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Abstract

While modern day weather forecasting is not perfect, there are many benefits

given by the multitude and variety of predictive models. In the interest of routing

airplanes, this paper uses time series analysis on successive weather forecasts to pre-

dict the optimal path and fuel burn of wind-based, fuel-burn networks with stochastic

correlated arcs. Networks are populated with either deterministic or ensemble-based

weather data, and the two data sources with and without time series analysis are

compared. Methods were compared by fuel burn prediction accuracy and ability to

predict a future optimal path. Of the four options, the ensemble-based methods were

on average the least accurate. Using time series analysis on ensemble data gave a

nominal change in correct future path prediction and an increase in fuel burn pre-

diction accuracy. The deterministic method gave the most accurate results but the

worst correct future path prediction rate. Time series analysis on deterministic data

had a marginal decrease in accuracy but the highest correct future path prediction

rate.
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TIME SERIES ANALYSIS OF STOCHASTIC NETWORKS WITH RANDOM

CORRELATED ARCS

I. Introduction

1.1 Background

Despite the Department of Defense’s massive budget, there is always a need to

allocate funds as efficiently as possible to complete the agency’s mission. For the 2019

fiscal year, the United States Air Force alone requested a budget of $156 billion [1].

In the Air Force, this money is allocated to different major commands (MAJCOMs)

to undertake and accomplish different subsections of the Air Force’s total mission.

For example, Air Mobility Command (AMC) specializes in “worldwide cargo and

passenger delivery“ among other things [2]. In 2017, AMC consumed more than half

of the Air Force’s $6.8 billion aviation fuel budget [3]. With AMC using the majority

of the Air Force’s annual reported 2 billion gallon supply of aviation fuel, any small

increase in efficiency will have a large impact throughout this MAJCOM [4].

1.2 Overview

There are numerous ways to increase fuel efficiency that can be applied to

AMC’s mission and the Air Force as a whole. This work focuses on improving flight

planning to better predict fuel burn by routing aircraft away from predicted head-

winds. In particular, this research focuses on flight planning for the C-17, a cargo

plane that is a staple for AMC’s transportation mission. Better fuel burn predictions

will result in lighter planes as pilots can take less contingency fuel. Further, avoiding
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headwinds is effectively traveling a shorter distance for an airframe.

Current weather models can be broken into two distinct classes: Determin-

istic and Ensemble. Deterministic models are those that are composed by a single

model, while multiple deterministic models comprise an ensemble model [5]. An En-

semble model initializes each of its members with slightly different parameter values

generating a forecast with a spread of results. This spread can give better insight

into the range of a forecast than its deterministic counterpart.

Although ensemble models are a weather industry mainstay, AMC still uses

deterministic weather forecasts when route planning for future flights. Recent research

related to predicting aircraft fuel burn has made a strong case for the departure from

deterministic weather models in favor of ensemble weather models. In 2014, Homan

[6] used an iterative algorithm to compare predicted fuel burn estimates between

ensemble and deterministic weather models across a variety of aircraft and routes.

Homan [6] found averaging ensemble forecasts to “generally provide more accurate

fuel burn estimates than GFS (Global Forecast System) deterministic model wind

forecasts”. In recent research, Boone [7] showed ensemble weather forecasts could

more frequently find the optimal route for future C-17 flights while also being better

at predicting fuel burn.

The remainder of this thesis explores the value of ensemble weather models

and time series analysis to the flight planning community. Chapter 2 discusses previ-

ous literature on this subject. Chapter 3 describes current practices then frame the

problem and possible improvements. Next, Chapter 4 reviews the results. Lastly,

Chapter 5 finishes with lessons learned and a conclusion.

2



II. Literature Review

2.1 Overview

This chapter discusses the stochastic shortest path problem (SPP) with corre-

lated arcs and how it relates to the AMC flight planning problem. The deterministic

SPP is a classic network problem that seeks to minimize cost of traversing between

nodes of a network. In the stochastic SPP case, arc lengths are uncertain which vio-

lates various assumptions of the deterministic SPP. One popular approach to solving

the stochastic SPP is the expected shortest path [8]. Further complications of the

stochastic SPP arise when arcs in a network are correlated. Boone’s [7] recent ap-

proach to stochastic SPP with correlated arcs was using independent and identically

distributed (IID) ensembles of an entire network to find the optimal path through

a future instance of a network. Lastly, the different benefits between ensemble and

deterministic weather models are briefly discussed.

2.2 Stochastic SPP

The deterministic SPP is shown in Equation (1) where A is the set of all arcs

(i, j), xij is the binary decision variable represneting the selection of the arc from

node i to node j with 1 ≤ i,j ≤ n, and cij is the cost of traveling a particular arc. In

scenarios such as this AMC flight planning problem, a network can be created as an

outline for a potential flight route. In this sense, the shortest path is the path that

minimizes the fuel burn traversing from one end of the network to the other. However,

since fuel burn is based on wind, which is stochastic in nature, this formulation is not

appropriate.

3





min
∑

(i,j)∈A

cijxij

subject to:∑
(1,j)∈A

x1j −
∑

(j,1)∈A

xj1 = 1,

∑
(i,j)∈A

xij −
∑

(j,i)∈A

xji = 0, 2 ≤ i ≤ n− 1,

∑
(n,j)∈A

xnj −
∑

(j,n)∈A

xjn = −1,

xij ∈ 0, 1,∀(i, j) ∈ A

(1)

The expected shortest path model attacks the stochastic nature of stochastic

SPP by changing the objective function of Equation (1) to minimize an expected

value of travel cost across each arc [8]. Each arc’s expected value is calculated based

off of its respective probability distribution. This formulation is given by Equation

(2).



minE[
∑

(i,j)∈A

ξijxij]

subject to:∑
(1,j)∈A

x1j −
∑

(j,1)∈A

xj1 = 1,

∑
(i,j)∈A

xij −
∑

(j,i)∈A

xji = 0, 2 ≤ i ≤ n− 1,

∑
(n,j)∈A

xnj −
∑

(j,n)∈A

xjn = −1,

xij ∈ 0, 1,∀(i, j) ∈ A

(2)

Further complications of solving the stochastic SPP arise when both arcs are

correlated and the probability distributions of arc lengths are unknown [9]. In certain

applications, multiple predictions of a stochastic correlated network exist and can be

4



used to increase the likelihood of finding the shortest path.

For instance, weather models can be comprised of ensemble members that inde-

pendently predict future weather [5]. Boone [7] used individual ensemble members

to create travel networks across several popular C-17 flight routes and predict the

most fuel efficient flight plan. All ensemble networks were solved and a list of unique

optimal paths were recorded. Next, each unique optimal path was run through each

ensemble network giving an IID sample of each path’s true fuel burn. This method,

known as the a posterori Shortest Path (APSP) was able to identify the future optimal

path through a stochastic network with correlated arcs.

2.3 Ensemble vs Deterministic

The comparison between ensemble and deterministic models has been well

studied. Keith and Leyton [10] showed ensemble weather models to be better at pre-

dicting adverse weather conditions where commercial planes would require extra fuel.

Krishnamurti et al. [11] found an ensemble model to be the superior forecaster when

compared to the deterministic models that composed it in a multitude of applications.

However, the benefits of ensemble forecasting are not absolute to all problems and

times. While ensemble models showed increased forecasting accuracy for flooding in

Venice due to storms 4+ days out, the short term ensemble and deterministic forecasts

were comparable [12]. Leonardo and Colle [13] validated an assortment of popular

weather models’ accuracy in predicting North Atlantic tropical cyclones. They found

a deterministic model gave the lowest total track error with several ensembles being

statistically comparable. The World Meteorological Organization notes that ensemble

models typically produce more reliable forecasts than their deterministic counterparts,

but “this is particularly true for forecasts more than 1-3 days ahead” [14].

5



2.4 Conclusion

As already shown, correlation in arc lengths disrupts the integrity of tra-

ditional stochastic SPP solutions. In unique situations, such as weather modeling,

different representations of a stochastic network can be used to add context that

would not normally be available. Naturally, the benefit of this context can be ap-

plied to the AMC problem by using successive ensemble and deterministic weather

predictions of a pertinent area.
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III. Methodology

3.1 Introduction

This chapter will first focus on current methodology for flight routing in AMC.

Next, it will be shown how weather networks can be created to resemble potential

flight paths, and all necessary components of the network are described. The current

methodology is transposed to the network interpretation of this problem alongside

other possible solution methods. These new proposed methods are built using suc-

cessive predictions and time series analysis. Lastly, the measures for differentiating

between methods are introduced.

3.2 Past AMC

AMC currently uses a system known as the Advance Computer Flight Planner

(ACFP) to plan future flight routes. The ACFP system plans flight routes based

on weather and daily operational considerations. The data intake for the ACFP

platform is currently the deterministic GFS model provided by the National Oceanic

and Atmospheric Administration (NOAA) [15]. Apart from small adjustments, the

networks to be described are of the same form as created by Boone [7].

3.3 AMC Application

Data

The ensemble weather data came from the Global Ensemble Forecasting System

(GEFS) model curated by NOAA, composed of 21 ensemble models. Each of the 21

ensemble members had wind data at 14 different pressure levels at each integer in-

tersection of latitudinal and longitudinal coordinates [16]. Of the 14 pressure levels,

7



only three were inside or near the conventional cruising altitude of a modern airplane

with respective altitudes of 20800, 26600, and 44640 ft. The deterministic weather

data came from the GFS model. Wind data was also available at the crossing of

integer latitude and longitudes but was predicted at 31 pressure levels. Five pressure

levels from 23500 ft to 38600 ft were applicable, but only the three pressure levels

common to both models surrounding typical C-17 airspace were used to create net-

works. These three pressure levels were interpolated to 25000, 30000, and 35000 ft for

both models, or the typical bounds for a C-17 in cruise. The GFS and GEFS models

had weather predictions for each coordinate a week ahead. However, this study did

not look at predictions further than five days into the future.

The dataset contained wind data corresponding to five popular C-17 routes:

Travis Air Force Base, CA to Honolulu, HI, McChord Air Force Base, WA to Gander,

Newfoundland, Shaw Air Force Bace, SC to Rota, Sinapalo, Shaw Air Force Base,

SC, to Ramstein, Germany, and Joint Base McGuire Dix Lakehurst, NJ to Spang-

dahlem, Germany. Each route included all available pressure levels interpolated to

a set of unique waypoints. For succinctness each route is referred to by each air-

port’s respective four letter designation:KSUU-PHNL, KTCM-CYQX, KCHS-LERT,

KCHS-ETAR, and KWRI-ETAD. The Matlab function gcwaypts created a list of

evenly spaced waypoints arranged in a great circle track between the starting and

ending airports. The number of waypoints on each route was calculated based on

the length of the route, with one waypoint occuring every half degree. The interpo-

lation was done using the function griddata. Griddata used the one degree gridded

latitudinal and longitudinal wind data at each pressure level and interpolated the

wind components of each pressure level to the route’s waypoints using 4-D linear

interpolation.

8



Building the Network

To find the most fuel efficient path between two airports, a network was created

based on the waypoints associated with each of the five routes that resembled the

flights possible path. To mirror typical flight planning eleven nodes were created at

each waypoint, one for each altitude between 25k and 35k feet. Ng et al. [17] found

fuel savings for initial climbs and final descents to be negligible. So, the first and last

nodes were forced to be at 25k feet. Ultimately, a network with n waypoints, where

n does not include the starting and ending nodes, would be comprised by 11n + 2

nodes and (n− 1)112 + 22 arcs. In the network a plane cannot fly to another altitude

at the same waypoint, and each arc is directional flowing towards the next waypoint.

Wind data is predicted at various pressure levels across the globe. This wind

data takes the form of U and V components in meters per second. A positive U com-

ponent represents wind blowing to the East while a positive V component represents

wind blowing to the North [18]. With wind data at all pressure levels at each of the

waypoints along a route, the U and V components were separately interpolated to

the eleven altitudes at each waypoint along any given route by iteratively using the

griddata function. The total wind speed at each waypoint and altitude in meters per

second was calculated using the Pythagorean Theorem. The wind direction related

to the recently calculated wind speed was calculated using Matlabs atan2d function

which returns the four-quadrant arctangent of the U and V components. The wind

speed was then converted from meters per second to knots by the convvel function.

As the C-17 traverses the network, the winds will naturally be changing in

flight. Assuming the C-17 maintains its typical cruising speed of 450 knots [19],

three out of the five routes take over seven hours to travel from the starting point

to the destination. Given weather predictions every six hours, the initial network is

interpolated with up to two future predictions of the network to account for changing

9



winds in flight over the duration of a flight.

In the available dataset, there are five days worth of weather predictions for

any given time slot. A true weather forecast is the +0 hour initialization of the GFS

model at that hour. Therefore, there are 20 predictions of the true weather generated

from 120 hours to 6 hours (+120 to +6) before the actual predicted time. Since each

network is interpolated across the flight’s duration, the +06 model for a selected time

is paired with the +12 model for six hours ahead of the selected time and if necessary

the +18 model for twelve hours ahead of the selected time. This interpolation mirrors

the data that would be available real time for a flight scheduler. While realistic, this

method shrinks the amount of forecasts available for the GFS and GEFS data from

20 to 18. This occurs because in practice at +120 from flight time there would not

yet exist the forecasts to needed to interpolate into the future. This is shown in

Table 1 where the red indicates unavailable forecasts while the blue indicates unused

forecasts.

Next, the azimuth from each waypoint to each following waypoint was calcu-

lated using the azimuth function. Assuming a constant true air speed (TAS) of 450

knots at all times, the wind-affected ground speed was calculated using the driftcorr

function in Matlab. The driftcorr function takes in the C-17’s heading and speed and

calculates the corrected ground speed based on the wind speed and direction at every

Table 1. Composition of Complete Forecasts When Interpolating Across Time

10



node. Each arc in the network is symbolic of the C-17 flying from one of the eleven

possible altitudes of a waypoint to another of the eleven possible altitudes in the suc-

cessive waypoint. The fuel burn to travel each arc was calculated using Reiman’s [20]

C-17 regression models. These regression models depend on weight, altitude change,

and distance flown. The weight of a C-17 was assumed to be constant at 496,500

lbs. The distance between waypoints was altered based on a ratio of TAS to ground

speed (Equation (3)). This effective distance reflects how far a C-17 actually travels

in cruise without being affected by wind.

Distancewind = Distance× TAS

GroundSpeed
(3)

Reiman’s regression models have three parts: ascent (Equation (4)), descent

(Equation (5)), and cruise (Equation (6)). The ascent and descent models give an

estimate on either the fuel burned changing altitudes, or the distance required to

change altitude based on which β coefficients are used. The β coefficients associated

with each equation’s descending and climbing regression equations are found in Tables

2 and 3, respectively.

φC = β0 + β1α + β2α
2 + β3α

3 + β4ω + β5ω
2 + β6ω

3 + 10−6β7α
2ω3 + 10−6β8α

2ω3 (4)

φD = β0 + β1ω + β2ω
2 + β3α + β4αω (5)
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Where:

φC = Fuel to Climb in Klbs or Distance to Descend in NMs

φD = Fuel to Descend in Klbs or Distance to Descend in NMs

α = Altitude in Thousands of Feet

ω = Aircraft Gross Weight in Klbs at Descent Start

Table 2. Descent Regression
Terms (φD)

Fuel Dist

β0 0.2574 -16.382
β1 0.0005 0.1278
β2 -8.5E-7 -1.7E-4
β3 0.0108 1.3919
β4 3.2E-5 0.0036

Table 3. Climb Regression Terms
(φC)

Fuel Dist

β0 -4.7054 -51.504
β1 0.2869 2.0961
β2 -0.0070 -0.0282
β3 7.1E-05 0.0003
β4 0.0267 0.3363
β5 -5.9E-05 -0.0008
β6 4.8E-08 6.9E-07
β7 6.7E-05 0.0003
β8 -2.1E-07 1.7E-05

Before calculating the fuel burn of an arc, the distance needed to change altitudes

was calculated. If the distance needed to change altitudes for a particular arc was

greater than the distance between waypoints, then the arc was discarded. Naturally

all arcs that were not discarded had some distance where the plane was cruising

between waypoints. The regression model for fuel burn in cruise is shown in Equation

(6) with the β coefficients shown in Table 4.

12



ωff =− B

3A
− 1

3A
3

√
1

2
[2B3 − 9ABC + 27A2D +

√
(2B3 − 9ABC + 27A2D)2 − 4(B2 − 3AC)3]

− 1

3A
3

√
1

2
[2B3 − 9ABC + 27A2D −

√
(2B3 − 9ABC + 27A2D)2 − 4(B2 − 3AC)3]

(6)

Where:

A = β4
3

B = (β32 + β4(ωop + ωfrc + ωfah + ωp) + β5
2 α

C = β0 + β1α + β2α
2 + β3(ωop + ωfrc + ωfah + ωp)+

β4(ωop + ωfrc + ωfah + ωp)
2) + β5α(ωop + ωfrc + ωfah + ωp)

D = −δ
α = Altitude in Thousands of Feet δ = Distance in NMs
ωfrc = Reserve/Contingency Fuel Weight ωop = Operating Weight
ωfah = Alternate/Holding Fuel Weight ωp = Payload Weight
ω = Aircraft Gross Weight f = Fuel Consumed
ω = ωop + ωfrc + ωfah + ωp + f ωff = Cruise Fuel Weight

Table 4. Cruise (ωff) Regression Terms

Fuel

β0 31.735
β1 0.9897
β2 -0.0043
β3 -0.0642
β4 5.8E-05
β5 -0.0011

After establishing the fuel required to traverse each arc, the network is solved

using the shortestpath function. This function solves the shortest path problem as

shown in Equation (1).
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Different Model Predictions

This research uses four different fuel burn predictions based on the weather data

of the GEFS and GFS forecast models. Each of the four methods for predicting fuel

burn are based on the data populated from one of the two forecast models. Two out of

the four methods use a time series approach to predicting the future. These methods

analyze how a path’s predicted fuel burn changes over successive model predictions to

better predict how the path’s predicted fuel burn will behave in the future. A method

that mimics current practices is used, along with Boone’s [7] proposed method.

While both the GEFS and GFS model have their own version of the world’s

current true weather, the GFS model initialization is used as the truth model when

comparing predictions to real world conditions.

Deterministic

The deterministic method is simply the best last model and imitates current AMC

routing practices. This method populates the network described above with the GFS

models pth forecast before planning a route. From this data, the network is solved

and the shortest path and predicted fuel burn recorded.

Deterministic Time Series

The deterministic time series method is an extension of the deterministic method.

For a given set of true weather data, a network is created for every p available succes-

sive weather forecasts. As already described there can be a maximum of 18 weather

networks created. Each network is solved, and the optimal paths and predicted fuel

burns are recorded. There can be not be more unique optimal routes than networks.

Next, the optimal paths are reduced to only unique optimal paths. Each of these

candidate paths are run through all networks where the fuel burn estimate in each

14



network is recorded. Time series analysis is used on the fuel burn predictions to both

determine the best path and predict the fuel burn of the best path. The path with

the lowest time series fuel burn prediction is chosen as the prediction. A prediction

interval on the fuel burn is then created using principles from linear regression.

Boone’s Method

Unlike the previous two methods, Boone’s [7] method utilizes the last available

GEFS wind data. For a given time, the 21 ensemble models that comprise the pth

GEFS model are used to make 21 different networks. The optimal path is then solved

for each network. Each unique optimal path is then run through each of the 21

networks where the fuel burn prediction is recorded. The best path is chosen based

on the lowest average fuel burn across each path’s ensemble predictions. Lastly, a

kernel density estimate discussed later in the paper is created as a prediction interval

around the fuel burn.

Time Series Ensemble

The last of the four methods expands Boone’s [7] method over an interval of

successive forecasts. A total of 21 weather networks, one for each ensemble, are

created for each p available GEFS forecasts. Similarly to the deterministic time

series, there can be at most 18 sets of 21 ensemble networks. Each network is solved

and the unique routes are found. Then, each path is run through every ensemble’s

network of every times prediction. Time series analysis is used to create a fuel burn

prediction of each unique optimal path in all ensembles at the truth time. After all 21

ensemble’s time series predictions are calculated, the median time series prediction is

used as the fuel burn prediction for a given path. The path with the lowest median

time series prediction is used as the best path. Kernel density estimation is then used

15



to created a prediction interval around the ensemble time series predictions.

Time Series Analysis

Both the ensemble time series and deterministic time series use the same time

series model, a second order autoregressive model as described by Bowerman et al.

[21]. This model is a linear regression model where the next time series value is

predicted as a function of the previous two.

ŷt = β0 + β1yt−1 + β2yt−2 (7)

A second order model was chosen solely based on performance. Autoregressive

models of order one through six were compared in a random sample of 30% of the

data set with the second order model giving the lowest error on average. Each unique

path identified in the deterministic time series prediction has its own model based

on its own time series data. Each unique path identified in the ensemble time series

prediction has 21 different models, one for each ensemble. After constructing each

model, path forecasts are created by setting the future time to ŷt in Equation (7) and

solving.

Prediction Intervals

Prediction intervals are created for both time series methods and Boone’s

method to give more context about each method’s prediction. The deterministic time

series prediction interval is a byproduct of being created through linear regression.

The prediction interval is slightly larger than a confidence interval since it “depends on

both the error from the fitted model and the error associated with future observations”

[22]. In Equation (8), µ is the true mean, x̄ is the sample mean, t is a t-distribution

with n − p degrees of freedom, α is the confidence level, s2 is the sample variance,
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X is the data matrix and x0 is the row vector containing the numbers multiplied by

the β coefficients in Equation (7). In the t-distribution’s degrees of freedom, p is the

same as the order of the autoregressive model.

µ ∈ x̄± tα
2
,n−p

√
s2(1 + x

′
0(X′X)−1x0) (8)

Prediction intervals for the ensemble time series and Boone’s method are created

using kernel density estimation (KDE). KDE was used as a non-parametric way to

compute the probability density functions (PDFs) given multiple predictions for a

path in the Boone and time series ensemble methods. KDE gives insight from the

predictions without making assumptions about their distribution. For both methods,

PDFs were created using the Matlab function ksdensity. KDE is shown in Equa-

tion (9) where n is the sample size, (x1, x2, ..., xn) are the n samples, K(x, ·) is the

Kernel function, and h is the bandwidth parameter [23]. The Gaussian kernel, used

to calculate the PDFs in ksdensity is shown in Equation (10) [24].

f̂ =
1

nh

n∑
i=1

K(
x− xi
h

) (9)

K(t) =
1√
2π

exp−(1/2)t
2

(10)

Using quantile in Matlab, the 2.5% and 97.5% quantiles of the kernel’s cumulative

density function are calculated. This interval, containing 95% of distribution, is taken

as the 95% prediction interval.

Multiple Paths

For the last three methods there is potentially multiple candidate paths to

choose from. When this occurs, the path with the lowest prediction is always chosen
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as the path to compare against fuel burn predictions from the other methods. Given

multiple paths, this is ideal based on how the path is chosen. The lowest average

path will be, at worst, statistically comparable to another path.

Methods Over a Planning Window

To further evaluate real world applicability, the methods are evaluated at 96,

72, 48, 24, and 6 hours before takeoff. The number of forecasts available at each

period is shown in Table 5. There isn’t enough information to create a reliable time

series model four days from take off, so fuel burn error and optimal path prediction

rate is only calculated for the Boone and deterministic methods at that time period.

Table 5. Composition of Complete Forecasts When Interpolating Across Time

Root Mean Square Error

To compare the accuracy of each method across routes, the Root Mean

Squared Error (RMSE) was calculated based on each method’s prediction. The RMSE

is a popular indicator of average model performance [25]. The formula for the RMSE

of a prediction is shown in Equation (11).

RMSE =

√√√√ 1

n

n∑
i=1

e2i (11)
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Where n is the sample size and ei is the error term of the ith prediction. In this

problem, n is the number of instances of wind data and ei is calculated as the difference

between a method’s ith predicted fuel burn and the fuel burn generated by the optimal

path in the ith truth network.
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IV. Analysis

4.1 Introduction

The four methods selected were tested on 139 instances of wind data from

July 26th to Dec 5th. Each route is analyzed separately to determine performance in

fuel burn as well as path prediction.

4.2 KSUU-PHNL

Figure 1. KSUU-PHNL Predicted Fuel Burn

The first route is KSUU-PHNL, a long journey over the Pacific Ocean from

California to Hawaii. Each method’s predicted fuel burn and prediction interval if

applicable for this route is shown in Figure 1. The prediction intervals are shown

with an error-bar, where the actual prediction is shown as an X inside the bounds of

the error-bar. Each time series method predicts closely to their respective non-time
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series counterpart. The deterministic methods outperform the ensemble methods

throughout the data set. The associated RMSE’s for each method are shown in

Figure 2. In regards to fuel burn prediction, six hours before takeoff the deterministic

based-models are both almost 800 lbs more accurate than the ensemble-based models.

The RMSE based on available prediction data is shown in Figure 3. While the RMSE

drops for all four methods with increasing predictions, the deterministic gives the

lowest RMSE at all points.

Figure 2. KSUU-PHNL Fuel Burn Prediction Error
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Figure 3. KSUU-PHNL Change In RMSE

Out of the 139 dates, the Boone method predicted the correct future optimal

path 71 times while the ensemble time series method predicted correctly 72 times.

The deterministic method correctly predicted the optimal path 80 times and the time

series deterministic method correctly predicted the optimal path 121 times. Both

time series methods improve with successive data. Boone’s method improve slightly

and the deterministic method decreases slightly over the course of four days.
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Figure 4. KSUU-PHNL Change In Optimal Path Selection

4.3 KTCM-CYQX

Figure 5. KCTM-CYQX Predicted Fuel Burn
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Figure 6. KCTM-CYQX Fuel Burn Prediction Error

The second route analyzed is an international route from the Pacific North

West to Canada’s East coast. All four methods fluctuate in similar manners as seen

in Figure 5, however, the deterministic-based methods consistently predict closer

to the true fuel burn. The RMSEs of each time instances are shown in Figure 6.

Figure 7 shows that three days prior to takeoff the deterministic time series method

has the highest RMSE. Six hours prior to takeoff the the ensemble-based methods

generate fuel burn predictions on average 400 lbs worse than the deterministic-based

methods. Figure 8 shows that the deterministic time series method gets much better

at predicting future optimal paths with newer weather data, while the deterministic,

ensemble time series, and Boone’s method show little change.
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Figure 7. KCTM-CYQX Change In RMSE

Figure 8. KCTM-CYQX Change In Optimal Path Selection
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4.4 KCHS-LERT

Figure 9. KCHS-LERT Predicted Fuel Burn

The third route is the second longest of the five routes and spans from South

Carolina across the Pacific Ocean to the Northern Mariana Islands. The predicted

fuel burn is shown in Figure 9 and the RMSE in Figure 10. Figure 11 shows that

all four methods show significant improvement with newer weather data and more

predictions. Over the course of the planning period, Boone’s method and the deter-

ministic method’s RMSE is respectively lowered by 674 and 740 lbs. The deterministic

method continuously produces the lowest average RMSE. The deterministic, deter-

ministic time series, ensemble time series, and Boone’s method respectively predicted

83, 120, 98, and 97 future paths correctly with +6 forecast data.
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Figure 10. KCHS-LERT Fuel Burn Prediction Error

Figure 11. KCHS-LERT Change In RMSE
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Figure 12. KCHS-LERT Change In Optimal Path Selection

4.5 KCHS-ETAR

Figure 13. KCHS-ETAR Predicted Fuel Burn
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The longest of the four routes analyzed was from South Carolina across the

Atlantic Ocean to Germany. The predicted fuel burn is shown in Figure 13 and the

RMSE in Figure 14. On average, the pre-takeoff RMSE of the deterministic and time

series deterministic method was respectively 161 and 172. Comparatively, the RMSE

of Boone’s and the time series ensemble method was 1611 and 1549 lbs. Increasingly

updated weather predictions all lower the RMSE of the deterministic, ensemble time

series, and Boone’s method (Figure 15). The deterministic time series saw the large

increase in accuracy shedding 2151 lbs off of it’s RMSE from +72 hour data to +6

hour data. Similar to past routes, the deterministic time series saw that greatest

increase in optimal route selection with an increase in data (Figure 16), and had the

highest prediction accuracy using data up to the +6 hour point.

Figure 14. KCHS-ETAR Fuel Burn Prediction Error
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Figure 15. KCHS-ETAR Change In RMSE

Figure 16. KCHS-ETAR Change In Optimal Path Selection

4.6 KWRI-ETAD

The last route analyzed is another trans-Atlantic route to Germany that origi-

nates in New Jersey. The predicted fuel burn is shown in Figure 17 and the associated
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RMSE in Figure 18. Once again, the deterministic and time series deterministic meth-

ods outperformed the ensemble-based methods having respective pre-takeoff RMSEs

of 139 and 138 lbs. This is compared to Boone’s method having an RMSE of 1237

lbs and the ensemble time series method having an RMSE of 1176 lbs in the same

period. Once again, the ensemble time series method consistently gives a lower av-

erage RMSE than Boone’s method no matter the available information as seen in

Figure 19. Boone’s method is the best predictor of optimal paths past two days out

while time series deterministic is the best otherwise (Figure 20).

Figure 17. KWRI-ETAD Predicted Fuel Burn
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Figure 18. KWRI-ETAD Fuel Burn Prediction Error

Figure 19. KWRI-ETAD Change In RMSE
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Figure 20. KWRI-ETAD Change In Optimal Path Selection
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V. Conclusions and Future Research

5.1 Conclusion

When dealing with large networks, such as the ones created when flight plan-

ning for C-17s, the number of possible of solutions is very large. Adding in correlated

stochastic arcs to a large network makes finding the optimal solution extremely diffi-

cult. Using continuously updating weather data gives an opportunity to solve slightly

different versions of a large network with stochastic correlated arcs multiple times,

adding more insight into the network and potential optimal solutions.

Out of the four methods introduced, the deterministic-based methods consis-

tently produce lower RMSEs than the ensemble-based methods for all routes. Per-

forming time series analysis to Boone’s method gave a slight increase in accuracy to

the predicted fuel burn of every route. Using time series analysis on the deterministic

method had a nominal affect on increasing accuracy when using sufficient data and

predicting reasonably close. When not meeting this criteria, such as predicting three

days using time series analysis on two days of data, the deterministic time series had

the lowest fuel burn prediction accuracy.

The percentage of each method’s correct future optimal path prediction rate

across all routes is shown in Table 6. In total, Boone’s method and the ensemble

Table 6. Percent of Future Optimal Paths Correctly Predicted Over 4-Day Window
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time series method both correctly predicted 65% of optimal future routes with data

up to six hours before takeoff. Comparatively, the deterministic method predicted

62% and deterministic time series 87% in this same period. At three days prior to

takeoff all four methods predict the correct optimal route between 58% and 64%.

Over the course of a planning period, the deterministic time series saw the highest

improvement rate.

Of the metrics concerning AMC the current way of flight planning using the

GFS remains the best way. For improving fuel burn predictions the deterministic

method is constantly the best method throughout the planning period. Further, time

series analysis on deterministic data offers no improvement at the cost of creating

more networks. The added networks created by the ensemble-based methods also

show no improvement on the accuracy of fuel burn predictions. For better predicting

future optimal paths the current deterministic method gives the best results early

in the planning window. In the last two days of the planning window the Boone,

ensemble time series, and deterministic time series all give more accurate future path

predictions. However, the deterministic time series gives the largest increase in path

selection accuracy despite needing the least amount of networks. Therefor, if looking

to increase optimal path prediction rate, the deterministic time series is the best

method to use under 48 hours of takeoff.

This conclusion hinges on the idea that the GFS +00 model is actually the

true weather. This is a necessary assumption that highly skews performance in favor

of the deterministic-based methods. Comparing these predictions to real-world C-17

fuel burn data would have been preferred, but was unavailable in this project. Also

of concern, Reiman’s [20] C-17 fuel burn regression models are only based on aircraft

weight and changes in altitude. They were used in this work by converting the wind

an aircraft faced into an effective travel distance, but there are physical properties
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wind could affect, such as engine performance, that were considered negligible.

5.2 Future Research

Boone [7] introduced a heuristic that developed a reasonable candidate list of

potential optimal paths to increase the AMC’s likelihood of predicting the future op-

timal path. This research used time series analysis to improve upon Boone’s heuristic.

Further, a prediction interval of predicted fuel burn in deterministic based weather

networks was generated as well as an increased ability to find the future minimal fuel

burn path. Future research should concentrate on comparing more weather models,

using higher resolution data, and validating C-17 fuel burn predictions.
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Appendix A. Solving the Network

SolveRoutes.m

c l e a r ; c l c ;

% Number o f hours in the f o r e c a s t we have

numHrs = 5∗24;

% Fl i gh t route s

route s = { ’KSUU−PHNL’ , ’KTCM−CYQX’ , ’KCHS−LERT’ , ’KCHS−ETAR’ , ’KWRI−ETAD’ } ;

% l a t / longs from airnav . com

l a t l o n g s r o u t e s = [38 .2645367 , −121.9241315 , 21 .3178275 , −157.9202627; %Travis l a t / long , Honolulu

l a t \ long

47 .1376778 , −122.4764750 , 48 .936944 , −54.567778 ; %McChord Lat/Long , Gander l a t /

long ( from skyvector )

32 .8986389 , −80.0405278 , 36 .645 , −6.349444; %Char leston Lat/Long , Rota Lat/

Long ( skyvector )

32 .8986389 , −80.0405278 , 49 .436167 , 7 . 6 065 ; %Charleston , Ramstein ( skyvector )

40 .0155833 , −74.5916991 , 49 .976389 , 6 . 6 9 8 3 33 ] ; %JBMDL l a t / long , spangdahlem

l a t / long

[ num routes , ˜ ] = s i z e ( l a t l o n g s r o u t e s ) ;

% Determine waypoints f o r each route in 1/2 degree increments

waypts = c e i l ( d i s t ance ( l a t l o n g s r o u t e s ( : , 1 ) , l a t l o n g s r o u t e s ( : , 2) , l a t l o n g s r o u t e s ( : , 3) ,

l a t l o n g s r o u t e s ( : , 4) ) ) ∗ 2 ;

%hours to t r a v e l ( assume each degree i s 60nm and plane t r a v e l s at 450 TAS)

hourd i s t s = d i s t ance ( l a t l o n g s r o u t e s ( : , 1 ) , l a t l o n g s r o u t e s ( : , 2) , l a t l o n g s r o u t e s ( : , 3) ,

l a t l o n g s r o u t e s ( : , 4) ) ∗60/450;

H = −numHrs : 6 : 0 ; %Number o f f o r e c a s t models f o r a given day

Fcs tS i z e = s i z e (H, 2 ) −2; %Number o f f o r e c a s t s to run

%Al t i tude s the plane can f l y at

Al tLeve l s =[25 ,26 ,27 ,28 ,29 ,30 ,31 ,32 ,33 ,34 ,35 ]∗1000 ;

%Pressure l e v e l s in f e e t o f data

KnownPLevels = 100∗ [ 2 50 , 300 , 350 ] ;

Dates = [ ( datet ime (2018 ,8 ,19 , ’TimeZone ’ , ’ utc ’ )+hours (12) ) : hours (6 ) : ( datet ime (2018 ,8 ,21 , ’TimeZone ’ ,

’ utc ’ )+hours (12) ) . . .

( datet ime (2018 ,9 ,2 , ’TimeZone ’ , ’ utc ’ )+hours (0 ) ) : hours (6 ) : ( datet ime (2018 ,9 ,7 , ’TimeZone ’ , ’ utc ’ )+

hours (12) ) . . .

( datet ime (2018 ,9 ,26 , ’TimeZone ’ , ’ utc ’ )+hours (18) ) : hours (6 ) : ( datet ime (2018 ,10 ,1 , ’TimeZone ’ , ’ utc ’

)+hours (12) ) . . .

( datet ime (2018 ,11 ,14 , ’TimeZone ’ , ’ utc ’ )+hours (12) ) : hours (6 ) : ( datet ime (2018 ,11 ,17 , ’TimeZone ’ , ’

utc ’ )+hours (6 ) ) . . .

( datet ime (2018 ,12 ,2 , ’TimeZone ’ , ’ utc ’ )+hours (0 ) ) : hours (6 ) : ( datet ime (2018 ,12 ,5 , ’TimeZone ’ , ’ utc ’ )

+hours (0 ) ) ] ;

%Dates to i n t e r p o l a t e to help p r ed i c t
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Dates2 = Dates + hours (6) ;

Dates3 = Dates + hours (12) ;

l e n g th t = length ( Dates ) ;

f o r i = 5 : 1 : 5 %num routes

%generate l a t / lon vec to r s

[ l a t , lon ] = gcwaypts ( l a t l o n g s r o u t e s ( i , 1 ) , l a t l o n g s r o u t e s ( i , 2 ) , l a t l o n g s r o u t e s ( i , 3 ) ,

l a t l o n g s r o u t e s ( i , 4 ) , waypts ( i ) ) ;

lon = mod( lon , 360 ) ;

%Pres sure s to be used when i n t e r p o l a t i n g data

Repeat ingPressures = [ repmat (KnownPLevels (1 ) , [ s i z e ( l a t ) , 1 ] ) ; repmat (KnownPLevels (2 ) , [ s i z e ( l a t )

, 1 ] ) ; repmat (KnownPLevels (3 ) , [ s i z e ( l a t ) , 1 ] ) ] ;

% Matrix o f data to record

preds = ze ro s (89 , l e ng th t ) ;

%how much time moves when t r a v e l i n g a waypoint

timestep mvmt = ( hourd i s t s ( i ) /6) /waypts ( i ) ;

f o r pred = 1 : 1 : l e ng th t

d i s t s = ze ro s (21 , s i z e (H, 2 ) ) ;%Ce l l that w i l l hold optimal d i s t s

paths = c e l l ( s i z e ( d i s t s ) ) ; %Ce l l that w i l l hold paths o f optimal

paths DET = c e l l (1 , Fc s tS i z e ) ;%Hold paths o f det optimal

graphs = c e l l ( s i z e ( d i s t s ) ) ; %Ce l l that w i l l hold each network

graphs DET = c e l l ( s i z e ( paths DET) ) ;%Ce l l that w i l l hold each Det network

dists DET = c e l l ( s i z e ( paths DET) ) ;

OptimalRoutes = ze ro s (21∗ FcstS ize , waypts ( i )+1) ; %Matrix form of optimal route s

OptimalRoutes DET = zero s ( FcstS ize , waypts ( i )+1) ;%Matrix form of det optimal route s

BooneOptimalRoutes = ze ro s (21 , waypts ( i )+1) ;%Matrix form of boone optimal route s

FileName ENS = s t r c a t ( ’ E ’ , num2str ( year ( Dates ( pred ) ) , ’%04 i ’ ) , num2str (month( Dates ( pred ) ) ,

’%02 i ’ ) , num2str ( day ( Dates ( pred ) ) , ’%02 i ’ ) , num2str ( hour ( Dates ( pred ) ) , ’%02 i ’ ) , ’ . mat ’ ) ;

ENS = load ( s t r c a t ( route s { i } , ’ / ’ , FileName ENS ) ) ; %Pul l out the mat f i l e

FileName ENS2 = s t r c a t ( ’ E ’ , num2str ( year ( Dates2 ( pred ) ) , ’%04 i ’ ) , num2str (month( Dates2 ( pred

) ) , ’%02 i ’ ) , num2str ( day ( Dates2 ( pred ) ) , ’%02 i ’ ) , num2str ( hour ( Dates2 ( pred ) ) , ’%02 i ’ ) , ’ . mat

’ ) ;

ENS2 = load ( s t r c a t ( route s { i } , ’ / ’ , FileName ENS2 ) ) ; %Pul l out the mat f i l e ( i n t e r p o l a t i o n )

FileName ENS3 = s t r c a t ( ’ E ’ , num2str ( year ( Dates3 ( pred ) ) , ’%04 i ’ ) , num2str (month( Dates3 ( pred

) ) , ’%02 i ’ ) , num2str ( day ( Dates3 ( pred ) ) , ’%02 i ’ ) , num2str ( hour ( Dates3 ( pred ) ) , ’%02 i ’ ) , ’ . mat

’ ) ;

ENS3 = load ( s t r c a t ( route s { i } , ’ / ’ , FileName ENS3 ) ) ; %Pul l out the mat f i l e ( i n t e r p o l a t i o n )

FileName DET = s t r c a t ( ’D ’ , num2str ( year ( Dates ( pred ) ) , ’%04 i ’ ) , num2str (month( Dates ( pred ) ) ,

’%02 i ’ ) , num2str ( day ( Dates ( pred ) ) , ’%02 i ’ ) , num2str ( hour ( Dates ( pred ) ) , ’%02 i ’ ) , ’ . mat ’ ) ;

DET = load ( s t r c a t ( route s { i } , ’ / ’ , FileName DET) ) ;
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FileName DET2 = s t r c a t ( ’D ’ , num2str ( year ( Dates2 ( pred ) ) , ’%04 i ’ ) , num2str (month( Dates2 ( pred

) ) , ’%02 i ’ ) , num2str ( day ( Dates2 ( pred ) ) , ’%02 i ’ ) , num2str ( hour ( Dates2 ( pred ) ) , ’%02 i ’ ) , ’ . mat

’ ) ;

DET2 = load ( s t r c a t ( route s { i } , ’ / ’ , FileName DET2 ) ) ;

FileName DET3 = s t r c a t ( ’D ’ , num2str ( year ( Dates3 ( pred ) ) , ’%04 i ’ ) , num2str (month( Dates3 ( pred

) ) , ’%02 i ’ ) , num2str ( day ( Dates3 ( pred ) ) , ’%02 i ’ ) , num2str ( hour ( Dates3 ( pred ) ) , ’%02 i ’ ) , ’ . mat

’ ) ;

DET3 = load ( s t r c a t ( route s { i } , ’ / ’ , FileName DET3 ) ) ;

f o r s t ep s = 1 : Fcs tS i z e

%Pul l a l l t ruth data i f checking l a s t route

i f s t ep s == Fcs tS i z e

%Matrix i s UWindValues ( time , la t , lon )

DET U = squeeze (DET.U( s t ep s +2 , : , : ) ) ’ ;

DET V = squeeze (DET.V( s t ep s +2 , : , : ) ) ’ ;

DET U2 = squeeze (DET2.U( s t ep s +2 , : , : ) ) ’ ;

DET V2 = squeeze (DET2.V( s t ep s +2 , : , : ) ) ’ ;

DET U3 = squeeze (DET3.U( s t ep s +2 , : , : ) ) ’ ;

DET V3 = squeeze (DET3.V( s t ep s +2 , : , : ) ) ’ ;

e l s e %Taper truth data based on what would be av a i l a b l e

DET U = squeeze (DET.U( s t ep s +2 , : , : ) ) ’ ;

DET V = squeeze (DET.V( s t ep s +2 , : , : ) ) ’ ;

DET U2 = squeeze (DET2.U( s t ep s +1 , : , : ) ) ’ ;

DET V2 = squeeze (DET2.V( s t ep s +1 , : , : ) ) ’ ;

DET U3 = squeeze (DET3.U( steps , : , : ) ) ’ ;

DET V3 = squeeze (DET3.V( steps , : , : ) ) ’ ;

end

%Prepare Us/Vs f o r i n t e r p o l a t i o n

RepeatingUs DET = [DET U( : , 1 ) ;DET U( : , 2 ) ;DET U( : , 3 ) ] ;

RepeatingVs DET = [DET V( : , 1 ) ;DET V( : , 2 ) ;DET V( : , 3 ) ] ;

RepeatingUs DET2 = [DET U2( : , 1 ) ;DET U2( : , 2 ) ;DET U2( : , 3 ) ] ;

RepeatingVs DET2 = [DET V2( : , 1 ) ;DET V2( : , 2 ) ;DET V2( : , 3 ) ] ;

RepeatingUs DET3 = [DET U3( : , 1 ) ;DET U3( : , 2 ) ;DET U3( : , 3 ) ] ;

RepeatingVs DET3 = [DET V3( : , 1 ) ;DET V3( : , 2 ) ;DET V3( : , 3 ) ] ;

PressureInt U DET = zero s (11 , waypts ( i )+1) ;

PressureInt V DET = PressureInt U DET ;

PressureInt U DET2 = PressureInt U DET ;

PressureInt V DET2 = PressureInt U DET ;

PressureInt U DET3 = PressureInt U DET ;

PressureInt V DET3 = PressureInt U DET ;

Us Time DET = zero s ( s i z e ( PressureInt U DET ) ) ;

Vs Time DET = Us Time DET ;

f o r kk = 1 : 1 : ( waypts ( i )+1) %Lat/Lon i n t e r p o l a t i o n f o r Det , done at each way point

i f kk∗ timestep mvmt <= 1 %In t e r po l a t e between 0−6 hours from tak e o f f
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PressureInt U DET ( : , kk ) = gr iddata ( repmat ( lat , [ 3 , 1 ] ) , repmat ( lon , [ 3 , 1 ] ) ,

Repeat ingPressures , RepeatingUs DET , repmat ( l a t ( kk ) , [ 1 1 , 1 ] ) , repmat ( lon (

kk ) , [ 1 1 , 1 ] ) , AltLeve ls ’ ) ;

PressureInt V DET ( : , kk ) = gr iddata ( repmat ( lat , [ 3 , 1 ] ) , repmat ( lon , [ 3 , 1 ] ) ,

Repeat ingPressures , RepeatingVs DET , repmat ( l a t ( kk ) , [ 1 1 , 1 ] ) , repmat ( lon (

kk ) , [ 1 1 , 1 ] ) , AltLeve ls ’ ) ;

PressureInt U DET2 ( : , kk ) = gr iddata ( repmat ( lat , [ 3 , 1 ] ) , repmat ( lon , [ 3 , 1 ] ) ,

Repeat ingPressures , RepeatingUs DET2 , repmat ( l a t ( kk ) , [ 1 1 , 1 ] ) , repmat ( lon (

kk ) , [ 1 1 , 1 ] ) , AltLeve ls ’ ) ;

PressureInt V DET2 ( : , kk ) = gr iddata ( repmat ( lat , [ 3 , 1 ] ) , repmat ( lon , [ 3 , 1 ] ) ,

Repeat ingPressures , RepeatingVs DET2 , repmat ( l a t ( kk ) , [ 1 1 , 1 ] ) , repmat ( lon (

kk ) , [ 1 1 , 1 ] ) , AltLeve ls ’ ) ;

Us Time DET ( : , kk ) = PressureInt U DET ( : , kk )∗(1−kk∗ timestep mvmt ) +

PressureInt U DET2 ( : , kk ) ∗( timestep mvmt∗kk ) ;

Vs Time DET ( : , kk ) = PressureInt V DET ( : , kk )∗(1−kk∗ timestep mvmt ) +

PressureInt V DET2 ( : , kk ) ∗( timestep mvmt∗kk ) ;

e l s e %In t e r po l a t e from 6−12 hours from tak e o f f

PressureInt U DET2 ( : , kk ) = gr iddata ( repmat ( lat , [ 3 , 1 ] ) , repmat ( lon , [ 3 , 1 ] ) ,

Repeat ingPressures , RepeatingUs DET2 , repmat ( l a t ( kk ) , [ 1 1 , 1 ] ) , repmat ( lon (

kk ) , [ 1 1 , 1 ] ) , AltLeve ls ’ ) ;

PressureInt V DET2 ( : , kk ) = gr iddata ( repmat ( lat , [ 3 , 1 ] ) , repmat ( lon , [ 3 , 1 ] ) ,

Repeat ingPressures , RepeatingVs DET2 , repmat ( l a t ( kk ) , [ 1 1 , 1 ] ) , repmat ( lon (

kk ) , [ 1 1 , 1 ] ) , AltLeve ls ’ ) ;

PressureInt U DET3 ( : , kk ) = gr iddata ( repmat ( lat , [ 3 , 1 ] ) , repmat ( lon , [ 3 , 1 ] ) ,

Repeat ingPressures , RepeatingUs DET3 , repmat ( l a t ( kk ) , [ 1 1 , 1 ] ) , repmat ( lon (

kk ) , [ 1 1 , 1 ] ) , AltLeve ls ’ ) ;

PressureInt V DET3 ( : , kk ) = gr iddata ( repmat ( lat , [ 3 , 1 ] ) , repmat ( lon , [ 3 , 1 ] ) ,

Repeat ingPressures , RepeatingVs DET3 , repmat ( l a t ( kk ) , [ 1 1 , 1 ] ) , repmat ( lon (

kk ) , [ 1 1 , 1 ] ) , AltLeve ls ’ ) ;

Us Time DET ( : , kk ) = PressureInt U DET2 ( : , kk )∗(2−kk∗ timestep mvmt ) +

PressureInt U DET3 ( : , kk )∗ ( timestep mvmt∗kk−1) ;

Vs Time DET ( : , kk ) = PressureInt V DET2 ( : , kk )∗(2−kk∗ timestep mvmt ) +

PressureInt V DET3 ( : , kk )∗ ( timestep mvmt∗kk−1) ;

end

end

%Solve and record

[ paths DET{ s t ep s } , dists DET{ s t ep s } , graphs DET{ s t ep s } ] = Networks (Us Time DET ,

Vs Time DET , waypts ( i ) , l a t , lon ) ;

OptimalRoutes DET ( steps , : ) = ce l l2mat ( paths DET( s t eps ) ) ;

pa r f o r j = 1 : 1 : 2 1 %21 ensembles

%Matrix i s o f form UWinds(Ensemble , Time , la t , lon )

xx U = squeeze (ENS.U( j , s t ep s +2 , : , : ) ) ’ ;

xx V = squeeze (ENS.V( j , s t ep s +2 , : , : ) ) ’ ;

xx U2 = squeeze (ENS2 .U( j , s t ep s +1 , : , : ) ) ’ ;

xx V2 = squeeze (ENS2 .V( j , s t ep s +1 , : , : ) ) ’ ;

xx U3 = squeeze (ENS3 .U( j , s teps , : , : ) ) ’ ;

xx V3 = squeeze (ENS3 .V( j , s teps , : , : ) ) ’ ;

%Prepare f o r i n t e r p o l a t i o n

RepeatingUs = [ xx U ( : , 1 ) ; xx U ( : , 2 ) ; xx U ( : , 3 ) ] ;
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RepeatingVs = [ xx V ( : , 1 ) ; xx V ( : , 2 ) ; xx V ( : , 3 ) ] ;

RepeatingUs2 = [ xx U2 ( : , 1 ) ; xx U2 ( : , 2 ) ; xx U2 ( : , 3 ) ] ;

RepeatingVs2 = [ xx V2 ( : , 1 ) ; xx V2 ( : , 2 ) ; xx V2 ( : , 3 ) ] ;

RepeatingUs3 = [ xx U3 ( : , 1 ) ; xx U3 ( : , 2 ) ; xx U3 ( : , 3 ) ] ;

RepeatingVs3 = [ xx V3 ( : , 1 ) ; xx V3 ( : , 2 ) ; xx V3 ( : , 3 ) ] ;

PressureInt U = ze ro s (11 , waypts ( i )+1) ;

PressureInt V = Pressure Int U ;

PressureInt U2 = Pressure Int U ;

PressureInt V2 = Pressure Int U ;

PressureInt U3 = Pressure Int U ;

PressureInt V3 = Pressure Int U ;

Us Time = PressureInt U ;

Vs Time = PressureInt U ;

f o r k = 1 : 1 : ( waypts ( i )+1) %Number o f l a t / l ons spots on journey f o r Ensemble

i f k∗ timestep mvmt <= 1 %0−6 hour i n t e r p o l a t i o n

Pressure Int U ( : , k ) = gr iddata ( repmat ( lat , [ 3 , 1 ] ) , repmat ( lon , [ 3 , 1 ] ) ,

Repeat ingPressures , RepeatingUs , repmat ( l a t ( k ) , [ 1 1 , 1 ] ) , repmat ( lon (k )

, [ 1 1 , 1 ] ) , AltLeve ls ’ ) ;

Pressure Int V ( : , k ) = gr iddata ( repmat ( lat , [ 3 , 1 ] ) , repmat ( lon , [ 3 , 1 ] ) ,

Repeat ingPressures , RepeatingVs , repmat ( l a t ( k ) , [ 1 1 , 1 ] ) , repmat ( lon (k )

, [ 1 1 , 1 ] ) , AltLeve ls ’ ) ;

PressureInt U2 ( : , k ) = gr iddata ( repmat ( lat , [ 3 , 1 ] ) , repmat ( lon , [ 3 , 1 ] ) ,

Repeat ingPressures , RepeatingUs2 , repmat ( l a t ( k ) , [ 1 1 , 1 ] ) , repmat ( lon (k

) , [ 1 1 , 1 ] ) , AltLeve ls ’ ) ;

PressureInt V2 ( : , k ) = gr iddata ( repmat ( lat , [ 3 , 1 ] ) , repmat ( lon , [ 3 , 1 ] ) ,

Repeat ingPressures , RepeatingVs2 , repmat ( l a t ( k ) , [ 1 1 , 1 ] ) , repmat ( lon (k

) , [ 1 1 , 1 ] ) , AltLeve ls ’ ) ;

%Record based on where the plane i s

Us Time ( : , k ) = Pressure Int U ( : , k )∗(1−k∗ timestep mvmt ) + PressureInt U2

( : , k ) ∗( timestep mvmt∗k ) ;

Vs Time ( : , k ) = Pressure Int V ( : , k )∗(1−k∗ timestep mvmt ) + PressureInt V2

( : , k ) ∗( timestep mvmt∗k ) ;

e l s e %6−12 hour i n t e r p o l a t i o n

PressureInt U2 ( : , k ) = gr iddata ( repmat ( lat , [ 3 , 1 ] ) , repmat ( lon , [ 3 , 1 ] ) ,

Repeat ingPressures , RepeatingUs2 , repmat ( l a t ( k ) , [ 1 1 , 1 ] ) , repmat ( lon (k

) , [ 1 1 , 1 ] ) , AltLeve ls ’ ) ;

PressureInt V2 ( : , k ) = gr iddata ( repmat ( lat , [ 3 , 1 ] ) , repmat ( lon , [ 3 , 1 ] ) ,

Repeat ingPressures , RepeatingVs2 , repmat ( l a t ( k ) , [ 1 1 , 1 ] ) , repmat ( lon (k

) , [ 1 1 , 1 ] ) , AltLeve ls ’ ) ;

PressureInt U3 ( : , k ) = gr iddata ( repmat ( lat , [ 3 , 1 ] ) , repmat ( lon , [ 3 , 1 ] ) ,

Repeat ingPressures , RepeatingUs3 , repmat ( l a t ( k ) , [ 1 1 , 1 ] ) , repmat ( lon (k

) , [ 1 1 , 1 ] ) , AltLeve ls ’ ) ;

PressureInt V3 ( : , k ) = gr iddata ( repmat ( lat , [ 3 , 1 ] ) , repmat ( lon , [ 3 , 1 ] ) ,

Repeat ingPressures , RepeatingVs3 , repmat ( l a t ( k ) , [ 1 1 , 1 ] ) , repmat ( lon (k

) , [ 1 1 , 1 ] ) , AltLeve ls ’ ) ;

%Record based on where the plane i s

Us Time ( : , k ) = PressureInt U2 ( : , k )∗(2−k∗ timestep mvmt ) +

PressureInt U3 ( : , k )∗ ( timestep mvmt∗k−1) ;
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Vs Time ( : , k ) = PressureInt V2 ( : , k )∗(2−k∗ timestep mvmt ) +

PressureInt V3 ( : , k )∗ ( timestep mvmt∗k−1) ;

end

end

%Solve optimal f o r each ensemble

[ paths{ j , s t ep s } , d i s t s ( j , s t ep s ) , graphs{ j , s t ep s } ] = Networks (Us Time ,

Vs Time , waypts ( i ) , l a t , lon ) ;

end

%Record optimal

OptimalRoutes ( ( ( ( steps −1)∗21+1) : ( ( steps −1)∗21+21) ) , : ) = ce l l2mat ( paths ( : , s t ep s ) ) ;

end

%Times worth checking

check idx =[3 7 11 15 1 8 ] ;

%Resu l t s to record

OptDetPath Pred = ze ro s (5 , 1 ) ;

Min TsDet Pred = OptDetPath Pred ;

TSDetPredInt = OptDetPath Pred ;

Boone Pred = OptDetPath Pred ;

Boone lower pred = OptDetPath Pred ;

Boone upper pred = OptDetPath Pred ;

EnsTs FuelPred = OptDetPath Pred ;

TS lower pred = OptDetPath Pred ;

TS upper pred = OptDetPath Pred ;

DET RMSE = OptDetPath Pred ;

BooneRMSE = OptDetPath Pred ;

DET TS RMSE = OptDetPath Pred ;

TS RMSE = OptDetPath Pred ;

DetCorrect = OptDetPath Pred ;

TS DET Correct = OptDetPath Pred ;

Boone Correct = OptDetPath Pred ;

TS Correct = OptDetPath Pred ;

OptPath = paths DET{Fcs tS i z e } ;

OptPathFuel = dists DET{Fcs tS i z e } ;

f o r checks = 1 :5

FcstDist = 19−check idx ( checks ) ;%Used f o r t ime s e r i e s p r ed i c t i on

%Find Unique Routes out o f a l l r oute s that were taken

%Second matrix w i l l conta in ac tua l network d i s t anc e s ( f u e l )

UniqueRoutes = unique ( OptimalRoutes ( 1 : ( check idx ( checks ) ∗21) , : ) , ’ rows ’ ) ; %Not tak ing any

route s from l a s t run ( truth data )
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TimeDistances = ze ro s ( s i z e ( UniqueRoutes , 1 ) ,21 , check idx ( checks ) ) ;

%Find Unique Boone Routes

BooneUnique = unique ( OptimalRoutes ( ( ( check idx ( checks ) ∗21)−21) : ( check idx ( checks ) ∗21) , : ) , ’

rows ’ ) ;

BooneDistances = ze ro s ( s i z e (BooneUnique , 1 ) ,21) ;

%Unique Det Routes

UniqueRoutes DET = unique (OptimalRoutes DET (1 : check idx ( checks ) , : ) , ’ rows ’ ) ; %Not tak ing

any route s from l a s t run ( truth data )

TimeDistances DET = zero s ( s i z e (UniqueRoutes DET , 1 ) , check idx ( checks ) ) ;

%Take each optimal route (Det/Ensemble ) , and c a l c u l a t e path through

%each r e s p e c t i v e network ac ro s s a l l f o r e c a s t s

f o r t imes = 1 : check idx ( checks )

graph DET = graphs DET{1 , t imes } ;

f o r detpaths = 1 : 1 : s i z e (UniqueRoutes DET , 1 )

dist DET = 0 ;

f o r points DET = 1 : 1 : waypts ( i ) %Sum of d i s t anc e s in /out each node on path

dist DET = dist DET + graph DET(and (graph DET . InNodes == UniqueRoutes DET (

detpaths , points DET ) , graph DET . OutNodes == UniqueRoutes DET ( detpaths ,

points DET+1) ) , : ) . Weight ;

end

TimeDistances DET ( detpaths , t imes ) = dist DET ;

end

%Ensemble adding up o f d i s t an c e s ac ro s s each optimal route and

%network a l ready ca l cu l a t ed

f o r ensmb = 1 : 1 : 2 1

graph = graphs{ensmb , t imes } ;

f o r optpaths = 1 : 1 : s i z e ( UniqueRoutes , 1 )

d i s t = 0 ;

f o r po in t s = 1 : 1 : waypts ( i )

d i s t = d i s t + graph ( and ( graph . InNodes == UniqueRoutes ( optpaths , po in t s ) ,

graph . OutNodes == UniqueRoutes ( optpaths , po in t s+1) ) , : ) . Weight ;

end

TimeDistances ( optpaths , ensmb , t imes ) = d i s t ;

end

end

end

% Calcu la te Boone Distances

f o r boonepaths = 1 : 1 : s i z e (BooneUnique , 1 )
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f o r ensmb B = 1 : 1 : 2 1

graph B = graphs{ensmb B , check idx ( checks ) } ;

d i s t B = 0 ;

f o r po ints B = 1 : 1 : waypts ( i )

d i s t B = di s t B + graph B ( and ( graph B . InNodes == BooneUnique ( boonepaths ,

po ints B ) , graph B . OutNodes == BooneUnique ( boonepaths , po ints B+1) ) , : ) .

Weight ;

end

BooneDistances ( boonepaths , ensmb B) = di s t B ;

end

end

%Dete rmin i s t i c ( Best Path From Last Forecast )

OptDetPath = paths DET{ checks } ;

%Search Optimal Det Routes f o r OptDetPath , p lu f index in to

[ ˜ , OptDetPath Loc ] = ismember (OptDetPath , UniqueRoutes DET , ’ rows ’ ) ;

%Find Pred icted Fuel Burn

OptDetPath Pred ( checks ) = TimeDistances DET (OptDetPath Loc , check idx ( checks ) ) ;

DET RMSE( checks ) = sq r t ( ( OptDetPath Pred ( checks ) − OptPathFuel ) ˆ2) ∗1000;

DetCorrect ( checks ) = i s e qua l (OptDetPath , paths DET{Fcs tS i z e }) ;

%Ensemble ( Boones Method )

BooneAverages = mean( BooneDistances , 2 ) ;

[ Boone Pred ( checks ) , BooneLoc ] = min ( BooneAverages ) ;

BoonePath = BooneUnique (BooneLoc , : ) ;

%Creater ke rne l CDF f o r 95% PI

[ f b , x i b ] = ksdens i ty ( BooneDistances (BooneLoc , : ) , ’ Function ’ , ’ cd f ’ ) ;

[ ˜ , un ique s de t i dx ] = unique ( f b ) ; %Interp1 wont work i f dens i ty va lues are

repeated

%need unique (x , y ) pa i r s

Boone lower pred ( checks ) = int e rp1 ( f b ( un ique s de t i dx ) , x i b ( un ique s de t i dx )

, . 0 25 , ’ pchip ’ ) ;

Boone upper pred ( checks ) = in te rp1 ( f b ( un ique s de t i dx ) , x i b ( un ique s de t i dx )

, . 9 75 , ’ pchip ’ ) ;

%See i f the r i gh t path was chosen

Boone Correct ( checks ) = i s e qua l (BoonePath , paths DET{Fcs tS i z e }) ;

%RMSE

BooneRMSE( checks ) = sq r t (sum( ( BooneDistances (BooneLoc , : ) − OptPathFuel ) . ˆ 2 ) /20)

∗1000;

i f checks > 1 %Dont do at 1 , not enough data f o r time s e r i e s

%TS Det matr ixes to f i l l

TS DET = c e l l ( s i z e (UniqueRoutes DET , 1 ) ,1 ) ;

DetPred ic t ions = ze ro s ( s i z e (UniqueRoutes DET , 1 ) ,1 ) ;

DetStandardDevs = DetPred ic t ions ;

DetPredInt = DetPred ic t ions ;

f o r uniques DET = 1 : 1 : s i z e (UniqueRoutes DET , 1 )

TS DET{uniques DET ,1} = t ime s e r i e s ( TimeDistances DET ( uniques DET , : ) ) ;

%2nd Order auto r e g r e s s i o n

sys = ar ( squeeze (TS DET{uniques DET , 1 } . Data ) ,2) ;

[ temp pred , ˜ , ˜ , temp sd , ˜ , ˜ ] = f o r e c a s t ( sys , squeeze (TS DET{uniques DET , 1 } .

Data ) , FcstDist ) ;

%Only care about l a s t p r e d i c i t i o n
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DetStandardDevs ( uniques DET , 1 ) = temp sd ( FcstDist ) ;

DetPred ic t ions ( uniques DET , 1 ) = temp pred ( FcstDist ) ;

tempdata = squeeze (TS DET{uniques DET , 1 } . Data ) ;

X det = [ ones ( check idx ( checks )−2 ,1) tempdata ( 1 : ( check idx ( checks )−2) )

tempdata ( 2 : ( check idx ( checks )−1) ) ] ;

x0 det = [1 tempdata ( ( check idx ( checks )−2) : ( check idx ( checks )−1) ) ’ ] ’ ;

d i s t = x0 det ’∗ inv ( X det ’∗X det )∗x0 det ;

%Pred In t e r v a l

DetPredInt ( uniques DET , 1 ) = t inv ( [ 0 . 9 7 5 ] , check idx ( checks ) −3)∗

DetStandardDevs ( uniques DET , 1 ) ∗ sq r t ( d i s t ) ; %n = Fcst S i z e −1, p = 2

end

[ Min TsDet Pred ( checks ) ,DetTSLoc ] = min ( DetPred ic t ions ) ;

TSDetPredInt ( checks ) = DetPredInt (DetTSLoc , 1 ) ;

TsDetPath = UniqueRoutes DET (DetTSLoc , : ) ;

TS DET Correct ( checks ) = i s e qua l (TsDetPath , paths DET{Fcs tS i z e }) ;

DET TS RMSE( checks ) = sq r t ( ( Min TsDet Pred ( checks ) − OptPathFuel ) ˆ2) ∗1000;

%Ensemble (Time S e r i e s )

TS ENS = c e l l ( s i z e ( UniqueRoutes , 1 ) ,21) ;

ENSPredictions = ze ro s ( s i z e ( UniqueRoutes , 1 ) ,21) ;

ENSStandardDevs = ENSPredictions ;

f o r ENS Uniques = 1 : s i z e ( UniqueRoutes , 1 )

f o r ensemb = 1:21

TS ENS{ENS Uniques , ensemb} = t ime s e r i e s ( TimeDistances ( ENS Uniques ,

ensemb , : ) ) ;

sys ENS = ar ( squeeze (TS ENS{ENS Uniques , ensemb } . Data ) ,2) ;

[ temp preds , ˜ , ˜ , temp sds , ˜ , ˜ ] = f o r e c a s t ( sys ENS , squeeze (TS ENS{

ENS Uniques , ensemb } . Data ) , FcstDist ) ;

ENSPredictions ( ENS Uniques , ensemb )=temp preds ( FcstDist ) ;

ENSStandardDevs (ENS Uniques , ensemb )=temp sds ( FcstDist ) ;

end

end

TSAverages = mean( ENSPredictions , 2 ) ;

[ TS Pred , TSLoc ] = min (TSAverages ) ;

TSBestDist = 0 ;

EnsTs FuelPred ( checks ) = median ( ENSPredictions (TSLoc , : ) ) ;

TSPath = UniqueRoutes (TSLoc , : ) ;

TS Correct ( checks ) = i s e qua l (TSPath , paths DET{Fcs tS i z e }) ;

TS RMSE( checks ) = sq r t ( ( EnsTs FuelPred ( checks ) − OptPathFuel ) ˆ2) ∗1000;

%KDE fo r Ens

[ f , x i ] = ksdens i ty ( ENSPredictions (TSLoc , : ) , ’ Function ’ , ’ cd f ’ ) ;

[ ˜ , un iques idx ] = unique ( f ) ;

TS lower pred ( checks ) = int e rp1 ( f ( un iques idx ) , x i ( un iques idx ) , . 0 25 , ’ pchip ’ ) ;
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TS upper pred ( checks ) = in te rp1 ( f ( un iques idx ) , x i ( un iques idx ) , . 9 75 , ’ pchip ’ ) ;

end

end

%Compile the d i f f e r e n t p r ed i c t i o n s

preds (1 , pred ) = OptPathFuel ;

preds ( 2 : 6 , pred ) = OptDetPath Pred ( : ) ;

preds ( 7 : 1 1 , pred ) = Min TsDet Pred ( : ) ;

preds (12 : 16 , pred ) = TSDetPredInt ( : ) ;

preds (17 : 21 , pred ) = EnsTs FuelPred ( : ) ;

preds (22 : 26 , pred ) = TS lower pred ( : ) ;

preds (27 : 31 , pred ) = TS upper pred ( : ) ;

preds (32 : 36 , pred ) = Boone Pred ( : ) ;

preds (37 : 41 , pred ) = Boone lower pred ( : ) ;

preds (42 : 46 , pred ) = Boone upper pred ( : ) ;

preds (47 : 51 , pred ) = DET RMSE( : ) ;

preds (52 : 56 , pred ) = DET TS RMSE( : ) ;

preds (57 : 61 , pred ) = TS RMSE( : ) ;

preds (62 : 66 , pred ) = BooneRMSE ( : ) ;

preds (67 : 71 , pred ) = DetCorrect ( : ) ;

preds (72 : 76 , pred ) = TS DET Correct ( : ) ;

preds (77 : 81 , pred ) = Boone Correct ( : ) ;

preds (82 : 86 , pred ) = TS Correct ( : ) ;

preds (87 , pred ) = s i z e (UniqueRoutes DET , 1 ) ;

preds (88 , pred ) = s i z e (BooneUnique , 1 ) ;

preds (89 , pred ) = s i z e ( UniqueRoutes , 1 ) ;

end

f i l ename = ’ Resu l t s . x l sx ’ ;

T = ar ray2 tab l e ( preds ) ;

w r i t e t ab l e (T, f i l ename , ’ Sheet ’ , i , ’Range ’ , ’B1 ’ ) ;

end

Networks.m

f unc t i on [ path , d i s t , graph ] = Networks ( PressureInt U , PressureInt V , waypts , la t , lon )

%Creates network based on wind l e v e l s at waypoint

%Calcu la te the a magnitude o f win speed based on U and V

WS = sqr t ( Pressure Int U .ˆ2 + Pressure Int V . ˆ2 ) ; %Current ly in m/ s

WS = WS ∗ convvel (1 , ’m/ s ’ , ’ kts ’ ) ; %convert from m/s to knots

%Calcu la te which way the wind i s blowing based on U and V

angle W = mod( atan2(−PressureInt U ,−PressureInt V ) ∗ 180/ pi , 360 ) ;
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%Calcu la te the heading from waypoint to way point

Az= ze ro s ( waypts+1 ,1) ;

Az = azimuth ( ’ gc ’ , l a t ( 1 : ( s i z e ( l a t )−1) ) , lon ( 1 : ( s i z e ( lon )−1) ) , l a t ( 2 : ( s i z e ( l a t ) ) ) , lon ( 2 : ( s i z e ( lon ) ) ) )

;

%Give the landing node the same heading as the second to l a s t node (Needed

%fo r GS)

Az( waypts+1) = Az(waypts ) ;

%I n t i a l i z e Ground Speed Matrix

GS = ze ro s ( s i z e (WS) ) ;

%Calcu la te Ground Speed Matrix

f o r i = 1 : ( waypts+1)

%True Airspeed i s assumed to be 450NM

[˜ ,GS( : , i ) , ˜ ] = d r i f t c o r r (Az( i ) ,450 , angle W ( : , i ) ,WS( : , i ) ) ;

end

%Generate Network

%F i r s t Node connects to a l l 11 nodes at f i r s t waypoint

%Star t the network at 25k f t

W1 = ArcFuelValues (6 ,GS(1 ,6 ) ,GS( : , 2 ) , [ l a t (1 ) l a t (2 ) ] , [ lon (1) lon (2) ] ) ;

G = digraph ( repmat ( 1 , [ 1 , 1 1 ] ) , [ 2 : 1 2 ] ,W1) ;

%Each Waypoint ( F i r s t and Last Seperate )

f o r k = 1 : 1 : ( waypts−2)

%Connect to every Pressure Level o f next waypoint

%m=1 i s 25k , m=2 i s 26k and so on

f o r m = 1 : 1 : 1 1

%Where W i s the Fuel value f o r each 11 arc s being added

W = zero s (11 ,1 ) ;

W = ArcFuelValues (m,GS(m, k ) ,GS( : , k+1) , [ l a t ( k ) l a t (k+1) ] , [ lon (k ) lon (k+1) ] ) ;

%Add edges with f u e l c o s t s W

G = addedge (G, repmat (m+1+(k−1) ∗11 , [ 1 , 1 1 ] ) , [(2+k∗11) :(12+k∗11) ] ,W) ;

end

end

%Get Fuel va lues f o r l a s t waypoint going to l a s t node , which i s f i x ed

%at 25k

WLast = ze ro s (11 ,1 ) ;

f o r p = 1:11

WTemp = ArcFuelValues (p ,GS(p , waypts ) ,GS( : , waypts+1) , [ l a t ( waypts ) l a t ( waypts+1) ] , [ lon ( waypts )

lon ( waypts+1) ] ) ;

%WTemp(6) g i v e s the f u e l to t r a v e l from the a l t i t u d e p to

%25k (6) f o r each p value

WLast(p) = WTemp(6) ;

end

%Add the f u e l arc va lues from the l a s t waypt to the end node

G = addedge (G, [ ( 2+( waypts−2)∗11) :(12+(waypts−2)∗11) ] , repmat (13+(waypts−2) ∗11 , [ 1 , 1 1 ] ) ,WLast) ;

%Shor te s t Path from node 1 to l a s t node
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%[ d i s t , path , pred ] =

[ path , d i s t ] = shor t e s tpa th (G,1 ,13+(waypts−2)∗11) ;

T = G. Edges ( : , 2 ) ;%Save to compute d i s t ance f o r other route s

T. InNodes = G. Edges . EndNodes ( : , 1 ) ;

T. OutNodes = G. Edges . EndNodes ( : , 2 ) ;

graph = T;

G = {} ;

end

FuelCalc.m

f unc t i on fuel consumed = FuelCalc ( f type ,AC, alpha1 , alpha2 , omega , PW, d i s t )

%Climb/Descend ,

load Regre s s i onCoe f f s . mat

f u e l 1 = 0 ;

f u e l 2 = 0 ;

d i s t 1 =0;

d i s t 2 =0;

fue l consumed = 0 ;

d i s t a n c e t r a v e l e d = 0 ;

%I f Climbing

i f strcmpi ( ftype , ’ cl imb ’ )

%Distance to cl imb th i s amount

d i s t 1 = Cl imb reg d i s t (1 ,AC) + Cl imb reg d i s t (2 ,AC)∗alpha1 + Cl imb reg d i s t (3 ,AC)∗alpha1 ˆ2 +

Cl imb reg d i s t (4 ,AC)∗alpha1 ˆ3 + Cl imb reg d i s t (5 ,AC)∗omega + Cl imb reg d i s t (6 ,AC)∗omegaˆ2

+ Cl imb reg d i s t (7 ,AC)∗omegaˆ3 + 10ˆ(−6)∗Cl imb reg d i s t (8 ,AC)∗alpha1 ˆ2∗omegaˆ3 + 10ˆ(−6)∗

Cl imb reg d i s t (9 ,AC)∗alpha1 ˆ2∗omega ˆ3 ;

d i s t 2 = Cl imb reg d i s t (1 ,AC) + Cl imb reg d i s t (2 ,AC)∗alpha2 + Cl imb reg d i s t (3 ,AC)∗alpha2 ˆ2 +

Cl imb reg d i s t (4 ,AC)∗alpha2 ˆ3 + Cl imb reg d i s t (5 ,AC)∗omega + Cl imb reg d i s t (6 ,AC)∗omegaˆ2

+ Cl imb reg d i s t (7 ,AC)∗omegaˆ3 + 10ˆ(−6)∗Cl imb reg d i s t (8 ,AC)∗alpha2 ˆ2∗omegaˆ3 + 10ˆ(−6)∗

Cl imb reg d i s t (9 ,AC)∗alpha2 ˆ2∗omega ˆ3 ;

% f u e l to cl imb in Klbs

f u e l 1 = Cl imb reg fu e l (1 ,AC) + Cl imb reg fu e l (2 ,AC)∗alpha1 + Cl imb reg fu e l (3 ,AC)∗alpha1 ˆ2 +

Cl imb reg fu e l (4 ,AC)∗alpha1 ˆ3 + Cl imb reg fu e l (5 ,AC)∗omega + Cl imb reg fu e l (6 ,AC)∗omegaˆ2

+ Cl imb reg fu e l (7 ,AC)∗omegaˆ3 + 10ˆ(−6)∗Cl imb reg fu e l (8 ,AC)∗alpha1 ˆ2∗omegaˆ3 + 10ˆ(−6)∗

Cl imb reg fu e l (9 ,AC)∗alpha1 ˆ1∗omega ˆ3 ;

f u e l 2 = Cl imb reg fu e l (1 ,AC) + Cl imb reg fu e l (2 ,AC)∗alpha2 + Cl imb reg fu e l (3 ,AC)∗alpha2 ˆ2 +

Cl imb reg fu e l (4 ,AC)∗alpha2 ˆ3 + Cl imb reg fu e l (5 ,AC)∗omega + Cl imb reg fu e l (6 ,AC)∗omegaˆ2

+ Cl imb reg fu e l (7 ,AC)∗omegaˆ3 + 10ˆ(−6)∗Cl imb reg fu e l (8 ,AC)∗alpha2 ˆ2∗omegaˆ3 + 10ˆ(−6)∗

Cl imb reg fu e l (9 ,AC)∗alpha2 ˆ2∗omega ˆ3 ;

d i s t a n c e t r a v e l e d = abs ( d i s t1−d i s t 2 ) ;

fue l consumed = abs ( fue l1−f u e l 2 ) ;

e l s e i f strcmpi ( ftype , ’ descd ’ ) %I f Descending

d i s t 1 = Descend reg d i s t (1 ,AC) + Descend reg d i s t (2 ,AC)∗omega + Descend reg d i s t (3 ,AC)∗omegaˆ2
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+ Descend reg d i s t (4 ,AC)∗alpha1 + Descend reg d i s t (5 ,AC)∗alpha1∗omega ;

d i s t 2 = Descend reg d i s t (1 ,AC) + Descend reg d i s t (2 ,AC)∗omega + Descend reg d i s t (3 ,AC)∗omegaˆ2

+ Descend reg d i s t (4 ,AC)∗alpha2 + Descend reg d i s t (5 ,AC)∗alpha2∗omega ;

% f u e l to descend in Klbs

f u e l 1 = Desc end r eg fu e l (1 ,AC) + Desc end r eg fu e l (2 ,AC)∗omega + Desc end r eg fu e l (3 ,AC)∗omegaˆ2

+ Desc end r eg fu e l (4 ,AC)∗alpha1 + Desc end r eg fu e l (5 ,AC)∗alpha1∗omega ;

f u e l 2 = Desc end r eg fu e l (1 ,AC) + Desc end r eg fu e l (2 ,AC)∗omega + Desc end r eg fu e l (3 ,AC)∗omegaˆ2

+ Desc end r eg fu e l (4 ,AC)∗alpha2 + Desc end r eg fu e l (5 ,AC)∗alpha2∗omega ;

d i s t a n c e t r a v e l e d = abs ( d i s t1−d i s t 2 ) ;

fue l consumed = abs ( fue l1−f u e l 2 ) ;

end

%Climb or Descent completes with in l e g which g i v e s time f o r a i r c r a f t c r u i s i n g

i f d i s t a n c e t r a v e l e d < d i s t

%The d i s tance l e f t to be t r ave l ed

d i s t l e f t = d i s t − d i s t an c e t r a v e l e d ;

% f u e l to c r u i s e in Klbs

OW = PayloadAssumptions (1 ,AC) ; % operat ing weight

FRC = PayloadAssumptions (5 ,AC) ; % r e s e r v e / cont ingency f u e l weight

FAH = PayloadAssumptions (6 ,AC) + PayloadAssumptions (7 ,AC) ; %a l t e r n a t e / ho ld ing f u e l weight

A = SpecRange reg (5 ,AC) /3 ;

B = ( SpecRange reg (4 ,AC) /2) + SpecRange reg (5 ,AC) ∗(OW + FRC + FAH + PW) + ( SpecRange reg (6 ,AC)

/2)∗alpha2 ;

C = SpecRange reg (1 ,AC) + SpecRange reg (2 ,AC)∗alpha2 + SpecRange reg (3 ,AC)∗alpha2 ˆ2 +

SpecRange reg (4 ,AC) ∗(OW+FRC+FAH+PW)+SpecRange reg (5 ,AC) ∗ ( (OW+FRC+FAH+PW) ˆ2) +

SpecRange reg (6 ,AC)∗alpha2 ∗(OW+FRC+FAH+PW) ;

D = −d i s t l e f t ;

%fuel consumed = −B/(3∗A) − 1/(3∗A) ∗ ( (1/2) ∗(2∗Bˆ3−9∗A∗B∗C+27∗Aˆ2∗D+sqr t ((2∗Bˆ3−9∗A∗B∗C+27∗Aˆ2∗

D)ˆ2−4∗(Bˆ2−3∗A∗C) ˆ3) ) ˆ(1/3) ) − 1/(3∗A) ∗ ( (1/2) ∗(2∗Bˆ3−9∗A∗B∗C+27∗Aˆ2∗D−sq r t ((2∗Bˆ3−9∗A∗B∗C

+27∗Aˆ2∗D)ˆ2−4∗(Bˆ2−3∗A∗C) ˆ3) ) ˆ(1/3) )

commonterm1 = 2∗Bˆ3 − 9∗A∗B∗C + 27∗Aˆ2∗D;

commonterm2 = 4∗(Bˆ2 − 3∗A∗C) ˆ3 ;

cubterm1 = ((1/2) ∗( commonterm1 + sqr t ( commonterm1ˆ2 − commonterm2) ) ) ˆ(1/3) ;%sq r t

cubterm2 = ((1/2) ∗abs ( commonterm1 − sq r t ( commonterm1ˆ2 − commonterm2) ) ) ˆ(1/3) ;

cubterm2 = s ign ( commonterm1 − sq r t ( commonterm1ˆ2 − commonterm2) )∗cubterm2 ; %b/c matlab y i e l d s

a complex number

%Add the f u e l a l r eady used to cl imb/descend i f app l i c ab l e

fue l consumed = −B/(3∗A) − (1/(3∗A) )∗cubterm1 − (1/(3∗A) )∗cubterm2 + fuel consumed ;

e l s e i f d i s t a n c e t r a v e l e d > d i s t

fue l consumed = 1000; %dont use t h i s route , f l i g h t i s too s teep ;

end

end

ArcFuelValues.m

f unc t i on [W] = ArcFuelValues (NodeNum, StartNodeGS , EndNodesGS , lat , lon )

%Input i s s t a r t node and windspeeds , output i s arc value ( f u e l ) to t r a v e l

%to a l l p o s s i b l e next 11 nodes
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AC = 2 ; %Used in the Regre s s i onCoe f f s Table

omega = 496 . 5 ; %Weight

PW =5; %Payload

TAS = 450 ; %True a i r speed

d i s t = distdim ( d i s t ance ( l a t (1 ) , lon (1) , l a t (2 ) , lon (2) ) , ’ deg ’ , ’nm ’ ) ;

t r u e d i s t= ze ro s (11 ,1 ) ;

f o r i = 1:11

%f ind d i s t ance with a l t i t u d e

d i s t w i t h a l t = sq r t ( d i s t ˆ2 + distdim ( abs (NodeNum−i ) ∗1000 , ’ f t ’ , ’nm ’ ) ˆ2) ;

AverageGS = ( StartNodeGS + EndNodesGS( i ) ) /2 ;

t r u e d i s t ( i ) = d i s t w i t h a l t ∗ (TAS/AverageGS ) ;%E f f e c t i v e d i s t ance

i f NodeNum > i %Decreas ing Al t i tude

W( i ) = FuelCalc ( ’ descd ’ ,AC, 24 + NodeNum, 24 + i , omega , PW, t r u ed i s t ( i ) ) ;

e l s e i f NodeNum < i %Inc r e a s i ng Al t i tude

W( i ) = FuelCalc ( ’ cl imb ’ ,AC, 24 + NodeNum, 24 + i , omega , PW, t r u ed i s t ( i ) ) ;

e l s e i f NodeNum == i %Maintain Al t i tude

%Change in a l t i t u d e i s 0

W( i ) = FuelCalc ( ’ e l s e ’ ,AC,24 + NodeNum, 24 + i , omega , PW, t r u ed i s t ( i ) ) ;

end

end

end
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