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1. Introduction 

Multivariate regression characterizes the relationship between multiple predictors 
and multiple outcome measures. Here, we adopt the standard formulation, 𝑌𝑌 =
𝑋𝑋𝑋𝑋 + 𝜖𝜖, with 𝑌𝑌 ∈ ℝ𝑛𝑛×𝑐𝑐,  𝑋𝑋 ∈ ℝ𝑛𝑛×𝑝𝑝, coefficient matrix 𝑋𝑋 ∈ ℝ𝑝𝑝×𝑐𝑐, and error term 
𝜖𝜖 ∈ ℝ𝑛𝑛×𝑐𝑐, with n observations, p covariates, and c outcome variables. We focus 
specifically on reduced-rank regression models, in which the coefficient matrix, 𝑋𝑋, 
is assumed to have rank 𝑘𝑘 < min (𝑝𝑝, 𝑐𝑐). 

Identifying a lower-rank structure of the relationship between X and Y has at least 
two advantages. The first is interpretability: the simpler structure clarifies a small 
number of independent combinations of covariates that each has a relationship with 
a combination of outcomes. The second advantage is in data efficiency. All other 
things held equal, a model with fewer parameters can estimate those parameters 
with less uncertainty compared to a model with more parameters. So, with the same 
number of observations, uncertainty intervals will be smaller when the underlying 
low-rank structure of 𝑋𝑋 is estimated.  

To uncover the low-rank structure of the regression coefficient, it can be expressed 
as 𝑋𝑋 = 𝐵𝐵𝐴𝐴𝑇𝑇, with 𝐵𝐵 ∈ ℝ𝑝𝑝×𝑘𝑘, and 𝐴𝐴 ∈ ℝ𝑐𝑐×𝑘𝑘. The matrices A and B are not uniquely 
identifiable. Column permutations, sign reversals, and changes in scale can all 
produce identical 𝑋𝑋. Which pair of A and B to prefer differentiates a number of 
approaches to fitting the general reduced-rank regression model. Principal 
components regression, canonical correlation analysis, partial least squares 
regression, and reduced-rank regression are all algorithms to fit a reduced-rank 
regression model, and are related via the generalized eigenvalue problem (Borga et 
al. 1997).  

Although these methods exist within the frequentist framework, past work has 
developed Bayesian versions as well. Bayesian reduced-rank regression methods 
have a number of advantages relative to their frequentist counterparts. Bayesian 
methods permit the construction of posterior uncertainty intervals around 
coefficients, can provide evidence in favor of null relationships, can generate 
posterior predictive distributions, and can represent detailed prior knowledge of 
parameter values via flexible prior distributions. 

The present approach is similar to the first Bayesian treatment of reduced-rank 
regression (Geweke 1996); whereas here, we restrict 𝐵𝐵 to be lower trapezoidal, the 
Geweke approach is to force a subset of Y to depend only on A or B by replacing 
the first k columns of A or B with an identity matrix (i.e., 𝐵𝐵𝑇𝑇 = [𝐼𝐼𝑘𝑘|𝐵𝐵∗𝑇𝑇] or 𝐴𝐴𝑇𝑇 =
[𝐼𝐼𝑘𝑘|𝐴𝐴∗𝑇𝑇]), a choice that can affect the model’s suitability to a particular problem. 
Geweke introduces a Gibbs sampler to draw from the posteriors, but it is 
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conditional on reference prior distributions, which might not be desirable (Gelman 
et al. 2017). Vidaurre and colleagues introduced a Bayesian sparse partial least 
squares that used variational Bayes (Vidaurre et al. 2013). Other recent work 
introduces a Bayesian method for sparse reduced-rank regression (Goh et al. 2017). 
It estimates the posterior distribution for the elements of 𝑋𝑋, which is sparse, without 
identifying posteriors for 𝐴𝐴 or 𝐵𝐵. Although their method produces an analogue to 
𝐵𝐵 and 𝐴𝐴 on each iteration, some post-hoc column, sign, and scale transformation 
would need to be applied to obtain a coherent posterior on 𝐵𝐵 and 𝐴𝐴.  

Here, we introduce a fully Bayesian modelling approach to reduced-rank regression 
that uses weakly informative priors, supports robust error modeling, and produces 
well-defined posterior distributions for analogues to 𝐵𝐵 and 𝐴𝐴. It is implemented as 
a program for Stan (Carpenter et al. 2017), a popular Bayesian inference engine 
that, given a Bayesian model and some data, will automatically generate draws 
from the posterior distribution. To accomplish this, it uses a variant of Hamiltonian 
Monte Carlo sampling called the No-U-Turn Sampler. Stan’s modeling language 
also facilitates simulation by generating simulated data from a known set of 
parameters drawn from their respective priors. In the following sections, we 
describe our modeling approach in detail and present results from simulation 
studies to confirm that the model is well-specified. We conclude with some 
recommendations for future work. 

2. Methods, Assumptions, Procedures 

2.1 Bayesian Reduced-Rank Regression Model 

A straightforward approach to Bayesian reduced-rank regression would be to 
specify some priors for A and B, specify some error term, and let the sampler take 
it from there. This approach is problematic because of the sign, column, and scale 
ambiguities described previously. The same ambiguities occur in latent variable 
models, and here we borrow the solution from latent variable modeling (Geweke 
and Zhou 1996; Leung and Drton 2016). We first resolved the scale ambiguity by 
ensuring the priors on B and A strictly decrease from a mode at zero so that, all 
other things being equal, the coefficients with smaller values are preferred.  

To resolve the sign and column ambiguities, we applied the 𝐿𝐿𝐿𝐿 factorization to 𝐵𝐵, 
such that 𝐵𝐵𝐴𝐴𝑇𝑇 = 𝐿𝐿𝐿𝐿𝐴𝐴𝑇𝑇, where 𝐿𝐿 is lower-trapezoidal with positive values on the 
diagonal and 𝐿𝐿 is unitary. This structure resolves the remaining ambiguities, as the 
lower-trapezoidal restriction precludes column permutation, and the positive 
diagonal restriction precludes sign changes. For convenience, we define �̂�𝐴𝑇𝑇 =
 𝐿𝐿𝐴𝐴𝑇𝑇. Because Q is unitary, the distribution of �̂�𝐴 is the same as the distribution of 
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𝐴𝐴 subject to the criterion that the elements of 𝐴𝐴 have a distribution that is symmetric 
around zero and that elements in a given row of 𝐴𝐴 all share the same distribution. 

Here, we use a spherical normal prior for the elements of �̂�𝐴 with mean zero and 
standard deviation one. This is appropriate when the columns of Y have been z-
transformed. When such a transformation is undesirable, the rows of �̂�𝐴 could be 
assigned to be normal with some other standard deviation, i.e., �̂�𝐴𝑖𝑖,𝑗𝑗~𝒩𝒩(0,𝜎𝜎𝑖𝑖), read 
as the element in the ith row and the jth column is normally distributed with mean 
zero and standard deviation 𝜎𝜎𝑖𝑖. 

The prior for L when B is spherical normal with mean zero and standard deviation 
𝜎𝜎𝐵𝐵 is described in the context of factor analysis by Leung and Drton (2016). For 
off-diagonal elements, the distribution in 𝐿𝐿 is the same as that in 𝐵𝐵. The ith diagonal 
of 𝐿𝐿 is distributed proportional to 

𝐵𝐵𝑖𝑖,𝑖𝑖𝑘𝑘−𝑖𝑖𝑒𝑒−𝐵𝐵𝑖𝑖,𝑖𝑖
2 2𝜎𝜎𝐵𝐵⁄ ,𝐵𝐵𝑖𝑖,𝑖𝑖 > 0. 

Although this distribution is not implemented natively in Stan, Stan makes it easy 
to implement any distribution for which the log of the probability density function 
can be written. 

The Leung and Drton prior on 𝐿𝐿 applies to 𝐵𝐵 with identically distributed elements. 
This restriction can be conveniently relaxed to situations where the rows of 𝐵𝐵 are 
identically distributed, but the columns are not, i.e., 𝐵𝐵𝑖𝑖,𝑗𝑗~𝒩𝒩(0, 𝜆𝜆𝑖𝑖),  by 
reformulating 𝐵𝐵 = 𝛬𝛬𝐵𝐵�  where 𝐵𝐵�  is spherical standard normal and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝛬𝛬) =
{𝜆𝜆1, 𝜆𝜆2, … 𝜆𝜆𝑝𝑝}. In the present implementation, the priors on the diagonal elements 
of 𝛬𝛬 are standard half-normal, 𝜆𝜆𝑖𝑖 ∼ 𝒩𝒩+(0,1). 

Finally, the elements of the error term are modeled as drawn independently from a 
generalized Student’s T distribution with 𝜈𝜈 degrees of freedom, mean 0 and 
standard deviation 𝜎𝜎. The hyper parameters 𝜈𝜈 and 𝜎𝜎 are given fixed prior 
distributions, with 𝜈𝜈 ∼ 𝐺𝐺𝑑𝑑𝐺𝐺𝐺𝐺𝑑𝑑(2, 1

10
) and 𝜎𝜎 ∼ 𝒩𝒩+(0,1). Although these hyper-

priors might be inappropriate in some situations, they are generally recommended 
as reasonable defaults (Stan Development Team 2017). The Stan program 
implementing this model is in Listing 1.
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Listing 1: Stan program for reduced-rank regression 
functions { 
  real ld_diag_lpdf(real x, int i, int k, real c0) { 
    return (k-i)*log(x) - square(x)/(2*c0); 
  } 
} 
data { 
  int n; 
  int p; 
  int c; 
  int k; 
  matrix[n, p] X; 
  matrix[n, c] Y; 
} 
transformed data { 
  int ntrap = p*k - k*(k-1)/2 - k; 
} 
parameters { 
  real<lower=0> sigma; 
  real<lower=0> nu; 
  vector<lower=0>[k] diags; 
  vector[ntrap] lowtrap; 
  matrix[k, c] Ahat; 
  vector<lower=0>[p] lambda; 
} 
transformed parameters { 
  matrix[p,k] L; 
  { //hide integer 
    int idx; 
    idx=0; 
    L = rep_matrix(0, p, k); 
    for (col in 1:k) { 
      L[col, col] = diags[col];  
      for (r in (col+1):p) { 
        idx+=1;   
        L[r, col] = lowtrap[idx]; 
      } 
    } 
  } //close hider 
} 
model { 
  matrix[n, c] mu; 
  lowtrap ~ normal(0,1); 
  for (i in 1:k) 
    diags[i] ~ ld_diag(i, k, 1); 
  to_vector(Ahat) ~ normal(0,1); 
  lambda ~ normal(0, 1); 
  nu ~ gamma(2, 0.1); 
  sigma ~ normal(0,1); 
  mu = diag_post_multiply(X, lambda)*L*Ahat; 
 
  to_vector(Y) ~ student_t(nu, to_vector(mu), sigma); 

}  
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2.2 Model Evaluation 

To validate the model implemented in Listing 1, we used simulation-based 
calibration (SBC; Talts et al. 2018). SBC is an update to a previous method (Cook 
et al. 2006); both follow similar logic based on the relationship between parameters 
drawn from the priors of a model and the posterior distributions for those 
parameters conditioned on data simulated by the generative model. The goal of 
SBC is to ensure the model is well-specified, meaning that the model is a correct 
and error-free representation of a specific data-generating process. The steps of 
SBC are as follows: First, draw a set of model parameters from the model’s priors, 
𝜃𝜃∗ ∼ 𝑝𝑝(𝜃𝜃). Next, simulate some data according to the generative model, 𝑦𝑦∗ ∼
𝑝𝑝(𝑦𝑦|𝜃𝜃∗). Now generate S independent draws from the posterior distribution, 
{𝜃𝜃1, 𝜃𝜃2, …𝜃𝜃𝑆𝑆} ∼ 𝑝𝑝(𝜃𝜃|𝑦𝑦∗). Finally, for each element of 𝜃𝜃∗, 𝜃𝜃𝑖𝑖∗, compute the rank 
statistic 𝑅𝑅𝑖𝑖 = ∑ 𝕀𝕀(𝜃𝜃𝑠𝑠,𝑖𝑖 < 𝜃𝜃𝑖𝑖∗)𝑆𝑆

𝑠𝑠=1 , where 𝕀𝕀(𝑥𝑥) is the indicator function. Under a well-
specified model, the rank statistic 𝑅𝑅 will have a discrete uniform distribution over 
the integers [0, 𝑆𝑆], inclusive (Talts et al. 2018, Theorem 1). To assess the uniformity 
of 𝑅𝑅𝑖𝑖, the SBC procedure is repeated many times, and a histogram of the obtained 
values of 𝑅𝑅𝑖𝑖 is constructed. Under uniformity, after 𝑁𝑁 repetitions of the SBC 
procedure, the count of occurrences of a given value of 𝑅𝑅𝑖𝑖 will follow a binomial 
distribution, 𝐵𝐵𝑑𝑑𝐵𝐵𝐵𝐵𝐺𝐺𝑑𝑑𝑑𝑑𝐵𝐵(𝑁𝑁, 1

𝑆𝑆+1
). 

The above holds when independent draws from the posterior are available. The Stan 
program for our reduced-rank regression method produces correlated draws from 
the posterior, so the draws were thinned to obtain approximately independent 
draws. The goal for each simulation was to obtain 1024 nearly independent draws. 
Sixteen independent chains were run with 8,192 warmup and 8,192 post-warmup 
draws, and the draws were thinned by a factor of 128 (i.e., every 128th draw was 
saved and the rest were discarded), for a total of 1024 post-warmup draws. If, after 
this procedure, the estimated effective number of draws for any variable was less 
than 910, that simulation was not used. The first sample of retained simulations was 
discarded, setting 𝑆𝑆 to 1023, so that 𝑁𝑁 × 1

𝑆𝑆+1
 was a whole number. 

This entire process of drawing parameter values from their respective priors, 
simulating data, and then fitting the model to the simulated data was repeated until 
𝑁𝑁 = 1024 to obtain an expected count per bin of 1. After pooling 64 adjacent bins, 
the expected count per pooled bin is 128. Uniformity of R was assessed graphically 
with a histogram and imposed lines representing the 1st and 99th percentiles of a 
binomial distribution with N = 1024 and p = 64/1024. These methods will be 
insensitive to small deviations from uniformity but are sufficient to see large 
deviations that would be expected in a miss-specified model.  
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Stan can operate in simulation mode to generate simulated data sets. Listing 2 
shows the Stan program to simulate data based on our reduced-rank regression 
model. Sampling from the distribution specified in Leung and Drton (2016) for L 
is not implemented in Stan, so the approach instead was to draw from the implied 
priors on B and A, decompose B into L and Q, and compose �̂�𝐴𝑇𝑇 from A and Q. This 
approach therefore relies on the assumption that the Leung and Drton prior is 
correct and well-implemented. 

Listing 2: Stan program for simulating data from the reduced-rank regression 
model 
data { 
  int n; 
  int p; 
  int c; 
  int k; 
} 
transformed data { 
  int ntrap = p*k - k*(k-1)/2 - k; 
} 
parameters { 
} 
transformed parameters { 
} 
model { 
} 
generated quantities { 
  // parameters 
  real<lower=0> sigma; 
  real<lower=0> nu; 
  vector<lower=0>[p] lambda; 
  matrix[p,k] B; 
  matrix[c,k] A; 
  // transformed parameters 
  matrix[k, c] Ahat; 
  matrix[p,k] L; 
  matrix[p,p] B_fat; 
  matrix[p,p] qt_fat; 
  matrix[p,p] lt_fat; 
  // model values 
  matrix[n, p] X; 
  matrix[n,c] Y; 
  matrix[n,c] mu; 
  // parameter samples 
  sigma = fabs(normal_rng(0,1)); 
  nu = gamma_rng(2, 0.1); 
  for (i in 1:p) 
    lambda[i] = fabs(normal_rng(0, 1)); 
  for (j in 1:k){ 
    for (i in 1:p)  
      B[i,j] = normal_rng(0,1); 
    for (i in 1:c) 
      A[i,j] = normal_rng(0,1); 
  } 
  // transformations 
  B_fat = append_col(B, rep_matrix(rep_vector(0,p), p-k)); 
  qt_fat = qr_Q(B_fat'); 
  lt_fat = qr_R(B_fat'); 



 

7 

  L = lt_fat[1:k,]'; 
  Ahat = qt_fat[1:k,1:k]' * A'; 
  // model code 
  for (i in 1:n) { 
    for (j in 1:p) { 
      X[i,j] = normal_rng(0,1); 
    } 
  } 
  mu = diag_post_multiply(X, lambda)*L*Ahat; 
  for (i in 1:n) { 
    for (j in 1:c) { 
      Y[i,j] = student_t_rng(nu, mu[i,j], sigma); 
    } 
  } 
}  

 

When fitting this model to data (simulated or real), it is important to provide initial 
parameter values to the sampler that are reasonable and similar (but not identical) 
for each independent chain. R code for generating reasonable initialization values 
is shown in Listing 3. These initial estimates are then jittered and provided as initial 
values to Stan. 

Listing 3: R code for initializing analyses 

Dbeta = ginv(X)%*%Y # ML solution 
Dhat=apply(Dbeta,MARGIN=1,FUN=sd) # extract SD 
beta=Dbeta/Dhat  
 
# Decompose Beta into L and Ahat 
tmp=qr(t(beta)) 
iL=t(qr.R(tmp)) 
iL=iL[,1:settings$k] 
iQ=t(qr.Q(tmp)) 
iQ=iQ[1:settings$k,] 
iL = iL/sqrt(settings$k*settings$c) 
iAhat = iQ*sqrt(settings$k*settings$c) 
# flip iB so diags are positive 
sgn=t(sign(iL[diag_idx])) 
iL = iL%*%diag(c(sgn)) 
iAhat = diag(c(sgn))%*%iAhat 

 

This code snippet uses only values known a priori to estimate good starting points 
for model fitting. In particular, it uses the predictors X, outcomes Y, requested 
number of latent dimensions, k, and number of outcomes, c. These estimates were 
then jittered so the different chains would not start in identical locations. 

3. Results and Discussion 

The simulation procedure was repeated 6,400 times, but only 1,258 simulations met 
our convergence and independence criteria. Of the 1,258 that met the criteria, 1,024 
were randomly selected for analysis. 



 

8 

Histograms show the rank frequency for each element of 𝛬𝛬 (Fig. 1), L (Fig. 2), �̂�𝐴𝑇𝑇 
(Fig. 3), and error parameters 𝜈𝜈 and 𝜎𝜎 (Fig. 4). The histograms are generally 
consistent with a uniform distribution, as illustrated with a quantile-quantile plot of 
ranking bin counts versus the quantiles of the binomial distribution (Fig. 5). Over 
all the estimated parameters, 2 bin counts (of 592 bins) are below the first 
percentile, a proportion of 0.0034. Seven counts are above the 99th percentile, a 
proportion of 0.012. These summaries are consistent with a well-specified model. 

Despite fairly extreme thinning and long warmup periods, many of our simulations 
did not meet our criteria. Those that did meet our criteria suggest the model is well-
specified. However, that a large proportion of simulations did not meet our 
independence criteria suggests that even longer warmup periods may be necessary 
in practice. When independent draws are required, then even more extreme thinning 
might be necessary. For purposes other than SBC, such as fitting the model to 
nonsimulation data, independent draws are typically not required. The results of 
this calibration show that when the chains do converge and samples are 
approximately independent, the estimates do not show any substantial bias that 
would indicate a miss-specified model. 

 

Fig. 1 Histograms of the rank of the simulated values of the eight elements of 𝜦𝜦 relative to 
the draws from their respective posterior distributions in 1,024 simulations. The bin width is 
64. The middle horizontal line indicates the expected bin count, with the box showing the 1st 
and 99th percentiles of a binomial distribution. 
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Fig. 2 Histograms of the rank of the simulated values of the 16 elements of L relative to the 
draws from their respective posterior distributions in 1,024 simulations. Note that the figure 
order is transposed, so L1–L8 are the elements of the first column of L. L9 was restricted to 
always be zero, so no data are shown for that element. The bin width is 64. The middle 
horizontal line indicates the expected bin count, with the box showing the 1st and 99th 
percentiles of a binomial distribution. 

 

Fig. 3 Histograms of the rank of the simulated values of the 12 elements of  𝑨𝑨�𝑻𝑻 relative to 
the draws from their respective posterior distributions in 1,024 simulations. The bin width is 
64. The middle horizontal line indicates the expected bin count, with the box showing the 1st 
and 99th percentiles of a binomial distribution. 
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Fig. 4 Histograms of the rank of the simulated values of the parameters 𝝂𝝂 and 𝝈𝝈 relative to 
the draws from their respective posterior distributions in 1,024 simulations. The bin width is 
64. The middle horizontal line indicates the expected bin count, with the box showing the 1st 
and 99th percentiles of a binomial distribution. 

 

Fig. 5 Quantile-quantile plot of the observed rank histogram counts (empirical quantiles) 
against the quantiles of a binomial distribution. The quantiles selected were the 1, 5, 10, 25, 
50, 75, 90, 95, and 99th percentile. 

4. Conclusions 

Here, we have provided code for a Stan program that can generate samples from 
the posterior of a reduced-rank regression model. As described previously, other 
Bayesian approaches to reduced-rank regression are available, but the present 
approach is relatively easy to understand and very easy to run. Interfaces to Stan 
are available for many popular programming languages, including Python, R, and 
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MATLAB, so the Stan model developed and validated here could easily be applied 
by other researchers. We have also demonstrated that the model is well-specified, 
although some tuning of the sampler and/or extreme thinning might be necessary 
to obtain independent draws from the posterior. We conclude with a few comments 
about the limitations and possible extensions to this Bayesian reduced-rank 
regression algorithm. 

In this program, the number of latent dimensions, k, is specified ahead of time. 
When k is set to some value larger than is needed to account for the data, the 
posteriors of all the elements of some columns of A should be centered on zero. 
Since k can be thought of as specifying the number of columns of A with nonzero 
elements, this pattern of results can be interpreted roughly as the model inferring a 
value of k smaller than the chosen value. This may result in more severe shrinkage 
to the nonzero columns, but the model can then be rerun with a different choice of 
k. Formal model comparisons, for example using Bayes Factors (Kass and Raftery 
1995) or approximate leave-one-out cross-validation (Vehtari et al. 2017), could be 
used to select the best value of k. 

A further limitation of the present implementation is that it might be insensitive to 
situations with many covariates, especially when a relatively small number of 
covariates have any appreciable impact on the outcomes. Frequentist regularization 
techniques, such as ridge regression, find sparse solutions by penalizing the model 
likelihood by a term related to the magnitude of the estimated coefficients. In the 
Bayesian framework, a number of approaches focused on the choice for the prior 
distribution are proposed to obtain sparse solutions (Gelman et al. 2013; Betancourt 
2018). One particularly well-suited approach is the regularized horseshoe prior 
(Piironen and Vehtari 2017), sometimes also called the Finnish horseshoe, which 
uses the following prior for regression coefficients: 𝑏𝑏𝑖𝑖 ∼ 𝒩𝒩(0, 𝜆𝜆𝑖𝑖𝜏𝜏), where 𝜆𝜆𝑖𝑖 is a 
per-coefficient shrinkage parameter, and 𝜏𝜏 is a global shrinkage parameter. With 
appropriately selected hyperpriors, this has the effect of forcing most coefficients 
to be close to zero but leaving others free to take on relatively large values.  

Using a regularized horseshoe prior on 𝛬𝛬 in the present model would enforce row-
sparsity on 𝑋𝑋, meaning that all the entries in some rows would be shrunk toward 
zero, leaving other whole rows free to be relatively large. In some cases, this might 
be desirable, but in general, a goal would be to obtain a solution that was sparse 
throughout. Applying such a prior would alter the structure of 𝐿𝐿 and �̂�𝐴𝑇𝑇, rendering 
priors derived from the assumptions of identically distributed rows inappropriate, 
so appropriate alternative priors would have to be identified. An exception is when 
𝑘𝑘 = 1, then the regularized horseshoe prior can be used in the present model 
without apparent problems. Work to apply the regularized horseshoe to our 
reduced-rank regression method under less restrictive conditions is ongoing. 
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