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We construct simplified quantum circuits for Shor’s order-finding algorithm for composites N given by
products of the Fermat primes 3, 5, 17, 257, and 65537. Such composites, including the previously studied
case of 15, as well as 51, 85, 771, 1285, 4369, … have the simplifying property that the order of a modulo N for
every base a coprime to N is a power of 2, significantly reducing the usual phase estimation precision
requirement. Prime factorization of 51 and 85 can be demonstrated with only 8 qubits and a modular
exponentiation circuit consisting of no more than four CNOT gates.

S
hor’s prime factoring algorithm1 reduces the factorization of a product N 5 pp9 of distinct odd primes p and
p9 to that of finding the order r of a mod N for a randomly chosen base a coprime to N (with 1 , a , N),
which can be performed efficiently with a quantum computer. The standard implementation2 factors a b-bit

number with 3b qubits using a circuit of depth O(b3); alternative modular exponentiation circuits can be used to
reduce either the space (qubit number)3 or time4 requirements. The case N 5 15, which has the simplifying
property that all orders are powers of 2, has been demonstrated experimentally by several groups2,5–8. Recent
experiments have also factored N 5 219,10 and 12811.

In this paper we consider the application of Shor’s algorithm to products of special primes of the form

pk:22k
z1 with k~0, 1, 2, 3, 4: ð1Þ

Explicitly,

p~3, 5, 17, 257, and 65537: ð2Þ

Fermat proposed that numbers of the form 22k
z1 for any k 5 0, 1, 2, …, (called Fermat numbers) are prime;

however it is now known that the Fermat numbers with 5 # k # 32 are not prime, and it is not known whether
there are additional primes of this form for larger values of k.

Products of the form

N~pkpk’~ 22k
z1

� �
22k’

z1
� �

, with k,k’[ 0, 1, 2, 3, 4f g and k=k’

~15, 51, 85, 771, 1285, 4369, 196611, 327685, 1114129, and 16843009
ð3Þ

have the special property that the order of a mod N for every base a coprime to N is a power of 2. This follows from
Euler’s theorem,

aw yð Þ mod y~1, ð4Þ

where y is a positive integer, w(y) is the number of positive integers less than y that are coprime to y, and gcd(a, y)
5 1. When p and p9 are odd primes, all pp9 2 1 positive integers less than pp9 are coprime to pp9 except for the p 2

1 multiples of p9 and the p9 2 1 multiples of p, and these exceptions are distinct, so

w pp’ð Þ~pp’{1{ p{1ð Þ{ p’{1ð Þ~ p{1ð Þ p’{1ð Þ: ð5Þ

(This result also follows from Euler’s product formula.) Thus,

a p{1ð Þ p’{1ð Þ mod pp’~1: ð6Þ

Recall that the order r of a mod N is the smallest positive integer x satisfying ax mod N 5 1; therefore for a
composite of the form (3),

w Nð Þ~ pk{1ð Þ pk’{1ð Þ~22kz2k’ ð7Þ
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must be a multiple of r. Because r must be an integer, we conclude that
for any 1 , a , N with gcd(a, N) 5 1, r is a power of 2 as well.

Results
The standard2 order-finding circuit is shown in Fig. 1. The first
register has n qubits and the second has m. The modular exponentia-
tion operator in Fig. 1 acts on computational basis states as

x1x2 � � � xnj i6 0 � � � 1j i? x1x2 � � � xnj i6 ax mod Nj i, ð8Þ

where

x~
Xn

j~1

2n{jxj: ð9Þ

After the inverse quantum Fourier transform, measurement of the
first register is done in the diagonal basis. The probability to observe
the value

x [ 0, 1, . . . , 2n{1f g ð10Þ

is

prob xð Þ~ sin2 prxA=2nð Þ
2nA sin2 prx=2nð Þ , ð11Þ

where r is the order and A is the number of distinct values of x such
that ax mod N has the same value (this is approximately 2n/r). This
probability distribution has peaks at integer values of x near

j|
2n

r
with j~0, 1, � � � ,r{1: ð12Þ

The number of qubits n in the first register is chosen to enable reliable
extraction of the value of r in (12), which depends on whether or not r
is a power of 2. In actual applications of Shor’s algorithm this will not
be known, of course, as the point of the quantum algorithm is to
determine r. In this usual situation, measurement will yield (with
prob . 4/p2) an x satisfying

x
2n

{
j
r

����
����ƒ

1
2n

with j [ 0, 1, � � � ,r{1f g: ð13Þ

By choosing n 5 2b qubits in the first register, where b ; qlog2 Nr, we
are guaranteed that j/r will be a (continued fraction) convergent of x/

2n. However, for the family of composites N~ 22k
z1

� �
22k’

z1
� �

considered here, all bases have orders

r~2‘ with ‘ [ 1, 2, 3, � � � ,‘maxf g, ð14Þ

where the value of ,max is discussed below. In this case

A~
2n

r
ð15Þ

and the peaks (12) in (11) occur at integral values

x~0, 2n{‘, 2|2n{‘, � � � , r{1ð Þ|2n{‘: ð16Þ

Therefore, as long as we have

n~‘max ð17Þ

qubits in the first register we will be able to determine r, possibly after
a small number of repetitions. The simplest way to extract r from x
here (assuming x ? 0) is to simplify the ratio

x
2n

ð18Þ

down to an irreducible fraction, which will yield both j and r [recall
(12)] unless they have happen to have a common factor.

Next we discuss the value of ,max (which determines the largest
order 2‘max ) for a given composite N. We do not have an explicit
formula for ,max. However, when N is a product of distinct odd
primes, r can be as large as w(N)/2 (ref. 12), so for an N of the form
(3) we have the bound [see (7)]

‘maxƒ2kz2k’{1: ð19Þ

For example, in the case of N 5 51 (k 5 0, k9 5 2), the largest order is
24 5 16, and the upper bound is realized. However for N 5 85 (k 5 1,
k9 5 2), it is not (the largest order present is 16, not 32).

The second register stores the values of

ax mod N[ 0,1, � � � ,N{1f g ð20Þ

and therefore normally requires b qubits. However, for a given a, only
r of these values are distinct. Thus we can use fewer than b qubits.
This simplification, while not essential, has been used in all gate-
based factoring demonstrations to date. The reduction amounts to
computing a table of values of ax mod N classically for a given base a,
constructing a corresponding quantum circuit, and ignoring or elim-
inating unused qubits in the second register. We note that in addition
to being unscalable, this method of constructing the modular expo-
nentiation operator implicitly or explicitly uses the value of the order
r, i.e., the answer which the quantum computation is supposed to
determine; we discuss this issue further below.

In this work we will adopt an equivalent—but perhaps more sys-
tematic and transparent—modular exponentiation circuit construc-
tion: We follow the output of ax mod N by a second transformation

1 0

a mod N 1

a2 mod N ? 2

..

. ..
.

ar{1 mod N r{1

, ð21Þ

which maps the r distinct values of ax mod N to 0, 1, …, r 2 1. In (21)
we assume that 1 , a , N. We refer to this classical pre-processing of
ax mod N as compression. Compression does not adversely affect the
operation of the order-finding circuit, but reduces m from b to ,max

in a systematic manner (and generalizes the ‘‘full compilation’’
method used in Ref. 6.)

Any set of r distinct non-negative integers—in any order—could
be used for the output of the compression map (21). However the
choice employed here, and indicated in (21), is especially simple
because it can be compactly written as

ax mod N?x mod r að Þ: ð22Þ

Figure 1 | Basic quantum circuit for order finding. Here n 5 2b and m 5

b, where b ; qlog2 Nr is the number of bits in N.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 3023 | DOI: 10.1038/srep03023 2



Then, after changing the initial state of the second register from
00 � � � 1j i to 00 � � � 0j i, we have, instead of (8), the compressed

modular exponentiation operation

xj i6 0 � � � 0j i? xj i6 x mod rj i: ð23Þ

The operation (23) without the modulo r is just the bit-wise COPY
shown in Fig. 2 and the effect of the modulo r is to only copy the log2 r
least significant bits.

In conclusion, we require ,max qubits in each register, for a total of
2,max qubits. ,max can either be computed classically or the bound
(19) can be used. We note that the space requirements can be further
reduced by using iterative phase estimation13–15, but with an increase
in circuit depth. This might be useful for ion-trap and optical realiza-
tions but probably not for superconducting qubits.

We provide explicit quantum circuits for the cases of N 5 51 and
85. In both cases ,max 5 4 (the largest order is 16), so we require n 5 4
qubits in the first register and m 5 4 in the second, for a total of 8
qubits. This is significantly fewer than the 3b required for general b-
bit numbers (b 5 6 when N 5 51 and b 5 7 when N 5 85). It is also
fewer than the 2b 1 3 qubits required by Beauregard3.

After the compression discussed above, only four different circuits
are needed to cover all N 5 51 and N 5 85 cases, because there are
four possible orders. The assignments are listed in Tables I and II,
and the circuits are given in Figs. 3a–d.

Circuits for the remaining composites 771, …, 16843009 follow
from the method described above, and require no more than 2,max

qubits. From (19) we find that the total number of qubits required in
these cases is bounded by

771 16ð Þ, 1285 18ð Þ, 4369 22ð Þ, 196611 32ð Þ,

327685 34ð Þ, 1114129 38ð Þ, 16843009 46ð Þ:
ð24Þ

Discussion
Given the considerable interest in experimental demonstrations of
Shor’s algorithm, it is reasonable to ask what constitutes a ‘‘genuine’’
demonstration of this important algorithm, and whether the cases
presented here should be considered as such. In our opinion a genu-
ine implementation should use no knowledge of the value of the
order r—including whether or not it is a power of two—because
the objective of the quantum stage of the algorithm is to calculate
r. Therefore we do not regard the factorization of products of Fermat
primes to be genuine implementations of Shor’s algorithm.
Moreover, such special cases can be efficiently factored classically,
by comparing N against a list of products of these primes.

However we do view the circuits presented here as quasi-legit-
imate implementations of quantum order finding, and in our view
they are still interesting for this reason. In particular, each eight-qubit
circuit presented here is able to detect periods of two, four, eight, and
sixteen, so there are failure modes where an incorrect period could be
observed. But these genuine order-finding instances are nongeneric
cases from the perspective of Shor’s algorthm. Note that in this work
we have simplified the modular exponentiation circuits to reduce
their depth. It is also possible to implement uncompiled versions,
which do not make any use of the value of r and which would
constitute a fully genuine implementation of order-finding (but
not of factoring). The main point of this work, that the number of
qubits required in the first register is greatly reduced for composites
in the series (3), applies to either approach.

Smolin, Smith, and Vargo16 recently addressed the question of
what should constitute a genuine factoring demonstration by sim-
plifying the entire order-finding circuit for any product of distinct
odd primes down to only two qubits. This is possible by implement-
ing the phase estimation iteratively13–15 (or the Fourier transform
semiclassically17), and by choosing only bases a with order two.
Smolin et al.16 show that with knowledge of the factors, it is always
possible to find an order-two base, and they provide an algorithm for
doing so. The circuit of Smolin et al. does not constitute a genuine
implementation of Shor’s algorithm either. However, the focus of our
work is different than that of Ref. 16, as the circuits presented here are
still quasi-legitimate implementations of order finding, and we do
not make explicit use of the factors in simplifying the circuits.

Finally, we note that the r 5 16 cases (Fig. 3d) result in a uniform
probability distribution for observing computational basis states jxæ
after measurement of the first register, which would also result from

Figure 2 | Circuit to copy the first register to the second.

Table I | N 5 51 quantum circuits. The base marked by an aster-
isk satisfies ar/2 5 21 mod N and will result in a factorization
failure in the classical post-processing analysis

base a circuit

16, 35, 50* Fig. 3a
4, 13, 38, 47 Fig. 3b
2, 8, 19, 25, 26, 32, 43, 49 Fig. 3c
5, 7, 10, 11, 14, 20, 22, 23, 28, 29, 31, 37, 40, 41, 44, 46 Fig. 3d

Table II | N 5 85 quantum circuits. Bases marked by an asterisk satisfy ar/2 5 21 mod N and result in factorization failures in the classical
post-processing analysis

base a circuit

16, 69, 84* Fig. 3a
4, 13*, 18, 21, 33, 38*, 47*, 52, 64, 67, 72*, 81 Fig. 3b
2, 8, 9, 19, 26, 32, 36, 42, 43, 49, 53, 59, 66, 76, 77, 83 Fig. 3c
3, 6, 7, 11, 12, 14, 22, 23, 24, 27, 28, 29, 31, 37, 39, 41, 44, 46, 48, 54, 56, 57, 58, 61, 62, 63, 71, 73, 74, 78, 79, 82 Fig. 3d
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an unintended, purely decohering action of the CNOT gates (we
thank Alexander Korotkov for this observation). One method of
verifying that the circuit is functioning correctly is to perform tomo-
graphy on the final state. A simpler method, however, is to change the

input of the second register from 0j i64 to zj i64, as shown in Fig. 4.
If the gates are purely decohering, this will not change the output of
the first register upon measurement. But if the CNOTs are acting
ideally, the entire compressed modular exponentation operator now
acts as the identity [because j1æ ; 221/2(j0æ 1 j1æ) is an eigenvector of
the NOT gate] and can be effectively dropped from the circuit, lead-
ing to an observation of the final state j0000æ with unit probability.

In conclusion, we have shown that the simple and well-studied
case of factoring N 5 15 is the first in a series of cases

15, 51, 85, 771, 1285, 4269, . . . ð25Þ

that have all orders equal to a power of two and that can be factored
with fewer resources than that of other products with the same
number of bits.

Methods
The results in Tables I and II are found by classically computing the orders r for all
bases 1 , a , N satisfying gcd(a, N) 5 1. Cases where ar/2 5 21 mod N lead to a
failure of Shor’s algorithms and are marked by an asterisk. The operation (23) is then
implemented by a quantum circuit as described above.
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