

NIWC Pacific
San Diego, CA 92152-5001

 TECHNICAL DOCUMENT 3390

July 2019

Aggregated Machine Learning on
Indicators of Compromise

John M. San Miguel
Megan E.M. Kline
Roger A. Hallman

Johnny Phan
Scott M. Slayback

Christopher M. Weeden
Jose V. Romero-Mariona

Distribution Statement A: Approved for public release; distribution is unlimited.

This page intentionally blank.

NIWC Pacific
San Diego, CA 92152-5001

TECHNICAL DOCUMENT 3390

July 2019

Aggregated Machine Learning on
Indicators of Compromise

John M. San Miguel
Megan E.M. Kline
Roger A. Hallman

Johnny Phan
Scott M. Slayback

Christopher M. Weeden
Jose V. Romero-Mariona

Distribution Statement A: Approved for public release; distribution is unlimited.

Administrative Notes:

This document was approved through the Release of Scientific and

Technical Information (RSTI) process in June 2018 and formally published

in the Defense Technical Information Center (DTIC) in July 2019.

This document’s content represents work performed under Space and
Naval Warfare Systems Center Pacific (SSC Pacific). SSC Pacific formally
changed its name to Naval Information Warfare Center Pacific (NIWC
Pacific) in February 2019

NIWC Pacific

San Diego, California 92152-5001

M. K. Yokoyama, CAPT, USN
Commanding Officer

W. R. Bonwit
Executive Director

ADMINISTRATIVE INFORMATION

The work described in this report was performed by the Cyber / Science & Technology Branch

(Code 58230) and Advanced Electromagnetics Technology Branch (Code 58230) of the

Cybersecurity Engineering Division (Code 58220), Space and Naval Warfare Systems Center Pacific

(SSC Pacific), San Diego, CA. The Naval Innovative Science and Engineering (NISE) Program at

SSC Pacific funded this Applied Research project.

This is a work of the United States Government and therefore is not copyrighted. This work may be

copied and disseminated without restriction.

The citation of trade names and names of manufacturers is not to be construed as official government

endorsement or approval of commercial products or services referenced in this report.

MATLAB® is a registered trademark of The MathWorks, Inc.

Released by

Jose Romero-Mariona, Head

Cyber / Science & Technology

Under authority of

Jara D. Tripiano, Head

Cybersecurity Engineering

v

EXECUTIVE SUMMARY

The increasing ubiquity of mobile computing technology has lead to new trends in many different

sectors. “Bring Your Own Device” is one such growing trend in the workplace, because it allows

enterprise organizations to benefit from the power of distributed computing and communications

equipment that their employees have already purchased. Unfortunately, the integration of a diverse

set of mobile devices (e.g., smart phones, tablets, etc.) presents enterprise systems with new

challenges, including new attack vectors for malware. Malware mitigation for mobile technology is a

long-standing problem for which there is not yet a good solution. In this paper, we focus on

identifying malicious applications, and verifying the absence of malicious or vulnerable code in

applications that the enterprises and their users seek to utilize. Our analysis toolbox includes static

analysis and permissions risk scoring, pre-installation vetting techniques designed to insure that

malware is never installed in devices on an enterprise network. However, dynamic code-loading

techniques and changing security requirements mean that apps which previously passed the

verification process, and have been installed on devices, may no longer meet security standards, and

may be malicious. To identify these apps, and prevent future installation of them, we propose a

crowd-sourced behavioral analysis technique, using machine learning to identify malicious activity

through anomalies in system calls, network behavior, and power consumption. These techniques

apply effectively to single user devices over time, and to individual devices within an enterprise

network.

This page is intentionally blank.

vii

CONTENTS

EXECUTIVE SUMMARY .. v

1. INTRODUCTION... 1

1.1 CONTRIBUTION .. 1

1.2 BACKGROUND ... 1

1.2.1 Crowd-sourced Behavioral Analysis ... 1

1.2.2 Related Work ... 2

2. MOBILE TECHNOLOGY IN THE CONTEXT OF THE NAVY .. 5

2.1 MOBILE ECOSYSTEM SECURITY GAPS... 5

2.2 HOW THE NAVY IS DOING MOBILE ... 6

2.2.1 How the Navy is doing mobile security ... 6

3. THE MAVERIC APPROACH TO DYNAMIC ANALYSIS FOR MOBILE (ANDROID)
APPLICATION SECURITY .. 9

3.1 FEATURE SETS.. 10

3.1.1 Rationale for Collecting Power Consumption ... 10

3.1.2 Rationale for Collecting Network Activity .. 10

3.1.3 Rationale for Collecting Sequences of System Calls 10

3.2 DATA ANALYSIS... 11

4. EXECUTION PLAN ... 12

4.1 POWER CONSUMPTION ... 13

4.2 NETWORK ACTIVITY ... 13

4.3 SEQUENCE OF SYSTEM CALLS .. 13

4.4 APPLICATION SET ... 14

4.5 MACHINE LEARNING METHODOLOGY ... 14

5. CONCLUSION AND FUTUREWORK ... 18

REFERENCES ... 20

viii

Figures

1. MAVeRiC’s overall architecture makes use of an advanced static analysis

capability that utilizes the Artemis tool to verify a lack of malice in Android

applications. Crowd-sourced dynamic analysis monitors applications to ensure

that malice is not present during application execution. Dell and Dell Precision

are trademarks of Dell Inc. or its subsidiaries. Intel is a trademark of Intel Corpo-

ration or its subsidiaries in the U.S. and/or other countries... 3

2. MAVeRiC’s approach to dynamic analysis is as follows: Known good and bad

applica- tions are monitored for power consumption, network activity, and system

calls. Both supervised and unsupervised machine learning techniques are

utilized for detecting IOCs. ... 9

1

1. INTRODUCTION

Mobile technology has become ubiquitous in society, leading to new trends in many different

sectors. “Bring Your Own Device” (BYOD) [9] is a trend that has entered many workplaces to

accommodate employees’ comfort and familiarity with their personal devices. The benefits of BYOD

policies include allowing companies to save money by not having to make information technology

purchases and enabling a distributed computing and communications network of employees’

equipment. Estimates in 2011 suggested that nearly 75% of employers allowed employees to connect

their personal devices to enterprise networks [28], and this trend has only increased since then.

Indeed, the BYOD phenomena can be found in diverse sectors such as business [10], education [22],

and healthcare [18]. Faced with a younger generation of workers who have always had mobile

devices, government bodies at various levels within the United States are exploring the adoption of

BYOD policies [23]. This phenomena has even become an issue for military organizations, where

personal devices may interact with critical cyber-physical systems as well as environments that

contain extremely sensitive information [7, 21].

In light of this new reality, military and other government organizations must determine ways to

keep malicious applications on personal devices from infecting corporate networks. To this end, we

propose Mobile Application Vetting and Risk-Estimation Capability (MAVeRiC), a program which

makes use of both static and dynamic analysis to vet Android1® applications. Specifically, MAVeRiC

offers the ability to vet Android applications for the absence of malice both pre- and post-installation.

This post-installation vetting is accomplished by comparing data from running applications between

users on enterprise networks. MAVeRiC’s overall architecture can be seen in Figure 1.

1.1 CONTRIBUTION

Our main contribution in this paper is the description of an approach for verifying the absence of

malice in Android applications that utilizes a conglomeration of machine learning techniques on

crowd-sourced behavioral data. We also provide background information on how enterprise

networks which host enclaves with particularly sensitive information and critical systems handle the

BYOD phenomenon, which informs our approach in MAVeRiC.

1.2 BACKGROUND

Static (or code) analysis provides an analysis of an application without actually executing it. One

such analysis technique is to create “feature vectors” that characterize a given application’s

characteristic actions (e.g., permissions requests). Benign applications within each category that have

similar functions are expected to have similar permissions requests, while malicious ones deviate; the

extent of deviation is measured and used for risk assessment. Almost all static analysis for risk

assessment of Android applications use permission calls as their main criteria. One weakness of static

analysis techniques is a vulnerability to code obfuscation. Dynamic (or behavioral) analysis is not

vulnerable to code obfuscation or other evasion techniques that can get past a static analysis regimen

because it is able to observe malicious behavior on an execution path [29]. Our prior work [11]

provides a brief survey of static and dynamic analysis tools for Android Applications.

1The Android name and Android Robot logo are property of Google LLC. The Android Robot logo is licensed under the terms

of the Creative Commons Attribution 2.5 license.

2

1.2.1 Crowd-sourced Behavioral Analysis

The Crowd-Sourced Behavioral Analysis (CSBA) approach outlined in this paper is part of a

larger framework of technology and policy that the MAVeRiC team is developing. MAVeRiC

employs both a pre-installation vetting procedure as well as post-installation dynamic analysis. The

pre-installation vetting includes triage, data flow analysis, and permissions risk analysis, which all

feed into an overall risk score.

The triage and data flow analysis portion of the vetting process is built around Artemis (which

utilizes DroidSafe’s static analysis capabilities) [17], the best-of-breed solution to the DARPA

Automated Program Analysis for Cybersecurity (APAC) program2, provided by Raytheon BBN3.

Triage does a quick comparison of short sequences of machine language instructions against

sequence lists from Android Packages (apks) that are known to be malicious. Data Flow analysis lifts

apk binaries to an intermediate representation (IR) called Jimple [27], and the framework generates a

listing of the possible execution paths of the program. This listing can be shown to analysts in the

form of a control-flow-graph (CFG), or a class-call-graph (CCG) with the ability to query results for

specific data flows. Permissions risk analysis is based on the likelihood of a given application’s

category requesting a certain set of permissions. The overall risk score is a quantification of the

individual analyses to provide analysts with an aggregate overview of an application’s risk. The

overarching goal is to support non-specialized IT personnel in quickly evaluating the risk involved

with installing a given app on a DoD device.

The focus of this paper is to describe the Crowd-Sourced Behavioral Analysis (CSBA) approach

used to develop MAVeRiC’s post-installation dynamic analysis. MAVeRiC crowd-sources data and

uses a machine learning approach to analyze sequences of system calls, network behavior, and power

consumption data to identify malicious activities both from a single user’s device over time as well

as within a trusted network of users.

1.2.2 Related Work

Other related efforts have validated the approach MAVeRiC has taken. One paper suggests that

there are limitations to utilizing purely static or dynamic approach to analyzing Android malware [5].

They point out that the standard of static malware could not be sufficient to protect against

techniques that evade or obfuscate such analysis and are therefore inadequate and ineffective to an

analyst. They propose an approach that detects Android malware by fingerprinting the behavior of

system calls and incorporating machine learning to be able to associate malicious behaviors. The

approach is validated using a real device and experiments on 20,000 execution traces across 2,000

applications with a 97% accuracy. Our approach to analyzing sequences of system calls will closely

mirror theirs by being run on an emulator, but then validated with a real device metrics. In addition,

we are incorporating other types of data for analysis, including network activity and power

consumption.

2
https://www.darpa.mil/program/automated-program-analysis-for-cybersecurity

3Raytheon is a registered trademark of the Raytheon Company.

http://www.darpa.mil/program/automated-program-analysis-for-cybersecurity
http://www.darpa.mil/program/automated-program-analysis-for-cybersecurity

3

An approach we leverage that is validated in another paper [6] discusses the use of power

consumption as a mechanism to create an energy footprint to determine a baseline. Along with the

baseline, they propose the use of energy consumption measurement from seven covert channels

including type of intent, file lock, system load, volume settings, unix socket discovery, file size, and

memory load.

Inspired by [4], we also make use of the crowd-sourcing paradigm. By collecting data from

multiple users within a network that is semi-trusted, we have a much more robust picture of how

apps are used and can get a better understanding of what typical behaviors are. We anticipate that this

with support our analytics by allowing quick identification of unususal behaviors. This work expands

on that of Burguera et al. by working in a larger test environment with more features. We are also

appling the approach to a Navy-relevant environment with navy security concerns in mind.

The remainder of this paper is laid out as follows: Section 2 provides a very high-level overview

to the way that the United States Navy is approaching the incorporation of mobile technologies and

attempting to

Figure 1. MAVeRiC’s overall architecture makes use of an advanced static analysis
capability that utilizes the Artemis tool to verify a lack of malice in Android
applications. Crowd-sourced dynamic analysis monitors applications to ensure that
malice is not present during application execution. Dell and Dell Precision are
trademarks of Dell Inc. or its subsidiaries. Intel is a trademark of Intel Corpo- ration or
its subsidiaries in the U.S. and/or other countries.

adjust to the realities of BYOD. We detail our approach to MAVeRiC dynamic analysis in Section 3

and our plan for executing the approach in Section 4. Finally, concluding remarks and directions for

possible future work are given in Section 5.

This page is intentionally blank.

5

2. MOBILE TECHNOLOGY IN THE CONTEXT OF THE NAVY

Mobile devices are transforming the way that the navy operates. By leveraging the computing

power, small form factor and many integrated sensors, we have the ability to be more responsive and

interactive with our environment. There is great potential in operational use of distributed computing

resources to enhance users’ situational awareness, share data, build a better picture of the operating

environment, and decrease out-of-pocket time. The navy has the option to leverage this computing

and communications ability at a substantially reduced cost through the use of BYOD policies.

The mobile ecosystem is constructed around the use of dedicated single-purpose applications

(apps), which interface with a device’s onboard sensors and network communications to provide

services to the device user. Since each user has different roles and needs, they will need the ability to

install different apps. To meet warfighter needs, the navy can develop its own apps, and

simultaneously leverage Commercial

Off-the-Shelf (COTS) apps. In either case, we need to ensure that these apps do not leak sensitive

personal or mission-related information.

2.1 MOBILE ECOSYSTEM SECURITY GAPS

While the Play Store and the associated mobile ecosystem have been active for almost 9 years,

security research in the field lags behind. There have been a number of incidents that demonstrate

that current mobile malware detection and prevention techniques are largely ineffective.

For example, in 2017, Kaspersky labs discovered a malicious app known as SkyGoFree [2], which

had been available on third-party app stores and side-loading websites since 2014. This app has

several advanced features, including the ability to selectively record data from the camera and

microphone, with GPS location being used as a primary selection criteria. This allows the phone to

record, for example, every conversation its owner has in the company office. SkygoFree can also use

assistive technology, such as screen readers, to read information from otherwise well-protected

encryption applications like Whatsapp. All recorded data, user contacts, and stored personal

information is exfiltrated when the app surreptitiously connects to Wi-Fi networks–even if the device

is in airplane mode. As an afterthought, the app will also use the infected devices to engage in SMS

and click-fraud.

Conventional wisdom – and the SkyGoFree case – suggest that the strongest protection against this

sort of malicious app is to only install apps from the official stores. While this strategy may provide

more protection, it doesn’t provide complete protection. As an example, the ExpensiveWall malware

[8, 19] – which engaged in SMS fraud, pay-per-click fraud, and data exfiltration – worked its way

into the Google Play Store4 as a variety of mobile wallpaper apps. The developers used packing

techniques to obfuscate the malicious code in their APKs, a technique that successfully bypassed

Play Store security measures. When the malware was discovered, researchers estimated that it had

managed to infect approximately 21 million devices.

4
https://play.google.com/store

6

In an even more significant case, the Facebook Messenger app, actively in use on 1.2 billion

devices in 2017, was recently shown to be collecting not just user-provided information, but also

SMS and call data from users’ devices. This data collection may be in violation of Facebook user

consent policies and a 2011 agreement between Facebook and the Federal Trade Commission. This

data was stored for years on Facebook servers before being scraped and parsed by Cambridge

Analytica during the 2016 election cycle [14]. The same information could just as easily have been

scraped and used by adversaries seeking to construct professional and personal networks that could

be used for social engineering and other intelligence gathering.

This sort of intelligence gathering was achieved by accident, when the Strava mobile fitness app

published a heat map of popular running routes around the world. Researchers very quickly identified

US forward military bases in the Middle East, as well as facilities in use by other militaries [12]. This

app, which was completely open about its data collection and usage, had managed to reveal sensitive,

mission-critical information and place users at risk by revealing common patterns of movement and

behavior.

The DoD and its personnel are also deliberately targeted by malicious apps. According to the US

Department of Defense website’s Mobile App Gallery5, there is an unsanctioned in-the-wild app

targeting Thrift Savings Plan (TSP) participants who want to manage their retirement savings from

their mobile devices. The app, “TSP Funds”, which was not developed by any organization

associated with the DoD or the TSP program, prompts the user to provide a username and password,

enabling the developers to gain unauthorized access to the sensitive financial information of DoD

personnel.

Even sanctioned apps present an attack surface that is in need of examination. DoD has released an

app called Defense Finance and Accounting Service (DFAS). This app provides DoD employees

with access to information about their salaries, taxes and benefits. To an adversary, this is a treasure

trove of Personally Identifiable Information (PII), including personal finances and social security

information.

These incidents demonstrate a need for improvement in the field of mobile security. Each app,

whether intentionally or not, exposed sensitive information to malicious actors. The MAVeRiC effort

seeks to identify apps that expose information improperly, and either prevent their installation, or

remove them if their inappropriate behavior is discovered later.

2.2 HOW THE NAVY IS DOING MOBILE

The navy is developing policies to support the adoption of mobile devices and apps. In some areas,

Android and iOS devices are being prepared by administrative staff, then issued to navy personnel.

End-users may use the devices for email, telecommunications, and other business related functions.

There are also pilot programs seeking a cost savings through the use of BYOD policies. These

devices are granted access to business related functions and communications, but they are also

integrated into users’ personal lives, and apps installed on the devices reflect this. Both government-

issued devices and BYOD devices are subject to Mobile Device Management (MDM) tools, which

allow the organization to remotely manage device security controls, limit app installation, track

device activity, and erase data from a device.

5https://www.defense.gov/Resources/Developer-Info/Apps-Gallery/

http://www.defense.gov/Resources/Developer-Info/Apps-Gallery/

7

2.2.1 How the Navy is doing mobile security

One approach to mobile security is containerization, as demonstrated by Good Technology’s

Secure Enterprise Mobility Management (EMM) Suites. In principle, a containerization solution can

completely partition a phone into two (or more) isolated environments, such that data in one

container is not accessible to apps in another container. Even if one container were compromised by

a malicious app, the other containers would be able to maintain data confidentiality. In practice,

researchers have demonstrated that malicious apps in one container can gain access to underlying

kernel modules and, from there, access the processes and data that should be isolated within different

containers [13].

The Defense Information Security Agency (DISA) is the entity responsible for policy and practices

related to mobile device and app security for the US Government. According to the DISA DOD

Mobility Applications webpage6, each app is vetted via a rigorous process including static, dynamic,

and network analysis. The results of these analyses are mapped against requirements from the Mobile

Application Security Requirements Guide (MAppSRG) [26], National Information Assurance

Partnership (NIAP)7, Protection Plan (PP), and the Open Web Application Security Project

(OWASP)8, among others.

DISA reports that “over 200 approved apps” are available for download in the DoD. As of

December 2017, the Google Play Store has 3.5 million apps. A major goal of the MAVeRiC project

is to accelerate this decision-making process, while maintaining or improving the accuracy of

detection for malicious code. This improvement is vital if the DoD intends to bring the use of mobile

devices and apps to its full potential.

7https://www.niap-ccevs.org/
8https://www.owasp.org/

This page is intentionally blank.

9

3. THE MAVERIC APPROACH TO DYNAMIC ANALYSIS FOR MOBILE
(ANDROID) APPLICATION SECURITY

Dynamic Analysis for malware detection in mobile devices is a popular area of research that still

has not produced a reliable malware detection framework. Many researchers have explored this topic,

but each tends to focus their attention on a single Indicator of Compromise (IOC). An IOC is a

measurable event that can be identified on a host or network [15] and which may indicate the presence

of a compromise within that system. A single IOC does not provide sufficient confidence to reliably

claim that malware is present on a mobile device. For example, a malicious app that continuously

transmits recordings from the device camera and microphone will have a significant impact on device

power consumption, but so will playing a game with high-resolution graphics.

The MAVeRiC framework collects data related to three different IOCs: power consumption,

network behavior, and sequences of system calls. The complete feature set is analyzed using machine

learning techniques to detect anomalies and classify them as benign or malicious. This is a holistic

approach to detecting malicious or unintended behaviors within applications and can provide greater

accuracy over models which rely on a single IOC. This paper presents an approach to finding the best

machine learning methodology for detecting malicious behavior in Android applications using

multiple IOCs.

Figure 2. MAVeRiC’s approach to dynamic analysis is as follows: Known good and bad applica- tions
are monitored for power consumption, network activity, and system calls. Both supervised and
unsupervised machine learning techniques are utilized for detecting IOCs.

10

3.1 FEATURE SETS

3.1.1 Rationale for Collecting Power Consumption

The power consumption of an app presents an indicator of compromise for an analyst. Power

consumption varies depending on the state and activities of the apps on a device. Collecting

information on power consumption allows researchers to construct baselines for expected power

consumption of a device based on which apps are running at a given time. Discrepancies serve as

IOCs that should be investigated for possible malice. There has been some success in using machine

learning approaches to detect malicious activity on covert channels. The effort described in [6]

provides a detection framework that collects power-related data using the PowerTutor9 application and

relies on regression-based and classification-based methods. The MAVeRiC capability leverages their

approach towards collecting expected power consumption of mobile apps as well as analyzing features

specific to power consumption.

3.1.2 Rationale for Collecting Network Activity

Network activity is an IOC that should be considered when identifying malicious behavior of

mobile apps. Many of the components and programs installed on a mobile device are the same as

those found on conventional computers, and so mobile devices share vulnerabilities with their larger

counterparts, especially in regards to network communications. Mobile devices are nearly always

communicating via network connections, whether on cellular or WIFI networks. Many of the

legitimate applications on a mobile device are constantly polling the network to see if any new

application information is available. MAVeRiC collects data on the state of all network

communications. For each app, it is important to know the amount of data being sent, the frequency

of send/receive communications, whether the app is running in the foreground or the background,

etc [20]. This data is vital in understanding the normal behavior of apps–individually and

collectively–and identifying when there may be malicious or unexpected activity.

9
http://ziyang.eecs.umich.edu/projects/powertutor/

http://ziyang.eecs.umich.edu/projects/powertutor/

11

3.1.3 Rationale for Collecting Sequences of System Calls

The sequence in which system calls are made has also shown to be an important IOC for detecting

malware in an Android device. System calls are how an application accesses operating system

services [3]. These are underlying actions that user-level processes cannot be trusted to perform on

their own, but which need to be performed in order to provide full application functionality. System

calls allow these actions to be delegated to the trusted authority of the operating system kernel [1].

System calls can be organized into multiple categories [3]:

1. Process Control

2. File Management

3. Device Management

4. Information Management

5. Communication

The sequence with which system calls are called may indicate that an application is behaving

maliciously. By capturing execution trace information of a given mobile application, researchers can

analyze how an app uses the more than 250 system calls that are provided by the Android OS. In [5],

researchers captured patterns of application behavior and constructed a fingerprint based on frequency

of system calls within a given time frame. Then they used a probabilistic approach to find outliers in

the expected values of these frequencies. MAVeRiC also captures system call sequences as part of the

dynamic analysis to compare expected sequences over time for a given application. Anomalies in

system call sequences serve as IOCs that may identify malware that is executed at random times and

would not otherwise be easy to distinguish during normal operation.

3.2 DATA ANALYSIS

MAVeRiC evaluates two distinct approaches for evaluating the effectiveness of using machine

learning to identify malicious behavior of an application. Both approaches use machine learning

algorithms to assess the data collected from the three IOCs described above.

The first approach combines all three sets of IOC data into a single superset. The entire superset is

assessed by multiple machine learning algorithms. During this phase, the data is run through feature

selection algorithms to reduce the number of individual features under test. This increases the speed

and efficiency of identifying malicious behavior of an application on a device. Both supervised and

unsupervised algorithms are examined in the evaluation process, as described in Section 4.5.

The second approach evaluates each of the IOCs separately, then subjects the results to further

analysis. Previous research has looked at all three of these IOCs individually. Those efforts have also

evaluated multiple machine learning algorithms for each IOC and shown that different algorithms

are most effective for the distinct IOCs. MAVeRiC attempts to recreate this previous work and use

the results to populate a new data set for evaluation. One evaluation technique is to nest machine

learning algorithms, where the initial results of one algorithm are then analyzed through another

algorithm. The second option involves developing an algorithm where the collective results of the

IOCs’ machine learning algorithms are used as inputs. The outcomes of these approaches are the

basis for the comparative study and evaluation of which approach performs the best.

This page is intentionally blank.

13

4. EXECUTION PLAN

MAVeRiC builds upon previously published work to collect data from multiple IOCs. The data is

collected through separate applications and then sent to an off-device MongoDB10 server. Then the

data is analyzed using machine learning methods. A description of our data collection methods

follows.

4.1 POWER CONSUMPTION

Power Consumption of a given application is not a measurement that can be analyzed using static

methods. It must be monitored while the app is running on a device. All devices are not created equal,

and there are many factors that contribute to the rate at which power is consumed on a given device.

We are using an on-device tool named PowerTutor to collect power usage statistics. The official

PowerTutor repository was last updated in April 2013, but we have forked the code and modified it to

run with more current versions of Google’s Android API. We have also added functionality that

enables users to send collected data to an off-device server. PowerTutor collects data from a running

application as well as power consumption records for each hardware component used by that app.

PowerTutor models the power usage of the following hardware components: CPU, OLED/LCD,

WIFI, Cellular Network, GPS, and audio. Attributing changes in these hardware component values to

individual apps installed on a device will help in understanding the power usage patterns of apps

within our control group.

4.2 NETWORK ACTIVITY

Capturing network activity is important for correlating network behaviors and patterns within

mobile apps to characterize baseline behavior. At install, static analysis of an application may not

capture the elements to detect maliciousness in the network patterns. MAVeRiC analyzes deviations

in network behavior to identify malicious activity. The need for dynamic analysis of network

behavior stems from weaknesses in static analysis to address apps that introduce malicious code at

runtime or when updates are installed [16]. MAVeRiC leverages the Wireshark plugin, Android

dump11 to collect and aggregate both cellular and Wi-Fi network activity, then sending the data off-

device to the server for analysis.

4.3 SEQUENCE OF SYSTEM CALLS

Sequences of system calls can be used to identify common app behaviors and distinguish between

benign activities and potentially malicious ones. Prior to installation, the only way to know how an

app will communicate with the system is by validating its binary code against app permissions, as

listed in the APK manifest file. This knowledge may be incomplete, due to techniques–such as code

obfuscation and custom permissions [16]–that are designed to deceive static analysis methods. App-

operating system interaction is an observable trait that can be used to categorize app in terms of both

core functionality and malice. Android Debug Bridge (ADB) [24], provided by the Android

framework, is a tool that can communicate with an Android device. Using the ADB Strace

10
https://www.mongodb.com/

11
https://www.wireshark.org/docs/man-pages/androiddump.html

http://www.mongodb.com/
http://www.wireshark.org/docs/man-pages/androiddump.html

14

function, MAVeRiC collects the system calls an app requests during use. In order to generate a

sufficient volume of data for analysis, MAVeRiC employs a tool called Monkey[25] to generate

pseudo-random user activity with an application. The collected inputs and system call sequences are

sent to the off-device server for further analysis.

Over time, we expect sequences of identical or similar user inputs (e.g., Monkey-generated clicks,

touches, gestures...) to a benign app to produce identical or closely related system call patterns. If we

malicize an app by inserting malicious functionality, we expect different system call patterns in

response to the same user inputs. The behavioral differences between benign and malicious apps are

used to train our machine learning systems in the classification of malicious behavior.

4.4 APPLICATION SET

Our application dataset has been constructed from a combination of sources. MAVeRiC has

obtained known malicious applications from the Drebin12 and Androzoo13 repositories and a set of

benign apps from the Google Play Store. We have also generated a control group of apps for testing

by adding specific malice to certain classes of applications with desired traits. We leveraged open-

source applications from the F-Droid14 repository, for which source code is available, and inserted

malicious functionality. We then re-package them into a malicized version of the original benign

app. MAVeRiC is using data collected from these apps to measure the effectiveness of each of the

machine learning algorithms.

4.5 MACHINE LEARNING METHODOLOGY

As discussed in the previous section we are evaluating two approaches to determine how

MAVeRiC will detect malicious apps on a device. In the first approach MAVeRiC combines all of

the data from the three separate IOC’s into a single superset. This process entails a training period

consisting of feature selection and model selection. MAVeRiC is constantly collecting data from

mobile devices, and so power drain on a device is a concern and collecting all features may be

expensive. MAVeRiC is looking for the features that are most relevant for making predictions. Prior

to the training phase the data is run through some feature selection methods to determine which

features are the most relevant. Once an optimized set of data is selected MAVeRiC inputs the data

through both supervised and unsupervised machine learning models.

12
https://www.sec.cs.tu-bs.de/˜danarp/drebin/

13
https://androzoo.uni.lu/

14
https://f-droid.org/

http://www.sec.cs.tu-bs.de/

15

In this approach the supervised learning model is for classification purposes. Our dataset of

benign and malicious apps allows MAVeRiC to baseline the behaviors of a known malicious

application. The data for both the benign and malicious apps is collected and run through several

classification algorithms including decision trees, support-vector machines, nearest neighbor, and

Naı̈ve Bayes algorithms. Initially all data is evaluated using MATLAB15® , as it has pre-built

functions for performing these tests. Each method is evaluated based on its:

In the case of unsupervised learning model MAVeRiC is utilizing both clustering and anomaly

detection. The unsupervised learning approach will include k-means clustering, hierarchical

clustering, and anomaly detection algorithms. In the both the clustering and anomaly detection

methods the center of the clusters is the value from which all points will be measured. A threshold is

created, representing the distance from center point. All points outside of the threshold are identified

as being potentially malicious.

In the second approach each IOC is evaluated individually. MAVeRiC analyzes each IOC,

following the same steps as in the first approach. A feature selection reduction takes place on the

individual IOC’s, as they may differ than those chosen as a superset in the first approach. Once a set

of features is selected the data is input into a series of supervised machine learning algorithms in

order to train the model.

We expect MAVeRiC’s dynamic analysis approach to show a reduction in both False-Positive

andFalse-Negatives, when multiple IOC’s are analyzed. Once all the approaches are analyzed we will

evaluate each based on multiple factors, in order to make a determination on which is best. The

tradeoff analysis will be based on: accuracy, speed, amount of data to collect, resources utilized on

Android devices. MAVeRiC will then integrate the selected approach into the framework by

deploying data collection applications on Android devices and servers to evaluate the data.

MAVeRiC will also work to develop a method of introducing additional IOCs in the future. We will

then integrate the selected approach into the framework by deploying data collection applications on

Android devices and servers to manage the data. MAVeRiC will also work to develop a method of

introducing additional IOC’s in the future.

15MATLAB® is a registered trademark of The MathWorks, Inc.

16

This page is intentionally blank.

18

5. CONCLUSION AND FUTUREWORK

The proliferation of mobile computing platforms, as well as the much-needed applications and

content to make them useful, continues to accelerate. One of the biggest challenges, as a result of

this proliferation, are the potential security risks and vulnerabilities that could be found in mobile

applications. In this paper, we introduced a new conceptual technology called MAVeRiC, which

aims at bringing better security solutions to the Android mobile applications arena. Through

MAVeRiC, we are moving one step closer to providing much more secure platforms and

applications to users, while ensuring that this security does not become a road-block. MAVeRiC

leverages novel approaches in crowd-sourced behavioral analysis and machine learning to take the

guess work out of determining if an application is malicious or not, and furthermore, continue to

monitor it after installation without hindering performance and/or user attention.

Furthermore, the paper described how the US Navy is moving forward with mobile platforms and

applications, in order to bring a context to MAVeRiC as well as outline areas of potential future

collaboration. From the research, to the technological, to the policy perspective, there are multiple

areas that while MAVeRiC aims to support in the future, collaborations with industry and academia

will prove essential to fulfill.

While the early results described are promising, next steps in MAVeRiC’s development include a

larger test experiment and demonstration in order to determine scalability issues and usability of

features to a larger user audience. In addition, much more diverse malware suite, including both

legacy and current threats, will be used.

This page is intentionally blank.

REFERENCES

1. Kernel space. Available at http://www.linfo.org/kernel_space.html (05 April, 2018), 2005.

2. Skygofree — a hollywood-style mobile spy. Available at

https://www.kaspersky.com/blog/skygofree-smart-trojan/20717/ (06 April, 2018), 2018.

3. T. Bower. 1.12. system calls — operating systems study guide. Available at

http://faculty.salina.k-state.edu/tim/ossg/Introduction/sys_calls.html (05 April, 2018), 2015.

4. I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani. Crowdroid: behavior-based malware

detection system for android. In Proceedings of the 1st ACM workshop on Security and

privacy in smartphones and mobile devices, pages 15–26. ACM, 2011.

5. G. Canfora, E. Medvet, F. Mercaldo, and C. A. Visaggio. Detecting android malware using

sequences of system calls. In Proceedings of the 3rd International Workshop on Software

Development Lifecycle for Mobile, pages 13–20. ACM, 2015.

6. L. Caviglione, M. Gaggero, J.-F. Lalande, W. Mazurczyk, and M. Urbański. Seeing the unseen:

revealing mobile malware hidden communications via energy consumption and artificial

intelligence. IEEE Transactions on Information Forensics and Security, 11(4):799–810, 2016.

7. D. Dasgupta, A. Roy, and D. Ghosh. Multi-user permission strategy to access sensitive

information. Information Sciences, 423:24–49, 2018.

8. T. Fox-Brewster. Google is fighting a massive android malware outbreak — up to 21 million

victims, 2017.

9. A. Ghosh, P. K. Gajar, and S. Rai. Bring your own device (byod): Security risks and

mitigating strategies. International Journal of Global Research in Computer Science (UGC

Approved Journal), 4(4):62–70, 2013.

10. K. Giotopoulos, C. Halkiopoulos, D. Papadopoulos, and H. Antonopoulou. Adoption of bring

your own device (byod) policy in marketing. In 5 th International Conference on

Contemporary Marketing Issues ICCMI June 21-23, 2017 Thessaloniki, Greece, page 342,

2017.

11. R. A. Hallman and M. Kline. Risk metrics for android (trademark) devices. Technical report,

Space and Naval Warfare Systems Center Pacific San Diego United States, 2017.

12. J. Hsu. The strava heat map and the end of secrets. Available at https://www.wired.com/

story/strava-heat-map-military-bases-fitness-trackers-privacy/(19 April, 2018), 2018.

13. U. Kanonov and A. Wool. Secure containers in android: the samsung knox case study. In

Proceedings of the 6th Workshop on Security and Privacy in Smartphones and Mobile

Devices, pages 3–12. ACM, 2016.

14. T. B. Lee. Facebook’s cambridge analytica scandal, explained. Available at

https://arstechnica.com/tech-policy/2018/03/facebooks-cambridge-analytica-scandal-explained/
(19 April, 2018), 2018.

http://www.linfo.org/kernel_space.html%20(05
http://www.kaspersky.com/blog/skygofree-smart-trojan/20717/(06
http://www.kaspersky.com/blog/skygofree-smart-trojan/20717/(06
http://faculty.salina.k-state.edu/tim/ossg/Introduction/sys_calls.html
http://www.wired.com/
https://arstechnica.com/tech-policy/2018/03/facebooks-cambridge-analytica-scandal-explained/

15. H.-Y. Lock and A. Kliarsky. Using ioc (indicators of compromise) in malware

forensics. SANS Institute InfoSec Reading Room, 2013.

16. L. Onwuzurike, M. Almeida, E. Mariconti, J. Blackburn, G. Stringhini, and E. De Cristofaro.

A family of droids: Analyzing behavioral model based android malware detection via static

and dynamic analysis. arXiv preprint arXiv:1803.03448, 2018.

17. J. Perkins and M. Gordon. Droidsafe. Technical report, Massachusetts Institute of

Technology Cambridge United States, 2016.

18. F. Portela, A. M. da Veiga, and M. F. Santos. Benefits of bring your own device in healthcare. In

Next-Generation Mobile and Pervasive Healthcare Solutions, pages 32–45. IGI Global, 2018.

19. E. Root, A. Polkovnichenko, and B. Melnykov. Expensivewall: A dangerous ‘packed
malware on google play that will hit your wallet. Available at
https://blog.checkpoint.com/2017/09/14/expensivewall-dangerous-packed-malware-
google-play-will-hit-wallet/ (07 April, 2018), 2017.

20. A. Shabtai, L. Tenenboim-Chekina, D. Mimran, L. Rokach, B. Shapira, and Y. Elovici.

Mobile malware detection through analysis of deviations in application network

behavior. Computers & Security, 43:1–18, 2014.

21. R. S. Shaji, V. S. Dev, and T. Brindha. A methodological review on attack and defense

strategies in cyber warfare. Wireless Networks, pages 1–12, 2018.

22. Y. Song and S. C. Kong. Affordances and constraints of byod (bring your own device) for

learning and teaching in higher education: Teachers’ perspectives. The Internet and Higher

Education, 32:39–46, 2017.

23. M. Souppaya and K. Scarfone. Users guide to telework and bring your own device (byod)

security. NIST Special Publication, 800:114, 2016.

24. A. Studio. Android debug bridge (adb). Available at

https://developer.android.com/studio/command-line/adb.html (23 April, 2018), 2018.

25. A. Studio. Ui/application exerciser monkey. Available at

https://developer.android.com/studio/test/monkey.html (23 April, 2018), 2018.

26. Unified Compliance Framework, 244 Lafayette Circle, Lafayette, CA 94549. Mobile

Application Security Requirements Guide, 2014.

27. R. Vallee-Rai and L. J. Hendren. Jimple: Simplifying java bytecode for analyses and

transformations. 1998.

28. M. Viveros. The pros and cons of ’bring your own device’. Available at
https://www.forbes.com/sites/ciocentral/2011/11/16/the-pros-and-cons-of-bring-your-
own-device/\#2a0acb662abe (20 April, 2018), 2011.

29. L.-K. Yan and H. Yin. Droidscope: Seamlessly reconstructing the os and dalvik semantic

views for dynamic android malware analysis. In USENIX security symposium, pages 569–

584, 2012.

https://blog.checkpoint.com/2017/09/14/expensivewall-dangerous-packed-malware-google-play-will-hit-wallet/
https://blog.checkpoint.com/2017/09/14/expensivewall-dangerous-packed-malware-google-play-will-hit-wallet/
https://developer.android.com/studio/command-line/adb.html%20(23
https://developer.android.com/studio/test/monkey.html
https://www.forbes.com/sites/ciocentral/2011/11/16/the-pros-and-cons-of-bring-your-own-device/#2a0acb662abe
https://www.forbes.com/sites/ciocentral/2011/11/16/the-pros-and-cons-of-bring-your-own-device/#2a0acb662abe

INITIAL DISTRIBUTION

84300 Library (1)

85300 Archive/Stock (1)

58230 J. San Miguel (1)

58230 M. Kline (1)

58230 R. Hallman (1)

58230 J. Phan (1)

58230 S. Slayback (1)

58230 C. Weeden (1)

58230 J. Robero-Mariona (1)

Defense Technical Information Center

Fort Belvoir, VA 22060–6218 (1)

This page is intentionally blank.

5f. WORK UNIT NUMBER

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-01-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing the burden to Department of Defense, Washington Headquarters Services Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE
17. LIMITATION OF
 ABSTRACT

18. NUMBER
 OF
 PAGES

19a. NAME OF RESPONSIBLE PERSON

19B. TELEPHONE NUMBER (Include area code)

Standard Form 298 (Rev. 10/17)
Prescribed by ANSI Std. Z39.18

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

6. AUTHORS

8. PERFORMING ORGANIZATION

 REPORT NUMBER

11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

July 2019 Final

Aggregated Machine Learning on

Indicators of Compromise

John M. San Miguel

Megan E.M. Kline

Roger A. Hallman

Johnny Phan

Scott M. Slayback

Christopher M. Weeden

Jose V. Romero-Mariona

NIWC Pacific

NIWC Pacific

53560 Hull Street

San Diego, CA 92152–5001 TD 3390

Naval Innovative Science and Engineering (NISE) Program (Applied Research)

NIWC Pacific

53560 Hull Street

San Diego, CA 92152–5001

NISE

Distribution Statement A: Approved for public release; distribution is unlimited.

This is work of the United States Government and therefore is not copyrighted. This work may be copied and disseminated

without restriction.

The increasing ubiquity of mobile computing technology has lead to new trends in many different sectors. “Bring Your Own Device” is one

such growing trend in the workplace, because it allows enterprise organizations to benefit from the power of distributed computing and

communications equipment that their employees have already purchased. Unfortunately, the integration of a diverse set of mobile devices (e.g.,

smart phones, tablets, etc.) presents enterprise systems with new challenges, including new attack vectors for malware. Malware mitigation for

mobile technology is a long-standing problem for which there is not yet a good solution. In this paper, we focus on identifying malicious

applications, and verifying the absence of malicious or vulnerable code in applications that the enterprises and their users seek to utilize. Our

analysis toolbox includes static analysis and permissions risk scoring, pre-installation vetting techniques designed to insure that malware is never

installed in devices on an enterprise network. However, dynamic code-loading techniques and changing security requirements mean that apps

which previously passed the verification process, and have been installed on devices, may no longer meet security standards, and may be

malicious. To identify these apps, and prevent future installation of them, we propose a crowd-sourced behavioral analysis technique, using

machine learning to identify malicious activity through anomalies in system calls, network behavior, and power consumption. These techniques

apply effectively to single user devices over time, and to individual devices within an enterprise network.

MAVeRiC approach to dynamic analysis for mobile-android; application security; MAVeRiC;

U U U U 32

Rogert A. Hallman

1 619-553-7905

This page is intentionally blank.

This page is intentionally blank.

NIWC Pacific
San Diego, CA 92152-5001

Distribution Statement A: Approved for public release; distribution is unlimited.

