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EVALUATION OF MULTI-PHASE EQUATIONS OF
STATE FOR LIQUID ROCKET ENGINE COMBUSTION

MODELING

M.E. Harvazinski and D.G. Talley
AFRL Rocket Lab
Edwards AFB, CA

ABSTRACT

Liquid rocket engines often operate in regimes where ideal gas equations of state are not applicable
or have unacceptable levels of error. Mass flow rates are typically specified for the inlet boundary
condition; without an appropriate value of the density the incoming fluid velocity will be incorrect.
The error in density between an ideal gas and the actual value can be more than an order of
magnitude under the high pressure low temperature conditions found some kinds of liquid rocket
engine injectors. The use of cubic equations of state will provide better estimates of the density
but can lead to additional challenges when the mixture is sub-critical and inside the vapor dome.
The present work looks at the development of a multi-fluid model using a cubic equation of state.
At a computational cell level the mixture is assumed to be homogeneous. To achieve this Amagats
law of partial volumes is applied to generate mixture averaged thermodynamic properties including
density and enthalpy. Amagats law of partial volumes is applicable to mixtures of real gases unlike
Daltons law of partial pressures which is only applicable to mixtures of ideal gases.

INTRODUCTION

Liquid rocket engines can operate at pressures exceeding 100 atm in full size engines and pre-
burners. While the propellants are typically injected at supercritical pressures their temperature
can be subcritical. This presents a modeling challenge in accurately capturing their thermodynamic
properties. The complexity worsens because the propellants are injected into a mixture environment
comprised of reactants and products. The supercritical state of a mixture is a function of not
only the temperature and pressure but also the composition. When species with very large critical
pressures like carbon dioxide or water are present the mixture can become subcritical, even for small
amounts of these species. The presence of water and carbon dioxide as combustion products will be
present as combustion takes place. The subcritical and supercritical regions of the flow will have
thermodynamic and transport properties that are dramatically different from each other. These lead
to gradients in the flowfield that will influence mixing and in turn the dynamics in the combustor.
After complete combustion has taken place the temperature is high enough that the problem is
alleviated. Computational modeling of this transitional state is challenging and is the subject of the
current work.

Distribution Statement A: Approved for public release; distribution is unlimited. PA Clearance
Number 19xxx
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Figure 1: Shear layer schematic showing the different regions of the flow. In a typical rocket injector
the oxidizer is injected at a temperature that is above the critical temperature and pressure, the fuel is
injected at a temperature less than the critical temperature but a pressure above the critical pressure.
Complete combustion products have a temperature much larger than the critical temperature. The
challenging region is the early combustion products region where both the temperature and pressure
can be sub-critical.

The current approach is to simulate the liquid-like fluid as a dense gas, with the properties
provided by a real gas equation of state. The applicability of these non-ideal equations of state is not
completely understood at this time. Numerical instabilities are frequently present in computations
which utilize a cubic equation of state. Other more sophisticated equations of state like the Benedict
Webb Rubin offer a wider range of applicability but the cost associated with them are intractable
for large 3D LES simulations [?]. Other modeling approaches are also possible but they are much
more involved and also involve significant cost increases. Models like a volume of fluid approach
(VOF) for instance would be extremely costly for a large simulation because of the interface tracking
required. Other more empirically based models for atomization can also be used in some situations.

A substantial amount of experimental work has been directed at studying the behavior of jets in
transcritical environments in recent years. Chehroudi et al. collected visual images along with jet
spreading rates for jet injection into like and unlike ambient fluids for both subcritical and supercrit-
ical conditions [?,?]. Roy et al. performed experimental work on the injection of supercritical jets
into subcritical environments. Results showed a variety of regimes depending on the mixture. This
indicates that this is an extremely complex operating state without clearly defined flow regimes [?].
Modeling work has been led by Okong’o et al. and has primarily focused on a supercritical binary
mixing in a mixing layer configuration using DNS [?]. Further work by Masi et al. on turbulent
mixing layers developed effective locally varying turbulent Schmidt and Prandtl numbers which were
observed to have negative values [?].

In a comprehensive review article, Bellan stated that a real gas equation of state along with
unsteady simulations are the absolute minimum requirements for capturing supercritical behavior [?].
Oefelein simulated combustion between transcritical oxygen and supercritical hydrogen. It was found
that intense property gradients were present that approached contact discontinuities which can be
difficult to model [?]. Recently, Dahms and Oefelein have proposed a theoretical framework for
assessing when a propellant mixture behaves as a supercritical dense fluid and when transcritical
phenomena needs to be considered [?]. To date most modeling has focused on purely supercritical
environments.

This work presents an overview of the Peng-Robinson Equation of state and several of the
challenges associated with using it to simulate liquid rocket injector configurations. Several alternate
approaches are presented as possible paths forward in applying real gas equations of state to liquid
rocket injectors. Demonstration cases are used to show some of the effects that these alternate
approaches have. The motivation for this work is liquid rocket injector simulations, Figure 1 shows
a schematic of a liquid rocket injector shear layer. Different regions of the flowfield are shown. In a
typical rocket injector the oxidizer is injected at a temperature that is above the critical temperature
and pressure, the fuel is injected at a temperature less than the critical temperature but a pressure
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above the critical pressure. Complete combustion products have a temperature much larger than
the critical temperature and in this region the challenges are no longer present. The challenging
region is the early combustion products region where both the temperature and pressure can be
sub-critical.

PENG ROBINSON EQUATION OF STATE

The Peng Robinson equation of state [?] is a cubic equation of state that can be written as,

p =
RT

Vm − bm
− am
V 2
m + 2bmVm − b2m

(1)

It is only one of several possible cubic equations of state. A comprehensive overview of other
equations of state is given by Poling et al. [?]. In the case of multiple species the parameters am
and bm are defined in terms of a series of mixing rules,

am =

N∑
j=1

N∑
i=1

XiXj
√
aiajk

′
ij (2)

bm =

N∑
i=1

Xibi (3)

The parameter k′ij is an interaction index and is typically unity unless otherwise specified for a pair
of species. The individual parameters ai and bi correspond to the single species values which are
defined as,

ai = 0.457235
R2T 2

c,i

pc,i

(
1 + κi(1−

√
Tr)
)2

(4)

bi = 0.077796
RTc,i
pc,i

(5)

The parameter κi is defined in terms of the acentric factor ωi,

κi = 0.37464 + 1.54226ωi − 0.26992ω2
i (6)

In addition to the acentric factor the critical pressure pc,i and the critical temperature Tc,i are
constants of the individual species. The motivation for using the cubic equation of state is to
determine the deviation from the ideal behavior. For density the non-ideal behavior is determined
through the compressibility Z, which is the roots to the equation,

Z3 − (1−B)Z2 + (A− 2B − 3B2)Z − (AB −B2 −B3) = 0 (7)

The parameters A and B depend on the mixture and are related to am and bm,

A = am
p

R2T 2
(8)

B = bm
p

RT
(9)

Once the compressibility is known it is possible to compute the real gas density,

ρ =
pW

ZRT
(10)

Where W is the molecular weight of the mixture,

W =

(
N∑
i=1

Yi
Wi

)−1
(11)
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Other thermodynamic quantities are related to their corresponding ideal gas quantity using a de-
parture function. For a typical reacting flow simulation the specific heat, enthalpy and Gibbs energy
are needed. The departure functions for these three quantities are,

cdep =
∂hdep

∂T

∣∣∣∣
p

(12)

hdep

RT
= (1− Z) +

∫ ∞
V

T
∂Z

∂T

∣∣∣∣
V

dV

V
(13)

gdep

RT
= (1− Z + lnZ) +

∫ ∞
V

(1− Z)
dV

V
(14)

Most computational solvers do not work with molar volume so it is useful to carry out the integration
using the Peng Robinson equation of state and convert to units native to the solver. Completing
the integration yields,

cdepp =
1

W

(
R

(
T
∂Z

∂T
+ Z − 1

)
− 1√

8bm
[Ta′′m ln (α)− (am − Ta′m) b?β]

)
(15)

hdep

RT
=

1

W

(
(Z − 1) +

am − Ta′m√
8RTbm

ln

{
Z/B + 1−

√
2

Z/B + 1 +
√

2

})
(16)

gdep

RT
=

1

W

(
Z − ln (Z −B)− 1 +

am√
8RTbm

ln

{
Z/B + 1−

√
2

Z/B + 1 +
√

2

})
(17)

Where a′m is the derivative of am with respect to temperature, a′′m is the second derivative of am
with respect to temperature. The parameters b? and β are,

b? =
1

B

(
∂Z

∂T
− Z

B

∂B

∂T

)
(18)

β =
1

Z/B + 1−
√

2
− 1

Z/B + 1 +
√

2
(19)

The presence of the molecular weight on the right side of the equation yields massic departure
functions. The real gas specific heat, enthalpy, and Gibbs energy are then,

cp = cdepp +

N∑
i=1

cigp,i (20)

h = hdep +

N∑
i=1

higi (21)

g = gdep +

N∑
i=1

gigi (22)

The ideal gas values are readily available from the polynomial fit data,

cigp,i
Ri

=
c1
T 2

+
c2
T

+ c3 + c4T + c5T
2 + c6T

3 + c7T
4 (23)

higi
Ri

= −c1
T

+ c2 lnT + c3T +
c4
2
T 2 +

c5
3
T 3 +

c6
4
T 4 +

c7
5
T 5 + c8 (24)

gigi
RiT

= − c1
2T 2

+
c2(lnT + 1)

T
+ c3(1− lnT )− c4

2
T +−c5

6
T 2 +− c6

12
T 3 − c7

20
T 4 +

c8
T
− c9 (25)

Where the nine values of ci can be found tabulated for individual species over multiple temperature
ranges. Using this formulation for a mixture of species yields a single compressibility and set of
departure functions for the mixture which are a function of the local pressure, temperature, and
composition.
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CHALLENGES

ROOTS OF THE PENG ROBINSON EQUATION OF STATE

The non-linearity and complexity of the cubic equation of state introduces numerous challenges
when applying this equation of state to numerical simulations. Before considering specific challenges
it is useful to understand the roots of the compressibility and their physical meaning. The Peng
Robinson equation of state is valid for both gases and liquids. Accuracy in the liquid regime is
sometimes less than is required. In that case the accuracy can be improved though a volume shifting
procedure [?]. The compressibility is a multi-valued function in that the solution to equation 7 has
three roots. Only positive real roots are of physical interest. There are three possible cases, three
unique real roots, a single positive real root, or repeated positive real roots. The case of interest
is the case of multiple unique real root. Figure 2 shows how the compressibility varies for water at
2 MPa as the temperature increases from 200 K to 800 K. The challenge with this plot is the abrupt
change that occurs in the region where multiple positive real roots exists. While the transition
between Z1, Z2, and Z3 is a smooth curve, the maximum value of Z is not a smooth curve, this
can lead to abrupt property changes. In a mixture the situation is further complicated because
the transition is a function of pressure, temperature and composition. Simulations done using the
traditional Peng Robinson equation of state have suffered from instabilities which are expected to
arise from this phenomena.

Recent work by Harvazinski et al. attempted to smooth the compressibility in this region to
generate a unique solution as the flow transitions across the dome. While this worked well for den-
sity there were unwanted changes in other properties, specifically the specific heat and sound speed.
These properties were extremely sensitive to the smoothing operation. Numerous types of smooth-
ing were considered but all introduced unacceptable changes in one or more other thermodynamic
quantities despite yielding a smooth density [?].

PROPERTY VARIATIONS

Around the critical point there is extreme variation in the thermodynamic properties. Figure 3
shows the prediction of the sound speed and specific heat of water at 2 MPa for H2O. A log scale
is required to capture the variation. Over the range of 200 K to 500 K, the specific heat has a
maximum value of 16, 000 J/kg ·K and a minimum value of 2, 130 J/kg ·K. The sound speed also
shows significant variations. This is problematic because the flow can become locally supersonic as
the sound speed drops to a very small value. Figure 4 shows the sound speed in a reacting shear
layer computed with the Peng Robinson equation of state. The sound speed on either side of the
shear layer differs by an order of magnitude. The property variations and associated gradients in
the flowfield give rise to a numerical problem that is not well posed in all situations. This can lead
to divergent solutions and other numerical instabilities. The motivation for the following section is
to devise alternate equations of state based on the Peng Robinson equation of state which yield the
properties needed but hopefully eliminate some of the unwanted numerical effects.

ALTERNATIVE FORMULATIONS

DALTON’S LAW AND AMAGAT’S LAW

Typically mixing rules can be based off of either Dalton’s law of partial pressures or Amagat’s
law of partial volumes. Dalton’s law of partial pressures states that,

p =

N∑
i=1

pi (26)

where pi is the partial pressure of species i. To compare each of these mixing rules with the
traditional Peng Robinson equation of state, the mixture compressibility is compared. Define Zi to
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Figure 2: Root of equation 7 are shown as symbols as the temperatre is increased. The substance
shown is water at 2 MPa. The solid line is the maxium compressibility which is used in the compu-
tation of the density and departure functions.
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Figure 3: Sound speed and speicifc heat variations for H2O at 2 MPa. The sound speed and specific
heat are plotted on a log scale.

Figure 4: Sound speed for a reacting shear layer computed with the Peng Robinson equation of
state.
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be the compressibility of species i, then for Dalton’s law the partial pressure of a gas is,

piV = niRTZi(pi, T ) (27)

The total pressure is then,

pV =

N∑
i=1

niRTZi(pi, T ) (28)

For the mixture,

pV = nRTZ (29)

Z =
pV

nRT
(30)

Using the definition of pressure in equation 30,

Z =

∑N
i=1 niRTZi(pi, T )

nRT
=

N∑
i=1

XiZi(pi, T ) (31)

Where Xi is the mole fraction, ni

n . Thus the mixture compressibility is the mole weighted average
of the individual compressibilities. The individual compressibilities are evaluated at the mixture
temperature and the partial pressure of individual species. Amagat’s law of partial volumes states
that,

V =

N∑
i=1

Vi (32)

where Vi is the partial volume of species i in the mixture. Using a similar procedure the partial
volume of each species is,

pVi = niRTZi(p, T ) (33)

For the mixture this results in,

Z =
p
∑N

i=1 niRTZi(p, T )

nRT
=

N∑
i=1

XiZi(p, T ) (34)

The key difference with Amagat’s Law is that the compressibility of each species is a function of the
mixture pressure, not the partial pressure of the individual species. To illustrate this difference, the
mixture compressibility is calculated using the traditional Peng Robinson equation of state, and the
Peng Robinson equation of state using Dalton and Amagat’s laws. A mixture of 60% CH4 and 40%
O2 by mass at a temperature of 273 K is used. The results are shown in Figure 5. It is clear that
except at very low pressures the ideal gas equation of state yields incorrect values. The traditional
Peng Robinson model and the Amagat’s model provide very close agreement at all points. Dalton’s
mixing rule provides reasonable agreement below 20 MPa but diverges significantly as the pressure
is increased further. At the highest pressure, the percent error between Amagat’s law and Peng
Robinson is 0.18%. The percent error for Dalton’s law and the ideal gas equation of state is 23.81%
and 42.0% respectively. This example shows that Amagat’s mixing rule should be used for non-ideal
gases and provides reasonable agreement with the traditional Peng Robinson model.

Theoretically Dalton’s law corresponds to the case where the compressibility of each component
of the mixture assumes that only that component is present in the computation of the compressibility.
Amagat’s law on the other hand assumes that the influence of two unlike molecules is the same as
the influence of two like molecules, this too is an approximation of the real behavior. In the case of
a true real gas mixture the influence between two unlike molecules does not have to be the same as
the influence of two like molecules [?]. In practice this unlike interaction can be introduced with an
interaction index in equation 2, however data for these interaction indices is limited.
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Figure 5: Mixture compressibility for a mixture of 60% CH4 and 40% O2 by mass at a temperature
of 273 K. The mixture compressibility is computed using the traditional Peng Robinson equation of
state, Dalton’s law of partial pressures, Amagat’s law of partial volumes and the ideal gas equation
of state.
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AMAGAT’S MIXING RULE

This section develops a mixing rule based on Amagat’s Law using the Peng Robinson equation
of state for individual species. The previous section already showed that the mixture averaged
compressibility is a mole fraction weighted average of the individual species compressibilities. This
means that the density is,

ρ =
p

RT

(
N∑
i=1

YiZi

Wi

)−1
(35)

Departure functions are computed using the same equations described for Peng Robinson but are
evaluated on a per species basis since each species has a unique compressibility. The specific heat,
enthalpy, and Gibbs energy of a mixture are then,

cp =

N∑
i=1

(
cdepp,i + cigp,i

)
(36)

h =

N∑
i=1

(
hdepi + higi

)
(37)

g =

N∑
i=1

(
gdepi + gigi

)
(38)

The advantage of this formulation is the ability to treat the phases of a single species as separate
species each with their own compressibility (density).

IDEAL GAS SPECIES

In the Amagat’s model each species has its own compressibility, therefore it is possible to treat
a species as an ideal gas by setting the compressibility equal to unity. The main motivation for
this work is the simulation of injectors. In this case the majority of the flowfield will behave as
an ideal gas once combustion has taken place. Figure 6 shows a mixture of C12H26 and H2O at
1 MPa. The mass fraction of water is varied from 20% to 0% at two temperatures, 450 K, and 600 K.
This simulates the effect of water arising from combustion when fuel is still present. The density is
computed in two ways. First the C12H26 and the H2O are treated as real gases and mixed using
Amagat’s law. Second, the C12H26 is used a real gas and the H2O is treated as an ideal gas (Z = 1).
At 450 K the difference in the density computation is noticeable, even for small amounts of water;
for 5% water the density is 37% less. At 600 K the difference is less noticeable, just 11% less. This
makes sense because as the temperature increases, the compressibility of water approaches unity.
At 450 K it is just 0.0653 while at 600 K it is 0.738. The main motivation for this approach is to
alleviate the difficulty that arises when small amount of water are added to relatively cold reactants
and force the mixture to become subcritical.
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Figure 6: Density of a mixture of C12H26 and H2O at 1 MPa. The mass fraction of water is varied
from 20% to 0% at two temperatures, 450 K, and 600 K. H2O is treated as a real gas and as an ideal
gas in the two computations.
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Figure 7: Density of C12H26 at 10 MPa. The density is computed using the Peng Robinson equation
of state and using the ideal gas equation of state with fixed compressibility, the compressibility is
computed at 250 K and 350 K.

CONSTANT COMPRESSIBILITY

An alternate approach is to apply a constant compressibility. For a uniform pressure and temper-
ature flow this would result in the correct velocity at the inlet when was the mass flow is specified.
The applicability of this is less effective as the temperature and pressure vary. Figure 7 illustrates
this by showing the density of C12H26 at 10 MPa. The density is computed using the Peng Robinson
equation of state and using the ideal gas equation of state with a fixed compressibility. The fixed
compressibility is defined using the real gas density at two different temperatures, 250 K and 350 K.
It is clear that away from the point where the compressibility was defined the difference is large.
This is because the shape of the density curve for a real gas and an ideal gas is different. The inclu-
sion of a compressibility simply shifts the ideal curve up or down, it does not alter the shape. This
method should only be applied for flows that are approximately isothermal, or where the species is
consumed quickly. A potential application of this is an injector where the fuel is quickly consumed
before rapid temperature changes take place.
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LIQUID SPECIES AND PHASE CHANGE

One of the initial motivations for the Amagat’s mixing rule based version of Peng Robinson
was to allow for the treatment of the liquid and vapor states as separate species. By choosing
the compressibility based on the minimum value the liquid density can be preserved for a longer
duration. Figure 2 showed the roots of the Peng Robinson equation of state. The compressibility
is typically taken to be the maximum root. For the case shown the transition away from liquid
behavior to gaseous behavior would occur at around 310 K. If the minimum root is used instead
the liquid behavior wouldnt occur until close to 600 K. The benefit of this approach is that one
maintains more stable properties as the propellant is heated in the initial phases of combustion.
The sharp jump between the liquid and gas states is avoided. To preserve the physical state of the
system the liquid can then be converted into a gas over a finite rate of time. The gaseous species
can then be modeled either with a real or ideal equation of state based on the previous discussion.
The simplest way to transition the species is through an Arrhenius form analogous with combustion.
The production of the vapor can be written as,

ω̇v = ρkY` exp

(
− T

Ta

)
(39)

where k is a proportional constant, Ta is an activation temperature and Y` is the mass fraction of
the liquid. For a single species that is divided into a vapor (Yv) and liquid (Y`) state the system of
equations in the absence of convection and diffusion is,

∂ρYv
∂t

= ω̇v (40)

Y` = 1− Yv (41)

An approximate solution to this system of equations for a fixed density is,

ρYv(t) ≈ ρ
[
1− exp

(
−ke−T/Tat

)]
(42)

This equation as the correct steady state behavior,

lim
t→∞

ρYv(t) = ρ (43)

The actual solution will be a deviation from this since the density is a function of the composition
and temperature, but this provides an initial starting point to estimate the parameters k and Ta.
Figure 8 shows the solution plotted for several values of k and Ta at a fixed temperature of 450 K.
As expected the solution is relatively insensitive to Ta and very sensitive to k. Larger values of k
result in faster transitions between the two states.
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Figure 8: Solutions to equation 42 for various values of k and Ta. The solution is sensitive to k and
insensitive to Ta.

DEMONSTRATION CASES

SINGLE SPECIES WITH HEAT ADDITION

To evaluate the constant compressibility model a constant area duct is used, C12H26 is injected
into the duct at 250 K at a mass flow rate of 350 kg/s ·m. The temperature in the duct rises as the
flow moves down stream due to a volumetric heat source. The compressibility at the inlet conditions
is 1.86. In practice using this compressibility will not give the correct density because other flowfield
aspects, like the pressure, will change and alter the density. To get the exact density at the inlet
with a fixed compressibility an iterative process is needed. In this case a compressibility of 3.1 will
match the real gas density at the inlet. Figure9 shows the heat addition profile along with profiles
of the density, sound speed, and velocity. The heat addition is the same for each simulation. Four
curves are plotted which show the results for an ideal gas equation of state, fixed compressibility of
1.86, fixed compressibility of 3.1, and the Peng Robinson solution. When the compressibility of 3.1 is
used the initial density and velocity match the real gas solution. Once the heat addition is activated
at 0.02 m, the profiles diverge significantly, in the ideal gas simulations the density decreases rapidly
compared to the real gas simulation. It is also clear that all of the ideal gas based simulations
provide an incorrect sound speed predictions at low temperatures. This will affect instability and
wave speed propagation times. In a simulation where burning is taking place, it is expected that
the C12H26 would be rapidly consumed as the temperature is increased so there is still potential
applicability of this method so long as the error in the mid-temperature region is acceptable. It
is clear that a careful study must be done to obtain the compressibility that will yield the desired
velocity since that is the main motivation for this model.
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(a) Volumetric Heat Addition. (b) Density.

(c) Sound Speed. (d) Velocity.

Figure 9: A constant area simulation of C12H26 with heat addition is used to evaluate the constant
compressibility simplification.
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MIXTURE WITH HEAT ADDITION

The same setup can also be used for a uniform mixture. For this test 40% C12H26, 40% O2, 10%
H2O and 10% CO2 by mass are injected at 250 K at a fixed mass flow rate of 350 kg/s ·m. The heat
addition is identical to the profile shown in Figure 9. The results for the mixture are shown in Figure
10. For the mixture the compressibility was not tuned, instead four different equations of state were
evaluated, ideal gas, Peng Robinson, and two versions of Amagat’s Mixing Rule. Amagat’s Law I
uses the Peng Robinson equation of state for each component while Amagat’s Law II uses the ideal
gas equation of state for the products, (CO2 and H2O). For Amagat’s Law II, the compressibility
is unity for the ideal gas species. On the low temperature side there is a significant difference in the
density, all three approximate models show deviation from the Peng Robinson equation of state. In
the high temperature region all four of the equations of state converge to a similar density. This
convergence is also seen in the pressure, sound speed, and velocity. Like the previous single species
case the low temperature sound speed is only correctly predicted by the full Peng Robinson equation
of state. This demonstration along with the previous case shows that the other simplified models

(a) Density. (b) Pressure.

(c) Sound Speed. (d) Velocity.

Figure 10: A constant area simulation of 40% C12H26, 40% O2, 10% H2O and 10% CO2 by mass
with heat addition is used to evaluate the equation of state.
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can be used to match part of the Peng Robinson model, but a complete agreement is not possible.

PREMIXED COMBUSTION

To test combustion, a premixed configuration is used. A mixture of 40% C12H26 and 60% O2

by mass is injected into a constant area duct at a mass flow rate of 5 kg/s ·m at a temperature of
610 K. The simulation is run for 0.75 s using the same four equations of state that were evaluated in
the previous case. A simple two-step combustion mechanism is used for the dodecane combustion.
Figure 11 shows the results of the four simulations. Excluding the ideal gas equation of state, the
other three versions show very similar results. Predictions of the density are off slightly before
combustion takes place but during the early stages of combustion which are taking place in the
downstream region the densities are very similar between Peng Robinson and the two Amagat’s
based mixing rules.

(a) Density. (b) Temperature.

(c) Sound Speed. (d) H2O Mass Fraction.

Figure 11: Premixed combustion results. A mixture of 40% C12H26 and 60% O2 by mass at 610 K
is injected at a mass flow rate of 5 kg/s ·m. Results are shown after 0.75 s.
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NON-PREMIXED COMBUSTION

A two-dimensional shear layer representative of a C12H26 injector is used to test the Peng Robin-
son Amagats mixing model and the fixed compressibility model. For this simulation, a code which
is second order accurate in time and space is used. The mesh contains approximately 250,000 cells
and has uniform spacing. The fuel is C12H26 and is injected at 600 K with a mass flow rate of
75 kg/s ·m, the oxidizer is pure O2 and is injected at 610 K with a mass flow rate of 150 kg/s ·m.
The mean pressure is 3.8 MPa. For the fuel, these conditions are supercritical in pressure but sub-
critical in temperature. For the oxidizer, the conditions are subcritical in pressure and supercritical
in temperature. A converged solution with the pure Peng Robinson model was not obtainable.

Figure 12 shows the density for the fixed compressibility over time. The density of the fuel
varies as the time progresses this is unlike the real gas which uniform density throughout time.
This is due to the density of the real gas being relatively insensitive to property changes at the
injection conditions, unlike the ideal gas equation of state which has typical pressure and temperature
dependencies.

Figure 13 shows the fuel mass fraction and temperature at two snapshots, this can be used to
identify differences in how the shear layer interface behaves for the two models. One noticeable
difference is that the interface between the oxidizer and fuel is very sharp for the real gas equation
of state compared with the ideal gas which shows a diffuse interface. This may effect mixing. A
smooth interface will result in less vorticity generation through baroclinic torque. Despite these
clear differences, the temperature plot shows a qualitatively similar combustion. A thin flame is
attached to the splitter plane and extends along the interface between the fuel and oxygen.

SUMMARY AND CONCLUSIONS

A number of alternate approaches to a pure cubic equation of state were presented. The moti-
vation for these alternate formulations is the numerical difficulty introduced by the Peng Robinson
equation of state for liquid rocket injector problems. The simplest model uses a fixed compressibility
along with an ideal gas equation of state. This model can be used to match the incoming velocity,
but in the presence of thermal gradients and pressure changes unwanted variations in the density
will occur. This is due to a fundamental difference in the shape of the density curve for a real gas
and an ideal gas in the non-ideal region. Two versions of an equation of state based on Amagats
Law were developed. One uses the Peng Robinson equation of state for all of the components, and
one uses the Peng Robinson equation of state only for selected components. The complete real gas
version showed excellent agreement in terms of compressibility, but differences in sound speed and
other thermodynamic properties were seen in for some mixtures. Initial testing shows that both of
these models are more numerically stable than the traditional Peng Robinson model, but additional
work should be done to better understand and classify the assumptions and associated error with
using Amagats Law, especially for mixtures of unlike gases where the grates difference is expected
to occur. The final model which allowed for the use of a change in phase between liquid and vapor
states had numerically stability issues and still needs further development to increase robustness,
this does appear to be a potential viable option for future computations.

In addition to physical model improvements a more robust computational framework is also
needed. These simulations yield flowfields with unique and complex phenomena that have not been
well characterized in terms of typical numerical schemes. Recent work by Ma et al. which looked
at numerical schemes for real gases should be further developed in conjunction with the current
work with the ultimate goal being a more robust numerical framework for injector modeling [?].
The initial work on cubic equations of state was done in support of the petroleum industry, the
application of these to mixtures of unlike species undergoing rapid changes in their thermochemical
state due to combustion was not originally conceived. Fundamental work needs to be done to ensure
that these equations are physically sound for the present application.
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Figure 12: Density plots for the reacting shearlayer test case using the fixed compressibility model.
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(a) C12H26 mass fraction, fixed compressibility. (b) C12H26 mass fraction, Amagat’s law.

(c) C12H26 mass fraction, fixed compressibility. (d) C12H26 mass fraction, Amagat’s law.

(e) Temperature, fixed compressibility. (f) Temperature, Amagat’s law.

(g) Temperature, fixed compressibility. (h) Temperature, Amagat’s law.

Figure 13: C12H26 mass fraction and temperature plots for the reacting shearlayer test case.
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Motivation

Fuel
T < Tc
P > Pc

Oxidizer
T > Tc
P > Pc

Substance Critical 
Pressure Pc

Critical
Temp. Tc

C12H26 1.8 MPa 658 K

O2 5.0 MPa 155 K

H2O 22.0 MPa 647 K

Early Combustion Products, 
Fuel, & Oxidizer

T < TC,   P < Pc

Complete 
Combustion 

Products
T >> Tc

Enable modeling of sub-scale liquid rocket engine (LRE) injector experiments.
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Real Gas EOS

• Peng Robinson is typically used, there are other choices
– SRK, BWR
– Balance between cost and accuracy

• Cubic type equations originally arose from the petroleum industry, their use 
in combustion modeling is questionable

Peng Robinson:

Mixing Rules:

Interaction parameter
ai and bi are functions of the critical 
properties (pressure and 
temperature) and the acentric 
factor for each species



4Distribution Statement A: Approved for Public Release; Distribution is Unlimited. PA Clearance Number 19064

Compressibility 

• We are really after the compressibility, which is 
the deviation from the ideal behavior

• Solve:

Mixture parameters:

Non-ideal 
correction

One compressibility 
per mixture.
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Other Thermodynamic Properties

• Other thermodynamic properties follow from 
departure functions

General 
Form:

Peng 
Robinson:
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Roots to the Compressibility

• In the multi-phase region 
there are three roots.

• The maximum root is used 
to compute the density

• The curve of the maximum 
root is not a smooth curve

• Dramatic property 
variations

• Numerical instability
• No concept of quality
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Challenge: sub-scale LRE

• Supercriticality is a function of pressure,  temperature, and composition.

• Where the combustion products initially form, the mixture will become sub-
critical and transition through the vapor dome

• The single fluid model is not valid inside the vapor dome Evidence of 
the Dome 

region
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Property smoothing – tanh function

Objective – can an artificial transition through the vapor dome provide a robust model?

Apply this when Z has three real roots. There is a unique Z for each T and p.

Harvazinski et al. 2017
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Smoothing results for density

Pure C12H26

All approaches are all 
qualitatively similar, each 
smears the discontinuity.

Any approach is valid for 
density.
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Specific heat

All approaches show a wide 
band of elevated cp, unlike 

the original model which has 
a singular high value.

Pure C12H26

Similar challenges for sound 
speed.
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Dalton’s and Amagat’s Law

• Dalton’s Law of partial pressures:

• Amagat’s Law of partial volumes:

• Potential alternative to the complete Peng-Robinson 
equation.

• If each species has it’s own Zi, how do these compare to 
the traditional Peng Robinson model.
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Dalton’s and Amagat’s Law

• Dalton’s law is only 
valid for low 
pressures

• Amagat’s law 
matches very well

273K, 60% CH4, 40% O2
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Amagat’s Mixing Rule

• Compute a compressibility for each species
• Compute departure functions for each species
• Mixture properties are then:

This offers a framework 
to treat different species 
with different equations 

of state
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Ideal Gas Species

• By setting Zi=1, a species 
can be treated as an ideal 
gas, like water vapor in a 
combustion calculation

• Large deviation at lower 
temperatures compared 
to higher pressures

1 MPa
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Fixed Compressibility

• Motivation: We want the 
correct velocity when the 
mass flow rate is 
prescribed.

• Use a scaled ideal gas 
equation of state

• This will not “fix” the 
shape of the curve
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Different Phases

• Transition from the liquid 
phase to the gas phase over 
a finite amount of time

• Current formulation needs 
improvements for 
robustness
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Single Species Heat Addition

• Heat addition in a 
uniform area duct

• Dodecane, 250 K, 
constant mass flow 
rate
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Single Species Heat Addition

• It is very difficult to “pin” 
the compressibility

• The computed Z is 1.86

• The actual Z which 
matches the density is 3.1

• Why?
– Other flowfield (p, u) 

features are changing 
which alters the 
flowfield and changes 
the conditions

• The shape of the curve is 
different
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Single Species Heat Addition
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Multiple Species Heat Addition

• Heat addition in a uniform 
area duct

• 40% C12H26, 40% O2, 10% 
H2O, 10% CO2, 250 K, 
constant mass flow rate

• Amagat's I – all components 
use Peng-Robinson

• Amagat’s II – only C12H26 & 
O2 use Peng-Robinson
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Multiple Species heat Addition

Density predictions in the high 
temperature region converge

Only Peng Robinson yields a 
“liquid like” sound speed at low 

temperatures
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Multiple Species heat Addition

Velocity predictions are 
reasonable
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Premixed Combustion

• Setup:
– 5 kg/s
– 610 K
– 40% C12H26, 60% O2

• The simulation is run for 0.75 s to capture the 
early stages of combustion
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Premixed Combustion

Reasonable agreement for Amagat’s Law and Peng Robinson in terms of 
H2O production 
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Premixed Combustion

Ideal gas has a larger temperature increase compared to the real gas 
models.
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Non-premixed Combustion

• Challenging demonstration

• The configuration is not numerically stable for the Peng-Robinson 
model

• 250,000 cell mesh, 2D simple injector

• C12H26 @ 600 K

• O2 @ 610 K

• The initial pressure is 3.8 MPa

• Constant Z and Amagat’s Law with real species was tested
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Non-premixed Combustion

• With the constant 
compressibility model we 
observer a large amount of 
fluctuation in the density of 
the incoming C12H26

• This fluctuation is not seen in 
the real gas computation

• The shape of the density curve 
is fundamentally different for 
the two models and the 
constant compressibility is 
more likely to fluctuate
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Non-premixed Combustion

Amagat’s Law Constant Z

• Steeper gradients are present when using Amagat’s law, thinner 
flame features, impact on mixing in 3D?

• Both cases show an attached flame
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Non-premixed Combustion

Amagat’s Law Constant Z

• Steeper gradients are present when using Amagat’s law, thinner 
flame features, impact on mixing in 3D?

• Both cases show an attached flame
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Summary

• Alternate approaches preserve some features of the 
complete real gas model, but not all

– Numerical stability is improved but not solved

• Fundamental questions remain for the community
– Are cubic equations of state the correct approach for 

combustion?

• Improvements in numerical robustness are needed
– Recent work out of Stanford shows some potential success
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