distribu-
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tion of the highest probability for each example. Vanilla SGD gives very confident

predictions for this dataset, whereas all other methods present a similar distribution

of uncertainties. This suggests that Langevin dynamics and fixed learning rate SGD

are relatively straightforward ways to detect covariate shift in practical classification

tasks.
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Figure 3.5: Distribution of probabilities for the most likely class on the notMNIST
dataset for all models trained on the MNIST dataset.

3.5 Discussion

Langevin Stochastic Dynamics provide a scalable way to compute Bayesian posteriors

on deep neural network architectures. Langevin dynamics in physics describe the

random motion of a particle in a thermal bath. The particle is subject to isotropic

forces, typically from the impacts of the water molecules. By contrast, the noise in

stochastic gradient Langevin dynamics is not isotropic due to the geometry of the

parameter space. The geometric nature of the phase space in thermodynamics and
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the common expression of the local curvature matrix between the space of probability

distributions and the phase space has been described in [36].

To render the Gaussian noise isotropic, diagonal [56], quasi-diagonal [67], and

block-diagonal [58] approximations have been used. These preconditioning matrices

have been proven to work very well as preconditioners for the gradient term, but

their use as preconditioners for the Gaussian term in SGLD is subject to significant

convergence issues, especially in the transition from the learning phase, where the

mini-batch noise dominates.

By contrast, leveraging the mini-batch noise by a constant learning rate to prevent

posterior collapse seems to work just as well as the Langevin methods for the exper-

iments described above. This suggests that the ‘data noise’ is already appropriately

scaled to the manifold structure of the parameter space.

In practice, our experiments suggest to use Bayesian averaging with a fixed learn-

ing rate; this doesn’t require any modification to the standard training workflows

used by practitioners, and provides implicit protection against covariate shift.
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Chapter 4

Chemotaxis in Enzyme Cascades

Catalysis is essential to cell survival. In many instances, enzymes that participate in

reaction cascades have been shown to assemble into metabolons in response to the

presence of the substrate for the first enzyme. However, what triggers metabolon

formation has remained an open question. Through a combination of theory and

experiments, we show that enzymes in a cascade can assemble via chemotaxis. Each

enzyme independently follows its own specific substrate gradient, which in turn is

produced as a product of the preceding reaction.

This chapter follows closely Xi Zhao, Henri Palacci, Vinita Yadav, Michelle M.

Spiering, Michael K. Gilson, Peter J. Butler, Henry Hess, Stephen J. Benkovic,

and Ayusman Sen. 2018. “Substrate-Driven Chemotactic Assembly in an Enzyme

Cascade.” Nature Chemistry 10 (3): 311., with the addition of section 4.4 describing

the background theory and modeling.

4.1 Introduction

The interaction between enzymes in living cells is an area of active research. In many

instances, enzymes that participate in reaction cascades have been shown to assem-

ble into metabolons in response to the presence of the initial substrate to facilitate
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substrate channeling [85]–[87]. Substrate channeling promotes sequential reactions

with high yield and high selectivity by directing reaction intermediates along a spe-

cific pathway from one enzyme to the next. Inspired by these biological cascade

reactions, multicatalyst nanostructures have been fabricated for efficient chemical

synthesis [88]–[90].

There are several suggested mechanisms for biological metabolon formation and

substrate channeling. Some involve stable protein/protein interactions [17] [91], while

others invoke electrostatic guidance [92] [15] or spatial organization and clustering [93]

[18]. In other cases metabolon formation through reversible and/or post-translational

modifications has been suggested, but such transient complexes have eluded isolation

[94], [95]. Recently, the diffusive motion of enzymes has been shown to increase as

a function of substrate concentration and reaction rate; furthermore, active enzymes

migrate up the substrate gradient, an example of molecular chemotaxis [96]–[98].

Here we present evidence that suggests that enzymes along a metabolic pathway in

which the product of one is the substrate for the next tend to associate through a

process of sequential, directed chemotactic movement. Such a process may contribute

to the formation of metabolons in living cells co-localized around mitochondria that

serve as sources of ATP [23].

Our experimental study applies microfluidic and fluorescence spectroscopy tech-

niques to study the coordinated movement of hexokinase (HK) and aldolase (Ald),

the first and fourth enzymes of the glycolysis cascade, which are connected by the in-

termediate enzymes phosphoglucose isomerase (Iso) and phosphofructokinase (PFK)

(Figure 4.1A.). Metabolon formation by glycolytic enzymes has been suggested in
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the literature [99]. In order to monitor the movement of HK and Ald by confo-

cal microscopy, we fluorescently labeled them with distinct amine-reactive (ex/em:

493/518) and thiol-reactive (ex/em: 638/658) Dylight dyes, respectively. The use

of different dyes enables simultaneous measurement of both enzymes in microfluidic

experiments. For both HK and Ald, a linear relationship is known to be observed

between fluorescence intensity and concentration. This allows us to estimate the

amount of enzyme that migrated into a specific substrate channel.

4.2 Catalysis-Induced Enhanced Diffusion of

Hexokinase and Aldolase.

Before examining the effect of an imposed substrate gradient on the movement of

HK and Ald, we measured their diffusion coefficients in uniform substrate concen-

trations by fluorescence correlation spectroscopy (FCS). The diffusion constants of

both enzymes rise with increasing substrate concentration, saturating at increases of

38% for HK and 35% for Ald (Figure 4.2). As previously reported [21], [100], the

substrate-induced increase in the diffusion constant is proportional to the catalytic

velocity computed from known Michaelis-Menten parameters.

4.3 Individual Enzyme Chemotaxis

To examine the chemotactic movement of enzymes in response to a substrate gra-

dient, a three inlet and one outlet microfluidic flow device was fabricated through
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Figure 4.1: a, First four steps of glycolysis and their associated enzymes: hexoki-
nase (HK), phosphoglucose isomerase (Iso), phosphofructokinase (PFK) and aldolase
(Ald). b, Photolithographically fabricated flow-based microfluidic channel (channel
length, 40 mm; width, 360 µm; depth, 100 µm). Due to laminar flow, the effective
width of each flow channel is 120 µm. Fluorescence intensities were analysed across
the combined channel where indicated by the vertical black line, except for 20 µm
next to the sidewalls.

photolithography (Figure 4.1b.). With known fluid flow rates and channel geome-

tries, the distance from the input points to the measurement line can be converted

into the time available for the enzymes to react and diffuse. As a control experiment,

HK (200 nM), D-glucose (50 mM) and MgCl2 (100 mM) were passed through all three
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Figure 4.2: Fluorescence correlation spectroscopy (FCS) results showing an enhanced
diffusion coefficient for HK (A) and Ald (B) in the presence of their respective sub-
strates, D-glucose and fructose 1,6-bisphosphate. In each case, the enzyme diffusivity
increases with increasing reaction rate. The error bars represent standard deviations
calculated for 15 different measurements under identical conditions.

channels. Then, the solution in the central channel was changed to HK (200 nM),

D-glucose (50 mM), MgCl2 (100 mM), and ATP (50 mM). 150 mM NaCl was added

into the two flanking channels to balance the ionic strength of the ATP disodium

salt added to the center channel. As shown in Figure 4.3, we observed significant

enzyme focusing in the central channel following an interaction time of 34.6 s in the

microchannel, compared to when ATP was absent.

The total fluorescence intensity in all the experiments was normalized to 1 for

comparison and representation on a common scale. We repeated the experiment sub-

stituting mannose, a substrate which binds more strongly but is turned over more

slowly by HK, and found that the enzyme focused less than in the presence of D-

glucose. We also repeated the experiment substituting L-glucose, the enantiomer of

D-glucose that is not a substrate, and observed no focusing. Similarly, the substitu-

tion of ATP by its analog, adenosine 5’-(β,γ-methylene) triphosphate (AMP-PCP)

at the same concentration, in the central channel resulted in no focusing. Note that

61



both ATP and AMP-PCP bind to HK but that the latter cannot turnover and phos-

phorylate glucose[101].

Figure 4.3: A starting equilibrium distribution of HK (200 nM), D-glucose (50 mM)
and MgCl2 (100 mM) shows focusing towards the middle channel when ATP (50
mM) is introduced into it. Note that catalysis does not occur in the absence of ATP
(control). Experimental conditions: flow rate, 50 µLh−1; distance, 38 mm; interaction
time, 34.6 s. The general concave shape of the curves is indicative of the wall effect.
a, Normalized fluorescence intensity (NFI) averaged across three experiments as a
function of distance from the centre of the channel. Fluorescence intensities are
normalized across all channels such that the total fluorescence intensity across all
channels is fixed for all experiments and rescaled such that the central channel for
the D-glucose control experiment sums to 100. Side channels are shaded in grey. Data
points are locally fitted to a second degree polynomial b, Integrated NFI per channel
averaged over three experiments. Error bars are 95% confidence intervals obtained
from 500 bootstrap iterations of the fitting process. A pairwise t-test with Holm
adjustment was conducted to test for significant differences in the intensities across
channels. The pairwise t-test for the sum of the left and right channels would give the
same results because the total fluorescence across the three channels is normalized
for each experiment. ***: P < 0.001; NS, not significant.

We propose that the chemotactic aggregation of enzymes in regions of high sub-

strate concentrations is due to cross-diffusion effects [102]. The substrate gradient-
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Figure 4.4: Catalysis-induced enzyme focusing and computed profiles of
total enzyme concentration replicating experimental conditions from Fig.
4.3 A, Modelled chemotactic response of HK in the presence of ATP, which is consis-
tent with the experimental result. Parameters were chosen to replicate the conditions
of the experiment described in Fig. 4.3A. B, Comparison between experimental re-
sults and computational results for the integrated NFI of the enzyme in the central
channel: experimental (left) and modelled (right) enzyme focusing in the presence
and absence of ATP. The experimental figure is the average of three experimental tri-
als. Error bars are 95% confidence intervals obtained from 500 bootstrap iterations
of the fitting process

induced aggregation by cross-diffusion counteracts Fickian diffusion of enzymes, which

transfers enzymes from regions with high enzyme concentration to regions with low

enzyme concentration. Cross-diffusion is different from the enhanced diffusion of an

enzyme in the presence of its substrate [21], [96], [97], [100], which is also observed

for uniform substrate concentrations and accelerates the equilibration of the enzyme

concentration by Fickian diffusion. The complete theoretical description of diffusion

in a multicomponent system combines the flow of a species in proportion to its con-

centration gradient (Fick’s law) and the flow of the same species in response to the

concentration gradients of other species in solution. The diffusive flow for the con-

centration ce of unbound enzyme E in the presence of its substrate S can then be

written as:
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Je = −D∇ce −DXD∇cs (4.1)

where D is the Fick’s law diffusion coefficient, DXD is the “cross-diffusion” co-

efficient, and ∇ce and ∇cs are gradients in enzyme and substrate concentrations,

respectively. “Cross-diffusive” effects have been experimentally measured in ternary

reaction-diffusion systems [103], protein-electrolyte solutions [25], protein-polymer

solutions [26], and in many other systems [24]. We followed the theory of chemotaxis

originating from short-range ligand binding proposed by Schurr et al. [104] to obtain

the cross diffusion coefficient, DXD, as a function of the local substrate concentration,

cs, the diffusion coefficient, D, computed from the Einstein relation ( 70 µm2/s for the

HK-glucose complex), and the equilibrium constant K of ATP binding to the enzyme

(5× 103 M−1 for the binding of ATP to HK-glucose [105]):

DXD = −Dce
K

1 +Kcs
(4.2)

Inserting Equation 4.2 into Equation 4.1 shows the factors driving cross diffusion

flow:

Je = −D
(
∇ce − ce

K

1 +Kcs
∇cs

)
(4.3)

The first term inside the parenthesis is traditional diffusion towards lower con-

centrations of enzyme. The second term’s sign is opposite, showing that this flow

is towards higher concentration of substrate. In addition to the substrate gradient,

this term’s magnitude is determined by three factors: the diffusion coefficient D, the

64



enzyme concentration ce, and a factor proportional to the fraction of binding sites

occupied by substrate at a given time. As with Fickian diffusion, the cross-diffusion

drift arises from a thermodynamic driving force that lowers the chemical potential of

the system due to favorable enzyme-substrate binding.

The system of partial differential equations corresponding to the HK-glucose catal-

ysis reaction diffusion system has been solved numerically. The initial presence of

ATP in the central channel gives rise to strong ATP gradients at the boundaries

between the central channel and the left and right channels. D-Glucose, present in

all channels, converts HK to the HK-DG complex, which is the cross-diffusing entity

described by Eq. 4.3. Without any adjustable parameters and without accounting

for catalysis-induced enhanced diffusion, the model predicts focusing lower than that

seen in experiments, but of the same direction and order of magnitude (Figure 4.4).

Thus, hexokinase will chemotax up an ATP gradient due to the cross-diffusion phe-

nomenon. One reason for the difference between experiment and theory is enhanced

diffusion of the enzymes in the presence of catalysis; increased D will increase the

amount of focusing, as predicted by the model. However, since there is no estab-

lished theoretical framework for the determination of D as a function of position

across the microfluidic channel, we have not included it in our model.

We also modeled the focusing experiment in the presence of the non-hydrolyzable

ATP analog, AMP-PCP, and found that the model predicts reduced focusing com-

pared to the ATP-induced focusing (around 1% increase in the concentration in the

central channel). The significantly stronger binding of AMP-PCP reduces the con-

centration ce of unbound enzyme [106], and thereby the cross-diffusion effect. This
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suggests that the model is also compatible with the results for the AMP-PCP exper-

iment in which little focusing was observed.

4.4 Cross-Diffusion Model

In this section, we show how cross-diffusion coefficents can be caculated for a ternary

system with interacting species. We first outline the background theory, Kirkwood-

Buff’s statistical mechanics of solutions [107]. We then rederive the theoretical value

of cross-diffusion coeffcients for enzymes following [104]. Finally, we make explicit

the modeling choices for the glycolitic cascade.

Kirkwood-Buff Theory

We follow closely Newman’s [108] reasoning to present the main ideas underlying

Kirkwood-Buff theory. We will not rederive all results, but rather will expose the

main ideas concisely.

Radial distribution functions

For a solution with a central molecule i surrounded by a solution of molecules j,

we take r to be the radial distance from the central molecule i. We assume that

the spatial distribution of j is somewhat affected by the presence of i. The radial

distribution function gij(r) is the ratio of the probability density of finding a molecule

j at a distance r of the central molecule to the probability density of finding the

molecule j at that point if i was not present. These radial distribution functions
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can be measured, and present “peaks” relative to 1 when there i creates a layer of

j. When r → ∞, gij(r) → 1. At great distances from the central molecules, their

spatial distribution is unaffected. The aim of KB theory is to relate the KB integrals:

Gij =

∫ ∞
0

4πr2(gij(r)− 1)dr (4.4)

to thermodynamic properties of the solvent.

Relationship between average properties and thermodynamic properties

For the grand canonical ensemble (ensemble of system with constant T , V , µ), the

free energy can be written E(j)−
∑
µiNi, where the E(j) are the energy levels, and

µi are the chemical potentials (partial free energies) of the Ni molecules i. For a two

particle solution, the energy levels E(j) and the number of particles N1 and N2 can

vary between states. We get the partition function summing over all the Boltzmann

coefficients:

Ξ =
∑
j

∑
N1

∑
N2

P(j,N1, N2) (4.5)

Ξ =
∑
j

∑
N1

∑
N2

e−β(E(j)−µ1N1−µ2N2)) (4.6)

Differentiating both these equations with respect to chemical potentials lead to aver-

ages of the number of particles. For example,

∂Ξ

∂µ1

=
∑

j,N1,N2

βN1e
(−β(E(j)−µ1N1−µ2N2)) (4.7)
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Dividing both sides by βΞ yields:

1

βΞ

∂Ξ

∂µ1

=
∑

j,N1,N2

N1
e−β(E(j)−µ1N1−µ2N2)

Ξ
(4.8)

1

βΞ

∂Ξ

∂µ1

= 〈N1〉 (4.9)

Differentiating the equation above again and using the product rule yields [108]:

〈N1N2〉 − 〈N1〉〈N2〉 = kT
∂N1

∂µ2

= kT
∂N2

∂µ1

(4.10)

We have linked thermodynamic properties with average properties of the system. We

now introduce the KB integrals.

Relationship between KB integrals and average properties

Let’s take a central molecule 1, in a solution of 2. Then, in a sphere of large radius

R, and volume V = 4/3πR3, with densities of molecules ρi:

〈Ni〉 = V ρi (4.11)

If ρ12(r) is the density of particles 2 at a distance r of our central particle, we can

write the number of 2 particles in volume V around 1 as:

N12 =

∫ R

0

4πr2ρ12(r)dr (4.12)
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Then the product of the number of 1 and 2 molecules averages out to

〈N1N2〉 = V ρ1

∫ R

0

4πr2ρ12(r)dr (4.13)

Finally, we note that g12 = ρ12(r)/ρ2. Rearranging all above equations gives us:

〈N1N2〉 − 〈N1〉〈N2〉 = V ρ1ρ2G12 (4.14)

Which links the average properties with the KB integrals.

Kirkwood-Buff Theory and Chemotaxis

As in the previous section, this is a summary of the relevant results in Schurr et al.

[104] as applied to our system. We use the subscripts W for the solvent, E for the

enzyme or macromolecule, and S for the solute.

Chemical potential and standard diffusion.

For the simple case of one solute in solution, the chemotactic force exerted on the

enzyme in the direction x is the variation of its chemical potential along that direction.

It can be written:

Fch = −(dµE/dx) (4.15)

In the “normal” case, the chemical potential is

µE = µ0
E + kT ln(cE) (4.16)
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where µ0
E is the standard chemical potential, and does not vary with x (we will

see later that in the three component solution, it does vary with x, whereby the

chemotactic force arises).

Fch = −(kT/cE)dcE/dx (4.17)

We want to see that this force, if inserted in the Smoluchowski equation, gives back

the traditional diffusion term. The Smoluchowski equation without the diffusive term

is:

∂cE
∂t

= −DE

kT

∂FchcE
∂x

(4.18)

Inserting the above chemotactic force in this, we get:

∂cE
∂t

= D
∂2cE
∂x2

(4.19)

This confirms that the normal diffusion equation can be rederived through the ex-

pression of the chemotactic force. Now, there remains to see how ∂µE/∂x varies in

the case where µ0
E depends on the solute S.

Theoretical results for chemical potential dependence

We are now back to the three component case. We are interested in how equation

4.17 changes when µ0
E changes with x. Differentiating equation 4.16 in the general

case, we get:

Fch = −dµ0
E/dx− (kT/cE)dcE/dx (4.20)
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Where the second term on the RHS has already been discussed above and seen

to be the traditional diffusive term. We now focus only on the first term: it is our

“cross-diffusion” effect. Re-arranging, we can express it as follows:

dµ0
E

dx
=

(
∂µ0

E

∂µS

)
T,p,c∞E

(
∂µS
∂cS

)
T,p,c∞E

dcS
dx

(4.21)

The second term of the product RHS can be obtained by differentiating equation 4.16

applied to S. We then get:

dµ0
E

dx
=

(
∂µ0

E

∂µS

)
T,p,c∞E

kT

cS

dcS
dx

(4.22)

We now want to express the first term in this product. Kirkwood-Buff theory states

that: (
∂µ0

E

∂µS

)
T,p,c∞E

= −cS(GS,E −GW,E) (4.23)

Then Schurr et al. [104], making use of a geometric argument, show that the RHS

of the equation can be redefined as a function of the fraction f of occupied binding

sites.

f =
KcS

1 +KcS
(4.24)

where K is the equilibrium constant of the binding. This equation is only valid when

K � vS, with vS the partial molar volume of the substrate. In this case, the final
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expression for the chemotactic force is then:

Fch = kT
KcS

1 +KcS

(
∂ ln cS
∂x

)
T,P,c∞E

(4.25)

Application to Hexokinase Focusing

Validity of approximations

The partial molar volume of D-Glucose is of the order of 20 ml/mol, whereas the

equilibrium constant K is approximately equal to: 4.3× 104 m−1 so K � v3, and we

can apply the above equations.

We are using, contrary to the article [104], M = 1. The binding constant K is

defined as an equilibrium between the empty (full of water) binding sites, and the

full (of glucose) binding sites. The chemical equlilibrium definition of K is a good

approximation for this constant.

Reaction diffusion equation with chemotactic force

The chemotactic flow can be rewritten as: jch = cEvch, and vch = Fch

γ
, where γ is the

friction coefficient of E in the solution. Using the Einstein relation, the chemotactic

flow is then:

jch =
DcEFch
kT

(4.26)

jch = DE,E
KcE

1 +KcS

(
∂cS
∂x

)
T,P,c∞E

(4.27)
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Hence the final expression for the cross-diffusion coefficient:

DE,S = DE,E
KcE

1 +KcS
(4.28)

The general form of the reaction-diffusion equation for our enzyme then becomes:

∂cE
∂t

= D
∂2cE
∂x2

+
∂jch
∂x

+ u(c) (4.29)

∂cE
∂t

= D
∂2cE
∂x2

+
∂

∂x

(
DKcE

1 +KcS

∂cS
∂x

)
+u(c) (4.30)

where u(c) represents the reaction term as a function of the concentration vector

c, and D is the diffusion coefficient of the enzyme DE,E. The reaction-diffusion

equation for other components are similar, save for the cross-diffusion term specific

to the enzyme.

Modeling the microfluidic experiment

We followed Wilkinson and Rose [105] for the kinetics of the reaction as follows:

E + G
2 10 6 M–1s–1

−−−−−−−−⇀↽−−−−−−−
60 s–1

EG

EG + A
1 10 6 M–1s–1

−−−−−−−−⇀↽−−−−−−−
200 s–1

EGA

EGA
8000 s–1

−−−−−⇀↽−−−−−
8000 s–1

EG6D

EGA
1 s–1

−−→ G + EA

EG6D
400 s–1

−−−−−−−−⇀↽−−−−−−−−−
0.2 10 6 M–1s–1

EG6 + D

EG6
6 10 3 s–1

−−−−−−−⇀↽−−−−−−−−
2 10 6 M–1s–1

E + G6
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EG6D
4 s–1

−−→ ED + G6

EA
500 s–1

−−−−→ E + A

ED
100 s–1

−−−−→ E + D

where E is the Enzyme, A is ATP, G is D-glucose, G6 is glucose-6-phosphate, and

D is ADP. We then modeled each reaction-diffusion equation for every component Q

as follows:

∂Q

∂t
= DQ∇2Q+R(Q) +XD(Q,S) (4.31)

where DQ is the diffusion coefficient of Q, R(Q) are the reactions as shown above,

and XD(Q,S) is the cross diffusion term of Q towards the gradient of S. We modeled

the cross diffusion term following equation 4.3:

XD(Q,S) = ∇(CQ
K

1 +KCS
∇CS) (4.32)

We then obtained a set of eleven partial differential equations, for which we dis-

cretized the spatial derivatives. We then solved this system of discretized equations

by numerically integrating in time using the odeint function from the Python Scipy

package [109]. The numerical scheme for discretizing in space and then numerically

integrating over time is taken from [110].

For the modeling of the AMP-PCP experiments, we modified the kinetic constants

as follows:

EG + A
10 10 6 M–1s–1

−−−−−−−−⇀↽−−−−−−−−
200 s–1

EGA
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EGA←−−−−
8000 s–1

EG6D

This is compatible with the 10-fold reduction in dissociation constant of AMP-

PCP determined previously [106], and with the absence of glucose phosphorylation.

The model, using these parameters, predicted significant reduction in the amount of

focusing in the central channel (1.6% for the AMP-PCP focusing).

4.5 Role of Catalysis in Chemotaxis

To confirm the role of substrate turnover in the observed chemotaxis, HK was ex-

posed to its usual substrate, D-glucose, and mannose, a competitive substrate, as well

as L-glucose, which is not a substrate. HK shows a higher binding affinity towards

mannose compared to D-glucose (Km = 40 M versus 120 M); on the other hand, pyru-

vate kinase/lactate dehydrogenase coupled assays for HK activity confirmed mannose

phosphorylation to be half as fast as D-glucose phosphorylation under similar reac-

tion conditions. In the experiments, the flow rate in each port was set to 200 L/h,

and the fluorescence was measured 30 mm down the channel allowing for a total

diffusion/interaction time of 6.5 s. Buffer containing 200 nM HK, 10 mM ATP and

10 mM MgCl2 was flowed through the middle channel while one flanking channel

contained buffer with 10 mM D-glucose, buffer with 10 mM mannose or buffer with

10 mM L-glucose, and the other channel contained buffer only, as a control.

A significantly higher chemotactic shift was observed towards the D-glucose chan-

nel compared to the mannose channel (Figure 4.5) suggesting that catalysis, rather

than simple substrate binding, is important for the observed enzyme transport [111].
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Although cross-diffusion itself only requires substrate binding, the diffusion coeffi-

cient controlling the magnitude of this effect will be significantly affected by catalysis

through the enhanced diffusion mechanism. Equations 4.2 and 4.3 show that the

cross diffusion coefficient DXD is directly proportional to the enzymes diffusion coef-

ficient D. The magnitude of the enzymes diffusion coefficient is therefore one of the

determining factors of enzyme chemotaxis and focusing.

Figure 4.5: Chemotactic shifts observed for HK in response to gradients of
different substrates. HK shows a greater chemotactic shift towards its preferred
substrate D-glucose compared to mannose, which it phosphorylates at a significantly
lower rate. No chemotactic shift was observed with L-glucose. A, Experimental NFI
in the central and right channels. All fluorescence intensities are normalized to a total
of 1 across all channels, corresponding to a fixed total amount of enzyme in each ex-
periment. B, Integrated NFI in the right channel. Experimental conditions: starting
enzyme concentration: 200 nM (100%); flow rate: 200 µLh1; distance: 30 mm; inter-
action time: 6.5 s. The percentage of enzyme migration into the D-glucose channel
is 7.3 ± 2.0% and into the mannose channel is 2.5 ± 1.2%, relative to buffer channel.
Error bars are 95% confidence intervals. A pairwise t-test with Holm adjustment was
conducted to test for significant differences in the intensities across channels. ***: P
< 0.001; NS, not significant.
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4.6 Chemotaxis as a Factor in Metabolon

Formation

Having demonstrated that HK undergoes chemotaxis up its substrate gradient, we

then probed the chemotactic behavior of the entire four-enzyme cascade. The first

experiment was designed to examine the response of Ald towards its substrate, fruc-

tose 1,6-bisphosphate, generated from D-glucose by the successive actions of the first

three enzymes. In the microfluidic device, the Ald was flowed through the middle

channel. The first three enzymes, HK, Iso and PFK, with Mg2+ and ATP (required

by the kinases) were passed through one of the flanking channels along with 10 mM

D-glucose, while buffer was passed through the flanking channel on the opposite side.

The volumetric flow rate per inlet was fixed at 50 µL/h allowing for a total interac-

tion time of 17.3 seconds in a 20 mm long channel. 11.9 ± 3.0 % of the Ald moved

into the channel where its substrate was being formed in situ (Figure 4.6A). When

the interaction time was reduced to 8.6 s, the chemotactic migration correspondingly

reduced to 4.9 ± 2.4 % of the Ald.

We then sought to examine whether there was a sequential spreading of HK and

Ald when exposed to D-glucose. This is expected since D-glucose is the substrate

for HK, while the substrate for Ald, fructose 1,6-bisphosphate, is only formed from

D-glucose through three successive enzymatic steps. The components of the cascade

were now separated into two batches consisting of the first two and the last two

enzymes, respectively. HK, ATP, Mg2+, and Iso were flowed through one flanking

channel, while PFK, ATP, Mg2+, and Ald were flowed through the other flanking
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channel. A solution of D-glucose passed through the middle channel. The flow rate

was reduced to 30 µL/h and the channel length was increased to 40 mm allowing for

a total interaction time of 57.6 s within the channel. As discussed, we hypothesized

that HK should respond first to its substrate gradient by moving into the D-glucose

channel, thereby producing the substrate for enzyme 2, Iso. The cascade would

continue with PFK participation, finally producing fructose 1,6-bisphosphate that in

turn should prompt Ald to chemotax towards the central channel. The fluorescence

profiles for enzymes HK and Ald were noted at different interaction times, 14.4 s,

28.8 s, 43.2 s and 57.6 s, and their chemotactic behavior is summarized in Figure

4.6B. For HK, our results indicate that, in 57.6 s, 37.0 ± 0.3% of the starting 200

nM enzyme moves into the central channel containing D-glucose (10 mM) compared

to 6.7 ± 1.3% of the enzyme moving into the same channel when flowing only buffer.

The corresponding numbers for Ald are 8.9 ± 0.7% and 5.9 ± 1.0%, respectively.

Thus, a sequential movement of HK, followed by Ald towards the central channel

was observed. We also observed a sequential movement of the two enzymes when we

added mannose to D-glucose. Since mannose binds more strongly to HK but turns

over more slowly, a smaller chemotactic shift is observed.
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Figure 4.6: Chemotactic assembly of enzymes in the microfluidic channel
under different reaction conditions. A, Fluorescence intensity measured across
the channels, plotted against width of the channels for the centre and right channels.
The grey background represents the approximate right channel. When compared to
the movement towards buffer, Ald shows enhanced migration into the channel that
generates fructose-1,6-bisphosphate in situ. B, Ald shows a time-delayed chemotactic
response compared to HK, as expected based on the sequence of reactions. When
10 mM mannose is introduced along with 10 mM D-glucose, HK shows a reduced
chemotaxis corresponding to the slower rate of mannose phosphorylation by HK.
Error bars are 95% confidence intervals. C, D-glucose gradient-driven sequential
movement of HK and Ald for the entire enzymatic reaction cascade was also observed
in the presence of Ficoll PM 70 (20% wt/vol), an induced crowded environment
mimicking cytosolic conditions in a cell. Error bars are 95% confidence intervals.

4.7 Chemotactic Co-localization of Hexokinase

and Aldolase

With the same crowding conditions and enzymes used in the microfluidic experiments,

we also observed the co-localization of HK and Ald (metabolon formation) in a sealed
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hybridization chamber starting with a uniform distribution of all the four enzymes

in the cascade, as well as the substrates for HK. In the presence of D-glucose and

ATP, both the fluorescently labeled HK and Ald form bright moving spots. When

the spots of HK and Ald with diameters ranging from 600 to 1000 nm were tracked,

the trajectories of the two enzymes were found to be highly correlated, suggesting

metabolon assembly during enzyme cascade reactions (Figure 4.7, Table 4.1). Similar

experiments were also performed either with D-glucose but no Iso and PFK present,

or substituting D-glucose with L-glucose, or with no glucose. As shown in Table 4.1,

there were far fewer HK spots and fewer Ald trajectories that correlated with HK

trajectories.

Table 4.1: Statistic of HK and Ald trajectories

Experiment Total HK trajectories HK trajectories with
high Ald correlation

D-Glucose with all four enzymes 48 ± 3 (s.e.m.) 32 ± 2 (s.e.m.)
D-Glucose without Iso and PFK 12 ± 2 5 ± 1
L-Glucose with all four enzymes 1 0
No glucose with all four enzymes 1 0

Analysis of HK and Ald Aggregates Trajectories

To test for the presence of aggregates, we ran a series of computational operations

to detect punctates with sub-pixel positional accuracy using a customized version

of the Python package Trackpy [112]. First, the parameters of the object detection

algorithm were calibrated using visual inspection of two randomly chosen time points

in the videos, both of the Aldolase channel and of the Hexokinase channel. The
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parameters chosen are shown in Table 4.2. The detection algorithm thresholds the

image, keeping only grayscale values above an adaptively determined value. A band

pass filter is applied to the Fourier-transformed grayscale image (to remove artifacts

and background noise). A two-dimensional Gaussian is then fit to the brightness

peaks to locate the object. Then, the identified objects were assigned to trajectories

by a linking algorithm. The linking algorithm determines potential trajectories by

tracking objects from frame to frame, specifying a maximum distance the object can

travel from frame to frame and a “memory” allowing the object to disappear for up

to five frames. We then removed trajectories where the object was present for less

than ten frames.

The parameters were calibrated very conservatively to only identify obvious tra-

jectories. The parameters were then kept constant across all trajectories, channels,

and experiments. Once the trajectories were identified, we defined a rectangular re-

gion around each HK trajectory adding a margin of 10 pixels on each side. Within

this region, the closest Ald trajectory was chosen as potentially originating from the

same HK-Ald aggregate as the HK trajectory. If there was no candidate trajectory,

we deemed that there was no HK-Ald aggregate corresponding to this HK trajectory.

The above analysis was run on five experiments in which D-glucose was present (Fig-

ure 4.7), three experiments with L-Glucose, and two experiments without glucose. We

identified HK trajectories and Ald trajectories (punctates which persist for at least

10 frames), and the subset of HK trajectories for which there is a corresponding ALD

trajectory for which the spatial correlation is higher than 95% (Table 4.1). Over half

of the detected HK trajectories have an overlapping Ald trajectory. The presence
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of correlated HK and ALD trajectories suggests that multi-enzyme aggregates are

formed. We note that although a significant fraction of the HK trajectories do not

appear to have overlapping Ald trajectories, the quality and duration of the overlap

between the a priori independent HK and Ald trajectories provides overwhelming

evidence that HK-Ald aggregation occurs, which is reflected in the p-value calculated

below.

We ran a Pearson correlation analysis between the coordinates of the HK trajec-

tory and that of the corresponding Ald trajectory. For each pair of trajectories, we

tested for the null hypothesis that the correlation between trajectories was zero, using

a Ljung-Box test. If we found no Aldolase trajectories near the hexokinase trajectory,

the null hypothesis was accepted. The p-values were then aggregated using Fisher’s

method. The aggregated p-value for the D-glucose experiments was lower than 10-80.

We can therefore reject the null hypothesis for the glucose experiments. By contrast,

the p-value for the ‘no-glucose’ experiment was 0.24 and the p-value for the ‘l-glucose’

experiments was greater than 0.8, leading us to accept the null for these experiments.

Table 4.2: Statistic of HK and Ald trajectories

Parameter Value
Minimum Distance between two aggregates 20 pixels
Minimum number of bright pixels 5 pixels
Number of pixels around the HK trajectory 10 pixels
Maximum number of pixels a particle moves between two frames 10 pixels
Number of frames a particle can disappear during trajectory 5 frames
Number of frames a trajectory has to last to be considered 10 frames
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Figure 4.7: Examples of HK and Ald trajectories from an experiment in
which D-glucose and all four enzymes were present, for which the cor-
responding Ald trajectory was highly correlated. Experimental conditions:
200 nM HK labelled with amine-reactive (excitation/emission: 493/518 nm) Dylight
dye; 200 nM Iso; 200 nM FPK; 200 nM Ald conjugated with thiol-reactive (excita-
tion/emission: 638/658 nm) Dylight dye; 10 mM ATP; 20 mM MgCl2; and 10 mM
D-glucose in 20% wt/vol 70 M Ficoll mixed and injected into a sealed hybridization
chamber. A pixel is 0.46 × 0.46 µm and the frame rate is 1 frame every 1.29 s.
Trajectories are recorded for 10 frames, or 13 s.

4.8 Conclusion

Our results suggest that the observed assembly of enzymes participating in a cascade

in response to the presence of the initial substrate can be a result of individual en-

zymes undergoing chemotaxis in response to their specific substrate gradients. We

identified and quantified the two major effects explaining chemotaxis: first, in the

case of HK cross-diffusion up the ATP and glucose gradients is the main mechanism

causing localization. It is dependent on ATP and glucose binding. Second, the mag-

nitude of the effect is increased by the enhanced diffusion effect, which we have shown

to be dependent on catalysis, when both ATP and glucose are present. The extent

of enzyme migration is proportional to the exposure time to the substrate gradient.

The reduced chemotaxis with mannose, a less active substrate for HK, emphasizes

the contribution of catalysis to the phenomenon. This phenomenon, chemotaxis, does
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not require the need for direct interaction between the enzymes to form complexes

that promote substrate channeling; metabolon formation could simply be triggered

by the presence of an initial substrate gradient, for example ATP gradients near mi-

tochondria in the case of the transient metabolon, the purinosome. Furthermore, the

enzymes should revert to their equilibrium distribution once the initial substrate is

completely reacted and the substrate gradients for the individual enzymes disappear.

Presuming this phenomenon to be general [106], chemotaxis may be a basis for the

organization of metabolic networks in the cytosol of the cell.
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Chapter 5

Velocity Fluctuations in Kinesin-1 Gliding Motility Assays

Originate in Motor Attachment Geometry Variations

Motor proteins such as myosin or kinesin play a major role in cellular cargo transport,

muscle contraction, cell division, and also in engineered nanodevices. Quantifying the

collective behavior of coupled motors is critical for our understanding of these sys-

tems. An excellent model system is the gliding motility assay, where hundreds of

surface-adhered motors propel one cytoskeletal filament such as an actin filament or

a microtubule. The filament motion can be observed using fluorescence microscopy,

revealing fluctuations in gliding velocity. These velocity fluctuations have been pre-

viously quantified by a motional diffusion coefficient, and have been explained by the

addition and removal of motors from the linear array of motors propelling the fila-

ment as it advances, assuming that different motors are not equally efficient in their

force generation. A computational model of kinesin head diffusion and binding to

the microtubule allowed us to quantify the heterogeneity of motor efficiency arising

from the combination of anharmonic tail stiffness and varying attachment geome-

tries assuming random motor locations on the surface and an absence of coordination

between motors. We then experimentally measured the diffusion coefficient and ob-

tained agreement with the model. This allowed us to quantify the loss in efficiency
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of coupled molecular motors arising from heterogeneity in the attachment geometry.

This chapter is an abbreviated version of: Palacci, Henri, Ofer Idan, Megan J.

Armstrong, Ashutosh Agarwal, Takahiro Nitta, and Henry Hess. 2016. “Velocity

Fluctuations in Kinesin-1 Gliding Motility Assays Originate in Motor Attachment

Geometry Variations.” Langmuir: The ACS Journal of Surfaces and Colloids 32

(31): 794350.

5.1 Introduction

Ensembles of molecular motors are fascinating objects of study in the field of com-

plex dynamical systems because they combine mechanical complexity with chemical

stochasticity [113]. The collective behavior of biomolecular motor proteins from the

kinesin, dynein and myosin families and their associated cytoskeletal filaments (mi-

crotubules and actin filaments) can be investigated through the construction of in

vitro model systems called gliding motility assays where the system dynamics are

readily observable by fluorescence microscopy [114].

In a gliding motility assay, the motor proteins tails are attached to a surface, and

their heads bind to a cytoskeletal filament. As the motors step along the filament, the

filament is propelled forward. As a result, motors are binding to the tip of the filament

and unbinding from its end, thus changing the linear array of motors upon each

binding and unbinding event. The elucidation of the dynamics of molecular motors

in gliding motility assays has been a goal of theoretical [115]–[124] and experimental

efforts [125]–[127] for 20 years.
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Kinesin-1 motor proteins, prominent examples of processive motors [128], bind to

microtubules and execute force-producing steps of constant length d = 8nm [129].

The number of steps in a given time interval is Poisson-distributed [130], so that the

movement of a microtubule propelled by a single kinesin can be characterized by an

average velocity v and a diffusive term according to:

〈
(∆X(t)− v∆t)2〉 = 2Dm∆t (5.1)

where X(t) is the position of the filament along its trajectory, dX = X(t +

∆t) − X(t) is the displacement of the filament during time ∆t, and Dm is the mo-

tional diffusion coefficient. The motional diffusion coefficient characterizes the fluctu-

ations around the linear velocity of the filament. Measurements with optical tweezers

have shown the motional diffusion coefficient Dm to be equal to 1400 nm2/s for

movement driven by individual kinesin-1 motors at saturating ATP concentrations

(v = 670nm/s), which is about half of the value of Dm = vd/2 = 2700nm2/s expected

for a Poisson stepper with a step size d = 8nm [130].

When two surface-adhered kinesins are bound to the same microtubule, tracking of

the microtubule position with nanometer accuracy has revealed that the microtubule

shifts position in increments of one half of a kinesin step because the low viscous drag

on the microtubule leads to a near-instantaneous sharing of the displacement between

the attached motors [127]. However, the steps of the two motors are uncorrelated,

and already a third motor modifies the microtubule dynamics so that distinct steps

cannot be detected anymore.
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As the density of surface-adhered kinesins is increased, the average spacing be-

tween motors can be reduced all the way to 10 nm [131], which implies that hundreds

of motors interact simultaneously with a microtubule. The mean microtubule velocity

has been found to be largely unaffected by the density of kinesin-1 motors, which is

expected when the drag on the microtubule is small compared to the force generated

by the motors, and the motors do not hinder each other so that they can step at the

same velocity as a single unencumbered motor [132]. When a large number of mo-

tors is attached, individual steps in the microtubule motion cannot be distinguished

[127]. In the limit of many motors, the reduced individual step sizes should lead to a

reduction in velocity fluctuations, and for a given motor density, the motional diffu-

sion coefficient should be reduced with microtubule length: indeed, as more motors

are attached to the microtubule, the fluctuations should be reduced according to the

central limit theorem. However, it has been observed that this is not the case for high

kinesin densities [125]. This apparent paradox is resolved by a theoretical analysis

by Sekimoto and Tawada [120], which incorporates the heterogeneity of motor force

generation into the analysis of the motion. They conclude that the reduction of ve-

locity fluctuations by the addition of independently acting motors is balanced by an

increase in the velocity fluctuations due to the addition and removal of heterogeneous

motors from the linear array propelling the filament as it advances [120]. As a result,

the motional diffusion coefficient Dm is independent of the length of the microtubule

for high kinesin densities [125]. Sekimoto and Tawada’s model attributes the hetero-

geneity of the motors to heterogeneity in their step sizes. However, for kinesin gliding

assays, while filament displacement can vary, step sizes are constant at d = 8nm due
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to the spacing of the tubulin dimers, and their model cannot be applied.

Figure 5.1: Motors step hand over hand on the microtubules surface, thus stretching
their tail and propelling the microtubule forward. The motors bound farther from
the microtubules axis are stretched more than the bound motors close to the axis.
Because the kinesin tail is an anharmonic spring, the stretched motors have a higher
force contribution to the forward movement.

Our extension of Sekimoto and Tawada’s model to motors with constant step sizes

relies on the attribution of the heterogeneity in force production to the anharmonic

stiffness of the kinesin tail [133]. The tails of bound motors attached to the surface

at a greater distance from the microtubules axis will tend to have greater stiffnesses,

and therefore larger force contributions to the shifting force balance between motors

as a result of a step (see Fig. 5.1). The diffusion coefficient, restating Sekimoto and

Tawada’s equality in terms of force adjusted step sizes, becomes:

Dm =

〈
(ki − 〈ki〉)2〉
〈ki〉2

v

2ρ
= αk

v

2ρ
(5.2)
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where ki is the local stiffness of motor i, ρ is the linear density of motors, and the

constant αk quantifies the heterogeneity of the motors stiffnesses.

Computational models have previously been used to determine attachment ge-

ometry under harmonic potentials [134], to provide insight into the mechanisms of

myosin-coated tracks [135], or to predict myosin ensemble processivity [136]. Here we

modeled the diffusion and binding of the kinesin head under an anharmonic spring

potential using Brownian dynamics [137]. This allowed us to determine the spatial

distribution of the bound motors as well as the distribution of their tail extension.

The force-extension relationship for the kinesin tail then yielded the distribution of

bound motor stiffnesses and allowed us to determine a value for the heterogeneity

factor αk of 0.3 (SEM ± 0.002).

The spatial distribution of attached motors given by our model also allowed us

to determine an effective surface width around the microtubule from which motors

bind. This effective width was then used to determine a linear density of bound mo-

tors from kinesin surface densities derived from landing rate measurements. Landing

rate measurements, in contrast to ellipsometry of quartz crystal microbalance mea-

surements, determine the density of functional motors on the surface (not just the

total protein adsorbed) [132], [138], [139]. Combined experimental measurements of

the motor surface density, velocity and motional diffusion coefficient enabled us to de-

termine, for the first time, the constant α in a kinesin/microtubule motility assay for

high kinesin densities. A constant α of 0.43 ± 0.3 SEM (Standard Error of the Mean)

was measured, therefore theoretical and experimental results are in agreement within

experimental error. The relatively large error in the experimental determination of α
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is primarily a result of the uncertainty in the method to measure the motor density

and cannot be noticeably reduced by analyzing a larger number of gliding filaments.

While this agreement between the model and the experiment does not validate the

microscopic model, it implies that the experimental observations are consistent with

non-interacting motors randomly distributed on the surface.

Determining the origin of velocity fluctuations is a critical step in designing ef-

ficient molecular motor-based nanodevices. We have shown statistical agreement

between experimental velocity fluctuation data and our model. Our model links the

heterogeneity of force production to the heterogeneity of the attachment geometry.

Therefore heterogeneity of attachment geometry is a main factor in limiting the en-

ergy efficiency of the motor array. Our model can be used in the design of optimized

devices, such as motility assays with microfabricated tracks or muscle-like actuators

with well-aligned motors.

5.2 Methods

Gliding motility assays

The experiments were performed at a temperature of 25 ◦C in approximately 100 µm

high and 1 cm wide flow cells assembled from two coverslips and double-stick tape

[140]. A kinesin construct consisting of the wild-type, full-length Drosophila melano-

gaster kinesin heavy chain and a C-terminal His-tag was expressed in Escherichia

coli and purified using a Ni-NTA column [141]. Microtubules were prepared by poly-
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merizing 20 µg of rhodamine-labeled tubulin (Cytoskeleton Inc., Denver, CO) in 6.5

µL of growth solution containing 4 mM of MgCl2, 1 mM of GTP, and 5% DMSO

(Dimethyl Sulfoxide) (v/v) in BRB80 buffer (80 mM of PIPES, 1 mM of MgCl2, 1

mM of Ethylene Glycol Tetraacetic Acid, and pH of 6.9) for 30 min at 37 ◦C. The

microtubules were then 100-fold diluted and stabilized in 10 M paclitaxel (Sigma,

Saint Louis MO). The microtubule lengths are Schulz-distributed [142] with an av-

erage length of 10.5 µm, a standard deviation of 7 µm and a minimum length of 3

µm. The same microtubule preparation was used for all kinesin surface densities.

The flow cells were first filled with a solution of casein (0.5 mg/mL, Sigma) dissolved

in BRB80. After 5 min, it was exchanged with a kinesin solution of concentrations

corresponding to motor surface densities of 310 ± 100, 620 ± 200, 1250 ± 400, 2500

± 790, 3100 ± 1180 µm−2 (all errors are SEM), obtained from landing rate measure-

ments described previously [138], in BRB80 with 0.5 mg/mL of casein and 1 mM of

ATP. After another 5 minutes, this was exchanged against a motility solution (10 µM

of paclitaxel, an antifade system made up of 20 mM of D-glucose, 20 µg/mL of glucose

oxidase, 8 µg/mL of catalase, 10 mM of dithiothreitol, and 1 mM of ATP in BRB80)

containing 6.4 µg/mL microtubules, and was injected for 5 minutes, followed by two

washes of motility solution (without microtubules) to remove excess tubulin. Each

flow cell was immediately moved to an epifluorescence microscope (Nikon TE2000),

and movies of 5 different fields of view were taken using a 40x oil objective. The flow

cell was imaged every two seconds for 200 seconds per movie with an exposure time

of 200 ms, leading to 100 observations per microtubule. Therefore a total of 2000 in-

stantaneous velocities for each kinesin densities was obtained. The camera used was
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an iXON DU885LC (Andor Technology Ltd.) electron-multiplying charge-coupled

device (EMCCD). The pixel size on the EMCCD was 8 x 8 µm corresponding to 200

x 200 nm in the object plane.

For each kinesin density, 20 smoothly gliding microtubules were tracked using

ImageJ software (NIH), and the tip location was manually determined at every frame.

While automated tracking software has made great progress in the last few years

[143]–[145], here the expected gain in accuracy is small since a reduced position

measurement error mainly affects the offset in the fluctuation analysis (Figure 5.4c).

Using MATLAB (Mathworks, Inc.), the distance between two consecutive tip

locations, rj was measured. The cumulative time interval after i image acquisitions

is defined as ∆t(i) = iδt, where δt = 2s is the time between image acquisitions. The

cumulative distance travelled over the cumulative time interval ∆t(i), starting at time

j is the sum of single steps, xj(i) =
∑j+i

j rk , where rk is the k-th distance between tip

locations. We therefore obtain, for each trajectory, 100 cumulative distances travelled

for time interval of ∆t(1) = δt, 50 cumulative distances travelled for a time interval

of ∆t(2) = 2δt, etc. For each microtubule and time interval, the deviation from the

mean cumulative distance travelled, ∆xj(i) was calculated as ∆xj(i) = xj(i)− x0(i),

where x0(i) is the mean cumulative distance travelled over time interval ∆t(i). The

mean square deviation (MSD) for time interval ∆t(i), 〈(∆xj(i))2〉 = 〈(∆x(i))2〉 was

then calculated as an average over all j of the square deviations over time interval

∆t(i). We then performed a linear fit of the MSD as a function of the time interval.
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The diffusion coefficient is related to the slope of this linear fit through the equation:

〈
(∆x)2〉 = 2Dm∆t+ σ2

err (5.3)

where σ2
err is the variance of the distance measurement errors [124].

The diffusion coefficient for each kinesin concentration was then calculated by

averaging the slopes of the linear fits over the 20 microtubules.

To test for the potential length dependence of the velocity fluctuations, we followed

Imafuku et al. [125] and fitted the following equation to our experimental data (SI6):

Dm(L, ρ) =
kT

Lζ
+Dm(ρ) (5.4)

where L is the length of the filament, and ζ is the friction coefficient per unit

length, k is the Boltzmann constant, T is the temperature, and Dm(ρ) is a length-

independent diffusion term. In accordance with Imafuku et al. [125], we find that the

length dependent term is negligible compared toDm(ρ) for high kinesin concentrations

(kinesin surface densities above 310 µm2). We therefore restricted our analysis to the

higher kinesin densities, and focused our analysis on Dm(ρ).

To calculate the heterogeneity factor, the linear density of kinesins was calculated

based on the surface density:

ρ = σw (5.5)

where w is the effective width of the region on the surface from which kinesins can

attach to the microtubule. This width is an output of the computational model of
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kinesin head diffusion and binding to the microtubule (see Results section). We find

w = 88 nm. The diffusion coefficient was plotted as a function of the inverse of the

linear density, and mean squares regression was used to fit the experimental values

to a linear function. The constant α was then calculated according to Eq. 5.2 using

this linear fit.

Simulating kinesin head diffusion to determine attachment

geometry

In order to compute the tail stiffness distribution and linear density of motors from Eq.

5.2, we use a Brownian Dynamics model of diffusion of the kinesin tail to determine

the tail extension distribution and effective binding width. We denote the position

of the kinesin head at time t by r(t) in Cartesian coordinates. The motion of the

kinesin head in each dimension i is given by:

dxi(t)

dt
=

1

ζ
(fki + f r) (5.6)

where fk is the elastic force exerted on the diffusing head by the kinesin tail, f r

is the random Brownian force of mean 0 and variance given by:

〈f r(t1)f r(t2)〉 = 2kTζδ(t1 − t2) (5.7)

where the friction coefficient ζ is given by the Einstein relation for the diffusing

tethered kinesin head Dkinesin = kT/ζ , δ is the Dirac delta function, k is Boltz-
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mann’s constant and T is the temperature. The value for this diffusion coefficient

has been found to be 20 µm2/s including hydrodynamic effects [146]. We therefore

set Dkinesin = 20 µm s−2 in the simulations.

The elastic force fk as a function of tail length at time t, l, was determined based

on a numerical inversion of the freely jointed chain (FJC) force-extension relation:

r(t) =
n∑
i=1

coth

(
fkli
kT

)
− kT

fkli
(5.8)

where n is the total number of segments i of Kuhn length li. The kinesin head

has been found to be linked, through a series of 5 stiffer coiled-coil segments, to

its globular tail segment, with a total contour length of 57 nm including head and

tail, thus justifying the freely jointed chain approximation. We here used for the

entropic spring n = 6 segments, corresponding to the head and freely moving segments

between head and tail with the lengths li = (8 nm, 15 nm, 10 nm, 5 nm, 6 nm, 8 nm)

as specified in [147], and consider the initial tail segment immobilized on the glass

surface. In this model the tail stiffness exhibits significant non-linearity, increasing

from an initial stiffness on the order of 20 fN/nm to the pN/nm range (see Fig. 5.2).

The FJC model has been previously used to model tether stiffness [148], [149], and

fits previous determinations of tether stiffness for low extension [113], [150].

We then discretize these equations for a time step ∆t = 0.1 µs and run 1000

simulations for a given distance dattach between the microtubules axis projection on

the surface and the kinesin tails attachment point. We repeat this for dattach taking

all integer values between 0 and 50 nm, for a total of 5 × 104 simulations. Each
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Figure 5.2: Kinesin-1 tail stiffness as a function of applied force. Red curve: Freely
jointed chain model. Black dashed line and circle: approximation of kinesin tail
stiffness used by Driver et al. [113] based on their experimental data. Blue cross:
approximation of kinesin tail stiffness used by Coppin et al. [150] based on their
experimental data. A force of 3 pN is exerted by a fully extended kinesin tail.

simulation stops upon the binding event when the kinesin head reaches the surface of

the microtubule, modeled as a 25 nm diameter cylinder held 17 nm above the surface

[147], or after tmax = 5s if no binding event has occurred. We choose this value

for tmax because initial simulations with longer binding windows showed that only

0.01% of motors have not bonded to the microtubule after 2.5 s. We do not model

the unbinding of motors, as under our assumptions a completely unbound motor will

rebind immediately to the microtubule close to the initial binding site. This also

ensures that the initial out of equilibrium extension energy distribution is preserved

over the binding time scale for one motor.

Modeling the heterogeneity in motor efficiency

In Sekimoto and Tawada’s approach [120], the filament is initially in mechanical

equilibrium: the bound motor elastic forces on the microtubule are balanced. Motor
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i then steps a distance ai at time t, resulting in a displacement ∆X of the filament

to restore mechanical equilibrium. Note that this approximation, and therefore our

model, is only valid when the filament is unloaded and in the limit of many motors

attached to the filament. Sekimoto and Tawada’s original expression for the motional

diffusion coefficient was then:

Dm =

〈
(ai − 〈ai〉)2〉
〈ai〉2

v

2ρ
= α

v

2ρ
(5.9)

where v is the gliding velocity and ρ is the linear density of motors (the inverse of

the average spacing), ai are the effective step sizes of motor i, and the constant α the

heterogeneity of the motors. A central assumption is that the resistance of the motor

to stretching can be described by a spring constant k in the harmonic approximation.

In our approach, the motor step size is fixed at d = 8 nm. However the mechanical

equilibrium, and thus the filament displacement will depend on motor i’s stiffness ki.

Assuming motor i steps at time t, and that the microtubules position at time t is

X(t), Sekimoto and Tawada’s equilibrium condition at t− (right before the step) and

t+ (right after the step) is:

∆X = X(t+)−X(t−) =
ai
N

(5.10)

where N is the total number of attached motors and ai is the step size of mo-

tor i. In our model with fixed step sizes and heterogeneous kinesin stiffnesses, the
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equilibrium condition becomes:

∆X = X(t+)−X(t−) =
kid

N〈kj〉
(5.11)

where d is the 8 nm step size for the kinesin motor and ki is the stiffness of motor i.

We can therefore, by analogy between Equations 5.10 and 5.11, define ãi = kid/〈kj〉.

Combining this definition of force-adjusted step sizes with Eq. 5.9 yields the following

expression for the motional diffusion coefficient:

Dm =

〈
(ki − 〈ki〉)2〉
〈ki〉2

v

2ρ
= αk

v

2ρ
(5.12)

Using the simulation results for the distribution of the stiffnesses ki then allows

us to determine the theoretical value of αk.

5.3 Results

Theoretical determination of the heterogeneity factor

The frequency of occurrence of binding at a specific tail extension as a function of the

distance dattach between kinesin surface attachment point and the projection of the

microtubule axis on the surface (Fig. 5.3A) was determined using our computational

model. We used this data to estimate the probability of a kinesin binding as a

function of its horizontal distance from the microtubule axis dattach (Fig. 5.3B).

Due to the dramatic increase in the tail stiffness for extensions above 40 nm, the
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Figure 5.3: Simulation results. (A) Heat map of motor binding frequency as a func-
tion of tail extension and distance dattach from the microtubule axis. (B) Binding
probability of surface-adhered kinesins as a function of the distance between the mi-
crotubule axis and the kinesin attachment point. (C) Distribution of tail extension
over all bound kinesins.

probability of binding within 10 s falls sharply from 100% for dattach = 43 nm to 0%

for dattach = 45 nm. This allows us to determine a well-defined effective width w =

88 nm to compute the linear density according to Equation 5.5.

We then used the frequency distribution shown in Fig. 5.3A to compute the

extension probability distribution P (ri) = P (extension of kinesin i = ri) over all N

100



bound kinesins (Fig. 5.3C). The force-extension relation for the FJC model in Eq. 5.8

links the force fk to the extension ri. We can numerically invert this relationship to

determine the force distribution {fki }i=1...j. Numerically differentiating Eq. 5.8 with

respect to fk yields a relationship between the force and the local stiffness ki. We

then combine the force distribution with the force-stiffness relationship to compute

the distribution of kinesin stiffnesses. Calculating the stiffness distributions mean

and variance allows us to use Eq. 5.12 to compute a theoretical value for αk of 0.3

(SEM ± 0.002).

Experimental measurement of the heterogeneity factor

The manual tracking of microtubule tip positions from the fluorescence microscopy

images yielded microtubule position trajectories and time series of velocity fluctua-

tions.

The measurements were conducted at saturating ATP concentrations (1 mM)

for 5 different kinesin motor densities ranging from 310 to 3100 µm−2. The lowest

kinesin density measurements (310 µm−2) were then excluded from our fit due to the

length dependence of the motional diffusion coefficient at this kinesin density. The

motional diffusion coefficient averaged over 20 microtubule trajectories is shown in

Figure 5.4 first as a function of the motor density (Fig. 5.4A) and as a function of

the calculated inverse of the linear density (Fig. 5.4B). We then used the slope of

this fit and obtained a value of the heterogeneity factor α of 0.43 ± 0.3 (SEM).
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Figure 5.4: Motional diffusion coefficient as a function of motor density. (A) Motional
diffusion coefficient D as a function of kinesin surface density σ. (B) Motional diffusion
coefficient D as a function of the inverse of the calculated linear density, ρ−1

5.4 Discussion

Through a computational model of kinesin head diffusion, we were able to estimate the

distribution of kinesin tail extensions for kinesins uniformly distributed on a surface

and bound to a microtubule. We then combined this distribution and the calculated

anharmonic force-extension relation to quantify the theoretical heterogeneity of motor

force production. Our model yields a value for the heterogeneity factor αk of 0.3 (SEM

≤ 0.002).

By combining measurements of the kinesin surface density and of the motional

diffusion coefficient, we were also able, for the first time, to determine this heterogene-

ity factor experimentally. While Sekimoto and Tawada proposed that the constant is
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about one, in our assay a value of 0.43 ± 0.3 (SEM) was found, in good agreement

with our theoretical value.

Under our assumptions, we have shown that the variability in the displacement

of the microtubule after each motor step can be explained by the variable force

contribution of each motor. In our model, each motor has an approximately constant

stiffness during its attachment period to the microtubule. This stiffness increases with

the distance between the microtubules axis and the kinesins attachment point on the

surface. This variability leads to heterogeneity in motor force production originating

in the heterogeneity in attachment geometry. The asymmetric, highly heterogeneous

force production profile is shown in Figure 5.5.

One of the goals of this study was to observe deviations from the linear dependence

of the motional diffusion coefficient on the motor spacing predicted by the model of

Sekimoto and Tawada. We expected deviations especially at high motor densities

(small spacings) where increases in the motional diffusion coefficient would indicate

increasing correlations between steps. Such stepping cascades have been observed in

the gliding of actin filaments on myosin [143]. Kinesin-kinesin cooperation, although

relevant when two motors are under load [133], has not been observed in when a

large number of kinesins propelled a microtubule whose position was tracked with

nanometer resolution [127]. Our measurements, covering a wider range of motor

densities also do not give any indication of a deviation from the expected evolution

of the magnitude of the fluctuations. Thus the Sekimoto-Tawada model (modified to

account for the motor distribution on the surface) seems to describe the fluctuations

in microtubule gliding on a large number of kinesins in the absence of a large external
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Figure 5.5: Distribution of forces exerted on the microtubule by the motors along the
microtubule axis. (A) Distribution of forces exerted on the microtubule before the
step. The average force exerted is 0 pN (by construction). (B) Distribution of the
force one motor would exert on the microtubule immediately after it stepped. The
average force exerted is 0.3 pN.

load concisely. In addition to the heterogeneity in the attachment geometry, which

is present with certainty, there are potentially other sources of fluctuations, such as

defective motors, or motor orientation [151]. However, theories accounting for these

sources of fluctuations have not yet been formulated and therefore cannot be falsified

by the present experiments.

Although the original model by Sekimoto and Tawada was formulated for ki-

nesin/microtubule [143] and myosin/actin gliding assays, the results presented here

do not translate to the actin/myosin II gliding assay, since myosin II is not proces-

sive and motor-motor coupling plays a major role [143]. Nevertheless, the impact of
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heterogeneity in the attachment geometry and non-Hookean tail stiffness [152] may

be worth further examination also in the actin/myosin gliding assay.

Here, we studied gliding microtubules whose movement is only opposed by viscous

drag forces. Velocity fluctuations in a viscous medium will lead to a loss of efficiency

on the order of our heterogeneity coefficient (see S4). If loads increase, e.g. due

to the presence of cargo [153], the heterogeneity in force production will prevent

homogeneous distribution of load among motors, and thereby prevent uniform loading

with optimal force [154]. This situation is well understood for cargo transport in vivo,

where a small number of kinesins collectively pull cargo along microtubules [133],

[155], [156].

An implication of the above considerations is that obtaining a more uniform at-

tachment geometry via a method to position the motors directly beneath the micro-

tubule48, such as that described by Hariadi et al. [157], would aid the propulsion

of the microtubule (Fig. 5.6). A reduction of the track width from 88 nm to 44

nm would reduce the heterogeneity factor tenfold. Indeed, muscle, one of the most

efficient arrays of molecular motors [158], features precise alignment of these motors

through the arrangement of thick and thin filaments.

These lessons are instructive for the design of future nanoactuators and molecular

motor-based devices. Although individual components such as kinesin motors may be

able to operate with high energy efficiency [159], the efficiency of arrays and systems

may suffer if these components are not appropriately integrated.
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Figure 5.6: Predicted heterogeneity coefficient as a function of the width of the track
the filament is gliding on. As the width of the track goes to 0, the heterogeneity factor
is reduced. All track widths greater than 88 nm will display the same heterogeneity
coefficient.
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Appendix A

Supplementary Information for Enzyme Chemotaxis

Materials and Methods

Fluorescent Labeling of HK and Ald: Hexokinase (from Saccharomyces cere-

visiae; Sigma-Aldrich) was tagged with an amine-reactive dye, Dylight 488 (ex/em:

493/518; Thermo Fisher Scientific). Hexokinase (44 M) was reacted with a threefold

excess of the fluorescent probe and 10 mM mannose in 50 mM Hepes (pH 7.0) at

4C for 24 h on a rotator. Aldolase (from rabbit muscle; Sigma-Aldrich) was labeled

with a thiol-reactive dye, Dylight 633 (ex/em: 638/658; Thermo Fisher Scientific).

Labeling of Aldolase (75 M) was carried out with two fold excess of the fluorescent

dye and 1 mM EDTA on a rotator at 4 ◦C for 23 h in 50 mM Hepes buffer (pH 7.4).

The enzymedye conjugates were purified using a Sephadex G-25 (GE Healthcare)

size exclusion column with 50 mM HEPES buffer (pH 7.4) to reduce the free-dye

concentration. For FCS measurements, all enzymes were tagged with Alexa Fluor

532 dye (ex/em: 532/ 553; Thermo Fisher Scientific) by using of Alexa Fluor 532

protein labeling kit. The number of dye molecules per HK or Ald enzyme molecule

was 0.4 or 0.6, respectively, as quantified using UV-vis spectroscopy. All solutions for

experiments were prepared in 50 mM HEPES, pH 7.4 buffer.
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Enzyme activity assays: Hexokinase activity before and after attachment of

the fluorophore was measured spectrophotometrically by coupling with glucose-6-

phosphate dehydrogenase (Sigma-Aldrich) and following the reduction of NADP+ at

340 nm. An assay mixture, 1 mL in total volume contained 1 mM glucose, 2 mM

ATP, 10 mM MgCl2, 50 mM HEPES (pH 7.4), 0.5 mM NADP+, 2 units glucose-

6-phosphate dehydrogenase, and 5 nM hexokinase. All assays were performed at

25 ◦C. The enzymatic activity was not significantly altered by the attachment of the

fluorophore.

Aldolase activity before and after attachment of the fluorophore was measured

spectrophotometrically by coupling with -glycerophosphate dehydrogenase/triosephosphate

isomerase (Sigma-Aldrich) and following the oxidation of NADH at 340 nm. An

assay mixture, 1 mL in total volume contained 2 mM fructose-1,6-disphosphate,

50 mM HEPES (pH 7.4), 0.1 mM NADH, 1.5 units -glycerophosphate dehydroge-

nase/triosephosphate isomerase (based on GDH units), and 50 nM aldolase. All

assays were performed at 25 ◦C. The enzymatic activity was not significantly altered

by the attachment of the fluorophore.

The difference in hexokinase activity using glucose or mannose as the substrate

was measured spectrophotometrically by coupling with pyruvate kinase/lactate de-

hydrogenase (Sigma-Aldrich) and following the oxidation of NADH at 340 nm. An

assay mixture, 1 mL in total volume contained 1 mM glucose or mannose, 2 mM

ATP, 10 mM MgCl2, 3.3 mM phosphoenolpyruvate, 50 mM HEPES (pH 7.4), 0.2

mM NADH, 2 units pyruvate kinase/lactate dehydrogenase (based on PK units),

and 5 nM hexokinase. All assays were performed at 25 C. The enzymatic activity
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of hexokinase with mannose as the substrate was approximately half the enzymatic

rate with D-glucose as the substrate under these conditions.

Progress Curve Simulation: The substrate depletion and product formation

through the first four enzymes in the glycolytic cascade were simulated using Global

Kinetic Explorer software (version 4.0, KinTek Corporation). The steady-state re-

action scheme assumed: 1) substrate binding rates at the diffusion limit for glucose

binding to hexokinase since the initial glucose concentration was sufficient to satu-

rate the enzyme binding sites, and at kcat/Km for the subsequent enzyme reactions

because the substrates were the product of the previous enzyme reaction and their

concentrations did not reach the level of saturation; 2) irreversible reaction rates fixed

at kcat for each enzyme since the product of each reaction would be pulled through

the cascade by the presence of the downstream enzymes preventing the reverse reac-

tion or product inhibition; and 3) that product release was not rate limiting for any

individual reaction. The simulation input values were 10 mM for the starting glu-

cose concentration; 74 nM for each starting enzyme concentration; k1 = 120 µM−1s−1

and kcat = 315 s−1 for hexokinase; kcat = 408 s−1 and Km = 700 µM for isomerase;

kcat = 113 s−1 and Km = 30 µM for PFK; and kcat = 5 S−1 and Km = 60 µM for

Aldolase (all values were obtained from Sigma-Aldrich Product Information sheets:

cat. # H6380 for HK; cat. # P5381 for Iso; cat. # F0137 for PFK; and cat. # A2714

for Ald). The simulation assumes that all the enzymes and glucose are combined in

one reaction mixture; an enzyme concentration of 74 nM was chosen because that is

the amount of hexokinase determined to migrate into a channel containing 10 mM
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D-glucose (Figure A.1.).

Figure A.1: The simulated substrate and product progression curves through the first
four enzymes in the glycolytic cascade.

Microfluidic Device Fabrication: The microfluidic device was cast in polydimethyl-

siloxane (PDMS, Sylgard 184, Dow Corning) using standard soft lithography proto-

cols. A 100 µm deep master pattern was created on a silicon wafer (Silicon Quest)

using SPR-955 resist (Microposit) and deep reactive ion etching (Alcatel). The master

was exposed to 1H,1H,2H,2H-perfluorooctyl-trichlorosilane (Sigma Aldrich) to mini-

mize adhesion of PDMS during the peeling step. After the PDMS was peeled off, the

inlet and outlet regions were opened by drilling, and the device was sealed to a No.

1 glass coverslip (VWR). Fluid flow through the channel was controlled by syringe
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pumps (KDS 200 and 220, KD Scientific) connected by polyethylene tubing to the

device.

Confocal Microscope Imaging: Confocal images were acquired using a Leica

TCS SP5 laser scanning confocal inverted microscope (LSCM, Leica Microsystems)

with a 10x objective (HCX PL APO CS, 0.70 NA) incorporated in it. The plane

of interest (along the z-axis) for confocal imaging was chosen such that fluorescence

intensity was captured from the plane that is half of the height into the channel.

Videos were recorded and analyzed using Image J software. In each experiment,

the mean fluorescence intensity was calculated from videos from three independent

experiments. Each video is a collection of 667 images over a period of 5 min. A

region of interest (ROI) was selected along the channel (as indicated by the vertical

line near the end of the channel in Figure 1B), and the stack-averaged fluorescence

intensity was plotted as a function of distance along the width of the channel.

Fluorescence Correlation Spectroscopy: Spectroscopy measurements were per-

formed on a custom-built microscope- based optical setup. Briey, a PicoTRAIN laser

(High-Q Laser) delivered 5.4 ps pulses of 532 nm light at 80 MHz frequency. This

light was guided through a fiber optic cable, expanded and directed through an IX-

71 microscope (Olympus) with an Olympus 60x/1.2-NA water-immersion objective.

Emitted fluorescent light from the sample was passed through a dichroic beam splitter

(Z520RDC-SP-POL, Chroma Technology) and focused onto a 50 µm, 0.22-NA optical

fiber (Thorlabs), which acted as a confocal pinhole. The signal from the photomul-
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tiplier tube was routed to a preamplier (HFAC-26) and then to a time-correlated

single-photon counting (TCSPC) board (SPC-630, Becker and Hickl). The sample

was positioned with a high-resolution 3-D piezoelectric stage (NanoView, Mad City

Laboratories). Fluorescent molecules moving into and out of the diraction-limited

observation volume induce bursts in uorescence collected in first-in, first-out mode

by the TCSPC board, which was incorporated in the instrument. Fluctuations in

fluorescence intensity from the diusion of molecules were auto-correlated and fit by

a single component 3D model to determine the diffusion coefficients of individual

species. Contributions to the autocorrelation curve from fluctuations in molecular

fluorescence intensity due to fast processes such as triplet state excitation were min-

imal. Nevertheless, when the shape of the autocorrelation curve indicated the need

to include the triplet state in the fit and the alternative Eq. A.2 was used [160].

FCS measurements were performed with 30 W excitation power, and the optical

system (r and w of confocal volume) was calibrated before each experiment using free

50 nm polystyrene fluorescent beads in deionized water. Autocorrelation curves were

t to eq. A.1 or A.2 using the Levenberg-Marquardt nonlinear least- squares regression

algorithm with Origin software to determine N, T, and τD.

G(τ) =
1

N
[1 + (

1

w
)−1][1 + (

1

w
)2(

τ

τD
)]−1/2 (A.1)

G(τ) = (1 +
T

1− T
e−τ/τT )

1

N
[1 + (

1

w
)−1][1 + (

1

w
)2(

τ

τD
)]−1/2 (A.2)

where N is the number of molecules in the confocal volume, w is the structure
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factor (radius, r, of the confocal volume over its half height), τ is the correlation

time, τD is the characteristic diffusion time (where τD = r2/4D (D is the diffusion

coefficient), and T is the triplet fraction, τT .

Statistical Significance Analysis of FCS data: Diffusion coefficients of each

enzyme for each substrate concentration were entered into a table in Graphpad Prism

software. Means and standard deviations were calculated. After this, an analysis of

variance (ANOVA) test was performed followed by Tukey’s multiple comparisons of

means. For HK in Figure 4.2A, all means except for 1 M were statistically significantly

greater than the values at 0 M substrate. For Ald (Figure 4.2B) all values were

statistically significantly greater than the value at 0 M.

Chemotactic Co-localization of Hexokinase and Aldolase: We observed the

co-localization of HK and Ald (metabolon formation) in a sealed hybridization cham-

ber starting with a uniform distribution of all the four enzymes in the cascade, as well

as the substrates for HK. 200 nM HK labeled with amine-reactive (ex/em: 493/518)

Dylight dye, 200 nM Iso, 200 nM FPK, 200 nM Ald conjugated with thiol-reactive

(ex/em: 638/658) Dylight dye, 10 mM ATP, 20 mM MgCl2, and 10 mM D-glucose

in 20% w/v 70 M Ficoll was mixed and injected into a hybridization chamber, which

was sealed on the surface of a glass slide.

Simplified Model for Cross-Diffusion Illustrating the Role of Catalysis:

To show that catalysis plays a crucial part in the cross-diffusion process, we modeled

a simple, generic enzyme reaction as follows:
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E + S
kon –– 2 10 6 M–1s–1

−−−−−−−−−−−⇀↽−−−−−−−−−−−
koff –– 60 s–1

ES

ES
kcat –– 8000 s–1

−−−−−−−−→ E + P

We then modeled a cross diffusion experiment with initial conditions: [E] = 200

nM in all channels, [S] = 50 mM in central channel only. The differential equations

were modeled as described in the supplementary information section Computational

Modeling of Cross-Diffusion above. We then compared the focusing amplitudes with

catalysis (kcat = 8000 s−1) and without catalysis (kcat=0). The results are plotted in

Fig. A.2A: there is significant enzyme focusing towards the central channel in the

case with catalysis, and almost no focusing in the case without catalysis. In the case

with catalysis, ES is consumed leading to several orders of magnitude more forward

binding events than in the case without catalysis (Figure A.2B). Indeed, in the case

without catalysis, the equilibrium shifts very rapidly towards the enzyme complex

ES and no more forward binding events are observed (Figure A.2C and A.2D). After

approximately twenty seconds, all the substrate is consumed, but enzyme continues

to spread diffusively, thus explaining the peak in Figure A.2A and the flattening in

Figure A.2B-D. This shows that (1) the cross-diffusion phenomenon is dependent on

the number of forward binding events in the region where the substrate gradient has

been established and (2) the turnover induced by enzyme catalysis allows for orders of

magnitude more binding events to take place. Therefore, the catalytic step is crucial

in the observation of enzyme focusing.

Statistical analysis of experimental microfluidic results: Catalysis induced

focusing (Fig. 4.3) the data points were fitted with a smoothing function using the R
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Figure A.2: Modeling results for the simplified enzyme cross diffusion. (A) Total
enzyme concentration in central channel. With catalysis we observe significant en-
zyme focusing. Without catalysis, focusing is not noticeable. (B) The sum of product
concentration and enzyme complex concentration is used to estimate the number of
forward binding events. The number of binding events in the case with catalysis is
several orders of magnitude greater than in the case with no catalysis due to turnover.
Insert: close up of data at beginning of the reaction. (C) Enzyme concentration in
central channel over time. Without catalysis, the enzyme-complex equilibrium shifts
almost immediately towards the complex ES, and [E] drops to zero. With cataly-
sis, ES is turned over and the equilibrium shifts towards E. (D) Enzyme-Substrate
complex concentration in the central channel over time.

programming language, as no closed form formula for the focusing curves exists. The

smoothing function chosen is a second degree polynomial, and the weighing chosen

is the default tricubic weighing for polynomial fitting. The error bars in Figure 4.6

are 95% confidence intervals derived from the three replications of the experimental

process. The statistical significance was derived from a pairwise t-test with Holm

adjustment.

115





Bibliography

[1] A. Engel and C. Van den Broeck, Statistical mechanics of learning. Cambridge
University Press, 2001.

[2] J. M. R. Parrondo, J. M. Horowitz, and T. Sagawa, “Thermodynamics of
information,” en, Nat. Phys., vol. 11, no. 2, pp. 131–139, 2015.

[3] V. Kecman, Learning and soft computing: support vector machines, neural
networks, and fuzzy logic models. MIT Press, 2001.

[4] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning.
Springer Series in Statistics, Springer, Berlin, 2001, vol. 1.

[5] T. L. H. Watkin, A. Rau, and M. Biehl, “The statistical mechanics of learning
a rule,” Rev. Mod. Phys., vol. 65, no. 2, p. 499, 1993.

[6] M. Biehl and N. Caticha, “Statistical mechanics of on–line learning and gener-
alization,” in The Handbook of Brain Theory and Neural Networks, MIT Press,
2003.

[7] L. Zdeborova and F. Krzakala, “Statistical physics of inference: thresholds and
algorithms,” arXiv:1511.02476, 2015.

[8] C. Jarzynski, “Nonequilibrium equality for free energy differences,” Phys. Rev.
Lett., vol. 78, no. 14, pp. 2690–2693, 1997.

[9] G. E. Crooks, “Entropy production fluctuation theorem and the nonequilib-
rium work relation for free energy differences,” Phys. Rev. E, vol. 60, no. 3,
pp. 2721–2726, 1999.

[10] B. Altaner, “Foundations of Stochastic Thermodynamics,” arXiv:1410.3983
[cond-mat], 2014.

[11] S. Ito and T. Sagawa, “Information flow and entropy production on Bayesian
networks,” arXiv:1506.08519 [cond-mat], 2015.

117



[12] S.-I. Amari and H. Nagaoka, Methods of information geometry. American
Mathematical Soc., 2007, vol. 191.

[13] M. Welling and Y. W. Teh, “Bayesian learning via stochastic gradient Langevin
dynamics,” in Proceedings of the 28th International Conference on Machine
Learning (ICML-11), 2011, pp. 681–688.

[14] H. Zhao, J. B. French, Y. Fang, and S. J. Benkovic, “The purinosome, a multi-
protein complex involved in the de novo biosynthesis of purines in humans,”
en, Chem. Commun., vol. 49, no. 40, p. 4444, 2013.

[15] F. Wu and S. Minteer, “Krebs cycle metabolon: structural evidence of sub-
strate channeling revealed by cross-linking and mass spectrometry,” en, Angew.
Chem. Int. Ed Engl., vol. 54, no. 6, pp. 1851–1854, 2015.

[16] M. Castellana, M. Z. Wilson, Y. Xu, P. Joshi, I. M. Cristea, J. D. Rabinowitz,
Z. Gitai, and N. S. Wingreen, “Enzyme clustering accelerates processing of
intermediates through metabolic channeling,” Nat. Biotechnol., vol. 32, no. 10,
pp. 1011–1018, 2014.

[17] S. An, R. Kumar, E. D. Sheets, and S. J. Benkovic, “Reversible Compart-
mentalization of de Novo Purine Biosynthetic Complexes in Living Cells,” en,
Science, vol. 320, no. 5872, pp. 103–106, 2008.

[18] K. Jorgensen, A. V. Rasmussen, M. Morant, A. H. Nielsen, N. Bjarnholt, M.
Zagrobelny, S. Bak, and B. L. Moller, “Metabolon formation and metabolic
channeling in the biosynthesis of plant natural products,” Curr. Opin. Plant
Biol., vol. 8, no. 3, pp. 280–291, 2005.

[19] C. Riedel, R. Gabizon, C. A. M. Wilson, K. Hamadani, K. Tsekouras, S.
Marqusee, S. Press, and C. Bustamante, “The heat released during catalytic
turnover enhances the diffusion of an enzyme,” Nature, vol. 517, no. 7533,
pp. 227–230, 2014.

[20] S. Sengupta, K. K. Dey, H. S. Muddana, T. Tabouillot, M. E. Ibele, P. J.
Butler, and A. Sen, “Enzyme Molecules as Nanomotors,” J. Am. Chem. Soc.,
vol. 135, no. 4, pp. 1406–1414, 2013.

[21] H. S. Muddana, S. Sengupta, T. E. Mallouk, A. Sen, and P. J. Butler, “Sub-
strate catalysis enhances single-enzyme diffusion,” J. Am. Chem. Soc., vol. 132,
no. 7, pp. 2110–2111, 2010.

[22] P. J. Butler, K. K. Dey, and A. Sen, “Impulsive enzymes: a new force in
mechanobiology,” Cell. Mol. Bioeng., pp. 106–118, 2015.

118



[23] J. B. French, S. A. Jones, H. Deng, A. M. Pedley, D. Kim, C. Y. Chan, H.
Hu, R. J. Pugh, H. Zhao, Y. Zhang, T. J. Huang, Y. Fang, X. Zhuang, and
S. J. Benkovic, “Spatial colocalization and functional link of purinosomes with
mitochondria,” en, Science, vol. 351, no. 6274, pp. 733–737, 2016.

[24] V. K. Vanag and I. R. Epstein, “Cross-diffusion and pattern formation in
reaction–diffusion systems,” en, Phys. Chem. Chem. Phys., vol. 11, no. 6,
pp. 897–912, 2009.

[25] O. Annunziata, A. Vergara, L. Paduano, R. Sartorio, D. G. Miller, and J. G.
Albright, “Quaternary diffusion coefficients in a protein-polymer-salt-water
system determined by Rayleigh interferometry,” J. Phys. Chem. B, vol. 113,
no. 40, pp. 13 446–13 453, 2009.

[26] A. Vergara, L. Paduano, and R. Sartorio, “Mechanism of protein-poly(ethylene
glycol) interaction from a diffusive point of view,” Macromolecules, vol. 35,
no. 4, pp. 1389–1398, 2002.

[27] L. Paduano, R. Sartorio, and V. Vitagliano, “Diffusion coefficients of the
ternary system α-cyclodextrin-sodium benzenesulfonate-water at 25 C: the
effect of chemical equilibrium and complex formation on the diffusion coeffi-
cients of a ternary system,” J. Phys. Chem. B, vol. 102, no. 25, pp. 5023–5028,
1998.

[28] R. Fu, D. Sutcliffe, H. Zhao, X. Huang, D. J. Schretlen, S. Benkovic, and H. A.
Jinnah, “Clinical severity in Lesch–Nyhan disease: the role of residual enzyme
and compensatory pathways,” Mol. Genet. Metab., vol. 114, no. 1, pp. 55–61,
2015.

[29] D. Chandler, Introduction to Modern Statistical Mechanics, en. Oxford Uni-
versity Press, 1987.

[30] A. Berut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, and E.
Lutz, “Experimental verification of Landauer’s principle linking information
and thermodynamics,” Nature, vol. 483, no. 7388, pp. 187–189, 2012.

[31] D. Collin, F. Ritort, C. Jarzynski, S. B. Smith, I. Tinoco, and C. Bustamante,
“Verification of the Crooks fluctuation theorem and recovery of RNA folding
free energies,” Nature, vol. 437, no. 7056, pp. 231–234, 2005.

[32] Z. Lu, D. Mandal, and C. Jarzynski, “Engineering Maxwell’s demon,” en,
Phys. Today, vol. 67, no. 8, pp. 60–61, 2014.

119



[33] S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, and M. Sano, “Experimen-
tal demonstration of information-to-energy conversion and validation of the
generalized Jarzynski equality,” Nat. Phys., vol. 6, no. 12, pp. 988–992, 2010.

[34] E. A. Calzetta, “Kinesin and the Crooks fluctuation theorem,” en, Eur. Phys.
J. B, vol. 68, no. 4, pp. 601–605, 2009.

[35] J. L. England, “Statistical physics of self-replication,” J. Chem. Phys., vol. 139,
no. 12, p. 121 923, 2013.

[36] G. E. Crooks, “Measuring thermodynamic length,” Phys. Rev. Lett., vol. 99,
no. 10, p. 100 602, 2007.

[37] T. Sagawa and M. Ueda, “Generalized Jarzynski equality under nonequilib-
rium feedback control,” en, Phys. Rev. Lett., vol. 104, no. 9, 2010.

[38] S. Deffner and E. Lutz, “Information free energy for nonequilibrium states,”
arXiv:1201.3888 [cond-mat], 2012.

[39] T. M. Cover and J. A. Thomas, Elements of Information Theory. John Wiley
& Sons, 2012.

[40] B. Altaner, “Nonequilibrium thermodynamics and information theory: Foun-
dations and relaxing dynamics,” arXiv:1702.07906 [cond-mat], 2017.

[41] L. Wasserman, All of Statistics: A Concise Course in Statistical Inference, en.
Springer Science & Business Media, 2013.

[42] V. N. Vapnik, “An overview of statistical learning theory,” IEEE Trans. Neural
Netw., vol. 10, no. 5, pp. 988–999, 1999.

[43] H. Robbins and S. Monro, “A stochastic approximation method,” en, Ann.
Math. Stat., vol. 22, no. 3, pp. 400–407, 1951.

[44] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B.
Rubin, Bayesian data analysis. CRC press Boca Raton, FL, 2014, vol. 2.

[45] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E.
Teller, “Equation of state calculations by fast computing machines,” J. Chem.
Phys., vol. 21, no. 6, pp. 1087–1092, 1953.

[46] R. M. Neal, “MCMC using Hamiltonian dynamics,” arXiv:1206.1901 [physics,
stat], 2012.

120



[47] M. Betancourt, “A conceptual introduction to Hamiltonian Monte Carlo,”
2017. arXiv: 1701.02434 [stat.ME].

[48] C. Van den Broeck, “Stochastic thermodynamics: A brief introduction,” in
Proceedings of the International School of Physics ‘Enrico Fermi, vol. 184,
2013, pp. 155–93.

[49] R. Linsker, “Self-organization in a perceptual network,” Computer, vol. 21,
no. 3, pp. 105–117, 1988.

[50] M. Mezard and A. Montanari, Information, physics, and computation. Oxford
University Press, 2009.

[51] M. Advani, S. Lahiri, and S. Ganguli, “Statistical mechanics of complex neural
systems and high dimensional data,” J. Stat. Mech: Theory Exp., vol. 2013,
no. 03, pp. 3014–3080, 2013.

[52] M. Mezard, Spin glass theory and beyond. Teaneck, NJ, USA: World Scientific,
1987.

[53] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and
Techniques, en. MIT Press, 2009.

[54] C. Moore, “The computer science and physics of community detection: land-
scapes, phase transitions, and hardness,” arXiv:1702.00467 [cond-mat, physics:physics],
2017.

[55] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference: a review
for statisticians,” arXiv:1601.00670 [cs, stat], 2016.

[56] C. Li, C. Chen, D. E. Carlson, and L. Carin, “Preconditioned stochastic gra-
dient Langevin dynamics for deep neural networks,” in AAAI, vol. 2, 2016,
p. 4.

[57] Girolami Mark and Calderhead Ben, “Riemann manifold Langevin and Hamil-
tonian Monte Carlo methods,” J. R. Stat. Soc. Series B Stat. Methodol.,
vol. 73, no. 2, pp. 123–214, 2011.

[58] J. Martens and R. Grosse, “Optimizing neural networks with Kronecker-factored
approximate curvature,” in International Conference on Machine Learning,
2015, pp. 2408–2417.

[59] R. Grosse and J. Martens, “A Kronecker-factored approximate Fisher matrix
for convolution layers,” arXiv:1602.01407 [cs, stat], 2016.

121



[60] Z. Nado, J. Snoek, R. Grosse, D. Duvenaud, B. Xu, and J. Martens, “Stochastic
gradient Langevin dynamics that exploit neural network structure,” 2018.

[61] S. Mandt, M. D. Hoffman, and D. M. Blei, “Stochastic gradient descent as
approximate Bayesian inference,” arXiv:1704.04289 [cs, stat], 2017.

[62] R. M. Neal, “Bayesian learning via stochastic dynamics,” in Advances in Neu-
ral Information Processing Systems, 1993, pp. 475–482.

[63] D. J. C. MacKay, “A practical Bayesian framework for backpropagation net-
works,” Neural Comput., vol. 4, no. 3, pp. 448–472, 1992.

[64] J. Denker and Y. Lecun, “Transforming neural-net output levels to probabil-
ity distributions,” in Advances in Neural Information Processing Systems 3,
Morgan Kaufmann, 1991, pp. 853–859.

[65] S.-I. Amari, “Natural gradient works efficiently in learning,” Neural Comput.,
vol. 10, no. 2, pp. 251–276, 1998.

[66] S. Patterson and Y. W. Teh, “Stochastic gradient Riemannian Langevin dy-
namics on the probability simplex,” in Advances in Neural Information Pro-
cessing Systems, 2013, pp. 3102–3110.

[67] G. Marceau-Caron and Y. Ollivier, “Natural Langevin dynamics for neural
networks,” arXiv:1712.01076 [cs, stat], 2017.

[68] J. Martens and R. Grosse, “Optimizing neural networks with Kronecker-factored
approximate curvature,” 2015.

[69] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors,” Nature, vol. 323, p. 533, 1986.

[70] Y. W. Teh, A. H. Thiery, and S. J. Vollmer, “Consistency and fluctuations for
stochastic gradient Langevin dynamics,” J. Mach. Learn. Res., vol. 17, pp. 1–
33, 2016.

[71] G. Jones, M. Haran, B. Caffo, and R. Neath, “Fixed-width output analysis for
Markov chain Monte Carlo,” arXiv:math/0601446, 2006.

[72] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing ad-
versarial examples,” 2014. arXiv: 1412.6572 [stat.ML].

[73] Y. Bulatov, notMNIST dataset, http://yaroslavvb.blogspot.com/2011/
09/notmnist-dataset.html, Accessed: 2018-4-24.

122



[74] Y. LeCun, C. Cortes, and C. J. Burges, “MNIST handwritten digit database,”
AT&T Labs [Online]. Available: http://yann. lecun. com/exdb/mnist, vol. 2,
2010.

[75] A. Gelman and D. B. Rubin, “Inference from iterative simulation using mul-
tiple sequences,” EN, Stat. Sci., vol. 7, no. 4, pp. 457–472, 1992.

[76] D. Vats, J. M. Flegal, and G. L. Jones, “Multivariate output analysis for
Markov chain Monte Carlo,” arXiv:1512.07713 [math, stat], 2015.

[77] M. Betancourt, “The fundamental incompatibility of scalable Hamiltonian
Monte Carlo and naive data subsampling,” en, in International Conference
on Machine Learning, jmlr.org, 2015, pp. 533–540.

[78] S. J. Vollmer, K. C. Zygalakis, Teh, and Y. Whye, “(Non-) asymptotic prop-
erties of Stochastic Gradient Langevin Dynamics,” 2015. arXiv: 1501.00438
[stat.ME].

[79] A. Rawat, M. Wistuba, and M.-I. Nicolae, “Adversarial phenomenon in the
eyes of Bayesian deep learning,” 2017. arXiv: 1711.08244 [stat.ML].

[80] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approximation: represent-
ing model uncertainty in deep learning,” 2015. arXiv: 1506.02142 [stat.ML].

[81] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight uncer-
tainty in neural networks,” 2015. arXiv: 1505.05424 [stat.ML].

[82] C. Louizos and M. Welling, “Structured and efficient variational deep learning
with matrix Gaussian posteriors,” 2016. arXiv: 1603.04733 [stat.ML].

[83] J. M. Hernandez-Lobato and R. P. Adams, “Probabilistic backpropagation
for scalable learning of Bayesian neural networks,” 2015. arXiv: 1502.05336
[stat.ML].

[84] A. Kendall and Y. Gal, “What uncertainties do we need in Bayesian deep
learning for computer vision?” arXiv:1703.04977 [cs], 2017.

[85] E. W. Miles, S. Rhee, and D. R. Davies, “The molecular basis of substrate
channeling,” en, J. Biol. Chem., vol. 274, no. 18, pp. 12 193–12 196, 1999.

[86] I. Wheeldon, S. D. Minteer, S. Banta, S. C. Barton, P. Atanassov, and M.
Sigman, “Substrate channelling as an approach to cascade reactions,” Nat.
Chem., vol. 8, p. 299, 2016.

123



[87] J.-L. Lin, L. Palomec, and I. Wheeldon, “Design and analysis of enhanced
catalysis in scaffolded multienzyme cascade reactions,” ACS Catal., vol. 4,
no. 2, pp. 505–511, 2014.

[88] Y. Yamada, C.-K. Tsung, W. Huang, Z. Huo, S. E. Habas, T. Soejima, C. E.
Aliaga, G. A. Somorjai, and P. Yang, “Nanocrystal bilayer for tandem catal-
ysis,” Nat. Chem., vol. 3, p. 372, 2011.

[89] M. Zhao, K. Deng, L. He, Y. Liu, G. Li, H. Zhao, and Z. Tang, “Core–shell
palladium nanoparticle@metal–organic frameworks as multifunctional cata-
lysts for cascade reactions,” J. Am. Chem. Soc., vol. 136, no. 5, pp. 1738–
1741, 2014.

[90] Y.-H. P. Zhang, “Substrate channeling and enzyme complexes for biotechno-
logical applications,” en, Biotechnol. Adv., vol. 29, no. 6, pp. 715–725, 2011.

[91] H. Nishi, K. Hashimoto, and A. R. Panchenko, “Phosphorylation in protein-
protein binding: effect on stability and function,” en, Structure, vol. 19, no. 12,
pp. 1807–1815, 2011.

[92] C. Lindbladh, M. Rault, C. Hagglund, W. C. Small, K. Mosbach, L. Buelow, C.
Evans, and P. A. Srere, “Preparation and kinetic characterization of a fusion
protein of yeast mitochondrial citrate synthase and malate dehydrogenase,”
Biochemistry, vol. 33, no. 39, pp. 11 692–11 698, 1994.

[93] B. Winkel-Shirley, “Evidence for enzyme complexes in the phenylpropanoid
and flavonoid pathways,” Physiol. Plant., vol. 107, no. 1, pp. 142–149, 1999.

[94] J. W. A. Graham, T. C. R. Williams, M. Morgan, A. R. Fernie, R. G. Rat-
cliffe, and L. J. Sweetlove, “Glycolytic enzymes associate dynamically with
mitochondria in response to respiratory demand and support substrate chan-
neling,” Plant Cell, vol. 19, no. 11, pp. 3723–3738, 2007.

[95] M. E. Campanella, H. Chu, and P. S. Low, “Assembly and regulation of a
glycolytic enzyme complex on the human erythrocyte membrane,” en, Proc.
Natl. Acad. Sci. U. S. A., vol. 102, no. 7, pp. 2402–2407, 2005.

[96] S. Sengupta, K. K. Dey, H. S. Muddana, T. Tabouillot, M. E. Ibele, P. J.
Butler, and A. Sen, “Enzyme molecules as nanomotors,” J. Am. Chem. Soc.,
vol. 135, no. 4, pp. 1406–1414, 2013.

[97] S. Sengupta, M. M. Spiering, K. K. Dey, W. Duan, D. Patra, P. J. Butler,
R. D. Astumian, S. J. Benkovic, and A. Sen, “DNA polymerase as a molecular
motor and pump,” ACS Nano, vol. 8, no. 3, pp. 2410–2418, 2014.

124



[98] H. Yu, K. Jo, K. L. Kounovsky, J. J. d. Pablo, and D. C. Schwartz, “Molec-
ular propulsion: Chemical sensing and chemotaxis of DNA driven by RNA
polymerase,” J. Am. Chem. Soc., vol. 131, no. 16, pp. 5722–5723, 2009.

[99] C. L. Kohnhorst, M. Kyoung, M. Jeon, D. L. Schmitt, E. L. Kennedy, J.
Ramirez, S. M. Bracey, B. T. Luu, S. J. Russell, and S. An, “Identification of
a multienzyme complex for glucose metabolism in living cells,” J. Biol. Chem.,
2017.

[100] C. Riedel, R. Gabizon, C. A. M. Wilson, K. Hamadani, K. Tsekouras, S.
Marqusee, S. Press, and C. Bustamante, “The heat released during catalytic
turnover enhances the diffusion of an enzyme,” Nature, vol. 517, p. 227, 2014.

[101] P. Illien, X. Zhao, K. K. Dey, P. J. Butler, A. Sen, and R. Golestanian,
“Exothermicity Is Not a Necessary Condition for Enhanced Diffusion of En-
zymes,” Nano Lett., vol. 17, no. 7, pp. 4415–4420, 2017.

[102] T. C. Myers, K. Nakamura, and J. W. Flesher, “Phosphonic acid analogs of nu-
cleoside phosphates. I. The synthesis of 5-adenylyl methylenediphosphonate, a
phosphonic acid analog of ATP,” J. Am. Chem. Soc., vol. 85, no. 20, pp. 3292–
3295, 1963.

[103] L. Paduano, R. Sartorio, G. D’Errico, and V. Vitagliano, “Mutual diffusion
in aqueous solution of ethylene glycol oligomers at 25 C,” en, J. Chem. Soc.
Faraday Trans., vol. 94, no. 17, pp. 2571–2576, 1998.

[104] J. M. Schurr, B. S. Fujimoto, L. Huynh, and D. T. Chiu, “A theory of macro-
molecular chemotaxis,” J. Phys. Chem. B, vol. 117, no. 25, pp. 7626–7652,
2013.

[105] K. Wilkinson and I. A. Rose, “Isotope trapping studies of yeast hexokinase
during steady state catalysis,” 1979.

[106] A. Bermingham, J. R. Bottomley, W. U. Primrose, and J. P. Derrick, “Equilib-
rium and kinetic studies of substrate binding to 6-hydroxymethyl-7,8-dihydropterin
pyrophosphokinase from Escherichia coli,” en, J. Biol. Chem., vol. 275, no. 24,
pp. 17 962–17 967, 2000.

[107] J. G. Kirkwood and F. P. Buff, “The statistical mechanical theory of solutions.
I,” J. Chem. Phys., vol. 19, no. 6, pp. 774–777, 1951.

[108] K. E. Newman, “Kirkwood–Buff solution theory: derivation and applications,”
en, Chem. Soc. Rev., vol. 23, no. 1, pp. 31–40, 1994.

125



[109] E. Jones, T. Oliphant, and P. Peterson, SciPy: Open source scientific tools for
Python, 2001.

[110] W. E. Schiesser and G. W. Griffiths, A compendium of partial differential
equation models: method of lines analysis with Matlab. Cambridge University
Press, 2009.

[111] F. Wu, L. N. Pelster, and S. D. Minteer, “Krebs cycle metabolon formation:
metabolite concentration gradient enhanced compartmentation of sequential
enzymes,” en, Chem. Commun., vol. 51, no. 7, pp. 1244–1247, 2015.

[112] D. Allan, T. Caswell, N. Keim, and C. van der Wel, trackpy: Trackpy v0.3.2,
2016.

[113] J. W. Driver, A. R. Rogers, D. K. Jamison, R. K. Das, A. B. Kolomeisky, and
M. R. Diehl, “Coupling between motor proteins determines dynamic behaviors
of motor protein assemblies,” en, Phys. Chem. Chem. Phys., vol. 12, no. 35,
pp. 10 398–10 405, 2010.

[114] T. Yanagida, M. Nakase, K. Nishiyama, and F. Oosawa, “Direct observation of
motion of single F-actin filaments in the presence of myosin,” Nature, vol. 307,
p. 58, 1984.

[115] F. Jlicher and J. Prost, “Cooperative molecular motors,” en, Phys. Rev. Lett.,
vol. 75, no. 13, pp. 2618–2621, 1995.

[116] F. Julicher, A. Ajdari, and J. Prost, “Modeling molecular motors,” Rev. Mod.
Phys., vol. 69, no. 4, pp. 1269–1281, 1997.

[117] F. Julicher and J. Prost, “Molecular motors: From individual to collective
behavior,” Progr. Theoret. Phys., vol. 130, pp. 9–16, 1998.

[118] K. Tawada and K. Sekimoto, “A physical model of ATP-induced actin-myosin
movement in vitro,” en, Biophys. J., vol. 59, no. 2, pp. 343–356, 1991.

[119] K. Tawada and K. Sekimoto, “Protein friction exerted by motor enzymes
through a weak-binding interaction,” J. Theor. Biol., vol. 150, no. 2, pp. 193–
200, 1991.

[120] K. Sekimoto and K. Tawada, “Extended time correlation of in vitro motility
by motor protein,” en, Phys. Rev. Lett., vol. 75, no. 1, pp. 180–183, 1995.

[121] ——, “Fluctuations in sliding motion generated by independent and random
actions of protein motors,” Biophys. Chem., vol. 89, no. 1, pp. 95–99, 2001.

126



[122] T. Duke, “Cooperativity of myosin molecules through strain-dependent chem-
istry,” Philosophical Transactions of the Royal Society of London Series B-
Biological Sciences, vol. 355, no. 1396, pp. 529–538, 2000.

[123] T. A. J. Duke, “Molecular model of muscle contraction,” en, Proc. Natl. Acad.
Sci. U. S. A., vol. 96, no. 6, pp. 2770–2775, 1999.

[124] Y. Imafuku, N. Mitarai, K. Tawada, and H. Nakanishi, “Anomalous fluctua-
tions in sliding motion of cytoskeletal filaments driven by molecular motors:
model simulations,” en, J. Phys. Chem. B, vol. 112, no. 5, pp. 1487–1493,
2008.

[125] Y. Imafuku, Y. Y. Toyoshima, and K. Tawada, “Fluctuation in the microtubule
sliding movement driven by kinesin in vitro,” en, Biophys. J., vol. 70, no. 2,
pp. 878–886, 1996.

[126] T. Nitta and H. Hess, “Dispersion in active transport by kinesin-powered
molecular shuttles,” en, Nano Lett., vol. 5, no. 7, pp. 1337–1342, 2005.

[127] C. Leduc, F. Ruhnow, J. Howard, and S. Diez, “Detection of fractional steps
in cargo movement by the collective operation of kinesin-1 motors,” en, Proc.
Natl. Acad. Sci. U. S. A., vol. 104, no. 26, pp. 10 847–10 852, 2007.

[128] J. Howard et al., “Mechanics of motor proteins and the cytoskeleton,” 2001.

[129] S. M. Block, “Kinesin motor mechanics: Binding, stepping, tracking, gating,
and limping,” en, Biophys. J., vol. 92, no. 9, pp. 2986–2995, 2007.

[130] K. Svoboda, P. P. Mitra, and S. M. Block, “Fluctuation analysis of motor
protein movement and single enzyme kinetics,” en, Proc. Natl. Acad. Sci. U.
S. A., vol. 91, no. 25, pp. 11 782–11 786, 1994.

[131] A. Agarwal, E. Luria, X. Deng, J. Lahann, and H. Hess, “Landing rate mea-
surements to detect fibrinogen adsorption to non-fouling surfaces,” Cell. Mol.
Bioeng., vol. 5, no. 3, pp. 320–326, 2012.

[132] J. Howard, A. J. Hudspeth, and R. D. Vale, “Movement of microtubules by
single kinesin molecules,” Nature, vol. 342, p. 154, 1989.

[133] F. Berger, C. Keller, R. Lipowsky, and S. Klumpp, “Elastic coupling effects in
cooperative transport by a pair of molecular motors,” en, Cell. Mol. Bioeng.,
vol. 6, no. 1, pp. 48–64, 2012.

[134] G. Arpa, S. Shastry, W. O. Hancock, and E. Tzel, “Transport by populations of
fast and slow Kinesins uncovers novel family-dependent motor characteristics

127



important for in vivo function,” en, Biophys. J., vol. 107, no. 8, pp. 1896–1904,
2014.

[135] Y. Ishigure and T. Nitta, “Simulating an actomyosin in vitro motility assay:
Toward the rational design of actomyosin-based microtransporters,” en, IEEE
Trans. Nanobioscience, vol. 14, no. 6, pp. 641–648, 2015.

[136] P. Egan, J. Moore, C. Schunn, J. Cagan, and P. LeDuc, “Emergent systems
energy laws for predicting Myosin ensemble processivity,” PLoS Comput. Biol.,
vol. 11, no. 4, e1004177, 2015.

[137] P. S. Grassia, E. J. Hinch, and L. C. Nitsche, “Computer simulations of Brow-
nian motion of complex systems,” J. Fluid Mech., vol. 282, pp. 373–403, 1995.

[138] P. Katira, A. Agarwal, T. Fischer, H.-Y. Chen, X. Jiang, J. Lahann, and
H. Hess, “Quantifying the performance of protein-resisting surfaces at ultra-
low protein coverages using Kinesin motor proteins as probes,” Adv. Mater.,
vol. 19, no. 20, pp. 3171–3176, 2007.

[139] E. L. P. Dumont, H. Belmas, and H. Hess, “Observing the mushroom-to-brush
transition for Kinesin proteins,” en, Langmuir, vol. 29, no. 49, pp. 15 142–
15 145, 2013.

[140] J. Howard, A. Hunt, and S. Baek, “Assay of microtubule movement driven by
single Kinesin molecules,” in Methods in Cell Biology, Vol 39: Motility Assays
for Motor Proteins, J. M. Scholey, Ed., vol. 39, 1993, pp. 137–147.

[141] D. L. Coy, M. Wagenbach, and J. Howard, “Kinesin takes one 8-nm step for
each ATP that it hydrolyzes,” en, J. Biol. Chem., vol. 274, no. 6, pp. 3667–
3671, 1999.

[142] Y. Jeune-Smith and H. Hess, “Engineering the length distribution of micro-
tubules polymerized in vitro,” en, Soft Matter, vol. 6, no. 8, pp. 1778–1784,
2010.

[143] L. Hilbert, S. Cumarasamy, N. B. Zitouni, M. C. Mackey, and A.-M. Lauzon,
“The kinetics of mechanically coupled Myosins exhibit group size-dependent
regimes,” Biophys. J., vol. 105, no. 6, pp. 1466–1474, 2013.

[144] S. Marston, “Random walks with thin filaments: application of in vitro motil-
ity assay to the study of actomyosin regulation,” J. Muscle Res. Cell Motil.,
vol. 24, no. 2, pp. 149–156, 2003.

128



[145] L. Scharrel, R. Ma, R. Schneider, F. Jlicher, and S. Diez, “Multimotor trans-
port in a system of active and inactive Kinesin-1 motors,” Biophys. J., vol. 107,
no. 2, pp. 365–372, 2014.

[146] D. M. Leitner and J. E. Straub, Proteins: energy, heat and signal flow. CRC
Press, 2009.

[147] J. Kerssemakers, J. Howard, H. Hess, and S. Diez, “The distance that kinesin-1
holds its cargo from the microtubule surface measured by fluorescence inter-
ference contrast microscopy,” en, Proc. Natl. Acad. Sci. U. S. A., vol. 103,
no. 43, pp. 15 812–15 817, 2006.

[148] J. Kierfeld, K. Frentzel, P. Kraikivski, and R. Lipowsky, “Active dynamics of
filaments in motility assays,” Eur. Phys. J. Spec. Top., vol. 157, no. 1, pp. 123–
133, 2008.

[149] P. Kraikivski, R. Lipowsky, and J. Kierfeld, “Enhanced ordering of interacting
filaments by molecular motors,” en, Phys. Rev. Lett., vol. 96, no. 25, p. 258 103,
2006.

[150] C. M. Coppin, D. W. Pierce, L. Hsu, and R. D. Vale, “The loud dependence
of kinesin’s mechanical cycle,” Proc. Natl. Acad. Sci. U. S. A., vol. 94, no. 16,
pp. 8539–8544, 1997.

[151] H. Tanaka, A. Ishijima, M. Honda, K. Saito, and T. Yanagida, “Orientation
dependence of displacements by a single one-headed myosin relative to the
actin filament,” en, Biophys. J., vol. 75, no. 4, pp. 1886–1894, 1998.

[152] M. Kaya and H. Higuchi, “Nonlinear elasticity and an 8-nm working stroke
of single myosin molecules in myofilaments,” en, Science, vol. 329, no. 5992,
pp. 686–689, 2010.

[153] H. Hess, J. Clemmens, D. Qin, J. Howard, and V. Vogel, “Light-controlled
molecular shuttles made from motor proteins carrying cargo on engineered
surfaces,” Nano Lett., vol. 1, no. 5, pp. 235–239, 2001.

[154] H. Hess, “Optimal loading of molecular bonds,” Nano Lett., vol. 12, no. 11,
pp. 5813–5814, 2012.

[155] D. K. Jamison, J. W. Driver, and M. R. Diehl, “Cooperative responses of
multiple kinesins to variable and constant loads,” en, J. Biol. Chem., vol. 287,
no. 5, pp. 3357–3365, 2012.

[156] K. Uppulury, A. K. Efremov, J. W. Driver, D. K. Jamison, M. R. Diehl, and
A. B. Kolomeisky, “How the interplay between mechanical and nonmechanical

129



interactions affects multiple Kinesin dynamics,” J. Phys. Chem. B, vol. 116,
no. 30, pp. 8846–8855, 2012.

[157] R. F. Hariadi, R. F. Sommese, A. S. Adhikari, R. E. Taylor, S. Sutton, J. A.
Spudich, and S. Sivaramakrishnan, “Mechanical coordination in motor ensem-
bles revealed using engineered artificial myosin filaments,” Nat. Nanotechnol.,
vol. 10, p. 696, 2015.

[158] Z. H. He, R. Bottinelli, M. A. Pellegrino, M. A. Ferenczi, and C. Reggiani,
“ATP consumption and efficiency of human single muscle fibers with different
myosin isoform composition,” en, Biophys. J., vol. 79, no. 2, pp. 945–961, 2000.

[159] W. Wang, T.-Y. Chiang, D. Velegol, and T. E. Mallouk, “Understanding the
efficiency of autonomous nano- and microscale Motors,” en, J. Am. Chem.
Soc., vol. 135, no. 28, pp. 10 557–10 565, 2013.

[160] R. R. Gullapalli, T. Tabouillot, R. Mathura, J. H. Dangaria, and P. J. Butler,
“Integrated multimodal microscopy, time-resolved fluorescence, and optical-
trap rheometry: toward single molecule mechanobiology,” en, J. Biomed. Opt.,
vol. 12, no. 1, p. 014 012, 2007.

130




