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Abstract

The lack of situational awareness within an operational environment is a problem

that carries high risk and expensive consequences. Radio Tomographic Imaging (RTI)

and noise radar are two proven technologies capable of through-wall imaging and fo-

liage penetration. The intent of this thesis is to provide a proof of concept for the fusion

of data from RTI and noise radar. The output of this thesis will consist of a performance

comparison between the two technologies followed by the derivation of a fusion tech-

nique to produce a single image.

Proposals have been made for the integration of multiple-input multiple-output

(MIMO) radar with RTI, however, no research has been done. Data fusion between

RTI and noise radar has not been explored in academia. The impact of the expected

results will provide the RTI and noise radar community a proof of concept for the fusion

of data from two disparate sensor technologies. RTI is a tenured field of study at Air

Force Institute of Technology (AFIT), whose results can be used to produce a platform

for further options to be considered for military surveillance applications.

The novelty of fusing data from RTI and noise radar is achieved with the deriva-

tion of a fusion technique utilizing Tikhonov regularization. Analyzing the results of

the Tikhonov influenced techniques reveals up to a 100% error decrease in target pixel

location, a 75% error decrease in target centroid location, a 28% size decrease in tar-

get pixel dispersion and a 72% improvement in an ideal solution comparison. The re-

sults of the research prove that Multi-Sensor Data Fusion (MSDF) images are of greater

quality than that of the images generated by the disparate sensors independently. This

effectively provides the RTI and noise radar communities a proof of concept for the

fusion of data from two disparate sensor technologies.
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MULTI-SENSOR DATA FUSION BETWEEN

RADIO TOMOGRAPHIC IMAGING AND NOISE RADAR

I. Introduction

This chapter establishes the scope of the thesis. A background is provided for the

two sensor technologies involved, namely, Radio Tomographic Imaging (RTI) and noise

radar, including a description of the equipment used in their construct. Motivation

behind this thesis topic is reasoned, producing a final research problem statement. To

finish the introduction, a mention of how the thesis document is organized is laid out.

1.1 Background

1.1.1 Radio Tomographic Imaging.

RTI is a technology that is used for imaging the attenuation created by physical ob-

jects within a radio frequency (RF) wireless sensor network (WSN). RTI has been clas-

sified as a device-free localization (DFL) system [1–3], which finds people and objects

in the environment wherein the WSN is deployed, even in buildings and through walls

[3]. A DFL system does not require the person or physical object to carry a wireless

device, opening RTI technology to the world of security and monitoring applications.

The RTI WSN consists of a number of RF transceivers, labeled as network nodes,

communicating the received signal strength (RSS) to and from every other node in the

network, see Figure 1.1. When a person or physical object intersects the communi-

cation links of Figure 1.1, the reported RSS values of the affected nodes to which the

intersected communication links belong to are usually, if not always, altered. The re-
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porting of altered RSS values provides information that is used to detect the presence

of and to estimate the location of the subject or subjects of interest.

1.1.1.1 Equipment.

Table 1.1 lists and describes the core equipment used for RTI in this thesis. Figure

1.2 displays the MEMSIC TelosB Mote TPR2420 and its functional block diagram.

1.1.2 Noise Radar.

A noise radar is a technology that uses a noise waveform as its transmitting signal.

The echo detection is achieved via the reception and correlation between the transmit-

ted signal and the received noise waveform that the radar returns. A simple simulation

of the noise correlation result is shown in Figure 1.3. Noise radar differs from RTI in

the sense that it does not use shadowing caused by objects, but rather, uses reflections

as a basis for image reconstruction.

Categorically speaking, the noise radar for this thesis is classified as an Ultra-wideband

(UWB) system. In the United States of America (USA), UWB refers to a signal or system

that either has a large relative bandwidth that exceeds 20% of the arithmetic center

frequency, or a large absolute bandwidth of more than 500 megahertz (MHz) [4]. The

potential advantages of using UWB radars include improved range resolution, easier

target information recovery from reflected signals and a lower probability of intercept

compared to radars operating with narrowband signals [5, 6].

1.1.2.1 Equipment.

Table 1.2 lists and describes the core equipment used for the UWB noise radar in

this thesis. Configured together, the equipment in Table 1.2 is known as an Air Force

Institute of Technology (AFIT) Noise Network (NoNET) node. Figure 1.4 displays an
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Figure 1.1. A RTI WSN with 70 nodes and their RF communication links.

AFIT NoNET node and its functional block diagram.

1.2 Motivation for Research

The lack of situational understanding within an operational environment is a prob-

lem that carries high risk and expensive consequences. In accordance with Royal Aus-

tralian Air Force (RAAF) doctrine, the fundamental principles by which military forces

guide their actions to achieve desired objectives, situational understanding is the aware-

ness, analysis, knowledge, comprehension and judgment facilitating and enabling timely

and accurate decision-making. The accurate interpretation of a situation and the likely

3



Table 1.1. Core RTI equipment.

Nomenclature Description
MEMSIC TelosB Mote TPR2420 RTI WSN node with an integrated onboard

antenna, providing data collection and
programming via a universal serial bus (USB)
interface using the open-source operating
system, TinyOS.

Computer Programs, collects and processes the
data from the motes set up for the RTI
WSN. Running on an Intel® Core© i7 2.80 GHz
processor with 8 GB of
random access memory (RAM) with Microsoft
Windows® 7 64 bit operating system (OS).

Table 1.2. Core UWB noise radar equipment.

Nomenclature Description
UWB noise radar An AFIT built UWB noise radar comprising of transmit and

receive antennas, a noise source, band pass filters, switches,
amplifiers and attenuators.

Computer Controls, collects and processes the data from the UWB
noise radar. Running on an Intel® Core© i7 2.70 GHz
processor with 32 GB of RAM with Microsoft Windows® 10
64 bit OS.

actions of groups and individuals within it is an Australian Defence Force (ADF) warfight-

ing function to the RAAF’s core air power role of intelligence, surveillance and recon-

naissance (ISR) (Figure 1.5).

RTI and UWB noise radar are two proven technologies capable of through-wall

imaging and foliage penetration enabling increased situational understanding [3, 6–

8]. The results of this research can be used to produce a platform for further options to

be considered for military ISR applications.
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Figure 1.2. The MEMSIC TelosB Mote TPR2420 and its functional block diagram.

1.3 Research Problem Statement

Proposals have been made for the integration of multiple-input multiple-output

(MIMO) radar with RTI [3], however, no research has been done. Data fusion between

RTI and noise radar has not been explored in academia. The intent of this thesis is to

provide a proof of concept for the fusion of data from RTI and UWB noise radar.

The nature of the expected results will be in the form of target location accuracy. Ac-

curacy assessment of detection and estimation techniques shall be explored. This ex-

ploration involves a comparison of measured estimates of reconstructed images. Met-

rics on the measured estimates can outline the differences in performance and com-

putational efficiencies of using RTI and UWB noise radar together versus using them

separately.

The output of this thesis will consist of a performance comparison between the two

technologies followed by the derivation of a fusion technique to produce a single im-

age. The impact of the expected results will provide the RTI and noise radar community
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Figure 1.3. A simple simulation of the noise correlation process. Top left: Transmitted noise signal.
Bottom left: Received noise signal with transmitted signal embedded in noise. Right: Correlation output
between the transmitted and received signal, correctly identifying a lag of 600 samples.

a proof of concept for the fusion of data from two disparate sensor technologies.

1.4 Thesis Document Organization

This document is constructed according to a five-chapter model. Chapter I has set

the scope of this thesis providing a background, motivation and problem statement in-

volving RTI and UWB noise radar. The remainder of this document includes Chapters

II through V and is organized as follows.

Chapter II contains a literature review of the academic work involving RTI target

detection and location. The same follows for UWB noise radar. Chapter III details

the steps taken towards addressing the problem statement involving the data fusion

between two disparate sensor technologies, RTI and UWB noise radar. Chapter IV

presents, analyzes and discusses the results of the data fusion following the method-

ology of Chapter III. Finally Chapter V draws conclusions from the discussion of the
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Figure 1.4. An AFIT NoNET node and its functional block diagram. (Current as of: January 2019)

data fusion results and proposes further related work that can be used to continue the

research presented in this thesis.
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Figure 1.5. Core air power roles and ADF warfighting functions.
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II. Related Work

This chapter probes relevant academic literature that ties into the premise of Multi-

Sensor Data Fusion (MSDF) of Radio Tomographic Imaging (RTI) and a Noise Radar

Network (NRN). The fundamental theory of each sensor technology is explored as well

as any work conducted with them within the Air Force Institute of Technology (AFIT).

The chapter ends with a possible avenue for MSDF, exploring a well known method of

sensor fusion, namely, the Kalman filter.

2.1 Radio Tomographic Imaging

The article in [9] created a momentum of research surrounding real world applica-

tions of RTI. Reference [9] laid the foundational theory and presented the linear model

for using received signal strength (RSS) measurements for image reconstruction of an

area within a wireless sensor network (WSN). As multi-sensor data fusion depends on

the sensor error and noise statistics, we shall explore literature relating to this.

Reference [9] derives a lower bound on the estimation error for the linear and noise

models. The theoretical lower bound is obtained through the use of a Fisher informa-

tion matrix that contains information obtained from RSS data measurements of each

node in the RTI WSN.

It is determined that node locations affect which pixels are accurately estimated.

More precisely, it is shown in [9] that pixels which are crossed by many links are more

likely to have a higher accuracy than those that are rarely or are never crossed. In ad-

dition to node location affecting accuracy, [9] demonstrates a relationship between

node density and the lower bound on the average mean squared error (MSE). Also,

the choice of RTI parameters

• Regularization parameter α
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• Ellipse parameter λ,

affect image accuracy [3, 9]. If the regularization parameter, α, is set too high, the re-

sultant images are too smooth to provide definitive obstruction boundaries. However,

if α is set too low, noise corrupts the image, making it more difficult to set a detection

threshold. If the width of the ellipse, λ, is too wide, detail of where the attenuation is

occurring will be obscured. Ifλ is set too narrow, pixels that do in fact attenuate a link’s

signal may not be captured by the model resulting in lost information.

In an attempt to resolve this balancing act, [9] provides graphs depicting average

MSE using combinations of regularization and ellipse parameters. Also, research in

[10]provides a method of theoretically deriving a value forα. This works on the premise

that regularization is known as being equivalent to assuming a Bayesian prior on the

RSS measurements, x. Thus, given a Bayesian prior f (x), a maximum a posteriori (MAP)

estimate can be computed. This is followed by further derivations leading to a theo-

retical equation for the regularization parameter [10]

α=
σ2

n

σ2
x

·
1

1− c 2
≈
σ2

n

σ2
x

δc

2δ
, (2.1)

whereσ2
x/σ

2
n is a signal to noise ratio (SNR),δc /δ is the number of pixels of separation

required for 63% decorrelation and c = e −δ/δc .

Work in [11] provides an analytic expression for the image accuracy for five RTI

weight models. The derivation shows the effect of weight model choice, pixel size,

number of nodes and choice of regularization α. Comparison between weight model

choice was achieved via various forms of normalization and was necessary as the orig-

inal forms would have produced scene estimates orders of magnitude different from

each other.

References [9, 11]model the noise, n, as Gaussian, with [11] settling for an additive

white Gaussian noise (AWGN) error model with standard deviation, σn between 4 dB
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and 6 dB. The decision to use the Cramer-Rao Lower Bound (CRLB) to analyze the vari-

ance of RTI in [11] was reasonable because for a linear model with AWGN (which RTI

is), the variance of the maximum likelihood (ML) estimate equals the CRLB.

The Kalman filter has been used in RTI work [3]. With respect to the observation

equation, z = Hx+ v, the experiments in [3] assumed the measurement/observation

noise, v, as Gaussian and found that it was effective for tracking the location of move-

ment with H being the observation model. In order to implement their Kalman filter,

empirical observations were used, i.e. knowing the true path of the target, a “test and

adjust" approach was taken to determine the process noise. Process noise is a param-

eter required when defining the true state x. To quantify the accuracy of their location

coordinate estimate, the average error was defined as

ε=
1

L

L
∑

k=1

r

�

ux [k ]−px [k ]
�2
+
�

u y [k ]−py [k ]
�2

, (2.2)

where L is the total number of samples, ux [k ] and u y [k ] are the estimated x and y

coordinates at sample time k , and px [k ] and py [k ] are the known coordinates. Using

(2.2), [3] concluded that their Variance-based Radio Tomographic Imaging (VRTI) con-

figured setup could locate an object moving in place with approximately 1.5 ft average

error.

We now begin an encapsulation of the theory heavily used in literature for the im-

plementation of RTI.
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2.1.1 Fundamental Theory.

2.1.1.1 Linear Formation.

The RSS, yi (t ) of link i at time t is mathematically represented by

yi (t ) = Pi − L i −Si (t )− Fi (t )−νi (t ), (2.3)

where

• Pi is the transmitted power in decibels (dB)

• L i are the static losses in dB due to distance, antenna patterns, device inconsis-

tencies, etc.

• Si (t ) is the shadowing loss in dB due to object/s attenuating the signal link

• Fi (t ) is the fading loss in dB as a result of constructive and deconstructive inter-

ference of the narrow-band signals in multipath environments

• νi (t ) is the measurement noise in dB.

A WSN is made up of N pixels. The number of pixels come into play when defining

the shadowing loss, Si (t )mathematically. Qualitatively, the shadowing loss is approxi-

mated as the sum of attenuation that occurs in each pixel. However, since the contribu-

tion of all N pixels would be different for each link, weighting is applied. Quantitatively,

shadowing loss described for link i is

Si (t ) =
N
∑

j=1

wi j x j (t ), (2.4)

where

• x j (t ) is the attenuation occurring in pixel j at time t
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• wi j is the weighting of pixel j (of the reconstructed image) for link i .

Simplification of image reconstruction is achieved by imaging the changing atten-

uation over time. This approach removes the static loss terms, Pi and L i , in (2.3), re-

sulting in a change in RSS∆yi from time t1 to t2, i.e.

∆yi ≡ yi (t2)− yi (t1)

= Si (t2)−Si (t1) + Fi (t2)− Fi (t1) +νi (t2)−νi (t1)

=
N
∑

j=1

wi j∆x j +ni , (2.5)

where

ni = Fi (t2)− Fi (t1) +νi (t2)−νi (t1)

is the grouping of fading and measurement noise and

∆x j = x j (t2)− x j (t1)

is the difference in attenuation at pixel j from time t1 to t2.

The system of RSS equations in (2.5) put into a linear matrix form as

∆y=W∆x+n, (2.6)
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where

∆y= [∆y1,∆y2, . . . ,∆yM ]
T

∆x= [∆x1,∆x2, . . . ,∆xN ]
T

n= [n1, n2, · · · , nM ]
T

[W]i , j =wi j . (2.7)

To summarize (2.6),∆y is a vector of all link RSS difference measurements of length

M , where M is the total number of unique two-way links, K , and is a function of the

number of nodes used to create the WSN, i.e. M = (K 2 − K )/2. The RSS noise is cap-

tured in the vector, n, and∆x is the attenuation image to be estimated. The weighting

matrix, W, is of dimension M ×N . Each variable is measured in dB. A majority of the

literature simplify the notation of (2.6) and use x and y in place of∆x and∆y, respec-

tively.

2.1.1.2 Weight Models.

There have been a number of weight models that have been tried and tested within

the literature. Reference [11] conveniently identifies five different published weight

models, stating that in all cases, the weighting matrix W can be decomposed as

W= S�Ω, (2.8)

where S is a binary selection matrix,Ω is a real-valued matrix containing the magnitude

of the weights and � is the Hadamard product.
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Binary selection matrices include

SEllipse
i , j =











1, if d1,i j +d2,i j < di +λ

0, otherwise

(2.9)

SLine
i , j =











1, if link i traverses pixel j

0, otherwise

(2.10)

SAll
i , j = 1 (2.11)

where di is the distance between two nodes, d1,i j and d2,i j are the distances from the

center of pixel j to the two node locations for link i , and λ is a tunable parameter de-

scribing the width of the ellipse. Equation (2.9), suggested in [9] is the prevailing selec-

tion matrix throughout the literature.

As per [11], the magnitudes of the weights, Ω include

ΩNeSh
i , j =

1
p

di

(2.12)

ΩLine
i , j = L i , j (2.13)

ΩNeShLine
i , j =

L i , j
p

di

(2.14)

ΩExp
i , j = exp

�

−λi , j

2σw

�

(2.15)

ΩInvArea
i , j =











A−1(di ,λmi n ), λi , j <λmi n

A−1(di ,λi , j ), λi , j ≥λmi n

(2.16)

where L i , j is the length of the segment of link i inside pixel j , λi , j is the value of λ that

makes the ellipse defined by link i pass exactly through the center of pixel j , σw and

λmi n are tunable parameters. Equation (2.12), suggested by [9] and justified by [12] is
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the prevailing choice throughout the literature.

2.1.1.3 Noise Models.

Equation (2.6) would not be complete without determining the statistics of the

noise vector n. Reference [9] finds that the RSS on a fixed link showed a two-part mix-

ture distribution, attributing this to the time varying nature of RSS investigated in [13],

categorized as being in either a fading or a non-fading interval. The literature shows

that the noise vector could be modeled as a mixture of two Rician distributions in [13].

Reference [14]was used by [9] to suggest that the distribution could be log-normal,

and this was the approach taken for the reason of simplicity. However, the model used

by [9] for the noise vector n is a two part Gaussian mixture model

fni
(u ) =

∑

k∈{1,2}

pk
Æ

2πσ2
k

exp

�

−
u 2

2σ2
k

�

, (2.17)

where pk is the probability of part k , p2 = 1−p1,σ2
k is the variance of part k , and fni

(u )

is the probability density function of the noise random variable ni . An assumption was

made where σ2 > σ1 so that part 2 is the higher variance component of the mixture.

Reference [11]models the noise, n, as Gaussian, which will be the model used for the

work in this research.

2.1.2 Radio Tomographic Imaging Image Reconstruction.

Image reconstruction in RTI involves solving (2.6) for ∆x, i.e. x. To minimize the

noise vector, n, required to fit the measured RSS data, y, to the model, Wx, requires
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searching for a least-squares solution

xLS = arg min
x

‖Wx−y‖2
2

= (WT W)−1WT y. (2.18)

Equation (2.18) is only valid if W is full rank which is unfortunately not the case with

RTI [11]. Labeled as an ill-posed inverse problem, this is addressed by [9]with additive

Tikhonov regularization terms producing

xLS = arg min
x

‖Wx−y‖2
2+αxT Qx

= (WT W+αQ)−1WT y (2.19)

Q¬DT
H DH +DT

V DV , (2.20)

where Q is the Tikhonov matrix, Dd computes the derivative in the d direction (i.e.

Horizontal or Vertical) andα is an adjustable weight parameter where small values lead

to solutions that favor the data and large values favor prior information.

A ML derivation is another method for arriving at (2.18), i.e.

x̂ML(y) = arg max
x̂

ln℘(y|x)

= arg max
x̂

L , (2.21)

whereL is known as the log likelihood function. Assuming the noise vector n∼N (0, C),
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where C≈σ2I, therefore y∼N (Wx,σ2I). Hence,

L = ln

��

1
p

2π
N |C|

�

exp

�

−
(y−Wx)T (C)−1(y−Wx)

2

��

(2.22)

=−N ln
�p

2π
�

− ln (|C|)−
1

2

�

y−Wx
�T
(C)−1

�

y−Wx
�

=−N ln
�p

2π
�

− ln (|C|)−
1

2

�

yT−xTWT
� �

σ2I
�−1 �

y−Wx
�

=−N ln
�p

2π
�

− ln (|C|)−
1

2σ2

�

yTy−yTWx−xTWTy+xTWTWx
�

=−N ln
�p

2π
�

− ln (|C|)−
1

2σ2

�

yTy−
�

yTWx
�T−xTWTy+xTWTWx

�

=−N ln
�p

2π
�

− ln (|C|)−
1

2σ2

�

yTy−xTWTy−xTWTy+xTWTWx
�

=−N ln
�p

2π
�

− ln (|C|)−
1

2σ2

�

yTy−2xTWTy+xTWTWx
�

(2.23)

=−N ln
�p

2π
�

− ln (|C|) + f (x). (2.24)

Note that we want the arg max ofL , but due to the −1/2σ2 term in (2.23), this implies

that we should solve for f (x) in (2.24).

arg max
x̂

L =∇xL ≡ 0 (2.25)

0−0−
1

2σ2

�

0−2WTy+2WTWx̂
�

≡ 0 (2.26)

WTy−WTWx̂≡ 0

WTWx̂≡WTy

x̂(y) =
�

WTW
�−1

WTy. (2.27)

For (2.26), the following vector calculus identities were used,

∇x

�

VTx
�

=∇x

�

xTV
�

=V, (2.28)
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where V=WTy, and

∇x

�

xTMx
�

= (M+MT)x

= 2Mx (if M is symmetric), (2.29)

where M=WTW.

Identical to the situation faced at (2.18), (2.27) is only valid if
�

WTW
�

is invertible.

Thus Tikhonov regularization can also be implemented when finding the ML solution.

Injecting α‖Qx‖2 into f (x) in (2.24) introduces an artificial/penalty term governed by

the derivative of the image defined by (2.20). The impact of α‖Qx‖2 is such that it pe-

nalizes “rough" images thereby “smoothing" the image out.

f (x) =−
1

2σ2

�

yTy−2xTWTy+xTWTWx+α‖Qx‖2
�

. (2.30)

Since the image will be two-dimensional (2D) for this thesis, Tikhonov regularization

calls for including derivatives in both the horizontal and vertical dimensions, i.e.

f (x) =−
1

2σ2

�

yTy−2xTWTy+xTWTWx+α
�

‖DH x‖2+ ‖DV x‖2
��

=−
1

2σ2

�

yTy−2xTWTy+xTWTWx+α
�

[DH x]T [DH x] + [DV x]T [DV x]
��

=−
1

2σ2

�

yTy−2xTWTy+xTWTWx+α
�

xT DT
H DH x+xT DT

V DV x
��

. (2.31)
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Equation (2.25) now becomes

arg max
x̂

L =∇xL ≡ 0

−
1

2σ2

�

−2WTy+2WTWx̂+α
�

2DT
H DH x̂+2DT

V DV x̂
��

≡ 0 (2.32)

WTy−WTWx̂−α
�

DT
H DH x̂+DT

V DV x̂
�

≡ 0

WTWx̂+α
�

DT
H DH x̂+DT

V DV x̂
�

=WTy

�

WT W+α
�

DT
H DH +DT

V DV

��

x̂=WTy

x̂=
�

WT W+α
�

DT
H DH +DT

V DV

��−1
WT

︸ ︷︷ ︸

Π

y.

(2.33)

Again, (2.32) utilizes the vector calculus identities of (2.28) and (2.29) which also deals

with the injected Tikhonov related matrices and vectors.

2.2 Noise Radar

Similar to the approach taken for the RTI literature review section prior, we shall ex-

plore error statistics related to the use of Ultra-wideband (UWB) noise radar for target

identification and location. As a reminder, determining the noise and/or error statis-

tics will help build an appropriate system model for the purpose of implementation in

multi-sensor data fusion techniques.

One of the boasted features of a noise radar is its attribute of utilizing a waveform

with an ideal “thumbtack" ambiguity function, providing unambiguous high resolu-

tion imaging at any distance [6]. According to the mathematical relationship [15]

∆R = γ
c

2B
, (2.34)

Equation (2.34) quantitatively describes the amount of separation required to resolve
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two targets in range, using the speed of light, c , and the waveform bandwidth, B . The

factor, γ, in the range 1≤ γ< 2, represents the degradation in range resolution resulting

from system errors or range sidelobe reduction techniques such as windowing. Given

a UWB noise radar operating between the frequencies of 500 MHz and 1000 MHz with

γ = 2, the theoretical range resolution of the UWB noise radar can range from 0.6 m

down to 0.3 m respectively.

Early work in [16] suggests an estimation of the measurement error for radar is gen-

erally impossible. The argument used for this is that the measurements include errors

which are dependent on the SNR and the equipment. Further, the echo power is gen-

erally unknown to the radar since the target reflection varies not only from target to tar-

get but also with time for each target. Reference [16] proposes that the reasons stated

prior are why a fixed standard deviation of measurement error is used (in the context

of tracking). The suggested assumption for the fixed standard deviation of monostatic

and bistatic radar measurement range error,σρ was given as

σρ = 0.1
c

τ
, (2.35)

where τ is the transmitted pulse length.

The AFIT Noise Network (NoNET) came into fruition with the work started in [17].

Simulation, design and implementation of a network of three digital noise radars was

performed to triangulate the coordinates of a target within a room. Given the experi-

mental setups in [17], in nine out of ten cases the stationary targets were detected with

eight out of ten located within the range resolution of the system of 0.375 m. There

were no significant error/accuracy analysis of the noise radar apart from acknowledg-

ing that the sampling frequency is a limitation to range accuracy, i.e. using a sampling

frequency of 1.5 GHz, the resulting range increment is 0.1 m.

Follow on work from [17]was conducted in [18]where the AFIT NoNET was utilized
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under a multistatic configuration. Theoretical as well as experimental error analysis

was conducted on the AFIT NoNET in monostatic and multistatic configurations. For

the monostatic case, the one dimensional theoretical range accuracy was calculated

from the CRLB using the two way time delay to target, τ, which is assumed to be a

measurement parameter of an unbiased estimator. It was determined that the theo-

retical lower bound of the standard deviation time delay error,σt , was 0.302 ns (0.0453

m). The measured standard deviation time delay was found to be 0.319 ns (0.0478 m),

a reasonable result compared to the theoretical.

However, for the multistatic case, [18] did not provide two dimensional, theoret-

ical range and cross-range accuracy estimates. Rather, accuracies for the multistatic

configuration were found through analysis of experimental results. The average local-

ization error was assessed to be 0.077 m with a standard deviation of 0.031 m.

The research effort in [19] explored simultaneous range and velocity detection in

one dimension with the AFIT NoNET. The method of measuring the internal noise of

the system was to transmit and receive without any antennas. The numerical results

showed approximately equal variances but non-zero and non-equal means, conflict-

ing with the initial assumption of AWGN. The non-zero and non-equal means were

attributed to the fact that the internal noise collections were sampled after the band-

pass filter, causing the power spectral density (PSD) of the internal noise to be no longer

uniform across the frequency spectrum. Reference [19] concludes with an experimen-

tal range error of 1 m, justified by the comparison against the theoretical calculation

and plot of a range ambiguity function for the AFIT NoNET.
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2.3 Data Fusion

2.3.1 Kalman Filter.

The Kalman filter is a common and widely used fusion algorithm that is utilized

whenever the state of a system can be estimated from multiple sources of noisy sensor

information. Two methods for Kalman-filter-based data fusion include state-vector

fusion and measurement fusion whose differences are illustrated in Figure 2.1.

References [20–22] state that measurement fusion is preferable to state-vector fu-

sion in practical situations, implying that the state-vector fusion method is only effec-

tive when Kalman filters are consistent. Consistency is in reference to when the under-

lying process of the state model is linear, i.e., when forced to deal with non-linear mod-

els, inconsistencies may arise due to the linearization process. However, [23] states that

the measurement fusion approach is optimal but not computationally efficient.

The key set of equations used for the Kalman filter can be separated into three cat-

egories: the dynamic system model, the predict equations and the update equations.

2.3.1.1 Dynamic System Model.

Assuming the true state, xk at time k is evolved from the state at time (k−1), Kalman

filters are based on linear models discretized in the time domain according to

xk = Fk xk−1+Bk uk +wk , (2.36)

where

• Fk is the state transition model applied to the previous state xk−1

• Bk is the control input model applied to the control vector uk
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Figure 2.1. Kalman-filter-based data fusion methods. Top: State-vector fusion. Bottom: Measurement
fusion.

• wk is the process noise assumed to be drawn from a zero mean multivariate nor-

mal distribution with covariance Qk .

In order to have states there needs to be an observation, zk of the true state xk

zk =Hk xk +vk (2.37)

where

• Hk is the observation model mapping the true state space into the observed space

• vk is the observation noise assumed to be zero mean Gaussian white noise with

covariance Rk .
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2.3.1.2 Prediction.

The prediction equation uses the state estimate from the previous time step, x̂k−1

to produce an estimate of the state at the current time step, x̂−k i.e.

x̂−k = Fk x̂k−1+Bk uk , (2.38)

with its predicted error covariance, P−k given by

P−k = Fk Pk−1FT
k +Qk . (2.39)

Equations (2.38) and (2.39) are respectively referred as the a priori state estimate and

error covariance as they do not include observation information, (2.37) from the cur-

rent time step.

2.3.1.3 Update.

The update equation uses the a priori prediction state estimate (2.38) with the cur-

rent observation information (2.37) to update the state estimate, x̂k

x̂k = x̂−k +Kk (zk −Hk x̂−k ) (2.40)

where Kk is the Kalman gain given by

Kk =Pk HT
k (Rk +Hk P−k HT

k )
−1. (2.41)

The updated error covariance matrix, Pk is

Pk = (I−Kk H)P−k . (2.42)
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Note that (2.40) and (2.42) are respectively known as the a posteriori state esti-

mate and the a posteriori error covariance matrix to differentiate them from (2.38) and

(2.39).

2.3.1.4 State-vector Fusion.

Introduced by [24], an advantage of using state-vector fusion is that it can be im-

plemented without a central processor [22]. In addition, state-vector fusion is shown

to have the advantages of parallel implementation and fault-tolerance [25]. References

[21, 23] identify three approaches to state-vector fusion:

1. weighted covariance

2. information matrix

3. pseudomeasurement.

The focus of the work in [23] was solely on the information matrix approach, provid-

ing an evaluation methodology for comparing the performance of several fusion algo-

rithms with the information matrix.

2.3.1.5 Measurement Fusion.

There are two commonly used methods of measurement fusion referred as Method

I and Method II [20, 21]. Method I simply merges the multisensor data increasing the

dimension of the observation vector z (2.37) whereas Method II combines the mul-

tisensor data based on minimum-mean-square-error estimates without affecting the

dimension of z. Derivations and simulations in [20] shows that if the observation ma-

trix, H are not the same for each sensor, Method II is preferred. However, Method I is

shown to be more flexible and will become more efficient in the sense of computational

cost.
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2.3.1.6 Noise Statistics.

In many practical applications, the noise statistics are partially unknown. Refer-

ence [21] derives, simulates and analyzes “on-line" self-tuning Kalman filters for mul-

tisensor systems with unknown variance matrices, Q and R (“on-line" refers to the act

of tuning whilst the system is operational). Self-tuning filters are based on a recursion

of noise statistics, and [21] utilizes this in conjunction with a correlation method to

present a self-tuning Kalman filter for systems with identical or different observation

matrices, H.

Reference [26] expresses the fact that the Q and R matrices do not always contain

white error sources and refers to the use of a Schmidt-Kalman filter under those cir-

cumstances. Besides using the “on-line" method of calculating Q and R, [26]highlights

the availability of an “off-line" procedure using Powell’s method on prerecorded data

sets. Ultimately, the work in [26]was to integrate data from gyroscopic orientation sen-

sors and gravimetric inclinometers to create an inertial system, and the route taken to

calculate the noise statistics was to take a simpler but crude approach, ignoring the

unmodeled states and "bumping” up the Q and R matrices to account for the noises

in the states being discarded.

Ultimately, the availability of a priori noise statistics is often unavailable and is es-

pecially true if changes in the environment occur and/or if it has a complex structure

[27]. However, poor estimates/assumptions of the noise statistics risk serious degrada-

tion of the Kalman filter to the point of divergence. This is what has fueled the research

into “adaptive/self-tuning" filters.
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III. Methodology

This chapter details the steps taken to explore the proof of concept of Multi-Sensor

Data Fusion (MSDF) between the two disparate sensor technologies of Radio Tomo-

graphic Imaging (RTI) and a Noise Radar Network (NRN). A system model definition is

proposed, acting as the foundation on what mathematically ties the sensor technolo-

gies together. The experimental procedure follows this, presenting the steps taken to

collect and process the raw data captured by each sensor.

3.1 Linearizing Trilateration for Image Construction

In order to fuse two disparate sensor technologies, considerations were made into

the underlying equations that could best facilitate multi-sensor data fusion. As the

linear formulation was already well established with RTI, an attempt to linearize trilat-

eration using a single Air Force Institute of Technology (AFIT) Noise Network (NoNET)

node was made with the following equation:

yNRz =WNRz xNRz +nNRz (3.1)

nNRz ∼N (0, CNRz ) ,

where

• xNRz is the N ×1 reflection image to be estimated with N pixels from the z th NRN

node.

• yNRz is the I × 1 vector of magnitudes in the impulse response/cross correlation

magnitudes at I calibrated ranges from the z th NRN node.

• WNRz is the weighting matrix with each column representing a single pixel and

each row describing the weighting of each pixel for a particular range.
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• nNRz is the noise vector of the z th NRN node.

Thus, when employing more than one AFIT NoNET node, or as was limited to in

this thesis, transmitting and receiving from three locations using just one AFIT NoNET

node, it is proposed that (3.1) can be generalized into
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This leaves the question of what the weighting matrix, WNRz , needs to be.

3.2 Weight Model for Trilateration

This thesis works on the concept of trilateration by taking an AFIT NoNET node to

three known locations to transmit and receive. The transmit and receive signals are

assumed to be omnidirectional allowing the concept of range rings to be made use

of in image reconstruction. Therefore, the proposed weight model for trilateration is

mathematically described as

wTrilateration
i , j =


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1, if
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x j −h
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+
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outer,i

0, otherwise

(3.3)

where,

• x j is the x coordinate of the j th pixel
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• h is the x coordinate of the AFIT NoNET node

• yj is the y coordinate of the j th pixel

• k is the y coordinate of the AFIT NoNET node

• rinner,i is the inner radius of the range ring which equals the i th range − range

resolution/2

• router,i is the outer radius of the range ring which equals the i th range + range

resolution/2.

Qualitatively, (3.3) is the equation for an annulus, i.e. a ring-shaped object, cen-

tered at the AFIT NoNET node’s known coordinates (h , k ) who’s region is bounded by

the sensor’s empirical range resolution.

3.3 Multi-Sensor Data Fusion Image Reconstruction

Following the linear dynamic system model format of (2.6), a preliminary MSDF

model is presented as
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yFUS =WFUSxFUS+nFUS (3.5)

nFUS ∼N









0

0



 , CFUS =





CRTI 0

0 CNRN







 ,

where

• yRTI is the calibrated received signal strength (RSS) values from all M links in the

RTI network
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• yNRN is the stacked calibrated impulse response/cross correlation magnitudes

from each NRN node.

• xFUS is the fusion image of the RTI and the AFIT NoNET sensors.

Image reconstruction for MSDF involves solving for xFUS in (3.5). This will be achieved

by taking the maximum likelihood (ML) derivation similar to Subsection 2.1.2, i.e.

x̂FUS,ML(y) = arg max
x̂FUS

ln℘(yFUS|xFUS) (3.6)

= arg max
x̂FUS

L ,

where L is known as the log likelihood function. Assuming the noise vector nFUS ∼

N (0, CFUS), therefore y∼N (WFUSxFUS, CFUS). Hence,

L = ln
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Note that we want the arg max ofL , but due to the−1/2 term in (3.8), this implies that

we should solve for f (x) in (3.9).

arg max
x̂

L =∇xL ≡ 0 (3.10)
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For (3.11), the vector calculus identities of (2.28) and (2.29) were used.

Since
�

WT
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�

in (3.12) is not invertible, we now apply Tikhonov regulariza-

tion by injecting αFUS‖QxFUS‖2 into f (xFUS) in (3.9) to create certain desired properties

that enforces a solution. αFUS is a tunable weight parameter where small values lead to

solutions that fit the data and large values favor prior information.
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Since the image will be two-dimensional (2D) for this thesis, Tikhonov regularization
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calls for including derivatives in both the horizontal and vertical dimensions, i.e.
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(3.10) now becomes
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For (3.18), the vector calculus identities of (2.28) and (2.29) were used which also han-

dles the injected Tikhonov related matrices and vectors.
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3.4 Experimental Procedure

The experimental procedure consists of three parts:

1. Collecting data, i.e. yRTI with an RTI system.

2. Collecting data, i.e. yNRN with an AFIT NoNET node.

3. Processing the collected data to form a fused image, i.e. xFUS.

The scenes of which these two sensor technologies will be collecting for are kept

roughly the same, even though simultaneous operation is not conducted. The scene

will be a 252 ft2 (18 ft by 14 ft, i.e. x ft by y ft) rectangular area within AFIT, Building 640

Laboratory 333. Conveniently, the tiles within the laboratory are squares whose sides

are 1 ft, and therefore were used as a template for the construction of the rectangular

area. The following subsections detail the general steps taken to set up and collect data

from the two disparate sensor technologies.

3.4.1 Radio Tomographic Imaging.

3.4.1.1 Laboratory Setup.

The physical makeup of the RTI system setup for this thesis consists of 60 MEMSIC

TelosB motes each spaced 1 ft apart from each other and at a height of 4 ft 5 in. An

aerial view of the position of each node is shown in Figure 3.1. To achieve the desired

spacing and height, each RTI node is attached to a standing structure composed of

multiple 1/2 in Polyvinyl Chloride (PVC) pipes with the use of velcro straps.

Physical orientation of each TelosB mote was considered based on past work [28],

[29]. Referring to the specifications [30] for the Inverted F Antenna (IFA) in the TelosB

mote, orienting the motes horizontally versus vertically results in differing antenna

gain patterns. However, since the premise of RTI is based on the difference in RSS,
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physical orientation of the TelosB mote was not considered critical. Rather, consis-

tency in the orientation of all TelosB motes was the imperative, with a horizontal ori-

entation being the choice for the work in this thesis.

3.4.1.2 Software Setup.

The RTI nodes are powered and programmed through varying lengths of universal

serial bus (USB) cables as shown in Figure 3.2. Programming is accomplished using

Cygwin installed on a Microsoft Windows® 7 laptop. Cygwin allows programs of Unix-

like systems to be recompiled and run natively on Microsoft Windows®. Each TelosB

mote has the TinyOS operating system installed, providing interfaces and components

for packet communication, routing, sensing and storage. For the 60 RTI nodes that

make up the WSN, a TinyOS program called Spin is installed on each of them. Spin is

open source program created by the Sensing and Processing Across Networks (SPAN)

laboratory at the Department of Electrical Engineering in the University of Utah. Spin

transmits RSS information from a WSN using a token passing protocol. With the to-

ken passing protocol, RTI nodes transmit sequentially rather than at the same time,

reducing the amount of lost information packets transmitted within the WSN.

In order to receive and process the RSS data packets being transmitted from the

WSN, a TinyOS program called BaseStation is installed on a single TelosB mote to be

connected to the laptop. Technically, BaseStation acts as a bridge between the serial

port of the laptop and the WSN, allowing a TelosB mote to listen to all the RTI nodes.

Institute of Electrical and Electronics Engineers (IEEE) 802.15.14 specifies 16 channels

within the 2.4 GHz unlicensed Industrial, Scientific and Medical (ISM) band [31], in 5

MHz steps, numbered 11 through 26. For this thesis, all TelosB motes are programmed

to transmit and receive on channel 26, i.e. at a frequency of 2.48 GHz.

Collection and saving of the raw RSS links was done through a MATLAB® program

35



Figure 3.1. The locations of the 60 nodes shown as red boxes within the RTI WSN.

named RTI LINK Graphical User Interface (GUI) v3.1. RTI LINK GUI is a collaborative

AFIT initiative designed to also display attenuation images in near-real time, parsing

raw hexadecimal data from the TelosB motes, converting it to a signed integer form of

link RSS. RTI LINK GUI also provides the user with options of RTI weight models and

parameters, providing flexibility in comparing the impacts of Tikhonov regularization

and pixel size/image resolution.

As discussed in Subsubsection 2.1.1.2, the RTI weight model and associated param-

eters used for this research are organized in Table 3.1.
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Figure 3.2. The RTI setup used for this thesis located at AFIT, Building 640 Laboratory 333.

3.4.1.3 Calibration.

Calibration of the RTI WSN is accomplished by accumulating at least 50 frames of

RSS links, or in other words, waiting until the token has passed through the entirety of

the WSN at least 50 times. Calibration is taken with no targets within the WSN, with the

final calibration vector being the average of the collected frames. It is this calibration

vector which is used to calculate the change in RSS, i.e. ∆y or y in (2.6).

3.4.1.4 Target Collect.

Following calibration, targets are then introduced into the WSN in which collection

of frames is once again commenced. In the event of information packet loss from an
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Table 3.1. RTI weight model and associated parameters.

Parameter Choice

Binary selection matrix SEllipse
i , j

Distance between two nodes d 11.74 ft
Width of the ellipse λ 0.03 ft
Magnitude of the weights ΩNeSh

i , j

Pixel size/image resolution 1 ft

RTI node, the BaseStation records its value as not a number (NaN). As MATLAB® does

not perform calculations with NaN variables, they are manually turned to a value of 0,

qualitatively representing an absence of RSS.

In calculation of the final RTI attenuation image x in (2.6), negative values are a

possible result. As negative values are not understood by MATLAB® in an image con-

text, they are set to 0, qualitatively representing no change in RSS, or synonymously,

no detection in attenuation. Finally, yRTI, i.e. the collected raw link RSS vector, is saved

for later use in MSDF.

3.4.2 Noise Radar.

3.4.2.1 Software Setup.

Collection of radar data is accomplished through the use of a computer program

called NoNET MKIIa installed on a Microsoft Windows® 10 laptop. NoNET MKIIa is a

collaborative AFIT initiative built to interface with AFIT’s noise radar hardware, allow-

ing the user to select and specify desired parameters for transmission and reception

of Ultra-wideband (UWB) signals. The parameters set for the noise radar work in this

thesis are organized in Table 3.2.

Transmit and receive signals are able to be previewed and saved, allowing for post

processing in MATLAB®. Post processing of the raw noise radar in MATLAB® is carried
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out using a library of scripts collectively known as Air Force Institute of Technology Low

Observables Radar Electromagnetics Processing INtegrated Environment (ALPINE)©.

The ALPINE© MATLAB® toolbox provides both plotting and processing functions tai-

lored to the data generated in AFIT’s laboratories. The script used from ALPINE© for

the work conducted in this thesis is known as “readNoNET.m". The “readNoNET.m"

script essentially takes the transmit and receive waveforms and returns the impulse re-

sponse, yNRz by cross correlating the two waveforms. Given the known sampling rate,

capture time and the propagation speed of the signal (i.e. assumed to be the speed of

light), target range estimations can then be made, influenced by the magnitude of the

cross correlation.

3.4.2.2 Calibration.

All previous work with the AFIT NoNET required some form of calibration [17–

19, 32–36]. Figure 3.3 highlights the amount of calibration required when using an AFIT

NoNET node to take range measurements. The graph displays the measured target

range made by the noise radar as the target was moved away at 5 ft increments whilst

being in line-of-sight (LOS). The target used was a hollow metal cylinder 5 ft tall and 7

in in diameter. What can be inferred from Figure 3.3 is that raw range measurements

are relatively linear from a true range of 0 ft to 20 ft. To explain the results for ranges

greater than 20 ft, a three-dimensional (3D) plot of the measured impulse responses

with background subtraction at each target range is displayed in Figure 3.4. What can

be deduced from Figure 3.4 is that under the current specifications (the time at which

this thesis was written) of the AFIT NoNET node, the noise radar simply cannot con-

fidently detect and range targets of interests beyond 20 ft in a cluttered environment.

The positive aspect that can be taken from these results is that a calibration procedure

can be made to correct for the 23 ft error.

39



Table 3.2. NoNET MKIIa parameters.

Parameter Choice
Transmit Input Range 2000 mV
Receive Input Range 2000 mV
Sampling Rate 3000 MHz
Capture Time 1µs
Samples per Trigger 3000
Transmit 3 dB filter ON
Receive 3 dB filter ON

The calibration procedure adopted for correcting the range measurements of the

AFIT NoNET is called two point calibration. This calibration technique, also employed

by [18], essentially rescales raw measurements and is capable of correcting both slope

and offset errors. To perform two point calibration [37]:

1. Take two measurements with the noise radar using the hollow metal cylinder:

One near the low end of the measurement range and one near the high end of

the measurement range. Record these readings as “RawLow" and “RawHigh".

2. Repeat these measurements with a reference instrument, recording these read-

ings as "ReferenceLow" and "ReferenceHigh". A measuring wheel was used in

this instance.

3. Calculate “RawRange" as RawHigh - RawLow.

4. Calculate “ReferenceRange" as ReferenceHigh - ReferenceLow.

5. Calculate the corrected value as
�

((RawValue−RawLow)×ReferenceRange)
RawRange

�

+ReferenceLow.

Figure 3.5 displays the result of performing two point calibration on the raw range mea-

surements collected in Figure 3.3. Thus, we are now able to employ a method of cor-

recting range measurements for the AFIT NoNET over a reasonably linear region.
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Figure 3.3. Raw AFIT NoNET node range measurements.

3.4.2.3 Polarization.

Orientation of the transmit and receive log-periodic antennas (LPAs) must be de-

cided upon. Prior work in [17–19, 32] considered the best orientation of the LPAs for

the conduct of their respective research. Figure 3.6 and 3.7 displays the various con-

figurations of the LPAs for this thesis. The differing configurations relate to either a

horizontal (HH) or vertical (VV) polarization which in turn results in different return

echoes due to the antenna patterns of the LPAs. In the horizontal configuration, the

receive antenna will have less cross-talk (or coupling) from the transmit antenna due

to the null in the antenna pattern where the receive antenna is located [32]. However,

much more energy is returned from the floor in this configuration. With the vertical po-

larization configuration, the antenna pattern null is pointed at the floor, minimizing

returns from the floor. However, there is no null in the direction of the receive antenna,

providing significant cross-talk that must be accounted for. Based on an examination
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Figure 3.4. 3D plot of raw AFIT NoNET impulse responses with node range measurements.

of multiple trial experiments, maximum separation in azimuth between horizontally

polarized transmit and receive LPAs was the configuration that returned correct de-

tections from the furthest distance within the laboratory and is therefore used when

collecting radar data to build yNRz .

3.4.2.4 Target Collect.

With only one AFIT NoNET node available for use, data collection involved phys-

ically moving the noise radar to predetermined locations around the scene to be im-

aged. Trilateration is performed by transmitting and receiving from three locations as

organized in Table 3.3 and shown in Figures 3.8 and 3.9.

At each location four collections will need to be made:

1. A background scene collect, absent of any targets.

2. A “RawLow" scene collect using the hollow metal cylinder, in following the in-

structions for two point calibration.
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Figure 3.5. Calibrated AFIT NoNET node range measurements.

3. A “RawHigh" scene collect using the hollow metal cylinder, in following the in-

structions for two point calibration.

4. A target scene collect.

The purpose of the background scene collect is an effort to remove noise/clutter from

the final result by subtracting it from the target scene collect. Hence, the intent is that

only target information is left remaining after the expected range errors have been cal-

ibrated out. Finally, yNRz , i.e. the calculated impulse response vector, is saved for later

use in MSDF.

3.4.3 Multi-Sensor Data Fusion.

The final part of the experimental procedure for this thesis involves processing the

saved collected data, i.e. yRTI and yNRz to form a final fused image, xFUS. This is achieved

with the execution of various MATLAB® scripts written using the system model defini-
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Figure 3.6. Left: Maximum separated azimuth between horizontally polarized transmit and receive (HH)
LPAs. Right: Maximum separated azimuth between vertically polarized transmit and receive (VV) LPAs.

Table 3.3. NRz locations.

Coordinate Location Description
(0,0) Denoted as Noise Radar 1 (NR1)
(9,0) Denoted as Noise Radar 2 (NR2)
(18,0) Denoted as Noise Radar 3 (NR3)

tion proposed in Section 3.3 and solving for xFUS using (3.22).
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Figure 3.7. Left: Zero azimuth separation between horizontally polarized transmit and receive (HH)
LPAs. Right: Zero azimuth separation between vertically polarized transmit and receive (VV) LPAs.

Figure 3.8. Left: Location of NR1. Middle: Location of NR2. Right: Location of NR3.
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Figure 3.9. The locations of the 3 noise radars shown as red triangles amongst the RTI nodes shown as
black boxes.
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IV. Results & Discussion

This chapter analyzes the results obtained from following the methodology and the

assumptions made in Chapter III. A 6 ft, 210 lb human target was positioned at three

different locations within the scene, namely, coordinates (9,7), (4,10) and (14,4). Multi-

ple figures and tables are created to aid in providing a full perspective on the outcome

of the Multi-Sensor Data Fusion (MSDF) process. As a precursor to the upcoming sec-

tions of the chapter, the following performance metrics will be provided with each so-

lution for x̂:

1. A maximum a posteriori (MAP) estimation.

2. K -means clustering.

3. Dispersion.

4. Comparison to a model solution.

MAP estimation, for a single target application, is a Bayesian statistic on the esti-

mated scene x̂ which can be applied to estimate the location of the target [38]. The

mathematical notation for this estimate is

û = arg max
n

℘ (u = n |x̂) , (4.1)

where û is the estimated location of the target and x̂ is the image estimate. Qualita-

tively, (4.1) is the pixel with the maximum intensity value. The root-mean-square er-

ror (RMSE), εMAP, will accompany the MAP estimation using the formula of (2.2), i.e.:

εMAP =
1

L

L
∑

k=1

r

�

ûx [k ]−px [k ]
�2
+
�

û y [k ]−py [k ]
�2

, (4.2)
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where L is the total number of samples, ûx [k ] and û y [k ] are the estimated x and y

coordinates at sample time k , and px [k ] and py [k ] are the known coordinates.

K -means clustering is an algorithm used by Nishida [39] to estimate single and

multiple target locations with Radio Tomographic Imaging (RTI) wireless sensor net-

works (WSNs). K -means clustering is popular among machine learning applications,

pattern recognition, hyper-spectral imagery, artificial intelligence, crowd analysis, and

multiple target tracking (MTT) [40–42]. K -means clustering, or Lloyd’s algorithm [43],

is an iterative, data-partitioning algorithm that assigns n observations to exactly one

of the k clusters defined by centroids where k is chosen before the algorithm starts.

The algorithm can be summarized as follows [44]:

1. Place k cluster centers (centroids) into the spatial area represented by the pixels

that are being clustered.

2. Compute point-to-cluster-centroid distances of all observations to each centroid.

3. Assign each observation to the cluster with the closest centroid.

4. Compute the average of the observations in each cluster to obtain k new centroid

locations.

5. Repeat steps 2-4 until the centroid locations converge.

Separation of all points in the data set is obtained when all objects are assigned to a

cluster by minimizing the euclidean distance of all the points in the data set to the

centroid. Again, the RMSE, εCentroid, will accompany the target location of the k -means

clustering algorithm.

The purpose of dispersion is to find out how spread out the “target pixels" are on

the two dimensional image of x̂. Another term for this statistic is a measure of spread.

The “target pixels" will be revealed from the effects of thresholding and filtering x̂ when
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determining the k -means performance metric. The standard deviation, σCentroid, will

be the performance metric used to measure dispersion,

σCentroid =

√

√

√

√

∑N
j=1

�

�κ j −ν
�

�

2 · χ̂ j
∑N

j=1 χ̂ j

(4.3)

where N is the number of pixels in the image, κ j is the coordinate of the j th pixel, ν

are the centroid’s coordinates and χ̂ j is the intensity of the j th pixel of the estimated

centroid filtered image. Hence σCentroid is not only a function of distance, but is also

weighted by pixel intensity.

A quantitative comparison to an ideal model solution, presented in Figure 4.1, will

be used to provide a fourth dimension for determining the image quality for x̂. Since

imaging the location of humans is a primary goal, a model for the size, shape, and at-

tenuation of the human body at the frequencies of interest would be required. This

information is difficult to model, since it is dependent on body types, the plane of in-

tersection, and other variables. Following [9], a human is modeled as a uniformly at-

tenuating cylinder with radius RH. In this case, the “true normalized" image x for a

human positioned at location cH can be described as

xc , j =











1, if




x j − cH







2
<RH

0, otherwise

(4.4)

where xc , j is the center location of pixel j . By scaling the image such that the maximum

equals one, resulting in the normalized image x̂Norm, we can define the RMSE of the

normalized image with respect to pixel intensity to be,

ΨIdeal =
1

N

N
∑

j=1

r

�

�χ j − χ̂Norm, j

�

�

2
(4.5)
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where N is the number of pixels in the image, χ j is the j th pixel intensity of the truth

image and χ̂Norm, j is the j th pixel intensity of the estimated, normalized image. Fig-

ures A.1 and B.1 display the two other model solutions for the various target locations

undertaken in this research.

4.1 Radio Tomographic Imaging

This section explores the results of the collections taken with the RTI sensor follow-

ing the methodology laid out in Subsection 3.4.1.

4.1.1 Empirical Covariance.

In accordance with (3.5), a covariance matrix, CRTI, for the RTI sensor technology

needs to be determined. CRTI is a matrix whose element in the i , j position is the co-

variance of between the i -th and j -th element of the RTI noise vector, nRTI. For the

sake of transparency, if the entries in the column vector

nRTI =











y1,No Targets− y1,Calibration

...

yM ,No Targets− yM ,Calibration











=











nRTI,1

...

nRTI,M











,

then the covariance matrix is

[CRTI]i , j =E
��

nRTI,i −µi

� �

nRTI, j −µ j

��

=E
�

nRTI,i nRTI, j −nRTI,iµ j −µi nRTI, j +µiµ j

�

=E
�

nRTI,i nRTI, j

�

−E
�

nRTI,iµ j

�

−E
�

µi nRTI, j

�

+E
�

µiµ j

�

=E
�

nRTI,i nRTI, j

�

−µiµ j −µiµ j +µiµ j

=E
�

nRTI,i nRTI, j

�

−µiµ j ,
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Figure 4.1. A model solution to be used for the performance metric, ΨIdeal, with target at (9,7).

where the operator E denotes the expected value or mean of its argument, and

µi =E
�

nRTI,i

�

,

is the expected value of the i -th entry in the vector nRTI.

Up to 300 frames of link received signal strength (RSS) data of an empty scene were

collected in order to calculate an empirical CRTI. Using the MATLAB® function “cov()"

an empirical RTI covariance matrix was produced as shown on the left in Figure 4.2.

As CRTI will need to be inverted for the calculation of the final attenuation image, the

empirical covariance matrix was not. Thus an approximation was made for it to be

invertible. As displayed in Figure 4.3, inspection of a histogram of the off-diagonal
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elements of the empirical matrix revealed that they were close to 0, and as such were

reset to 0. Similarly, a histogram of the diagonal elements is also displayed in Figure 4.3,

and were all reset to the average of the diagonal elements in the empirical covariance

matrix. This approximation results in an approximated empirical covariance matrix

expressed in the form of a constant multiplied against an identity matrix, i.e. σ2I. The

result is shown on the right in Figure 4.2. Notice that a covariance matrix of the form

σ2I effectively cancels itself out in the final solution for x̂RTI as assumed and derived in

Subsection 2.1.2.

4.1.2 Tikhonov Regularized Solution.

For a human target at coordinate (9,7), Figure 4.4 displays the Tikhonov regularized

solution for x̂RTI following the procedure laid out in Subsection 3.4.1. For the sake of

simplicity, the Tikhonov regularization parameterα= 8 was subjectively chosen to cre-

ate the image. The white and black overlapping squares on the edge of the scene are

the locations of individual RTI nodes with the human target represented by the black

circle. Indeed, RTI as a sensor technology was able to detect the target as well as dis-

play its darkest pixel at the correct coordinate, however there is obvious uncertainty

represented by the spread of dense pixel shading covering a relatively larger area than

what the human target actually would.

4.1.2.1 Performance Metrics.

In the left of Figure 4.5 is a histogram with 30 bins containing the pixel intensities

in the RTI Tikhonov regularized solution of Figure 4.4. A normal distribution is able to

be fit around the data. In order to identify a cluster of pixels, a threshold on the pixels

of a solution for x̂ is subjectively determined. Qualitatively, the threshold represents

the intensity required by any pixels to retain its value in the image. If a pixel’s inten-
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Figure 4.2. Left: The raw empirical RTI covariance matrix. Right: The approximated empirical RTI co-
variance matrix.

sity falls below the threshold, the pixel is considered insignificant and is consequently

nulled. Work done by Nishida [39] utilized a cluster threshold, TC, of 3σ, where σ is

the standard deviation of the pixel intensities in the image solution x̂. This threshold

is dependent on the Tikhonov regularization parameter, α and the pixel size/image

resolution; both different to that used in this thesis work.

As a result, in the context of statistics, following the 68-95-99.7 rule (also known

as the empirical rule) a threshold of, TC =µ+σ was used, whose effect on the original

solution of x̂RTI is shown on the top right of Figure 4.5. A threshold of TC =µ+σ statisti-

cally represents one standard deviation away from the mean, quantitatively removing

68% of the pixel intensities, leaving the remaining 32% of the pixels to be assigned to k

centroid/s.

K -means clustering is performed using the MATLAB® function “kmeans()" by pro-

viding the x and y coordinates of the pixels intensities above the threshold, TC as well

as the number of clusters, k . In this case, k = 1. The MATLAB® function “kmeans()"

uses the squared Euclidean distance measure with the k -means++ algorithm [45] for
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Figure 4.3. Left: Histogram of the off-diagonals in the raw empirical RTI covariance matrix. Right: His-
togram of the diagonal in the raw empirical RTI covariance matrix.

cluster center initialization. In short, the k -means++ algorithm selects a pixel coordi-

nate uniformly at random, identifying it as a possible centroid. Its distance from every

other provided pixel coordinate is then computed. This process repeats itself, until all

pixel coordinates serve as a possible centroid, with the best centroid being chosen on

the grounds of shortest distance measurements. As can be seen from the top right of

Figure 4.5, the centroid location represented by the asterisk, was computed to be at

coordinate (9.25,5.14).

To avoid the bias presented by pixels that identify as outliers, a 3 ft radius is set

around the initial centroid location as shown in the top right of Figure 4.5. The white

dashed circle acts as a filter, filtering out any pixels outside the circumference of the

circle. The k -means algorithm is again applied on the remaining pixels, with the new,

filtered centroid location at coordinate (9.41,5.28).

Figures A.2 and B.2 display the results of the human target at (4,10) and (14,4) re-
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Figure 4.4. The AFIT RTI image with target at coordinate (9,7). The regularization parameter α has
subjectively been set to 8.

spectively. The performance metrics for all the RTI Tikhonov regularized solutions are

organized in Table 4.1.
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Figure 4.5. Left: Histogram of the pixel densities in x̂RTI from Figure 4.4. Right: Top - The resultant
image from thresholding x̂RTI and the location of the centroid; Bottom - Filtering x̂RTI,Centroid by keeping
the pixels inside the circumference of the dotted circle and reapplying the k -means algorithm.
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Table 4.1. Performance metrics for the RTI Tikhonov regularized solution with targets at (9,7), (4,10)
and (14,4).

Target Performance Metric Description Result
Location

(9,7)

MAP estimate Coordinates of the most (9,7)
intense pixel. εMAP = 0 ft

K -means clustering Coordinates of the centroid.

Unfiltered
(9.25,5.14)
εCentroid = 0.83 ft
Filtered
(9.41,5.28)
εCentroid,Filt = 0.83 ft

Dispersion Pixel spread about the σCentroid = 2.09 ft
filtered centroid.

Model solution Compared to Figure 4.1. ΨIdeal = 0.53

(4,10)

MAP estimate Coordinates of the most (4,10)
intense pixel. εMAP = 0 ft

K -means clustering Coordinates of the centroid.

Unfiltered
(4.67,10.49)
εCentroid = 1.88 ft
Filtered
(4.72,10.41)
εCentroid,Filt = 1.77 ft

Dispersion Pixel spread about the σCentroid = 2.12 ft
filtered centroid.

Model solution Compared to Figure 4.1. ΨIdeal = 0.92

(14,4)

MAP estimate Coordinates of the most (14,5)
intense pixel. εMAP = 1 ft

K -means clustering Coordinates of the centroid.

Unfiltered
(12.81,3.94)
εCentroid = 1.19 ft
Filtered
(12.77,3.69)
εCentroid,Filt = 1.27 ft

Dispersion Pixel spread about the σCentroid = 1.99 ft
filtered centroid.

Model solution Compared to Figure 4.1. ΨIdeal = 0.99
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4.2 Noise Radar

This section reveals and discusses the various AFIT Noise Network (NoNET) mea-

surements made in order to arrive at the final backscatter/reflection image, x̂NRN, fol-

lowing the methodology laid out in Subsection 3.4.2.

4.2.1 Range Resolution.

In order to construct the weight model for trilateration (3.3), as derived in Section

3.2, the range resolution of an AFIT NoNET node needs to be determined. To accom-

plish this, the noise radar was configured in accordance with Table 3.2, transmitting

and collecting for 20 triggers. The 20 triggers were averaged in the time domain with

the result examined in the frequency domain as shown in Figure 4.6. The gray section

of the graph highlights the 3 dB bandwidth of the noise radar’s averaged transmit wave-

form, evaluated as 374 MHz. The 3 dB bandwidth was determined by following a few

steps. First, the peak magnitude in the frequency domain was identified. This peak

magnitude was then used to determine the upper and lower limits of the bandwidth.

The upper limit of the bandwidth was found by starting at the end of the frequency

spectrum (1500 MHz) and sweeping to the left towards the peak until the desired mag-

nitude was flagged for the first time. The frequency at which the desired magnitude

was located at, was denoted as the upper limit. The process of finding the lower limit

of the bandwidth was identical to finding the upper limit, with the exception that the

search started at the beginning of the frequency spectrum (0 MHz), sweeping to the

right towards the peak until the desired magnitude was flagged for the first time.

Using (2.34), the range resolution used for the creation of the following backscat-
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ter/reflection images was calculated to be

∆R = γ
c

2B

= (1)
c

2 (374×106)

= 0.4008 m

= 1.3149 ft. (4.6)

4.2.2 Impulse Responses (Cross Correlations).

To justify the assumption for a normal distribution of the impulse response/cross

correlation vectors, yNRz as per (3.1), a histogram of yNR1 is displayed in Figure 4.7. As

can be concluded, a normal distribution is a sufficient fit for the data contained within

yNR1 with similar results found for yNR2 and yNR3.

Figure 4.8 is one example of the many impulse responses/cross correlations calcu-

lated from the various transmit and receive locations for the noise radar as planned

in Table 3.3. In the instance of Figure 4.8, the noise radar was situated at coordinate

(18,0). Referring to the experimental procedure outlined in Subsubsection 3.4.2.4, a

background collect and a target collect are shown on the right and left, respectively, of

Figure 4.8.

Impulse responses were generated by using the “readNoNET.m" script from the

Air Force Institute of Technology Low Observables Radar Electromagnetics Processing

INtegrated Environment (ALPINE)© MATLAB® toolbox as instructed in Subsubsection

3.4.2.1. In detail, “readNoNET.m" takes the however many raw transmitted signal trig-

gers, xn , and cross correlates them with the corresponding amount of raw received
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Figure 4.6. An AFIT NoNET node’s transmit frequency spectrum whose 3dB bandwidth is shaded in gray.
The 3dB bandwidth was found to be 374MHz.

signal triggers, yn , using the MATLAB® function “xcorr", i.e.

Rx y (m ) =
1

N

N−m−1
∑

n=0

xn+m y ∗n m ≥ 0, (4.7)

where N is the number of samples per trigger as indicated in Table 3.2 and the asterisk

in y ∗n denotes the complex conjugation. Note that correlation requires normalization

to produce an accurate estimate, and thus “readNoNET.m" accounts for this by includ-

ing the 1/N term in (4.7).

In an effort to reduce the presence of irregular results, the output of the however

many cross correlated triggers are averaged, and its absolute value is taken, with final

results being displayed in a similar fashion to Figures 4.8 and 4.9. Finally, as discussed

in Subsubsection 3.4.2.4, the impulse response of the background collect is subtracted

from the impulse response of the target collect shown in Figure 4.9. A dominant peak

can be clearly distinguished in Figure 4.9 which does in fact indicate an uncalibrated
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distance of a target away from the noise radar. Following the appropriate application of

two point calibration outlined in Subsubsection 3.4.2.2, the calibrated, target impulse

responses will be used to create the backscatter/reflection images.

4.2.3 Trilateration Solution.

The results of this section utilizes the the impulse responses calculated back in Sub-

section 4.2.2 to overlay numerous “range rings" in order to form backscatter/reflection

images such as those displayed in Figures 4.10 and 4.11. As discussed in Section 3.1,

this concept of “range rings" works on a geometric process called trilateration, using

the geometry of circles to determine relative locations of points. As there is an associ-

ated range resolution when using an AFIT NoNET node, the circles are treated as rings,

where the thickness of the ring is bounded by the empirical range resolution (4.6). It is

the magnitudes of the impulse response that determine the pixel shading intensity of

the ring. The equation

x̂NRz =WT
NRz yNRz , (4.8)

represents this notion of overlaying “range rings", with the matrix WT
NRz being the key

enabler for trilateration as derived in (3.3). Given the system model definition of (3.5),

(4.8) crudely assumes WT
NRz WNRz results in an identity matrix I, i.e.

yNRz =WNRz xNRz +nNRz

WT
NRz yNRz =WT

NRz WNRz xNRz +WT
NRz nNRz

WT
NRz yNRz ≈ (I)xNRz (4.9)

x̂NRz =WT
NRz yNRz , (4.10)

which is technically not the case.

Note that by using range rings, the assumption is made that the transmitter/re-
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Figure 4.7. Histogram of yNR1.

ceiver are omnidirectional given that the antenna’s used in this thesis are log-periodic

antennas (LPAs). Figure 4.10 displays an AFIT NoNET node, i.e. Noise Radar 1 (NR1),

as a black and white triangle at (0,0) with the target symbolized by the black circle at

(9,7). Judging from the pixel density of the range rings, a target detection is declared

close to the target. We can also declare the effects of multipath by the presence of less

intense range rings in Figure 4.10, meaning that not all reflections off the target take

the path directly back to the receiver. The same procedure is applied for Noise Radar

2 (NR2) and Noise Radar 3 (NR3) with the results shown in Figure 4.11.

What can be considered as a prelude to MSDF, a primitive method of fusing the

three noise radars to effectively represent the final AFIT NoNET image is obtained by

mathematically “stacking" the WNRz matrices to create a Noise Radar Network (NRN)

matrix, WNRN; as well as stacking the yNRz impulse response vectors to create a NRN

vector, yNRN as planned in (3.2). The result is shown in Figure 4.12 with the most intense

pixel shading appearing near the target’s coordinates. Remnants of the range rings
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Figure 4.8. Left: The absolute value of the average impulse response/cross correlation with a target
approximately 11.4 ft away from the AFIT NoNET node. Right: The absolute value of the average impulse
response/cross correlation of the background scene (i.e. no target present).

produced by NR2 are present in Figure 4.12 due to the fact that this particular AFIT

NoNET node was closest to the target and returned a relatively larger impulse response

in magnitude compared to that of NR1 and NR3.

4.2.3.1 Performance Metrics.

Figure 4.13 displays a 30 bin histogram of the AFIT NoNET trilateration solution

of Figure 4.12 as well as the location of the centroid. Figures A.3 and B.3 display the

results of the human target at (4,10) and (14,4) respectively. The performance metrics

for all the NRN trilateration solutions are organized in Table 4.2.
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Figure 4.9. The absolute value of the average impulse response/cross correlation with a target approxi-
mately 11.4 ft away from the AFIT NoNET node with background subtraction.
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Figure 4.10. NR1 transmitting/receiving from coordinate (0,0) with target at coordinate (9,7).

Figure 4.11. NR2 (left) and NR3 (right) transmitting/receiving from coordinates (9,0) and (18,0) respec-
tively with target at coordinate (9,7).
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Figure 4.12. NRN transmitting/receiving from coordinates (0,0), (9,0) and (18,0) with target at coordinate
(9,7).
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Figure 4.13. Left: Histogram of the pixel densities in x̂NRN = WT
NRNyNRN from Figure 4.12. Right: Top

- The resultant image from thresholding x̂NRN = WT
NRNyNRN and the location of the centroid; Bottom -

Filtering x̂NRN,Centroid by keeping the pixels inside the circumference of the dotted circle and reapplying
the k -means algorithm.
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Table 4.2. Performance metrics for the NRN trilateration solution with with targets at (9,7), (4,10)
and (14,4).

Target Performance Metric Description Result
Location

(9,7)

MAP estimate Coordinates of the most (9,8)
intense pixel. εMAP = 1 ft

K -means clustering Coordinates of the centroid.

Unfiltered
(7.98,6.17)
εCentroid = 1.32 ft
Filtered
(7.53,7.18)
εCentroid,Filt = 1.48 ft

Dispersion Pixel spread about the σCentroid = 1.73 ft
filtered centroid.

Model solution Compared to Figure 4.1. ΨIdeal = 0.47

(4,10)

MAP estimate Coordinates of the most (7,11)
intense pixel. εMAP = 3.16 ft

K -means clustering Coordinates of the centroid.

Unfiltered
(6.00,10.11)
εCentroid = 2.00 ft
Filtered
(5.86,10.27)
εCentroid,Filt = 1.88 ft

Dispersion Pixel spread about the σCentroid = 1.85 ft
filtered centroid.

Model solution Compared to Figure 4.1. ΨIdeal = 0.13

(14,4)

MAP estimate Coordinates of the most (14,4)
intense pixel. εMAP = 0 ft

K -means clustering Coordinates of the centroid.

Unfiltered
(13.85,3.79)
εCentroid = 0.26 ft
Filtered
(14.16,3.26)
εCentroid,Filt = 0.75 ft

Dispersion Pixel spread about the σCentroid = 1.78 ft
filtered centroid.

Model solution Compared to Figure 4.1. ΨIdeal = 0.13
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4.2.4 Tikhonov Regularized Solution.

4.2.4.1 Derivation.

Image reconstruction for a NRz Tikhonov regularized solution involves solving for

xNRz in (3.1). This will be achieved by taking the maximum likelihood (ML) derivation

similar to Section 3.3, i.e.

x̂NRz ,ML(y) = arg max
x̂NRz

ln℘(yNRz |xNRz ) (4.11)

= arg max
x̂NRz

L ,

whereL is the log likelihood function. Assuming the noise vector nNRz ∼N (0, CNRz ),

therefore y∼N (WNRz xNRz , CNRz ). Hence,

L = ln

��

1
p

2π
N |CNRz |

�

exp

�

−
(yNRz −WNRz xNRz )T (CNRz )−1(yNRz −WNRz xNRz )

2

��

(4.12)

...

=−N ln
�p

2π
�

− ln (|CNRz |)−
1

2

�

yT
NRz C−1

NRz yNRz −xT
NRz WT

NRz C−1
NRz yNRz · · ·

−xT
NRz WT

NRz C−1
NRz yNRz +xT

NRz WT
NRz C−1

NRz WNRz xNRz

�

=−N ln
�p

2π
�

− ln (|CNRz |)+ f (xNRz ). (4.13)
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Note that we want the arg max ofL implying that we should solve for f (x) in (4.13).

arg max
x̂

L =∇xL ≡ 0 (4.14)

0−0−
1

2

�

0−WT
NRz C−1

NRz yNRz −WT
NRz C−1

NRz yNRz + · · ·
�

�

WT
NRz C−1

NRz WNRz

�

+
�

WT
NRz C−1

NRz WNRz

�T
�

x̂NRz

�

≡ 0 (4.15)

...

WT
NRz C−1

NRz yNRz −WT
NRz C−1

NRz WNRz x̂NRz ≡ 0

x̂NRz =
�

WT
NRz C−1

NRz WNRz

�−1
WT

NRz C−1
NRz yNRz .

(4.16)

For (4.15), the vector calculus identities of (2.28) and (2.29) were used.

Since
�

WT
NRz C−1

NRz WNRz

�

in (3.12) is not invertible, we now apply Tikhonov regulariza-

tion by injectingαNRz‖QxNRz‖2 into f (xNRz ) in (4.13) to create certain desired properties

that enforces a solution. αNRz is a tunable weight parameter where small values lead

to solutions that fit the data and large values favor prior information.

f (x) =−
1

2

�

yT
NRz C−1

NRz yNRz −xT
NRz WT

NRz C−1
NRz yNRz −xT

NRz WT
NRz C−1

NRz yNRz + · · ·

xT
FUSWT

FUSC−1
FUSWFUSxFUS+α‖QxFUS‖2

�

. (4.17)

Since the image will be two-dimensional (2D) for this thesis, Tikhonov regularization
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calls for including derivatives in both the horizontal and vertical dimensions, i.e.

f (x) =−
1

2

�

yT
NRz C−1

NRz yNRz −xT
NRz WT

NRz C−1
NRz yNRz −xT

NRz WT
NRz C−1

NRz yNRz + · · ·

xT
NRz WT

NRz C−1
NRz WNRz xNRz +αNRz

�

‖DH xNRz‖2+ ‖DV xNRz‖2
� �

(4.18)

...

f (x) =−
1

2

�

yT
NRz C−1

NRz yNRz −xT
NRz WT

NRz C−1
NRz yNRz −xT

NRz WT
NRz C−1

NRz yNRz + · · ·

xT
NRz WT

NRz C−1
NRz WNRz xNRz +αNRz

�

xT
NRz DT

H DH xNRz +xT
NRz DT

V DV xNRz

� �

(4.19)

(4.14) now becomes:

arg max
x̂

L =∇xL ≡ 0 (4.20)

−
1

2

�

0−WT
NRz C−1

NRz yNRz −WT
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x̂NRz =
�

WT
NRz C−1

NRz WNRz +αNRz Q
�−1

WT
NRz C−1

NRz
︸ ︷︷ ︸

ΠNRz

yNRz (4.24)

For (4.21), the vector calculus identities of (2.28) and (2.29) were used which also han-

dles the injected Tikhonov related matrices and vectors.
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4.2.4.2 Assumed Covariance.

Figures 4.14, 4.15 and 4.16 display the results of a Tikhonov regularized solution

assuming a covariance matrix CNRz = σ2I. As a result, the covariance matrices drop

out of the final solution through simplification. Figures 4.14, 4.15 and 4.16 also use the

same impulse responses, yNRz and weighting matrices, WNRz , used in the trilateration

method in Subsection 4.2.3.

Figure 4.14 exhibits the result of the data capture made by NR1 with a Tikhonov

regularization parameter, α= 200. The strongest pixel shading density occurs around

coordinate (3,3) away from the target at (9,7). There is however, some indication of

target detection over (9,7) as well as (18,14). Figure 4.15 also exhibits the results of the

data captures by NR2 (left) and NR3 (right) using a Tikhonov regularization parameter,

α = 200. Both results indicate detections over the true target coordinates, however

there are also viable detections over false coordinates. Subjectively, Figures 4.14 and

4.15 do not provide clear indication of target location.

In stacking the impulse responses and weighting matrices appropriately to cre-

ate yNRN and WNRN as done in (3.2), the Tikhonov regularized solution is presented in

Figure 4.16, utilizing a Tikhonov regularization parameter, α = 200. The most dense

pixel shading does in fact occur around the target’s location, however there are many

more viable false target detections. There are similarities in comparing Figure 4.16, the

Tikhonov regularized solution to the trilateration solution of Figure 4.12.

4.2.4.3 Empirical Covariance.

Here, instead of assuming an identity covariance matrix, CNRz = σ2I for simplic-

ity, an empirical covariance matrix is created. Similar to Subsection 4.1.1, a covariance

matrix, CNRz should be determined based on Equation 3.1. 600 triggers/collects were

conducted at each location in Table 3.3. The 600 triggers/collects consists of 300 trig-
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Figure 4.14. NR1 transmitting/receiving from coordinates (0,0), with target at coordinate (9,7). The
regularization parameter α has subjectively been set to 200.

gers/collects of the background and 300 triggers/collects of an empty scene/no targets,

with the idea that the noise, nNRz , is the result of subtracting the two, i.e.

nNRz =











y1,No Targets− y1,Background

...

yI ,No Targets− yI ,Background











=











nNRz ,1

...

nNRz ,I











,
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Figure 4.15. NR2 (left) and NR3 (right) transmitting/receiving from coordinates (9,0) and (18,0) respec-
tively with target at coordinate (9,7). The regularization parameter α has subjectively been set to 200.

then the covariance matrix, CNRz , is

[CNRz ]i , j =E
��

nNRz ,i −µi

� �

nNRz , j −µ j

��

=E
�

nNRz ,i nNRz , j −nNRz ,iµ j −µi nNRz , j +µiµ j

�

=E
�

nNRz ,i nNRz , j

�

−E
�

nNRz ,iµ j

�

−E
�

µi nNRz , j

�

+E
�

µiµ j

�

=E
�

nNRz ,i nNRz , j

�

−µiµ j −µiµ j +µiµ j

=E
�

nNRz ,i nNRz , j

�

−µiµ j .

Qualitatively, CNRz is a matrix whose element in the i , j position is the covariance of

between the i -th and j -th element of the NRz noise vector, nNRz .

Figure 4.17 displays two forms of the NRN covariance matrix CNRN. Construction

of CNRN is achieved by creating a pseudo 3× 3 Block identity matrix whose diagonal

consists of CNR1, CNR2 and CNR3 as per Equation 3.1, implying the impulse responses

collected from each AFIT NoNET node in Table 3.3 are independent. The version on

the left of Figure 4.17 is the raw empirical NRN covariance matrix which was found to

be non-invertible. Since invertibility of the covariance matrices for Tikhonov regular-

ized solutions is mandatory, an approximation was needed to make CNRN invertible.
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Figure 4.16. NRN transmitting/receiving from coordinates (0,0), (9,0) and (18,0) with target at coordinate
(9,7). The regularization parameter α has subjectively been set to 200.

To approximate the raw empirical version of CNRN, each CNRz matrix was made into a

diagonal-constant matrix, i.e. a Toeplitz matrix. A Toeplitz matrix means all elements

along a diagonal have the same value, thus, each diagonal of the “approximated" CNRz

matrix is an average of the each corresponding diagonal of the “raw" CNRz matrix. Ap-

proximating for a Toeplitz matrix implies that the variables in the impulse responses

are all correlated and wide-sense stationary (WSS). The final result is shown on the

right of Figure 4.17.

The effects of introducing the empirical covariance matrix into the AFIT NoNET

Tikhonov regularized solution is quite evident as displayed in Figure 4.18. Figure 4.18
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presents a comparison between the result of assuming an identity covariance matrix

(left) versus implementing the empirical NRN covariance matrix (right). The empirical

covariance solution still has its most dense pixel shading over the target’s coordinates

along with reducing the uncertainty of target detections occurring in other areas within

the target scene compared to that of the identity covariance solution.

4.2.4.4 Performance Metrics.

Figure 4.19 displays a 30 bin histogram of the AFIT NoNET Tikhonov regularized

solution using an assumed covariance matrix as shown in Figure 4.16 as well as the

location of the centroid. A normal distribution is able to be fit around the data. The

performance metrics for the NRN Tikhonov regularized solution of Figure 4.16 are or-

ganized in Table 4.3.

Figure 4.20 displays a 30 bin histogram of the AFIT NoNET Tikhonov regularized

solution using an empirical covariance matrix as shown in Figure 4.18 as well as the

location of the centroid. Figures A.4 and B.4 display the results of the human target

at (4,10) and (14,4) respectively. The performance metrics for all the NRN Tikhonov

regularized solutions are organized in Table 4.4.
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Figure 4.17. Left: The raw empirical NRN covariance matrix. Right: The approximated empirical NRN
covariance matrix.

Figure 4.18. NRN transmitting/receiving from coordinates (0,0), (9,0) and (18,0) with target at coordi-
nate (9,7). The regularization parameter α has subjectively been set to 200. Left: Utilizing the assumed
covariance of the form C=σ2I. Right: Utilizing the approximated empirical covariance.
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Figure 4.19. Left: Histogram of the pixel densities in x̂NRN,Tikh,Assump from Figure 4.16. Right: Top - The
resultant image from thresholding x̂NRN,Tikh,Assump and the location of the centroid; Bottom - Filtering
x̂NRN,Tikh,Assum,Centroid by keeping the pixels inside the circumference of the dotted circle and reapplying
the k -means algorithm.

Table 4.3. Performance metrics for the NRN Tikhonov regularized solution. (Assumed covariance)

Performance Metric Description Result
MAP estimate Coordinates of the most intense pixel. (8,7)

εMAP = 1 ft

K -means clustering Coordinates of the centroid.

Unfiltered
(9.24,6.74)
εCentroid = 0.35 ft
Filtered
(8.56,7.06)
εCentroid,Filt = 0.44 ft

Dispersion Pixel spread about the filtered centroid. σCentroid = 1.65 ft
Model solution Compared to Figure 4.1. εIdeal = 0.43
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Figure 4.20. Left: Histogram of the pixel densities in x̂NRN,Tikh,Emp from the image on the right in Figure
4.18. Right: Top - The resultant image from thresholding x̂NRN,Tikh,Emp and the location of the centroid;
Bottom - Filtering x̂NRN,Tikh,Emp,Centroid by keeping the pixels inside the circumference of the dotted circle
and reapplying the k -means algorithm.
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Table 4.4. Performance metrics for the NRN Tikhonov regularized solution with with targets at (9,7),
(4,10) and (14,4).

Target Performance Metric Description Result
Location

(9,7)

MAP estimate Coordinates of the most (8,7)
intense pixel. εMAP = 1 ft

K -means clustering Coordinates of the centroid.

Unfiltered
(9.15,7.00)
εCentroid = 0.15 ft
Filtered
(8.68,7.47)
εCentroid,Filt = 0.57 ft

Dispersion Pixel spread about the σCentroid = 1.81 ft
filtered centroid.

Model solution Compared to Figure 4.1. ΨIdeal = 0.35

(4,10)

MAP estimate Coordinates of the most (6,10)
intense pixel. εMAP = 2 ft

K -means clustering Coordinates of the centroid.

Unfiltered
(6.70,10.27)
εCentroid = 2.72 ft
Filtered
(6.40,10.12)
εCentroid,Filt = 2.40 ft

Dispersion Pixel spread about the σCentroid = 1.93 ft
filtered centroid.

Model solution Compared to Figure 4.1. ΨIdeal = 0.30

(14,4)

MAP estimate Coordinates of the most (13,2)
intense pixel. εMAP = 2.24 ft

K -means clustering Coordinates of the centroid.

Unfiltered
(13.29,4.62)
εCentroid = 0.94 ft
Filtered
(14.5,5.32)
εCentroid,Filt = 0.59 ft

Dispersion Pixel spread about the σCentroid = 2.00 ft
filtered centroid.

Model solution Compared to Figure 4.1. ΨIdeal = 0.24
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4.3 Multi-Sensor Data Fusion

4.3.1 Approach I: Fusing Separate Images.

Approach I of MSDF for this thesis involves creating separate images from the two

disparate sensor technologies, RTI and the AFIT NoNET, and combining them in two

ways

1. Averaging.

2. Kalman filtering.

4.3.1.1 Averaging.

Figure 4.21 displays the result of taking the average of the numerical pixel densities

between Figure 4.4 and the right of Figure 4.18. Prior to taking the average, the im-

ages are normalized by dividing the all numerical pixel densities in each image by the

maximum numerical pixel density in that image.

4.3.1.2 Kalman Filtering.

Following the Kalman filter dynamic system model format of (2.36), the model used

for the MSDF Kalman filter solution is

x̂KAL,k = Fk x̂KAL,k−1+wk

x̂KAL,k = x̂KAL,k−1+wk , wk ∼N (0, Q), (4.25)

where x̂KAL is the Kalman filter solution using the image pixel densities from the RTI

attenuation and NRN reflection/backscatter images generated using the ML estimate

with Tikhonov regularization. Qualitatively, (4.25) represents the estimated state of the

target scene with inherent process noise, wk . Note that we have no knowledge of the
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Figure 4.21. Taking the average of the Tikhonov solutions from the RTI and the AFIT NoNET sensors, i.e.
Figure 4.4 and the right of Figure 4.18.

state transition model, Fk , and are solely relying on the image pixels. For this reason,

Fk , has disappeared from (4.25). The current and prior time steps, k and k−1, represent

only one time step, i.e., x̂KAL,k and x̂KAL,k−1 are not time averaged.

Following the observation equation format of (2.37), the observation model for the
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application in this Kalman filter solution will take the form of

zk =Hxk +vk




x̂RTI

x̂NRN





k

=





1 0

0 1



xk +vk , (4.26)

vk ∼N (0, R) (4.27)

Qualitatively, (4.26) is an observation of the pixel intensities of the RTI and NRN

Tikhonov regularized images x̂RTI and x̂NRN, with inherent and individualized pixel noise,

vk . The observation model, H, is represented by an identity matrix, which means that

the contribution of the pixels from the RTI and NRN Tikhonov regularized images are

only subject to their respective noise in vk .

Figure 4.22 displays the result of using the Kalman filter with the method of state-

vector fusion as per Subsubsection 2.3.1.4. Note that Figure 4.22 is a result of just one

pass through the Kalman filter.

4.3.1.3 Performance Metrics.

Figure 4.23 displays a 30 bin histogram of the MSDF averaging solution as shown

in Figure 4.21 as well as the location of the centroid. Figures A.5 and B.5 display the

MSDF averaging results of the human target at (4,10) and (14,4) respectively. Figure

4.24 displays a 30 bin histogram of the MSDF Kalman filter solution as shown in Fig-

ure 4.22 as well as the location of the centroid. Figures A.6 and B.6 display the MSDF

Kalman filter results of the human target at (4,10) and (14,4) respectively. The perfor-

mance metrics for all the MSDF averaging solutions and all the MSDF Kalman filter

solutions are organized in Tables 4.5 and 4.6 respectively.
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Figure 4.22. Taking the pixel densities of the Tikhonov solutions from the RTI and the AFIT NoNET
sensors, i.e. Figure 4.4 and the right of Figure 4.18 and applying a Kalman filter to them using state-
vector fusion.
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Figure 4.23. Left: Histogram of the pixel densities in x̂Avg from Figure 4.21. Right: Top - The resultant
image from thresholding x̂Avg and the location of the centroid; Bottom - Filtering x̂Avg,Centroid by keeping
the pixels inside the circumference of the dotted circle and reapplying the k -means algorithm.
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Table 4.5. Performance metrics for the MSDF averaged solution with targets at (9,7), (4,10) and (14,4).

Target Performance Metric Description Result
Location

(9,7)

MAP estimate Coordinates of the most (9,7)
intense pixel. εMAP = 0 ft

K -means clustering Coordinates of the centroid.

Unfiltered
(8.84,6.53)
εCentroid = 0.49 ft
Filtered
(8.61,6.96)
εCentroid,Filt = 0.39 ft

Dispersion Pixel spread about the σCentroid = 1.90 ft
filtered centroid.

Model solution Compared to Figure 4.1. ΨIdeal = 0.45

(4,10)

MAP estimate Coordinates of the most (6,10)
intense pixel. εMAP = 2 ft

K -means clustering Coordinates of the centroid.

Unfiltered
(5.33,10.05)
εCentroid = 1.33 ft
Filtered
(5.48,10.11)
εCentroid,Filt = 1.49 ft

Dispersion Pixel spread about the σCentroid = 2.00 ft
filtered centroid.

Model solution Compared to Figure 4.1. ΨIdeal = 0.42

(14,4)

MAP estimate Coordinates of the most (14,5)
intense pixel. εMAP = 1 ft

K -means clustering Coordinates of the centroid.

Unfiltered
(13.15,4.28)
εCentroid = 0.89 ft
Filtered
(13.28,4.41)
εCentroid,Filt = 0.83 ft

Dispersion Pixel spread about the σCentroid = 2.09 ft
filtered centroid.

Model solution Compared to Figure 4.1. ΨIdeal = 0.35
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Figure 4.24. Left: Histogram of the pixel densities in x̂KAL from the image on the right in Figure 4.22.
Right: Top - The resultant image from thresholding x̂KAL and the location of the centroid; Bottom - Fil-
tering x̂KAL,Centroid by keeping the pixels inside the circumference of the dotted circle and reapplying the
k -means algorithm.
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Table 4.6. Performance metrics for the MSDF Kalman filter solution with targets at (9,7), (4,10) and
(14,4).

Target Performance Metric Description Result
Location

(9,7)

MAP estimate Coordinates of the most (9,7)
intense pixel. εMAP = 0 ft

K -means clustering Coordinates of the centroid.

Unfiltered
(9.50,6.06)
εCentroid = 1.06 ft
Filtered
(9.50,6.21)
εCentroid,Filt = 0.93 ft

Dispersion Pixel spread about the σCentroid = 2.08 ft
filtered centroid.

Model solution Compared to Figure 4.1. ΨIdeal = 0.50

(4,10)

MAP estimate Coordinates of the most (4,11)
intense pixel. εMAP = 1 ft

K -means clustering Coordinates of the centroid.

Unfiltered
(4.44,10.85)
εCentroid = 0.96 ft
Filtered
(5.48,10.11)
εCentroid,Filt = 1.49 ft

Dispersion Pixel spread about the σCentroid = 2.05 ft
filtered centroid.

Model solution Compared to Figure 4.1. ΨIdeal = 0.47

(14,4)

MAP estimate Coordinates of the most (14,5)
intense pixel. εMAP = 1 ft

K -means clustering Coordinates of the centroid.

Unfiltered
(13.76,5.40)
εCentroid = 1.39 ft
Filtered
(13.72,5.41)
εCentroid,Filt = 1.44 ft

Dispersion Pixel spread about the σCentroid = 2.07 ft
filtered centroid.

Model solution Compared to Figure 4.1. ΨIdeal = 0.44
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4.3.2 Approach II: Fusing Disparate Data.

Approach II mathematically involves “stacking" the vectors and matrices (yRTI, yNRN,

WRTI and WNRN) responsible for creating the images viewed in Sections 4.1 and 4.2, the

MSDF vector, yFUS and MSDF weighting matrix, WFUS, are created as per the system

model definition defined by (3.5). Solving for the image, x̂FUS, in accordance with the

steps detailed in Section 3.3 whilst employing the empirical covariance matrices, CRTI

and CNRN to create CFUS, a MSDF image is exhibited in Figure 4.25.

A Tikhonov regularization parameter of α = 400 was subjectively chosen based on

aesthetic. Again, the black and white squares and triangles surrounding the edge of

the MSDF image represent the RTI and AFIT NoNET nodes. From Figure 4.25, the most

dense pixel shading occurs just below the target’s coordinates. It is visually apparent,

that the ambiguity of the target’s location in the MSDF image is greater than that of

the RTI (Figure 4.4) and the AFIT NoNET (right of Figure 4.18) Tikhonov regularized

solution.

4.3.2.1 Introducing Beta.

In order to increase the “influence" of either sensor in the creation of the MSDF im-

age, a proposal for a second tunable parameterβ , to be injected into the system model

definition in (3.5), is considered. Theβ parameter also accounts for the disparate units

used by RTI (i.e. shadowing) and the AFIT NoNET (i.e. reflectivity/backscattering).

This β parameter will be applied to the RTI sensor technology and will henceforth be

labeled as βRTI. Mathematically, the system model definition will now effectively be-

come





yRTI

yNRN



=





βRTIWRTI

WNRN



xFUS+





nRTI

nNRN



 , βRTI > 0. (4.28)
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Figure 4.25. A MSDF image with a target at coordinate (9,7). The Tikhonov regularization parameter,
α= 400, was subjectively chosen based on aesthetic.

Selection of a numerical value for βRTI was influenced by the performance metrics

used in this research. A sweep from βRTI = 0.01 to βRTI = 1000 was conducted across

the three target location scenarios with the resulting performance metrics combined

as shown in Figure 4.26. The βRTI value at which the minimum value occurs in the

bottom graph of Figure 4.26 was found to be βRTI = 26.31. Note that ΨIdeal was omitted

from the creation of the bottom graph of Figure 4.26. This is due to a difference in units,

however, ommitance of ΨIdeal does not have much effect, as ΨIdeal remains relatively

constant as observed from the top graph of Figure 4.26.

Figure 4.27 displays the result of introducing theβRTI = 26.31 parameter, comparing
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it to the result obtained when no βRTI parameter is involved, i.e. βRTI = 1. The outcome

of increasing the influence of the RTI sensor on the MSDF image, results in a “cleaner"

image allowing for better target location and detection.

4.3.2.2 Performance Metrics.

Figure 4.28 displays a 30 bin histogram of the MSDF Tikhonov regularized solution

as shown in Figure 4.25 as well as the location of the centroid. Figures A.7 and B.7

display the MSDF Tikhonov regularized results of the human target at (4,10) and (14,4)

respectively. Figure 4.29 displays a 30 bin histogram of the MSDF Tikhonov regularized

β solution as shown in right of Figure 4.27 as well as the location of the centroid. Fig-

ures A.8 and B.8 display the MSDF Tikhonov regularized β results of the human target

at (4,10) and (14,4) respectively.

The performance metrics for all the MSDF Tikhonov regularized solutions are or-

ganized in Table 4.7. The performance metrics for all the MSDF Tikhonov regularized

solutions are organized in Table 4.8.
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Figure 4.26. Top: Consolidated performance metrics across the three target location scenarios. Bottom:
Summation of the appropriate performance metrics to determine βRTI.

Figure 4.27. Left: α = 400,βRTI = 1, identical to Figure 4.25. Right: α = 400,βRTI = 26.31, subjectively
chosen based on aesthetic.
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Figure 4.28. Left: Histogram of the pixel densities in x̂FUS from Figure 4.25. Right: Top - The resultant
image from thresholding x̂FUS and the location of the centroid. Bottom - Filtering x̂FUS by keeping the
pixels inside the circumference of the dotted circle and reapplying the k -means algorithm.
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Table 4.7. Performance metrics for the MSDF Tikhonov regularized solution with targets at (9,7),
(4,10) and (14,4).

Target Performance Metric Description Result
Location

(9,7)

MAP estimate Coordinates of the most (10,8)
intense pixel. εMAP = 1.41 ft

K -means clustering Coordinates of the centroid.

Unfiltered
(9.77,6.05)
εCentroid = 1.23 ft
Filtered
(9.61,5.78)
εCentroid,Filt = 1.36 ft

Dispersion Pixel spread about the σCentroid = 1.91 ft
filtered centroid.

Model solution Compared to Figure 4.1. ΨIdeal = 0.62

(4,10)

MAP estimate Coordinates of the most (6,14)
intense pixel. εMAP = 4.47 ft

K -means clustering Coordinates of the centroid.

Unfiltered
(6.70,10.27)
εCentroid = 1.40 ft
Filtered
(4.79,10.11)
εCentroid,Filt = 0.80 ft

Dispersion Pixel spread about the σCentroid = 1.77 ft
filtered centroid.

Model solution Compared to Figure 4.1. ΨIdeal = 0.47

(14,4)

MAP estimate Coordinates of the most (13,4)
intense pixel. εMAP = 1 ft

K -means clustering Coordinates of the centroid.

Unfiltered
(13.17,4.48)
εCentroid = 0.96 ft
Filtered
(13.33,4.33)
εCentroid,Filt = 0.80 ft

Dispersion Pixel spread about the σCentroid = 0.75 ft
filtered centroid.

Model solution Compared to Figure 4.1. ΨIdeal = 0.50
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Figure 4.29. Left: Histogram of the pixel densities in x̂FUS,β from the image on the right in Figure 4.27.
Right: Top - The resultant image from thresholding x̂FUS,β and the location of the centroid; Bottom -
Filtering x̂FUS,β ,Centroid by keeping the pixels inside the circumference of the dotted circle and reapplying
the k -means algorithm.
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Table 4.8. Performance metrics for the MSDF Tikhonov regularized solution with targets at (9,7),
(4,10) and (14,4). (βRTI = 21)

Target Performance Metric Description Result
Location

(9,7)

MAP estimate Coordinates of the most (9,7)
intense pixel. εMAP = 0 ft

K -means clustering Coordinates of the centroid.

Unfiltered
(9.10,5.41)
εCentroid = 1.59 ft
Filtered
(9.28,6.06)
εCentroid,Filt = 0.98 ft

Dispersion Pixel spread about the σCentroid = 1.93 ft
filtered centroid.

Model solution Compared to Figure 4.1. ΨIdeal = 0.30

(4,10)

MAP estimate Coordinates of the most (4,10)
intense pixel. εMAP = 0 ft

K -means clustering Coordinates of the centroid.

Unfiltered
(5.03,8.92)
εCentroid = 1.49 ft
Filtered
(4.36,9.50)
εCentroid,Filt = 0.61 ft

Dispersion Pixel spread about the σCentroid = 1.53 ft
filtered centroid.

Model solution Compared to Figure 4.1. ΨIdeal = 0.26

(14,4)

MAP estimate Coordinates of the most (14,5)
intense pixel. εMAP = 1 ft

K -means clustering Coordinates of the centroid.

Unfiltered
(12.39,4.05)
εCentroid = 1.61 ft
Filtered
(13.50,4.00)
εCentroid,Filt = 0.50 ft

Dispersion Pixel spread about the σCentroid = 1.50 ft
filtered centroid.

Model solution Compared to Figure 4.1. ΨIdeal = 0.27
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V. Conclusion & Future Work

A proof of concept for a Multi-Sensor Data Fusion (MSDF) technique using two

disparate sensor technologies, namely Radio Tomographic Imaging (RTI) and a Noise

Radar Network (NRN), has been presented in this thesis. The surveillance images deliv-

ered by the fusion of these sensors is intended to be of greater accuracy and reliability

versus operating the sensors independently. To reiterate the motivation for this re-

search, in accordance with Royal Australian Air Force (RAAF) doctrine, the fundamen-

tal principles by which military forces guide their actions to achieve desired objectives,

situational understanding is the awareness, analysis, knowledge, comprehension and

judgment facilitating and enabling timely and accurate decision-making.

Various solutions for the surveillance image, x̂, were created in order to evaluate

its quality. Solutions for x̂ are organized in Table 5.1. A summary of the performance

metrics for each solution of x̂ are displayed accordingly in Table 5.2. It can be con-

cluded from the performance metrics of Table 5.2 that out of all the Tikhonov influ-

enced images, it is the MSDF solution of x̂FUS,βRTI
that ranks first when considering all

of the performance metrics and the three cases for target location. The best case for

x̂FUS,βRTI
was for target location (4,10), Figure A.8, where the performance metrics reveal

up to a 100% error decrease in target pixel location (εMAP), a 75% error decrease in tar-

get centroid location (εCentroid), a 28% size decrease in target pixel dispersion (σCentroid)

and a 72% improvement in an ideal solution comparison (ΨIdeal).

Ultimately, the results of the research presented in this thesis prove that MSDF im-

ages are of greater quality than that of the images generated by the disparate sensors

independently, x̂RTI and x̂NRN. Follow on work that can develop the state of MSDF with

RTI and a NRN include

• Explore a bistatic/multistatic configuration of the AFIT NoNET versus the mono-
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Table 5.1. A summary of the various solutions for x̂.

Solution Description
(9,7) (4,10) (14,4)
Figure Reference No.

x̂RTI The RTI Tikhonov regularized solution 4.4 A.2 B.2
x̂NRN,Trilateration The Air Force Institute of Technology (AFIT) 4.12 A.3 B.3

Noise Network (NoNET) trilateration solution
x̂NRN,Tikhonov The AFIT NoNET Tikhonov regularized solution 4.16 A.4 B.4
x̂Avg A MSDF image created by averaging 4.21 A.5 B.5

x̂RTI and x̂NRN,Tikhonov

x̂KAL A MSDF image created by Kalman filtering 4.22 A.6 B.6
x̂RTI and x̂NRN,Tikhonov

x̂FUS A MSDF Tikhonov regularized solution 4.25 A.7 B.7
x̂FUS,βRTI

A MSDF Tikhonov regularized solution with 4.27 A.8 B.8
an additional parameter βRTI

static configuration.

• Investigations into the use of different weight models with RTI on accuracy and

performance of the final MSDF image.

• Incorporation of antenna pattern in the noise radar weighting matrix, WNRz .

• Exploration of the best tuning parameters α and β in the MSDF Tihkonov algo-

rithm.

• Real time MSDF implementation of multiple target tracking (MTT).

• Number and sensor placement analysis of RTI and/or NRN nodes.

• Employing two receive antennas into the configuration of an AFIT NoNET node

to introduce angular samples in collected radar data.
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Table 5.2. A summary of performance metrics for the various solutions for x̂ with target at (9,7), (4,10)
and (14,4).

Target Location Solution
Performance Metric
εMAP εCentroid,Unfiltered εCentroid,Filtered σCentroid ΨIdeal

(9,7)

x̂RTI 0 ft 0.83 ft 0.83 ft 2.09 ft 0.53
x̂NRN,Trilateration 1 ft 1.32 ft 1.48 ft 1.73 ft 0.47
x̂NRN,Tikhonov 1 ft 0.15 ft 0.57 ft 1.81 ft 0.35
x̂Avg 0 ft 0.49 ft 0.39 ft 1.90 ft 0.45
x̂KAL 0 ft 1.06 ft 0.93 ft 2.08 ft 0.50
x̂FUS 1.41 ft 1.23 ft 1.36 ft 1.91 ft 0.62
x̂FUS,βRTI

0 ft 1.59 ft 0.98 ft 1.93 ft 0.30

(4,10)

x̂RTI 0 ft 1.88 ft 1.77 ft 2.12 ft 0.92
x̂NRN,Trilateration 3.16 ft 2.00 ft 1.88 ft 1.85 ft 0.13
x̂NRN,Tikhonov 2 ft 2.72 ft 2.40 ft 1.93 ft 0.30
x̂Avg 2 ft 1.33 ft 1.49 ft 2.00 ft 0.42
x̂KAL 1 ft 0.96 ft 0.93 ft 2.05 ft 0.47
x̂FUS 4.47 ft 1.40 ft 0.80 ft 1.77 ft 0.47
x̂FUS,βRTI

0 ft 1.49 ft 0.61 ft 1.53 ft 0.26

(14,4)

x̂RTI 1 ft 1.19 ft 1.27 ft 1.99 ft 0.99
x̂NRN,Trilateration 0 ft 0.26 ft 0.75 ft 1.78 ft 0.13
x̂NRN,Tikhonov 2.24 ft 0.94 ft 0.59 ft 2.00 ft 0.24
x̂Avg 1 ft 0.89 ft 0.83 ft 2.09 ft 0.35
x̂KAL 1 ft 1.39 ft 1.44 ft 2.07 ft 0.44
x̂FUS 1 ft 0.96 ft 0.80 ft 0.75 ft 0.50
x̂FUS,βRTI

1 ft 1.61 ft 0.50 ft 1.50 ft 0.27

Average across Target Locations

x̂RTI 0.33 ft 1.30 ft 1.29 ft 2.07 ft 0.81
x̂NRN,Trilateration 1.39 ft 1.93 ft 1.37 ft 1.79 ft 0.24
x̂NRN,Tikhonov 1.75 ft 1.27 ft 1.19 ft 1.91 ft 0.30
x̂Avg 1 ft 0.90 ft 0.90 ft 2.00 ft 0.35
x̂KAL 0.67 ft 1.14 ft 1.10 ft 2.06 ft 0.47
x̂FUS 2.29 ft 1.20 ft 0.99 ft 1.48 ft 0.53
x̂FUS,βRTI

0.33 ft 1.56 ft 0.70 ft 1.65 ft 0.28
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Appendix A. Figures with target at (4,10)

Figure A.1. A model solution to be used for the performance metric, ΨIdeal, with target at (4,10).

Figure A.2. The AFIT RTI image with target at coordinate (4,10). The regularization parameter α has
subjectively been set to 8. Unfiltered and filtered centroid locations are also shown
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Figure A.3. NRN transmitting/receiving from coordinates (0,0), (9,0) and (18,0) with target at coordinate
(4,10). Unfiltered and filtered centroids are also shown.

Figure A.4. NRN transmitting/receiving from coordinates (0,0), (9,0) and (18,0) with target at coordinate
(4,10). The regularization parameterα has subjectively been set to 200. Unfiltered and filtered centroids
are also shown.

Figure A.5. Taking the average of the Tikhonov solutions from the RTI and the AFIT NoNET sensors.
Unfiltered and filtered centroid locations are also shown.
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Figure A.6. Taking the pixel densities of the Tikhonov solutions from the RTI and the AFIT NoNET sensors
and applying a Kalman filter to them using state-vector fusion. Unfiltered and filtered centroid locations
are shown.

Figure A.7. A MSDF image with a target at coordinate (4,10). The Tikhonov regularization parameter,
α= 400, was subjectively chosen based on aesthetic. Unfiltered and filtered centroid locations are also
shown.

Figure A.8. βRTI = 26.31. Unfiltered and filtered centroid locations are also shown.
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Appendix B. Figures with target at (14,4)

Figure B.1. A model solution to be used for the performance metric, ΨIdeal, with target at (14,4).

Figure B.2. The AFIT RTI image with target at coordinate (14,4). The regularization parameter α has
subjectively been set to 8. Unfiltered and filtered centroids are also shown.
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Figure B.3. NRN transmitting/receiving from coordinates (0,0), (9,0) and (18,0) with target at coordinate
(14,4). Unfiltered and filtered centroids are also shown.

Figure B.4. NRN transmitting/receiving from coordinates (0,0), (9,0) and (18,0) with target at coordinate
(14,4). The regularization parameterα has subjectively been set to 200. Unfiltered and filtered centroids
are also shown.

Figure B.5. Taking the average of the Tikhonov solutions from the RTI and the AFIT NoNET sensors.
Unfiltered and filtered centroid locations are also shown.
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Figure B.6. Taking the pixel densities of the Tikhonov solutions from the RTI and the AFIT NoNET sensors
and applying a Kalman filter to them using state-vector fusion. Unfiltered and filtered centroid locations
are shown.

Figure B.7. A MSDF image with a target at coordinate (14,4). The Tikhonov regularization parameter,
α= 400, was subjectively chosen based on aesthetic. Unfiltered and filtered centroid locations are also
shown.

Figure B.8. βRTI = 26.31. Unfiltered and filtered centroid locations are also shown.
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