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ABSTRACT 

The Army introduced the M1 Abrams Main Battle Tank (MBT) in 1979 along 

with the Heavy Equipment Transport System (HETS) to act as its primary transport.  In 

response to new technologies and emerging threats on the battlefield, the M1 Abrams 

tank underwent numerous upgrades and is projected to exceed the carrying capacity of 

the current HETS. Therefore, The Research and Analysis Center (TRAC) is conducting 

an Analysis of Alternatives (AoA) for a new transporter, the Enhanced Heavy Equipment 

Transport System (EHETS). As part of this effort, TRAC performed sensitivity analysis 

to determine the effect of operational and maintenance variables on operational 

availability of the EHETS.  Operational availability is a critical metric for the EHETS, 

and it is important to understand the impact of system design and external factors on 

availability.  This research makes use of design of experiments (DOE) to quantify the 

effects of primary operational and maintenance variables which affect the operational 

availability of the EHETS.  These variables include reliability, recovery time, parts 

distribution and time required to repair within an operational scenario. The research used 

Logistics Battle Command (LBC) simulation model’s dynamic maintenance feature to 

conduct the operational availability sensitivity analysis.   
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  INTRODUCTION 

1.1. PURPOSE 

TRAC conducted this sensitivity analysis as a part of the EHETS AoA to explore the effects 

of varying vehicle and maintenance system characteristics on EHETS operational availability. The 

characteristics included: 1) system reliability (mean time between failures), 2) time to recover, 3) 

repair time, 4) number of mechanics required to repair a fault, 5) part acquisition time, and 6) 

probability of correct diagnosis.  These characteristics became input variables for a dynamic 

maintenance model within the Logistics Battle Command (LBC) simulation.  TRAC used a 

designed experiments approach to explore reasonable ranges of these input variables to determine 

their impact on the EHETS ability to maintain the recommended operational availability rate of 

75%.  This information will aid decision makers in establishing acceptable operating parameters 

for the EHETS.  

1.2. BACKGROUND 

The Army acquired HETS primarily to move the M1A1 Abrams Main Battle Tank (MBT).  

Due to upgrades, the M1A1 Abrams Main Battle Tank (MBT) is projected to exceed the HETS 

carrying capacity of 70 short tons (STONS).  The Army is conducting the EHETS Analysis of 

Alternatives (AoA) in order to identify a suitable replacement.  In support of the AoA, TRAC 

conducted sensitivity analysis on operationally relevant scenario in LBC.  The intent was to 

determine whether potential EHETS designs will meet or exceed the recommended operational 

available rate of 75% under varying vehicle and maintenance system characteristics.   

TRAC leveraged design of experiments (DOE) to generate data required for the sensitivity 

analysis.   A carefully designed experiment is much more efficient and effective than a ‘hit-or-

miss’ sequence off simulation runs or ‘trying’ a number of alternative configurations (Law, 2007).  

The approach enables analysts to determine variable importance and develop a response surface 

or metamodel of the given experiment.  A metamodel, which usually takes the form of a first- or 

second-order linear regression equation, can then be leveraged to predict the response variable for 

input variable values of interest (Law, 2007).  A linear regression based metamodel enhances 

sensitivity analysis by enabling predictions within the limits of the original experimental design 
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space while also providing confidence intervals for predictions that account for the uncertainty 

inherent at varying factor levels.    The metamodel enables sensitivity analysis through exploration 

of the response surface and permits the experimenter to determine effect of changing one or more 

factors on the response variable (Sacks, Welch, Mitchell, & Wynn, 1989). 

Experimental design is a robust field about efficient planning and analyzing the results of 

an experiment.  The result of an experimental design plan is a matrix of input variable values where 

each column represents a variable and each row represents the combination of input variables for 

a single design point.   Many options are available for experimental designs, but for this experiment 

we chose nearly orthogonal latin hypercube (NOLH) designs due to the relatively high number of 

input variables.  NOLH’s provide an efficient experimental design as they enable the determination 

of variable significance, nonlinear effects, variable interactions, and their associated ranges while 

requiring relatively few runs.   These designs eliminate certain masking effects created by 

fractional factorial designs while still reducing the number of runs required to generate a 

metamodel.  TRAC chose this design construct for this experiment as it enabled the team to 

generate insight about EHETS maintenance system in an efficient manner (Cioppa, 2009).  

1.3. CONSTRAINTS, LIMITATIONS, & ASSUMPTIONS 

Constraints:  

• The project completion deadline is April 2019. 

Limitations:  

• The EHETS is currently under development so the U.S. Army Combat 

Capabilities Development Command (CCDC) Data Analysis Center (DAC) 

surrogated operational data based on existing HET data.  

• No random variables are used in the dynamic maintenance model for repair time, 

recovery time, and part acquisition times across all six system abort (SA) faults 

for the M1070A1 and five SA faults for the M1000.  

• The input values for repair time, recovery time, number of mechanics, part 

acquisition times and probability of correct diagnosis do not have variation across 

all six SA faults for the M1070A1 and five SA faults for the M1000. 
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• The essential functions failure (EFF) for the M1070A1 and M1000 were not 

evaluated in this research.  

Assumptions:  

• The operational data provided by CCDC DAC is sufficient to identify the key 

variables and ranges that effect Ao.  

• Constant values for repair, recovery, and part acquisition times will still enable 

effective analysis of EHETS reliability.  

• The input values utilized for the variables will allow for equal evaluation on how 

they influence the Ao. 

 

1.4. STUDY TEAM 

MAJ Ta’Lena Fletcher 

MAJ James Jablonski 

MAJ James Streams 



 4 

 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 5 

SECTION 2. METHODOLOGY 

2.1. PROBLEM SCOPING 

TRAC’s sensitivity analysis focused on the interaction of the input variables across various 

system abort faults and maintenance system factors.  The goal was to determine which factors and 

combinations had the greatest influence on the operational availability of the EHETS with a 

minimum threshold goal of 75%.   The EHETS system is composed of a tractor and a trailer, so 

the experiment required simulated maintenance on both components of the system to account for 

shared resources and recovery times.  TRAC used an LBC scenario designed specifically to 

leverage LBC’s dynamic maintenance feature in an operationally relevant scenario.  Input variable 

range starting points were selected by operational maintenance subject matter experts at TRAC 

Lee based on historical maintenance data.   

2.2. TOOL CHAIN 

TRAC developed a tool chain consisting of a series of scripts that served as a wrapper 

program for LBC experimentation. A wrapper program creates scenario files based on an 

experimental design and a base scenario, executes the simulation, stores or manages requisite 

simulation output files, and automates postprocessing or analysis (Wade, 2017).  TRAC created 

the wrapper using a combination of JMP software and R code to build the NOLH design, generate 

LBC dynamic maintenance XML scenario files, run the experiment, and conduct analysis.  In 

addition to conducting analysis in support of the EHETS AoA, TRAC intended to develop a 

methodology and the requisite tools that would be transferrable to simulations other than LBC 

with minimal effort.  To that end, TRAC created a series of functions provided as an appendix to 

this report for future experimentation.  Where possible, open source tools were used to implement 

the toolchain. JMP was the only non-open source software platform or package used for the actual 

execution of this experiment, but any experimental design generation script can be used to replace 

it in the future.   
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2.3. EXPERIMENTAL DESIGN GENERATION 

Many options exist for NOLH design generation. TRAC originally leveraged an open 

source package called DiceDesign to generate nearly orthogonal designs based on Cioppa’s 2009 

methodology and results (Dupuy, 2015).  The package did not enable the rapid generation of a 

higher density of nearly orthogonal design points within a defined range as it referenced Cioppa’s 

original designs. Variability inherent in the model output required a higher resolution exploration 

of the space to reliably predict operating points at the extreme ranges of input variable parameters.   

JMP’s experimental design feature provided a scriptable platform to efficiently generate nearly 

orthogonal designs rapidly with a high number of design points.   Design generation scripts using 

DiceDesign and JMP are provided as appendix III and IV.  

2.4. SCENARIO FILE GENERATION 

The scenario file generation portion of the DoE wrapper generated amended LBC scenario 

XML files from the values contained in the DOE.  A typical scenario file generation script extracts 

the design values from the DOE matrix, amends these values to appropriate locations in the 

scenario XML, and then stores the resultant XML files (Wade, 2017).  For this scenario, the LBC 

scenario files provided by TRAC Lee required specialized scripting due to each M1070A1 and 

M1000 entity being individually defined with performance and maintenance characteristics, rather 

than in a typical performance database schema storing vehicle characteristics in a single location 

by vehicle type.  TRAC created a series of R functions that imported design values from the design 

matrix, identified and then stored all corresponding XML node locations in a data frame, and then 

looped through corresponding node locations amending design values as required.  The code is 

provided as appendix I.  

2.5. EXPERIMENT EXECUTION 

Designed experiments with stochastic combat simulations require multiple replications at 

multiple design points. TRAC utilized 50 and 100 replications per design point in a Monte Carlo 

method to create a distribution for each output.  TRAC’s goal was to design an experiment that 

enabled the creation of a metamodel to predict when operational availability reached below 75%, 

with a 99% confidence interval width of less than 5%.   This task required many iterations of 

design, execution, and analysis.  
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LBC is a relatively lightweight simulation that requires approximately 4GB of RAM, 1 

core to execute, and completes individual runs in seconds or less.  Despite this fact, TRAC 

ultimately required 1200 design points with 100 replications each to adequately model operational 

availability with the desired accuracy.  Furthermore, multiple iterations were required to 

adequately explore the ranges of design input variables and better understand nonlinearities 

associated with certain input variable combinations. To enable this, TRAC leveraged parallel 

processing and high-performance computing (HPC) assets at the Naval Postgraduate School.    

In order to make the methodology easily transferrable to other organizations, TRAC used 

base packages in R to enable basic parallelization on any machine or HPC.  The rparallel package 

managed processes and enabled execution of multiple runs simultaneously, while the system2 

function called java and executed LBC over a series of wrapper generated XMLs.  See appendix 

III for the runExperiment function source code.  This provided the ability to run multiple 

simulations on a multi-core workstation.  The final experiment consisting of 1200 design points as 

ultimately run on a virtual linux machine with over 48 cores and 256 GB of RAM on the Naval 

Postgraduate School HPC.  

2.6. POST PROCESSING  

TRAC developed a script to rapidly collect LBC output files and calculate operational 

availability of the M1000 and M1070A1 by replication and design point.  Operational availability 

is defined as the percentage of time a system is available for operations within a given timeframe.  

LBC discrete event output data provided the time when systems failed, and when they were once 

again available for duty.  For each individual M1000 or M1070A1, TRAC used this information 

to calculate Ao and averaged this across systems.  A final postprocessing step joined post-

processed Ao results with the design matrix for further analysis.   

TRAC created a script that used the fread function from the R data.table package to rapidly 

ingest results from all design points and replications and append it into a single data table (See 

postprocessor.R in appendix III).  The script then added columns representing the design point and 

replication, and used DPLYR to join the design matrix to the results.  This single large data table 

provided the analysts means to calculate Ao for each run rapidly by leveraging DPLYR (see Ao 

Calculator function in appendix III).  
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2.7. ANALYSIS AND MODELING 

TRAC leveraged R scripts to produce final analytic products, and JMP to rapidly confirm 

R scripting and visualize results throughout the process.  The primary methods by which TRAC 

conducted this analysis were Pearson correlation and linear regression.  These tools provided the 

means to understand variable relationships and generate a metamodel capable of predicting Ao. 

TRAC used normalized (Pearson) correlation to assess input variable relationships and 

gain insight to which variables had a positive or negative linear correlation with Ao. Correlation 

values range between -1 and 1, a positive correlation indicated that as Ao increases the input 

variable also increases while a negative correlation indicates as Ao decreases the input variable 

increases (Pearson Correlation Coefficient, 2019).  Quickly assessing the relationships between 

variables and operational availability enabled TRAC to assess our designs.  The correlation 

matrix confirmed the desired near-zero correlation between input variables for the design and 

Ao‘s relationship with the input variables.  

TRAC used first and second order linear regression to model Ao and gain insight into 

variable relationships, interactions, and variable importance.  The team built linear regression 

models with both JMP and R.  JMP provided the means to quickly and interactively assess 

results and variable relationships early in the wrapper development process, and gradually was 

replaced by R code as the toolchain matured.  R provided an open-source toolset capable of 

modeling Ao through regression while also handling XML manipulation, scenario run 

management, and postprocessing.  Regression provided the means to explore the influence of the 

input variables on Ao first revealed by the correlation, and also enabled prediction of Ao through 

a second order linear model.  First-order linear regression identified, in order of influence, the 

variables that yielded the strongest influence on Ao whether positive or negative (See Appendix 

IV for Linear Regression Code).  A second-order model provided a response surface that enabled 

the team to investigate variable interactions and their influence on the response variable (SAS 

Institute, 2019).   

2.8. ESTIMATING OPERATING PARAMETERS (Ao THRESHOLD)  

To estimate the operating parameters (model input variables) required for the maintenance 

system to maintain Ao above 75%, TRAC leveraged the response surface model described above.  
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Using this metamodel, the team obtained predictions of Ao under multiple maintenance system 

parameter combinations without re-running LBC.  To obtain an estimate for operating parameter 

thresholds, the team first set all input variables to their base case settings. TRAC Lee estimated 

these base case values based on historical HET data and scenario 7 for maintenance system 

variables. To find an individual operating parameter estimate, the analysts adjusted a single input 

variable up or down until Ao crossed the 75% threshold.   The team accepted a model and its 

estimate for the threshold value only if the confidence interval at that predication was less then 5% 

wide and the input variable value fell within the design’s experimental ranges for that variable.   
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SECTION 3. ANALYSIS AND FINDINGS 

3.1. INTRODUCTION 

TRAC executed several iterations of the wrapper program to estimate a minimum 

acceptable operating level for the input variables.  With each iteration, the team sought to 

confirm and improve the design in four aspects.  First, the operational requirement was to 

maintain Ao >= 75%, so after each experiment the team adjusted the design to adequately 

explore the space above and below the 75% threshold.  This enabled reliable predictions by the 

response surface in around the required threshold.  The second was to ensure that input variable 

ranges did not result in combinations that caused the model to produce unrealistically high or 

low Ao values (0-10% or 100% Ao).  Values in these extreme regions often indicated that input 

variable values or combinations were too extreme, and the inherent limits on Ao had the effect of 

introducing further nonlinearities into the model.  Thirdly, the team sought to ensure that variable 

ranges were both reasonable and consistent with real-world possibilities.  For example, requiring 

15 mechanics to repair one fault is unreasonable and unnecessarily consumes resources in the 

model.  Finally, the analysts adjusted their designs such that the limits for each input variable 

would include values that ‘broke’ the 75% Ao threshold, and that resulted in confidence intervals 

less than 5% wide at that value.   

For brevity, three iterations are highlighted below.  The first is the initial design which 

included too many input variables and revealed a problem with a lack of requisite modeling data.   

The second iteration discussed did not have wide enough ranges or enough replications to 

accurately predict where Ao fell below 75% for several variables.  It did, however, produce 

insight that enabled the appropriate ranges, resolution of design points in that range, and the 

appropriate number of replications to be generated by the final iteration. It also provided some 

useful insight on the upper ranges of Ao that show diminishing returns with higher system 

reliability.  The final iteration yielded a model capable of predicting acceptable operating 

parameters for all input variables associated with the M1070A1, and all but two of the input 

variables for the M1000 trailer.  The team determined that increasing the design space to ‘break’ 

Ao for the M1000 with all input variables independently would result in an unrealistic scenario 

and produce results of limited utility for both systems and so did not run any further experiments.  



 12 

3.2. INITIAL SPACE FILLING DESIGN – INSUFFICENT INPUT DATA.  

TRAC created the initial designed experiment with the intent of examining 22 total 

variables for the M1070A1 (11 variables) and M1000 (10 variables): 1) system reliability (mean 

time between failure for six separate faults), 2) time to recover, 3) repair time, 4) number of 

mechanics required to repair a fault, 5) part acquisition time, and 6) probability of correct 

diagnosis.   The intent was not only to examine the repair system, but also to differentiate 

between various types of faults.  Fault types included: 1) SA-other, 2) SA-tire, 3) SA-drivetrain, 

4) SA-steering, 5) SA-5th wheel, and 6) SA-suspension.  Naturally, the trailer did not include a 

drivetrain failure.  Each individual fault type had its own time between failure, and the intent was 

to determine required system parameters for these individual fault types and for the maintenance 

system related parameters.  As an example, the study team could then say that a potential tractor 

candidate HET replacement should maintain a certain value for the mean time between 

suspension failures and the associated repair time because these would have the greatest positive 

effect on availability.  The initial run demonstrated that the team did not have enough data to 

inform such recommendations, but did provide initial insight into realistic variable ranges and 

overall system performance.  

3.2.1      INITIAL SPACE FILLING DESIGN DISCUSSION. 

The initial DOE had three overall problems.  First, the initial design did not have enough 

design points to adequately explore the full range of the input variables.  There were certain 

areas of the design that contained non-linearities for which there was not enough data to 

accurately model.  The team revealed this problem by examining Ao prediction confidence 

intervals created by the second order linear metamodel and observing several well above the 5% 

goal at 99% confidence.  Second, there was relatively high variability in some design points, 

with some replications containing Ao values at greater than 80% and less than 10%.  The 

standard deviation of Ao for many design points was also well over 20%, so the team made two 

further alterations to the design. The first was to reduce the maximum limit of the ‘number of 

mechanics’ input variable which caused non-linearities due to resource consumption and was 

unrealistically high at 15 and 22 for M1070A1 and M1000 respectively.  To further reduce 
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metamodel prediction confidence intervals and account for the high variance at certain design 

points the team also increased the number of replications from 50 to 100 per design point.   

The third and primary problem with the initial experiment was that there was not enough 

data to examine system reliability with multiple fault types.  Namely, TRAC did not have data on 

individual fault part acquisition time, repair time, or correct diagnosis probability.  The system 

abort-other failure type for both M1070A1 and M1000 was causing the most down time of all 

fault types, as illustrated in the top row of Figure 1 below.  Figure 1 consist of three rows 

representing fault data by system, M1000 is represented by pink and M1070A1 is represented by 

blue: row 1 illustrates the percentage of time a system is down by fault, row 2 illustrates the total 

number of occurrences by fault and row 3 illustrates the average downtime based on the type of 

fault.  

 

 

Upon closer examination of figure 1 and the initial output data, the team realized that the 

given input data did not support the level of fidelity that the team was trying to model.  This was 

because all faults used the same repair system data and SA-other had the lowest mean time 

between occurrence.  A drivetrain, other, or tire fault would all take the same amount of time to 

repair.  Similarly, SA-tire faults had similar mean down time per occurrence to all other fault 

Figure 1: Initial Results 
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types which made little ‘real-world’ sense for this type of fault.   It became apparent that TRAC 

did not have repair or diagnosis data to adequately model system level faults or draw any 

meaningful insight from experimenting at this resolution.  For the rest of the designs, TRAC 

elected to use a single variable for system reliability. The team combined individual fault types 

into a single system reliability input variable by merging the independent Poisson distributions 

into a single variable with a mean of 800.2758 for M1070A1 and 1644.4013 for M1000. 
 

3.3. IN-PROGRESS SPACE FILLING DESIGN – CENTERED AROUND ADJUSTED 
OPERATING PARAMETERS.  

The second example illustrated here demonstrates the robustness of the maintenance 

system and shows intermediate progress towards generating a metamodel capable of predicting 

parameter thresholds for the EHETS maintenance system.  Based on previous iterations, the team 

further saturated the design space to include 800 design points.  This enabled more precise 

modeling, but required a reduction in replications to 50 in order to run and postprocess the 

experiment in a reasonable timeframe.  For this iteration, the team also expanded the upper 

bounds for several input variables in an attempt to include the input variable operating points 

where Ao reached below 75%.  The limits chosen for this iteration are shown in table 1.   

Input Variables 
M1070A1 

(Tractor) 

M1000 

(Trailer) 

System Reliability – Mean time between failure (hours). 240.1 – 1360.5 246.7 – 3042.1 

Recovery Time – to recover vehicle to repair facility (hours). 1 – 120 

Repair Time – to repair identified fault (hours). 1 – 96 

Mechanics – # of mechanics required to repair identified fault. 1 – 10 

Probability of Correct Diagnosis .5 – 1 

Acquire Parts – Time required to obtain repair parts (hours). .5 – 107 

Table 1 Design Limits for Example Iteration 
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3.3.1      IN PROGRESS SPACE FILLING DESIGN RESULTS EXPLORATION. 

The results of a second order stepwise linear regression model estimating operating 

parameters for the EHETS maintenance system are shown below in Figure 2 (M1070A1) and 

Figure 3 (M1000).  Both results demonstrate the robustness of the EHETS maintenance system at 

base values.  Recall how the team held all but one variable at the base case value, and then varied 

that variable across its design range to obtain the point where Ao crossed the 75% threshold.  In 

both figures, this trace is shown in red.  Note how for all but three input variables in Figure 2, base 

Ao does not cross 75%.  To obtain operating parameter estimates for probability of correct 

diagnosis, part acquisition time, and recovery time, the team adjusted the base case reliability by 

a factor of 50 – 150%. This enabled estimation of the M1070A1 operating parameters, albeit at 

non base case reliability. As illustrated by the M1000 results in Figure 3, the team could not 

estimate operating parameters even with the system reliability adjustment.  These results, along 

with residual plots (see Appendix I) showing the design centered well above the target Ao, 

Figure 2: Intermediate Operating Parameter Estimate M1070A1 

Figure 3: Intermediate M1000 Operating Parameter Estimation 
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demonstrate the resiliency of the EHETS system, and led the team to expand limits of the input 

variables in latter experiments.   

The result also showed diminishing gains in Ao as system reliability increased.  This is 

shown in Figure 2 and Figure 3 as a decrease in slope after 1200 hours for M1070A1 and 2000 

hours for M1000.  This design explored the space above 75% Ao, very thoroughly and so the 

team concludes that there would be little to gain in increasing the EHETS mean time between 

failure well above these values.  

3.4. FINAL SPACE FILLING DESIGN – DESIGN CENTERED BELOW 
OPERATIONAL AVAILABILITY 75% THRESHOLD FOR M1070A1 & M1000.  

Based on the findings in previous iterations, the team arrived at a final design capable of 

predicting recommended operating parameters for all but two associated input variables.     For 

the final design, the team further saturated the design space with 1200 design points at 100 

replications per design.  Use of the NPS HPC cluster enabled the additional design points and 

replications despite the increased compute and storage requirements.   TRAC centered the final 

design below the 75% operational availability target, as shown in the residual plots in Appendix 

I.  The team originally desired a more target-centered design, but the ranges required to ‘break’ 

Ao for all input variables forced the design center lower.   Lowering the maximum value for the 

number of mechanics required variable not only better aligned it with real-world force structures, 

but also reduced the variability it caused in certain design combinations where the mechanic 

resource was overused.   

The resultant design is shown in Table 2.  In contrast the previous example, the team 

tailored input variables to the trailer and tractor separately.  Previous experiments with shared 

values across these systems caused the unexpected result of repair resource consumption that 

both increased variability and explored a far larger space than required.  The success of this final 

iteration thus laid in its targeted operating ranges designed to break Ao for the trailer and tractor 

and the highly saturated design space.  

Input Variables 
M1070A1 

(Tractor) 

M1000 

(Trailer) 
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System Reliability – Mean time between failure (hours). 240.1 – 1360.5 246.7 – 2250 

Recovery Time – to recover vehicle to repair facility (hours). 2 – 250  2 – 480  

Repair Time – to repair identified fault (hours). 1 – 100  1 – 364  

Mechanics – # of mechanics required to repair identified fault. 1 – 9 

Probability of Correct Diagnosis .19 – 1 

Acquire Parts – Time required to obtain repair parts (hours). .5 – 242 .5 – 525 

Table 2 Final Operating Ranges 

3.4.1      FINAL SPACE FILLING DESIGN RESULTS 

3.4.1.1.    VARIABLE IMPORTANCE 

Figure 6 shows input variable contributions for a first-order linear model of the EHETS 

maintenance system.  Perhaps unsurprisingly, the most important factor for both systems was 

system reliability.  If the system does not fail, then it does not become unavailable and enter the 

maintenance system.  The number of mechanics required to fix a fault was the next most 

important variable.  This variable caused significant nonlinearities to occur throughout the 

iterative process.  LBC treats mechanics as a resource, and once consumed, a backup of tractors 

and trailers in the maintenance process occurs.  Probably of correct diagnosis is related to 

mechanic consumption and the third most important input variable, indicating that the 

complexity of a design or system and its accompanying training and/or documentation may be 

nearly as crucial as its reliability.  Finally, recovery times were the least important variable.  This 

indicates that candidate EHETS designs need not overly focus on recoverability or improve 

recoverability from the previous HET design.   
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3.4.1.2.      ESTIMATING OPERATING PARAMETERS 

TRAC implemented targeted system operating ranges in this design to attain a minimum 

acceptable operating level for the trailer and tractor.  The team generated parameter estimates for 

all variables associated with the M1070A1 tractor and all the variables except recovery time and 

probability of correct diagnosis for M1000 trailer.  See the corresponding results shown in Figure 

5 and Figure 6.  The figure has six facets corresponding to the six input variables, the vertical 

axis is predicted availability, the horizontal axis represents the range of that variable explored in 

the design, and a 99% confidence interval is shaded grey.  Interestingly, estimates for the system 

reliability parameter increased from the second iteration presented in this analysis.  The increase 

was by ~100% for the M1070A1 and the M1000 up to 502 hours and 1072 hours respectively.  

This result is more conservative as it calls for longer mean time between failures.  Furthermore, 

it is based on a design more centered on lower Ao and so provides more accurate predictions 

(narrower confidence intervals) than the previously lower operating parameter estimates for 

system reliability.   

The shapes of the plots reveal a similar result from the second example.  The slope of the 

system reliability curve lessons as system reliability increases within the range of our design.  

This indicates that the Army could expect diminishing gains from higher levels of system 

reliability.  Finally, the other variables do not appear to have any meaningful slope changes or 

nonlinearities, and still hold the same general shape as in the previous example.  In that way, 

although out parameter estimates differ, we can confirm the importance of focusing on system 

Figure 4: M1070A1 Input Variable Contributions 
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reliability first and that the overall behavior of the maintenance system is relatively consistent 

across designs.  

 

  

 

 

 

Figure 5: M1070A1 Predicting Ao 

Figure 6: M1000 Predicting Ao 
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SECTION 4. CONCLUSION 

TRAC conducted this sensitivity analysis using designed experiments in LBC to support the 

EHETS AoA and inform design characteristics for the new system.  Several recommendations 

about design and operational characteristics were elicited by the study team and a list of these 

conclusion are provided in the sections below.  To support future efforts in LBC and other 

simulations, the team documented their efforts in scripts and through the production of this 

document.  TRAC used these scripts to generate multiple designs, adjust/produce simulation 

scenario files, run the simulation, and conduct the requisite postprocessing.  The DOE, coupled 

with high performance computing capabilities was instrumental in determining the operating 

ranges of the input variables and in understanding system performance despite a lack of specific 

maintenance characteristics for new candidate EHETS.  This methodology reduced and focused 

computational and analytic effort.  These tools also made it possible to execute multiple 

iterations within a timeframe of hours. Which is in stark comparison to a timeframe of days that 

the team experienced earlier in the process.  

This section will cover the operational characteristics of the EHETS and summarize a couple 

key points learned from the research.   

Section 1 Operational 

1. The robustness of the EHETS system at base-case values is exhibited in Figures 1 & 

2. TRAC’s attempt to create a design that fell below the Ao limit required several 

iterations and adjustments to the operating ranges to arrive at a minimum acceptable 

operating level for the input variables.   

2. TRAC implemented targeted system operating ranges to attain a minimum acceptable 

operating level for the tractor and trailer as shown in Figures 5 & 6. The team 

generated parameter estimates for all variables associated with the M1070A1 tractor 

and all the variables except recovery time and probability of correct diagnosis for 

M1000 trailer. 

3. The EHETS systems exhibit diminishing gains in Ao as system reliability increased 

beyond 1200 hours for M1070A1 and 2000 hours for M1000.  
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4. Variable significance identification was conducted by using the Pearson coefficient 

correlation and constructing a first-order and second-order linear regression 

metamodel. The Pearson Coefficient Correlation quickly identified which variables 

affected Ao and the linear regression metamodels were constructed to further 

investigate the effect and observe variable behavior. 

Section 2 Methodological 

This section outlines the key lessons learning associated with sensitivity analysis and 

designed experimentation with military simulations:   

1. Sensitivity analysis exploring operating parameters for potential new military system 

is an iterative process.  Analytic teams should not expect to ‘get it right’ without 

deliberately adjusting characteristics of their design and may have to reduce the scope 

of an effort if requisite data are not available.  

2. Increased resolution of the space filling design and increase replications provided 

better models that were more capable of revealing insight into system characteristics, 

but also demanded more computational power and effective coding to implement.  

3. Input variable ranges, even when informed by subject matter experts, can adversely 

affect an experimental design’s ability to provide data capable of accurately 

modelling a given system’s performance.  

4. HPC enables massively parallel execution of simulations, and might be required even 

with a lightweight simulation like LBC.  

5. Leveraging modern data science tools and packages like DPLYR and R drastically 

speed postprocessing times over legacy tools such as excel.  These also lessen the 

chance of human error in the process and enable reproducible results.  
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APPENDIX I  

Below illustrate the residual plots for the M1070A1 and M1000.  

JMP Generated Residual Plots 

Response Surface Model for M1070A1 

 

 

 

 

 

 

Response Surface Model for M1000 

Residual by Predicted Plot
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Residual by Predicted Plot
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APPENDIX II  

Overview 

This appendix contains snippets of the commented R code used to implement the DOE 

and generate the XML documents. 

DOE Scenario XML File Generation 

This portion of the R code created the expanded DOE used to write the values to the XML 

documents. 
############################################## 
# this section takes the DoE and append the                    #  
# correct phrasing so it can run in LBC                           # 
############################################## 
#save so you only have to change one variable to create file 
ConvertFile =Reliability 
#add exponential phrase to addFailure, add constant phrase to setTimeToRecover, setTimeToGetParts, and 
setTimeToRepair 
for (i in 1:nrow(ConvertFile[,c(1:6)])) { 
  for(j in 1:ncol(ConvertFile[,c(1:6)])) { 
    ConvertFile[i, j] <- paste0("Exponential(", ConvertFile[i, j],")") # for addFailure       
  } 
   
} 
 
for (i in 1:nrow(ConvertFile[,c(11:12)])) { 
  for(j in 1:ncol(ConvertFile[,c(11:12)])) { 
    ConvertFile[i, j + 10] <- paste0("Exponential(", ConvertFile[i, j + 10],")")#for setTimeToRecover/Repair    
  } 
} 
#remove the first column from the matrix and use the below code if you are importing csv 
LBCInput <- (as.data.frame(read.csv(file="SameReliabilityValues.csv", head = TRUE,sep = ","))) 
LBCInput =LBCInput[,-c(1) ] 
 
#use this line if you are running the program without an external file 
LBCInput =ConvertFile 
 
 
#move (setTimeToGetParts.M1070A1) to the proper position. 
LBCInput =LBCInput[c(1:9, 11, 10, 12)] 
 
#duplicate the columns to make the allNodes dataframe 
a = LBCInput[,c(1)] 
addFailureM1070A1 =do.call(cbind, replicate(114, as.matrix(a), simplify = FALSE)) 
 
b = LBCInput[,c(2)] 
addFailureM1000 =do.call(cbind, replicate(114, as.matrix(b), simplify = FALSE)) 
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c = LBCInput[, c(3)] 
setTimeToRecoverM1070A1 =do.call(cbind, replicate(114, as.matrix(c), simplify = FALSE)) 
 
d = LBCInput[, c(4)] 
setTimeToRecoverM1000 =do.call(cbind, replicate(114, as.matrix(d), simplify = FALSE)) 
 
e = LBCInput[, c(5)] 
setTimeToRepairM1070A1 =do.call(cbind, replicate(114, as.matrix(e), simplify = FALSE)) 
 
f = LBCInput[, c(6)] 
setTimeToRepairM1000 =do.call(cbind, replicate(114, as.matrix(f), simplify = FALSE)) 
 
g = LBCInput[, c(7)] 
addRepairAssetM1070A1 =do.call(cbind, replicate(114, as.matrix(g), simplify = FALSE)) 
 
h = LBCInput[, c(8)] 
addRepairAssetM1000 =do.call(cbind, replicate(114, as.matrix(h), simplify = FALSE)) 
 
i = LBCInput[, c(9,10)] 
probGetPartsM1070A1 =do.call(cbind, replicate(114, as.matrix(i), simplify = FALSE)) 
 
h = LBCInput[, c(11:12)] 
probGetPartsM1000 =do.call(cbind, replicate(114, as.matrix(h), simplify = FALSE)) 
 
#combine all dataframes into one 
AllNodes <-cbind(addFailureM1070A1, addFailureM1000, setTimeToRecoverM1070A1,    

 setTimeToRecoverM1000, setTimeToRepairM1070A1, setTimeToRepairM1000,     
 addRepairAssetM1070A1, addRepairAssetM1000, probGetPartsM1070A1,  
 probGetPartsM1000) 

This portion extracted the values, and faults from the XML input file 
############################################## 
# this section creates the nodes                                        #  
#                                                                                       # 
############################################## 
 
#extract the value of numReplications 
numReplications = getNodeSet(EHETS, "//LBCAssembly[@numReplications]") 
 
#find all nodes with the value attribute 
ValueSpot=getNodeSet(EHETS, "//@value") #<-this is just the actual value 
 
nodesWithValue=getNodeSet(EHETS, "//*[@value]") #<- this gets the nodes 
 
numNodes=length(nodesWithValue) 
 
numNodesName=character() 
###################################################################################### 
 
### Create a table  With Key information 
## Node # | Name  | SystemName | SystemID | FailureSeverity | FailureType | value |  
 
nodeNum = integer() 
name = character() 
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value = character() 
refId = character() 
SystemName = character() 
SystemID = character() 
FailureSeverity = character() 
FailureType= character() 
###################################################################################### 

 
############################################## 
# this section extracts the data from the xml                    #  
# so a dataframe can be created                                        # 
############################################## 
 
#this loop will return all required information from the parent nodes in reference to the attribute value name 
for (i in 1:numNodes){ 
  parent = xmlParent(nodesWithValue[[i]]) 
  grandParent=xmlParent(xmlParent(nodesWithValue[[i]])) 
  GreatGrandParent =xmlParent(xmlParent(xmlParent(nodesWithValue[[i]]))) 
  nodeNum[i] = i 
  name[i] = xmlAttrs(parent) #gets the methodName of the parent node in reference to the attribute value 
                                                 name 
   
  if (name[i]== 'addFailure'){ # this conditional statement is necessary because the structure is       
                                                              different from the other methodNames 
    
    #use the name to find the system information 
    sysnode1=getNodeSet(grandParent, paste0 ('.//', names(grandParent)[ 1], '')) 
     
    #extract the systemName and Id 
    refId=xmlAttrs(sysnode1[[1]])['refId'] 
    SystemName[i]=word(refId, 1, sep='\\.') #first part of refID 
    SystemID[i] =word(refId, 2, sep='\\.') #second part is ID 
     #extract the Failure Severity and Type 
    failNode=getNodeSet(parent, paste0('.//', names(parent)[ 1], '')) 
    FailRefId=xmlAttrs(failNode[[1]]) ['refId'] 
    FailureSeverity[i]=word(FailRefId, 1, sep='\\-') #first part of refID 
    FailureType[i]=word(FailRefId, 2, sep='\\-') #second part is ID 
    #extract the value 
    valueNode = getNodeSet(parent, ".//*[@value]") 
    value[i]=xmlAttrs(valueNode[[1]])['value'] 
  } 
  else if(name[i]== 'addRepairAsset'){ # this conditional statement is necessary because the structure is       
                                                              different from the other methodNames 
     
    #use the name to find the refID of the system  
    sysnode2=getNodeSet(GreatGrandParent, paste0('.//', names(GreatGrandParent)[ 1], '')) 
     
    #extract the systemName and Id 
    refId=xmlAttrs(sysnode2[[1]]) ['refId'] 
    SystemName[i]=word(refId, 1, sep='\\.'') #first part of refID 
    SystemID[i] =word(refId, 2, sep='\\.'') #second part is ID 
     #extract the Failure Severity and Type 
    failNode=getNodeSet(GreatGrandParent, paste0('.//', names(GreatGrandParent)[2], '')) 
    FailRefId=xmlAttrs(failNode[[1]]) ['refId'] 
    FailureSeverity[i]=word(FailRefId, 1, sep='\\-'') #first part of refID 
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    FailureType[i]=word(FailRefId, 2, sep='\\-'') #second part is ID 
    #extract the value 
    valueNode = getNodeSet(parent, ".//*[@value]") 
    value[i]=xmlAttrs(valueNode[[1]])['value'] 
  } 
  else{ 
     
    #use the name to find the system information 
    sysnode=getNodeSet(parent, paste0('.//'', names(parent)[ 1], '')) 
     #extract the systemName and Id 
    refId=xmlAttrs(sysnode[[1]]) ['refId'] 
    SystemName[i]=word(refId, 1, sep='\\.') #first part of refID 
    SystemID[i] =word(refId, 2, sep='\\.') #second part is ID 
     #extract the failure information 
    failNode=getNodeSet(parent, paste0('.//', names(parent)[ 2], '')) 
    FailRefId=xmlAttrs(failNode[[1]]) ['refId'] 
    FailureSeverity[i]=word(FailRefId, 1, sep='\\-'') #first part of refID 
    FailureType[i]=word(FailRefId, 2, sep='\\-'') #second part is ID 
     #extract the value 
    valueNode = getNodeSet(parent, ".//*[@value]") 
    value[i]=xmlAttrs(valueNode[[1]]) ['value'] 
  } 

} 

This portion of the code generated the XML and saved them based on their design row number. 

You will have to create a data frame containing the values you extracted from the XML 

document, in the code below it is called the NameFilter. Also, if you want to change the number 

of replications per design point you will have to create a data frame to hold those values and that 

data frame is called numReplications. 
############################################## 
# this section grabs the data from the                              #    
# NameFilter and numReplications dataframe                # 
# and writes it to the xml file and saves                          # 
# them based on their design point row num                  # 
############################################# 
 
#used to loop through rows and columns of the Design 
for (DesignRow in seq(nrow(AllNodes))){ 
   
  for (i in seq(ncol(AllNodes))){ 
#identify the node containing the value and replace it with the value contained in the Design 
    index = NameFilter$nodeNum[k] 
    xmlAttrs(nodesWithValue[[index]])<-c(value=paste0(AllNodes[DesignRow,i])) 
 
        k= ifelse(k=='FilterRow', 1, k+ 1) 
     
  } 
  
  #identify the node containing the number of iterations and replace required iteration per design point,  
   uncomment this line if you want to use it 
  #xmlAttrs(numReplications[[1]])<-  
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                                           c(numReplications=paste0(DesignPointReplications[DesignRow,PointCol])) 
     
  #access only the //SimEntityDataLogger that contains the file attribute name   
  SaveFileNodes=getNodeSet(EHETS,"//SimEntityDataLogger[@file]") 
  for (j in seq(length(SaveFileNodes))){ 
     
  loggerName=xmlAttrs(SaveFileNodes[[j]])['propertyName'] #cycles through to capture the name of the   
                                                                                                        csv file 
  xmlAttrs(SaveFileNodes[[j]])=c(file=paste0(Dir2, 'design_output_',DesignRow,'_', loggerName, '.csv'))  
     #appends the correct filename to the csv file in the XML document 
     
  } 
   
  cat(saveXML(EHETS), file=paste0(Dir,"design_point_", DesignRow  ,".xml")) #saves the filename based  
                                                                                                                             on the design point number 
  line=paste0("java -jar dist\\LBCRunner.jar ","\"",  Dir,"design_point_", DesignRow  ,".xml","\"") #  
                                                                                         creates the command prompt line to run the files 
  line1=paste0("java -jar dist\\lib\\LBCAnalyzer.jar  ","\"",  Dir,"design_point_", DesignRow  ,".xml","\"")  
    #creates the command prompt line to run analyzer 
   
  write(line,file=paste0(RunnerDir, "Runner.bat"),append=TRUE) #writes all of the files to a batch file to  
                                                                                                             run in LBC 
  write(line1,file=paste0(RunnerDir, "AnalyzerSen.bat"),append= TRUE) #writes all of the files to a batch  
                                                                                                                 file to analyze in LBC 
   

} 
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APPENDIX III  

Overview 

This appendix contains snippets of the commented R code used to execute the DOE and 

perform the post-processing of the data. 

DOE Execution File 

Once the XML files are created they can be executed using LBC. This can be accomplished by 

using the batch file created from the code or if you choose to have a self-contained program that 

creates the DOE, generates and executes the XML document, you will use the below code. This 

code requires additional R files that contains the functions for each step.   
### This Script Runs All The Functions Necessary to Run an LBC Experiment Using R### 
###  
### Experiments will be run in parallel using R's parallel function 
###  
### All of the required source files and the LBCv5 folder must be in the working directory with this file. 
### 
### MAKE SURE NO FILE PATHS HAVE SPACES IN THEM!!! 
 
### Load DoE Generation Functions 
# Functions here include loading base case XML, creating experimental design, and generating XML scenarios for 
execution 
source('DoEGeneration.r')  # Loads DoE Generator Function (newDOE) based on 'DiceDesign' NOLH function.   
source('GenXMLs.r') # Loads function to take design and base XML (makeXMLs) to create required number of 
XMLs to run  
source('runDoE.r') #Loads function that runs DoE in parallel. 
source('postProcessor.R') #Loads Postprocessing functions (right now just collects Availability files) 
 
#########  
######### Required packages - dplyr, xml, cowplot, DiceDesign, data.table, ggplot2, stringr, tidyr 
######### 
 
# Step 1 - Load Base Case and Generate DoE 
 
## find input XML (input scenario) 
inputXML<-file.choose() 
 
## Generate Experimental Design 
# Load Parameters (1st col variable, then max and min values for now, need to add distribution) 
# format: variable | mins | maxes  
# 
designloc<-"designtest.csv" 
#designloc<-choose.files()  #uncomment to select another design 
parameters<-read.csv(designloc) 
 
design<-newDOE(parameters) 
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## Generate XMLs in 'workingD'/LBCv5/data/xmls/ 
## WARNING - WILL OVERWRITE EXISTING xml scenario FILES 
makeXMLs(inputXML,design)   
 
## Get list of XMLs to run 
 
xmlList<-list.files(path = paste0(getwd(),"/LBCv5/data/xmls/")) 
xmlList<-list.files(choose.dir()) 
## Run the DoE 
oldwd<-getwd() # must change directory to LBC containing DiR before running.  
setwd(paste0(getwd(),"/LBCv5/")) 
 
# Run experiment in parallel - put all output files in output directory 
## WARNING - WILL OVERWRITE EXISTING OUTPUT FILES 
runExperiment(xmlList) 
 
setwd(oldwd) # set back to base wd.  
 
## Get Availability  
 
availability<-getAoFiles() 
 
availability<-getAoFiles(choose.dir())  #uncomment if you'd like to select another folder 
 
## Add downtime column and prepare data 
 
availability<-calcDownTime(availability) 
 
## Some Simple visualizations for availability.  
 
source('AvailabilityAnalysis.r', local=TRUE)  #Loads visualization and analysis Function 
 
 
variancebyplot 
 
byDesignM1000Ao 
byDesignM1070Ao 
 
plot_grid(PercTimeDownPlot, numberofOccurencesPlot, timedownPerOccurencePlot, align='v', 
          ncol=1) 
 
R Functions necessary for the above script to work 
 
########################################################################################## 
##################       Function to create new set of DOE     ########################## 
# source('DoEGeneration.r') # 
########################################################################################## 
library(DiceDesign) 
 
newDOE <- function(DesignParameters){ 
     
  blank <- nolhDesign(nrow(DesignParameters)) 
  # Code found at 
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  # https://rdrr.io/cran/DiceDesign/man/nolhDesign.html 
   
  blank<-blank$design 
   
  # Create a data frame of ranges for each factor 
  design<- data.frame(matrix(ncol = ncol(blank), nrow = nrow(blank))) 
  for (i in 1:nrow(DesignParameters)){ 
    design[,i] <- DesignParameters$mins[i]+(DesignParameters$maxes[i] - DesignParameters$mins[i])*blank[,i] 
  } 
   
  names(design)<-as.character(DesignParameters[,1]) 
   
  return(design) 
} 
 
 
library (parallel) 
 
runExperiment<-function(xmlList){ 
 
  no_cores<-detectCores() 
 
  print(paste("detected", no_cores, "cores." )) 
 
  no_cores=no_cores-2 
 
  if (no_cores<1){no_cores=1} 
   
  cl <- makeCluster(no_cores) 
 
  print(paste("Cluster initiated, running on", no_cores, "cores.")) 
 
  start_time = Sys.time() 
 
runTheDoE<-function(ListThing){ 
  system2("java", args = c("-jar", "dist\\LBCRunner.jar", paste0(getwd(),"/data/xmls/",ListThing))) 
} 
 
  parLapply(cl, xmlList, 
          runTheDoE) 
   
  stopCluster(cl) 
  end_time = Sys.time() 
  total = end_time - start_time 
 
print(paste0("Experiment complete, cluster stopped, it took ",total, " minutes to run.")) 
 
} 
 
########################################################################################## 
##################       Function to perform post-processing of the data         ########################## 
# source('postProcessor.R') # 
########################################################################################## 
 
## Get all Availability Output Files 
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library(data.table) 
library(stringr) 
library(dplyr) 
library("tidyr") 
 
 
## Get Ao files 
## This function is specific to availability and collects availability output files from the output directory 
## It has an optional argument (directory) where you can point it to gather files other than in the default output 
directory. 
 
getAoFiles<- function (directory){ 
   
  if (missing(directory)){ 
    directory=paste0(getwd()," /LBCv5/output/") 
  } else { 
    directory=paste0(directory, '/') 
  } 
   
  fileList<-list.files(path = directory) 
   
  fileList<-fileList[str_detect(fileList, 'available')] 
   
  df=fread(paste0(directory,fileList[1])) 
  df$Source.Name=fileList[1] 
   
  if (length(fileList)> 1){ 
    for (i in 2:length(fileList)){ 
    df1=fread(paste0(directory,fileList[i])) 
    df1$Source.Name=fileList[i] 
    df=rbind(df,df1) 
  } 
  } 
  df=df %>% filter(eventName!='Run') 
  return (df) 
} 
 
calcDownTime<- function (df){ 
   
  #calcDownTime calculates downtime based on scenario time for up/down events 
  #It also preprocesses this data by adding/removing columns to enable visualizations 
   
  #This function is used below to calculation downtime 
   
  fillDownTime= function (time,lagtime,totalTime,event,nextEvent){ 
     
    result=vector('numeric',length(time)) 
      for (i in 1:length(time)){ 
      if ((event[i]=="ReturnToDuty")){ 
        result[i]=time[i]-lagtime[i] 
      } else if (event[i]=="MakeUnavailable" & is.na(nextEvent[i])){ 
        result[i]=totalTime-time[i] 
      } else { 
        result[i]=0 
      } 
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    } 
    return (result) 
  } 
   
   
  #some variables for later calculations   
  totaltime=2160 
  totalvehicles=96 
   
  #This section prepares the data, and calculates downtime 
   
  df=df %>%  
    mutate(fault=str_split_fixed(data,'\\|', 2)[, 1], 
           truck_type=str_split_fixed(data, '\\|', 2)[, 2], 
           design=as.integer(str_split_fixed(Source.Name,'\\_', 4)[, 3]))  
   
   
  df=df %>% group_by(design,replication,entityName) %>%  
    mutate(downTime=fillDownTime(time, lag(time), totaltime, eventName, lead(eventName))) 
   
  #get rid of unneeded data columns 
  df$Source.Name=NULL 
  df$data= NULL 
  return (df) 
} 
 
########################################################################################## 
##################       Function to perform visualization of the results         ########################## 
# source('AvailabilityAnalysis.R')# 
########################################################################################## 
 
df=availability 
library(cowplot) 
 
#By rep results for Ao 
#some variables for later calculations   
totaltime=2160 
totalvehicles=96 
 
M1000Ao=df %>% ungroup() %>% group_by(design, replication) %>%  
  filter(truck_type=='COMBATHET' & substr(entityName, 1, 5)=='M1000') %>%  
  summarise(Ao=(((totaltime*totalvehicles)-sum(downTime))/(totaltime*totalvehicles))) 
 
M1070Ao=df %>% ungroup() %>% group_by(design, replication) %>%  
  filter(truck_type=='COMBATHET' & substr(entityName,1, 5)=='M1070') %>%  
  summarise(Ao=(((totaltime*totalvehicles)-sum(downTime))/(totaltime*totalvehicles))) 
 
#Convert by Rep results into by Design 
 
byDesignM1000Ao=M1000Ao %>% group_by(design) %>% summarize(meanAo=mean(Ao)) %>% 
arrange(design) 
 
byDesignM1070Ao=M1070Ao %>% group_by(design) %>% summarize(meanAo=mean(Ao)) %>% 
arrange(design) 



 34 

 
#Some interesting Summary Statistics 
 
totalDownTime=sum(df$downTime) #total of all downtime for experiment - used to calculate Perc of downtime 
 
TimeDownbyFault = df %>%   ungroup() %>%  
  filter(truck_type=='COMBATHET') %>% mutate(SystemName=str_split_fixed(`entityName`, "\\.",n=4)[, 1],  
                                             SystemID=str_split_fixed(`entityName`, "\\.",n=4)[, 2]) %>%  
  group_by(fault,SystemName) %>% summarize(PercentofTotalDowntime=sum(downTime)/totalDownTime,  
                                           numberOfOccurrences=sum(eventName=="MakeUnavailable"), 
                                           
AverageTimeDownPerOccurrence=sum(downTime)/sum(eventName=="MakeUnavailable")) %>%  
  arrange(desc(PercentofTotalDowntime)) 
 
 
SDDownbyFault<-df %>%    ungroup() %>%  
  filter(truck_type=='COMBATHET') %>% mutate(SystemName=str_split_fixed(`entityName`, "\\.",n=4)[, 1],  
                                             SystemID=str_split_fixed(`entityName`, "\\.",n=4)[, 2]) %>%  
  group_by(fault,SystemName,replication) %>%  
  summarize(totalDown=sum(downTime)) %>% ungroup() %>%  
  group_by(fault, SystemName) %>%  
  summarize(sdofTotalDowntime=sd(totalDown)) 
 
 
PercTimeDownPlot=TimeDownbyFault %>% ggplot(aes(x=reorder(fault, -
PercentofTotalDowntime),y=PercentofTotalDowntime, fill=SystemName))+  
  geom_bar(stat= "identity", width=.5, position = "dodge") + 
  labs(title= "Percent Down Time by Fault", 
       x ="Fault", y = "%Downtime") 
 
numberofOccurrencesPlot=TimeDownbyFault %>% ggplot(aes(x=reorder(fault, -
PercentofTotalDowntime),y=numberOfOccurrences, fill=SystemName))+  
  geom_bar(stat= "identity", width=.5, position = "dodge")  + 
  labs(title= "Total Occurrences by Fault", 
       x ="Fault", y = "Occurrences") 
 
timedownPerOccurrencePlot=TimeDownbyFault %>% ggplot(aes(x=reorder(fault, -
PercentofTotalDowntime),y=AverageTimeDownPerOccurrence, fill=SystemName))+  
  geom_bar(stat= "identity", width=.5, position = "dodge")  +  
  labs(title= "Mean Time Down Per Occurrences ", 
              x ="Fault", y = "Mean Time Down Per") 
 
variancebyplot=SDDownbyFault %>% ggplot(aes(x=fault,y=sdofTotalDowntime, fill=SystemName))+  
  geom_bar(stat= "identity", width=.5, position = "dodge")+  
  labs(title= "Variance of Total Down Time Per Fault", 
              x ="Fault", y = "Variance of Total Down Time Per Fault") 
 
variancebyplot 
 
plot_grid(PercTimeDownPlot, numberofOccurrencesPlot, timedownPerOccurrencePlot, align='v', 
          ncol=1) 
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APPENDIX IV  

 
JMP Script for Model: this defines the structure of the DOE for the JMP software. 
 
Neural( 
 Y( :Y ), 
 X( 
  :System Reliability M1070A1, 
  :System Reliability M1000, 
  :Time to Recover M1070A1, 
  :Time to Recover M1000, 
  :Time to Repair M1070A1, 
  :Time to Repair M1000, 
  :Mechanics M1070A1, 
  :Mechanics M1000, 
  :Prob of Correct Diagnosis M1070A11, 
  :Prob of Correct Diagnosis M1000, 
  :Time to Get Parts M1070A1, 
  :Time to Get Parts M1000 
 ) 
) 
 
JMP Script for DOE generation. 
 
DOE( 
 Space Filling Design, 
 {Add Response( Maximize, "Y", ., ., . ), 
 Add Factor( Continuous, 240.08274, 1360.46886, "System Reliability M1070A1", 0 ), 
 Add Factor( Continuous, 246.660195, 2250, "System Reliability M1000", 0 ), 
 Add Factor( Continuous, 2, 250, "Time to Recover M1070A1", 0 ), 
 Add Factor( Continuous, 2, 480, "Time to Recover M1000", 0 ), 
 Add Factor( Continuous, 1, 100, "Time to Repair M1070A1", 0 ), 
 Add Factor( Continuous, 1, 364, "Time to Repair M1000", 0 ), 
 Add Factor( Continuous, 1, 9, "Mechanics M1070A1", 0 ), 
 Add Factor( Continuous, 1, 9, "Mechanics M1000", 0 ), 
 Add Factor( Continuous, 0.19, 1, "Prob of Correct Diagnosis M1070A11", 0 ), 
 Add Factor( Continuous, 0.19, 1, "Prob of Correct Diagnosis M1000", 0 ), 
 Add Factor( Continuous, 0.5, 242, "Time to Get Parts M1070A1", 0 ), 
 Add Factor( Continuous, 0.5, 242, "Time to Get Parts M1000", 0 ), 
 Set Random Seed( 66423846 ), Space Filling Design Type( Latin Hypercube, 1200 ), 
 Simulate Responses( 0 ), Set Run Order( Randomize ), Make Table} 

) 

JMP Script for Linear Regression Model for M1070A1 
Fit Model( 
 Y( :M1070Ao ), 
 Effects( 
  :System.Reliability.M1070A1, 
  :Time.to.Recover.M1070A1, 
  :Time.to.Repair.M1070A1, 
  :Mechanics.M1070A1, 
  :Prob.of.Correct.Diagnosis.M1070A11, 
  :Time.to.Get.Parts.M1070A1 
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 ), 
 Personality( "Standard Least Squares" ), 
 Emphasis( "Effect Screening" ), 
 Run( 
  Profiler( 
   1, 
   Confidence Intervals( 1 ), 
   Term Value( 
    System.Reliability.M1070A1( 800.3, Lock( 0 ), Show( 1 ) ), 
    Time.to.Recover.M1070A1( 126, Lock( 0 ), Show( 1 ) ), 
    Time.to.Repair.M1070A1( 50.5, Lock( 0 ), Show( 1 ) ), 
    Mechanics.M1070A1( 5, Lock( 0 ), Show( 1 ) ), 
    Prob.of.Correct.Diagnosis.M1070A11( 0.595, Lock( 0 ), Show( 1 ) 
), 
    Time.to.Get.Parts.M1070A1( 121.25, Lock( 0 ), Show( 1 ) ) 
   ) 
  ), 
  :M1070Ao << {Summary of Fit( 0 ), Analysis of Variance( 0 ), 
  Parameter Estimates( 1 ), Effect Details( 0 ), Lack of Fit( 0 ), 
  Sorted Estimates( 0 ), Plot Actual by Predicted( 1 ), Plot Regression( 0 ), 
  Plot Residual by Predicted( 1 ), Plot Studentized Residuals( 1 ), 
  Plot Effect Leverage( 0 ), Plot Residual by Normal Quantiles( 0 ), 
  Box Cox Y Transformation( 1 )} 
 ) 

) 

JMP Script for Response Surface Model for M1070A1 
Fit Model( 
 Y( :M1070Ao ), 
 Effects( 
  :System.Reliability.M1070A1 & RS, 
  :Time.to.Recover.M1070A1 & RS, 
  :Time.to.Repair.M1070A1 & RS, 
  :Mechanics.M1070A1 & RS, 
  :Prob.of.Correct.Diagnosis.M1070A11 & RS, 
  :Time.to.Get.Parts.M1070A1 & RS, 
  :System.Reliability.M1070A1 * :System.Reliability.M1070A1, 
  :System.Reliability.M1070A1 * :Time.to.Recover.M1070A1, 
  :Time.to.Recover.M1070A1 * :Time.to.Recover.M1070A1, 
  :System.Reliability.M1070A1 * :Time.to.Repair.M1070A1, 
  :Time.to.Recover.M1070A1 * :Time.to.Repair.M1070A1, 
  :Time.to.Repair.M1070A1 * :Time.to.Repair.M1070A1, 
  :System.Reliability.M1070A1 * :Mechanics.M1070A1, 
  :Time.to.Recover.M1070A1 * :Mechanics.M1070A1, 
  :Time.to.Repair.M1070A1 * :Mechanics.M1070A1, 
  :Mechanics.M1070A1 * :Mechanics.M1070A1, 
  :System.Reliability.M1070A1 * :Prob.of.Correct.Diagnosis.M1070A11, 
  :Time.to.Recover.M1070A1 * :Prob.of.Correct.Diagnosis.M1070A11, 
  :Time.to.Repair.M1070A1 * :Prob.of.Correct.Diagnosis.M1070A11, 
  :Mechanics.M1070A1 * :Prob.of.Correct.Diagnosis.M1070A11, 
  :Prob.of.Correct.Diagnosis.M1070A11 * :Prob.of.Correct.Diagnosis.M1070A11, 
  :System.Reliability.M1070A1 * :Time.to.Get.Parts.M1070A1, 
  :Time.to.Recover.M1070A1 * :Time.to.Get.Parts.M1070A1, 
  :Time.to.Repair.M1070A1 * :Time.to.Get.Parts.M1070A1, 
  :Mechanics.M1070A1 * :Time.to.Get.Parts.M1070A1, 
  :Prob.of.Correct.Diagnosis.M1070A11 * :Time.to.Get.Parts.M1070A1, 
  :Time.to.Get.Parts.M1070A1 * :Time.to.Get.Parts.M1070A1 
 ), 
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 Personality( "Standard Least Squares" ), 
 Emphasis( "Effect Screening" ), 
 Run( 
  Profiler( 
   1, 
   Confidence Intervals( 1 ), 
   Term Value( 
    System.Reliability.M1070A1( 800.3, Lock( 0 ), Show( 1 ) ), 
    Time.to.Recover.M1070A1( 126, Lock( 0 ), Show( 1 ) ), 
    Time.to.Repair.M1070A1( 50.5, Lock( 0 ), Show( 1 ) ), 
    Mechanics.M1070A1( 5, Lock( 0 ), Show( 1 ) ), 
    Prob.of.Correct.Diagnosis.M1070A11( 0.595, Lock( 0 ), Show( 1 ) 
), 
    Time.to.Get.Parts.M1070A1( 121.25, Lock( 0 ), Show( 1 ) ) 
   ) 
  ), 
  :M1070Ao << {Summary of Fit( 0 ), Analysis of Variance( 0 ), 
  Parameter Estimates( 1 ), Effect Details( 0 ), Lack of Fit( 0 ), 
  Sorted Estimates( 1 ), Plot Actual by Predicted( 1 ), Plot Regression( 0 ), 
  Plot Residual by Predicted( 1 ), Plot Studentized Residuals( 1 ), 
  Plot Effect Leverage( 0 ), Plot Residual by Normal Quantiles( 0 ), 
  Box Cox Y Transformation( 1 )} 
 ) 

) 

JMP Script for Linear Regression Model for M1000 
Fit Model( 
 Y( :M1000Ao ), 
 Effects( 
  :System.Reliability.M1000, 
  :Time.to.Recover.M1000, 
  :Time.to.Repair.M1000, 
  :Mechanics.M1000, 
  :Prob.of.Correct.Diagnosis.M1000, 
  :Time.to.Get.Parts.M1000 
 ), 
 Personality( "Standard Least Squares" ), 
 Emphasis( "Effect Screening" ), 
 Run( 
  Profiler( 
   1, 
   Confidence Intervals( 1 ), 
   Term Value( 
    System.Reliability.M1000( 1644.4, Lock( 0 ), Show( 1 ) ), 
    Time.to.Recover.M1000( 241, Lock( 0 ), Show( 1 ) ), 
    Time.to.Repair.M1000( 182.5, Lock( 0 ), Show( 1 ) ), 
    Mechanics.M1000( 5, Lock( 0 ), Show( 1 ) ), 
    Prob.of.Correct.Diagnosis.M1000( 0.595, Lock( 0 ), Show( 1 ) ), 
    Time.to.Get.Parts.M1000( 262.75, Lock( 0 ), Show( 1 ) ) 
   ) 
  ), 
  :M1000Ao << {Summary of Fit( 0 ), Analysis of Variance( 0 ), 
  Parameter Estimates( 1 ), Effect Details( 0 ), Lack of Fit( 0 ), 
  Sorted Estimates( 0 ), Plot Actual by Predicted( 1 ), Plot Regression( 0 ), 
  Plot Residual by Predicted( 1 ), Plot Studentized Residuals( 1 ), 
  Plot Effect Leverage( 0 ), Plot Residual by Normal Quantiles( 0 ), 
  Box Cox Y Transformation( 1 )} 
 ) 
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) 

JMP Script for Response Surface Model for M1000 
Fit Model( 
 Y( :M1000Ao ), 
 Effects( 
  :System.Reliability.M1000 & RS, 
  :Time.to.Recover.M1000 & RS, 
  :Time.to.Repair.M1000 & RS, 
  :Mechanics.M1000 & RS, 
  :Prob.of.Correct.Diagnosis.M1000 & RS, 
  :Time.to.Get.Parts.M1000 & RS, 
  :System.Reliability.M1000 * :System.Reliability.M1000, 
  :System.Reliability.M1000 * :Time.to.Recover.M1000, 
  :Time.to.Recover.M1000 * :Time.to.Recover.M1000, 
  :System.Reliability.M1000 * :Time.to.Repair.M1000, 
  :Time.to.Recover.M1000 * :Time.to.Repair.M1000, 
  :Time.to.Repair.M1000 * :Time.to.Repair.M1000, 
  :System.Reliability.M1000 * :Mechanics.M1000, 
  :Time.to.Recover.M1000 * :Mechanics.M1000, 
  :Time.to.Repair.M1000 * :Mechanics.M1000, 
  :Mechanics.M1000 * :Mechanics.M1000, 
  :System.Reliability.M1000 * :Prob.of.Correct.Diagnosis.M1000, 
  :Time.to.Recover.M1000 * :Prob.of.Correct.Diagnosis.M1000, 
  :Time.to.Repair.M1000 * :Prob.of.Correct.Diagnosis.M1000, 
  :Mechanics.M1000 * :Prob.of.Correct.Diagnosis.M1000, 
  :Prob.of.Correct.Diagnosis.M1000 * :Prob.of.Correct.Diagnosis.M1000, 
  :System.Reliability.M1000 * :Time.to.Get.Parts.M1000, 
  :Time.to.Recover.M1000 * :Time.to.Get.Parts.M1000, 
  :Time.to.Repair.M1000 * :Time.to.Get.Parts.M1000, 
  :Mechanics.M1000 * :Time.to.Get.Parts.M1000, 
  :Prob.of.Correct.Diagnosis.M1000 * :Time.to.Get.Parts.M1000, 
  :Time.to.Get.Parts.M1000 * :Time.to.Get.Parts.M1000 
 ), 
 Personality( "Standard Least Squares" ), 
 Emphasis( "Effect Screening" ), 
 Run( 
  Profiler( 
   1, 
   Confidence Intervals( 1 ), 
   Term Value( 
    System.Reliability.M1000( 1644.4, Lock( 0 ), Show( 1 ) ), 
    Time.to.Recover.M1000( 241, Lock( 0 ), Show( 1 ) ), 
    Time.to.Repair.M1000( 182.5, Lock( 0 ), Show( 1 ) ), 
    Mechanics.M1000( 5, Lock( 0 ), Show( 1 ) ), 
    Prob.of.Correct.Diagnosis.M1000( 0.595, Lock( 0 ), Show( 1 ) ), 
    Time.to.Get.Parts.M1000( 262.75, Lock( 0 ), Show( 1 ) ) 
   ) 
  ), 
  :M1000Ao << {Summary of Fit( 0 ), Analysis of Variance( 0 ), 
  Parameter Estimates( 1 ), Effect Details( 0 ), Lack of Fit( 0 ), 
  Sorted Estimates( 0 ), Plot Actual by Predicted( 1 ), Plot Regression( 0 ), 
  Plot Residual by Predicted( 1 ), Plot Studentized Residuals( 1 ), 
  Plot Effect Leverage( 0 ), Plot Residual by Normal Quantiles( 0 ), 
  Box Cox Y Transformation( 1 )} 
 ) 

) 
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