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Abstract 

 The United States (US) Department of Defense (DoD) is investigating improved 

municipal solid waste (MSW) management techniques. Current techniques tax already 

limited land and energy resources at contingency bases and impart additional logistical 

support requirements and personnel commitments. Seeking a solution to this growing 

problem, the DoD is investigating waste-to-energy (WTE) systems to reduce the volume 

of hazardous and non-hazardous solid wastes while generating low emissions. The 

current barriers to the acquisition and utilization of viable WTE technologies are the high 

capital and operating and maintenance (O&M) costs. Using the Life-Cycle Analysis 

(LCA) software SimaPro, the human health, environmental quality, and climate change 

impacts of DoD expeditionary waste management practices were compared. These 

calculated impacts and the economic impacts confirm that the open-air burning of waste 

is not only dangerous to humans and the environment, but is costly to the US 

government. Considering the second and third-order economic effects and the mitigated 

human and environmental health impacts, WTE technologies may be a viable waste 

management strategy for the DoD. 
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A LIFE CYCLE ANALYSIS OF DOD EXPEDITIONARY WASTE 

MANAGEMENT PRACTICES USING SIMAPRO 

 
I.  Introduction 

General Issue 

 Waste is an inevitable byproduct of life. The management of waste is extremely 

important as poor waste management is known to have adverse human health effects and 

environmental health and aesthetic impacts (Rushton, 2003). To protect human and 

environmental health, the United States (US) government has codified law to ensure the 

proper handling and disposal of solid wastes in the Solid Waste Disposal Act (SWDA) of 

1965. The need for improved waste management techniques grows as the production of 

municipal solid waste (MSW) continues to grow with the human population (Moya, 

Aldas, Lopez, & Kaparaju, 2017). 

 The US Department of Defense (DoD) is no exception to this need for improved 

MSW management techniques.  Island bases and other remote forward operating bases 

(FOB) have limited land and energy resources to dispose of MSW (Macias, 2015). Open-

air burn pits are discouraged and congressionally required to be nearly-eliminated (DoD, 

2017). Current DoD waste disposal practices for contingency bases involve trucking 

away waste or bringing in additional fuel to burn the waste, adding to the transportation 

burden and increasing risk to personnel (Macias, 2015; Relph & Chiang, 2016). 

 The DoD is investigating waste-to-energy (WTE) systems with a goal of 

achieving net zero consumption of energy in the disposal of waste while still meeting air 

quality standards and reducing fuel consumption (Macias, 2015; Relph & Chiang, 2016; 
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DoD, 2016; Knowlton, 2013). The DoD initiated the Joint Deployable Waste to Energy 

(JDW2E) effort to develop, evaluate, and field containerized, deployable, and semi-

autonomous systems that reduce the volume of solid waste produced from austere 

contingency operations while maintaining emissions and effluents below the levels of 

current contingency waste disposal practices and ideally meeting US regulations 

(Novotny, 2017; Knowlton, 2013). Eliminating the need to dispose of waste via other 

means or the increased need for fuel to burn the waste decreases the logistical support 

required per FOB. This reduced logistical footprint increases the independence of FOBs, 

reduces the need for logistics support missions, reducing the time logistics personnel 

spend outside the safety of an installation, thereby reducing unnecessary risk to deployed 

personnel. 

Research Objective 

 This research is a life-cycle analysis (LCA) of a commercially available WTE 

technology that meets DoD specifications and requirements but fails to show economic 

feasibility. The purpose of this research is to determine whether this WTE technology as 

the waste management strategy of a DoD contingency base would benefit the DoD. This 

determination will be made by considering not only the economic benefit of the WTE 

system, but the human health, environmental quality, and climate change impacts 

between current DoD contingency base waste management strategies and a generic, 

commercially-available WTE technology. It is hypothesized that when all costs are 

considered, the money saved from mitigated human and environmental impacts will 
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outweigh the high capital costs of current WTE technologies, thereby making WTE 

technology a viable waste management strategy for the DoD.  

Methodology 

The impacts to environmental and human health of differing expeditionary waste 

management strategies are compared using the LCA software SimaPro 8.0. Emissions of 

individual waste management scenarios were compiled from peer-reviewed literature, 

converted to values compatible with SimaPro’s waste scenario inputs, and the calculated 

impacts compared using SimaPro’s pre-loaded methodologies.  

Assumptions and Limitations 

All explored waste scenarios are compared in the Central Command 

(CENTCOM) area of responsibility (AOR), specifically southern Afghanistan. SimaPro’s 

impact calculations are additive vice computational, meaning the addition of 

material/energy/processing to a waste management scenario does not change the 

currently computed impact, but simply adds the impact of the added 

material/energy/processing to the current computation. The outputs from SimaPro are 

calculated using SimaPro’s pre-installed TRACI 2.1 methodology. The discrete impact 

values are calculated using SimaPro’s pre-installed exposure assumptions, but their 

importance is minimal without a means for comparison. Knowledge that a process 

produces 1 million kg of CO2 could easily be used to say “this process is detrimental to 

global warming,” but if the process is a replacement to the 100 million kg of CO2 of the 

current process, it is now seen as a massive improvement in the fight against global 

warming. Because this study compares the relative impact results between the waste 
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management scenarios using the same TRACI 2.1 methodology and exposure 

calculations, meaningful qualitative comparisons can be drawn between scenarios.  

Uncertainty 

Despite the collection and use of real data in the creation of the waste treatment 

models, these data points represent values at a very specific point in time, with specific 

meteorological conditions, and are generated from a specific waste profile. Models are 

built by the averaging of multiple data points in an attempt to build representative 

models, but there will always be some degree of difference from the model to real world 

scenarios. The use of estimates in calculations with estimates of exposures only serves to 

compound this potential difference. The author attempts to minimize the effects of these 

differences by using the same methodology to calculate impacts in all scenarios, 

maintaining a comparable and representative scope, and keeping analysis and 

interpretation to reasonable qualitative comparisons between scenarios. 
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II. Literature Review 

Chapter Overview 

The purpose of this chapter is to explore current and prospective DoD 

expeditionary waste management strategies, understand LCA, and introduce the LCA 

software SimaPro. 

The Need for Waste Management 

 Waste is the inevitable byproduct of life. This fact is especially true of the US 

military in deployed environments as all products and materials must survive shipping 

and austere conditions, and are therefore packaged effectively to increase survivability. 

Proper management of waste is extremely important as poor waste management is known 

to have adverse human health effects and environmental health and aesthetic impacts 

(Rushton, 2003). To prevent these adverse effects, the US has codified law and the DoD 

has published instructions on how to manage waste and conduct waste management 

programs (DoD, 2016). Current expeditionary waste management techniques tax already 

limited land and energy resources at contingency bases and impart additional logistical 

support requirements and personnel commitments (Macias, 2015; Relph & Chiang, 

2016). 

DoD Expeditionary Waste Management 

Current DoD waste disposal practices for contingency bases involve trucking 

away waste or bringing in additional fuel to burn the waste, adding to the transportation 

burden and increasing risk to personnel (Macias, 2015; Relph & Chiang, 2016). Some 

larger FOBs have constructed waste incinerators to manage waste, but these see limited 
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use, were never completed, or were simply abandoned after encountering maintenance 

problems deemed cost prohibitive and conflicts with military operational blackouts in 

favor of the simplicity of open-air burning, despite this action going against published 

guidance (SIGAR, 2015; Relph & Chiang, 2016). The disposal of waste in a sanitary 

landfill is generally an accepted waste management strategy, but the 30-year post-closure 

care requirements are too great a commitment for contingency bases (40 U.S.C., 2010). 

Current military expeditionary waste management options are therefore: more effectively 

utilize built incinerators, contract waste services with the host country, or burn the waste 

in open-air “burn pits.”  

Relevant WTE Research 

 The incineration of MSW and the gasification of specific biomass feedstocks are 

relatively mature technologies, commercially used as a source of renewable energy in 

many developed countries, to include but not limited to: Sweden, Germany, Japan, 

Korea, China, and even the US (Hwang, Choi, Kim, & Heo, 2017; Moya, Aldas, Lopez, 

& Kaparaju, 2017; Mühle, Balsam, & Cheeseman, 2010; EPA, 2017; WEC, 2016; Harris, 

et al., 2014). The DoD, through several initiatives including the Natick Soldier Research 

Development and Engineering Center (NSRDEC), JDW2E, the Air Force Research 

Laboratory (AFRL) and Air Force Civil Engineering Center (AFCEC), has several WTE 

methods undergoing current study. The current research, however, continues to be 

plagued with shortfalls: either the systems are very complex making them incompatible 

with DoD expeditionary use and deployability, too expensive or energy intensive, or 

require too much space or too large of a throughput of waste to be feasible with 
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contingency operations (Davis, Gelman, Tomberlin, & Bain, 2010; Novotny, 2017; DLA, 

2017). 

 A similar LCA research effort was executed by a previous Air Force Institute of 

Technology (AFIT) student (Hornstein, 2017). Due to time and resource constraints, 

Hornstein’s analysis made several assumptions and very conservative simplifications to 

the LCA. Despite these conservative simplifications, Hornstein concluded a WTE 

conversion system should be considered over the other expeditionary waste management 

strategies. This continued research was afforded the time, opportunity, and resources for 

courses providing an in-depth understanding of the software SimaPro to execute the LCA 

without the simplifications, and therefore likely producing more accurate results. The 

differences between Hornstein’s research and this LCA are explained in Chapter III. 

Life Cycle Analysis 

 Environmental life-cycle analysis, also known as life-cycle assessment, is a 

systematic tool or framework used to identify and evaluate the environmental impacts 

associated with the energy and resources to create materials or services throughout the 

product’s entire lifespan (ISO, 2006; Theis & Tomkin, 2013). LCA generally follows the 

ISO published framework: 

 1. Define Goal and Scope 

 2. Inventory Analysis 

 3. Impact Assessment 

 4. Interpretation 
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 The first and arguably most important step is to define the scope of the LCA. This 

involves setting clear boundaries of the investigated system, allowing the quantity and 

quality of inputs and outputs across this boundary to be measured. The inventory analysis 

is the collecting of data on the use of energy and materials for the product or service. The 

life cycle impact assessment uses the inventory data to sum the resources and energy 

consumed and wastes emitted by all processes in the system to estimate potential impacts 

to the environment. Interpretation of these results allows decisions to be made to reduce 

potential impacts by changing energy/material sources or updating processes, or to decide 

between products/services. (Theis & Tomkin, 2013; ISO, 2006) 

SimaPro 

 SimaPro is an LCA software containing inventory databases and impact 

assessment methodologies to perform LCA studies (PRé, 2019). These installed 

databases contain the energy and material requirements and waste emissions for over 

10,000 industrial and commercial processes (PRé, 2016). 

 SimaPro models the end-of-life phase through waste scenarios and waste 

treatment processes. Waste treatments document the emissions and impacts that arise 

from landfilling, burning, recycling, or composting of waste (PRé, 2016). The waste 

scenarios in SimaPro are based on material flow and do not observe product 

characteristics (PRé, 2016). For example, the waste treatment “Landfilling of MSW” 

gives the emissions and fuel requirements to landfill a unit mass of generic MSW and 

does not delineate the chemical composition of the MSW. 
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 SimaPro has several pre-installed waste treatment scenarios that are useful in 

LCA, but does allow for the creation of custom waste treatment scenarios. Using data, the 

material, fuel, and energy inputs and corresponding emissions to air, the ground, and 

water can be defined for a specified waste. These inputs to construct custom waste 

treatment scenarios are in units of mass, meaning energy and fuel requirements and 

emissions are calculated as masses given the mass of treated waste. 

 SimaPro uses the previously defined boundaries and pulls inventory data from its 

database to perform the impact assessment. An indicator substance is used in each impact 

category, and all emissions across material and fuel inputs and waste are converted to 

equivalents of these indicator substances (PRé, 2016). For example, to measure impacts 

to Global Warming, emissions from all steps or system processes are converted to 

equivalent masses of CO2 and totaled. This conversion and summation is performed for 

all categories to allow meaningful comparison between products or processes. 

 The outputs provided by SimaPro can then be displayed in an easy-to-read bar 

chart. For each impact category, the scenario with the largest impact will be scaled to 

100, and the remaining processes will have their impact scaled off of the 100. For 

example, comparing two generic waste treatments 1 and 2 for impacts to global warming: 

If treatment 1 has 50kg CO2 equivalent emissions and treatment 2 has 25kg CO2 

equivalents, treatment 1 will be represented by a bar with height 100, and treatment 2 

with a bar height of 50. This is done for each impact category and all impact categories 

are shown on the same graph. 
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TRACI 2.1 

 The Tool for Reduction and Assessment of Chemicals and Other Environmental 

Impacts (TRACI) is an environmental impact assessment tool created by the US 

Environmental Protection Agency (EPA) (EPA, 2016; PRé, 2016). TRACI calculates 

impact assessments based on ten impact categories: 

 1. Ozone depletion (measured in kg CFC-11 (Freon-11) equivalents) 

 2. Global warming (measured in kg CO2 equivalents) 

 3. Smog (measured in kg O3 equivalents) 

 4. Acidification (measured in kg SO2 equivalents) 

 5. Eutrophication (measured in kg N equivalents) 

 6. Carcinogenics (measured in comparative toxic units (CTU) for morbidity (h)) 

 7. Non-carcinogenics (measured in CTUh) 

 8. Respiratory effects (measured in kg particulate matter (PM) 2.5 equivalents) 

 9. Ecotoxicity (measured in CTU for aquatic ecotoxicity (CTUe)) 

 10. Fossil Fuel Depletion (measured in MJ) 

 TRACI has factors for normalization to allow for comparison between impact 

categories. The normalization divides the calculated outputs for the individual impact 

categories by the averaged impact values of a US or Canadian citizen for each impact 

category for a year (PRé, 2016). This division will mean relative bar height is scaled off 

of how much more or less impact the scenario produces compared to the average citizen. 

A higher bar would mean more detrimental impacts than an average citizen, while lower 

bars mean relatively less detrimental impacts. This allows for qualitative comparison 

between impact categories.  
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III.  Methodology 

Chapter Overview 

The purpose of this chapter is to design the LCA and outline the creation of the 

waste treatment scenarios in SimaPro for comparison. It follows the LCA framework and 

begins defining the scope of the LCA. After determining the goal, defining scenario 

boundaries, and defining the functional unit of the LCA, data for the scenarios is 

collected for the inventory analysis. Data for inputs and emissions for the four waste 

scenarios is compiled from research and converted to SimaPro-ready values in the 

appendices. A life-cycle impact assessment is then conducted using SimaPro’s TRACI 

2.1 methodology. Interpretation of the results is available in Chapter IV.  

Beginning the Life Cycle Analysis 

The goal of this LCA is to compare the environmental, human health, global 

warming, and economic impacts of available DoD expeditionary waste management 

strategies. Available expeditionary waste management strategies can be summarized in 

four categories: 1. an incinerator with potential for energy capture (WTE technology), 2. 

contracted sanitary landfilling, 3. contracted local waste management, or 4. the open-air 

burning of waste. As stated earlier, the construction of an on-base sanitary landfill is not 

considered because the long-term closure commitments are precluded by the base’s 

expeditionary and temporary nature. 

In all scenarios, waste from all base tenants must be collected before disposal. 

This impact is therefore the same across all scenarios and can be removed from 

consideration. The boundary of all four scenarios then begins with all base wastes 
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collected at a single waste collection point and then considers all energy and resource 

inputs and emissions until the final disposal of the waste. To allow for meaningful 

comparison between strategies, the functional unit of comparison is 1kg of generic waste. 

For all scenarios, all impact and emission calculations are for the disposal of 1kg of waste 

in an expeditionary environment. 

Difference from Previous Research 

 This research is a continuation of the LCA performed by former AFIT student, 

Thomas Hornstein. Hornstein’s LCA considered the environmental and human health 

impacts from three DoD expeditionary waste management strategies: WTE conversion, 

long-haul transportation to a sanitary landfill, and open-air burning of waste. This LCA 

includes a fourth consideration: local landfilling in a landfill without landfill gas or 

leachate capture, and this research considers the economic implications of the waste 

treatment scenarios. 

 Also, due to time and resource constraints, Hornstein made several simplifications 

to his models: Hornstein’s Open-air Burn model used an installed SimaPro incinerator 

model that includes the flue gas treatment and cleaning. His simplification significantly 

reduces the calculated impacts for the open-air burn model. This research used literature 

on the emissions of open-air burn pits to create a custom model in an attempt to 

accurately portray the emissions and impacts of an open-air burn pit. Also, Hornstein’s 

open-air burn model assumed 1 gallon of diesel per ton of burned waste, but continued 

literature review will reveal that number is much higher later in this chapter. 
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Scenario Building and Selection 

 A combination of SimaPro’s available inventory data on waste treatment 

requirements and emissions, and emissions data collected from relevant literature are 

used in the construction of the four modeled scenarios.  

WTE Incinerator 

 An on-base WTE incinerator will model the disposal of the waste in a 

commercially available WTE technology. The model assumes that the incinerator is 

constructed on base and transportation from the waste collection point to the incinerator 

is negligible. The model captures the energy input requirements to operate the incinerator 

including waste homogenization and flue gas treatment, the emissions to the air, and the 

required storage or disposal of incinerator residuals like slag or ash. SimaPro is equipped 

with multiple incinerator models that consider the inputs, emissions, and avoided 

products from energy generation. A comparison of three pre-installed WTE incinerators 

is made in SimaPro with results shown in Error! Reference source not found.:  

 1. “Municipal Solid Waste (RoW)|treatment of, incineration” - The data 

represents the activity of waste disposal of MSW in a waste incinerator for average 

municipal/communal waste mixtures. The rest of world (RoW) label represents a global 

data-set and represents activities considered to be an average valid for all countries in the 

world (ecoinvent, n.d.).  

 2. “Waste incineration of municipal solid waste EU-27” - The model represents 

the incineration of MSW in an average European WTE plant and includes flue gas 

treatment and NOx removal technologies. The model assumes the generation of 1.09 GJ 

electricity per ton of incinerated MSW.  
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 3. “Waste incineration of municipal solid waste EU-27 S” - An update to the 

average European WTE plant with the separation of certain waste fractions like glass. 

The model includes flue gas treatment and NOx removal technologies. The model 

assumes the generation of 1.09 GJ electricity per ton of incinerated MSW. 

 Across all categories, the RoW incinerator has the highest calculated impacts with 

impact values also shown in Appendix A. This is due to the lack of flue gas treatment 

before emission and the lack of captured energy offsetting fossil-fuel generated energy. 

The updated European WTE incinerator accounts for increased efficiencies in the 

incineration process, and the avoided emissions from the generated electricity create 

“negative” impacts as the generated electricity lowers the requirement for fossil-fuel-

derived electricity sources with their own environmental impacts. 

 The expeditionary and austere nature of contingency bases would limit the ability 

of construction and maintenance by contracted services, and likely limit the availability 

of the best available technologies for flue gas treatment. Of the available models, the 

RoW incinerator is therefore likely the most accurate, available model to simulate 

emissions and impacts for an incineration technology in an expeditionary environment. 

Consideration for offset costs of energy generation will be considered in Chapter IV. 
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Figure 1. Comparison of incineration technology models 
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Sanitary Landfill 

 The second disposal scenario is the contracting of sanitary landfilling for the 

waste. While contracted services present security concerns, the disposal of waste in 

sanitary landfills with landfill gas and leachate capture may offset many environmental 

impacts. The model assumes that the waste is collected from the collection point and 

delivered to the sanitary landfill with all emissions and energy requirements for the 

transportation and the operation of the landfill. In the CENTCOM AOR, specifically 

southern Afghanistan, sanitary landfills are hard to come by, requiring transportation to 

Kabul or Iran (Forouhar & Peterson, 2007). The model assumes a conservative, one-way 

400km of transportation in a refuse truck to the nearest sanitary landfill and takes 

advantage of SimaPro’s installed sanitary landfill waste treatment scenarios. Two 

potential landfilling scenarios are compared in Error! Reference source not found.: 

 1. “MSW (RoW)|treatment of, sanitary landfill, distance haul” - The sanitary 

landfilling of waste averaged for the RoW with the required 400km transportation in a 

refuse truck.  

 2. “MSW (RoW)|treatment of, sanitary landfill” - The sanitary landfilling of waste 

averaged for the RoW without the transportation. 

 Due to the additive nature of SimaPro, the addition of the transportation to the 

waste disposal scenario has additional impacts in all categories. The impact values are 

found in Appendix A. The required diesel fuel for the transportation vehicle contributes 

significantly to smog production, acidification, and fossil fuel use, but contributes only a 

minor amount to the remaining categories. For a 21-ton refuse truck hauling MSW for 

400km, assuming a conservative 10kmpg, the required fuel is only 1.9 gallons of fuel per 
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ton of MSW. The requirement to transport the waste to a sanitary landfill is extremely 

likely due to southern Afghanistan’s lack of sanitary landfills, and therefore the impacts 

including the transportation are a more accurate representation of impacts for this waste 

treatment scenario.
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Figure 2. Comparison of sanitary landfilling models 
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Unregulated Landfill 

 The third available waste treatment scenario is also contracting waste disposal 

services, but with a local landfill. It is already assumed that sanitary landfills in southern 

Afghanistan do not exist, and therefore the assumption is that a local landfill would not 

have landfill gas or leachate capturing. SimaPro does not contain data for models of 

unregulated landfills, and therefore a representative waste treatment scenario was 

constructed from available data. Some assumptions were made on the emissions of 

unregulated landfills, namely that the make-up of landfill gas and leachate is the same 

between regulated to unregulated landfills, the only difference being that sanitary 

landfills engineer mechanisms to capture these emissions for treatment. This is likely a 

conservative assumption because the turning and layering of soil in sanitary landfills 

creates an environment with pressure and temperature different from an open-air 

environment, but allows the use of available literature on the chemical make-up of 

landfill gas and leachate to construct the model. A second assumption is the 

transportation requirement for a local landfill is negligible from the base collection point. 

 Data from published sources on landfill gas and leachate make-up was aggregated 

and converted to SimaPro input values in Appendix B (EPA, 2008; EPA, 2005; Petrescu, 

Batrinescu, & Stanescu, 2011; Durmusoglu, Taspinar, & Karademir, 2009; Johansen & 

Carlson, 1976; Kulikowska & Klimiuk, 2008; Christensen, et al., 2001; Mali & Patil, 

2016; Ogundipe & Jimoh, 2015). For landfill gas, an EPA model allows the prediction of 

landfill gas volume per unit MSW in an arid environment per year, and the contaminant 

emission data given in concentrations is converted to a unit mass of contaminant per unit 

mass of MSW using the ideal gas law. An example calculation for mass of emitted CO2 
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per kg of landfilled waste is below. The average measured concentration of 29.45% by 

volume at 1 atm and 25 Celcius yields: 

	ݏݏܽ݉ ൌ 	
ܲ ∗ ܸ ∗ ܹܯ

ܴ ∗ ܶ
ൌ 	

݉ݐ1ܽ ∗ .2945 ∗ 6.5
݉ଷ

݃ܯ ∗ 44
݃
݈݋݉

. 08206
݉ݐܽ ∗ ܮ
݈݋݉ ∗ ܭ ∗ ܭ298.15

∗
݃ܯ

10ଷ݇݃
∗
10ଷܮ
݉ଷ ൌ 3.443

	ଶܱܥ	݃
݁ݐݏܽݓ	݃݇

 

P = Air Pressure 

V = Gas Volume 

MW = Molecular Weight 

R = Ideal Gas Law Constant 

T = Temperature 

 For landfill leachate, a conservative estimate of landfill leachate per unit mass 

MSW is assumed for the arid climate of southern Afghanistan (Climate-Data.org, n.d.; 

Fenn, Hanley, & DeGeare, 1975; Brennan, Healy, Morrison, & Hynes, 2015). The 

concentrations of contaminant per liter of leachate are converted to masses of 

contaminant per mass MSW by dividing by the estimated leachate volume. A comparison 

of potential unregulated landfill models is shown in Error! Reference source not 

found.: 

 1. “Unregulated Landfill” - Unregulated landfill model including emissions to air 

as landfill gas and emissions to groundwater as leachate 

 2. “Unregulated Landfill (longterm emissions)” – The same unregulated landfill 

model including air and groundwater emissions, but impacts calculated for “long-term 

emissions” via SimaPro’s pre-installed methodology 

 3. “Unregulated Landfill (no leachate)” - Only landfill gas air emissions 
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 4. “Unregulated Landfill (no leachate/longterm emissions)” - Only landfill gas air 

emissions with “long-term emissions” calculations 

 The calculated impact values are listed in Appendix A. The impact values for six 

of ten categories are identical, with significant changes in the remaining four categories 

due to either inclusion or exclusion of leachate emissions. These categories are 

eutrophication, carcinogens, non-carcinogens, and ecotoxicity. Per SimaPro’s outputs, the 

sharp drop-off in calculated eutrophication impacts is due to removing the significant 

biological and chemical oxygen demands and nitrogen and phosphorous from leaching 

into the ground water. The drop in carcinogenic toxicity impact is due to removing the 

chromium, lead, benzene, and toluene from leaching into the ground water. The drop in 

non-carcinogenic toxicity impact is due to removing the leaching of metals like zinc, 

cadmium, nickel, and copper into ground water. And finally, the drop in ecotoxicity 

impact is due to the same removal of metals from leaching into the ground water. 

 To assume that there will be absolutely no leachate reaching groundwater is a 

very conservative estimate, even for the desert climate in southern Afghanistan, and will 

therefore be kept in the model to capture these potential impact contributions. There is 

only a slight difference between short-term and long-term emissions in SimaPro’s 

TRACI 2.1 calculated impacts in the non-carcinogenic category.
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Figure 3. Comparison of unregulated landfill models 
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Open-Air Burn 

 The final waste treatment scenario is the open-air burning of waste. It is assumed 

that this will take place on the base, and transportation from the waste collection point to 

the open-air burn pit is negligible. Due to the low-caloric value and typically high 

moisture content of MSW, the direct combustion of waste requires the addition of a 

substantial amount of fuel (WEC, 2016; Macias, 2015; Relph & Chiang, 2016). The 

model assumes a lower-end estimate of 54 gallons fuel per ton of waste, a stark contrast 

to Hornstein’s assumed 1 gallon of fuel per ton of waste, and some waste incinerators 

have shown to require much higher fuel to waste ratios, some reaching 153 gallons of 

fuel per ton of waste (Knowlton, 2013). After the direct combustion of material, there 

remains a volume of slag or ash. The model accounts for 30% non-combustible material 

by weight that must be landfilled (Tchobanoglous, Theisen, & Vigil, 1993). 

 Data from published sources is aggregated and converted to SimaPro input values 

in Appendix B (Aurell & Gullett, 2017; Dominguez, Aurell, Gullett, Eninger, & 

Yamamoto, 2018; Woodall, Yamamoto, Gullett, & Touati, 2012; Gerstle & Kemnitz, 

2012; EPA, 1996). Papers sampled emissions from the open-air burning of waste and 

converted concentrations of contaminants to masses of contaminant by dividing by the 

measured air flow. These masses of emitted contaminants are then compared to the mass 

of waste combusted. These masses are averaged as unit mass contaminant emitted to air 

per kg waste burned. Error! Reference source not found. compares potential open-air 

burn models: 
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 1. “Open Burn” - The constructed open-air burn model including air emissions 

from both the burning of waste and diesel fuel and includes the treatment of remaining 

ash in a landfill 

 2. “Open Burn (no ash)” - The open-air burn model with air emissions from the 

burning of waste and diesel fuel but without the treatment of remaining ash in a landfill 

 3. “Open Burn (no diesel)” - The open-air burn model with air emissions from 

only the burning of waste, not including the diesel fuel, and including the treatment of 

remaining ash in a landfill 

 4. “Open Burn (no diesel/no ash)” - The open-air burn model with only the air 

emissions from the burning of waste, not considering the contributions from diesel or 

treatment of ash in a landfill 

 Again, due to the additive nature of SimaPro’s life-cycle impact assessments, the 

model that includes the waste burning emissions, the fuel use, and the non-combustible 

material treatment has the highest impact across all categories, shown in Appendix A. 

The removal of the ash from the scope causes minor changes in seven of ten impact 

categories, but significantly lowers the impacts for the eutrophication, carcinogenics, and 

ecotoxicity. This change is likely due to the highly concentrated and leachable nature of 

landfilled ash affecting groundwater. The diesel fuel requirement and its subsequent 

emissions are significant contributors to most impact categories, accounting for over half 

of the impact on five of the ten impact categories. The amount of diesel fuel selected for 

the model was a low-end estimate, and therefore these impacts are conservative estimates 

from fuel use. Because the fuel must be used in the open-air burning of waste, it is 
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included in the selected model. The remaining ash in the bottom of the burn pit and the 

potential impacts of this ash are also included in the final model.
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Figure 4. Comparison of open-air burn models 
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Summary 

This chapter details the scope and inventory analysis in the construction of the 

representative models for DoD expeditionary waste management. The life-cycle impact 

assessment was then performed comparing the impacts of the four waste treatment 

scenarios. 
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IV. Analysis and Results 

Chapter Overview 

This chapter reviews the results of the life-cycle impact assessment between the 

four selected representative models of DoD expeditionary waste management. After 

comparing the human and environmental health implications of the waste management 

strategies, consideration is given to economics, reviewing potential costs, benefits, and 

mitigated costs.  

Life-Cycle Impact Assessment Results 

The results of the life-cycle impact assessment comparing the impacts of the four 

DoD expeditionary waste management scenarios are shown in Error! Reference source 

not found..  

 The open-air burning of wastes has the highest impacts across eight of the ten 

impact categories (global warming, smog, acidification, eutrophication, carcinogenics, 

non-carcinogenics, respiratory effects, and fossil fuel depletion), significantly so in seven 

of those eight categories, and is a close second in the remaining two categories (ozone 

depletion and ecotoxicity). These calculated impact values are shown in Appendix A. The 

high impacts for ozone depletion for unregulated landfills is directly caused by the 

releasing of chloroflurocarbons (CFCs) likely from refrigerants or propellants in the 

waste. In regulated landfills, open-air burn pits, and WTE incinerators, these CFCs are 

captured and/or combusted. The high impact results associated with ecotoxicity for 

landfilling, WTE incineration, and open-air burning are associated with the emission of 

heavy metals including copper, zinc, nickel, etc. into ground water from landfilled 
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material. The results of the normalization for this comparison are shown in Error! 

Reference source not found..
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Figure 5. Characterization of four DoD expeditionary waste management options 
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Figure 6. Normalization of four-scenario comparison  
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 Compared to the average impacts of US and Canadian citizens in 2008, the most 

detrimental impact categories are carcinogenics, non-carcinogenics, and environmental 

ecotoxicity, all shared by the open-air burning of waste. Error! Reference source not 

found. and Error! Reference source not found. point to the open-air burning of waste 

as the most harmful expeditionary waste treatment scenario to human and environmental 

health. 

 From these results, the impacts associated with open-air burning of waste are 

recognizable as likely the most detrimental to human and environmental health and 

resource consumption, however, the dwarfing of the remaining waste scenarios in these 

eight categories precludes further analysis. The results of an identical comparison, but 

with open-air burning removed from consideration, are shown in Error! Reference 

source not found..  

 Overall, the impact values compared between the remaining three waste treatment 

scenarios are closer than when open-air burning is considered. In this three-scenario 

comparison, the transportation and sanitary landfilling of wastes accounts for the highest 

impacts of six of ten categories (global warming, eutrophication, non-carcinogenics, 

respiratory effects, ecotoxicity, and fossil fuel depletion), and a local unregulated landfill 

accounts for the highest impacts in three categories (ozone depletion, smog, and 

acidification). The conversion of waste in a WTE incinerator is most impactful in only 

one category (carcinogenics), and a close second in a second category (global warming). 

Error! Reference source not found. would suggest that WTE technologies and 

unregulated landfills in arid environments are preferred expeditionary waste management 

options. This impact assessment is normalized in Error! Reference source not found.. 
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 Relative to the average impacts of US and Canadian citizens in 2008, the most 

detrimental impact category is now ecotoxicity. Also, the normalization shows that 

although the unregulated landfilling is the most impactful waste management scenario in 

ozone depletion, smog, and acidification, these are relatively smaller impacts compared 

to ecotoxicity and carcinogenic and non-carcinogenic human health impacts.  

 At first glance of Figure 8, an unregulated landfill in an arid environment appears 

to be the least impactful expeditionary waste management option in terms of human and 

environmental health, but aesthetic concerns, public perception, and the threat of diseases 

from pests and vectors would likely weigh in against the use of “dumps” to dispose of 

FOB waste. Also worth consideration are the potential security concerns with unmanaged 

military waste specifically, as information about a FOB can theoretically be collected 

from waste: unit sizes and compositions estimated from food waste, or information 

gathered from trashed documents can be aggregated to discern critical operational 

information. 
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Figure 7. Characterization of three DoD expeditionary waste management options 
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Figure 8. Normalization of the three-scenario comparison 
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Economic Considerations 

 An impact factor not explored in SimaPro life-cycle assessments is the cost of the 

waste treatment scenarios. Mentioned earlier, the high capital cost of WTE technologies 

has been a substantial obstacle to their acquisition and use. To compare costs, the 

requirements and contracts for the expeditionary waste management of Marine Corps 

FOB Camp Leatherneck in Southern Afghanistan is explored. 

 Following congressional mandates to eliminate burn pits, the Marine Corps in 

RC(SW) shifted to incinerators to manage regional FOB wastes. On Camp Leatherneck, 

the DoD spent 18 million US dollars (USD) to purchase and install four waste 

incinerators to meet the daily 54 tons of solid waste (SIGAR, 2015). However, two of the 

incinerators were never used due to their high operation and maintenance costs reaching 

approximately 1 million USD annually, and instead Camp Leatherneck chose to burn the 

wastes in open-air burn pits (SIGAR, 2015). At a throughput of 54 tons of solid waste per 

day, using the same fuel to waste ratio used in this paper, this would require just under 

3,000 gallons of diesel fuel for the open-air burn pit each day or over 1 million gallons 

each year for Camp Leatherneck alone. At a very conservative 4 USD per gallon of diesel 

in the deployed environment, this is still over 4 million USD per year for the fuel to burn 

waste in an open-air burn pit, well above the estimated O&M costs of the incinerator. 

Camp Leatherneck also investigated a local contract to landfill the waste instead of 

burning the waste in an open-air pit, at the potential cost of 1.1 million USD annually 

(SIGAR, 2015).  



37 

 Assuming a WTE technology captures the 1.09 GJ of electricity per ton of waste 

(or 1.2 MJ per kg waste) designed in SimaPro’s WTE models, a value confirmed in 

WEC’s 2016 report of 8-12 MJ per kg waste with 15% conversion efficiency, Camp 

Leatherneck’s 54 daily tons of waste could theoretically produce: 

ଵ.଴ଽீ௃

௧௢௡	௪௔௦௧௘
	ൈ 	ହସ	௧௢௡௦

ௗ௔௬
	ൈ 	ଷ଺ହ	ௗ௔௬௦

௬௘௔௥
	ൈ 	ଶ଻଼	௞ௐ௛

ீ௃
	ൌ 	5,972,500	ܹ݄݇ per year 

Assuming FOB electricity is produced by generators using diesel fuel, this could replace 

over 450,000 gallons of diesel (or 1.8 million USD of diesel fuel) to meet the same 

electrical requirement (a 750kWh generator running 24 hours each day for an entire year 

would produce 6,500,000 kWh and use 53.4 gallons of diesel per hour at maximum 

efficiency) (Diesel Service and Supply, 2018). 

 An additional benefit of a WTE conversion technology is the ability to safely 

convert hazardous waste (used petroleum, oils, and lubricants (POLs), medical waste, and 

potentially batteries). The conversion of hazardous waste could save the US Government 

approximately 219 thousand USD annually for the transportation and landfilling of 

hazardous wastes from a FOB the size of Camp Leatherneck (DLA, 2017). 

 As of January 2019, over 165,000 Veterans and service members voluntarily 

registered with the US Department of Veterans Affairs (VA) in the Airborne Hazards and 

Open Burn Pit (AH&OBP) Registry to report exposure to the open-air burning of waste, 

a fraction of the estimated 3.5 million individuals eligible to participate in the registry 

(VA, 2019; VA, 2015). A report on the AH&OBP Registry found that registry 

participants who reported exposure to burn pits had higher prevalence of asthma, high 

blood pressure, COPD, chronic bronchitis, and emphysema than those with no exposure 

(VA, 2015). While difficult to place a monetary value on this higher prevalence of 
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adverse health conditions, the correlation extrapolated across the 3.5 million service 

members exposed to open-air burn pits allows speculation of increased medical costs. 

 These explored costs and benefits are summarized below in Table 1 using the 

Federal Reserve Discount Rate of 3%, an estimated 4 USD per gallon of diesel, and 

calculating the net present value (NPV) over 5,10, and 15 years, approximating the length 

of the current Afghan War (Federal Reserve, 2019). 

Table 1. Camp Leatherneck Waste Management Costs (in millions of USD) 

 
Capital 

Cost 
Annual 
O&M 

Annual 
Benefits 

NPV  
5 Years 

NPV  
10 Years 

NPV  
15 Years 

WTE -18 -1 2 -13.420 -9.470 -6.062 

Landfill 0 -1.1 0 -5.038 -9.383 -13.132 

Burn Pits 0 -4.38 0 -20.059 -37.362 -52.288 
 

 Despite the inability to quantify the medical costs associated with exposure to 

open-air burn pits, the sheer cost of diesel fuel in their use makes them the least cost-

effective means of expeditionary waste management. In this simplified cost analysis, 

contracted landfilling services are initially less costly than WTE conversion technologies 

due to the high capital costs of WTE technology. But the longer the waste management 

requirement, the more cost effective WTE technologies become, surpassing contracted 

services around the 10-year mark in this analysis. This cost difference will only become 

more substantial when considering the fully-burdened cost of fuel or as the prices of 

liquid fuels continue to increase, driving up the price of open-air burning and increasing 

the benefits of WTE technologies by offsetting fuel use for electricity generation. 

Considering these more expensive fuel scenarios would also see the cost effectiveness of 

WTE technologies well before the 10-year mark, a time period that could easily be seen 
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in the life-span of a US contingency base. Also not considered in this analysis is the 

security concern with contracted services, opening the base to possible attack or the 

leaking of critical information via waste (papers, counts of sustenance materials, etc.). 

Summary 

 This chapter listed the environmental and human health impacts of the four 

expeditionary waste management scenarios using SimaPro’s life cycle impact assessment 

software. Consideration was then given to the costs and benefits of each waste scenario 

and a basic net present value calculated across the life of the Afghan war. The life-cycle 

impact assessment found that open-air burn pits are the most impactful waste 

management strategy in all categories: environmental health, human health, and 

economic “health.” While the remaining waste scenarios have similar human and 

environmental health impacts, WTE technologies are more cost effective than contracted 

services after 10 years.  
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V.  Conclusions and Recommendations 

Conclusions of Research 

 1. Stop the open-air burning of waste. The dominance of impact results for open-

air burning points to the open-air burning of waste as the most damaging DoD 

expeditionary waste management option to human and environmental health, and the fuel 

requirements alone have cost the US DoD more than the capital costs of an incinerator, 

let alone the medical, legal, and administrative costs associated with the AH&OBP 

Registry. 

 2. Accounting for the very real threat of disease-carrying vectors and pests 

associated with unregulated landfilling, WTE technologies have the lowest environmental 

and human health impacts of expeditionary waste management strategies. 

 3. Considering the mitigated security risks and the net positive annual benefit of 

WTE technologies with offset fuel costs and potential for heat and electricity, WTE 

technologies may be the most economical expeditionary waste management strategy for 

prolonged waste management scenarios, especially considering the fully-burdened cost of 

fuels and the potential rise in price of liquid fuels. 

Significance of Research 

LCA comparing waste management scenarios has been done in the cost/benefit 

analysis of cities and countries around the world; this research cites a dozen of such 

studies in its execution. But, the application of LCA on DoD expeditionary waste 

management strategies is an underexplored case with most studies exploring WTE 

technology on a business-case model, and not giving weight to the economic and human 
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health impacts. The inclusion of these impacts only further bolsters the need for the DoD 

to sincerely explore WTE technologies as an expeditionary waste management strategy. 

Recommendations for Future Research 

 More detailed cost analysis should consider the variability in fuel pricing, the 

variability in WTE power generation, and should attempt to affix dollar amounts to the 

medical impacts of burn pits and the security associated with contracted waste 

management services.  

Summary 

When consideration is given to all potential costs and benefits of a waste 

management strategy, WTE technology’s mitigated human and environmental health 

impacts and cost effectiveness make them a viable expeditionary waste management 

strategy for DoD contingency bases. The DoD should continue investment and research 

into their utilization. 
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Appendix A 

Table 2. WTE Incinerator Comparison Impact Values 

Impact category Unit 

Municipal solid waste 
{RoW}| treatment of, 

incineration | Alloc Def, U 

Waste incineration of 
municipal solid waste 

(MSW), EU-27 

Waste incineration of 
municipal solid waste 

(MSW), EU-27 S 
Ozone depletion kg CFC-11 eq 4.06895E-09 1.9791E-09 -4.31333E-08 
Global warming kg CO2 eq 0.520279346 0.330032971 -0.102068191 
Smog kg O3 eq 0.007943111 0.007580156 -0.005344847 
Acidification kg SO2 eq 0.00031165 0.000282794 -0.002130853 
Eutrophication kg N eq 0.000701961 2.4868E-05 -1.38115E-05 
Carcinogenics CTUh 4.54059E-08 1.73226E-10 -6.92584E-11 
Non carcinogenics CTUh 8.29981E-07 1.45275E-08 4.18096E-09 
Respiratory effects kg PM2.5 eq 2.71569E-05 -1.70591E-05 -0.000181611 
Ecotoxicity CTUe 73.08255629 -0.015475994 -0.029048709 
Fossil fuel depletion MJ surplus 0.039254133 0.029696492 -0.33241816 
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Table 3. Sanitary Landfill Comparison Impact Values 

Impact category Unit 
MSW {RoW}| treatment of, sanitary 
landfill, distance haul | Alloc Def, U 

MSW {RoW}| treatment of, 
sanitary landfill | Alloc Def, U 

Ozone depletion kg CFC-11 eq 4.19623E-09 4.1952E-09 
Global warming kg CO2 eq 0.532218976 0.507963989 
Smog kg O3 eq 0.00747426 0.002673502 
Acidification kg SO2 eq 0.000362207 0.000189194 
Eutrophication kg N eq 0.006814006 0.006804137 
Carcinogenics CTUh 2.31436E-08 2.27764E-08 
Non carcinogenics CTUh 1.51126E-06 1.50772E-06 
Respiratory effects kg PM2.5 eq 4.41825E-05 3.35588E-05 
Ecotoxicity CTUe 112.1420162 112.0735862 
Fossil fuel depletion MJ surplus 0.092373276 0.040876518 

 

Table 4. Unregulated Landfill Comparison Impact Values 

Impact category Unit Unregulated Landfill 
Unregulated Landfill 
(longterm emissions) 

Unregulated Landfill 
(no leachate) 

Unregulated Landfill (no 
leachate/longterm emissions) 

Ozone depletion kg CFC-11 eq 2.77205E-07 2.77205E-07 2.77205E-07 2.77205E-07 
Global warming kg CO2 eq 0.054897045 0.054897045 0.054897045 0.054897045 
Smog kg O3 eq 0.038130573 0.038130573 0.038130573 0.038130573 
Acidification kg SO2 eq 0.001076646 0.001076646 0.001076646 0.001076646 
Eutrophication kg N eq 0.000633092 0.000633092 6.80294E-05 6.80294E-05 
Carcinogenics CTUh 2.90837E-10 2.90367E-10 6.9884E-13 2.28815E-13 
Non carcinogenics CTUh 3.39538E-09 3.39489E-09 7.49804E-12 7.00609E-12 
Respiratory effects kg PM2.5 eq 1.10949E-05 1.10949E-05 1.10949E-05 1.10949E-05 
Ecotoxicity CTUe 0.10867439 0.108674371 8.50217E-07 8.31343E-07 
Fossil fuel depletion MJ surplus 0 0 0 0 
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Table 5. Open-air Burn Comparison Impact Values 

Impact category Unit Open Burn Open Burn (no ash) Open Burn (no diesel) 
Open Burn (no 
diesel/no ash) 

Ozone depletion kg CFC-11 eq 2.29517E-07 2.2454E-07 4.97672E-09 0 
Global warming kg CO2 eq 3.040540244 2.952993131 1.445047117 1.3575 
Smog kg O3 eq 0.291023476 0.287347656 0.064051844 0.060376024 
Acidification kg SO2 eq 0.019619855 0.019441019 0.008432336 0.0082535 
Eutrophication kg N eq 0.011008646 0.004271553 0.006881257 0.000144164 
Carcinogenics CTUh 1.99948E-06 2.20835E-07 1.83648E-06 5.78433E-08 
Non carcinogenics CTUh 1.46175E-05 1.39333E-05 1.05338E-05 9.84959E-06 
Respiratory effects kg PM2.5 eq 0.014565899 0.014547388 0.01208233 0.012063818 
Ecotoxicity CTUe 110.6283141 14.83679376 96.88264429 1.091123141 
Fossil fuel depletion MJ surplus 2.13606534 2.096925419 0.039139949 0 

 

Table 6. Life-Cycle Impact Assessment Values 

Impact category Unit 
MSW {RoW}| treatment of, 
incineration | Alloc Def, U 

MSW {RoW}| treatment of, sanitary 
landfill, distance haul | Alloc Def, U 

Unregulated Landfill 
(longterm emissions) Open Burn 

Ozone depletion kg CFC-11 eq 4.06895E-09 4.19623E-09 2.77205E-07 2.29517E-07 
Global warming kg CO2 eq 0.520279346 0.532218976 0.054897045 3.040540244 
Smog kg O3 eq 0.007943111 0.00747426 0.038130573 0.291023476 
Acidification kg SO2 eq 0.00031165 0.000362207 0.001076646 0.019619855 
Eutrophication kg N eq 0.000701961 0.006814006 0.000633092 0.011008646 
Carcinogenics CTUh 4.54059E-08 2.31436E-08 2.90367E-10 1.99948E-06 
Non carcinogenics CTUh 8.29981E-07 1.51126E-06 3.39489E-09 1.46175E-05 
Respiratory effects kg PM2.5 eq 2.71569E-05 4.41825E-05 1.10949E-05 0.014565899 
Ecotoxicity CTUe 73.08255629 112.1420162 0.108674371 110.6283141 
Fossil fuel depletion MJ surplus 0.039254133 0.092373276 0 2.13606534 
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Appendix B 

Table 7. Landfill Gas Emissions Calculations 

 EPA 2008 EPA 2005 Petrescu 2011 Durmusoglu 2010 MW Value Used 

 Value Unit Value Unit Value Unit Value Unit g/mol Value Unit 

Gas Volume 6.5 m^3/Mg          
CO2 34.2 % by V   24.7 % by V   44 3.44259 g/kg waste 

CH4 40.8 % by V   50.3 % by V   16 1.93622 g/kg waste 

CO 20.9 ppmv 140 ppmv 19.15 ppmv   28 0.000446 g/kg waste 

N2 21.9 % by V   19.4 % by V   28 1.53612 g/kg waste 

O2 2.5 % by V   5.6 % by V   32 0.34431 g/kg waste 

            
1,1,1-Trichloroethane 2.43E-01 ppmv 0.48 ppmv 133.41 1.3E-05 g/kg waste 

1,1,2,2-Tetrachloroethane 5.35E-01 ppmv 1.1 ppmv 167.85 3.6E-05 g/kg waste 

1,1,2,3,4,4-Hexachloro-1,3butadiene  3.49E-03 ppmv          
1,1,2-Trichloro-1,2,2Trifluoroethane 6.72E-02 ppmv          
1,1,2-Trichloroethane 1.58E-01 ppmv          
1,1-Dichloroethane 2.08E+00 ppmv 2.4 ppmv     98.97 5.9E-05 g/kg waste 

1,1-Dichloroethene  1.60E-01 ppmv 0.2 ppmv     96.94 4.6E-06 g/kg waste 

1,2,3-Trimethylbenzene 3.59E-01 ppmv          
1,2,4-Trichlorobenzene 5.51E-03 ppmv          
1,2,4-Trimethylbenzene 1.37E+00 ppmv          
1,2-Dibromoethane 4.80E-03 ppmv 1.00E-03 ppmv     187.88 1.4E-07 g/kg waste 

1,2-Dichloro-1,1,2,2tetrafluoroethane  1.03E-01 ppmv          
1,2-Dichloroethane  1.59E-01 ppmv 0.41 ppmv     98.96 7.5E-06 g/kg waste 

1,2-Dichloroethene 1.14E+01 ppmv          
1,2-Dichloropropane 5.20E-02 ppmv 0.18 ppmv     112.99 3.5E-06 g/kg waste 
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1,2-Diethylbenzene 1.99E-02 ppmv          
1,3,5-Trimethylbenzene 6.23E-01 ppmv          
1,3-Butadiene (Vinyl ethylene) 1.66E-01 ppmv          
1,3-Diethylbenzene 6.55E-02 ppmv          
1,4-Diethylbenzene 2.62E-01 ppmv          
1,4-Dioxane (1,4-Diethylene dioxide) 8.29E-03 ppmv          
1-Butene / 2-Methylbutene 1.22E+00 ppmv          
1-Butene / 2-Methylpropene 1.10E+00 ppmv          
1-Ethyl-4-methylbenzene  9.89E-01 ppmv          
1-Ethyl-4-methylbenzene  5.79E-01 ppmv          
1-Heptene 6.25E-01 ppmv          
1-Hexene / 2-Methyl-1pentene 8.88E-02 ppmv          
1-Methylcyclohexene 2.27E-02 ppmv          
1-Methylcyclopentene 2.52E-02 ppmv 

1-Pentene 2.20E-01 ppmv 

1-Propanethiol  1.25E-01 ppmv          
2,2,3-Trimethylbutane 9.19E-03 ppmv          
2,2,4-Trimethylpentane 6.14E-01 ppmv          
2,2,5-Trimethylhexane 1.56E-01 ppmv          
2,2-Dimethylbutane 1.56E-01 ppmv          
2,2-Dimethylpentane 6.08E-02 ppmv          
2,2-Dimethylpropane 2.74E-02 ppmv          
2,3,4-Trimethylpentane 3.12E-01 ppmv          
2,3-Dimethylbutane 1.67E-01 ppmv          
2,3-Dimethylpentane 3.10E-01 ppmv          
2,4-Dimethylhexane 2.22E-01 ppmv          
2,4-Dimethylpentane 1.00E-01 ppmv          
2,5-Dimethylhexane 1.66E-01 ppmv          
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2,5-Dimethylthiophene 6.44E-02 ppmv          
2-Butanone (Methyl ethyl ketone) 4.01E+00 ppmv 7.1 ppmv     72.11 0.00011 g/kg waste 

2-Ethyl-1-butene 1.77E-02 ppmv          
2-Ethylthiophene 6.29E-02 ppmv          
2-Ethyltoluene 3.23E-01 ppmv          
2-Hexanone (Methyl butyl ketone) 6.13E-01 ppmv          
2-Methyl-1-butene 1.79E-01 ppmv          
2-Methyl-1-propanethiol  1.70E-01 ppmv          
2-Methyl-2-butene 3.03E-01 ppmv          
2-Methyl-2-propanethiol  3.25E-01 ppmv          
2-Methylbutane 2.26E+00 ppmv          
2-Methylheptane 7.16E-01 ppmv          
2-Methylhexane 8.16E-01 ppmv          
2-Methylpentane 6.88E-01 ppmv 

2-Propanol (Isopropyl alcohol) 1.80E+00 ppmv 50 ppmv 60.11 0.00041 g/kg waste 

3,6-Dimethyloctane 7.85E-01 ppmv          
3-Ethyltoluene 7.80E-01 ppmv          
3-Methyl-1-pentene 6.99E-03 ppmv          
3-Methylheptane 7.63E-01 ppmv          
3-Methylhexane 1.13E+00 ppmv          
3-Methylpentane 7.40E-01 ppmv          
3-Methylthiophene 9.25E-02 ppmv          
4-Methyl-1-pentene 2.33E-02 ppmv          
4-Methyl-2-pentanone (MIBK) 8.83E-01 ppmv          
4-Methylheptane 2.49E-01 ppmv          
Acetaldehyde 7.74E-02 ppmv          
Acetone 6.70E+00 ppmv 7 ppmv     58.08 0.00011 g/kg waste 

Acetonitrile 5.56E-01 ppmv          
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Benzene 2.40E+00 ppmv 1.9 ppmv   140.3 µg/m^3 78.11 0.00033 g/kg waste 

Benzyl chloride 1.81E-02 ppmv          
Bromodichloromethane 8.78E-03 ppmv 3.1 ppmv     163.83 6.8E-05 g/kg waste 

Bromomethane (Methyl bromide) 2.10E-02 ppmv          
Butane 6.22E+00 ppmv 5 ppmv     58.12 8.7E-05 g/kg waste 

Carbon disulfide 1.47E-01 ppmv 0.58 ppmv     76.13 7.4E-06 g/kg waste 

Carbon tetrachloride 7.98E-03 ppmv 4.00E-03 ppmv     153.84 2.4E-07 g/kg waste 

Carbon tetrafluoride (Freon 14) 1.51E-01 ppmv          
Carbonyl sulfide (Carbon oxysulfide) 1.22E-01 ppmv 0.49 ppmv     60.07 4.9E-06 g/kg waste 

Chlorobenzene 4.84E-01 ppmv 0.25 ppmv     112.56 1.1E-05 g/kg waste 

Chlorodifluoromethane (Freon 22) 7.96E-01 ppmv 1.3 ppmv     86.47 2.4E-05 g/kg waste 

Chloroethane (Ethyl chloride) 3.95E+00 ppmv 1.3 ppmv     64.52 4.5E-05 g/kg waste 

Chloromethane (Methyl chloride) 2.44E-01 ppmv 1.2 ppmv     50.49 9.7E-06 g/kg waste 

cis-1,2-Dichloroethene 1.24E+00 ppmv 

cis-1,2-Dimethylcyclohexane 8.10E-02 ppmv 

cis-1,3-Dichloropropene 3.03E-03 ppmv          
cis-1,3-Dimethylcyclohexane 5.01E-01 ppmv          
cis-1,4-Dimethylcyclohexane  2.48E-01 ppmv          
cis-2-Butene 1.05E-01 ppmv          
cis-2-Heptene 2.45E-02 ppmv          
cis-2-Hexene 1.72E-02 ppmv          
cis-2-Octene 2.20E-01 ppmv          
cis-2-Pentene 4.79E-02 ppmv          
cis-3-Methyl-2-pentene 1.79E-02 ppmv          
Cyclohexane 1.01E+00 ppmv          
Cyclohexene 1.84E-02 ppmv          
Cyclopentane 2.21E-02 ppmv          
Cyclopentene 1.21E-02 ppmv          
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Decane 3.80E+00 ppmv          
Dibromochloromethane 1.51E-02 ppmv          
Dibromomethane  8.35E-04 ppmv          
Dichlorobenzene 9.40E-01 ppmv 0.21 ppmv     147 2.2E-05 g/kg waste 

Dichlorodifluoromethane (Freon 12) 1.18E+00 ppmv 16 ppmv     120.91 0.00028 g/kg waste 

Dichloromethane  6.15E+00 ppmv 14 ppmv     84.94 0.00023 g/kg waste 

Diethyl sulfide 8.62E-02 ppmv          
Dimethyl disulfide 1.37E-01 ppmv          
Dimethyl sulfide 5.66E+00 ppmv 7.8 ppmv     62.13 0.00011 g/kg waste 

Dodecane (n-Dodecane) 2.21E-01 ppmv          
Ethane 9.05E+00 ppmv 890 ppmv     30.07 0.00359 g/kg waste 

Ethanol 2.30E-01 ppmv 27 ppmv     46.08 0.00017 g/kg waste 

Ethyl acetate 1.88E+00 ppmv          
Ethyl mercaptan (Ethanediol) 1.98E-01 ppmv 2.3 ppmv 62.13 2.1E-05 g/kg waste 

Ethyl methyl sulfide 3.67E-02 ppmv 

Ethylbenzene 4.86E+00 ppmv 4.6 ppmv   239.9 µg/m^3 106.16 0.00061 g/kg waste 

Formaldehyde 1.17E-02 ppmv          
Heptane 1.34E+00 ppmv          
Hexane 3.10E+00 ppmv 6.6 ppmv     86.18 0.00011 g/kg waste 

Hydrogen sulfide 3.20E+01 ppmv 36 ppmv 186.9 ppmv   34.08 0.00077 g/kg waste 

Indan (2,3-Dihydroindene) 6.66E-02 ppmv          
Isobutane (2-Methylpropane) 8.16E+00 ppmv          
Isobutylbenzene 4.07E-02 ppmv          
Isoprene (2-Methyl-1,3butadiene) 1.65E-02 ppmv          
Isopropyl mercaptan 1.75E-01 ppmv          
Isopropylbenzene (Cumene) 4.30E-01 ppmv          
Methanethiol (Methyl mercaptan) 1.37E+00 ppmv 2.5 ppmv     48.11 2.5E-05 g/kg waste 

Methyl tert-butyl ether (MTBE) 1.18E-01 ppmv          
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Methylcyclohexane 1.29E+00 ppmv          
Methylcyclopentane 6.50E-01 ppmv          
Naphthalene 1.07E-01 ppmv          
n-Butylbenzene 6.80E-02 ppmv          
Nonane 2.37E+00 ppmv          
n-Propylbenzene (Propylbenzene) 4.13E-01 ppmv          
Octane 1.08E+00 ppmv          
p-Cymene (1-Methyl-4lsopropylbenzene) 3.58E+00 ppmv          
Pentane 4.46E+00 ppmv 3.3 ppmv     72.15 7.4E-05 g/kg waste 

Propane 1.55E+01 ppmv 11 ppmv     44.09 0.00016 g/kg waste 

Propene 3.32E+00 ppmv          
Propyne 3.80E-02 ppmv          
sec-Butylbenzene 6.75E-02 ppmv          
Styrene (Vinylbenzene) 4.11E-01 ppmv 

Tetrachloroethylene  2.03E+00 ppmv 3.7 ppmv 165.83 0.00013 g/kg waste 

Tetrahydrofuran (Diethylene oxide) 9.69E-01 ppmv          
Thiophene 3.49E-01 ppmv          
Toluene (Methyl benzene) 2.95E+01 ppmv 39 ppmv   1271.7 µg/m^3 92.13 0.00332 g/kg waste 

trans-1,2-Dichloroethene 2.87E-02 ppmv 2.8 ppmv     96.94 3.6E-05 g/kg waste 

trans-1,2Dimethylcyclohexane 4.04E-01 ppmv          
trans-1,3-Dichloropropene 9.43E-03 ppmv          
trans-1,4Dimethylcyclohexane 2.05E-01 ppmv          
trans-2-Butene 1.04E-01 ppmv          
trans-2-Heptene 2.50E-03 ppmv          
trans-2-Hexene 2.06E-02 ppmv          
trans-2-Octene 2.41E-01 ppmv          
trans-2-Pentene 3.47E-02 ppmv          
trans-3-Methyl-2-pentene 1.55E-02 ppmv          
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Tribromomethane (Bromoform) 1.24E-02 ppmv          
Trichloroethylene (Trichloroethene) 8.28E-01 ppmv 2.8 ppmv     131.4 6.3E-05 g/kg waste 

Trichlorofluoromethane (Freon 11) 2.48E-01 ppmv          
Trichloromethane (Chloroform) 7.08E-02 ppmv 0.03 ppmv     119.39 1.6E-06 g/kg waste 

Undecane 1.67E+00 ppmv          
Vinyl acetate 2.48E-01 ppmv          
Vinyl chloride (Chloroethene) 1.42E+00 ppmv 7.3 ppmv     62.5 7.2E-05 g/kg waste 

Xylenes (o-, m-, p-, mixtures) 9.23E+00 ppmv 12 ppmv   341.3 µg/m^3 106.16 0.00094 g/kg waste 
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Table 8. Landfill Leachate Emissions Calculations 

 Johansen 1976 Kulikowska 2007 Christensen 2001 Mali 2016 Ogundipe 2015 Values used 

 Average Unit Mean Unit Mean Unit Average Unit Value Unit Value Unit 

             
Volume   0.458333 L/kg waste       .4 L/kg waste 

             
COD 7245.625 mg/L 1200 mg/L 22000 mg/L 82984 mg/l 2390 mg/l 9265.57 mg/kg waste 

BOD 4542.5 mg/L 388 mg/L 13000 mg/L 944 mg/l   1887.45 mg/kg waste 

TOC 510 mg/L         204 mg/kg waste 

Total N 212.45 mg/L 248 mg/L   49.8 mg/l   68.03333 mg/kg waste 

NH3 (as N) 134.5333 mg/L 215 mg/L 740 mg/L   33.33 mg/l 112.2863 mg/kg waste 

NO3 (as N) 0.263333 mg/L       20.5 mg/l 4.152667 mg/kg waste 

Organic N 34.16667 mg/L 39 mg/L 14.63333 mg/kg waste 

Total P 5.525 mg/L 8.5 mg/L 6 mg/L 0.12 mg/l 2.0145 mg/kg waste 

Suspended Solids 368.75 mg/L 405 mg/L   7154 mg/l   1057.033 mg/kg waste 

Volatile Susp Solids 183.375 mg/L 163 mg/L       69.275 mg/kg waste 

Total Solids 2916.667 mg/L 4576 mg/L   7866 mg/l   2047.822 mg/kg waste 

pH 6.375  7.84  6.1  8.74    7.26375  
Alkalinity 40.6 meq/L     980 mg/l   204.12 mg/kg waste 

Ca 212.6667 mg/L 342 mg/L 1200 mg/L     233.9556 mg/kg waste 

Mg 55.33333 mg/L 281 mg/L 470 mg/L     107.5111 mg/kg waste 

Mn         7.1 mg/l 2.84 mg/kg waste 

Na 240.1333 mg/L   1340 mg/L     316.0267 mg/kg waste 

K 168.8833 mg/L   1085 mg/L     250.7767 mg/kg waste 

Chloride 388 mg/L 954 mg/L 2120 mg/L 2395 mg/l   585.7 mg/kg waste 

Sulfate 53 mg/L 224 mg/L 500 mg/L 509 mg/l 45 mg/l 106.48 mg/kg waste 

Fe 194.0875 mg/L   780 mg/L   9.25 mg/l 131.1117 mg/kg waste 
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Zn 20.49438 mg/L 0.29 mg/L 5 mg/L   0.6 mg/l 2.638438 mg/kg waste 

Cr 0.177125 mg/L 0.06 mg/L 0.28 mg/L   0.025 mg/l 0.054213 mg/kg waste 

Ni 0.19875 mg/L   0.17 mg/L     0.07375 mg/kg waste 

Cu 0.2045 mg/L 0.03 mg/L 0.065 mg/L   0.2 mg/l 0.04995 mg/kg waste 

Cd 0.0056 mg/L 0.009 mg/L 0.005 mg/L     0.002613 mg/kg waste 

Pb 0.190375 mg/L BDL  0.09 mg/L     0.056075 mg/kg waste 

Co 0.0268 mg/L   0.05 mg/L     0.01536 mg/kg waste 

Benzene   0.0013 mg/L 0.0002 mg/L     0.0003 mg/kg waste 

Ethylbenzene   0.0314 mg/L 0.000223 mg/L     0.006325 mg/kg waste 

Toluene   0.0611 mg/L 0.001 mg/L     0.01242 mg/kg waste 

Xylene   0.0827 mg/L 0.0008 mg/L     0.0167 mg/kg waste 

Chlorobenzene     0.0001 mg/L     0.00004 mg/kg waste 

Dichlorobenzene     0.0054 mg/L     0.00216 mg/kg waste 
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Table 9. Open-Air Burn Emissions Calculations 

 Aurell et al 2017 Dominguez 2018 Woodall 2012 Gerstle 2012 EPA 1996 Values Used 

Pollutant avg unit avg unit avg unit avg unit avg unit Amount Unit 

Co2     1200 ppm 1000 ppm 1250 lb/ton waste 1340 kg/Mg Waste 0.9825 kg/kg waste 

CO             90 lb/ton waste 0.96 kg/Mg Waste 22.98 g/kg waste 

SO2         20 ppm     1.95 kg/Mg Waste 5.975 g/kg waste 

NO2         8 ppm 8 lb/ton waste 2.51 kg/Mg Waste 3.255 g/kg waste 

CH4             30 lb/ton waste     15 g/kg waste 

             
PM2.5 7.3 g/kg waste 10.5 g/kg waste 43 g/kg C         11.66667 g/kg waste 

PM10     11 g/kg waste 46 g/kg C 16 lb/ton waste     12.46667 g/kg waste 

             
Metals                         

Pb 2158 mg/kg waste 0.07 mg/kg waste 24 mg/kg C     0.1 kg/Mg waste 566.9175 mg/kg waste 

Cu 55.4 mg/kg waste 0.2 mg/kg waste 2.2 mg/kg C         18.82667 mg/kg waste 

Cl 255.5 mg/kg waste                 255.5 mg/kg waste 

Ca 6.91 mg/kg waste 0.1 mg/kg waste                 

K 138 mg/kg waste                     

As 4.62 mg/kg waste             0.00297 kg/Mg Waste     

Fe 1.7 mg/kg waste 0.3 mg/kg waste 4.3 mg/kg C         1.24 mg/kg waste 

Br 4.86 mg/kg waste                     

Ge 2.09 mg/kg waste                     

Y 2.53 mg/kg waste                     

Rb 2.57 mg/kg waste                     

Ba 0.75 mg/kg waste                     

Al                         

Cd 0.62 mg/kg waste             0.00437 kg/Mg Waste 2.495 mg/kg waste 



55 

Cr 0.12 mg/kg waste             0.007 kg/Mg Waste 3.56 mg/kg waste 

Zn 24.1 mg/kg waste                 24.1 mg/kg waste 

Hg         17 mg/kg C     0.0028 kg/Mg Waste 4.8 mg/kg waste 

Ni         1.5 mg/kg C     0.00218 kg/Mg Waste 1.39 mg/kg waste 

             
Dioxins                         

PCDD/PCDF 1.77 
ng TEQ/kg 
waste 0.904 

ng TEQ/kg 
waste 270 

ng TEQ/ 
kg C     4.73E-6 kg/Mg Waste 28.851 

ng TEQ/kg 
waste 

             
VOCs                     250 mg/kg waste 

1,1,2-Trichloroethane 1.11 mg/kg waste                     

1,2,4-Trimethylbenzene 27.17 mg/kg waste                     
1,2-Dichloro-1,1,2,2-
tetrafluoroethane 0.15 mg/kg waste                     

1,2-Dichloroethane 0.1 mg/kg waste                     

1,2-Dichloropropane 1.34 mg/kg waste                     

1,3,5-Trimethylbenzene 7.28 mg/kg waste                     

1,3-Butadiene 19.67 mg/kg waste 82 mg/kg waste 540 mg/kg C             

1,3-Dichlorobenzene 0.11 mg/kg waste                     

1,4-Dichlorobenzene 0.17 mg/kg waste                     

1,4-Dioxane 0.69 mg/kg waste                     

2,2,4-Trimethylpentane 0.72 mg/kg waste                     

2-Butanone (MEK) 10.24 mg/kg waste     540 mg/kg C             

2-Hexanone 6.43 mg/kg waste                     

2-Propanol 3.95 mg/kg waste                     

4-Methyl-2-pentanone 1.47 mg/kg waste                     

Acetone 44.7 mg/kg waste     1600 mg/kg C         342.35 mg/kg waste 

Acetonitrile 26.9 mg/kg waste     100 mg/kg C             

Acrolein     120 mg/kg waste 1200 mg/kg C             
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Benzene 310.88 mg/kg waste 266 mg/kg waste 2000 mg/kg C         458.96 mg/kg waste 

Bromodichloromethane                         

Bromoform                         

Carbon Disulfide 1.07 mg/kg waste     160 mg/kg C             

Carbon Tetrachloride 1.09 mg/kg waste     1.5 mg/kg C             

Chlorobenzene 1.71 mg/kg waste                     

Chloroethane 2.35 mg/kg waste                     

Chloroform 0.22 mg/kg waste                     

Chloromethane 7.58 mg/kg waste     220 mg/kg C             

cis-1,2-Dichloroethene                         

cis-1,3-Dichloropropene                         

Cumene 3.75 mg/kg waste                     

Cyclohexane 8.71 mg/kg waste                     

Dibromochloromethane                         

Dichlorodifluoromethane  6.72 mg/kg waste                     

Ethanol 10.63 mg/kg waste                     

Ethylbenzene 20.8 mg/kg waste 18 mg/kg waste                 

Hexachlorobutadiene                         

m,p-Xylenes 41.14 mg/kg waste     150 mg/kg C         50.57 mg/kg waste 

Methyl tert-Butyl Ether                         

Methylene Chloride 125.62 mg/kg waste                     

Naphthalene 144.54 mg/kg waste                     

n-Heptane 4.7 mg/kg waste                     

n-Hexane 16.35 mg/kg waste                     

n-Octane 15.62 mg/kg waste                     

o-Xylene 16.12 mg/kg waste                 16.12 mg/kg waste 

Styrene 50.71 mg/kg waste 210 mg/kg waste             130.355 mg/kg waste 

Tetrachloroethene 0.61 mg/kg waste                     
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Tetrahydrofuran (THF) 0.73 mg/kg waste                     

Toluene 326.46 mg/kg waste 52 mg/kg waste 860 mg/kg C         240.82 mg/kg waste 

trans-1,2-Dichloroethene                         

trans-1,3-Dichloropropene                         

Trichloroethene 0.28 mg/kg waste                     

Trichlorofluoromethane 2.48 mg/kg waste                     

Trichlorotrifluoroethane 1 mg/kg waste                     

Vinyl Chloride     0.55 mg/kg waste                 

Vinyl Acetate     100 mg/kg waste 1500 mg/kg C         350 mg/kg waste 

             

PAHs     1.2 
mg TEQ/kg 
waste             1.2 

mg TEQ/kg 
waste 

 



58 

Bibliography 

40 U.S.C. (2010). US Code Title 40. Part 258 - Criteria for Municipal Solid Waste 
Landfills.  

Aurell, J., & Gullett, B. (2017). Characterization of Air Emissions from Open Burning at 
the Radford Army Ammunition Plant. RAAP Reports & Documents. Virginia 
Department of Environmental Quality. 

Brennan, R., Healy, M. G., Morrison, L., & Hynes, S. (2015). Management of landfill 
leachate: The legacy of European Union Directives. Waste Management, 55, 355-
363. 

Christensen, T. H., Kjeldsen, P., Bjerg, P. L., Jensen, D. L., Christensen, J. B., Baun, A., . 
. . Heron, G. (2001). Biogeochemistry of landfill leachate plumes. Applied 
Geochemistry, 16, 659-718. 

Climate-Data.org. (n.d.). Climate Lashkar Gah. Retrieved from Climate-Data.org: 
https://en.climate-data.org/asia/afghanistan/helmand/lashkar-gah-3833 

Davis, J., Gelman, R., Tomberlin, G., & Bain, R. (2010). Waste-to-Energy: Hawaii and 
Guam Energy Improvement Technology Demonstration Project. National 
Renewable Energy Laboratory. 

Diesel Service and Supply. (2018). Approximate Diesel Fuel Consumption. Retrieved 
from Diesel Service and Supply: 
https://www.dieselserviceandsupply.com/Diesel_Fuel_Consumption.aspx 

DLA. (2017). Defense Logistics Agency (DLA) Deployable Hazardous Waste Disposal 
Project Rough Order of Magnitude (ROM) Business Case Analysis (BCA). 
Defense Logistics Agency J34, Strategic Distribution & Disposition, Research & 
Development. 

DoD. (2016). DoD Instruction 4715.23 Integrated Recycling and Solid Waste 
Management. Office of the Under Secretary of Defense for Acquisition, 
Technology, and Logistics. 

DoD. (2017). DoDI 4715.19 Use of Open-Air Burn Pits in Contingency Operations. 
Department of Defnese Instruction. Department of Defense. 



59 

Dominguez, T., Aurell, J., Gullett, B., Eninger, R., & Yamamoto, D. (2018). 
Characterizing emissions from open burning of military food waste and ration 
packaging compositions. Journal of Material Cycles and Waste Management. 

Durmusoglu, E., Taspinar, F., & Karademir, A. (2009). Health risk assessment of BTEX 
emissions in the landfill environment. Journal of Hazardous Materials, 176, 870-
877. 

ecoinvent. (n.d.). FAQs. Retrieved from ecoinvent: 
https://www.ecoinvent.org/support/faqs/methodology-of-ecoinvent-3/what-do-
the-shortcuts-such-as-ch-rer-row-and-glo-mean.html 

EPA. (1996). AP 42: Compilation of Air Pollutatnt Emission Factors, Fifth Edition, 
Volume I, Chapter 2 Solid Waste Disposal 2.1 Refuse Combustion. U.S. 
Environmental Protection Agency. 

EPA. (2005). Landfill Gas Emissions Model (LandGEM) Version 3.02 User's Guide. U.S. 
Environmental Protection Agency. 

EPA. (2008). Background Information Document for Updating AP42 Section 2.4 for 
Estimating Emissions from Municipal Solid Waste Landfills. U.S. Environmental 
Protection Agency. 

EPA. (2016). Tool for Reduction and Assessment of Chemicals and Other Environmental 
Impacts (TRACI). Retrieved from US Environmental Protection Agency: 
https://www.epa.gov/chemical-research/tool-reduction-and-assessment-
chemicals-and-other-environmental-impacts-traci 

EPA. (2017). Energy Recovery from the Combustion of Municipal Solid Waste (MSW). 
Retrieved from https://www.epa.gov/smm/energy-recovery-combustion-
municipal-solid-waste-msw#EnergyRecovery 

Federal Reserve. (2019). The Discount Rate. Retrieved from Board of Governers of the 
Federal Reserve System: 
https://www.federalreserve.gov/monetarypolicy/discountrate.htm 

Fenn, D. G., Hanley, K. J., & DeGeare, T. V. (1975). Use of the Water Balance Method 
for Predicting Leachate Generation from Solid Waste Disposal Sites. Office of 
Solid Waste Management Programs. U.S. Environmental Protection Agency. 
Retrieved from 
https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=9100OH2M.TXT 



60 

Forouhar, A., & Peterson, C. (2007). Out of the shadows. Retrieved from Waste 
Management World: https://waste-management-world.com/a/out-of-the-shadows 

Gerstle, R. W., & Kemnitz, D. A. (2012). Atmospheric Emissions from Open Burning. 
Journal of the Air Pollution Control Association, 17(5), 324-327. 

Harris, E., Zeyer, K., Kegel, R., Müller, B., Emmenegger, L., & Mohn, J. (2014). Nitrous 
oxide and methane emissions and nitrous oxide isotopic composition from waste 
incineration in Switzerland. Waste Management, 35. 
doi:http://dx.doi.org/10.1016/j.wasman.2014.10.016 

Hornstein, T. (2017). Life Cycle Analysis of Waste-to-Energy Conversion Technologies 
for Contingency DoD Deployed Forces. Air Force Institute of Technology, Air 
University, Air Education and Training Command. 

Hwang, K.-L., Choi, S.-M., Kim, M.-K., & Heo, J.-B. (2017). Emission of greenhouse 
gases from waste incineration in Korea. Journal of Environmental Management, 
196, 710-718. doi:10.1016/j.jenvman.2017.03.071 

ISO. (2006). ISO 14040:2006 Environmental management - Life cycle assessment - 
Principles and framework. International Organization for Standardization. 

Johansen, O. J., & Carlson, D. A. (1976). Characterization of Sanitary Landfill 
Leachates. Water Research, 10, 1129-1134. 

Knowlton, L. (2013). Small-Scale Waste to Energy. US Army Natick Soldier RD&E 
Center. Joint Deployable Waste to Energy (JDW2E). Retrieved from 
https://community.apan.org/cfs-file/__key/docpreview-s/00-00-00-87-
55/JDW2E_5F00_NSRDEC_5F00_Backup_2D00_StateOfTheArt_5F00_v20130
909.pdf 

Kulikowska, D., & Klimiuk, E. (2008). The effect of landfill age on municipal leachate 
composition. Bioresource Technology, 99, 5981-5985. 

Macias, K. (2015). Navy SBIR 2015.2 - Topic N152-097 Low Emissions Waste to Energy 
Disposal. Navy Facilities Engineering Command. 

Mali, S. T., & Patil, S. S. (2016). Life-cycle assessment of municipal solid waste 
management. Water and Resource Management, 169, 181-190. 

Moya, D., Aldas, C., Lopez, G., & Kaparaju, P. (2017). Municipal solid waste as a 
valuable renewable energy resource: a worldwide opportunity of energy recovery 



61 

using Waste-To-Energy Technologies. Energy Procedia, 134, 286-295. 
doi:10.1016/j.egypro.2017.09.618 

Mühle, S., Balsam, I., & Cheeseman, C. R. (2010). Comparison of carbon emissions 
associated with municipal solid waste management in Germany and the UK. 
Resources, Conservation, and Recycling, 54(11), 793-801. 
doi:10.1016/j.resconrec.2009.12.009 

Novotny, C. (2017). Implementing Waste Disposal Alternatives in Overseas Contingency 
Operations. Office of the Deputy Assistant Secretary of Defense (Environment, 
Safety & Occupational Health). Retrieved November 16, 2017 

Ogundipe, F. O., & Jimoh, O. D. (2015). Life Cycle Assessment of Municipal Solid 
Waste Management in Minna, Niger State, Nigeria. International Journal of 
Environmental Resources, 1305-1314. 

Petrescu, M., Batrinescu, G., & Stanescu, B. (2011). Evaluation of Gaseous Emissions 
from the Radauti Municipal Landfill. International Journal of Conservation 
Science, 2, 45-54. 

PRé. (2016). Introduction to LCA with SimaPro.  

PRé. (2016). SimaPro Database Manual.  

PRé. (2019). About SimaPro. Retrieved from SimaPro: https://simapro.com/ 

Relph, T., & Chiang, E. (2016). WASTE-TO-ENERGY THERMAL DESTRUCTION 
IDENTIFICATION FOR FORWARD OPERATING BASES. Navy Facilities 
Engineering Command, Engineering and Expeditionary Warfare Center. 

Rushton, L. (2003). Health hazards and waste management. British Medical Bulletin, 68, 
183-197. doi:10.1093/bmb/ldg034 

SIGAR. (2015, February). Final Assessment: What We Have Learned From Our 
Inspections of Incinerators and Use of Burn Pits in Afghanistan. Arlington, VA: 
Special Inspector General for Afghanistan Reconstruction. 

Tchobanoglous, G., Theisen, H., & Vigil, S. (1993). Integrated Solid Waste Management 
- Engineering Principles and Management Issues. McGraw-Hill, Inc. 

Theis, T., & Tomkin, J. (2013). Sustainability - A Comprehensive Foundation. U of I 
Open Source Textbook Initiative. 



62 

VA. (2015). Report on Data from the Airborne Hazards and Open Burn Pit (AH&OBP) 
Registry. U.S. Department of Veterans Affairs, Veterans Health Administration, 
Office of Public Health. 

VA. (2019). VA's Airborne Hazards and Open Burn Pit Registry. Retrieved from U.S. 
Department of Veterans Affairs: 
https://www.publichealth.va.gov/exposures/burnpits/registry.asp 

WEC. (2016). World Energy Resources - Waste to Energy. World Energy Council. 

Woodall, B. D., Yamamoto, D. P., Gullett, B. K., & Touati, A. (2012). Emissions from 
Small-Scale Burns of Simulated Deployed U.S. Military Waste. Environmental 
Science & Technology, 46, 10997-11003. 

 



63 

 

 
REPORT DOCUMENTATION PAGE 

Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments 
regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, 
Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, 
VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply 
with a collection of information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

21-03-2019 
2. REPORT TYPE  

Master’s Thesis  
3. DATES COVERED (From – To) 

September 2017 – March 2019 

TITLE AND SUBTITLE 

 
A Life Cycle Analysis of DoD Expeditionary Waste Management 
Strategies in SimaPro 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
 

5c.  PROGRAM ELEMENT NUMBER 

6.  AUTHOR(S) 
 

Chester, David J., Captain, USMC 

 

5d.  PROJECT NUMBER 
18V359 

5e.  TASK NUMBER 

5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 
  Air Force Institute of Technology 
 Graduate School of Engineering and Management (AFIT/ENV) 
 2950 Hobson Way, Building 640 
 WPAFB OH 45433-8865 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 

     AFIT-ENV-MS-19-M-167 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Air Force Civil Engineer Center Readiness Directorate 
2261 Hughes Ave, JBSA Lackland, TX 78236-9853 
robert.diltz@us.af.mil (210)925-0956 
ATTN: Dr. Robert Diltz 

10. SPONSOR/MONITOR’S 
ACRONYM(S) 
AFCEC/CXAE 

11.  SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
     DISTRUBTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

13. SUPPLEMENTARY NOTES   
This material is declared a work of the U.S. Government and is not subject to copyright protection in the 
United States. 

14. ABSTRACT  
The United States (US) Department of Defense (DoD) is investigating improved municipal solid waste 
(MSW) management techniques. Current techniques tax already limited land and energy resources at 
contingency bases and impart additional logistical support requirements and personnel commitments. 
Seeking a solution to this growing problem, the DoD is investigating waste-to-energy (WTE) systems to 
reduce the volume of hazardous and non-hazardous solid wastes while generating low emissions. The 
current barriers to the acquisition and utilization of viable WTE technologies are the high capital and 
operating and maintenance (O&M) costs. Using the Life-Cycle Analysis (LCA) software SimaPro, the 
human health, environmental quality, and climate change impacts of DoD expeditionary waste 
management practices were compared. These calculated impacts and the economic impacts confirm that 
the open-air burning of waste is not only dangerous to humans and the environment, but is costly to the 
US government. Considering the second and third-order economic effects and the mitigated human and 
environmental health impacts, WTE technologies may be a viable waste management strategy for the 
DoD. 
15. SUBJECT TERMS 
Life Cycle Assessment, LCA, SimaPro, DoD, Waste Management, Waste-to-Energy, WTE 

16. SECURITY CLASSIFICATION 
OF: 

17. LIMITATION 
OF  
     ABSTRACT 

 
UU 

18. 
NUMBER  
OF PAGES 
 

71 

19a.  NAME OF RESPONSIBLE PERSON 
Dr. Jeremy M. Slagley, AFIT/ENV 

a. 
REPORT 
 

U 

b. 
ABSTRACT 
 

U 

c. THIS 
PAGE 

 

U 

19b.  TELEPHONE NUMBER (Include area code) 
(937) 255-3636, ext 4632 
Jeremy.Slagley@afit.edu 

   Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39-18 


