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I. EXECUTIVE SUMMARY 
 

The challenge of maintaining the flexibility of human workers with the efficiency and quality necessary to 

compete globally is exacerbated by the archaic nature of work instruction delivery, which has not changed 

substantially in more than a century. Workers conducting manual processes on the shop floor still typically 

refer to written instructions, which sometimes include reference drawings. Whether delivered on paper 

or a computer monitor, this method induces a substantial cognitive load on the worker. In an assembly 

process, for example, a worker is required to read an instruction, remember part numbers, retrieve 

necessary parts, position them properly, and finally conduct the assembly operation. Depending on the 

complexity of the task and their familiarity with it, a worker may feel compelled to refer to work 

instructions numerous times throughout the process. This can lead to increased completion time and 

assembly errors.  

A promising solution to these challenges is the adoption of augmented reality (AR) technology for work 

instruction delivery. For an assembly operation an AR application can be used to superimpose video of 

work area with computer-generated visual features that provide instructions on assembly operations, 

such as which part to pick next, where to assemble a particular part, or which tool to use. However, 

despite promising AR research results, the broad adoption of AR in manufacturing industries has been 

hampered by a procedural technology gap, namely: how to facilitate the authoring of AR content.  

The goal of this project was to develop the Augmented Reality Expert Demonstration Authoring (AREDA) 

product to provide a simple and intuitive method for rapidly authoring AR work instructions. This was 

achieved through tracking and recording the actual part manipulations of an expert using 3D depth 

cameras with advanced image processing, computer vision and point cloud matching algorithms. The 

system was based on existing successful research results from the proposers. Through cost-sharing 

partnership with aerospace (Boeing) and heavy equipment (Deere) sectors, functional requirements for 

AREDA were developed. Product requirements based on market opportunities were gathered from other 

project partners (DAQRI and Design Mill). Inter University collaboration (Purdue) afforded the opportunity 

to implement cutting edge depth camera sensors for use within AREDA. 

AREDA was developed at a level commensurate with TRL 6 in an attempt to bring these new methods to 
commercialization faster. This is a key innovation that will accelerate AR adoption in manufacturing, which 
in turn will reduce time to author work instructions, enhance their communication to the shop floor, 
reduce process errors, and decrease manual process time – all of which will substantially improve US 
manufacturing productivity and competitiveness. 

 

II. PROJECT REVIEW 
 

Project Motivation, Scope, and Objectives 
Despite decades of investment in increasingly advanced automation, manual processes are still common 
on the factory floor in many manufacturing industries. Global competition on cost and quality, as well as 
advances in technology continue to drive automation, especially for simple and repeatable manufacturing 
processes. However, for the foreseeable future, market demands for mass customization and 
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manufacturing agility will continue to require the judgment afforded by human labor – and those tasks 
remaining for people on the factory floor will continue to increase in complexity. The challenge of 
maintaining the flexibility of human workers with the efficiency and quality necessary to compete globally 
is exacerbated by the archaic nature of work instruction delivery, which has not changed substantially in 
more than a century. Workers conducting manual processes on the shop floor still typically refer to written 
instructions, which sometimes include reference drawings. Whether delivered on paper or a computer 
monitor, this method induces a substantial cognitive load on the worker (Nakanishi & Sato, 2012; Tang et 
al., 2003). In an assembly process, for example, a worker is required to read an instruction, remember 
part numbers, retrieve necessary parts, position them properly and finally conduct the assembly 
operation. Depending on the complexity of the task and their familiarity with it, a worker may feel 
compelled to refer to work instructions numerous times throughout the process. This can lead to 
increased completion time and assembly errors. 
 
Additional inefficiencies exist in the time consuming and tedious process of authoring shop floor work 
instructions. For an assembly process, manufacturing engineers use their expertise to determine the order 
of parts (or subassemblies) to be assembled, the path, approach or alignment of each part, as well as its 
fastening or attachment method. The manufacturing engineer must access data from multiple sources to 
reference shop floor fixtures, necessary tools, CAD models of parts, and part locations relative to the shop 
floor. This information must be aggregated and scripted into a comprehensible process plan. Regardless 
of the method used to convey the work instructions this tedious authoring process makes it difficult to 
efficiently communicate manufacturing changes. 
 
A promising solution to these challenges is the adoption of augmented reality (AR) technology for work 

instruction delivery. AR is a human-computer interaction (HCI) technology that superimposes the natural 

visual perception of a human user with computer-generated information (e.g., 3D models, annotation, 

and texts) (Azuma, 1997). AR presents this information in a context-sensitive way that is appropriate for 

a specific task, and typically, relative to a user’s physical location. From a user’s point of view, AR provides 

a representation of the physical world that has been “augmented” with virtual objects. Sample AR 

applications previously developed by the proposers are shown in Figure 1. In Figure 1a, an AR system is 

shown depicting a virtual engine model that is spatially registered and scaled relative to the physical model 

of a helicopter. Figure 1b shows an AR application for assembly. The (red) virtual part is shown in proper 

alignment relative to the physical subassembly. 

One of the earliest applications of AR research is work instruction delivery for manual assembly. In these 
situations, an AR application is used to superimpose physical parts with computer-generated visual 
features that provide instructions on assembly operations. Since the computer-generated information 
presented is context-sensitive, spatially registered with, and superimposed on the physical part, the 
information is easier to comprehend (Neumann & Majoros, 1998; Sausman et al. 2012). Caudell & Mizell 
(1992) introduced the first application of this type. Since then, many studies, have been conducted, 
including several from the proposers, which indicate advantages of AR in comparison to typical instruction 
media (Tang et al., 2003; Wiedenmaier et al., 2003; Richardson et al. 2014; Radkowski et al. 2015). Most 
of the research compares AR applications with computer monitors (instructions shown on a display) 
and/or paper manuals. In general, the results show that the number of assembly errors, the time to 
identify and locate parts, and the overall assembly time can be reduced significantly using an AR system. 
In addition, hand-eye coordination tasks and mental workload can also be minimized. 
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a) AR Design Review 

 

b) AR Assembly Instructions 

Figure 1 Sample AR systems for a) design review, and b) assembly instructions 

 

Despite these promising research results, the broad adoption of AR in manufacturing industries has been 
hampered by a procedural technology gap, namely: how to facilitate the authoring of AR content. In this 
context, authoring of AR content refers to specification and scripting of a variety of interaction 
phenomena, including: 1) virtual part representation, 2) 3D part animation paths, 3) pointers, symbols or 
glyphs, and 4) text annotations. 
 
In most manufacturing organizations, access to the digital thread to obtain 3D product models is relatively 
straightforward, as is their conversion from native CAD into the polygonal formats required in AR systems. 
However, creating the four components of AR content listed above is a significant challenge. In addition 
to all the typical (non-AR) work instruction data a manufacturing engineer must accumulate, creating AR 
instructions requires expertise in at least one other software package to create the appearance and 
movements of parts necessary to convey a manual assembly process. Although some vendors are 
beginning to provide tools specifically aimed at authoring AR work instructions (e.g., Daqri and Metaio), 
most AR authoring is done with general 3D modeling and animation packages like AutoDesk’s Maya. While 
the AR-focused products are better suited to the specific requirements of AR authoring, all of these 
systems require an additional learning curve for the manufacturing engineer. In addition, regardless of 
the tool learned, part representation and 3D path generation are not intuitive. They are generated either 
incrementally, by 3D manipulators (see Innovation section below), or via key-frame animation. In order 
for AR to make substantial inroads into industrial manufacturing, automated methods must be 
commercially available to: 1) identify parts, 2) track part movements, 3) identify and track proper 
assembly motions, and 4) easily allow text annotations and other graphical symbols to be introduced, if 
desired. 
 
This goal of this project was to develop the Augmented Reality Expert Demonstration Authoring (AREDA) 
product to address the aforementioned objectives by providing a simple and intuitive method for rapidly 
authoring AR work instructions by tracking and recording the actual part manipulations of an expert. The 
system was based on existing successful research results from the proposers (Bhattacharya & Winer, 
2015; Zhang & Huang, 2005; Zhang, 2011). The project solicited additional functional requirements from 
potential users, namely, project partners representing the aerospace (Boeing) and heavy equipment 
(Deere) sectors. In addition, product requirements based on market opportunities and commercialization 
potential was gathered from project partners DAQRI and Design Mill. All of the project partners have 
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experience working with several branches of the US Department of Defense (DoD) and other government 
agencies (e.g., Department of Energy, National Science Foundation). Requirements from these sectors 
was also accumulated into commercialization activities. These requirements guided the development of 
additional functionality to broaden the capability of the research prototype, optimize parameters to 
enhance its robustness, and simplify its integration into a commercial product. While the research was 
directed towards the manufacture of complex engineered systems, it has the potential to impact other 
market segments including education and small businesses. The breadth of experience of the project 
team, spanning users, providers, and researchers in AR and wearables represented the necessary skill set 
for project success. 
 
This project addressed the Advanced Analysis (AA) thrust identified by the DMDII and the DoD as critical 
to significantly improve US manufacturing capabilities and reduce acquisition costs for the DoD. DMDII 
support was critical as there was no other source of funds that can be accessed to support such a broad 
team of experts in this critical emerging area. This project intended to overcome one of the last remaining 
barriers to widespread adoption of AR in manufacturing and enable increased productivity and 
competitiveness across a spectrum of manufacturing industries. 
 
Methodology 
The AREDA product aims to create AR work instructions by capturing an expert “demonstration” of an 

assembly procedure. As an expert carries out an assembly, the AREDA system observes the procedure, 

analyzes the parts and their locations, and transforms the observation into AR authoring instructions. The 

goal of the project was to develop the AREDA software application and prepare it for integration into a 

commercially viable product.  Another project partner, Design Mill, an AR systems integrator, will begin 

using AREDA to produce customized AR content for its customers and also evaluate its effectiveness. The 

AREDA software was designed to comply with commercial standards for a technology readiness level (TRL) 

of seven (Department of Defense, 2011). AREDA has the ability to identify parts and track their 

movements. It also has limited ability to identify and track proper assembly motions. The ability to allow 

text annotations and other graphical symbols into the final work instructions was not completed as this 

was not one of the primary research challenges. It can easily be completed as the product is prepared for 

commercialization. 

 

III. KPI’S & METRICS  
 
An unbiased evaluation of AREDA’s efficiency compared to the current state of AR usage within 
manufacturing industries is non-trivial. Given that the AREDA tool was developed in an academic setting, 
studies measuring assembly times will not be representative of the manufacturing sector. Also, time 
studies performed in a specific assembly line do not necessarily represent a broad range of industries 
either. These studies must be performed at a number of manufacturing facilities to arrive at a statistically 
significant and quantifiable KPI metric (e.g., AREDA is at least 30% more efficient than manual AR 
instructions). Adhering to the scope of the project proposal and time limitations, time studies in a number 
of industries have not been performed. An alternative is therefore provided to qualitatively describe 
AREDA’s KPIs and metrics compared to manually creating AR work instructions for a specific assembly.  
 
Figure 2 below represents a typical workflow of AR technology usage within manufacturing industries. A 
subject matter expert, or SME, (e.g., worker, supervisor, manufacturing engineer) relays component 
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assembly instructions to a modeler or a CAD designer. The modeler then creates AR based work 
instructions customized for the specific assembly. This approach has the following ramifications in terms 
of time delays and possible errors: 
 

- A modeler or a CAD designer might not be readily available due to other work commitments, 
incurring variable delays in creating AR work instructions. This time delay is denoted by ‘A1’. This 
metric (i.e. Availability metric) is an important for consideration because AREDA automates much 
of the traditional delays in an assembly line setting. 

- A SME’s expectations and the CAD designer’s interpretations do not necessarily match up thereby 
resulting in human errors, as indicated by ‘Error source 1’. Resolving these errors will require 
multiple meetings and iterations, resulting in time delays. This time delay is denoted by ‘A2’. 

- The modeler or the CAD designer manually creates CAD models and assembly animations, again 
subject to errors and iterative time delays. The errors are denoted by ‘Error source 2’ and time 
delays by ‘A3’. 

- Merging a proprietary CAD model into an AR work instruction requires conversions into mesh-
based formats suitable for AR. For example, a Unity game engine for viewing AR assembly 
instructions does not automatically recognize geometry created in a CAD program (e.g., Solid 
Works, PTC Creo, etc.). This is also an iterative process because the SME and the modeler must 
reach a consensus before an AR work instruction is approved and finalized. This process 
constitutes additional time delays denoted by ‘A4’ and any errors caused are indicated by ‘Error 
source 3’. 

Therefore, in the current state, the overall time taken by a modeler or a CAD designer for creating usable 
AR work instructions for a specific assembly is given by Tpresent = A1 + A2 + A3 + A4. 

 
 
 
 
 
 
 
 
 
 
 

Figure 2 Current state of AR based assemblies in industries 
 
Figure 3 shows AR work instructions generated by AREDA. A SME authors an assembly within AREDA equal 
to the actual assembly work time, denoted as ‘B1’. Note that ‘B1’ is not a time delay, but a value-added 
assembly authoring time, and replaces the non-value-added time delays ‘A1 + A2 + A3’ as described in 
Figure 2. This means that any human errors and time delays introduced because of a third-party modeler 
or CAD designer have been eliminated.  
 
AREDA captures these assemblies using its depth camera and computationally processes them to 
automatically recognize CAD parts, generate assembly steps and animations. This is the only step that 
subjectively incurs significant time because a computer algorithm attempts to automatically recognize 
parts in an assembly. Consequently, the computational time is dependent on the number of parts in the 
assembly. The time taken for this process is indicated by ‘B2’. 

Worker/ 
Supervisor 

Modeler/ 
CAD Engineer 

Error source 2 

(A3) Manual work … 

(A2) Relay 
Assembly 

instructions 

… through multiple 
software packages for 

geometry conversion (A4) 

Error source 1 Error source 3 

AR output 

(A1) 
Availability 

delays 
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The algorithms that recognize parts or assembly orientation occasionally fail and requires the SME to 
correct it in the refinement phase while authoring AR work instructions. This step once again does not 
require a third-party personnel intervention and can be accomplished within the AREDA interface. The 
time taken for error correction is denoted by ‘B3’. 
 
The total time taken for authoring and generating AR work instructions is given by TAREDA = B1 + B2 + B3. 
 
 
 
 
 

 
 
 

Figure 3 Assemblies using AREDA 
 
It can be seen that the incurred time in the current state of custom building AR work instructions is 
substantially affected by human errors, miscommunications and misinterpretations. AREDA was designed 
to naturally overcome these delays, and time spent in using the interface is value-added beginning with 
work area calibration through AR work instruction generation. Since AREDA is an AR authoring tool, it can 
be used in computationally creating work instructions for any generic assembly process. The time savings 
achieved when using AREDA are hence characterized to be much greater than 30%. The performance 
improvement metrics for AREDA are summarized in Table 1 below. 
 

Table 1 AREDA Performance Improvement Metrics 

Metric Baseline Goal Results Validation Method 

Enter Metric Enter Baseline Enter Goal 
Enter 
Results 

Enter Validation Method 

Average time to 
create a 
complete set of 
AR work 
instructions 

Time taken using 
current process of 
CAD and 3D 
modeling software 
without AREDA 

Time decrease > 
30% 

Goal 
achieved 

See description above on time 
delays in current state AR work 
instructions vs AREDA’s time 
incurred 

Average number 
of errors putting 
together an 
assembly using 
AR work 
instructions 

Number of errors 
requiring 
disassembly and 
reassembly to 
correct using 
instructions not 
created by AREDA 

Reduction to no 
significant 
difference between 
errors from AREDA 
and non-AREDA 
work instructions 

Goal 
achieved 

See description above on how 
human errors are resolved in 
current state AR work 
instructions vs AREDA’s 
architecture naturally lending to 
minimizing errors 

Correct AR 
instruction 
output provided 
by AREDA 
following 
demonstration 

File formats and 
exchange 
mechanisms used 
to output 
instructions from 
one software and 

Reduction to no 
significant 
difference between 
errors from AREDA 
and non-AREDA 

Goal 
achieved 

AR work instructions 
computationally generated and 
can be viewed in the refinement 
phase of the AREDA interface 

Worker/ 
Supervisor 

Captured by 
AREDA 

(B1) Performs 
Assembly 

Worker/Supervisor 
refines + corrects 

error 

AR Output 
(B2) 

Process 

(B3) 

 

 Prepare for 

AR output 
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input to another 
for viewing in AR 

produced work 
instructions 

 

IV. TECHNOLOGY OUTCOMES 
 

Overview of AREDA 
Error! Reference source not found.2 shows the hardware setup for AREDA. Authoring by demonstration 

relies on computer vision and image processing since the assembly process of the user is visually observed. 

Given the novelty of an AR authoring tool using a number of technologies, the development focused on a 

typical one-person work area. AREDA functionality can easily be extended to larger work cells with a 

suitable hardware setup (e.g., depth camera, lighting conditions, etc). Parts on the workbench are 

automatically identified and their position/orientation is tracked. Mis-identified parts/orientations are 

easily modified via the AREDA interface. A depth camera/camera-projector unit was required, above or 

behind the work area to capture the work area and assembly processes. This unit projects a structured 

light pattern (visible or infrared spectrum), records the reflection, and outputs a high-fidelity point cloud 

to facilitate user and object recognition and tracking. 

To use AREDA an expert selects the parts that he or she intends to assemble and places them on the bench 

top area. AREDA automatically registers the parts with a digital CAD library and keeps track of their 

positions and orientations during assembly recording, steps generation and refinement phases. The 

expert performs the assembly steps moving required parts to their final locations, properly orienting 

them, and confirming the start/end of each step through AREDA interface. AREDA translates the 

observation of this procedure into formal assembly steps. Using the refinement phase, a user can modify 

steps, parts identified, or their orientations within the interface. By matching parts with their true CAD 

representations, AREDA integrated into, and significantly extended, the digital thread of product design 

in large manufacturers. AREDA hence is able to expand CAD models outside of traditional uses (i.e., 

simulation or computational analysis) and allows rapid access to the data on the shop floor in a meaningful 

way. 
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Figure 4 The AREDA system hardware setup showing point cloud generation 

 

AREDA Architecture 
A research software prototype of this authoring application has initially been developed and tested by the 

proposers (Bhattacharya & Winer, 2015) before this project commenced. At the time however, the 

architecture and functionality of the research prototype was at a TRL of three. Error! Reference source 

not found.3 shows the software architecture diagram for the AREDA system to move it to a TRL of seven. 

The architecture concept has been developed in close cooperation with project partners Daqri and Design 

Mill, from a software development perspective as well as Boeing and John Deere to specify data exchange 

interfaces for industry, DoD, and other government entities. A major part of this effort focused on 

implementing this software architecture. The architecture incorporated four major components: 1) point 

cloud generation from the depth camera, 2) object detection and tracking, 3) user detection and tracking, 

and 4) authoring instruction exchange interface. These represented the major technical task areas that 

were implemented within AREDA system to become commercially viable. 

As shown in Figure 4, from the observation of the bench top by the camera-projector unit, a 3D point cloud 

representation of the work area is generated. The object detection and tracking component identifies the 

parts on the bench and tracks their position and orientation. The user detection and tracking component 

tracks the position and orientation of the hands of the expert. The position and orientation information 

from both modules are combined to compile the overall assembly instructions. The authoring instruction 

exchange interface prepares an output file that partners Daqri and Design Mill require to incorporate into 

their AR guided assembly viewers. Specifically, the AREDA system provides the six outputs listed below 

(Each of these outputs is represented in one of the four technical task areas identified in Figure 5): 

 

 

• Automatic identification of all parts on a 

bench top work area. 

• Recording the user’s hand movement and part 

handling. 
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• Recording the assembly path and orientation 

of each part.  

• Assembly sequence specification by expert 

input (expert will designate the beginning and 

ending of each step using AREDA interface. 

• Recording the assembly time per step. 

• Output of digital representation of assembly 

instructions suitable for commercial AR 

authoring and viewing environments.  

 

 
Figure 5 Commercial software architecture for AREDA 

 

AREDA Features and Attributes - Point cloud generation 
A point cloud is a set of 3D points representing a real or virtual environment. It is a very well understood 

technique that facilitates object detection and tracking (Schnabel et al., 2007; Rusu & Cousins, 2011). The 

AREDA system uses point clouds to represent the parts, assembly, and the expert during a demonstration. 

A high-fidelity 3D point cloud generation technology (Zhang & Huang, 2005) has already been developed, 

implemented, and utilized in several research projects (Mehta et al., 2008; Laughner et al. 2012). The 

method, digital fringe projection (DFP), is a special collection of structured light techniques. These 

techniques have advantageous features such as higher accuracy, resolution and less sensitivity to ambient 

light (Zhang, 2011). The system uses invisible near infrared (NIR) light for 3D sensing so as not to disturb 

the expert during the assembly demonstration (Ou et al. 2013). To mature the current capture and point 

cloud generation technology two sub-tasks were completed. First, the existing DFP system was encased 

in a simple to handle enclosure. Second, a calibration routine that facilitates installation at different 

physical locations of the project partners were implemented within the AREDA interface. 

The existing hardware prototype incorporates an infrared camera, an infrared projector, a color camera, 

and timing hardware (Ou et al., 2013). The entire system was a lab prototype, assembled on an optical 

table or “breadboard”. These components were integrated into a housing, which can be mounted above 

the workspace on a factory floor. This development was conducted in close collaboration with all of the 

research partners to ensure requirements such as portability, temperature, lighting conditions, and 

vibration were accounted for in the final design. Project partner Daqri, having both AR hardware and 

software products, is ideally suited to lead this commercialization effort with Purdue the originator of the 

camera-unit technology. An automatic calibration routine was developed to allow easier setup within 

AREDA system. 
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AREDA Features and Attributes - Object detection and tracking 
The object detection and tracking component is responsible for recognizing and tracking all parts in the 

assembly operations. The core functions are part identification, part alignment detection, part path 

recording during assembly actions, and measurement of assembly time. AREDA relies on point clouds 

generated by the depth camera to perform these core functions. During the assembly process, point 

clouds from the entire work area and all parts that are being assembled are filtered out except the one(s) 

being manipulated during the current step of the assembly sequence. This approach allows individual part 

identification and minimizes mismatching. Before the expert begins to demonstrate the assembly 

procedure, sections such as the bench top surface, walls, and other parts are easily removed using 

Random Sample and Consensus (RANSAC)-like object matching algorithms (Schnabel et al., 2007). Object 

matching algorithms based on RANSAC are well known, highly effective, and fast. 

The AREDA system uses the DFP hardware system to capture 3D frames of the assembly environment. All 

CAD parts and their corresponding point clouds are uploaded within the AREDA interface. These are saved 

in an internal SQL database. The DFP hardware system captures the scene as viewed by the depth camera, 

which includes the work area, the surroundings, and the parts that are brought into the work area for 

assembly. Object recognition requires that all extraneous details except the part(s) to be assembled are 

filtered out. Using RANSAC and clustering algorithms, only parts that are within the work area are saved 

and the rest of the data is discarded. Every new part that the expert introduces to the scene is considered 

an assembly component candidate. The point cloud that is associated with this candidate is then stored 

and matched to reference objects prepared in advance from CAD models of the parts using the Iterative 

Closest Points (ICP) method (Besl & McKay, 1992). ICP solves a least-squares problem to align two sets of 

points in an iterative optimization process. Upon completion, an ICP match generates a fitness score to 

indicate how good the camera-projector point cloud matches against a CAD part. A lower fitness score 

indicates a better match. 

The camera unit is fixed to a certain position and orientation to capture the work area and parts. As such, 

only a section of the part(s) volume being assembled faces the camera directly, and the camera does not 

necessarily capture 100% of the part(s) volume. This results in a partial point cloud generated by the 

camera that will be attempted to match against a point cloud from the entirety of the CAD part. Because 

of the missing volume, ICP matching and alignment could result in errors and an incorrect part will likely 

be identified by the process. To minimize such errors, ICP matching was implemented with camera point 

clouds oriented at different incremental orientation angles. 

Once a fitness score is calculated by an ICP match, the camera point cloud is slightly rotated about a 

vertical axis. This new cloud is then matched against the CAD cloud. This sequence is performed at 10 

different angles to maximize the camera point cloud exposure to the CAD part’s point cloud. Every part in 

the generated steps undergoes this process, and the part that returns the least fitness across all parts in 

the library is designated as the part identified in that corresponding step. While this approach is not 

completely error proof, AREDA was able to minimize incorrect part matching by a significant margin. 

Figure 6 shows the matching and alignment process for a certain step. Figure 4a shows the point cloud of 

a CAD part within a bench-vise assembly. Figure 4b shows the point cloud generated by the camera-

projector unit for the base after filtering surrounding noise. Figure 4c shows both the clouds ICP matched 
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and aligned, with the denser points in blue representing the CAD part’s cloud, and the blue-green points 

representing the camera-projector unit’s point cloud.  

 
(a) 

 
(b) 

 
(c) 

Figure 6 Representations of a bench vise part (a) Point cloud of the CAD part, (b) Depth camera generated 
point cloud for the part after noise filtering, (c) Merged and aligned CAD and depth camera cloud 

 
AREDA Features and Attributes - User detection and tracking 
The expert’s handling of parts and start/stop commands for each assembly step must be identified and 

tracked. The first function of this component utilizes color recognition to identify the hand positions, 

orientations, and movement paths (Kakumanu et al., 2007). A pre-defined color was used as a seed to 

initially match the user’s hand color in the point cloud output. In order to track multiple users with 

different skin colors, gloves, or long sleeves, multiple colors are represented as “hypotheses”. Each 

hypothesis was modeled as a Gaussian in order to incorporate noise and uncertainty. All hypotheses were 

solved using a newly developed Gaussian Mixture Model (GMM) coordinated by using particle swarm 

optimization (PSO). This PSO-GMM method was developed and tested by the proposers (Bhattacharya & 

Winer, 2015; Kalivarapu et al., 2009; Kalivarapu & Winer, 2014) and allows multiple Gaussian distributions 

to be created and solved in real-time, eliminating the need for user input. Results from the method are 

shown in Figure 7a & b. Refinement of this method was required to overcome a potential obstacle in object 

detection. During assembly operations, the expert’s hands will typically cover significant portions of a part 

or assembly. In this case, object tracking cannot be maintained by ICP techniques alone, as not all of the 
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part is “visible” in the point cloud. By using the PSO-GMM, additional position and orientation information 

is available. When merged with the ICP tracking data, overall tracking of parts was maintained, whether 

occluded by the expert’s hands or not (Figure 7c & d). This was one of the primary applied research 

contributions of the AREDA system. 

 
(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

 
Figure 7 Hand detection example: a) Hand capture footage by the depth camera, (b) Skin tone processed, (c) 
Skin tone identified and filtered from an assembly using PSO-GMM, (d) Assembly components tracked with 

skin filtered out in the foreground 
 

AREDA Modes of operation & Software Development Document 
This is described in detail in the developer documentation attached in the Appendix section. 

AREDA Users and Use Cases 
Through prolonged discussions and iterative modifications, the project partners arrived at a consensus on 

the intended users of AREDA. With user personas ranging from beginner assembly operators through 

experienced SMEs and IT administrators, a number of possible use cases were explored. Five user 
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personas were identified, each having skills in certain areas and were motivated to improve the assembly 

operations in their line of work. The development of user personas was addressed early on in the project 

and played a significant role in driving the design and development of AREDA and described below. 

1. Tech Evaluator 

Persona details: 
Name: Tom Atkins 
Age group: 22 – 25 
Job Title: Engineering Analyst 
Education: B.S. Mechanical Engineering 
Primary Proficiency: Technical blueprints and assemblies 

Bio: 
Tom is a 24-year-old Engineering Analyst who works in a testing and training group that evaluates 

technology for near-term implementation. He has 2+ years of work experience. He is mainly involved in 

developing work instructions to be used by the factory workers.  In school, Tom had a brief exposure to 

AR and is excited about it because he believes that AR technology could benefit his goals. His company 

wants to explore AR and its potential uses.  

Technology Experience: 
a. Microsoft Office and Office like products 
b. Movie Maker 

c. CAD Solid Works 

Goals: 
a. Create efficient work instructions that are used and understood by the factory workers 
b. Improve performance and assembly time 

Frustrations: 
a. Inability to transfer assembly knowledge easily to factory workers 
b. Factory workers not using developed work instructions appropriately 

Attributes: 
Interested in Augmented Reality applications 

 

2. Process Leader 

Persona details: 
Name: Diana Wong 
Age group: 35 – 50 
Job Title: Product Manager 
Education: B.S. in Mechanical Engineering, M.S. in Mechanical Engineering 
Primary Proficiency: Cutting edge assembly processes and content development 

Bio: 
Diana is a 41-year-old Product Manager of a large international manufacturing company. She has worked 

with different types of 3D modeling software and PLM visualization tools for over 15 years. Diana, as well 

as her company, has just begun to notice new technologies like VR and AR. Diana has reserved excitement 
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about the possibility of bringing AR into manufacturing and its potential to improve the manufacturing 

process.   

Technology Experience: 
a. Microsoft Office and Office like products 
b. Siemens PLM Software 

c. CAD Solid Works 

d. Autodesk Fusion Lifecycle 

e. EnSight 

Goals: 
a. Improve overall efficiency and performance of product lifecycle without quality degradation 

Frustrations: 
a. Constant knowledge conflict between generated assembly instructions and factory worker. 

Attributes: 
a. Content expert 
b. Requirements gathering 

 

3. Assembly Expert 

Persona details: 
Name: Bob Carpenter 
Age group: 55 - 65 
Job Title: Senior Assembly Engineer 
Education: A.S. in Engineering Technology 
Primary Proficiency: Product assembly 

Bio: 
Bob is a 60-year-old Senior Assembly-Engineer that is part of a well-known manufacturing company. He is 

an expert in his setting (assembly space) and is regularly called upon to instruct new members.    

Technology Experience: 
a. Microsoft Office (maybe) 

Goals: 
a. Make sure assemblies are done within the safety and quality guidelines provided 

b. Be able to pass on knowledge to the next generation of factory workers 

Frustrations: 
a. Repetitive instruction, no easy way to show correct ways of assembly without physical 

demonstration 

b. Lot of time wasted in trying to learn new ways to do assembly and has no faith in new technology 

Attributes: 
a. Low technology acceptance 

 

 



   
 

Final Project Report | July 8, 2019  16 

4. IT Manager 

Persona details: 
Name: Greg Gale 
Age group: 30 - 45 
Job Title: System Administrator 
Education: B.S. in Information Technology 
Primary Proficiency: Information Technology implementation 

Bio: 
Greg is a 44-year-old System Administrator who is in charge of installation/configuration, operation, and 

maintenance of hardware and software related infrastructure. When his company wants to implement 

new software or hardware, he will ensure that all the digital information and networking are available and 

have the proper permissions. New technology is less likely to be implemented within the company without 

Greg’s approval. 

Technology Experience: 
a. Knowledge of SAN and Cloud technologies 
b. SSL certificate encryption key management and generation 
c. In-depth understanding of operating systems 

 
Goals: 

a. Implement new technologies within the company while avoiding a decrease in production 

Frustrations: 
a. Legacy software and hardware is being utilized within the company and is hindering potential 

productivity increase 

Attributes: 
a. Technology expert 
b. Early adopter 

 

5. Content Consumer 

Persona details: 
Name: Cindy Robinson 
Age group: 18 - 23 
Job Title: Production worker 
Education: A.S. in Engineering 
Primary Proficiency: Factory floor production and maintenance 

Bio: 
Cindy is 23-year-old Production Worker who is responsible for executing the assembly process. She has 

to take complex technical drawings, that are given to her, and produce products that fit the specifications. 

Cindy also performs the first quality check on each product. She has about 3 years of experience and has 

some knowledge about her duties but she is still relatively new. 

Technology Experience: 
a. Skilled with assembly equipment 
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b. Operated various types of welding equipment 
c. Worked with various types of sheet metal equipment 

 
Goals: 

a. Make sure assemblies are done within the safety and quality guidelines provided 

b. Make sure products are correct and accurate in order to maintain or improve productivity and 

meet daily quota 

Frustrations: 
a. Changes to an assembly procedure are often hard to understand on paper 

b. New technology in the past has had a high learning curve and has not resulted into any gains 

Attributes: 
a. Optimization focus 

 

V. ACCESSING THE TECHNOLOGY 
 

• No background IP was used in this project. 

• A detailed description on the requirements for running AREDA is included in the developer 
documentation, attached in the Appendix section. 

 

VI. INDUSTRY IMPACT & POTENTIAL 
 
The Gartner market guide for Augmented Reality describes that 80% of the market will be immersive 
displays by the year 2030. Augmented Reality is on course to become a $120 billion market by the year 
2025 as viewed by many leading experts. Current practices in manufacturing companies dominated by 
shop floor assembly processes are stymied by error rates and warranty costs. The use of advanced AR 
technologies and computer vision algorithms is a preliminary yet significant step in improving US 
manufacturing competitiveness. 
 
Given that AREDA is an authoring tool and not limited to a specific product or assembly process, it has the 
potential to be embraced by any company interested in adopting AR technologies. The fact that other 
companies and organizations expressed interest in learning about or adopting AREDA during DMDII 
meetings provides evidence that the developed technology is ready to be embraced on a larger scale. For 
example, Northrop Grumman expressed enthusiasm in the AREDA product and development more than 
halfway through the course of the project completion. Commercialization efforts from Design Mill and 
Daqri beyond the project end date will garner attention from many other industries. 
 

VII. TECH TRANSITION PLAN & COMMERCIALIZATION 
 
 
AREDA was designed to be a commercially viable product. It started as a TRL 3 at the beginning of the 
project and closed at the proposed TRL 6-7. To become a fully commercialized TRL 9 product, AREDA will 
require additional development for a smooth customer experience.  This will include working with several 
commercially available depth cameras (currently AREDA works with two, one research-based and the 
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Microsoft Kinect), extensive testing of the code for error identification, and optimization for increased 
efficiency.  While much of this was done during the project, the code needs to be tested and refined by a 
commercial software developer. These steps are critical to increase the chances of commercial success. 
While the source code for AREDA was developed using C++ programming language, the key technologies 
used in its development are cross platform compatible and can be adopted within another product with 
relatively minimal issues. 
 
Project partner DAQRI is an early leader in the commercial AR hardware domain. Design Mill, another 
industry project partner, is a AR system integrator and services the manufacturing market sector. Both 
industries have contributed significantly in the development of AREDA tool and have committed plans to 
commercialize the full AREDA system. 
 
One of the primary barriers to adopting AREDA into a manufacturing process is the lack of awareness of 
Augmented Reality. Companies deeply vested into traditional manufacturing practices tend to oppose 
adoption of newer technologies because they do not have the time or resources. This is typically a steep 
barrier and can be overcome only by a structured dissemination of AR knowledge and their applications. 
Demonstration of AREDA upon its development to TRL 9 by project partners and other technology 
companies is hence the best recommended path in helping companies adopt the technology. 
  
 

VIII. WORKFORCE DEVELOPMENT 
 
While the AREDA system brings AR to the daily workflow of designers, engineers, and manufacturers, it 

also offers exciting potential educational content to be produced. The development of AREDA now 

facilitates automatically capturing and processing expert instructions, so it can be extended to the shop 

floor. The lessons learned in the development of this TRL 7 tool from what started as a laboratory 

prototype is invaluable to the DMDII partners and the broader industrial base in several ways: 

Transitioning funded research to practice – Many DMDII partners fund their own university research 

projects. While many of these projects show tremendous promise, they often fall short of full 

implementation into daily workflows. The unique workings of AREDA offered lessons for how university 

research can be developed simultaneously with commercialization plans. Project meetings and quarterly 

presentations fostered collaboration among DMDII partners and outside industries. 

Expansion beyond shop floor assembly – Expert demonstration to author AR guided instructions on a 

shop floor addresses a critical need of industry. However, there are other use cases that are closely related 

that could also benefit from the proposed AREDA system. Small appliance repair shops, auto repair 

businesses, and even franchised businesses are other examples where consistency in process is important. 

Whether it is fixing a washing machine or having employees at several franchised locations setting up 

displays, the use of expert demonstration in an AR environment will dramatically speed up the efficiency 

of these activities and subsequently lower their costs. While none of the project partners were in this 

marketspace, the sample assemblies used to test AREDA have the same types of complexities seen in 

many of these industries. With some additional development effort, AREDA could easily serve these 

markets. 

Authoring by expert instruction for training – From workers to students, training on advanced tools and 

processes is critical to future individual and corporate success. The AREDA system, and development of 
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its components, now offers capabilities to produce AR training resources rapidly. Students in a senior 

design class, for example, in an engineering discipline could use the AREDA system to demonstrate how 

their product comes together and even functions. Alternatively, professors and professional trainers could 

produce expertly demonstrated materials covering topics such as fluid flow, basic mechanics, or even 

learning human or animal anatomy. AREDA’s architecture can be leveraged to implement future 

advancements in object recognition, point cloud matching, and machine learning within AREDA as 

academic research projects as well. 

Documentation, reports, and technical publications detailing the development of AREDA are made 

available via digital means to DMDII partners and other organizations. Short videos were produced to 

highlight important educational objectives such as: a) What is Augmented Reality, b) What are point 

clouds, c) How these technologies are used within AREDA and how they work.  

 

IX. CONCLUSIONS/RECOMMENDATIONS 
An Augmented Reality Expert Demonstration Authoring (AREDA) tool was developed to provide a simple 

and intuitive method for rapidly authoring AR work instructions. This was achieved through tracking and 

recording the actual part manipulations of an expert using 3D depth cameras with advanced image 

processing, computer vision and point cloud matching algorithms. The system was based on existing 

successful research results from the proposers. This project addressed the Advanced Analysis (AA) thrust 

identified by the DMDII and the DoD as critical to significantly improve US manufacturing capabilities and 

reduce acquisition costs for the DoD. 

Through cost-sharing partnership with aerospace (Boeing) and heavy equipment (Deere) sectors, 

functional requirements for AREDA were developed. Product requirements based on market 

opportunities were gathered from other project partners (DAQRI and Design Mill). Inter University 

collaboration (Purdue) afforded the opportunity to implement cutting edge depth camera sensors for use 

within AREDA. 

AREDA was developed at a TRL 7 to facilitate quick commercialization. This is a key innovation that will 
accelerate AR adoption in manufacturing, which in turn will reduce time to author work instructions, 
enhance their communication to the shop floor, reduce process errors, and decrease manual process time 
– all of which will substantially improve US manufacturing productivity and competitiveness. 

 
 
X. LESSONS LEARNED 
 
One of the challenges in developing AREDA was the use of an appropriate depth sensor for capturing point 
clouds of assembly work area and the assembled components. AREDA was developed for use with two 
depth sensors: 
 

a. Microsoft Kinect 
b. Point Grey Camera custom built for use as a Structured Light System 

 
The Microsoft Kinect was fully supported due to its use with the Xbox game console. However, their 
product offering packaged with the game console ended recently. As such, the camera can now primarily 
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be purchased as an after-market or a third-party accessory product. Although Microsoft continues to 
support and provide software development kits (SDK) for use with the Kinect, it is likely this product line 
and support may end. In addition, the Kinect camera’s resolution is less than current competitors in the 
market. So, while the Kinect was good for implementation and testing, it is not recommended in a 
commercial version of AREDA. 
 
Point Grey camera solves some of the issues posed by the Kinect. For example, the resolution is much 
higher and is a commercially supported camera. Because it was custom built with a projection system to 
use structured light. Thus, the camera’s hardware and software were modified. On the other hand, the 
structured light system has its own deficiencies for general use. This, combined with the modifications 
made for the project, make it not suitable for a commercial version of AREDA. 
 
Depth camera technology is still in infancy and nowhere close to saturation. Choosing a good depth 
camera and a supported SDK is critical in further developing AREDA. AREDA was designed with modularity 
to integrate new cameras into the framework, and the developer documentation attached in the 
Appendix section has more information about how to integrate a new camera. 
 
AREDA in its current form can be slow in processing and recognizing parts. This is primarily because point 
clouds generated by the depth camera for each identified assembly step are matched against every part 
uploaded to the AREDA part library in a serial manner. That means that the camera point cloud is matched 
against only one part at any instance during part processing stage. Implementing parallelization schemes, 
where camera point clouds can be matched against multiple parts in the library, can improve the speed 
of part matching.  
 
Some depth cameras, such as the Kinect sensor, are light sensitive. As such it is important that an 
appropriate lighting condition be identified early on and assembly work area be adjusted accordingly. 
 
Other minor issues during the course of AREDA development are listed in the developer documentation, 
attached in the Appendix section. 
 

 
XI. DEFINITIONS 
 
What follows are a set of definitions, terms, and acronyms used in this document. These definitions 
were gathered from various source including the internet, reference papers, standards organizations, 
and the authors of these document. 

API: Application Programmer’s Interface 
AR: Augmented Reality 
AREDA: Augmented Reality Expert Demonstration Authoring 
CAD: Computer Aided Design 
HCI: Human-Computer Interaction 
SDK: Software Development Kit 
SME: Subject Matter Expert 
TRL: Technology Readiness Level 
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XIII. APPENDICES 
 
Appendix A – Developer Documentation 
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Authoring (AREDA) 
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1. What is AREDA? 
 

AREDA stands for Augmented Reality Expert Demonstration Authoring. The goal of AREDA is to provide a 

simple and intuitive method for rapidly authoring AR work instructions in a manufacturing assembly 

process. Traditionally, assembly line operators follow written instructions in performing assembly steps 

and tend to have a high rate of errors leading to expensive re-work or warranty costs. AREDA aims to 

reduces such errors by visually generating step-by-step work instructions on a display through the use of 

current day technology such as 3D depth cameras, advanced image processing and computer vision 

algorithms. 

 

For an assembly operation, AREDA aims to superimpose video of work area with computer-generated 

visual features that provide instructions on assembly operations, such as which part to pick next, where 

to assemble a particular part, or which tool to use. An expert trains AREDA with an assembly operation, 

which includes steps such as: a) Background-area-skin calibration, b) CAD and point cloud part library 

uploads, c) Record a sequence of assembly steps, d) Automatically generate assembly steps while 

matching the parts recorded by the camera against the uploaded CAD parts. In addition, the application 

also allows modifying automatically detected parts if there were errors and animation sequences in 

assemblies. Once the expert generates these assembly instructions within AREDA, they can be passed on 

to an assembly operator who can visually see and follow the steps for assembly operations. 
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2. Compiling and Building AREDA 
 

A. Obtaining Source Code 
The source code for AREDA is available for download as two zip files: 

- AREDASrc.zip (source code) 
- AREDADeps.zip (dependencies) 

Both the zip files are available on cyBox at:  

https://iastate.box.com/s/vims64ow77wmghlrfa4ftu3ls0hjm658 

 

B. Development Environment Requirements/Recommendations 
Requirements 

a. Operating System: Windows 10, 64-bit 
b. Integrated Development Environment (IDE): Microsoft Visual Studio 2013 (C++) 
c. USB 3 Port: Depth cameras require plugging into a USB 3.0 port on the host PC. 
 

Notes about IDE: 

- Microsoft Visual Studio 2013 was used in the development of AREDA. Earlier versions of point cloud 
libraries (PCL, a dependency for AREDA), had incompatibilities with newer versions of Visual Studio. 
Newer releases of PCL solved the incompatibility issues and using them along with a newer version of 
Visual Studio should work. However, this was not tested at ISU. All the AREDA dependencies listed on 
cyBox share above were built for Visual Studio 2013. Therefore, all the dependencies must either be 
downloaded or compiled again if a newer version of Visual Studio were to be used. 

 

- Visual Studio 2013 is available only as a 32-bit IDE, but it supports both 32-bit and 64-bit compilation. 
AREDA code and all dependencies must be built with a 64-bit compiler tag at the initial phase while 
generating visual studio project files using CMake. More will be described in detail in the ‘Compiling 
AREDA’ section. 

 

Recommendations 

d. CPU: Best and fastest available CPU highly recommended. Depth processing is computationally 
intensive. AREDA usage and interactivity is directly dependent on how fast the host CPU is. 

 

e. Solid State Storage: SSDs are indispensable for compilation and execution. AREDA code was 
developed using at least a 512GB SSD. 1TB SSD is recommended for development and testing. 
 

f. Video Card: A high-end video card is recommended (e.g., Nvidia GeForce GTX 1080). AREDA has never 
been tested on AMD based GPUs. 

 

https://iastate.box.com/s/vims64ow77wmghlrfa4ftu3ls0hjm658
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Recommended Software Utilities 

g. Git Bash: Latest release of Git bash available here: https://git-scm.com/downloads. This is useful if 
version controlling is used for further code development. SourceTree GUI is recommended for git 
version control and KDiff3 diff tool/merge tool along with it for code conflict resolution. 

 

h. CMake-gui: Latest release of CMake-gui available here: https://cmake.org/download/. 
 

i. Image Watch Utility within Visual Studio: Helpful tool to view OpenCV image types (e.g., cv::Mat) 

during run time in Debug mode. 
 

j. Sqlite database connectivity for visual studio 2013: Simple utility that shows how and where 
intermediate files are stored within an sqlite database. Useful in debug mode. 

 

C. Environment Variables 
Environment variables for various dependencies need to be setup before AREDA’s Visual Studio project 

files can be generated using CMake. The software dependencies are described in detail in the next section. 

Please set the following environment variables. 

AREDADEPS: C:\AREDADeps 

ARTOOLKIT_DIR: %AREDADEPS%\ARToolKit-2.72  

OpenCV_DIR: %AREDADEPS%\OpenCV-3.1.0 

OSG_DIR: %AREDADEPS%\OpenSceneGraph-3.2.1 

FBX_LIB: %AREDADEPS%\FBX\2017.1\lib 

PCL_DIR: %AREDADEPS%\PCL 1.7.2 

PCL_ROOT: %AREDADEPS%\PCL 1.7.2 

OPENNI2: %AREDADEPS%\OpenNI2 

OPENNI2_INCLUDE64: %AREDADEPS%\OpenNI2\Include\ 

OPENNI2_LIB64: %AREDADEPS%\OpenNI2\Lib\ 

OPENNI2_REDIST64: %AREDADEPS%\OpenNI2\Redist\ 

QTDIR: %AREDADEPS%\QT-5.7.0\5.7 

VTK_DIR: %AREDADEPS%\PCL 1.7.2\3rdParty\VTK 

POINTGREY_DIR: C:\Program Files\Point Grey Research\FlyCapture2 

PATH: 

%PATH%;%OpenCV_DIR%\x64\vc12\bin;%OSG_DIR%\bin;%QTDIR%\msvc2013_64\bin

;%PCL_ROOT%\bin;%PCL_ROOT%\3rdParty\VTK\bin;%ARTOOLKIT_DIR%\bin;%OPENN

I2%\Redist; 

 

Kinect SDK installs the necessary system environment variables during the installation process, so a 

separate set of user environment variables will not be necessary. It is recommended that all AREDA 

dependencies are installed/copied at the root level on the Windows computer (e.g., C:\AREDADeps) so 

anyone using the PC can have access to the dependencies by setting environment variables listed above 

and will not need individual copies of all dependencies. 

 

https://git-scm.com/downloads
https://cmake.org/download/
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D. AREDA Software Dependencies 
 

AREDA has been compiled with specific versions of software libraries and they are listed below. It is 

possible newer versions may work, but they have not been tested. 

a. ARTool Kit version 2.7.2: As of writing this documentation, the newest ARTool kit version available is 
5.3.2. Between major releases, ARTool Kit’s function calls have changed substantially. Hence, the 
latest version will most likely not work without making changes within AREDA source. The use of AR 
libraries is fairly minimal and the code mainly uses ARToolkit functionality to identify AR markers. So, 
v2.7.2 of ARTool Kit is recommended and the AREDA dependency zip file (described in Section 2 A. 
Obtaining Source) contains the required source code to build the libraries and binaries. Please note 
that this version of ARToolkit does not have a CMakelists file to generate Visual Studio projects. 
Therefore, Visual Studio project creation will have to be a manual effort. It is a fairly straightforward 
process. Use batch build mode to build 64-bit version of the library files: a) libAR.lib (release), 

and b) libARd.lib (debug). Then, copy these files manually to %ARTOOLKIT_DIR%\lib. 
Additionally, copy the entire ‘include’ folder within the ARToolkit source directory and paste it 

in: %ARTOOLKIT_DIR%\include. 

 

b. Autodesk FBX SDK: This SDK will be needed by OpenSceneGraph (see next section) to load/export 
.FBX geometry. This can be obtained from Autodesk’s website: 
http://usa.autodesk.com/adsk/servlet/pc/item?siteID=123112&id=26012646. The VS2013 version is 
the one tested and used by AREDA, although if AREDA is migrated to a newer Visual Studios, the 
corresponding SDK must be used. 
 

c. Kinect SDK 2.0: This can be downloaded from the Microsoft’s website: 
https://www.microsoft.com/en-us/download/details.aspx?id=44561. Install it to C:\Program 
Files directory. AREDA code was initially developed with Kinect sensor (the one that used to come 

bundled with Xbox One). So, there’s some AREDA code that uses Kinect SDK’s data structure 
definitions for handling depth information regardless of the depth camera used. Therefore, PointGrey 
SLS camera implementation also uses Kinect’s data structures. Hence, this SDK is currently required 
even if a Kinect camera is not used. It can be fixed by creating a separate data structure instead of 
‘CameraSpacePoint’ defined in Kinect.h. This seems to be the only dependency to using 
Kinect SDK for a non-Kinect depth camera. The data structure is very simple and it includes three float 
members x, y, and z. If this data structure is defined somewhere else, non-Kinect depth cameras will 
then not require the Kinect SDK to be installed on the PC. While this is a solvable issue, it did not go 
up the priority level during the course of AREDA development. Fixing this issue is recommended for 
future development. 
 

d. OpenCV 3.1.0: Download OpenCV from http://opencv.org/downloads.html. This version of OpenCV 
comes with a CMakeLists file and can be used for generating visual studio 2013 x64 project file using 
CMake. Within CMake, use default settings. However, point CMAKE_INSTALL_PREFIX to 

%OpenCV_DIR%. 

 

e. OpenSceneGraph, OSG 3.2.1: OpenSceneGraph (OSG) is the primary graphics rendering engine used 
within AREDA. The API manages loading, rendering, and exporting 3D geometry objects within AREDA 

http://usa.autodesk.com/adsk/servlet/pc/item?siteID=123112&id=26012646
https://www.microsoft.com/en-us/download/details.aspx?id=44561
http://opencv.org/downloads.html
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Qt UI. The default geometry file formats OSG can support are .osga, .osgb, .ive, .obj, 
and .3ds. Support for other file formats can be achieved by compiling OSG with appropriate third-
party plugins. AREDA requires .FBX plugin support  within OSG for project export into a Unity game 
engine based viewer. Our codebase was tested with Autodesk FBX SDK (2017.1) and worked with 
Microsoft Visual Studio 2013. At the time of writing this documentation, the latest release of OSG is 
3.4.1, but was not tested with Visual Studio 2013 and the latest version of Autodesk FBX SDK. 
 

f. Point Grey FlyCapture SDK: This SDK is required for the SLS point grey camera system to work. It can 
be downloaded from here: https://www.ptgrey.com/flycapture-sdk. This SDK is not required if the 
depth camera used with AREDA is a Kinect (or any other depth camera). The SLS camera system was 
custom designed and built by Dr. Song Zhang, Purdue University. Below are the camera specs used in 
the SLS system: 

 
Grasshopper3 GS3-U3-23S6C 

Serial # 1637412 

 

These specifications are important because the drivers are specific to the camera. Use the above 

numbers to identify the driver that should be downloaded and installed. The SDK comes with a 

sample program ‘Point Grey FlyCap2’. This program can connect to the Point Grey camera 

and show the capture in a window. If this works properly, then it means that the camera installation 

went smooth and can be used within AREDA. 

 

g. Point Cloud Library, PCL 1.7.2: Point Cloud Library (PCL) is a very important requirement for AREDA. 
Point clouds for CAD models are compared against point clouds generated by the depth cameras to 
perform part matching. As of writing this documentation, the latest PCL release is v1.8.1. PCL 1.7.2 
was tested with AREDA without issues. PCL has a number of dependencies for compilation. Compiling 
PCL from source and all their dependencies is too tedious. A third-party user packages PCL and all 
their dependency binaries together within a simple installer executable. Download the version of pre-
built binaries that corresponds to Visual Studio 2013 from: 
http://unanancyowen.com/?p=1255&lang=en.  
 

h. Qhull, Flann, Boost, OpenNI2: Qhull, Flann and Boost are PCL dependencies and the third-party URL 
in the Point Cloud Library section above takes care of them. Hence, a separate download and 
compilation is not necessary. During the third-party library installation, PCL_ROOT directory must be 
specified, so they are installed relative to the PCL paths. OpenNI2 is another PCL dependency for 
AREDA and a 64-bit version should be downloaded and installed from https://structure.io/openni 
 

i. Qt 5.7: All UI events are managed by Qt. During AREDA development phase, the Open Source version 
of Qt was used and can be downloaded from here: https://www.qt.io/download. Please make sure 
you download Qt version specific to Visual Studio 2013. Qt source code download is not needed, but 
it provides a wizard allowing the user to select which version of Qt is required. The wizard can be 
executed again for installing additional components/updating existing ones. Figure 8 shows the 
options that were selected when installing Qt for use with AREDA. Qt does not like spaces in folder 
names. It is highly recommended that Qt and all dependencies do not have spaces in folder/directory 
names. 

https://www.ptgrey.com/flycapture-sdk
http://unanancyowen.com/?p=1255&lang=en
https://structure.io/openni
https://www.qt.io/download
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Figure 8. Qt 5.7.0 set up for AREDA 

 

Of course, all these dependencies compiled/downloaded/built for Visual Studio 2013 are 
available in the zip file in the cyBox folder indicated in section 2A – Obtaining Source Code. The 
only dependency that was not included in the zip file is the Microsoft Kinect SDK v 2.0, which 
must be downloaded and installed separately. 

E. AREDA Code Base Directory Structure 
Here is the overall directory structure of AREDA code base when pulled from the git repository. 

AREDA/ 

.git/ 

CMakeModules/ 

data_art/ 

fonts/ 

include/ 

resources/ 

shader/ 

src/ 

ui/ 

CMakeLists.txt 

phaseMin_FP380_zmin600.raw 

README.docx 

 

- data_art directory contains basic image and AR pattern utility files that AREDA uses. 
- fonts directory contains .ttf files used for font rendering within AREDA. 
- include and src contains header files and source files respectively. 
- resources contain images that Qt UI uses. 
- shader folder contains glsl vertex and fragment shader files for rendering geometric objects 
- ui contains files created/generated with Qt and relates to the graphical user interface 
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- CMakeLists.txt is a file required by CMake for visual studio project generation 
- phaseMin_FP380_zmin600.raw is a raw image file needed by the point grey camera for 

fringe image calculations 
- README.docx is a preliminary manual for AREDA. It was created a while ago and is not up to 

date. 
 

F. Compiling AREDA 
Visual Studio project files are generated using CMake. Ensure the latest version of CMake is installed on 

the computer. To generate visual studio project files, CMake will need a CMakeLists.txt file, which 

is provided with AREDA source code. In the same directory where CMakeLists file is located, create a build 

directory where Visual Studio project files are to be created as well as where binaries will be built (e.g., 

myBuild). Within CMake, specify the following options: 

Where is the Source code: Path-to-directory-where-CMakeLists.txt-file-is-located 
Where to build the binaries: Path-to-myBuild-folder 

 

Next, configure ‘Visual Studio 12 2013 x64’ as the build environment with ‘default native 

compilers’ build option. CMake checks against dependencies and will generate Visual Studio project 

files if all goes well. Address any errors shown in the CMake window before opening the AREDA visual 

studio project. 

Within the AREDA Visual Studio project, look for ‘Solution Explorer’ and set ‘AREDA’ as startup project. 

Select the build option as ‘Release’ and not ‘Debug’. ‘Debug’ mode is recommended while making code 

changes and testing. Debug builds are generally (and sometimes excruciatingly) slow in execution. 

Sometimes, building a project in Release mode and then executing AREDA in Debug mode helps with 

speed. 

Multi-threaded compilation did not work during AREDA development and is NOT recommended for 

building AREDA, unless the underlying issues are resolved. 

G. AREDA Installer 
A standalone AREDA executable was never built during AREDA’s development process. The project has 

always been executed via the Visual Studio IDE. Therefore, a formal installer was never built. Nullsoft 

Scriptable Install System (NSIS) (nsis.sourceforge.net) is a simple to use scriptable installer and is 

recommended for building an AREDA installer. 

H. AREDA Projects 
A folder titled ‘default’ (if it doesn’t already exist) is created within the directory of Visual Studio solution 

file when AREDA is executed via Visual Studio IDE. Below is the folder structure of a typical AREDA project, 

and their descriptions are indicated in green color: 

default/    //AREDA’s default project folder 

 Processed/   //Contains animations, Skin and mask files 

  Animations/ 

   *.ive  //OpenSceneGraph readable animation files 

  Intermediate/ 

   Mask*.png //White areas in the image indicate parts 
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Skin*.png //White areas indicate detected skin 

  Layers/  //Unused 

  Models/  //Contains uploaded part files  

   Model*.ive //Files converted from CAD format to .ive 

   PAT*.ive //Position attribute transform for models 

  AREDA1.db  //SQL database with paths to parts 

 

 Recorded/    //Data captured by the camera 

  Area/    //Work area 

   Data*.raw  //K-frame depth & color data 

   PartModel*.ive //Uploaded CAD files 

   PartModel*.pcd //Uploaded point cloud files 

  Background/ 

   Data*.raw  //K-frame depth & color data 

  Skin/ 

   *.png   //Skin files 

   *-m.png  //Skin mask files 

  Data*.raw   //K-frame depth & color data 

 

 Project_settings.ini  //Project path settings 

 RecordedBGPlane.png  //Background work area plane 

 

The ‘default’ project folder is always loaded upon executing AREDA from within Visual Studio IDE. Any 

change made within AREDA (calibration, part library, assembly recording, processing, or refinement) 

overwrites existing ‘default’ project contents without additional prompts in the UI. To save/archive an 

existing project, the ‘default’ folder should be saved under a different name elsewhere on the computer. 

 

I. Multi-threaded Code Execution 
AREDA was designed to run on a single thread, not because of a requirement, but out of convenience. 

Over the course of code development, various sections of the code are made to execute multi-threaded 

(e.g., point grey fringe image calculations), but AREDA can benefit from more multi-threading. 

For example, each step identified within AREDA has an associated point cloud generated by the camera. 

This point cloud is matched against every CAD part (and its point cloud) uploaded to the library in a serial 

manner. As such, part matching is time consuming and a computationally intense process. This can easily 

be done as a multi-threaded implementation, because part matching of camera point cloud against a CAD 

cloud file is independent of another CAD cloud file. Multi-threading can speed up the overall time taken 

for point cloud matching. 

 

J. Hardware Requirements 
AREDA currently supports two depth camera sensors: 

- Kinect sensor (the one that used to be bundled along with Xbox One game console) 
- A custom built structured light system using Point Grey depth camera 
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A high-resolution depth camera sensor capturing/providing depth information in real-time is an ideal 

requirement for AREDA. Due to the unavailability of such a depth camera in the market, AREDA was 

developed using what is available with acceptable tradeoffs. Kinect camera is cheap and works very quick. 

However, it is low resolution and sensitive to light conditions. This was the first camera AREDA was 

developed around. 

Point Grey depth camera encased in a structured light projection system was developed by Prof. Song 

Zhang’s team at Purdue University, a partner in this project. The camera captures depth and color with 

great precision and is many times better in resolution compared to the Kinect. The camera is capable of 

capturing images at 1280 x 960 resolution. However, it is slow. The camera system requires six frames 

(called fringes) to create an acceptable depth frame. Capturing six consecutive frames and processing 

them for depth at a high resolution makes it computationally intensive. GPU processing for depth 

information was considered during AREDA development, but data traversal between GPU and CPU every 

video frame dramatically reduced any time gains from using a GPU. For example, below is a theoretical 

data bandwidth required for data traversal between GPU and CPU for a 3-channel image at 1280 x 960 

resolution, captured at 15 frames per second: 

((4-byte x 3 (channels xyz) + 4-byte * 3 (channels rgb) + 1-byte mask) x 1280 x 960 x 15 FPS)/1024)/1024) 

= ~440 MB/sec. 

This amount of data transfer from GPU to the CPU via the motherboard bus causes bandwidth bottlenecks 

leading to data loss for frames. For this reason, depth processing was implemented on the CPU and not 

the GPU.  
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3. AREDA Code Structure and Components 
A brief outline of AREDA steps is given below, followed by more detailed dev information 

1. Depth camera selection from a drop-down to capture color and depth images 
2. Calibrate the background, work area, and skin tone 

a. Background calibration establishes the perimeter within which an assembly is performed 
b. Work area calibration is to establish a base coordinate system on the work area 
c. Skin tone calibration trains AREDA to filter out the user’s skin tone from depth images 

3. Create a part library of CAD and their corresponding point clouds to perform a match with the 
point clouds generated by the depth camera. This is used for identification of parts in each 
assembly step from within the part library 

4. Record an assembly by the depth camera 
5. Process the captured images for generating steps, identify parts and animations 
6. Refinement phase to make edits to parts that were identified incorrectly or to alter their positions 

and animation directions 
 

Figure 9 below shows the startup screen of AREDA. A user can either use the wizard mode ‘Beginner view 

(step-by-step Guide)’ or advanced mode to proceed to the next steps. A wizard mode shows a sequence 

of button presses that a user should perform during AREDA usage and is unidirectional in nature. 

Therefore, some buttons show up as inactive and will not allow the user the flexibility to go back and 

forth. The ‘Advanced View’ mode allows the user more interactivity and flexibility. 

 

 

Figure 9 AREDA Start up view 
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A. Connect Camera 
A camera selection drop down menu lets a user select which camera to use with AREDA. The init 

function in inputmanager.cpp allows adding cameras to the list of dropdowns. Files dev_num in 

baseinput.h let the developer specify what the text in the dropdown should read as. 

A Kinect depth camera and an SLS Point Grey camera system were implemented within AREDA. This 

section describes an overview on how they were implemented, and the general procedure can be used 

for implementing any other depth camera. The Kinect camera was implemented within AREDA as 

kinectinput.cpp/.h and SLS camera was implemented as slscamerainput.cpp/.h. Depending on 

the drivers for the depth cameras, there may be other source codes and headers that need to be used 

along with the *input.cpp/.h. For example, the Kinect SDK is self-contained, and any depth/color 

information can be obtained by invoking calls to Kinect SDK functions directly. The Point Grey camera is 

attached to a projector for capturing and processing surface deformations via fringe images. While the 

driver for the Point Grey camera was built by flir systems (ptgrey.com), the SDK to capture and process 

fringe images via the projector was custom built by Purdue University. These fringe images were 

processed separately and come with a number of other source/header files, as described in SLS camera 

section below.  

a. Kinect camera 

AREDA supports the Kinect for Windows v2 sensor. This sensor has significantly more noise than the SLS 

camera, but is significantly faster. With that said, the distance threshold in the background calibration 

step should be higher than 0.015 (1.5 cm). In addition, the assembly should be located in the working 

range of the sensor, which is 0.4 – 4.5 meters. 

Checking camera connectivity 
The Kinect for Windows v2 sensor requires a USB 3 port. On many computers, USB 3 may be disabled in 

the BIOS, even if it is supported by a particular port, so you may have to check that if you encounter 

problems. 

Plug in the Kinect camera, and launch the Kinect Studio v2.0 application that comes with the Kinect SDK. 

If the sensor is installed correctly, you can verify its connectivity by clicking the Connect to service button 

in the top-left corner, and viewing live camera data in the main window. See Figure 10 below. 

 

 

Figure 10. Kinect camera connectivity 

 

Connecting to the camera in AREDA 
Connecting to the sensor in AREDA is performed by selecting KINECT in the drop-down menu, and clicking 

the Connect button. If the connection is successful, you will see live, streaming video in the window. 

Management of the Kinect camera is handled in: kinectinput.cpp/.h 
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Figure 11. Camera connection dropdown 

 

b. Structured Light System (SLS) PointGrey Camera 

General working of the SLS camera 
The SLS camera system was custom built and it encases a PointGrey camera from FLIR Inc., and a projector 

that continuously produces a fringe pattern. The SLS camera captures six consecutive image frames and 

calculates depth information based on distortions in the reflections from the fringe patterns. These six 

images are called fringe images, and are processed/composited to create an RGB texture frame as well as 

corresponding x, y, z point cloud depth information. 

RGB texture creation is relatively quick compared to depth calculations. Depth calculations in an SLS 

camera are expensive and time consuming, so enable them only when needed. RGB and depth 

calculations are self-contained and can be called separately. For example, FringeToRGB(), defined in 

SLS_FringeToCoord.cpp/.h returns an unsigned char* RGB image for a camera capture. 

FringeToXyzm(), also defined in SLS_FringeToCoord.cpp/.h returns x, y, z depth information. 

Assuming the FlyCapture2 SDK corresponding to the PointGrey camera is installed and paths set correctly, 

the following files included in AREDA source distribution are required for depth and color calculations: 

SLS_FringeToCoord.cpp/.h 

SLS_ImageFilters.cpp/.h 

SLS_InitFrame.cpp/.h 

SLS_Phase2Coord.cpp/.h 

SLS_PhaseMinUnwrap.cpp/.h 

SLS_phasewrapunwrapAux.h 

SLS_PointGreyCamera.cpp/.h 

SLS_stdafx.cpp/.h 

SLS_XyzmFileIO.cpp/.h 

 

Some parts of the above files were altered from their original Purdue University versions because multi-

threading was added to improve the efficiency. 

SLS Camera Coordinate System 
The SLS camera system is calibrated to measure distances in meters, whereas the Kinect camera measures 

distances in mm. Therefore, every SLS camera capture is converted to mm to ensure a consistent 

coordinate system and measurement. This is done in the function frame_from_device() within 
slscamerainput.cpp. 
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for (int i = 0; i < _kframe->width * _kframe->height; i++) 

{ 

 _kframe->camsp[i].X /= 1000; 

 _kframe->camsp[i].Y /= 1000; 

 _kframe->camsp[i].Z /= -1000; 

} 

SLS Camera implementation 
slscamerainput.cpp/.h is the starting point for implementing SLS PointGrey camera within 

AREDA. The header file contains function definitions and variable declarations that instantiate various 

PointGrey SDK functions and fringe image processing variables built by Purdue University. 

slscamerainput.h have definitions such as device_ID(), connected(), getFrame(), 

start(), stop(), getHeight(), getWidth(), etc. Generally, any new depth camera 

implementation will have similar definitions. 

Certain variables such as _projectorWidth, _projectorHeight, _imgWidth, 

_imgHeight are preset and should not be changed. These variables are defined in 

slscamerainput.h and their values are set in slscamerainput.cpp constructor. 

When AREDA requires a frame from the camera, frame_from_device() will check whether depth 

information is required. If required, it will call FringeToXyzm() and FringeToRGB() to calculate 

depth and color. Otherwise, it will only call FringeToRGB() that returns RGB texture. 

KFrame Usage with SLS Camera 
The class instantiation for KFrame occurs in many places across the AREDA codebase. This variable 

encapsulates color, depth, image height/width information. 

Color information is stored as a character array (BYTE *) defined in Windows. 

Depth information is stored as CameraSpacePoint, a datastructure containing X, Y, and Z values. As 

described in Kinect SDK 2.0 section in AREDA Software Dependencies, this is the only class definition that 

ties to Kinect SDK. If needed, CameraSpacePoint can be replaced by another data structure so Kinect 

SDK requirement can be avoided when using a non-Kinect depth camera. 

height and width refer to the pixel height and width of either image capture or video frame capture 

from the depth camera. 

 

Three Channel Color from SLS Camera 
SLS camera SDK is designed to provide only a three-channel RGB image, as opposed to the Kinect which 

can provide RGBA image. As such, any frames captured should be of the form CV_8UC3 and not CV_8UC4. 

Also, the camera captures BGR image so an OpenCV function can be used to convert it into an RGB image. 

This is implemented in cv::Mat slscamerainput::getFrame() within slscamerainput.cpp 

AREDA codebase uses RGBA color images. To maintain consistency when recording frames using the SLS 

camera, BGR frames are converted into RGBA with null values for the alpha channel. This can be seen in 

recordFrame() function like below: 
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cv::Mat temp(pFrame->height, pFrame->width, CV_8UC3, pFrame-

>colorFrame); 

cv::Mat temp2; 

cv::cvtColor(temp, temp2, cv::COLOR_BGR2RGBA); 

memcpy(pFrame->colorFrame, temp2.ptr<uchar>(0), sizeof(unsigned char)* 

pFrame->width * pFrame->height * 4); 

 

Depth information is typically written to a file rather than processed via memory. fileio singletons are 

generally called to instantly write to files. 

Calibration 
The depth camera must be fixed and calibrated once to a specific work area. When calibrated, re-

calibration need not be performed unless: a) Camera position/orientation changed, b) Work area borders 

changed, c) A different person performs the assemblies. Developer information for the following camera 

calibration steps is described below: 

Background 

The background calibration process is how you specify the 3d surface the expert will be working on. It has 

three steps, described below. See “background.h/.cpp” and 

“calibrationcontroller.h/.cpp” for implementation. 

Capture: This simply grabs a still frame from the active camera and displays it, to be marked up in the next 

two steps. 

Click 4 corners: Four user-selected points of an image are used to create a flat surface, denoting the plane 

of the work area. 

Process: This uses the four points specified from the previous step to attempt to extrapolate a 2D plane 

representing the work surface. Using PCL’s plane model (SACMODEL_PLANE) and the random sample 

consensus method (RANSAC), the depth information from the camera is used to calculate a planar model. 

The threshold value in the top-right corner is used as a tolerance for the plane height, in meters. For 

example, if the value is 0.01, then a variance of 1cm is allowed when calculating the plane from the 

camera’s depth information. Any data outside of these threshold is discarded by AREDA. Background 

calibration threshold of 0.015 works for most cases. 

Area 

The area calibration process establishes a coordinate system for AREDA to use. There are two steps to this 

process, described below. This step requires the “Hiro” image target to be in view of the camera (Figure 

12). See “area_calibration.h/.cpp” and “calibrationcontroller.h/.cpp” for 

implementation. 
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Figure 12. Hiro pattern image target 

 

Record Area: This grabs a still frame from the active camera. Make sure the ‘Hiro’ image target is in 

unobstructed view of the camera, without a large angle between the camera and the image target 

Analyze: Using ARToolkit, the captured frame is analyzed to find the location of the image target. The 

slider in the upper-right is used to set the threshold for binary image generation. This slider can be moved 

to adjust to the contrast of the camera. Note that the image target needs to be located within the work 

space calculated in the background calibration stage. 

Skin 

The skin calibration process enables AREDA to filter the user’s hands during the recording process, and is 

done in the four steps below. See “skincalibration.h/.cpp”, “psogmm.h/.cpp” and 

“calibrationcontroller.h/.cpp” for implementation. 

Start Recording: This records a video from the active camera. While recording, the assembly expert should 

put their hand inside the work space for a few seconds, moving the hand at multiple angles. 

View: This plays back the recorded video frame sequence from the previous step, allowing the operator 

to ensure the hand is within the work area. 

Process: Using the captured video from the recording step, each frame is analyzed to detect skin pixels, 

and uses particle-swarm optimization for a Gaussian mixture model (PSOGMM) to train AREDA to detect 

and subtract the assembly expert’s skin tones from each subsequent frame. The value in the top-right is 

used as the threshold for skin detection. High values above 0.900 often work well, but each camera/skin 

tone combination will have different values. 

Check: To see if AREDA has been properly calibrated to filter out skin tones, this is used to play back the 

processed video to the operator. An ideal setup will remove all hand pixels (making them black) and leave 

the rest of the image unaffected. If more than just the hand pixels were removed, the threshold should 

be lowered, and the video should be reprocessed. 

If many of the hand pixels were not removed, the threshold should be increased, and the video should be 

reprocessed. If no improvement is seen, the original recording may need to be redone. Skin detection 

threshold value of 0.995 works in most cases. A value higher than 1.0 for threshold can result in 

unpredictable behavior. The UI can be benefited by capping the upper limit for the threshold at 1.0. 
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Add parts to the library 
This interface allows the operator to add all models relevant to the assembly. These models will be used 

for all future calculations in the processing phase and the refinement stage. See “partslibrary.h/.cpp” for 

implementation. Every CAD part uploaded to AREDA must have a corresponding point cloud file with the 

same file name in the directory where the CAD part is located. Acceptable file formats for CAD parts are 

.3ds and .obj. Acceptable file formats for point clouds is .pcd. These pcd files can be generated multiple 

ways: 

a. PCL libraries: PCL is a pre-requisite for use with AREDA. When compiled/installed, a number of sample 
utility binary executables are made available. One of them is 
‘pcl_mesh_sampling_release.exe’. When this executable is run at the command prompt as 
below, a corresponding point cloud will be created. pcl_mesh_sampling_release.exe 

Base.obj Base.pcd. 

b. Meshlab: This is an open source software that allows creating and manipulating point clouds. This 
program can be used to import CAD geometry (e.g., .obj) and convert them into corresponding point 
clouds. 

 
Record assembly 
This interface records a sequence of depth images that makes up the assembly process. The spacebar 

must be pressed after each assembly step is completed, except on the final step. Be aware that any depth 

information outside of the defined work area will be discarded by AREDA’s parts matching algorithm. 

While putting together the assembly, make sure the base of the object does not move. The algorithm 

works by detecting new depth information in the scene. If the assembly moves, the algorithm will attempt 

to match a larger point cloud than was added. 

While assembling, try to keep your hands opposite of the depth camera. While AREDA does ignore the 

parts of the image with skin tones, this means that there will be less information available to AREDA during 

the parts matching process, leading to a less accurate matching process. 

Process assembly 
The assembly is processed in three sections: ‘Steps’, ‘Parts’, and ‘Animations’. Assembly processing is 

computationally challenging, so there is opportunity for it to fail if some of the parameters in the 

calibration stage were not set properly. Processing begins in the integrated process widget in 
integrate_process.cpp/.h. 

 

Detect number of steps 

In the steps section of assembly processing, the recorded video is processed for the number of steps. If 

the number of steps was manually specified during the assembly (by pressing the space bar at the end of 

each step), it will be quickly processed. Otherwise, the video frames are analyzed for the presence of a 

hand entering and exiting the work surface area. If the skin threshold was not set and processed properly, 

this step will fail. This section is implemented in the following files: 

process_parts.cpp/.h 

background.cpp/.h 

skincalibration.cpp/.h 

psogmm.cpp/.h 
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Identify parts 

The parts section of assembly processing attempts to determine the part captured in each assembly step. 

To do so, the background, work surface, and skin are segmented out from each frame. The largest cluster 

in the resultant point cloud is determined to represent points on the surface of the assembly part. This 

cluster of points is then matched to each point in the parts library using the Iterative Closest Point (ICP) 

algorithm. The ICP match is performed ten times on each part in the library for robustness, and the part 

in the library with the lowest ICP error is chosen as the matching part. 

This section is implemented in the following files: 

process_parts.cpp/.h 

partslibrary.cpp/.h 

 

Animations 

At the time of this writing, animations are disabled because they are incompatible with manual 

specification of steps (e.g. by pressing the spacebar while recording). When enabled, the animation 

processing seeks to determine which steps are move steps and which steps are static steps. Move steps 

indicates steps when the part is moving in the scene. Similar to part matching, each frame of the move 

steps are segmented, and the largest cluster is chosen as the part in the assembly step. The animation for 

each step is recorded as the trajectory of the largest cluster during its associated move steps. 

This section is implemented in the following files: 

process_parts.cpp/.h 

animation.cpp/.h 

 
Troubleshooting 

This section documents a couple useful tips if the processing step does not complete as intended. 

Processing 
To view the current status of the assembly processing, click the Settings -> Verbose Output menu option. 

During processing, you will see the following window (Figure 13). 

 

Figure 13. Processing stage verbose output 

On the left side of the window shows the background segmentation, which removes all 3D points except 

for those in the work surface and above the work surface (e.g. a hand or assembly part). Each step in the 

assembly processing segments the background. If the background threshold was set correctly, you will 
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see a green quadrilateral specifying points on the work surface. Points not in the work area are removed. 

Similarly, points considered part of the work surface are removed. 

In the middle of the window shows the results of the skin segmentation. If the skin threshold has been 

appropriately set, points in the work area detected as skin will be green. 

In the far right of the window shows the resultant points after segmenting out points not in the work 

space, points in the work surface, and points detected as skin. The result should be the assembly parts. 

 

Parts Matching 
Parts matching process is time consuming and may appear that the code might have halted/stuck. There 

are a few utility functions included in aredautilities.h to help visualize what actually is happening 

under the hood. The displayPointClouds function in particular helps visualize the alignment of each part 

in the part library with the points left after segmentation in each assembly step. The visualizer is only 

displayed when ‘verbose output’ mode is activated from the menu. The location to insert this call to 

display is in partslibrary.cpp, in the function: 

Nodeplusplus* 

parts_library::get_match(pcl::PointCloud<pcl::PointXYZRGBA>::Ptr 

_cloudIn), after ICP is run 10 times. 
 

Refinement 
The refinement window is shown below in Figure 14. This window shows the results of processing, and 

allows you to update automatically detected steps and parts. Refinement requires the Hiro fiducial marker 

from the AR Toolkit to display the model. Binary thresholding for the marker can be adjusted at the top 

right, and if the marker is actively detected, you will see text updates in the console window. At this time, 

refinement is only partially functional. Scale, rotation, translation, and geometry swapping is 

implemented. This section is implemented in the following files: 

refinement.cpp/.h 

animationcontroller.cpp/.h 

artoolkitosg.cpp/.h 

contentdata.h 

contentmanager.cpp/.h 

Modelmanager.cpp/.h 

icontent.h 

layermanager.cpp/.h 

scenecontroller.cpp/.h 

scene.cpp/.h 
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Figure 14. Refinement Section 

Export 
To export the models and animations as they appear in the refinement stage, go to the file menu, select 

“Export…”, and choose which directory to export to. This will produce three files for each step of the 

assembly: 

The model#.fbx file: This file is the binary FBX model of the equivalent part added previously to the parts 

library. If OSG is not configured with FBX (2017.1) build support, no model files will be written. 

The animation#.osg file: This is an ASCII file representing a sequence of animation frames detected by 

AREDA. 

The animation#_offset.osg file: This is an ASCII file representing the modifications made in the refinement 

stage to the displayed model. 

To create your own visualization program, simply load the model#.fbx files, apply the position, attitude 

(rotation), and scale from each corresponding animation#_offset, and then continually loop through the 

list of positions, attitudes, and transforms located under the ‘Controlpoints’ subsection of the 

corresponding Animation#.osg file. Each control point has 11 values per captured animation frame, 

representing: 

[keyframe] [X, Y, Z position] [X, Y, Z, W quaternion] [X, Y, Z scale] 

 

 


