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Surrogate models can be used to approximate complex systems at a reduced cost and are 

widely used when data generation is expensive or time consuming. The accuracy of these 

models is dependent on the samples used to create them. Therefore, proper selection of 

samples within the parameter space is of paramount importance. Adaptive sampling 

procedures have been developed to identify optimal locations for new samples by leveraging 

response information from existing samples. In this manner, adaptive sampling methods 

significantly reduce the number of samples required to build a surrogate model of a given 

accuracy. However, adaptive sampling techniques have a cost associated with determining 

ideal sample locations, which typically grows with the sample count. The present effort seeks 

to reduce the cost associated with the adaptive sampling procedure and thereby maximize the 

efficiency of surrogate model creation. A new K-fold cross-validation (KFCV)-Voronoi 

adaptive sampling technique is proposed to reduce the sample selection costs by adding a 

global KFCV filter to the cross-validation (CV)-Voronoi technique. The costs are further 

reduced through an innovative Voronoi batch sampling technique. The proposed adaptive 

sampling acceleration techniques are evaluated using benchmark functions with increasing 

parameter space dimension and aerodynamic loading data. 

Nomenclature 

𝛽∗ Regression coefficients 

𝑒𝐿 Cross-validation error 

𝑒𝐾𝐹 K-fold cross-validation error
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𝐹 Design matrix 

𝑓 Regression function 

𝑝 Number of regression functions 

𝑄 Set of test points  

𝑅 Stochastic-process correlation matrix 

S Set of samples 

𝑆\𝑠𝑟 Set of samples without 𝑠𝑟

𝑠 Sample  

𝑡 Number of test points  

𝑉 Relative volume  

𝑥 Input variable vector  

𝑌 Set of responses  

𝑦 Response  

�̂� Surrogate response surface  

Subscript 

𝑖 Variable number 

𝑟 Reference 

I. Introduction

urrogate modeling is used to closely approximate complex functional relationships at considerably reduced

computational expense. Consequently, it is becoming increasingly prevalent in engineering analysis, particularly

when data collection is time consuming, expensive, or difficult. Within the literature, Surrogate modeling has been 

applied to a wide-variety of applications including: heat exchanger design [1], aerodynamic loading [2], and modeling 

printed circuit-boards [3]. Surrogate models are built from discrete evaluations of responses to inputs within a 

parameter space of interest. Once built, a surrogate model of sufficient accuracy can be used to predict the behavior 

of the untestested interstitial parameter space in place of the full model. However, the accuracy of a surrogate model 

is dependent upon how well the response behavior is captured by the samples used to create the model. Therefore, the 

sampling process plays a key role in the quality of the surrogate response surface.  

In general, sampling techniques can be classified as either one-shot or adaptive. One-shot sampling approaches 

designate the sample set size and locations in a single stage, prior to the sample collection. One-shot approaches 

include Latin hypercube design (LHD) [4] [5], orthogonal arrays [6], or uniform grid sampling. In contrast, adaptive 

sampling approaches dynamically vary the sample set size and location based on prior results. The adaptive sampling 

techniques use information from the response surface built using the current samples to select the next sample so that 

it offers the maximum improvement in model accuracy or certainty. Compared to one-shot techniques, adaptive 

sampling techniques provide surrogate models of equivalent accuracy with significantly fewer samples [7]. Effective 

adaptive sampling techniques must balance two contrasting objecitves exploration of the parameter space and 

exploitation of the response. Exploration is achieved by sampling regions far from existing points, i.e., where the 

prediction uncertainty is high. Conversely, exploitation is accomplished by leveraging information from response 

surfaces constructed from a set of initial samples to identify regions of interest (ROI) where additional sampling would 

provide the most useful information for resolving the complex functional behavior.   

Numerous approaches have been developed to identify these ROI, most of which can be classified as gradient-, 

committee-, variance-, or cross-validation-based methods [8]. Gradient-based adaptive sampling approaches use the 

gradient and/or the Hessian of the response to identify regions that are difficult to model, i.e. regions with large 

gradients or Hessians. The Hessian matrix has been employed by the local linear approximation (LOLA)-Voronoi 

approach [7] and Mackman [9]. Alternatively, the committee strategy uses a combination of different surrogate model 

approaches, e.g., multivariate polynomials, support vector regression [10], proper orthogonal decomposition [11] [12], 

Kriging [13], and radial basis functions [14] [15], etc. A committee of one or more surrogate modeling techniques is 

formed, and a model is built using each method. The region where the models of the committee disagree the most is 

selected as the new sample location. Douak et al. [16] used a query-by-committee (QBC) strategy consisting of 3 

regression models, and Hendrickx and Dhaene [17] created a committee of three metamodels to select a point where 

two of the models have the largest disagreement. Conversely, variance-based adaptive sampling techniques use the 

model prediction variance to identify regions of interest where the model suffers from high uncertainty. These 

approaches are typically linked to Kriging or Gaussian process-based surrogate models, which provide a prediction 

variance in addition the surrogate model. The variance or mean square error (MSE) has been used frequently within 
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the literature to identify future sample locations. Jin et al. [18] proposed sampling a new point by maximizing the 

mean square error (MMSE); Sacks et al. [19] considered the integrated mean square error (IMSE); Shewry and Wynn 

[20] proposed the maximum entropy (ME) criterion; and Jones et al. [21] suggested sampling procedures based on the 

expected improvement (EI) function. Finally, cross-validation (CV) approaches divide the sample set into training and 

testing sets, to respectively build and evaluate the model accuracy. The next sample is placed in the region with the 

largest error.  In leave-one-out cross-validation (LOOCV), a single sample is used to test the surface built from the 

remaining points. Cross-validation is typically performed for each sample point and the next sample is selected in the 

region where the response surface is most sensitive to the sample. The cross-validation approach has been used by 

Aute et al. [1],  Li et al. [22], and Xu et al. [23]. These adaptive sampling techniques have all been developed to 

minimize testing costs by ensuring each additional sample provides as much information as possible.  

Within the literature the Voronoi type adaptive sampling approaches (e.g. LOLA-Voronoi [7] and CV-Voronoi 

[23]) have enjoyed considerable popularity. The LOLA-Voronoi approach was one of the first adaptive sampling 

techniques that could be applied independently of the selected surrogate modeling method. The development of a 

generic adaptive sampling approach that could be coupled with any adaptive sampling approach led to prevalent 

adoption. The CV-Voronoi adaptive sampling technique maintained the strength of the LOLA-Voronoi technique, but 

was demonstrated to provide samples that led to models of improved accuracy. These adaptive sampling approaches 

have a cost associated with sample selection that increases superlinearly with the number of sample points. The goal 

of the present work is to reduce the cost associated with identifying future sample locations.  

 A new K-fold cross-validation (KFCV)-Voronoi scheme is developed. The KFCV-Voronoi significantly 

accelerates the adaptive sampling process, and provides samples that can be used to form surrogate models of accuracy 

equal to or better than existing Voronoi techniques. Additionally, it is often desirable to select samples in batches 

rather than one at a time. A novel Voronoi batch sampling method, which significantly outperforms the naïve approach 

is implemented. Batch sampling further decreases the cost associated with adaptive sampling by reducing the number 

of calls to the adaptive sampling techniques and enabling testing resources to be used in parallel. This paper is 

organized as follows: Section II outlines the Kriging method used here for surrogate modeling; Section III introduces 

the KFCV-Voronoi and Voronoi batch adaptive sampling techniques for reduced cost adaptive sampling; Section IV 

presents a method to evaluate surrogate model accuracy; and Section V demonstrates the efficacy of the adaptive 

sampling techniques relative to the current state-of-the-art. 

II. Kriging-Based Surrogate Modeling 

 There are a number of prominent surrogate modeling methods, and an in-depth examination of surrogate modeling 

techniques can be found in the work of Wang and Shan [24]. In this work, the Kriging technique was implemented 

using the MATLAB Design and Analysis of Computer Experiments (DACE) toolbox [25]. Kriging is a method of 

interpolation that models the response via a Gaussian process governed by prior covariances. Compared to other 

interpolation schemes, Kriging provides high accuracy from a smaller database size. However, implementation is 

moderately difficult and requires significant pre-processing.  

 Given a set of 𝑛 sample sites: 

 

 𝑺 =  [𝑠1, 𝑠2, . . . , 𝑠𝑛]𝑇 , (1) 

 

and responses: 

 

  𝒀 =  [𝑦1, 𝑦2 , … , 𝑦𝑛]𝑇 , (2) 

 

the Kriging predictor develops a model, �̂�(𝑥), that predicts the response at an unsampled point by: 

 

 �̂�(𝑥) = 𝒇(𝑥)𝑇 𝜷∗ + 𝒓(𝑥)𝑇𝜸∗. (3) 

 

The first term of Eq. (3) is a regression model which is a low-order polynomial formed by 𝑝 inputs: 

 

 𝒇(𝑥) = |𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑝)|
𝑇
. (4) 

 

For the set of samples 𝑺 the 𝑛 × 𝑝 design matrix, 𝑭, can be built by substituting each sample into 𝑓 so that 𝑭𝒊𝒋 =

𝒇𝒋(𝒔𝒊), 
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𝑭𝑖𝑗 = 

[
 
 
 
𝑓1(𝑠1) 𝑓2(𝑠1) … 𝑓𝑝(𝑠1)

𝑓1(𝑠2) 𝑓2(𝑠2) … 𝑓𝑝(𝑠2)

⋮ ⋮  ⋮
𝑓1(𝑠𝑛) 𝑓2(𝑠𝑛) … 𝑓𝑝(𝑠𝑛)]

 
 
 

  .  (5) 

 

The coefficients 𝜷∗ are found by solving the generalized least squares solution (with respect to 𝑹): 

 

 𝜷∗ = (𝑭𝑇𝑹−1𝑭)−1𝑭𝑇𝑹−1𝒀. (6) 

 

Here 𝑹 is the matrix of stochastic-process correlations between sample points, 

 

 𝑹𝑖𝑗 =  𝓡(𝜃, 𝑠𝑖 , 𝑠𝑗),      𝑖, 𝑗 = 1,… , 𝑛. 

 

(7) 

The second term of Eq. (3) is dependent on the vector of correlations between sampled points S and an unsampled 

point 𝑥: 

 

 𝒓(𝑥) = [𝓡(𝜃, 𝑠1, 𝑥), … ,𝓡(𝜃, 𝑠𝑛 , 𝑥)]𝑇 . (8) 

 

Thus, the Kriging method builds a model that expresses the response through a regression model and random function 

(stochastic process) [25]. Though the Kriging model is used excusively to build surrogate models within this work, an 

advantage of the proposed adaptive sampling method is it has no direct reliance on the Kriging model and can be used 

with any other surrogate modeling method (like the other Voronoi class adaptive sampling techniques).  

III. Proposed Adaptive Sampling Methodology 

 The accuracy of a surrogate model is dependent upon the information conveyed by the discrete samples of the 

response used to build it. As a result, the sample location and selection process can have a large impact on the number 

of samples required to obtain a surrogate model of sufficient accuracy. Samples selected via adaptive sampling 

techniques have been demonstrated to provide models of a desired accuracy with fewer samples. However, these 

adaptive sampling techniques have a cost associated with determining the ideal sample locations and this cost typically 

grows with the sample count.  This work seeks to reduce the cost associated with the adaptive sampling procedure and 

thereby maximize the cost savings provided by adaptive sampling. A new K-fold cross-validation (KFCV)-Voronoi 

adaptive sampling technique is presented here to reduce the sample selection costs by adding a global KFCV filter to 

the cross-validation (CV)-Voronoi technique. 

A. Cross-Validation Voronoi 

Since the KFCV-Voronoi adaptive sampling technique builds upon the CV-Voronoi technique we begin with a brief 

summary of the CV-Voronoi adaptive sampling approach. The CV-Voronoi technique, developed by Xu et al. [23], 

selects samples in regions with the largest prediction error. This is achieved by again breaking up the domain into 

Voronoi tessellations surrounding each sample. A Voronoi cell corresponds to the region that is closer to a particular 

sample than any other sample. Fig. 1 presents an example of Voronoi tessellations. 

 

Fig. 1 Voronoi cells consist of the region that is closer to a given point than any other sample 
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The error is then evaluated using a leave-one-out cross-validation (LOOCV) technique, which is performed by: (1) 

removing a single point from the sample set, (2) building a new response surface using the remaining points, (3) 

evaluating the new response surface at the removed point, and (4) calculating the CV-error, which is taken as the 

difference between the true value and the response surface with the missing point: 

 

 𝑒𝐿𝑂𝑂
𝑖 = |𝑦(𝑠𝑖) − �̂�𝑆\𝑠𝑖

(𝑠𝑖)|. (9) 

 

Here, 𝑦(𝑠𝑖) is the measured response at 𝑠𝑖, and �̂�𝑆\𝑠𝑖
(𝑠𝑖) is the response predicted at 𝑠𝑖 by the surrogate model 

constructed without 𝑠𝑖 . The new sample location is found by repeating this process for all off the cells and identifying 

the Voronoi cell with the largest prediction error. The new sample is then selected as the point within the Voronoi cell 

with the largest error that is furthest from the existing sample point.  

The CV-Voronoi technique has been shown to perform very well for several benchmark functions [23]. However, 

the computational load increases superlinearly with the number of samples; because to evaluate the LOOCV error a 

response surface must be created for each sample. As higher dimension parameter spaces are considered, more samples 

are required, and the number of response surface models required can become computationally taxing.  

B. K-fold Cross-Validation Voronoi 

To reduce the computational cost, a novel K-fold cross-validation (KFCV)-Voronoi adaptive sampling technique 

is proposed here. The KFCV-Voronoi technique reduces the sample selection cost by employing a K-fold cross-

validation procedure to decrease the number of response surface models built during the sampling process. KFCV 

breaks the sample set into 𝐾 randomly selected subsets. Fig. 2(a). shows this for a two-dimensional parameter space 

with 25 samples, which is assigned divided into 5 folds (for this example 𝐾 = 5). The fold assignment is portrayed 

by the sample color, and each fold is shown in Fig. 2(b). 

  

 
(a) 

 

 
(b) 

Fig. 2 (a) The original samples in a 2D parameter space and (b) their random assignment to K-folds. 

The K-folds are then used for cross-validation by assigning a single fold for testing, and using the remaining folds to 

train the surrogate model. Fig. 3 shows the evaluation of the first fold. The training set consists of folds 2, 3, 4, and 5, 

and fold 1 makes up the testing set.  

 
Fig. 3 KFCV utilizes a single fold as a test set for the remaining folds 
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The error associated with each fold is calculated in a manner similar to the LOOCV error metric, Eq. (9), and it is 

defined as 

 

𝑒𝐾𝐹
𝑖 = ∑ |𝑦(𝑠𝑗) − �̂�𝑆\𝑘𝑓𝑖

(𝑠𝑗)|

𝑛𝐾

𝑗∈𝑘𝑓𝑖

  , (10) 

where 𝑛𝐾 is the number of samples per fold, 𝑦(𝑠𝑗) is the true response at 𝑠𝑗, and �̂�𝑆\𝑘𝑓𝑖
(𝑠𝑗) is the response predicted 

at 𝑠𝑗 using the surrogate model built without fold 𝑖. The KFCV process is repeated 𝐾 times so that each fold is evaluated 

as the test set. The folds are then sorted by error magnitude. The folds with the largest error contain the samples that 

have the biggest impact on the accuracy of the response surface, as a result the Voronoi cells of these samples are 

identified as regions of interest. To identify where additional points are needed within these regions of interest, 

LOOCV is performed for the samples that belong to the 𝑙 folds with the largest errors. The next sample is then selected 

as the point within the Voronoi cell with the largest CV error that is furthest from the sample. The procedure is 

summarized in Algorithm 1. By implementing KFCV to initially approximate the modeling error the number of 

surrogate response surfaces required is limited to  𝐾 + 𝑙 
𝑛𝑠𝑎𝑚𝑝

𝐾
  instead of 𝑛𝑠𝑎𝑚𝑝.  

 

Algorithm 1. KFCV-Voronoi Adaptive sample procedure 

1. Randomly sort existing samples into K-folds 

2. Perform K-fold cross-validation (KFCV) 

3. Select the 𝑙 folds with the largest KFCV error 

4. Use leave-one-out cross-validation (LOOCV) to evaluate each sample within the 𝑙 folds 

5. Identify the sample with the highest LOOCV error 

6. Select the point within this sample’s Voronoi cell that is furthest from the existing sample 
 

C. Voronoi Batch Sampling 

It is often desirable to select samples in batches rather than one at a time. Batches enable testing resources to be 

used in parallel and reduces the number of calls to the adaptive sampling procedure. However, within the literature 

the Voronoi type adaptive sampling techniques have only been presented selecting a single point a time. A naïve batch 

sampling approach would use place a sample within the Voronoi cell of the 𝑛 cells with the largest CV error that is 

furthest from the sample (where 𝑛 is the batch size).  However, samples selected in this manner can be overly clustered 

since cells with large errors are likely to neighbor one another, as shown in Fig. 4. The resulting samples are likely 

redundant.  

 
Fig. 4 Future samples from a naïve batch sampling approach.  

 In this work, a new Voronoi batch sampling approach is presented to overcome the deficiencies of the naïve 

implementation.  The new Voronoi batch sampling approach proposed here calculates the first sample of the batch by 

identifying the sample with the largest error metric and sampling the point within the Voronoi cell that is furthest from 

the existing sample, as shown in Fig. 5(a). The Voronoi regions are then reassigned, taking the new point into account, 

as illustrated in Fig. 5(b). The second sample is then selected within the updated Voronoi region associated with the 

second highest score, as demonstrated in Fig. 5(c). This procedure is then repeated until the number of samples in the 

batch is reached. Fig. 5(d) presents the resulting 5-sample batch. Comparing the sample distributions of the naïve 
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approach in  Fig. 4 with the new Voronoi batch sampling approach in Fig. 5(d) it is clear that the latter provides a 

sample set that is less likely to provide redundant information for surrogate model creation. 

 
(a) 

 
(c)  

 
(b) 

 
(d) 

Fig. 5 The Voronoi batch sampling procedure: (a) the first sample is identified, (b) the Voronoi cells are reassigned, (c) the 

second sample is selected within the new Voronoi cells, (d) the procedure is repeated until the full batch is found.  

IV. Response surface accuracy evaluation 

 The primary goal of an adaptive sampling technique is to choose samples that enable creation of surrogate models 

of improved quality for a given sample quantity. Therefore, to assess the adaptive sampling techniques we need a 

metric to asses the quality of a given surrogate model. Many techniques have been proposed to evaluate surrogate 

model accuracy, but within this work we evaluate the response surfaces using root mean square error (RMSE) or 

cross-validation error (CVE). RMSE is defined as 

 

𝑅𝑀𝑆𝐸 = √
1

𝑡
 ∑(𝑦(𝑞𝑖) − �̂�(𝑞𝑖))

2
𝑡

𝑖=1

 . (11) 

Here 𝑦 is the true response, �̂� is the response predicted by the surrogate model, and 𝑡 represents a number of test 

points, 𝑄 = [𝑞1, 𝑞2, … , 𝑞𝑡]. As 𝑡 increases, the RMSE gives an increasingly accurate evaluation of the surrogate 

response surface. The RMSE approach requires collecting an additional set of samples to be used solely for verifying 

the accuracy of a surrogate model 
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V. Results 

To demonstrate the efficacy of the KFCV-Voronoi and Voronoi batch sampling methods, we initially compare 

their performance with popular adaptive sampling methods from the literature for a variety of analytic benchmark 

functions. Because the benchmark functions can be evaluated so rapidly, the computational time is almost entirely 

dependent on  adtaptive sampling technique. As a result, the benchmark functions enable direct analysis of 

computational cost savings. We consider benchmark functions of increasing complexity to examine performance of 

the adaptive sampling techniques over a set of problems. After scrutinizing the performance using these benchmark 

functions, the adaptive sampling techniques are applied to support modeling of aerodynamic loading coefficients for 

a NACA 0012 airfoil over a parameter space of interest. The adaptive sampling techniques are also compared with 

the uniform distributions and translational propagation Latin hyper cube design (TPLHD) [5] one-shot sampling 

methods.    

A. 2D Benchmark functions 

 

1. Peaks function 

The 2D peaks function was the first benchmark function to be considered, and it is defined as 

 
𝑦 = 3(1 − 𝑥1)

2𝑒(−𝑥1
2−(𝑥2+1)2) − 10 (

𝑥1

5
− 𝑥1

3 − 𝑥2
5) 𝑒(−𝑥1

2−𝑥2
2) −

1

3
𝑒(−(𝑥+1)2−𝑥2

2)  for  𝑥1,2 ∈ [−5, 5] , (12) 

Fig. 6 presents the peaks function which, features non-linear behavior near the origin but remains constant away from 

the origin.  

 
Fig. 6 The peaks function has complex behavior near the origin  

The peaks function was chosen because it represents the ideal scenario for demonstrating the value of an adaptive 

sampling approach. The constant region away from the origin can be correctly modeled using very few samples, and 

the non-linear region near the origin is more difficult to model. As a result, more samples are required to approximate 

this region accurately. Exploitative adaptive sampling techniques should outperform one-shot sampling techniques by 

concentrating samples in near the origina where the response is harder to model.  Fig. 7 presents the RMSE history of 

the proposed adaptive sampling techniques applied to the peaks function beginning from 20 samples generated using 

TPLHD. 
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Fig. 7 Convergence history for surrogate response surfaces built using adaptive and one-shot sampling approaches applied to the 

peaks function.  

As expected, the adaptive sampling procedures dramatically outperform the one-shot methods. Initially, the 

adaptive sampling techniques perform analogously, but after selection of 130 samples the CV- and KFCV-Voronoi 

approaches outperform the LOLA-Voronoi approach. Examination of the sample distribution in Table 1 for each 

sampling method at different points during the sampling procedure provides insight into why the RMSE profiles 

behave this way. The CV-Voronoi approach initially clusters points in the rapidly-varying regions and then explores 

the remaining domain after a reasonable resolution has been reached. The KFCV-Voronoi samples appear to be 

slightly more explorative than the CV-Voronoi samples, but the distributions are quite similar at 200 samples.  

Conversely, the LOLA-Voronoi approach appears to initially sample in a more exploratory manner and then clusters 

in the areas that are harder to resolve. Unfortunately, the LOLA-Voronoi technique appears to oversample these 

regions, which leads to stalled performance.  

 
Table 1 Sample distributions for adaptive sampling techniques at different sample quantities 

 100 Samples 200 samples 

C
V

-V
o

ro
n

o
i 

  



 

American Institute of Aeronautics and Astronautics  

10 

K
F

C
V

-V
o

ro
n

o
i 

  

L
O

L
A

-V
o

ro
n

o
i 

  
   

The KFCV-Voronoi RMSE profile in Fig. 7 was generated by using 10-fold KFCV-Voronoi and the samples of 

the 3 folds with the highest error were evaluated using LOOCV. Setting the number of folds 𝐾 to 10,  we evaluate the 

performance of the KFCV-Voronoi technique with LOOCV applied to different fold quantities 𝑙 = 1, 3, and 5. Fig. 8 

shows that regardless of the number of folds LOOCV is performed for, the KFCV-Voronoi approach outperforms the 

CV-Voronoi technique in terms of model quality. Even more interestingly the KFCV-Voronoi does this at a reduced 

computational cost, as shown in Fig. 8(b). The cost reduction is due to the decrease in the number of surrogate models 

that must be formed to select the next point. 

 
(a)  

 
(b)  

Fig. 8 Convergence history for the surrogate response surfaces built using KFCV-Voronoi applied to the peaks function with 

different fold quantities (a) compared by sample count and (b) by time.  
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The KFCV-Voronoi technique was initially implemented purely as a method to reduce the computational cost 

associated with selecting the next sample location. It was expected that models created using the KFCV-Voronoi 

adaptive sampling would provide models inferior to those built using CV-Voronoi technique, because the KFCV-

Voronoi could potentially misidentify the best Voronoi cell to sample if it was lumped with relatively unimportant 

points. However, the accuracy of models built using the samples selected through the KFCV-Voronoi adaptive 

sampling technique is equal to or better than those built from the CV-Voronoi technique. The improved sample 

selection is potentially due to a global filtering effect that occurs when performing KFCV, since the error in Eq. 10 

represents the sum of the samples in a fold. In other words, the KFCV initially considers the global impact and 

identifies a region (rather than a single sample) with large prediction errors, whereas the LOOCV only considers the 

local impact of a sample. By taking into account both the global and local impact, the KFCV-Voronoi technique can 

outperform the CV-Voronoi technique.  

  

 We also used the peaks function to evaluate samples generated in batches, instead of a single sample at a time. By 

generating batches of samples, it is possible to evaluate multiple responses in parallel, and make better use of testing 

resources. Batch sampling also reduces the number of times the adaptive sampling process must be performed, which 

can reduce the cost associated with sample selection.  Fig. 9 presents the RMSE history for the KFCV-Voronoi based 

adaptive sampling procedure performing LOOCV for different fold quantities and batch sizes. 

 
(a)  

 
(b)  

 
(c)  

 
Fig. 9 Convergence history for surrogate response surfaces built using KFCV-Voronoi applied to the peaks function with increasing 

batch sizes and LOOCV fold counts 𝑙 : (a) 1-fold, (b) 3-folds, and (c) 5-folds 

As the batch size increases, KFCV-Voronoi with LOOCV for only a single fold selects samples poorly, because when 

LOOCV is performed for only a single fold, the number of Voronoi cells that have been identified as needing 

additional sampling is small, particularly early in the adaptive sampling process. Thus, the best sampling locations 

may not have been identified, and the batch procedure underperforms. Increasing the batch size is expected to diminish 

performance because samples are being selected with less information. However, this decrease in performance can be 

reduced by performing LOOCV for additional folds, as shown by the 3-fold and 5-fold cases in Fig. 9 (b) and Fig. 9 , 

respectively. The cost increase required to consider additional folds is less than the cost savings from the reduction in 

the number of calls to the adaptive sampling procedure. By increasing the batch size to five samples, the adaptive 

sampling procedure only needs to be called one fifth as frequently as a procedure adding a single point at a time. 

 

2. Shubert function 

 The next benchmark is the Shubert function, which is a two-dimensional uniformly periodic function defined by 

 

𝑦 = (∑𝑖 cos((𝑖 + 1)𝑥1 + 𝑖)

5

𝑖=1

) × (∑𝑖 cos((𝑖 + 1)𝑥2 + 𝑖)

5

𝑖=1

)   for 𝑥1,2 ∈ [1, 3] . (13) 

The Shubert function is a test case that emphasizes the importance of exploratory sampling over exploitative sampling. 

Due to the uniform oscillations, shown in Fig. 10, if a single peak or valley is missed, a relatively large RMSE will 

exist. Therefore, in addition to leveraging the exploitative sampling, the adaptive sampling procedure must also give 

adequate value to exploratory sampling. 
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Fig. 10 The Shubert function has a periodic behavior repeated uniformly over the entire domain. 

 

 
Fig. 11 Convergence history for surrogate response surfaces built using adaptive and one-shot sampling approaches applied to 

the Shubert function.  

The RMSE histories of the adaptive sampling techniques and the one-shot approaches are presented in Fig. 11. The 

one-shot approaches perform significantly better for this benchmark function, and the uniform sampling approach 

outperforms the LOLA-Voronoi approach over a significant portion of the sample sizes considered. It is interesting to 

note that the LOLA-Voronoi technique initially outperforms the other adaptive sampling techniques. This is likely 

due to the initial exploration-based behavior as shown in Table 1. However, the KFCV- and CV- Voronoi overtake 

them around 120 samples and once again perform best for larger sample quantities. This shows that the CV-based 

Voronoi approaches value both exploitative and exploratory sampling. 

B. 3D Benchmark functions 

 

1. Hartmann 3 function 

The Hartmann 3 function is a highly nonlinear function with three inputs and is given by: 
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𝑦 =  −∑𝑐𝑖𝑒
|−∑ 𝑎𝑖𝑗(𝑥𝑗−𝑝𝑖𝑗)

23
𝑗=1 |

4

𝑖=1

, 𝑥𝑗 ∈ [0, 1], 𝑗 = 1, 2, 3, (14) 

where 

 

[𝑎𝑖𝑗]𝑗=1,…,3
= [

3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 36

], (15) 

 

 𝑐𝑖 = [1 1.2 3 3.2]𝑇 , (16) 

and   

 

 

[𝑝𝑖𝑗]𝑗=1,…,3
= [

0.3689 0.1170 0.2673
0.4699 0.4387 0.7470
0.1091 0.8732 0.5547
0.0381 0.5743 0.8828

] . (17) 

 

The slices of the Hartmann 3 function over the parameter space are included in Fig. 12 . 

 

 
(a)  

 
(b)  

Fig. 12 The Hartmann 3 function is displayed using (a) 𝑥3 slices and (b) 𝑥2 slices. 

The RMSE history of the sampling techniques is included in Fig. 13, and again the adaptive sampling techniques 

outperform the one-shot approaches. The performance of the adaptive sampling methods is similar, but the KFCV-

Voronoi typically performs best for a given sample quantity. 
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Fig. 13 Convergence history for surrogate response surfaces built using adaptive and one-shot sampling approaches applied to 

the Hartmann 3 functions.  

The computational cost of evaluating the next sample is not constant between adaptive sampling approaches. A 

comparison of the wall clock time required to achieve a specified RMSE is included in Fig. 14. The alterations 

proposed here significantly reduce the computational time associated with each adaptive sampling technique. The 

KFCV-Voronoi requires less than half the computational time of the CV-Voronoi technique, and the altered LOLA-

Voronoi technique features the lowest sampling cost.  

 
Fig. 14 Convergence history over time for surrogate response surfaces built using adaptive and one-shot sampling approaches 

applied to the Hartmann 3 function.  

 However, only the cost associated with finding the next sample point is considered here. The cost associated with 

calculating the response at each sample must also be considered when selecting the appropriate method. Depending 

on the ratio of the computational cost between the adaptive sampling selection and response evaluation, the best 

sampling procedure can vary. The KFCV-Voronoi has been shown to have less error when the number of samples is 

held constant. If evaluation of the response is considerably more expensive than the adaptive sample selection process, 

the KFCV-Voronoi adaptive sampling technique would be preferable. 
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C. 6D Benchmark functions 

 

1. Hartmann 6 function 

The need to reduce the cost associated with the adaptive sampling procedure becomes evident as the number of 

required samples increases. Larger sample sets become necessary to adequately resolve the response surfaces in a 

high-dimension parameter space. Therefore, the final benchmark function is the Hartmann 6 function, which is a 

highly nonlinear function with six inputs given by: 

 
𝑦 = ∑𝑐𝑖𝑒

[−∑ 𝑎𝑖𝑗(𝑥𝑗−𝑝𝑖𝑗)
26

𝑗=1 ]
, 𝑥𝑗 ∈ [0, 1], 𝑗 = 1,… , 6

4

𝑖=1

 , (18) 

 

where 

 

[𝑎𝑖𝑗]𝑗=1,…,6
= [

10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

] , (19) 

 

 𝑐𝑖 = [1 1.2 3 3.2]𝑇 , (20) 
and 

 

[𝑝𝑖𝑗]𝑗=1,…,6
=  [

0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4139 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6550
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

] . (21) 

 

 

Only the CV-based Voronoi techniques have been examined in this example, and the RMSE history is included in Fig. 

15. Again, the KFCV-Voronoi is competitive with the CV-Voronoi technique with respect to accuracy, at a 

dramatically reduced computational cost.  

 
Fig. 15 Convergence history for surrogate response surfaces applied to the six-dimension Hartmann 6 function using the CV-

and KFCV-based adaptive sampling approaches 

D. Aerodynamic loading for NACA 00012 

The CV-Voronoi and KFCV-Voronoi adaptive sampling techniques are now used to build surrogate response 

models for aerodynamic loading of a NACA 0012 airfoil. Here each sample corresponds to a CFD simulation. The 

two-dimensional parameter space considered freestream Mach numbers from 0.4 to 1.2 and angles of attack between 

0° and 16°. The flow fields were solved using FUN3D [26] considering the RANS equations to solve for fully 

turbulent viscous flow fields. The lift coefficient is selected as the parameter of interest. Initially, the lift coefficient 

is sampled in a 17x17 uniform grid with variations of 0.05 in the freestream Mach and 1° in the angle of attack. These 
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uniform samples are collected to evaluate the accuracy of the model built using the adaptive sampling techniques. A 

surrogate model was built for the 289 uniformly distributed samples and it is shown in Fig. 16. The lift coefficient 

clearly has regions with steep gradients and changes in gradients, particularly for a freestream Mach number around 

0.85. Therefore, the expectation is that surrogate models developed using the adaptive sampling techniques will be 

more accurate than those developed using a one-shot technique.  

 
Fig. 16 A Uniform sampling process can be used to approximate the lift coefficient of a NACA 0012 within the parameter space. 

The CV-Voronoi and KFCV-Voronoi adaptive sample techniques were evaluated for this case. Initially a surrogate 

model was built for 17 samples generated using TPLHD. The two adaptive sampling methods were applied to select 

a batch of 5 sample locations. This process was repeated to reduce the RMSE of the predicted values at the test points. 

A plot of the convergence history of the RMSE for increasing sample quantities selected by the two adaptive sampling 

techniques is included in Fig. 17 . 
 

 
Fig. 17 Convergence history for surrogate models of the lift coefficient of a NACA 0012 airfoil for varying freestream Mach 

numbers and angles of attack created using CV-and KFCV-based adaptive sampling approaches 

 In Fig. 17 , the models built using the adaptive sampling techniques perform better than those sampled in the 

TPLHD one-shot manner, as the number of samples increases. It can also be seen that the samples selected using the 

KFCV-Voronoi technique consistently provide more accurate surrogate models. Table 2 presents contours of the 
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surrogate model and comparisons of the predicted and actual values at the test point locations for the surrogate model 

built using the KFCV-Voronoi adaptive sampling technique at increasing sample quantities. 

From the test evaluation and contour of the surrogate model built using 27-samples, we see that initially the model   

is inaccurate, and the maximum error of the surrogate model is 22% at test point 1, which corresponds to a Mach 

number of 0.4 and an angle of attack of 0°. For this set of samples test point 1 is an extrapolated value rather than an 

interpolated value (relative to the 27 sample points), and therefore, added difficulty is expected. Also, for the test 

points between 0 and 125, which correspond to low Mach numbers, the complex lift coefficient profile is captured 

very poorly.  

As the sampling procedure progresses from 27 to 52 samples, the corners of the parameter space are sampled and 

samples are concentrated in the region defined by large angles of attack. The model built using 52-samples now 

includes the complex double peak valley behavior for the low Mach number test slices, but there are still visible 

discrepancies in the valleys around test point 100. The extrema of the high Mach number values are captured better, 

which is a result of the adaptive sampling procedure identifying the boundaries as an important sample location. The 

maximum error of the 52-sample surrogate model is 16% at test point 176, which corresponds to a Mach number of 

0.9 and an angle of attack of 5°. The contour plot of the 52-sample model now resembles that constructed by the 287 

uniform samples in Fig. 16. It is also interesting to note that the response surface model built using the 52 KFCV-

Voronoi samples performs as well as the 81-sample TPLHD model, which corresponds to a sample reduction of 35%. 

Advancing from 52 to 77 samples leads to samples concentrated around Mach 0.85 which is the region of the 

largest gradient and change in gradient. The 77-sample model captures the valleys and the high and low values better. 

The maximum error is now 10% and occurs in the lift coefficient trough at Mach 0.9 and an angle of attack of 4.5°, 
and the average prediction error is only 1.9%. Thus, surrogate modeling and adaptive sampling techniques provide 

models of the aerodynamic loading response of engineering accuracy for a considerably reduced testing cost.  
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Table 2 Surrogate model evaluation for samples collected using the KFCV-Voronoi adaptive sampling technique 

 Surrogate Model Contours Surrogate Model at Test Points 

27 Samples 

  

52 Samples 

 
 

77 Samples 

 
 

VI. Conclusions 

The goal of the present paper was to reduce the overall cost of surrogate modeling, particularly for high dimension 

inputs. The adaptive sampling techniques examined here significantly reduce the number of samples required to form 

accurate surrogate models when compared with one-shot sampling procedures. However, the adaptive sampling 

procedures add a cost associated with identifying ideal locations for the samples. This cost typically increases with 

the number of samples, and since high dimension parameter spaces frequently require large sample sets the cost can 

become intractable. As a result, this work concentrated on reducing cost associated with identifying ideal sample 

locations with adaptive sampling techniques, through alterations of popular adaptive sampling techniques and 

implementation of batch sampling.  

  Alterations were proposed for the CV-Voronoi adaptive sampling techniques. The CV-Voronoi technique was 

augmented with a preliminary KFCV evaluation, to form a scheme we call the KFCV-Voronoi adaptive sampling 
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technique. The KFCV sweep limits the number response surface models that must be built during evaluation of future 

sample locations, and typically reduces the computational cost between 50 and 70%. Furthermore, the KFCV sweep 

acts as a filter that values a region’s global impact in addition to its local impact, and has been shown to select samples 

that lead to improved model accuracy. Finally, a batch sampling procedure is proposed for the Voronoi cell-based 

adaptive sampling techniques, to prevent over clustering of future samples. The batch procedure does lead to slightly 

less accurate models, but this is typically more than made up for by maximizing the utilization of testing resources.  

 The accelerated adaptive sampling techniques were evaluated using benchmark functions of increasing input 

dimensions, and were shown to offer significant improvement over one-shot techniques. The sampling techniques 

were also validated for surrogate modeling the aerodynamic loading profile of a NACA 0012 airfoil. The adaptive 

sampling techniques were shown to dramatically reduce the number of samples required for response surface creation. 

The KFCV-Voronoi generated samples consistently led to the most accurate surrogate models, and did so with a 

dramatically lower computational cost. 
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