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Abstract

Cape Canaveral Air Force Station (CCAFS), Kennedy Space Center (KSC), and

Patrick Air Force Base (PAFB) all reside in the thunderstorm capital of the United

States. According to the Florida Climate Center, these installations experience more

thunderstorms per year than any other place in the United States. It is the mission

of the 45th Weather Squadron to provide timely and accurate warnings of weather

conditions such as lightning that pose a risk to assets and personnel CCAFS, KSC

and PAFB.

To aid 45th Weather Squadron forecasters, a network of 30 Electric Field Mills

(EFM) was installed in the area in and around CCAFS, KSC, and PAFB. EFMs

record the electrification of the local atmosphere. Several efforts have been made

over the years to find an optimal way to utilize the EFM network data to improve

lightning prediction. These efforts approached the problem using atmospheric science

as well as traditional statistical regression techniques with mixed results.

In this paper, hourly statistics were generated from the raw EFMs data set used in

Hill [1]. Input variables were generated from surface observations from every station

within 50 miles of CCAFS and then combined with the EFM statistics for the same

time periods. This combined data set was used to create Long Short-term Memory

(LSTM) Neural Networks designed to capture trends within the data for each obser-

vation. A variety of different LSTM model structures were created and trained to

see which model structure performed best when predicting lightning around CCAFS,

KSC, and PAFB. By utilizing design of experiments techniques, optimal parameters

for the LSTM model structures are narrowed down providing a solid baseline for

future endeavors in predicting lightning.
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LIGHTNING PREDICTION USING RECURRENT NEURAL NETWORKS

I. Introduction

On March 26, 1987, an Atlas/Centaur rocket was struck by lightning around 38

seconds into its flight. The lightning strike itself did not cause the spacecraft to

explode. However, the electrical surge caused a failure in stability systems which

caused an excessive angle of attack and destroyed the rocket [6]. This resulted in an

investigation that showed the importance of lightning prediction when it comes to

space shuttle and rocket launches.

Cape Canaveral Air Force Station (CCAFS) along with Patrick Air Force Base

(PAFB) use their launch facilities for both publicly and privately funded space mis-

sions. The US Air Force, NASA, and privately owned businesses such as SpaceX

regularly launch payloads into orbit. Large rockets are used to propel the cargo from

CCAFS. The preparation and resources used in just planning for a launch are enor-

mous. Postponing a launch can cost around $300,000 and can lead to other space

launches also being delayed [7].

This chapter first provides a brief introduction into previous efforts at accurate

lightning prediction around CCAFS. Next, the problem this research addresses is

formally stated. There is a then discussion of the research questions developed to

address the problem statement. The chapter concludes with an overview of the rest

of the document.
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1.1 Background

Many previous efforts to improve lightning prediction capabilities at the Kennedy

Space Center (KSC) at CCAFS utilized regression on predictor variables. One such

predictor introduced was the integrated precipitable water vapor data gathered from

the GPS around KSC. In one study, four regressors were identified that better pre-

dicted the lightning for the 1999 lightning season. The addition of these new variables

showed a 26.2% decrease in false alarms for a non-independent period of time and

a 13.2% decrease for an independent time. The only issue with this model was the

potentially long 12 hour window for making the prediction [8].

Other parameters have been used to create models for lighting prediction. These

parameters focused heavily on ground-to-cloud strikes and the parameters that might

be related to them based on prior research into the physics of lightning. The three

parameters were lightning peak current, ground flash density, and keraunic level.

The lightning peak current is the location where the lightning is observed. The

ground flash density is the number of lightning strikes. The keraunic level is lightning

observations based on hearing the thunder after the lightning bolt is observed. These

data were gathered in Brazil, Malaysia, and Colombia. All of the sites are tropical

locations, which tend to have larger amounts of extreme lightning storms. The goal of

the study was to make a comparison between tropical regions and temperate regions.

It found that tropical regions tend to have larger ground flash density than temperate

regions [9].

Another difficulty in trying to predict lightning is that the methods and techniques

developed to predict the localized weather in one region tend to not work for other

regions [10]. Every area of study is only able to generalize for future weather in

the specific area. Very rarely are the results able to be generalized to other regions

[11]. This leads to the problem investigated in this research by taking a look at the

2



lightning prediction around CCAFS.

1.2 Problem Statement

The 45th Weather Squadron seeks to better predict lightning around CCAFS. This

is necessary to both avoid lightning striking the rockets as well as reducing costly false

alarms which cause launch delays. As several different clients use the CCAFS launch

pad to launch payloads into orbit, this problem has an impact on many entities.

1.3 Research Question

To address this problem, two research questions are addressed:

1. Which variables can be used as regressors to better predict lightning strikes

around CCAFS? This is addressed with time-series data gathered around CCAFS.

2. Can an improved model be formed to better predict lightning at CCAFS/KSC?

Artificial Neural Networks (ANNs) are developed with the R programming language

to manage, build, and tests the models.

The primary motivation for this thesis is to build a model to better predict light-

ning for the Cape Canaveral area using specific regressor variables. This can po-

tentially save the companies using the launch sites thousands of dollars, keeping the

launches on schedule as best as possible.

1.4 Organization of the Thesis

The next chapter features a review of current literature regarding use of ANNs for

lightning prediction. This review builds a lexicon for the later discussion of method-

ology and results. Next, the methodology is discussed to include: description of the

3



raw data, pre-processing of the raw data, description of the model structures, de-

termining optimal model design given a time constraint, and implementation of the

experiment. Following the methodology, the key results and findings are shown to

illustrate the usefulness of experimental models. Finally, key findings are presented

along with proposals for potential future work.
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II. Literature Review

2.1 Introduction

This chapter provides a brief review of literature related to weather prediction

and artificial neural networks. First, there is a discussion of various multivariate

techniques that are currently being used for weather prediction. Next, a description

of what CCAFS currently does for lightning prediction is provided. Lastly, the basics

of ANNs and the packages used for this research are discussed.

2.2 Multivariate Techniques for Lightning Prediction

Lightning storms in dry climates can often result in wildfires. Storms in populated

areas can result in damage to power and telecommunications, human injuries/fatal-

ities, and airport disruptions. An initial look into various multivariate techniques

applied to lightning prediction has aided in improved warnings in areas of Australia

[12]. Of the multivariate techniques used, logistic regression performed the best for

lightning prediction accuracy. The other techniques used in Bates et al. [12] were dis-

criminant analysis, principal component analysis, classification and regression trees,

and random forests. Note that for Bates et al. [12], artificial neural networks were

not used. These methods were still a large improvement from the methods using only

climatological values compared to in their study. [12].

Recent studies conducted in Colombia show how lightning warning systems can

be used to better manage the risk involved with being in a high ground flash density

(GFD) area. The Colombia study portrays the GFD in high valued areas along with

providing a risk measurement [2]. These results are in Table 1.
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Case

GFD

(Flashes/

km2 year)

People at

risk

Exposure

time(h)
R1 R2

Oil Facility 8 80 2000 9.9E-03 986

Stadium 26 40000 832 1.1E-03 108

Mine 33 200 8760 4.0E-02 4032

Airport 16 100 8760 1.1E-03 112

Military Base 6 300 8760 1.4E-03 140

Table 1. Output for Risk Areas in Colombia. [2]

The stadium, the mine, and the airport listed in Table 1 are in the three largest

GFD areas. This insight can be used to best decide where to build important high

population density areas to minimize the risk of having potential damage due to

lightning strikes. Additionally, Tovar et al. [2] shows how a thunderstorm warning

system could help reduce this risk to human life significantly in lesser developed areas

in Colombia.

One way to construct a lightning warning system such as the one used in Colombia

is to use Electric Field Mills (EFM). These mills gather data of electrostatic potential

in thunderstorms. These mills have shown their ability to detect lightning starting to

form in the clouds. They are commonly used in research to predict adverse weather

conditions in other areas [13]. In fact, Hill [1] used EFM data from CCAFS/KSC in

a previous effort to improve lightning prediction there.

2.3 Current Model/Data Used

The 45th Weather Squadron is in charge of issuing lightning warnings for the

CCAFS and Patrick AFB. Currently, they use lightning circles that are roughly 5

6



nautical miles in diameter. There are a total of 10 circles throughout the area, several

of which overlap. Lightning circles are circles drawn around a center point where if

lightning is detected anywhere within the circle, the whole area goes on a lightning

warning. If lightning is sighted or predicted in these areas, the base alarms will go off

and flights and space launches are delayed. Efforts have been made to improve the

warning system so that there is less overlap while still maintaining the same level of

safety. The improvements reduced the total number of lightning circles which reduced

the number of overlaps. Additionally, a streamlined lightning warning process made

issuing warnings much easier. This allowed for more focus and effort to be given to

the lightning prediction rather than the lightning warnings themselves [14].

Meteorological Aerodrome Reports (METARs) are frequently used in weather

prediction by the 45th Weather Squadron, as well. METARs are surface weather

observations that capture a wide range of variables from wind direction and speed to

dew point temperature. There are 10 weather stations located within a 50nm radius

from KSC that the 45th Weather Squadron uses when making predictions. Data

points are not captured continuously but rather at the top of every hour or when

significant changes to the weather occur. Some of the weather stations do not run 24

hours a day which can make using the data problematic when using time-series data

analytic techniques [14].

2.4 Neural Networks

ANNs are “black-box” methods that are meant to simulate connections made

in an animal’s brain so that the algorithm is able to learn when more information

is presented [15]. Starting with the raw data, the usable components (dependent

variables) are broken out and regressed onto the hidden nodes which process the

signals prior to reaching the output node. The algorithm finds weights for each of

7



these nodes to best align the input to the output. There can be multiple hidden nodes

in each layer and multiple layers with in a single ANN (Figure 1).

Figure 1. Basics of an Artificial Neural Network [3]

A basic ANN only allows for information to travel one way (towards the output).

Recurrent Neural Networks (RNN) allow for information to travel in both directions

using loops. This allows for modeling exceedingly more complex problem which is

necessary for modeling lightning weather prediction [15].

Not all data is necessarily good for RNNs. Time-series data tends to work better

than fixed time data. The data made available by the 45th Weather Squadron is

time-series data with several different variables. The time between the data collec-

tion differs for each variable. Since all data must be on the same time scale, data

manipulation was necessary for the R programming. If data that is on different time

scales is fed into an RNN, the algorithms will not function properly and the RNN

will not train properly.

Using R Programming

The programming language used for the analysis in this research is R. R is a free,

open-source programming language mainly meant for statistical computations and

graphical representations for model building [16]. Given enough computing power,

R is able to handle large datasets relatively easily. Lantz [15] discusses the R pack-
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ages involved with the machine learning techniques in the package called “keras”.

The package primarily deals with deep learning neural networks along with visual

representations for the models developed using neural networks [3].

Several packages are available in R that are related to data that has time compo-

nents [17]. Using the “tidyverse” and “lubridate” packages, time-series data is able

to be manipulated to fractions of a second which is helpful with getting all time series

data on the same time steps [18, 19]. The data can be manipulated to get all the data

onto the same time scale. This is done by either averaging data between increments of

time-series data or using regression techniques to add data into the time-series data.

This puts the data in the proper format to use in RNNs [17].

For time-series data and recurrent neural networks, there must be a continuous

string of data at equal time steps. This means that there cannot be any holes in

the data. The package “MICE” uses other observations and variables around the

missing data points in order to impute the missing data point. This is done through

a process of Predictive Mean Matching (PMM) [20]. PMM uses surrounding data

to fill in the missing data. The imputed value is randomly selected from among the

observed surrounding values. This ensures that the imputed values are plausible,

which makes the data more appropriate than using regression methods to smooth

the surrounding values to estimate the missing value [20]. Imputation can potentially

biases the analysis. However, this work did not involve a significant amount of missing

data. Thus, the remainder of the analysis uses the imputed data values to provide a

complete dataset.

Weather Prediction

Trying to predict weather using multivariate techniques is not a new field of study.

A study in 1998 used time-series data to produce an ANN that outperformed normal

linear regression when predicting precipitation over a 6 hour period [4]. The model did
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particularly well in predicting the amount of precipitation as the amount of precipi-

tation increased. Figure 2 is an illustration of the ANN model results outperforming

other weather predicting models used in forecasting [4].

Figure 2. Output from the ANN and comparisons [4]

Other, more recent, efforts have also tried to use deep neural networks to better

predict the weather. This is done by using a newer, data intensive method and

combining spatial and time-series data. To see how well the model performs, a baseline

model (basic weather predicting techniques), a static kernel method (commonly used),

and the deep learning neural network were compared. In virtually all areas, the neural

network hybrid model outperformed the baseline and the kernel common method

(Figure 3).
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Figure 3. Comparing the Neural Network models with Other Models [5]

The hybrid model had lower error rates than the other two methods. This supports

the potential in weather predition using ANNs. Everywhere except for short term

temperature, the hybrid model had better errors than the other two methods [5].

This also shows the large potential in weather prediction using these ANNs.

Another study looked at trying several different types of neural networks in an

attempt to predict temperature, wind speed, and humidity for all seasons of the year

with data collected in Saskatchewan, Canada [21]. All the models developed made

predictions for a 24 hour ahead forecast. Out of all the models, the artificial neural

network models performed better in learning the data along with generalizing the

data to make more accurate predictions [21]. This provides further motivation into

using ANNs in weather patterns and predictions.

Lightning Prediction
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Rather than look at weather in general, some articles and prior theses have exam-

ined using ANNs specifically related to lightning predictions. Hill [1] focused on the

same research question as this work. However, that effort built a time-series dataset

with fewer parameters as only EFM data from around CCAFS was available at the

time. While the Hill [1] model has a lower probability of false detection, there is the

potential for improvement by including other parameters when building the neural

network.

Hill [1] also focused on lightning detection using a short time step. This is good for

attempting to predict lightning for a specific prediction window in the near future.

The drawback to this approach is that the amount of data being run through the

neural networks in this model using such small time windows meant that training

went very slow and the neural network structures needed to be much less complicated

in order to compensate for the longer run times. As a result, while the data captured

was sufficient, the neural networks themselves may not have been complex enough to

capture the potentially complex trends in the data.

Long Short-term Memory Neural Networks

A specific type of neural network that is good at dealing with time-series data

related to weather is a Long Short-term Memory Neural Network (LSTM). When

LSTMs are used, a generator function is developed to parse through and extract the

data needed based on steps (number of data points per hour), lookback (number of

hours for the LSTM), and delay (number of hours to predict in the future). For

example, with a steps value of 1, a lookback value of 4, and a delay of 2, the resulting

dataset looked trends in the data in 4 hour increments in order to predict the next

hour’s target variable (in this case the target is a lightning occurrence). This allows

for the data to be pushed through the network and capture trends and dependencies

within the data over given hour periods.
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There is no “rule of thumb” when it comes to creating neural networks [22]. Most

results found from other papers are a result of creating robust models and guessing

and checking different values for parameters to see which ones improved the accuracy.

In order to find the best parameters, Bashiri [22] used Design of Experiments (DOE)

to identify the optimum parameters. Other methods include the Taguchi method

which tends to have the problem of having a discrete solution space and excludes any

interactions amount parameters [22]. For this research, a DOE method is proposed

and tested on parameters for a LSTM neural network. This is to find the best model

with limited time to run the models.

Examining LSTM structures start with creating a basic single layer LSTM. From

there, additional layers are added until the training data is performing at an accept-

able level. This usually results in over-fitting, meaning the LSTM did not do a very

good job at predicting on the validation data. Various techniques are available to

reduce the tendency to over-fit the model which include increasing the amount of

data, introducing dropout layers, and reducing complexity/ parameters with which

the model is training. Since additional data was unobtainable, introducing dropout

layers and changing the complexity of the model were the main source of fixing the

over-fitting problem. A list of all the model structures trained is found in Appendix

A. The best performing models are the topic of discussion and comparison in the

remainder of the research.

Below are examples of three of the model structures developed and the rational

behind why they were selected as candidates for CCAFS lightning prediction.

5 Layer LSTM - A dense complex LSTM can to capture complex trends but may

over-fit the data. To combat over-fitting of the data, a 25% dropout is used after each

layer. The overall model structure is shown in Figure 4.
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Figure 4. 5 Layer LSTM Model Structure

Rare Event LSTM - This has the same model structure as the 5 layer LSTM (fig-

ure 4) with slightly less dropout (to allow the model to learn better). The main

difference in this model is that the model attempts to capture the rarity of lightning

occurring. In the data, lightning does not occur 50% of the time. Rather, lightning

occurs roughly 32% of the time. By changing the classification weights for lightning

occurrence, the model can capture lightning as a rare event.

3 Layer LSTM - Similar to the 5 layer LSTM except without the last two LSTM

layers. This model should be able to capture complex trends but perhaps not quite

as complex as the 5 layer LSTM. The reason this model is added is due to having far

fewer parameters than the 5 layer LSTM. This means that the model trains signifi-

cantly fast than the 5 layer LSTM. Note that the first 3 layers of the 5 Layer LSTM
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are the same as the first (and only) 3 layers in the 3 Layer LSTM model. This makes

comparing the results between the two models much easier (Figure 5).

Figure 5. 3 Layer LSTM Model Structure

Due to the nature of LSTMs and the amount of data pushing through the models,

a considerable amount of time is needed in order to run each model. With limited

time, optimal settings are needed to obtain the best results. DOE is used to help

determine which models to run in order to make conclusions about the accuracy

results [22].
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2.5 Conclusion

Much research is currently investigating ways to better predict weather phe-

nomenon. In areas like CCAFS, lightning specifically is an expensive and potentially

disastrous nuisance. Prior research done by Hill [1] and others have shown some

success in predicting lightning each with their own drawbacks and problems. Tak-

ing these into consideration, improvements are made to further address the research

questions and predict lightning around CCAFS so that launches can be planned and

run more smoothly.
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III. Methodology

3.1 Introduction

This chapter discusses the several parts used to set up the analysis. First, a look

at the software used in data cleaning and analysis will be explained in order to allow

future research to be duplicated. Next, a description of the datasets will explain

where the inputs came from for the neural network. Finally, detailed explanations of

the neural networks themselves will show how the results were obtained.

3.2 Software and Data Pre-processing

Data pre-processing used R, Visual Basic for Applications (VBA) /Excel, and

Matlab (Appendix D). METAR data obtained from the 14th Weather Squadron

(AAC) at Asheville, NC was in a CSV file written in METAR code from ten dif-

ferent weather stations located around KSC. This encompasses all weather stations

within a 50nm radius from KSC. Matlab code generated the following variables from

each of the weather stations: wind direction, wind speed, visibility, fog (binary),

rain (binary), rain rate (rain intensity), cloud height, cloud cover, altimeter, sea level

pressure, temperature, and dew-point temperature. The data were collected once per

hour or if any significant event that happened at a specific location. If a significant

event happened, not all locations would take new readings. To get all of the data on

the same time scale, the dataset was reduced using VBA/Excel so that each hour had

only a single data point. Each variable with multiple values per hour were compressed

using the average (for wind direction), the max value (for wind speed, wind gust, fog,

rain, thunderstorm, rain rate, cloud cover, and dew point), or the min (for visibility,

cloud height, altimeter, sea level pressure, and temperature). Even with the data

compressed, all of the stations had large amounts of missing values. To start, some
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of the stations were missing nearly half of their data because the station was only

active during specific hours. As there is no way to obtain this data, these variables

were removed from the dataset. All variables missing more than 1% of the data were

removed. This left 4 locations with a total of 48 variables for analysis. VBA/Excel

filled in the remaining 1% of missing data using linear regression.

The other chunk of data used for the analysis came from the EFMs. This is the

same dataset used in Hill [1]. The data came from 30 different locations and recorded

every two hundredths of a second for the months May-September during the years

2013-2016. To extract the data, R code was written to extract the data into a format

that is more easily processed. The executable used to decompress the .dat files for R

processing came from the NASA website [23]. See Appendix D for the code used to

extract the compressed .dat files.

Because the analysis and the neural network are predicted in hourly increments,

the field mill data was compressed from every two hundredths of a second to the

minimum, maximum, average, and standard deviation for each hour. This allows the

model to capture any abnormalities within each hour in order to predict if there will

be a lightning strike in the following hour. This would provide PAFB enough time to

make any necessary precautions. The total number of additional variables this added

to the model was 30 · 4 = 120 (for 30 locations and 4 variables per location.

The last bit of data used in the model was the lightning detection and range

(LDAR) dataset. This data was easily read into R. The data presented gave the

exact time that the lightning was detected and the number of meters from the center

of the KSC given in X (East/West), Y (North/South), and Z (altitude). The range in

distances around KSC spanned for hundreds of kilometers in all directions. Obviously,

KSC will not shut down if a lightning strike happened hundreds of kilometers away. So

when determining if a lightning strike happened in a given hour of time, an imaginary
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box was created around the epicenter of KSC. The box was 41.7 kilometers wide

(east/west) and 87 kilometers long (north/south). This encompasses the entirety of

CCAFS along with having a 5 mile buffer around the entire base. KSC on CCAFS

launches craft through the atmosphere. Therefore, the lightning detected at any

elevation was included in the dataset. The data extracted was the date (year, month,

day, hour) and a binary variable indicating a lightning occurred (1,0). In total, there

were 4894 hours with lightning strikes out of the 14880 total hours in the dataset

giving a lightning occurrence rate of 32.89%.

Of these 14880 hours, there were several missing data points with no reasonable

way to get access to the missing data. The package “MICE” in R imputed data points

for missing gaps (See Chapter II) [20]. MICE filled in the missing data points so that

the dataset is complete for the neural networks. MICE imputed the data points using

PMM as discussed in Chapter II.

For the analysis, training and validation split the data 80/20 to ensure more

generalized results for the model. The model trained on 11824 observations and was

validated using 2957 observations. These values slightly differ based on the parameters

chosen for the LSTM.

The final complete dataset has 14880 observations with 168 variables per obser-

vation. This excludes lightning occurrence which is retained as the output variable.

3.3 Building the Neural Networks

With the time-series data complete, neural networks were made to provide an

optimal structure for learning. In order to produce the most robust results possible

for the analysis, looking at different parameters is important for each of the models

built. The analysis looked at a variety of different lookback values ranging from 12-48

hours in order to capture the trends in the data for each time-step. After basic testing
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of the model structures referenced at the end of section 2.3, three model structure are

used in the comparison: 5 Layer LSTM, RareEvent LSTM, and 3 Layer LSTM. The

other models found in Appendix A were dismissed due to underwhelming performance

when compared to the three models chosen.

3.4 Which Parameters to Run?

Table 2 lists the possible values for lookback and delay examined in testing. [24].

Possible Parameter Values

Lookback 12,18,24,30,36,42,48

Delay 3,6,9,12,15,18,21,24

Table 2. Possible Parameter Values

This leads to a total of 56 combinations of possible runs for a full factorial design.

Due to the time constraint of the project, 26 runs were chosen in a 1/2 fractional

factorial design with D-optimality. The optimality criteria for D-optimality is one that

maximizes the determinant of (X
′ ·X). The result minimizes the generalized variance

of the parameter estimates for the experiment. The output the JMP produced for

the DOE runs are located in Table 3.
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Combinations Combinations Combinations Combinations

Delay Lookback Delay Lookback Delay Lookback Delay Lookback

6 12 3 12 12 18 6 48

9 18 3 30 12 24 21 48

18 24 21 42 6 36 6 24

12 30 18 30 9 48 3 24

21 24 12 36 18 36 12 18

24 18 24 48 18 48 6 18

21 12

24 36

Table 3. Fractional Factorial Parameter Test

3.5 Determining the Level of Success

Establishing a baseline allows for a more accurate comparison. When dealing with

a binary output, a bad prediction is 50%. That is if each outcome is equally likely

similar to a coin flip. If a dataset is unbalanced in anyway (which can be seen by

just looking at the list of binary outputs), predicting better than 50% is very simple.

Just always predict the most frequent outcome. For this data, there are lightning

strikes in 35% of the hours that data was collected. Guessing there will not be a

lightning strike for every hour yields a predicting accuracy of 65%. This is far better

than 50% but it is in no way informative. This can be taken a step further with the

introduction of the time-series. For example, to develop a baseline for temperature

prediction in an area, it is generally accepted that the temperature 24 hours before

the present time will roughly be the temperature at the present time. This is known

as persistence. This adds no real information aside from the time-series nature of the
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data. By doing this with the lightning data, the new baseline model rises up to 70%.

This day-before baseline is used to assess the model’s utility as a lightning predictor

for CCAFS. Neural Networks that produce a result better than the 70% baseline are

beneficial in predicting lightning strikes around CCAFS.

3.6 Conclusion

Although the construction of the dataset used for the neural networks was com-

plex, the result was a dataset that is suitable for training LSTMs. By creating robust

models and changing the parameters to allow for the best fit, a neural network was

created that can better predict lightning strike around CCAFS. The baseline day-

before metric will be used in determining the actual utility of the experiment using

LSTMs to predict lightning. Chapter IV will delve deeper into the development of

the best performing model, analysis of models performance, and discussion as to how

well they address the problem statements.
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IV. Discussion

4.1 Introduction

This chapter presents the results and analysis for the neural network models de-

veloped. First, model performance is examined. Next, comparisons are made to the

persistence baseline along with other studies covered in previous chapters. Following

that, an analysis of the results are addressed. This chapter concludes by addressing

how this work addresses the initial problem statement and research questions.

4.2 Results

Differences in the Model Structures

Each of the LSTM models ran for 150 epochs to allow sufficient time to train the

variables and achieve a high degree of accuracy. A single epoch is a single run through

of all the data through the model. Typically, the loss and accuracy of the validation

and training sets started to diverge roughly between 80-120 epochs with some models

diverging sooner and some diverging later. Given enough time and epochs, the train-

ing data would eventually approach 100% accuracy due to how complex the models

were. The accuracy for the validation set, however, would not continue to improve

indefinitely and began to level off once the binary cross-entropy loss began to level

off.

Figures 6-8 are plotted examples of each of the three model structures. Most of the

models examined followed the same general trend for each of the different structures.

The plotted examples below have the parameters of a 18 hour delay and a 36 hour

lookback (Figure 6),(7),(8). Different amounts of dropouts for each model were used

to try and minimize over-fitting the data. The 5-Layer model had more dropout than

the 3-Layer model due to it’s significantly more complex design. The 5-Layer model
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had more dropout to try and prevent the validation and training split in the binary

cross-entropy loss.

Figure 6. 5-Layer LSTM Result for Delay = 18, Lookback = 36
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Figure 7. Rare Event LSTM Result for Delay = 18, Lookback = 36
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Figure 8. 3-Layer LSTM Result for Delay = 18, Lookback = 36

Notice that most models begin their validation accuracy right around the baseline

mentioned in the previous chapter (right around 70%) but all of the models see a

noticeable improvement as epochs increase. In general, most of the models run with

differing parameters followed the same trends as these with different final accuracy

and level off points.

For nearly all parameters run in the various models, the 5-Layer LSTM (Figure

6) produced the lowest binary cross-entropy loss and the greatest accuracy. This

result is not too surprising as the model structure was far more complex than the
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3-Layer LSTM. However, due to the increase in complexity, the 5-Layer LSTM took

significantly longer to train than the 3-Layer LSTM. The highest accuracy achieved

with this model structure produced a validation accuracy of 84.66%.

The Rare Event LSTM (Figure 7) had the same number of parameters as the

5-Layer LSTM. The only difference was that the Rare Event LSTM model attempted

to capture the fact that lightning does not occur 50% of the time. While this model

did better than the baseline 70%, it performed the worst of the three model structures

on average. Additionally, the models with a smaller lookback parameter ended up

having a large amount of variance in the validation set as the model was training

instead of the tightly clustered trends found in the 5-Layer and 3-Layer models. This

make the results less significant than the other two model structures.

Even though the 3-Layer LSTM (Figure 8) had far fewer parameters than the

5-Layer LSTM (Figure 6), it’s performance was very close to the 5-Layer LSTM.

Typically, the 3-Layer LSTM was only a percentage point or two lower than the

5-Layer model, but ran several times faster when training the model.

The 5-Layer LSTM performed the best compared to the other two model struc-

tures. Therefore, it is logical to choose the 5-Layer LSTM for a more in-depth analysis.

In general, similar trends followed for each of the other model structures.

Parameter Tuning

As mentioned in Chapter 3.4, a fractional factorial design of experiment was run

and the results used to measure the effect of delay and lookback on model accuracy

and loss for the model types. The results for the 5-Layer LSTM model structure for

each of the parameter pairs in the fractional factorial design are illustrated in Table

4. The results for the Rare Event LSTM and 3-Layer LSTM are in Appendix C.
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Results for 5-Layer LSTM Model for each set of parameters

Delay Lookback Validation Accuracy (Final Epoch) Validation Loss

6 12 74.94 0.5458

9 18 78.01 0.4947

18 24 78.19 0.4811

12 30 83.66 0.4262

21 24 80.49 0.4822

24 18 78.53 0.4767

3 12 73.53 0.5727

3 30 82.9 0.489

21 42 83.19 0.4347

18 30 81.69 0.4566

12 36 82.89 0.4277

24 48 83.6 0.4308

12 18 76.41 0.5227

12 24 81.35 0.4484

6 36 83.23 0.4544

9 48 84.3 0.4359

18 36 82.34 0.4503

18 48 84.66 0.4688

6 48 83.21 0.4552

21 48 83.91 0.4149

6 24 80.11 0.5039

3 24 78.55 0.5235

12 18 76.41 0.5227

6 18 75.55 0.5291

21 12 77.11 0.5118

24 36 83.23 0.4478

Table 4. Results for All 5-Layer LSTM Runs
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The runs with the best accuracy for the final epoch and the run with the lowest

binary cross-entropy loss are underlined in Table 4. Both of these runs had a lookback

value of 48 hours. This makes sense as more lookback increases the amount of data

being looked at for each output, capturing more complex trends. The trade-off with

having a larger lookback is that the models will take longer to initially run and train.

For example, the models with 48 hour lookback took roughly twice as long to train

and required significantly more memory than the models with 24 hours of lookback.

The delay parameter had no bearing on how long the models took to train as no

additional data is required. The delay simply looked at a an output for a different

time step.

Parameter Analysis

With the results from Table 4, regression analysis was conduced to determine

which parameters had a bearing on model accuracy. Both the delay and lookback are

treated as continuous variables. JMP software created a least squares design with the

delay and lookback parameters. This method finds a line of best fit by minimizing

the sums of squares created by the regression formula. The parameter estimates,

residuals, and plots are all derived from the minimization of the sum of squares for

the line of best fit. The data used in the least squares analysis is located in Table 4.

Validation Accuracy and Loss for the Final Epoch - Linear Model

The linear model derived from the results of the designed experiment led to some

interesting results. The parameter estimates for delay show that there is no sta-

tistically significant effect on accuracy. However, the lookback parameter showed a

statistically significant effect. This estimate was a positive coefficient meaning that

the more lookback used in building the models, the better the accuracy got. This

makes sense as the run with the best result of 84.66% featured a lookback parameter

of 48 (Figure 9).
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Figure 9. Parameter Estimates for Validation Accuracy for the Final Epoch

The residual plot for the data Figure 10 yielded concerning results. For results

and parameter estimates to be valid, the residuals must show a linear relationship

with a mean of 0 and slope of 0. The residual plot shown in Figure 10 does not seem

to be linear. The residuals plotted look quadratic in nature meaning a quadratic term

for lookback may be missing from the model.

Figure 10. Residual Plot for Validation Accuracy for the Final Epoch

Similar residual plot assumptions seemed to be violated (Figure 11) when looking

at the validation loss for the final epoch of the models. These abnormal residuals

require additional analysis to gain a better understanding of the data.
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Figure 11. Residual Plot for Validation Loss for the Final Epoch

Validation Accuracy for the Final Epoch - Quadratic Model

Because the lookback value in the linear model showed signs of significance, an

additional parameter was created to capture the possibility of a quadratic interaction

when determining accuracy and loss. A new parameter equal to the lookback values

squared was added to the model.

Looking at the parameter estimates in the quadratic model, both the linear and

quadratic terms for lookback showed signs of significance with a low p-value. The

linear parameter estimate remained positive meaning that the longer the lookback, the

greater the accuracy of the model. However, the parameter estimate for the quadratic

lookback term was negative. This suggests that while the accuracy is increasing as

lookback increases, there are diminishing returns as to how much the accuracy will

increase as the lookback increases. The delay parameter was still insignificant meaning

that increasing the delay parameter had little to no effect on the accuracy of the model

(Figure 12).
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Figure 12. Residual Plot for Validation Accuracy for the Final Epoch in the Quadratic

Model

While the linear model had problems when plotting the residuals, these problems

were fixed when the quadratic parameter was introduced. There are no additional

problems seen within the residual plot meaning that the results meet the assumptions

of the regression model (Figure 13).

Figure 13. Residual Plot for Validation Accuracy for the Final Epoch in the Quadratic

Model

Validation Loss for the Final Epoch - Quadratic Model

The validation loss output from the results showed different results than the vali-

dation accuracy. For the linear model in the validation loss, similar quadratic trends

were seen. The parameter estimates for lookback were negative meaning that the

greater the lookback, the less loss. This makes sense as the lowest loss value occurred

with a lookback of 48 hours. The quadratic term was also significant and positive

in nature. This is similar to the validation accuracy models showing the potential

for diminishing returns as lookback increases. The most surprising result from the
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quadratic model showed a statistically significant result for the delay parameter. The

delay parameter showed a negative coefficient. While this result was not as significant

as the lookback parameters, the negative is a cause for concern. This is the opposite

result that would be expected from increasing delay. In general, as the delay increases,

the validation accuracy and loss are expected to decrease and increase respectively.

This is because it is supposed to be more difficult to predict weather events further

into the future (Figure 14).

Figure 14. Residual Plot for Validation Loss for the Final Epoch in the Quadratic

Model

As before, introduction of the quadratic parameter ensured the resulting model

met the linear model assumptions (Figure 15).

Figure 15. Residual Plot for Validation Loss for the Final Epoch in the Quadratic

Model

A Closer Look
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Grouping the lookback and delay parameters into ordinal groupings and running

another least squares analysis is an effective way to gain more insight. The resulting

parameter estimates (Figure 16) show a positive increase in accuracy when changing

the lookback parameter from 18 hours to 24 hours and 24 hours to 30 hours. The

change from 30 hours to 36 hours did not show any significance. This suggests

diminishing returns from increasing the lookback value may begin around the 30

hour mark. While increasing past 30 hours may produce better results, the increase

may be less than the initial increases between 12-30 hours.

Figure 16. Ordinal Parameter Estimates for Accuracy

To see other plots and information gathered from the analysis, see Appendix B.

4.3 Experimental Results

The results from the experiment were only half as expected. For both the vali-

dation accuracy and validation loss, it was expected that increasing the amount of

lookback would increase accuracy and decrease the loss but would have diminishing
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returns at some point. Diminishing returns became evident around 30 hours of look-

back meaning that adding additional data to the model by increasing the lookback

further than 30 hours did not significantly improve the models. The delay parameter

showed the most suprising result. Trying to predict further away from the data should

result in worse results. Surprisingly, for validation loss, the opposite was true. This

is a cause for concern in addressing the research question.

The experiment showed non-intuitive results for the changing of delays between

the various models. Even though the results showed an increase of around 10% for

accuracy when compared to the baseline of persistence (roughly 70%), there may

have been other factors contributing to earth’s natural daily cycle. By examining

the original dataset, more information was gathered about which hours of the day

lightning generally occurs. For the most part, the lightning variable in the dataset

occurred primarily in the afternoon/evening hours and occurred noticeably less in

the night/morning hours. This might serve as an explanation as to why increasing

the delay did not significantly affect the results for accuracy and had a non-intuitive

effect on the loss. This realization serves as an example as to why further research is

required to produce better results that can be used by the 45th Weather Squadron.

Weather in general is diurnal meaning that it cycles daily. This diurnal pattern is seen

in figure (17). The majority of the lightning occurs around CCAFS during the hours

of 1400-midnight with a significant spike in the late afternoon/early evening. The

initial assumption of persistence may be slightly skewed due to this diurnal pattern

causing the baseline result to actually be better than roughly 70% previously stated.
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Figure 17. Lightning Count by the Hour

The results from lookback showed that increasing lookback past 30 hours showed

diminishing returns. Increasing lookback when performing the experiment was com-

putationally expensive causing the models to take significantly longer to train. With

these time-series data, it is easy to modify the lookback but is still vitally important

in choosing a good length of lookback so to not waist computational time. These

results for the effect of lookback can be used in future research when examining the

data as looking back more than 30 hours should only be looked at if the experiment

has enough time to run.
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4.4 Conclusion

The overall success of the experiment is illustrated in the examination of the

lookback along with the failing result of the delay parameter. The 5-Layer and 3-

Layer models showed relatively similar results even though the 3-Layer models took

significantly less time to train (even if more epochs were run). This showed that a

potential change to model structure may end up helping future research in determining

which models to run to make the time most efficient. Sample code for what was

actually run in the experiment in R can be found in Appendix C. Note that this is

code for just one set of parameters. Similar structures were run for all of the other

sets of parameters in the models.
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V. Conclusion/Future Work

5.1 Introduction

This chapter is a brief discussion of an overview of the results, shortcomings of

the analysis done for lightning detection, what could have been improved upon given

more time, and follow-on thesis level work.

5.2 Overview of Results

The analysis for this research stemmed from the research questions presented in

Chapter I:

1. Which variables can be used as regressors to better predict lightning strikes

around Cape Canaveral?

2. Can an improved model be formed to better predict lightning at CCAFS/KSC?

The analysis provided insight into both of these questions although follow-on

research is required for more definitive answers.

Through the use of LSTM structures, EFM data, and surface observations, mod-

els were made to predict lightning at a maximum of 84% accuracy. This provided

significantly greater results than the day-before baseline which came in around 70%

accurate. The 5 Layer LSTM model structure with a lookback of 48 hours achieved

the best result. Upon further analysis into the results, the delay parameter showed

little to no significance when predicting lightning. This may be caused by the diurnal

pattern as shown in Figure 17. Nevertheless, with a robust analysis on the look-

back parameter, the analysis shows that there is diminishing returns on increasing

the lookback past roughly 30 hours. This result can be used in follow-on research
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in order to focus more closely on the delay parameter perhaps trying to use much

shorter time window.

5.3 Improving the Models

Neural Networks are a growing field of study that have great potential to be

very powerful tool in machine learning. However, Neural Networks are still a “black

box” technique. This means that once the data has been inputted into the model to

be trained, the algorithms and math happening in the back ground of the training

grows increasingly complex. As shown, several of the models run for this analysis

had upwards of two million parameters that were being trained when trying to figure

out how to predict lightning around PAFB. Due to this complexity, it proves to be

increasingly difficult to figure out the most optimal structure to train the data on.

Additionally, if an optimal structure was found, there would be no way of knowing if

that truly was the optimal design or if tweaking one of the input parameters would

improve the model. Because of this, to gain more insight into the data, the models

presented in the analysis could be more finely tuned. Time constraints and the

size/complexity of the various types of models prevented a more finely tuned analysis.

There are an infinite number of possible model structures that could be tested to see

if they outperform the models in this analysis. Nevertheless, this analysis provided

enough insight to show that there is a great potential with neural networks in order

to more accurately predict lightning strike around CCAFS.

5.4 Follow-on Ideas

Potential follow-on research could take two approaches to the problem: create bet-

ter models for the existing data or try and get more data for the models to train and

validate on. Once the data was initially compressed down to one hour increments,
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there were only 14880 total observations. The limited observations stemmed from

surface observations occurring once per hour at most locations. To remain consistent

with the surface observations, the EFM data was compressed down into 1 hour incre-

ments. Additionally, the surface observation from all of the weather stations showed

relatively incomplete data as discussed in the Chapter III. If follow-on research is able

to get complete and more frequent data from these surface observations, the field mill

data could be compressed to smaller increments and the training data could expand

greatly. Just changing the surface observation data to occur every 30 min rather

than every hour would double the amount of data that would be used in training and

validation. While this would not promise better accuracy results, it would make the

users of the neural networks more confident in their output.

Other follow-on research ideas include looking at much shorter time steps in or-

der get better prediction accuracy for a shorter time window. The 45th Weather

Squadron suggested that, along with the shorter time window, a look at the interac-

tion between the different field mills may yield interesting results. This would add

a spacial component to the models which also might benefit from adding in some

convolutional layers.

5.5 Conclusion

This research serves as a baseline for follow-on research done on the topic of

lightning prediction around CCAFS. While the results may not have been as expected

(particularly with the delay parameter), the methodology used to obtain the results

will serve as a good stepping off point for future work. This research also dived into

developing model structures that may potentially be useful with different data being

inputted and trained.
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Appendix A

Figure 18. Single Layer LSTM

Figure 19. 5 Layer No Dropout LSTM

Figure 20. Large Single Layer LSTM
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Figure 21. Small Convolutional LSTM

Figure 22. Larger Convolutional LSTM
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Appendix B

Figure 23. Leverage Plot for Lookback in Validation Accuracy

Figure 24. Leverage Plot for Lookback in Validation Accuracy
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Figure 25. Leverage Plot for Lookback Squared in Validation Accuracy

Figure 26. Leverage Plot for Delay in Validation Loss
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Figure 27. Leverage Plot for Lookback in Validation Loss

Figure 28. Leverage Plot for Lookback Squared in Validation Loss
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Appendix C

Results for the Rare Events LSTM for Each Set of Parameters

Delay Lookback Validation Accuracy (final Epoch) Validation Loss

6 12 71.43% 0.6134

9 18 76.72% 0.5275

18 24 75.48% 0.5764

12 30 79.76% 0.5051

21 24 72.91% 0.5465

24 18 74.81% 0.5692

3 12 49.29% 0.6806

3 24 71.89% 0.5462

21 42 80.63% 0.4847

18 30 82.40% 0.4554

12 36 79.59% 0.548

24 48 82.20% 0.5023

12 18 72.42% 0.6379

12 24 77.16% 0.5522

6 36 82.04% 0.4667

9 48 81.00% 0.437

18 36 80.50% 0.4986

18 48 83.44% 0.4249

6 48 81.58% 0.4568

21 48 81.77% 0.4546

6 24 76.73% 0.5268

3 24 73.71% 0.6082

12 18 72.42% 0.6379

6 18 69.67% 0.6199

21 12 67.29% 0.6277

24 36 81.03% 0.5002

Table 5. Results for the RareEvents Model Structure
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Results for 3 Layer LSTM Model for Each Set of Parameters

Delay Lookback Validation Accuracy (final Epoch) Validation Loss

6 12 74.82% 0.5670

9 18 77.92% 0.5213

18 24 79.31% 0.4798

12 30 82.12% 0.4532

21 24 79.22% 0.4783

24 18 75.82% 0.4767

3 12 73.94% 0.5775

3 24 80.65% 0.4710

21 42 81.53% 0.4214

18 30 79.21% 0.4368

12 36 81.87% 0.4195

24 48 82.40% 0.4212

12 18 75.23% 0.5133

12 24 80.89% 0.4447

6 36 81.26% 0.4386

9 48 83.68% 0.4309

18 36 80.15% 0.4328

18 48 83.02% 0.4557

6 48 83.51% 0.4576

21 48 83.60% 0.4224

6 24 80.21% 0.4997

3 24 79.67% 0.5230

12 18 77.83% 0.5011

6 18 76.09% 0.5295

21 12 76.13% 0.5040

24 36 82.73% 0.4438

Table 6. Results for the 3 Layer LSTM Model Structure
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Appendix D

Option Explicit

Sub ChangeWindDir ()

Dim row As Long

Dim col As Long

For row = 2 To 49531

For col = 14 To 15

If Worksheets("Sheet1").Cells(row , col).Value > 180 Then

Worksheets("Sheet1").Cells(row , col).Value = Worksheets("Sheet1").Cells(row

, col).Value - 360

End If

Next col

Next row

End Sub

Sub ReduceToHour ()

’take min for visibility , cloud height , temperature , SLP , altimeter

’take average for wind direction

’take max wind speed , wind gust

Dim row As Long

Dim col As Long

Dim count As Long

Dim newVal As Double

Dim newCount As Long

Dim sum As Variant

Dim MaxVal As Long

Dim MinVal As Long

Dim numRows As Long

count = 1

newCount = 2

sum = 0
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numRows = 49531

For col = 1 To 157

’takes the average for specified columns.

If col < 16 Then

For row = 2 To numRows

If Worksheets("Sheet1").Cells(row , 4) = Worksheets("Sheet1").Cells(row

+ 1, 4) Then

count = count + 1

If IsEmpty(Worksheets("Sheet1").Cells(row , col)) = True Then

Else

sum = sum + Worksheets("Sheet1").Cells(row , col).Value

End If

Else

If IsEmpty(Worksheets("Sheet1").Cells(row , col)) = True Then

newCount = newCount + 1

Else

sum = sum + Worksheets("Sheet1").Cells(row , col).Value

newVal = sum / count

Worksheets("Sheet2").Cells(newCount , col) = newVal

newCount = newCount + 1

sum = 0

End If

count = 1

sum = 0

End If

Next row

’takes the maximum over an hour for specified columns

ElseIf col < 104 Then

For row = 2 To numRows

If Worksheets("Sheet1").Cells(row , 4) = Worksheets("Sheet1").Cells(row

+ 1, 4) Then

count = count + 1

Else

If IsEmpty(Worksheets("Sheet1").Cells(row , col)) = True Then
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newCount = newCount + 1

Else

MaxVal = Application.WorksheetFunction.Max(Range(Worksheets("Sheet1

").Cells(row - count + 1, col), Worksheets("Sheet1").Cells(row ,

col)))

Worksheets("Sheet2").Cells(newCount , col) = MaxVal

newCount = newCount + 1

End If

count = 1

End If

Next row

’takes the minimum over an hour for specified columns.

ElseIf col < 158 Then

For row = 2 To numRows

If Worksheets("Sheet1").Cells(row , 4) = Worksheets("Sheet1").Cells(row

+ 1, 4) Then

count = count + 1

Else

If IsEmpty(Worksheets("Sheet1").Cells(row , col)) = True Then

newCount = newCount + 1

Else

MinVal = Application.WorksheetFunction.Max(Range(Worksheets("Sheet1

").Cells(row - count + 1, col), Worksheets("Sheet1").Cells(row ,

col)))

Worksheets("Sheet2").Cells(newCount , col) = MinVal

newCount = newCount + 1

End If

count = 1

End If

Next row

End If

newCount = 2

sum = 0

count = 1

Next col
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End Sub

Sub FindLargeMissingData ()

Dim row As Integer

Dim col As Integer

Dim count As Integer

Dim large As Integer

Dim i As Integer

count = 0

large = 0

For col = 5 To 88

For row = 2 To 14212

Do Until (IsEmpty(Worksheets("Sheet2").Cells(row , col)) = False)

count = count + 1

row = row + 1

If row > 14212 Then

Exit Sub

End If

Loop

If count > 4 Then

large = large + 1

Worksheets("Sheet3").Cells(1, large + 1) = Worksheets("Sheet2").Cells

(1, col)

Worksheets("Sheet3").Cells(2, large + 1) = Worksheets("Sheet2").Cells(

row , 1)

Worksheets("Sheet3").Cells(3, large + 1) = Worksheets("Sheet2").Cells(

row , 2)

Worksheets("Sheet3").Cells(4, large + 1) = Worksheets("Sheet2").Cells(

row , 3)

For i = 1 To count

Worksheets("Sheet3").Cells(i + 4, large + 1) = Worksheets("Sheet2").

Cells(row - count + i, 4)

Next i
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count = 0

End If

Next row

Next col

End Sub
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1 library(doSNOW)

2 library(foreach)

3 library(parallel)

4 library(stringr)

5

6 # Start recording system time

7 start.time <- Sys.time()

8

9 # Set working directory to R file location

10 #this.dir <- getSrcDirectory(function(x) {x})

11 this.dir <-("D:/Hill Thesis/Thesis Data/RCode")

12 setwd(this.dir)

13

14

15 # PGD directory

16 setwd("../PGD")

17 PGD <- getwd()

18 PGD <- paste(PGD ,"/trmm_pgd.exe",sep="")

19

20 # Output directory

21 setwd("../Unprocessed EFM Data")

22 outDir <- getwd ()

23

24 # Input directory

25 setwd("../_EFM data (Original)")

26 inDir <- getwd()

27

28 # Gather list of zip files in inDir

29 zipFiles <- Sys.glob("*.zip")

30

31 # Set the number of clusters to the PC total - 1

32 cl<-makeCluster(detectCores () - 1)

33 registerDoSNOW(cl)

34

35 # Parallel loop through the zip files to process them

36 foreach(i=92: length(zipFiles)) %dopar% {

37

38 library(stringr)

39 outFile <- paste(outDir ,"/",str_replace(zipFiles[i],".zip",""),sep="")

40 dir.create(outFile , showWarnings = FALSE)

41 unzip(zipFiles[i], files = NULL , list = FALSE , overwrite = TRUE ,

42 junkpaths = FALSE , exdir = outFile , unzip = "internal",

43 setTimes = FALSE)

44 subDirs <-list.dirs(path = outFile , full.names = TRUE , recursive = TRUE)

45

46 if (length(subDirs) >0){

47 for (j in 2: length(subDirs)) {

48 setwd(subDirs[j])

49 subZip <- Sys.glob("*.zip")

50 if(length(subZip) >0){

51 for (k in 1: length(subZip)) {

52 unzip(subZip[k], files = NULL , list = FALSE , overwrite = TRUE ,

53 junkpaths = FALSE , exdir = ".", unzip = "internal",
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54 setTimes = FALSE)

55 # Delete zip file and keep dat file

56 unlink(subZip[k], recursive = FALSE)

57 }

58

59 # copy the pgd program to the folder

60 file.copy(PGD , getwd())

61 subDat <- Sys.glob("*.dat")

62 if(length(subDat) >0){

63 for (k in 1: length(subDat)) {

64 # Process dat file into RAW file

65

66 # Process the RAW files in the command line

67 system("trmm_pgd.exe", input = subDat[k], show.output.on.console = FALSE)

68

69 # Delete dat file

70 unlink(subDat[k], recursive = FALSE)

71 }

72

73 # Delete the local copy of the executable

74 unlink("trmm_pgd.exe", recursive = FALSE)

75 # Return to the root directory

76 setwd(this.dir)

77 }

78 }

79 }

80 }

81 }

82

83 # Release the parallel cluster

84 stopCluster(cl)

85

86 # Calculate total run time

87 end.time <- Sys.time()

88 time.taken <- end.time - start.time

89 print(time.taken)
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1 #Example Code Used For Thesis

2 #this is the code written for a Delay of 18 and a Lookback of 36. All other sets of parameters followed similar

structures.

3 #set up

4

5 library(data.table)

6 library(keras)

7 library(tensorflow)

8 library(mice)

9 library(VIM)

10 library(ggplot2)

11

12

13 setwd(’/home/dom/Documents/DomThesis/RCode’)

14 completeData <-readRDS(’completeDataNoHolesImputed.rds’)

15 setwd(’/home/dom/Documents/DomThesis/ModelHistory ’)

16

17 #makes the generator function to get make the make data for LSTMs

18 weather_generator <-function(data ,lookback ,delay ,min_index ,max_index ,shuffle = FALSE , batch_size = 128, steps = 1)

{

19 if(is.null(max_index)) max_index <-nrow(data)-delay -1

20 i<-min_index+lookback

21 function (){

22 if(shuffle){

23 rows <-sample(c((min_index+lookback):max_index),size = batch_size)

24 } else{

25 if(i+batch_size >=max_index)

26 i<<- min_index+lookback

27 rows <-c(i:min(i+batch_size ,max_index -delay))

28 i<<- i+length(rows)

29 }

30

31

32 samples <-array(0,dim = c(length(rows),

33 lookback/steps ,

34 dim(data)[[ -1]]))

35 targets <-array(0,dim = c(length(rows)))

36

37 for (j in 1: length(rows)){

38 indices <- seq(rows[[j]]-lookback ,rows[[j]]-1)

39 samples[j,,]<-data[indices ,]

40 targets [[j]]<-data[rows[[j]]+delay ,dim(data)[[2]]]

41 }

42

43 list(samples ,targets)

44 }

45 }

46

47 ##################################3

48 #D18L36

49 ###################################

50

51
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52 #now we can create the training , validation

53 #define our specs for the RNN

54 delay <-18 #trying to find the result for 18 hours ahead.

55 lookback <-36 #start with looking back 36 hours to gain the pattern

56 steps <-1 #each timestep is already in hours

57

58 batch_size <-3720- lookback

59

60

61

62 #sets the index for each of the years for the dataset

63 max_index2013 <-3720

64 max_index2014 <-3720+ max_index2013

65 max_index2015 <-3720+ max_index2013*2

66

67 #changes the data in to a data.matrix

68 #also gets rid of the time data as we do not need it for analysis.

69 completeDataMatrix <-data.matrix(completeData [,-(1:4)])

70 #completeDataMatrix <-completeDataMatrix [,-123]

71

72 #creates each of the generators for the different years

73 gen2013_gen <-weather_generator(

74 completeDataMatrix ,

75 lookback = lookback ,

76 delay = delay ,

77 min_index = 1,

78 max_index = max_index2013 ,

79 shuffle = FALSE ,

80 steps = steps ,

81 batch_size = batch_size

82 )

83

84

85 gen2014_gen <-weather_generator(

86 completeDataMatrix ,

87 lookback = lookback ,

88 delay = delay ,

89 min_index = max_index2013+1,

90 max_index = max_index2014 ,

91 shuffle = FALSE ,

92 steps = steps ,

93 batch_size = batch_size

94 )

95

96

97 gen2015_gen <-weather_generator(

98 completeDataMatrix ,

99 lookback = lookback ,

100 delay = delay ,

101 min_index = max_index2014+1,

102 max_index = max_index2015 ,

103 steps = steps ,

104 batch_size = batch_size ,

105 shuffle = FALSE
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106 )

107

108 gen2016_gen <-weather_generator(

109 completeDataMatrix ,

110 lookback = lookback ,

111 delay = delay ,

112 min_index = max_index2015+1,

113 max_index = NULL ,

114 steps = steps ,

115 batch_size = batch_size ,

116 shuffle = FALSE

117 )

118

119 #extracts the data from the generators in a timeseries format. looks at the previous lookback number of hours

120 gen2013 = gen2013_gen()

121 gen2014 = gen2014_gen()

122 gen2015 = gen2015_gen()

123 gen2016 = gen2016_gen()

124

125 #copies over the data into a more usiable form.

126 blankMatrix = array(0,batch_size*4*lookback*168-delay -1)

127 samples = array(blankMatrix ,c(batch_size*4-delay -1,lookback ,168))

128

129 #copies over the samples

130 for (i in 1:( batch_size -delay)){

131 for (j in 1: lookback){

132 for(k in 1: 168){

133 samples[i,j,k]= gen2013 [[1]][i,j,k]

134 }

135 }

136 }

137

138 for (i in 1:( batch_size -delay)){

139 for (j in 1: lookback){

140 for(k in 1: 168){

141 samples[i+batch_size ,j,k]= gen2014 [[1]][i,j,k]

142 }

143 }

144 }

145

146

147 for (i in 1:( batch_size -delay)){

148 for (j in 1: lookback){

149 for(k in 1: 168){

150 samples[i+batch_size*2,j,k]= gen2015 [[1]][i,j,k]

151 }

152 }

153 }

154

155 for (i in 1:( batch_size -delay -1-delay)){

156 for (j in 1: lookback){

157 for(k in 1: 168){

158 samples[i+batch_size*3,j,k]= gen2016 [[1]][i,j,k]

159 }
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160 }

161 }

162

163 #set up the targets

164 blankMatrix=array(0,batch_size*4-delay -1)

165 targets = array(blankMatrix ,c(batch_size*4-delay -1))

166 for (i in 1: (batch_size -delay)){

167 targets[i]= gen2013 [[2]][i]

168 }

169 for (i in 1: (batch_size -delay)){

170 targets[i+batch_size]= gen2014 [[2]][i]

171 }

172 for (i in 1: (batch_size -delay)){

173 targets[i+batch_size*2]= gen2015 [[2]][i]

174 }

175 for (i in 1: (batch_size -delay -1-delay)){

176 targets[i+batch_size*3]= gen2016 [[2]][i]

177 }

178

179 #set up the training and validation sets.

180 set.seed (2019)

181 train_index <-sample (1: nrow(samples) ,.8*nrow(samples))

182

183 samples_train <-samples[train_index ,,]

184 targets_train <-targets[train_index]

185

186 samples_val <-samples[-train_index ,,]

187 targets_val <-targets[-train_index]

188

189

190 #########################################################

191 #5 Layer LSTM

192

193 moredropoutLSTM36 <-keras_model_sequential ()%>%

194 layer_lstm(units = 32,input_shape = c(lookback ,168),return_sequences = TRUE)%>%

195 layer_dropout (.25)%>%

196 layer_lstm(units = 64,return_sequences = TRUE)%>%

197 layer_dropout (.25)%>%

198 layer_lstm(units = 128, return_sequences = TRUE)%>%

199 layer_dropout (.25)%>%

200 layer_lstm(units = 256, return_sequences = TRUE)%>%

201 layer_dropout (.25)%>%

202 layer_lstm(units = 512)%>%

203 layer_dense(units = 1,activation = "sigmoid")

204

205

206 moredropoutLSTM36 %>% compile(

207 optimizer = "rmsprop",

208 loss = "binary_crossentropy",

209 metrics = c("acc")

210 )

211

212

213 #we will train this model longer because of the drop out.

59



214 moredropouthistoryD18L36 <-moredropoutLSTM36 %>%fit(

215 samples_train ,

216 targets_train ,

217 epochs = 150,

218 batch_size = 150,

219 validation_data = list(samples_val ,targets_val)

220 )

221 plot(moredropouthistoryD18L36)+ggtitle("Dropout 5 Layer LSTM 25% per Layer")

222 saveRDS(layer3dropouthistoryD18L36 ,’Layer3_Delay18_Lookback36.rds’)

223 ######################################################

224

225 #####################################################

226 #rareEventLSTM

227

228 raredropoutLSTM36 <-keras_model_sequential ()%>%

229 layer_lstm(units = 32,input_shape = c(lookback ,168),return_sequences = TRUE)%>%

230 layer_dropout (.2)%>%

231 layer_lstm(units = 64,return_sequences = TRUE)%>%

232 layer_dropout (.2)%>%

233 layer_lstm(units = 128, return_sequences = TRUE)%>%

234 layer_dropout (.2)%>%

235 layer_lstm(units = 256, return_sequences = TRUE)%>%

236 layer_dropout (.2)%>%

237 layer_lstm(units = 512)%>%

238 layer_dense(units = 1,activation = "sigmoid")

239

240 raredropoutLSTM36 %>% compile(

241 optimizer = "rmsprop",

242 loss = "binary_crossentropy",

243 metrics = c("acc")

244 )

245

246

247 raredropouthistoryD18L36 <-raredropoutLSTM36 %>%fit(

248 samples_train ,

249 targets_train ,

250 epochs = 150,

251 batch_size = 150,

252 validation_data = list(samples_val ,targets_val),

253 class_weight = list("0"=.25,"1"=.75)

254 )

255 plot(raredropouthistoryD18L36)+ggtitle("Rare Event 5 Layer LSTM dropout 20% per layer")

256 saveRDS(moredropouthistoryD18L36 ,’Layer5_Delay18_Lookback36.rds’)

257

258 # #######################################################

259

260 #########################################################

261 #3 Layer LSTM

262

263 layer3dropoutLSTM36 <-keras_model_sequential ()%>%

264 layer_lstm(units = 32,input_shape = c(lookback ,168), return_sequences = TRUE)%>%

265 layer_dropout (.2)%>%

266 layer_lstm(units = 64,return_sequences = TRUE)%>%

267 layer_dropout (.2)%>%
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268 layer_lstm(units =128)%>%

269 layer_dense(units = 1,activation = "sigmoid")

270

271

272 layer3dropoutLSTM36 %>% compile(

273 optimizer = "rmsprop",

274 loss = "binary_crossentropy",

275 metrics = c("acc")

276 )

277

278

279

280

281 layer3dropouthistoryD18L36 <-layer3dropoutLSTM36 %>%fit(

282 samples_train ,

283 targets_train ,

284 epochs = 150,

285 batch_size = 150,

286 validation_data = list(samples_val ,targets_val)

287 )

288 plot(layer3dropouthistoryD18L36)+ggtitle(’Three layer LSTM model 20% dropout per layer’)

289 saveRDS(raredropouthistoryD18L36 ,’Rare5Layer_Delay18_Lookback36.rds’)

290 ##############################################

291

292 ##############################################

293 # #get all the plots in the same spot

294 # # start pdf device

295 pdf(file=’/home/dom/Documents/DomThesis/Delay18_Lookback36.pdf’)

296

297 plot(moredropouthistoryD18L36)+ggtitle("Dropout 5 Layer LSTM 25% per Layer")

298

299 plot(raredropouthistoryD18L36)+ggtitle("Rare Event 5 Layer LSTM dropout 20% per layer")

300

301 plot(layer3dropouthistoryD18L36)+ggtitle(’Three layer LSTM model 20% dropout per layer’)

302

303 dev.off()
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2. C. Tovar, D. Aranguren, J. López, J. Inampués, and H. Torres, “Lightning Risk
Assessment and Thunderstorm Warning Systems,” in 2014 International Confer-
ence on Lightning Protection, ICLP 2014, pp. 1870–1874, 2014.

3. J. Allaire and F. Chollet, “keras: R Interface to ’Keras’,” Journal of Statistical
Software, vol. 63, no. 17, 2018.

4. R. J. Kuligowski and A. P. Barros, “Localized Precipitation Forecasts from a
Numerical Weather Prediction Model Using Artificial Neural Networks,” Weather
Forecasting, vol. 13, pp. 1194–1204, 1998.

5. A. Grover, A. Kapoor, and E. Horvitz, “A Deep Hybrid Model for Weather
Forecasting,” in Proceedings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining - KDD ’15, pp. 379–386, 2015.

6. H. J. Christian, V. Mazur, B. D. Fisher, L. H. Ruhnke, K. E. Crouch, and R. P.
Perala, “The Atlas/Centaur Lightning Strike Incident,” Journal of Geophysical
Research: Atmospheres, vol. 94, no. D11, pp. 13169–13177, 1989.

7. C. Canright, “Lightning and Launches.” https://www.nasa.gov/audience/foreducators/9%0A-
12/features/F Lightning and Launches 9 12.html, 2001.

8. R. A. Mazany, S. Businger, S. I. Gutman, and W. Roeder, “A Lightning Pre-
diction Index that Utilizes GPS Integrated Precipitable Water Vapor*,” Weather
and Forecasting, vol. 17, pp. 1034–1047, 2002.

9. H. Torres, E. Perez, C. Younes, D. Aranguren, J. Montaña, and J. Herrera,
“Contribution to Lightning Parameters Study Based on Some American Trop-
ical Regions Observations,” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 8, no. 8, pp. 4086–4092, 2015.

10. S. Olsen, “Forecasting Lightning Initiation Utilizing Dual-Polarization Radar Pa-
rameters over Washington, D.C.,” Tech. Rep. March, Air Force Institute of Tech-
nology, 2018.

11. N. Holden, “Forecasting Lightning Cessation Using Dual-Polarization Radar and
Lightning Mapping Array near Washington, D.C.,” tech. rep., Air Force Institute
of Technology, 2018.

12. B. C. Bates, A. J. Dowdy, and R. E. Chandler, “Lightning Prediction for Australia
using Multivariate Analyses of Large-scale Atmospheric Variables,” Journal of
Applied Meteorology and Climatology, vol. 57, pp. 525–534, 2018.

62



13. D. Aranguren, J. Inampués, H. Torres, J. López, and E. Pérez, “Operational
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