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FOREWORD 

Large-scale simulations are used in a wide variety of scientific and engineering applications 
to advance innovation and reduce costs. Many large-scale simulations spend the clear majority of 
their computational time attempting to solve large systems of linear equations; typically arising 
from discretizations of (systems of) partial differential equations that are used to mathematically 
model various phenomena. The algorithms used to solve these problems are typically iterative in 
nature, and making efficient use of computational time on high-performance computing clusters 
involves constantly improving these iterative algorithms. 

Improvements to the iterative algorithms in use require analyzing the combination of the 
algorithm itself, the problem domain, and future high-performance computing platforms. Many 
iterative algorithms that are used in large-scale modeling and simulation efforts require the use of 
a preconditioner. Incomplete factorizations represent one of the most popular classes of 
preconditioners due to their popularity as standalone preconditioning routines and their use inside 
of more complex preconditioners where an incomplete factorization is used to approximately solve 
a linear system on a subdomain. 

This paper presents an investigation into the convergence and resilience properties for 
improving the resilience of the fine-grained, parallel algorithm for computing incomplete 
factorizations. These techniques include various approaches to checkpointing as well as a study 
into the feasibility of using a self-stabilizing periodic correction step. Results concerning 
convergence with respect to the occurrence of soft faults as well as the impact of any sub-
optimality in the produced incomplete factors in Krylov subspace solvers are given. Numerical 
tests show that the simple algorithmic changes suggested here can ensure convergence of the fine-
grained parallel incomplete factorizations and improve the performance of the resulting factors as 
preconditioners in Krylov subspace solvers in the presence of transient soft faults. 

Approved by: 

SHELLIE F. CLIFT, Deputy Department Head 
Strategic and Computing Systems Department 
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1.0 INTRODUCTION 

 
Fine-grained methods have been increasing in popularity recently due to their ability to be 

parallelized naturally on modern co-processors such as graphics processing units (GPUs) and 
“many integrated cores” (MICs). Many examples of recent work using fine-grained, parallel 
methods are available [CAD15, CP15, ACD15, ACHD16, LLH+17, AHBD18, JCS18]. Of 
particular interest are techniques that utilize fixed point iteration, i.e., 

 
𝑥 ൌ 𝐺ሺ𝑥ሻ (1)

 
for some vector x and map G. These methods can be computed in either a synchronous or 
asynchronous manner, which helps tolerate latency in high-performance computing (HPC) 
environments. 

The fine-grained parallel incomplete LU factorization (FGPILU) algorithm under study 
here is a nonlinear, fixed point iteration that can be used for finding an approximate factorization 
of an input matrix A, such that 

 
𝐴 ൎ 𝐿𝑈 (2)

 
in the case that A is nonsymmetric, referred to as incomplete LU factorization, or such that, 

 
𝐴 ൎ 𝐿𝐿் (3)

 
in the case that A is symmetric, referred to as incomplete Cholesky factorization. 

This factorization is suitable for use as a preconditioner in a linear solver routine, or when 
rough approximations to the solution of a linear system are acceptable. In practice, these 
incomplete factorizations are commonly used in conjunction with a Krylov subspace solver such 
as Conjugate Gradient of FGMRES [Saa03, Ben02]. This study examines a fine-grained parallel 
incomplete LU (FGPILU) algorithm originally proposed by [CP15] that can be used to generate 
either incomplete LU or incomplete Cholesky factorizations in a highly parallel fashion. 

The FGPILU algorithm can be used as a building block for iterative linear system solvers 
geared towards novel computing platforms, including accelerators and co-processors. Typically, 
when working with difficult problems, preconditioning techniques move beyond simple, 
incomplete LU factorizations (e.g., level-based incomplete factorizations [Saa03, Ben02]), of 
which the incomplete factorization generated by the FGPILU is representative, to more complex 
routines. These include threshold-based incomplete factorizations such as ILUT [Saa03] where the 
non-zero pattern of the incomplete factors is chosen adaptively, or multilevel incomplete 
factorizations such as the algebraic recursive multilevel solver (ARMS) [SS02]. Several more 
complex variants of fine-grained factorization routines that attempt to improve the performance of 
the FGPILU algorithm studied here are under development [ACJ17, Inn15]. 

Looking forward to the future of high-performance computing (HPC) environments, it is 
important to keep in mind the need for developing algorithms that are resilient to faults. On future 
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platforms, the rate at which faults occur is expected to increase dramatically [CGG+09, CGG+14, 
ABC+06, GL09]. The expected increase in faults for future HPC systems is detailed in several 
studies including, for example, [ABC+06, CGG+09, CGG+14, and ABC+10b]. Because of this, 
developing algorithms that are resilient to faults is of paramount importance and fine-grained, 
parallel methods are no exception. Faults can broadly be divided into two categories: hard faults 
and soft faults. [BFHH12]. 

 Hard faults cause immediate program interruption and typically come from 
negative effects on the physical hardware components of the system or on the 
operating system itself. 

 Soft faults represent all faults that do not cause the executing program to stop and 
are the focus of this work. 

Most often, “soft fault” refers to some form of data corruption that is occurring either 
directly inside of, or as a result of, the algorithm that is being executed. The focus of this study is 
on the effects that soft faults might have on the FGPILU algorithm, specifically the effects of faults 
that are transient in nature (i.e., faults whose impacts are generated over a very short period of 
time). A common example of such a fault is a bit-flip that causes one bit of data in unprotected 
memory to become corrupted. 

In this study, the potential impact of soft faults on the fine-grained parallel incomplete LU 
factorization is studied from several different perspectives. Specifically, the ability of the 
algorithm to converge successfully despite the occurrence of a fault is evaluated, as well as the 
performance of the incomplete factor(s) that are generated when they are used as preconditioners 
for Krylov subspace solvers. An important aspect of this work is that it analyzes the resilience of 
the algorithm with respect to soft faults and also proposes several variants of the factorization that 
are fault tolerant. These variants make use of traditional fault tolerance mechanisms such as 
checkpointing, more modern ideas such as algorithmic self-stabilization, as well as fine-grained 
checks that preserve the fine-grained nature of the original algorithm. This last avenue of research 
is particularly important since it preserves the high level of parallelism offered by the fine-grained 
nature of the FGPILU algorithm and allows for computationally efficient versions of the fault 
resilient variants of the original algorithm. 

While results about the convergence of the FGPILU algorithm have been generated 
previously [CP15], the ability of the algorithm to converge for general problems (including 
problems that are nonsymmetric and indefinite) has not been studied extensively. Another aspect 
of this work is that the convergence of the FGPILU algorithm is analyzed, building upon the initial 
convergence analysis presented in [CP15, CS18b], and this convergence is then explored 
numerically with several test problems from varying domains in science and engineering. These 
test problems include a set of problems that are relatively well behaved (in this instance, this can 
be taken to mean symmetric and positive-definite) as well as a set of problems that are more 
difficult for the algorithm to solve; i.e., nonsymmetric, indefinite, and ill-conditioned problems. 
The majority of the work on the algorithm so far has focused on matrices that are symmetric and 
positive-definite (SPD) [CP15, CAD15, CSC17], and the performance of the algorithm on 
nonsymmetric and indefinite matrices has not been firmly established. Moreover, if the 
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convergence of the algorithm for these classes of problems is less than desirable, they may be more 
prone to suffer divergence when faced with a fault. 

This work’s main contributions are the following:  
 Analyzing the ability of the fixed point iteration at the heart of the FGPILU 

algorithm to complete successfully when attempting to solve problems under a 
myriad of different configurations,  

 Investigating how the convergence is affected by the occurrence of a soft fault, and  
 Demonstrating that the effects of a fault can be mitigated by the variants proposed 

herein.  
This work is an extension of the work initiated in [CP15] with the proposal of easy-to-implement, 
fine-grained incomplete factorizations that are well suited for computation in an asynchronous 
environment. This paper presents an overview of several fine-grained incomplete factorizations, 
discusses the mathematical theory behind the convergence of such algorithms, proposes several 
variants of the original algorithms that are capable of converging despite the occurrence of soft 
computing faults, and provides extensive numerical results concerning the performance of these 
fine-grained incomplete factorizations with respect to faults. Portions of the results that are 
provided here have been previously published in [CSC17, CS18a, CS18b], and this technical report 
aims to collect all of these results in a cohesive manner with additional material provided as 
necessary to present as complete of a picture as possible. 

This paper is structured as follows:  
 Section 2 briefly summarizes some related studies.  
 Sections 3 and 4 present brief background information on both incomplete 

factorizations and fixed point iterations (respectively) that is relevant to the work 
presented here.  

 Section 5 is an overview of the fine-grained parallel incomplete factorization 
algorithm.  

 Section 6 provides a theoretical underpinning of the fine-grained parallel 
incomplete LU algorithm with respect to its convergence.  

 Section 7 gives an overview of the variants of the FGPILU algorithm that have been 
proposed for their resilience to soft faults.  

 Section 8 presents a series of numerical results. 
 Section 9 offers conclusions. 
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2.0 RELATED WORK 

 
An initial look into fault tolerance for the FGPILU algorithm was provided in [CSC17], 

which was expanded on in both [CS18b] and [CS18a]. As pointed out in section 1, this report aims 
to collect all of the results from these three reports along with additional clarifying material. 

Research into the convergence of iterative methods when solving nonsymmetric problems 
has been studied previously [CS97, BHT00], and these studies were used as a starting point for the 
work presented here on nonsymmetric problems. The effect of matrix reordering on convergence 
was studied there and has been focused on exclusively in papers such as [BSVD99]. 

The self-stabilizing variants of the FGPILU algorithm using a periodic correction step that 
are introduced here are inspired by the self-stabilizing iterative solvers presented in [SV13], which 
in turn are built upon the ideas of selective reliability [HH11, BFHH12]. The use of a periodic 
correction step is one alternative class of methods for fault tolerance that offers several advantages 
[SV13]. First, these methods provide a way to avoid the cost of checkpointing itself, which has 
been suggested to be prohibitively high on future exascale platforms [CGG+09, CGG+14, GL09]. 
Second, they do not necessarily rely on any sort of fault detection. If a fault is not detected 
successfully in a traditional checkpointing algorithm, it can cause catastrophic effects; a self-
stabilizing method based upon a periodic correction step should be designed in such a way that it 
will return a valid answer without falling back on traditional fault detection mechanisms. 

The work done in this study to show the effectiveness of iterative methods when using a 
possibly faulty FGPILU preconditioner on a Krylov subspace solver is done using the Conjugate 
Gradient (CG) algorithm [Saa03] for the case that the test problem is symmetric, and the GMRES 
algorithm [SS86, Saa93] in the case that the test problem is nonsymmetric. The analysis of the 
potential performance of a Krylov subspace method using a potentially suboptimal FGPILU 
algorithm is related to the analysis in [SV13]. The results for the experiments conducted for this 
effort are presented similarly to the results in [CP15, CAD15], but with more of a focus on the 
impact that a soft fault can have on the execution of both the FGPILU algorithm itself and the 
performance of the generated factors in Krylov subspace methods. 

Several numerically based fault models have been utilized in recent studies. These include 
a perturbation-based fault model that injects a random perturbation into every element of a key 
data structure [CS16b] and a numerical fault model that is predicated on shuffling the components 
of an important data structure [EHM15]. Other numerical models, such as inducing a small shift 
to a single component of a vector have been considered as well [BFHH12, HH11]. Comparisons 
between various numerical soft-fault models have been made in [CS16a] and [CJB+17]. The fault 
model used in this paper is a combination of a modified version of the one initially developed in 
[CS16b] (related to the fault model developed in [EHM15] and [SW15]) that was used in [CSC17] 
and a simple model that flips bits directly; this combination has been used previously to study the 
resilience of fine-grained incomplete factorizations [CS18b]. A perturbation-based model similar 
to the one used in this study was used to develop fault-tolerant variants of a fixed point iterative 
method in [SW15]. Details on the fault model used here are provided in section 8.2. 

Fault tolerance for traditional iterative methods (i.e., both stationary solvers and Krylov 
subspace solvers) has been studied extensively in recent years. Characterization of the effects of 
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the faults on such solvers has been conducted in both [BdS08] and [SSR11], while fault detection 
for iterative methods in linear algebra has been studied as well in [Che13, SKB12]. Fault tolerance 
for specific iterative methods has also been studied; see for example [HH11, BFHH12, SSR12, 
EHM14a, and EHM14b]. Additionally, changes to the underlying parallel framework (e.g., MPI) 
have been considered as an alternative to direct modification of the algorithm under analysis; e.g., 
[BBH+12, Bla12, FD00, FBD01, and ZSK04]. 

Research into fault tolerance mechanisms and techniques specifically designed for fine-
grained, parallel methods is an area seeing increased research activity. An initial exploration of 
resilience for stationary iterative linear solvers (i.e., Jacobi) is given in [ADQO15] and expanded 
on in [ADQO16]. A more general exploration of fault tolerance for fine-grained methods is 
provided in [CS17]. A simulation framework that provides a testbed for new fine-grained 
algorithms is detailed in [CJS18]. 
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3.0 INCOMPLETE FACTORIZATIONS 

 
One major domain area for High Performance Computing (HPC) is sparse linear solvers, 

specifically Krylov subspace solvers. To help improve the performance of these solvers, a 
preconditioner is often used to help accelerate convergence [Ben02, Saa03]. One of the most 
commonly used classes of preconditioners is incomplete factorizations; the FGPILU algorithm 
studied here presents a novel way of calculating incomplete factorizations that may be more 
beneficial in some scenarios. 

Typically, to generate a complete LU factorization of a given matrix A such that 
 

𝐴 ൌ 𝐿𝑈 (4)
 

a Gaussian elimination process is used. However, when this process is carried out, fill-in will 
usually occur. This causes the triangular factors L and U to tend to have significantly more non-
zero elements. This destruction of sparsity can be prohibitive when solving large sparse problems 
(for example, those arising from three-dimensional boundary value problems [Ben02]) due to 
space and time constraints. An example of the amount of fill-in that is possible during the process 
of finding complete L and U factors is provided by Figure 1. In this example, the initial matrix A 
is taken to be a three-dimensional, finite-difference approximation of the Laplacian, 

 
Δ𝑢 ൌ 𝑓, (5)

 
over a 50 × 50 × 50 grid. Note that the number of non-zero terms increases from 3.3 million non-
zero elements in A to 312.9 million non-zero elements in both L and U, respectively, after the 
factorization is performed. More drastic evidence of fill-in is possible for many other problems 
throughout science and engineering. 

To avoid this effect, an incomplete LU factorization is typically computed instead. An 
incomplete factorization process generates an approximate factorization of the matrix A such that 

 
𝐴 ൎ 𝐿𝑈. (6)

 
While this incomplete factorization cannot be used to solve a linear system directly (as the 

exact LU factorization can), it can be used as a preconditioner that helps to accelerate the 
convergence of an iterative method for solving linear systems. For example, when solving a linear 
system, 

 
𝐴𝑥 ൌ 𝑏, (7)

 
the full LU factorization can be used to reduce the system to 

 
𝐿𝑈𝑥 ൌ 𝑏, (8)
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which can be solved completely with two triangular solves. In the case of an incomplete 
factorization, a nonsingular approximation to A can be used to transform the given linear system, 
described by Equation (7), into one that is easier to solve. 

In particular, the linear system will have the same solution as the original system but may 
be easier to solve, especially when used in conjunction with an iterative method. In the case of an 
incomplete LU factorization, the incomplete LU factors that are obtained can be used to create this 
approximation, i.e., M = LU. 

 

Figure 1: Example of the effects of fill-in during the Gaussian elimination process  
(Note the relative sparsity of the input matrix A (left) compared to the factors  

L and U [middle and right respectively], especially in the total number of  
non-zero elements in each matrix.) 

 
Iterative methods for solving linear systems have become popular due to their efficacy at 

solving large sparse systems, such as those that arise from the discretization of partial differential 
equations. Popular iterative methods for large sparse systems include the Conjugate Gradient 
method if the input matrix A is symmetric, and GMRES for the case that A is nonsymmetric. 
Additional details about the iterative solution of large sparse systems can be found in [Saa03]. 

In order to create an incomplete factorization, first define a set S that specifies the locations 
of the non-zero elements in the incomplete factorization. Specifically, if (i,j) ∈ S then there will be 
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a non-zero at the corresponding location in either the factor L if i > j, or U if i < j. Given this set, 
an algorithm that provides incomplete factorization of a matrix A is given by Algorithm 1. Note 
that the set S can be defined before the start of the algorithm, or can be updated dynamically over 
the course of the algorithm. 

 

 
The major problem with this type of algorithm is the difficulty in parallelizing it. 

Reordering the matrix can introduce more parallelism, although often parallelism is limited below 
a level that would be desired for the scale of problems that are considered. Alternatively, several 
variants of conventional incomplete LU factorization have been proposed in an attempt to increase 
the benefit of the preconditioner (see, for example, ILUT [Saa94], ILUM [Saa96], and BILUTM 
[SZ99], among many others). 

The fine-grained parallel incomplete LU (FGPILU) factorization considered in this study 
can be thought of as a reformulation of the incomplete factorization process that offers a much 
higher degree of parallelism. Future HPC environments are likely to include a heterogeneous 
mixture of computing resources containing different types of accelerators (e.g., GPUs and MICs) 
and, therefore, algorithms that can take advantage of the computing structure of accelerators 
naturally will be advantageous. The FGPILU algorithm is an example of this kind of algorithm. 
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4.0 FIXED POINT ITERATION 

 
Fixed point iterations are concerned with finding solutions to the iteration 
 

𝑥ሺ௞ାଵሻ ൌ 𝐺 ቀ൫𝑥௞൯ቁ, (9)

 
where G : Rn → Rn is composed of component-wise functionals gi such that 

 
𝑥ଵ ൌ 𝑔ଵሺ𝒙ሻ (10)
𝑥ଶ ൌ 𝑔ଶሺ𝒙ሻ (11)

⋮ 
𝑥௡ ൌ 𝑔௡ሺ𝒙ሻ (12)

 
where the subscript represents the component, the iteration superscripts have been removed, and 
the (bold) vector notation is added to emphasize that each individual functional used to update a 
specific component can (potentially) rely on all other components. 

In a parallel computing environment, the task of finding the update for an individual (or set 
of) component(s) can be assigned to an individual processing element. In a system that relies on 
synchronous updates, the functionals all utilize the same components of 𝒙. In particular, 

 

𝑥௜
ሺ௞ାଵሻ ൌ 𝑔௜൫𝒙ሺ௞ሻ൯ (13)

 
for all components i ∈ {1,2,...,n}, or, breaking this equation into the individual functionals, 

 

𝑥ଵ
ሺ௞ାଵሻ ൌ 𝑔ଵ ቀ𝑥ଵ

ሺ௞ሻ, 𝑥ଶ
ሺ௞ሻ, … , 𝑥௡

ሺ௞ሻቁ (14)

𝑥ଶ
ሺ௞ାଵሻ ൌ 𝑔ଶ ቀ𝑥ଵ

ሺ௞ሻ, 𝑥ଶ
ሺ௞ሻ, … , 𝑥௡

ሺ௞ሻቁ (15)

⋮ 
𝑥௡

ሺ௞ାଵሻ ൌ 𝑔௡ ቀ𝑥ଵ
ሺ௞ሻ, 𝑥ଶ

ሺ௞ሻ, … , 𝑥௡
ሺ௞ሻቁ (16)

 
On the other hand, in the asynchronous case, processors will use the latest information 

available to them. There are several ways to define this mathematically (see, for example, [FS00] 
or [MSV15]); informally, the data for each component, xi, may not be from the iteration that just 
occurred. Under fairly standard assumptions about the amount of allowable delay [FS00, MSV15, 
and BT89] for updates for the different components, convergence of many algorithms is preserved. 

This will lead to different update patterns for each of the individual functionals, each of 
which will be utilizing components that are updated a different number of times. The convergence 
of parallel fixed point iterations is discussed in the literature for both the synchronous [AB05] and 
asynchronous [FS00] cases among many other sources [BT89, OR00, Bau78, and Ben07]. Note 
that there are many combinations of synchronous and asynchronous updates possible. For 
example, blocks of components could be scheduled for updates asynchronously, but the individual 
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component updates could be made in a synchronous manner inside of the blocks. For the purposes 
of this study, this will be termed a block asynchronous update pattern. 
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5.0  FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION 

 
The fine-grained parallel incomplete LU (FGPILU) factorization approximates the true LU 

factorization and writes a matrix A as the product of two factors L and U where 
 

𝐴 ൎ 𝐿𝑈 (17)
 
Normally, the individual components of both L and U are computed in a manner that does 

not allow easy use of parallelization (see section 3 for more details). The recent FGPILU algorithm 
proposed in [CP15] allows each element of both the L and U factors to be computed independently. 
Because of this, the level of parallelism in the algorithm scales as the number of non-zero terms in 
the factorization increases. 

The algorithm progresses towards the incomplete LU factors that would be found by a 
traditional algorithm in an iterative manner. To do this, the FGPILU algorithm uses the property 

 
ሺ𝐿𝑈ሻ௜௝ ൌ 𝑎௜௝ (18)

 
for all (i,j) in the sparsity pattern S of the matrix A, where (LU)ij represents the (i,j) entry of the 
product of the current iterate of the factors L and U. This leads to the observation that the FGPILU 
algorithm (given in Algorithm 2) is defined by the following two nonlinear equations: 

 

𝑙௜௝ ൌ
1

𝑢௝௝
ቌ𝑎௜௝ െ ෍ 𝑙௜௞𝑢௞௝

௝ିଵ

௞ୀଵ

ቍ, 
(19)

𝑢௜௝ ൌ 𝑎௜௝ െ ෍ 𝑙௜௞𝑢௞௝

௜ିଵ

௞ୀଵ

. 
(20)

 
Following the analysis presented in [CP15], it is possible to collect all of the unknowns lij 

and uij into a single vector x, and then express these equations as a fixed point iteration, 
 

𝑥ሺ௣ାଵሻ ൌ 𝐺൫𝑥ሺ௣ሻ൯, (21)
 

where the function G implements the two nonlinear equations described above and the current 
iteration ((p+1) or (p) respectively) is given by the superscript. The FGPILU algorithm is given in 
Algorithm 2. 

Keeping with the terminology used in [CP15, CAD15] each pass the algorithm makes in 
updating all of the lij and uij elements (alternatively, each element of the vector x) is referred to as 
a “sweep.” After each sweep of the FGPILU algorithm, the L and U factors progress towards 
convergence. 

At the beginning of the algorithm, the factors L and U are set with an initial guess. In this 
study, the initial L factor will be taken to be the lower triangular part of A and the initial U will be 
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taken to be the upper triangular portion of A (as in [CP15, CSC17, CS18b, and ACSD16]). 
Adopting a technique used in [CP15, CAD15, CSC17, and CS18b], a scaling of the input matrix A 
is first performed such that the diagonal elements of A are equal to one. As pointed out in [CP15], 
this diagonal scaling is imperative to maintain reasonable convergence rates for the algorithm, and 
the working assumption throughout this paper is that all matrices have been scaled appropriately. 
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6.0 CONVERGENCE OF THE FINE-GRAINED PARALLEL INCOMPLETE 

FACTORIZATION ALGORITHM 

 
This section serves to provide a discussion of the convergence of the FGPILU algorithm. 

The work here to examine the properties related to the convergence of the algorithm (i.e., the rate 
at which it converges, the initial conditions from which it converges, causes of possible 
divergence, etc.) provides a foundation for the algorithmic variants that are proposed in section 7, 
which attempt to provide soft-fault resilience for the FGPILU algorithm. 

The analysis to show convergence of the FGPILU algorithm relies on properties of the 
Jacobian associated with the nonlinear mapping that defines the FGPILU factorization (Equation 
(19) and Equation (20)) which, when collected together as suggested by Equation (21), define a 
map, 

 
𝑮: ℝ𝒎 → ℝ𝒎, (22)

 
where m represents the number of non-zero terms in the matrix A. In order to discuss the properties 
of this function and its Jacobian, it is necessary to define an order on the elements that make up 
the vector x upon which G operates. Every element in x is one of the non-zero elements in either 
the matrix L or the matrix U; with the initial guess taken as defined in section 5 this corresponds 
to non-zero elements in the original input matrix, A. The following definition formalizes the 
concept of an ordering. 
 
Definition 1. An ordering of the elements mij ∈ M is a bijective function from the sparsity pattern 
S of M to the set 1,2,...,N. Formally, this is a map T : S → 1,2,...,N. 

Less formally, every non-zero element that will be updated needs to be given an order to 
make the algorithm well-defined. In the case of this specific algorithm, it is of interest to have an 
ordering that orders the elements in the order they would be updated following a traditional 
Gaussian elimination style process similar to what would be used in a conventional incomplete LU 
factorization. This style of ordering can be described as follows: 

1. The first row of M 

2. The remainder of the first column of M 

3. The remainder of the second row of M 

4. The remainder of the second column of M 

5. ꞏꞏꞏ 

The following definition captures this more precisely: 
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Definition 2. A Gaussian elimination partial ordering of the elements mij ∈ M is a partial ordering 
of the elements in the sparsity pattern, S, of M (using MATLAB®* style notation): 

(1,1 : n) ∩ S < (2 : n,1) ∩ S < ꞏꞏꞏ < (k + 1 : n,k) ∩ S < (n,n) 

 

As stated above, in order to define the Jacobian of the nonlinear map G that defines the 
FGPILU factorization, an order of the elements in both the L and U factors (which together 
constitute all of the elements in the vector 𝒙 from section 4) needs to be defined. Call this ordering 
h. The ordering h will map a given pair of (i,j) coordinates specifying the location of a non-zero 
term in either L or U to an index of the vector x. The indices of the vector x will be the set 
{1,2,3,...,m} where m = nnz(L) + nnz(U). That is, 

 

𝑥௛ሺ௜,௝ሻ ൌ ൜
𝑙௜௝ 𝑖 ൐ 𝑗
𝑢௜௝ 𝑖 ൑ 𝑗 

(23)

 

Given this, the two nonlinear equations that define the FGPILU factorization, i.e., Equation 
(19) and Equation (20), can be rewritten to account for this ordering. Doing this gives, 

 

𝐺௛ሺ௜,௝ሻ ൌ

⎩
⎪
⎨

⎪
⎧ 1

𝑥௛ሺ௝,௝ሻ
ቌ𝑎௜௝ െ ෍ 𝑥௛ሺ௜,௞ሻ𝑥௛ሺ௞,௝ሻ

ଵஸ௞ஸ௝ିଵ

ቍ 𝑖 ൐ 𝑗

𝑎௜௝ െ ෍ 𝑥௛ሺ௜,௞ሻ𝑥௛ሺ௞,௝ሻ

ଵஸ௞ஸ௜ିଵ

𝑖 ൑ 𝑗

 

(24)

 

where both sums are taken over all pairs, (i,k) and (k,j) ∈ S(A). 

The Jacobian itself can then be written as a function, 𝐺ᇱሺ𝑥ሻ ൌ 𝐽൫𝐺ሺ𝑥ሻ൯, where 
 

𝐽: ℝ|ௌ| → ℝ|ௌ|ൈ|ௌ| (25)
 

and is defined by the partial derivatives of the map given by Equation (24). These partial 
derivatives are given by the following equations [CP15]: 

 
𝜕𝐺௛ሺ௜,௝ሻ

𝜕𝑥௛ሺ௞,௝ሻ
ൌ െ

𝑥௛ሺ௜,௞ሻ

𝑥௛ሺ௝,௝ሻ
, 𝑘 ൏ 𝑗 

(26)

𝜕𝐺௛ሺ௜,௝ሻ

𝜕𝑥௛ሺ௜,௞ሻ
ൌ െ

𝑥௛ሺ௜,௞ሻ

𝑥௛ሺ௝,௝ሻ
, 𝑘 ൏ 𝑗 

(27)

                                                 
* MathWorks, Inc., Natick MA 
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𝜕𝐺௛ሺ௜,௝ሻ

𝜕𝑥௛ሺ௝,௝ሻ
ൌ െ

1

𝑥௛ሺ௝,௝ሻ
ଶ ቌ𝑎௜௝ െ ෍ 𝑥௛ሺ௜,௞ሻ𝑥௛ሺ௞,௝ሻ

௝ିଵ

௞ୀଵ

ቍ 
(28)

 
for a row in the Jacobian where i > j (i.e., corresponding to an unknown lij ∈ L). Conversely, for a 
row i ≤ j (i.e., corresponding to an unknown uij ∈ U), the partial derivatives are given by: 

 
𝜕𝐺௛ሺ௜,௝ሻ

𝜕𝑥௛ሺ௜,௞ሻ
ൌ െ𝑥௛ሺ௜,௞ሻ, 𝑘 ൏ 𝑖 

(29)

𝜕𝐺௛ሺ௜,௝ሻ

𝜕𝑥௛ሺ௞,௝ሻ
ൌ െ𝑥௛ሺ௜,௞ሻ, 𝑘 ൏ 𝑖 

(30)

 
Under the assumption that there is a single fixed point solution x∗ of the nonlinear iteration 

defined by G(x) in Equation (24), the following result, given in Theorem 1, provides convergence 
for the nominal, fault-free version of the FGPILU algorithm: 

 
Theorem 1 ([FS00]). Assume that x∗ lies in the interior of the domain of 𝐺  and that 𝐺  is 
F-differentiable at 𝑥∗. If 𝜌൫𝐺ᇱሺ𝑥∗ሻ൯ ൏ 1, then there exists some local neighborhood of 𝑥∗ such that 
the asynchronous iteration defined by 𝐺 converges to 𝑥∗ given that the initial guess is inside of 
this neighborhood. 

The partial derivatives are continuous and well-defined anywhere on the domain of G as 
defined above so G is F-differentiable on its domain. What remains to be shown is that the spectral 
radius ρ(G0(x∗)) < 1. The Gaussian elimination partial ordering proposed in definition 2 leads to 
the following result from [CP15] that details the structure of mapping, G, defined by 
Equation (24): 

Theorem 2 (Chow and Patel). The function G(x) with a Gaussian elimination partial ordering has 
a strictly lower triangular form. Formally, 

𝐺௞ሺ𝑥ሻ ൌ 𝐺௞ሺ𝑥ଵ, 𝑥ଶ, … 𝑥௞ିଵሻ (31)
 

This leads to the following related result that also comes from Chow and Patel in [CP15]: 

Theorem 3. Given a Gaussian elimination partial ordering for the mapping G(x), the associated 
Jacobian, J(G(x)), has a strictly lower triangular structure. In particular, Jacobian has zeros 
along the diagonal and a spectral radius of 0. 

where this result can be combined with results from theorem 1 to show that there is some 
neighborhood of the fixed point of the mapping where the FGPILU algorithm will converge. 
Extended details of this analysis are provided in [CP15]. 

However, in order to determine if the mapping will converge from its current location in 
the domain of the mapping G defined by Equation (24), it is necessary to define what it means for 
a mapping to be a contraction: 
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Definition 3. The function G: D ⊆ Rm → Rn is a contraction on D if there exists a constant α < 1 
such that, 

ห|𝐺ሺ𝑥ሻ െ 𝐺ሺ𝑦ሻ|ห ൑ 𝛼||𝑥 െ 𝑦|| (32)
for some x,y ∈ D. 

 
Note that an iterate of the function G, written x ∈ D, is a collection of all the non-zero 

values in both L and U. The form of the Jacobian is determined by the ordering of the elements 
inside of x, but the norm of the Jacobian (for any matrix norm) is associated with the value of the 
elements in the current iterate, x. In particular, the spectral radius of the Jacobian is determined by 
the (partial) ordering imposed upon the mapping G, but the norm of the Jacobian changes as the 
FGPILU algorithm progresses. The following helps identify when the fixed point iteration 
associated with the FGPILU algorithm is a contraction: 

Definition 4. The function G: D ⊆ Rm → Rn is a contraction at the location of the current iterate x∗ 

∈ D if ||J(G(x∗))|| < 1 for some matrix norm ||ꞏ|| and the domain D ⊆ Rm is convex. 

For the mapping G defined by Equation (24), the domain is not necessarily convex [CP15], 
but the norm of the associated Jacobian is still indicative of whether or not the corresponding fixed 
point iteration will converge [CP15]. 

With respect to the occurrence of a fault, the fault model proposed in this study limits the 
effects of a fault to the values stored in L and U and not the coordinates of the values. As such, it 
is not possible for a fault (as defined here) to change the spectral radius of the mapping associated 
with the FGPILU algorithm; however, a fault can (and often does) change the norm of the 
corresponding Jacobian since it changes the values of the entries xi ∈ x. 

This leads to the following sequence of computational steps to identify if the mapping G is 
still a contraction: 

1. Define a Gaussian elimination partial ordering of the elements in L and U. 

2. Form the Jacobian, J, according to the partial derivatives defined in section 5. 

3. Calculate the norm of J as found in step 2. 

To be clear, if the norm of the Jacobian is less than 1 and the current iterate is located in a 
convex portion of the domain, then the mapping is still a contraction and it will eventually 
converge; however, if the norm of the Jacobian is greater than or equal to 1, then the mapping is 
not a contraction and further iteration will not bring the current iterate, x∗, closer to the fixed point. 

One consequence of theorem 1 is that the algorithm will be successful when the norm of 
the Jacobian is small. Examining the equations that define the partial derivatives inside of the 
Jacobian, this implies that the FGPILU algorithm will be effective when the terms on the diagonal 
are large and the off diagonal terms are small; indicating that the FGPILU algorithm will perform 
well for matrices that are diagonally dominant. 

In previous work on the FGPILU algorithm, much of the emphasis has been placed on 
symmetric, positive definite (SPD) matrices that are symmetrically scaled to have unit diagonal 
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[CAD15, CSC17]. One notable exception is the 2D convection-diffusion problem that is presented 
in [CP15]. The problem, 

 

െ ቆ
∂ଶ𝑢
𝜕𝑥ଶ ൅

∂ଶ𝑢
𝜕𝑦ଶቇ ൅ 𝛽 ൬

∂e୶୷𝑢
𝜕𝑥

൅
∂eି୶୷𝑢

𝜕𝑦
൰ ൌ 𝑔 

(33)

 
is examined for two different values of β; the resultant finite-difference matrix being increasingly 
non-diagonally dominant and nonsymmetric for larger values of β. In [CP15], the authors 
recommend using a minimum degree ordering (as opposed to the Reverse Cuthill-McKee (RCM) 
ordering used in the rest of the work) and find success producing stable preconditioning factors 
using the SYMAMD (e.g., symmetric approximate minimum degree permutation) ordering 
implemented in MATLAB®*. Because of this, in the testing on nonsymmetric problems that is 
presented here (previously captured in [CS18a]), the same SYMAMD reordering is included in 
the experiments. 

 
 

6.1 Improving the Convergence of the FGPILU Algorithm 
 

Here, an investigation is made into the performance of the FGPILU algorithm, and various 
attempts are made at improving both the rate of convergence and the effect of the generated 
FGPILU preconditioning factors. Generally speaking, the FGPILU algorithm works well on 
symmetric, positive-definite problems, and the techniques detailed in this section are designed to 
be used with more difficult problems; i.e., problems that are nonsymmetric, indefinite, or poorly 
conditioned. As such, in section 8, these techniques are only applied to the more difficult problems 
featured in section 8.4. 

For a given problem, the FGPILU algorithm may fail to converge; i.e., a desired residual 
fails to decrease below a given threshold or else the iterates of the factorization diverge entirely. 
Additionally, the structure of the input matrix may preclude unmodified use of the FGPILU 
algorithm; e.g., due to zeros on the diagonal. If the progression of the algorithm reaches a point 
where the norm of the Jacobian is greater than one, the fixed point iteration no longer represents a 
(local) contraction and further sweeps will not help the algorithm make progress towards the 
desired preconditioning factors. 

Even if the FGPILU algorithm converges to a set of preconditioning factors, it is possible 
that, if the system were changed too much – either intentionally in order to ensure convergence, or 
by the occurrence of an undetected computing fault – the preconditioning factors will not aid in 
the convergence of the associated Krylov subspace solver. In fact, it is possible for the resulting L 
and U factors to actually slow convergence or prevent convergence entirely (see both Table 7 and 
[Man80]). 

In an effort to improve the convergence of the FGPILU algorithm, this study focuses on 
employing two techniques that have been previously associated with either the preparation of more 
conventional incomplete LU factorizations, or else with the solution of a linear system using a 

                                                 
* MathWorks, Inc., Natick MA 
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Krylov subspace solver. Both of these techniques aim to increase the diagonal dominance of the 
original matrix, which should in turn reduce the norm of the Jacobian and help ensure that the 
fixed point iteration continues to make progress. Note that while these techniques may improve 
the convergence of the algorithm, care must be taken to ensure that they truly improve the overall 
time to solution. 

The first technique involves reordering the matrix in order to aid the convergence of the 
algorithm. Three reorderings are considered here. The first is the MC64 reordering that attempts 
to permute the largest entries of the matrix to the diagonal [DK01]. The MC64 algorithm has been 
successful in improving the performance of algorithms requiring diagonal dominance but is one 
of the more expensive reordering algorithms computationally. The second is the approximate 
minimum degree (AMD) as implemented in MATLAB®*. As stated before, this reordering has 
previously been observed to help convergence of the FGPILU algorithm on nonsymmetric 
problems [CP15] and has also seen success with conventional incomplete LU factorizations for 
nonsymmetric and indefinite problems [BHT00]. The third and final ordering algorithm to be 
considered is the Reverse Cuthill-McKee (RCM), which attempts to reduce the bandwidth of the 
matrix. This can potentially aid in the convergence of the FGPILU algorithm and has been shown 
to be effective in the case of symmetric, positive-definite (SPD) matrices [CAD15, CP15, CSC17, 
and CS18b]. 

After the ordering is applied, the second technique consists of an α-shift that is performed 
in the manner originally suggested in [Man80]. Specifically, the original input matrix A can be 
written 

 
𝐴 ൌ 𝐷 െ 𝐵 (34)

 
where D holds only the diagonal elements of A, and B contains all other elements. Instead of 
performing the incomplete LU factorization on the original matrix A, the factorization is instead 
applied to a matrix that is close to A but has an increased level of diagonal dominance. In particular, 
the incomplete LU factorization can be applied to 

 
𝐴መ ൌ ሺ1 ൅ 𝛼ሻ𝐷 െ 𝐵 (35)

 
where 𝐴መ ൎ 𝐴, but the size of the diagonal has been increased. This α-shift technique has been used 
historically for improving the stability of the preconditioning factors generated by conventional 
incomplete LU factorizations, but given the discussion above in section 6 concerning the fine-
grained incomplete LU factorization that is the subject of this work, it is reasonable to expect this 
shift to improve the convergence of the FGPILU algorithm. Note that it is possible for the 
incomplete factorization to be applied to a matrix that has been shifted too far from the original 
matrix where, even if the FGPILU algorithm converges successfully, the associated Krylov 
subspace solver may not be able to make use of the generated preconditioning factors. A brief 
summary of this algorithm is presented in Algorithm 3. 

                                                 
* MathWorks, Inc., Natick MA 
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Since incomplete LU factorizations are approximate by nature, using the preconditioning 
factors obtained from applying the FGPILU algorithm to 𝐴መ, before a Krylov solve of the original 
matrix A, can be expected to accelerate the overall convergence for reasonable values of α. These 
claims will be explored numerically in section 8.4. 
  



NSWCDD/TR-18/176 

20 

 
7.0 SOFT-FAULT RESILIENCE FOR FINE-GRAINED  

INCOMPLETE FACTORIZATIONS 

 
In this section, several variants of the FGPILU factorization are proposed in an effort to 

provide soft-fault resilience to the algorithm. First, general comments concerning the convergence 
of the algorithm with respect to soft faults and generalized and idealized notions about how to 
create fault-tolerant variants are discussed, and then specific variants of the algorithm are proposed 
in the following subsections. The efficacy of these algorithms is tested numerically in section 8. 

The idea of creating fault-tolerant algorithms has gained renewed prominence in the 
research community due to the expected fault rate increase for future HPC platforms [ABC+10a, 
ABC+10b, CGG+09, CGG+14, and ABC+06]. In this study, the focus is on creating so-called self-
stabilizing variants of the algorithm. 

Self-stabilizing iterative methods stem from the idea of creating an algorithm that can start 
from any state and return to a valid state within a finite number of steps. This can encompass 
traditional approaches towards resilience such as checkpointing as well as different algorithmically 
based variants. It is also important to design self-stabilizing algorithms such that the computational 
cost of ensuring resilience is minimal, especially in the case that no faults occur. 

In [SV13], a self-stabilizing variant of the Conjugate Gradient solver was proposed that 
made use of a periodic correction step to ensure that the algorithm returned to a valid state and 
proceeded to convergence successfully. The work performed here proposes variants that take 
advantage of both checkpointing and the use of a periodic correction step. A notional, prototypical 
variant of the FGPILU algorithm that utilizes a periodic correction step is given by Algorithm 4. 

 

In the prototypical self-stabilizing algorithm (Algorithm 4), for every Fth iteration, a yet-
to-be-defined series of calculations is executed to ensure that the algorithm continues to progress 
towards convergence. The goal of this periodic correction step is that the computation done every 
F iterations will sufficiently correct the course of the algorithm to where it will converge. These 
calculations also must ensure that they do not harm the convergence of the algorithm when no fault 
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occurs and no corrective action is needed. Note that a selective reliability mode [HH11 and 
BFHH12] where some calculations occur in a high reliability mode that is assumed to be safe from 
the occurrence of faults must be assumed since the computations performed during the correcting 
step need to be executed successfully. 

As discussed in section 6, convergence of the FGPILU algorithm is strongly related to the 
Jacobian of the functional iteration, G (i.e., Equation (24)). In order to determine what steps need 
to be taken during the periodic correction step, it is important to underscore what needs to be 
accomplished. The mapping defined by G is a contraction if ห|𝐺ᇱሺ𝑥ሻ|ห ൏ 1 for some matrix norm 

|| ⋅ ||. Therefore, if the initial guess x0 has the property thatห|𝐺ᇱሺ𝑥଴ሻ|ห ൏ 1, then the algorithm 

should converge so long as the domain is locally convex. However, if a fault occurs on the 𝑓௧௛  

iteration that causes the Jacobian to move into a region of the domain where G is no longer a 
contraction, or the domain is no longer convex, then subsequent iterations will not aid in 
convergence. Following this reasoning, a naive correction step that constitutes a hybrid use of 
checkpointing and a periodic correction step would: (1) form the Jacobian explicitly, (2) calculate 
a matrix norm of the Jacobian, and (3) reset all non-zeros in both L and U (i.e., all elements of x) 
to a last known good state. By occasionally saving off the vector x when no fault has been detected 
to have occurred, the algorithm can avoid reverting back to the initial guess. Pseudocode for this 
algorithm is given by Algorithm 5. 

 

 
 
Note that, while Algorithm 5 is most likely not viable due to the high cost in both 

computation and memory associated with forming the Jacobian and calculating a matrix norm for 
such a large matrix, it nevertheless illustrates the goal of all the fault resilient variants of any fixed 
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point iterative method, including the FGPILU algorithm: ensure that the algorithm is still making 
progress towards the eventual solution. 

For nonlinear fixed point methods, this can be ensured by calculating the local Jacobian 
and making certain the associated spectral radius still indicates that the mapping is locally a 
contraction. While the methods proposed in the subsequent subsections do not form and evaluate 
the Jacobian explicitly, the goal of each of them is to ensure progress of the FGPILU algorithm. 
Therefore, the variants should have the same effect on the FGPILU algorithm as the naive check 
presented in Algorithm 5. 

If excluding checkpointing entirely from the process of creating factors L and U with the 
FGPILU algorithm is desired, then a failed check will result in a restart using the initial guess. 
Two large problems with Algorithm 5 are as follows: 

1. The expense of the correction step. The cost of forming the Jacobian and evaluating its 
norm may be restrictive for many problems. 

2. The reliance on knowing a previous good state. The quick convergence of the algorithm 
to usable L and U factors [CAD15 and CP15] mitigates this issue somewhat since the 
original guess can always be reused, but if a higher level of fidelity is desired, then the 
runtime could be prohibitively long. 

Convergence of this prototypical algorithm is captured in the following result. 

Theorem 4. For any state of lij ∈ L and uij ∈ U, if a correction is performed in the kth sweep, and 
all subsequent iterations are fault-free, then Algorithm 5 will converge. 

Proof. Since the Jacobian at the fixed point of the algorithm has spectral radius less than 1 (see 
[FS00]) and the correcting step of Algorithm 5 ensures that the 1-norm of the Jacobian associated 
with the current iterate is less than 1 – which forces the algorithm to stay in a region of the problem 
domain where the asynchronous mapping defined by the algorithm is a contraction – Algorithm 5 
will converge.  

While the method proposed by Algorithm 5 is not computationally viable, it does suggest 
a mechanism for creating a successful self-stabilizing variant of the FGPILU algorithm. First, a 
bound on the norm of the Jacobian that can be computed efficiently needs to determined, and then 
a correcting mechanism that does not require (pseudo) checkpointing will need to be created. For 
the first issue, the following result from [CP15] can be used: 

Theorem 5. (Chow and Patel) Given a matrix A and G as defined above, the 1-norm of the current 
iterate 𝐺௜

ᇱ
 can be bounded by, 

 

ห|𝐺௜
ᇱ|ห

ଵ
൑ max ቀห|𝑈௜|ห

ஶ
, ห|𝐿௜|ห

ଵ
, ቚห𝑅௜

௅หቚ
ଵ

ቁ , (36)

 
where RL is the strictly lower triangular part of R = A − T and the matrix T is defined by, 

 

𝑇௜௝ ൌ ൜
ሺ𝐿𝑈ሻ௜௝ ሺ𝑖, 𝑗ሻ ∈ 𝑆

0 𝑜/𝑤
. 

(37)
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However, there is still a larger than desirable computational burden in forming the matrix 
 

𝑅 ൌ 𝐴 െ 𝑇, 
 

(38)
 

and the bound itself may not be sharp enough for practical use since the result is only useful if 
 

𝛼 ൌ max ቀห|𝑈௜|ห
ஶ

, ห|𝐿௜|ห
ଵ

, ቚห𝑅௜
௅หቚ

ଵ
ቁ ൏ 1. (39)

 

In the case that the input matrix comes from a 5-point or 7-point finite difference 
discretization of a partial differential equation, Theorem 5 simplifies further to the result provided 
below in Theorem 6. 

Theorem 6. (Chow and Patel) If A is a 5-point or 7-point finite different matrix, and if L and U 
have sparsity patterns equal to the strictly lower and upper triangular portions of A respectively, 
then for G as defined above, the 1-norm of the current iterate  is given by, 

 

ห|𝐺௜
ᇱ|ห

ଵ
ൌ max ቀห|𝑈௜|ห

௠௔௫
, ห|𝐿௜|ห

௠௔௫
, ห|𝐴௅|ห

ଵ
ቁ , (40)

 
where AL is the strictly lower triangular part of A. 

 
Development of a periodic correction step based upon explicit calculation of the Jacobian 

(or that utilizes properties of the Jacobian as discussed above) is left as future work. The following 
subsections develop a spectrum of resilient variants of the FGPILU algorithm based upon other 
ideas. Development of traditional checkpointing variants will be examined in the next subsection, 
section 7.1, while development of a checkpointing variant that attempts to leverage the fine-
grained nature of the FGPILU algorithm is provided in section 7.2. The use of a periodic correction 
step will be examined in subsections 7.3 and 7.4. Section 7.3 provides a computationally light 
variant designed around the performance of the algorithm on finite-difference discretization of 
partial differential equations, and section 7.4 provides a checkpoint-free variant based upon the 
progression of a residual. 

7.1 Checkpointing 

In this section, some theoretical bounds on the impact of a fault on the FGPILU algorithm 
are developed, and these projected impacts are used to develop checkpointing-based, fault-tolerant 
adaptations to the original FGPILU algorithm. Using the fault model described in section 8.2, if a 
fault occurs at the computation of the kth iterate (affecting the outcome of the (k + 1)st vector), it is 
possible to write the corrupted (k + 1)st iteration of x as 

 
𝑥ොሺ௞ାଵሻ ൌ 𝐺൫𝑥ሺ௞ሻ൯ ൅ 𝑟 (41)

 
where the vector r accounts for the occurrence of a fault. Note that the magnitude of r corresponds 
only to the soft fault that was injected and is not a part of the FGPILU algorithm itself: for a sweep 
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of the algorithm that does not contain a fault, r = 0. To track the progression of the FGPILU 
algorithm, it was proposed in [CP15] and [CAD15] to monitor the nonlinear residual norm. This 
is a value 

 

𝜏 ൌ ෍ ቮ𝑎௜௝ െ ෍ 𝑙௜௞𝑢௞௝

୫୧୬ሺ௜,௝ሻ

௞ୀଵ

ቮ
ሺ௜,௝ሻ∈ௌ

 

(42)

 
which decreases as the number of sweeps progresses the factors produced by the algorithm closer 
to the conventional L and U factors that would be computed by a traditional ILU factorization. 
Alternatively, the ILU residual can be considered, which evaluates the same difference (i.e., the 
Frobenius norm of A) but over all entries as opposed to restricting the calculation to the sparsity 
pattern of S. Sample values for both the nonlinear residual and the ILU residual for the first few 
iterations / sweeps of the FGPILU algorithm on the Apache problem (see Table 4 for descriptions 
of the example problems) are given in Table 1. Note that the nonlinear residual norm will continue 
decreasing, but that the ILU residual quickly settles to a non-zero value. 

 

Table 1: Typical progression of both the nonlinear residual norm and ILU  
residual norm for the Apache2 test problem 

Sweep Nonlinear residual (τ) ILU residual 

1 1.05e+02 379.88 
2 8.81e+01 376.74 
3 2.38e+01 367.10 
4 1.36e+01 366.45 
5 2.39e+00 366.45 
6 1.21e+00 366.45 
7 5.24e-01 366.45 
8 2.24e-02 366.45 
9 1.05e-03 366.45 

 
The Apache2 test problem in Table 1 is a three-dimensional finite-difference discretization 

of partial differential equations that is one of the best-conditioned problems from the “easier” 
problem set in Table 5. Alternatively, Table 2 shows the nonlinear residual progression only for 
the Apache2 problem featured above, the “offshore” problem (which is the most ill-conditioned 
problem from the first problem set), and the two nonsymmetric problems that are studied more 
extensively in the “difficult” problem set. The large difference in initial nonlinear residual norm 
between the different problems shows how far the standard initial guess for each problem is from 
the standard incomplete factorization using the same sparsity pattern as the input matrix. 

If a fault occurs on a given sweep, then one or both nonlinear equations from the FGPILU 
algorithm (cf. Algorithm 2) will have some amount of error. In particular, the update equations for 
lij and uij will become 
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𝑙௜௝ ൌ
1

𝑢௝௝
ቌ𝑎௜௝ െ ෍ 𝑙௜௞𝑢௞௝

௝ିଵ

௞ୀଵ

ቍ ൅ 𝑟௜௝ 

(43)

𝑢௜௝ ൌ 𝑎௜௝ െ ෍ 𝑙௜௞𝑢௞௝ ൅ 𝑟௜௝

௜ିଵ

௞ୀଵ

 

(44)

 
where rij represents the component of the vector r that maps to the (i,j) location of the matrix. 
Comparing Equations (43) and (44) with Equation (42) shows that if a fault occurs during the 
computation of the incomplete LU factors, then the nonlinear residual norm τ will be affected. 

 

Table 2: Typical progression of the nonlinear residual norm  
for a variety of test problems 

Sweep Apache2 Offshore ecl32 fs_760_3 

0 202.4 103.31 2128 13986 
1 96.176 38.501 771.55 62.755 
2 106.01 26.026 37.636 165.74 
3 53.639 12.65 117.59 217.54 
4 87.454 9.2839 5.1749 20.338 
5 2.6809 4.9959 57.625 8.6786 
6 0.87554 29.425 1.1898 8.2413 
7 0.16503 79.832 1.879 11.663 
8 0.055735 70.867 0.1794 6.3104 
9 0.017221 5.6606 0.13366 0.64612 
10 0.006134 0.9699 0.04506 0.19334 

 

In order to ensure that a fault does not negatively affect the outcome of the algorithm, the 
first checkpointing variant that is proposed involves a simple monitoring of the nonlinear residual 
norm τ. In principle, since S ⊂ A, when the FGPILU algorithm converges, the nonlinear residual 
norm will be at a minimum, τ ≈ 0. Call this variant the Checkpoint All variant (CPA-FGPILU). 
The pseudo-code for this algorithm is provided in Algorithm 6. 

In this case, a fault is declared if the currently computed nonlinear residual norm τ(sweep) is 
some factor 𝛾 greater than the previously computed nonlinear residual norm τ(sweep−r), where r 
provides a delay that determines how frequently the factors L and U are stored to memory. 

Note that, due to a combination of the asynchronous nature of the FGPILU algorithm and 
the nature of the input matrix itself, the nonlinear residual norm may not be strictly monotonically 
decreasing, especially as the algorithm proceeds closer to convergence. Therefore, using the factor 
γ = 1, i.e., expecting a strict monotonic decrease, may cause the algorithm to report false positives, 
especially when nearing convergence (as judged by the progression of the nonlinear residual). 
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Additionally, while this method can be very effective for both detecting and recovering 
from faults, the computation of the global nonlinear residual is relatively expensive 
computationally. This variant of the algorithm may induce more overhead than desired if the 
frequency of the check is not severely limited, which would in turn lower the effectiveness of the 
algorithm. 

7.2 Partial Checkpointing 

Next, note that, since there is a contribution from every (i,j) ∈ S, the individual nonlinear 
residual norms for each (i,j) ∈ S, denoted here by τij, can be defined as 

 

𝜏௜௝ ൌ ቮ𝑎௜௝ െ ෍ 𝑙௜௞𝑢௞௝

୫୧୬ሺ௜,௝ሻ

௞ୀଵ

ቮ 
(45)

 

where the total nonlinear residual norm can always be recovered by taking the sum of all the 
individual nonlinear residual norms over all (i,j) ∈ S. To establish a baseline for fault tolerance, 
define individual nonlinear residual norms τij for each (i,j) ∈ S based on the initial guess that is 
used to seed the iterative FGPILU algorithm. In particular, if L∗ and U∗ are the initial guesses for 
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the incomplete L and U factors, then take 𝑙௜௝
∗ ∈ 𝐿 and 𝑢௜௝

∗ ∈ 𝑈  and define baseline individual 

nonlinear residual norms  using the original values τij and the values 𝑙௜௝
∗ ∈ 𝐿 and 𝑢௜௝

∗ ∈ 𝑈. 

Since for each sweep of the FGPILU algorithm, the components 𝑙௜௝ ∈ 𝐿 and 𝑢௜௝ ∈ 𝑈 can 
be computed, by testing the individual nonlinear residual norms it is possible to determine if a 
large fault occurred. Specifically, it is of interest to determine if a fault occurred that was large 
enough to cause a potential divergence of the algorithm. To do this, first, a tolerance t is set, and 
then a fault is signaled if 

 
𝜏௜௝ ൐ 𝑡 (46)

 
since the individual nonlinear residual norms are generally decreasing as the FGPILU algorithm 
progresses. Set the value t as t = max(τij∗ ) initially (line 4 of Algorithm 7), and then update t during 
the course of the algorithm if desired. It is also possible to use the previous individual nonlinear 
residual norms as opposed to a maximum that is taken across all current nonlinear individual 
norms. In particular, like the global checkpointing variants advocated in section 7.1, a fault can be 
declared if, 

 
𝜏௜௝

௦௪௘௘௣ ൐ 𝛾𝜏௜௝
௦௪௘௘௣ି௥ (47)

 
for similar parameters γ and r. 

Note that if a fault is signaled by any of the individual nonlinear residual norms, it is only 
known that a fault occurred somewhere in the current row of the factor L or the current column of 
the factor U. As such, the conservative approach would require the rollback of both the current 
row of L and the current column of U to their values at the previous checkpoint (e.g., lines 6 to 10 
of Algorithm 7). 

It is possible for the individual nonlinear residuals as defined to increase by a small amount, 
especially at very early or very late iterations in the progression of the algorithm. To counteract 
the potential for reporting false positives on fault detection, the derivative of the global nonlinear 
residual, , can be checked to ensure that it is also increasing before switching the current row 
and/or column (see line 16 of Algorithm 7). This algorithm is detailed in Algorithm 7. 

Note that if a fault is detected, the algorithm only restores (i.e., “rolls back”) the affected 
row of L and column of U. Additionally, since in practice it has been proposed [CP15 and CAD15] 
to use a limited number of sweeps of the FGPILU algorithm as opposed to converging the 
algorithm according to the global nonlinear residual norm, the number of sweeps conducted is 
decremented so that all elements of L and U are updated at least the desired number of times. Also 
note that the for loop on line 12 of Algorithm 7 extends over all elements (i,j) ∈ S so that every 
individual nonlinear residual norm is checked. Because of this, if there are multiple faults that 
cause the individual nonlinear residual norms to exceed the threshold τij, they should all be 
detected. 

While no global communication is required to check for the presence of a fault via the 
individual nonlinear residual norms, τij, there is global communication required to compute the 
derivative of the global nonlinear residual norm. A simple (forward) finite difference scheme is 
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used to approximate this derivative to minimize the global communication required by 
Algorithm 7. The frequency with which the global nonlinear residual norm is computed can be 
determined independently of the rest of the algorithm. Specifically, it may be possible to compute 
these updates less frequently in order to minimize the communication that takes place between the 
different components. 

 

 
 
Additionally, if a fault is detected, there will be some communication required between 

processes in order to fix the effects of the fault. Since the component detecting a fault will have to 
roll back elements that it is not directly responsible for updating, further computation on all 
affected elements will have to cease momentarily. Note also that when using the CP-FGPILU 
algorithm, the size of the faults that are not caught by the algorithm are determined by the tolerance 
that is set. In particular, 

 
ห|𝒓|ห ൑ 𝒕 (48)

 
where r represents a fault that was not caught by the proposed checkpointing scheme, since, if 
||r|| > t, then the fault would be caught by the check on line 16 of Algorithm 7. This, in turn, affects 
the update equation, Equation (41) (see also, Equations (43) and (44)). 
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7.3 Periodic Correction Step 

The periodic correction step must be computed reliably regardless of what actions are 
undertaken during the periodic correction in order to ensure that the algorithm will continue to 
progress towards convergence. In particular, it cannot be negatively affected by the occurrence of 
a fault. Despite the robustness of an explicit check on the norm of the Jacobian as proposed in the 
beginning of this section (see Algorithm 5), the emphasis here will be upon developing variants of 
the FGPILU algorithm that are able to mitigate the impact of a soft fault without requiring the 
explicit formation of the Jacobian for the current iterate. 

The first variant of the FGPILU algorithm that makes use of a periodic correction step is 
shown in Algorithm 8. An update sweep is expected every F iterations. The implicit expectation 
is that the steps that are undertaken during this periodic correction step will be able to mitigate any 
potential consequences of a soft fault that occurs during the prior F − 1 iterations. 

Algorithm 8 was designed to correct problems arising from simple finite difference 
discretizations of partial differential equations (i.e., L2D and APA from Table 4). The technique 
of observing the magnitude of the elements used in the fixed point iteration and their relative 
change was created after observing the component-wise progression of all of the elements in the 
preconditioning factors that are generated for the discretization of the two-dimensional Laplacian 
with a 5-point stencil. As will be discussed further in section 7.5 and section 8, this technique will 
not generalize to all other problems but may extend to other similar matrices (i.e., symmetric 
positive definite, strongly diagonally dominant, small bandwidth, etc.). 
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The following result establishes a convergence property for the variant of the FGPILU 
algorithm proposed in Algorithm 8. 

Theorem 7. For any state of lij ∈ L and uij ∈ U, if a correction is performed in the kth sweep, all 
subsequent iterations are fault-free, no elements in the final L and U factors differ by more than β 
percent from the original factors in the matrix A, and β is chosen such that, if a fault occurs, a 
fault is signaled; then the algorithm using a periodic correction step that is featured in Algorithm 8 
will converge. 

Proof. This follows from noticing that the correcting (or “stabilizing”) step (lines 2 to 7 of 
Algorithm 8) ensures that the state lij ∈ L and uij ∈ U of the incomplete L and U factors will be in 
the original domain of the problem and then invoke the convergence arguments for the original 
FGPILU algorithm (see [CP15]), which rely upon the assumptions and base arguments from 
[FS00].  

 
 

7.4 Component-Wise Residual Check 

The last resilient variant of the FGPILU algorithm to be discussed relies on tracking the 
component-wise progression of the individual nonlinear norms (Equation (45)) in a manner similar 
in spirit to Algorithm 7. Recall from section 7.1 that the individual nonlinear residual norms are 
not strictly monotonic in their decrease; however, by periodically checking the progression of the 
individual τij’s, it is possible to use them to detect faults without relying on computation of the 
global nonlinear residual norm, which requires communication between all of the components. 
This scheme is detailed in Algorithm 9. 
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The CW-FGPILU algorithm variant (Algorithm 9) can be seen as a modified version of the 
partial checkpointing method that is utilized Algorithm 7, where the check on the global nonlinear 
residual norm τ is omitted but the frequency of the check on the progression of the individual 
nonlinear residual norms τ is increased to compensate. This method can limit the amount of 
communication that takes place between the individual components in the factors L and U. 

The convergence of the CW-FGPILU is related primarily to two key factors: (1) the 
detection rate and (2) the periodicity of the check. In a practical sense, the rate of detection of the 
CW-FGPILU algorithm is determined by a combination of the size of the fault, measured by the 
impact of the fault on the nonlinear residual norm, τ, and the size of the factor γ which helps control 
the number of false positives that the algorithm reports. The periodicity of the check is controlled 
by the parameter F. The smaller that F is, the more frequently the checks occur; raising both the 
computational burden on the program and the likelihood of detecting a fault before it is able to 
propagate to other elements in the preconditioning factors L and U. Reducing F to 1 allows the 
check on the individual nonlinear residual norms to be applied each time an update is computed, 
allowing the algorithm to apply a fine-grained fault detector to each new value and accept or reject 
it based upon the tolerance defined by γ. 

Since the convergence of the algorithm is determined by a combination of these two factors, 
the algorithm will converge if the periodicity is small enough, such that faults are detected before 
they have a chance to propagate much their effects into too many elements of L and U, and γ is 
selected such that faults that have a negative impact on the convergence of algorithm are detected. 
Even if certain component updates are rejected due to an increase in the corresponding individual 
nonlinear residual norm τij, the FGPILU algorithm is designed to converge in an asynchronous 
computing environment under the standard mild assumptions about the nature of the asynchronous 
computing set-up (see Theorem 3.5 of [CP15]). As such, even though the updates may become 
out-of-sync due to the rejection of certain updates, the algorithm will still converge to the intended 
result. 

7.5 Notes on the Convergence of the FGPILU Variants 

The main result concerning the convergence of the FGPILU algorithm comes from [FS00], 
but this result only guarantees a neighborhood of the fixed point (i.e., the final incomplete L and 
U factors) in which the algorithm is convergent. For certain problems, this neighborhood may be 
quite large (in a practical sense), where many different initial guesses will exhibit good 
convergence properties. In such a scenario, a fault may delay convergence by moving the current 
iterate farther away from the fixed point but not cause divergence by moving the current iterate 
outside of the neighborhood of the fixed point guaranteed by the main convergence result. 

For other problems (specifically with matrices that are far from symmetric or highly 
indefinite), this neighborhood may not encapsulate a large portion of the problem domain. In this 
case, care must be taken to use a good initial guess to get the FGPILU algorithm to converge at 
all. Additionally, if a fault does occur it is quite possible for the fault to move the current iterate to 
a location in the domain where further iterations will not help the algorithm progress towards 
convergence. 
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Convergence of the FGPILU algorithm is closely related to the Jacobian associated with 
the nonlinear update equations (see Equation (24)). If a fault occurs that is not caught by the fault 
detection (either by the periodic correction step, or by the fault detection mechanisms in the 
checkpointing variants) of the FGPILU algorithm, then it is possible for the Jacobian to move to a 
regime of the domain where the fixed point mapping that represents the FGPILU algorithm is no 
longer a contraction (i.e., ||J|| > 1). In this case, the fault tolerance mechanisms of the FPGILU 
variants will not help, and subsequent iterations of the algorithm will not aid in convergence. 

The convergence of the checkpoint-based variants of the FGPILU variants follows directly 
from the convergence of the original FGPILU algorithm. Assuming that faults do not occur after 
a certain number of sweeps, the algorithm will converge under the assumption that it was 
successfully returned to a state not affected by a fault. Note that if a fault is detected, the state is 
restored to the last known good state; how recent that state is depends on the frequency with which 
the checkpoint is stored. More frequent storage of a “good” state via checkpointing will slow down 
the overall progression of the algorithm but will provide a more recent fail-safe state if a fault is 
detected. 

Additionally, note that an application of the FGPILU preconditioner is effectively only an 
approximation of the conventional ILU preconditioner. The application of the generated 
preconditioners can be expressed as, 𝑧ఫ෥ ൎ 𝑃ିଵ𝑣௝ . Both [CP15, CAD15] have shown that it is 
possible to successfully use the incomplete LU factorization resulting from the FGPILU algorithm 
before it has converged completely – when convergence is judged by the progression of the 
nonlinear residual norm, τ below some threshold tolerance. It is therefore possible that any adverse 
effect that a fault may have on the convergence of the FGPILU algorithm itself will not have 
sufficient time to propagate throughout the entirety of the computed L and U factors to have a 
meaningful impact on the performance of the overarching iterative method (e.g., CG, GMRES, 
etc.) for which the computed factors are used as a preconditioner. These potential impacts will be 
explored numerically in section 8. 
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8.0 NUMERICAL RESULTS 

 
8.1 Experimental Setup 

The experiments for this study were all conducted on the Turing High Performance 
computing cluster at Old Dominion University. For the experiments with symmetric matrices, a 
Nvidia Tesla®* K40m GPU was used; for the experiments featuring the nonsymmetric problem 
set, a Nvidia Tesla® K80 GPU was used. The nominal, fault-free iterative incomplete factorization 
algorithms and iterative solvers were taken from the MAGMA open-source software library 
[Inn15], and minimal modifications were made to the existing MAGMA source code in order to 
implement the modifications to the FGPILU algorithm, add the α-shift, and inject faults into the 
algorithm. Note that this approach causes the preconditioning factors to be applied in a manner 
more similar to conventional incomplete factorizations whereby the application is not fine-grained 
or asynchronous. All of the results provided in this study reflect double precision, real arithmetic. 

8.2 Fault Model 

Soft faults typically manifest as bit-flips, and much of the current research (e.g., [BdS08]) 
treat faults exclusively as bit flips. This reflects the current method in which faults occur and covers 
the current projected behavior for future HPC platforms. However, it is important when looking 
forward towards producing fault-tolerant algorithms for future computing platforms not to become 
too dependent on the precise mechanism that is used to model the instantiation of a fault. 
Regardless of how a fault manifests in future hardware, the result of a fault will be a corruption of 
the data that is used by the algorithm. To this end, two different fault injection methodologies were 
used. The first fault injection technique relies on flipping bits directly, as is typically done in 
studies concerning fault tolerance of algorithms. Additionally, a generalized numerical scheme for 
simulating the occurrence of a fault is adopted in an attempt to provide a more complete look at 
how the FGPILU algorithm and the variants proposed here respond to data corruption. 

The numerical scheme for simulating a fault that is used here attempts to model faults as 
perturbations to the data being used by the algorithm. This style of fault model has been used 
previously (see, for example, [SW15, CS16a, CJB+17, CS17, CS18a, CS18b]) to model the 
occurrence of a fault and a slightly modified version of these models is used here. The results 
presented here utilize the perturbation-based model used in [CSC17, CS18b] where the modified 
model targets a single data structure and injects a small, uniformly sized random perturbation into 
each component transiently. This is in contrast to the perturbation-based model used in [CS16b], 
where the perturbation was injected continuously, and is different from [SW15] since the 
perturbations that are injected are uniformly sized for a single run. 

To better define the perturbation-based soft-fault model used here, consider the following. 
If the targeted data structure is a vector x and the maximum size of the perturbation-based fault is, 
then the simulation of a fault using this methodology proceeds as follows: 

                                                 
* Nvidia and Tesla are trademarks and/or registered trademarks of Nvidia Corporation in Santa Clara, California. 
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1. Generate a random number 𝑟௜ ∈ ሺെ𝜖, 𝜖ሻ for every component xi, where i ranges over 
entire length of x. 

2. Set 𝑥పෝ ൌ 𝑥௜ ൅ 𝑟௜ for all i’s. 

The resultant vector 𝑥ො is, thus, perturbed away from the original vector x. Note that the sign 
of xi is not taken into account and, therefore, ห|𝑥|ห

ଶ
ൎ ห|𝑥ො|ห

ଶ
. After a fault occurs, it is possible for 

an algorithm to detect the error caused by the perturbation and correct it. 
In addition to the numerical scheme discussed above, additional runs were conducted 

where a bit was flipped directly in the data structure in question. The advantages of combining 
these two distinct methods are as follows:  

 The perturbation-based model shows the resilience of the proposed algorithmic variants 
to consistently sized errors as well as evaluating the FGPILU variants against any 
numerical instability. 

 The bit-flip mode shows how robust the algorithms are with respect to potentially large 
changes (e.g., flips in sign or large exponent bits [EMSW13]).  

 The perturbation-based model injects a fault into all of components of the FGPILU 
update, whereas the bit-flip model only corrupts a single entry. This duality stresses two 
opposing features of the fine-grained nature of the algorithm. 

As pointed out in [EHM15], one of the advantages of numerical soft-fault models is that 
they are able to consistently correspond to a “sufficiently bad” impact of a soft fault. This stresses 
the fault-tolerant variants of the algorithm being studied. Explorations of the similarities and 
differences between the numerical soft-fault model presented in [EHM15] and the perturbation-
based model are presented in [CS16a and CJB+17]. Simulating the occurrence of a soft fault using 
a numerical soft-fault model may force iterative algorithms to run consistently through bad errors 
only. However, the direct injection of bit-flips ensures that the “worst case” scenario was also 
captured fully. Furthermore, by varying the size of the perturbation, it is possible to produce errors 
of a desired level of impact. 

In this study, faults are injected into the FGPILU algorithm following the combined 
methodology described above. Due to the relatively short execution time of the FGPILU algorithm 
on the given test problems, a fault is induced only once during each run, at a random sweep before 
convergence. Three fault-size ranges (corresponding to differing orders of magnitude) for the 
faults injected by the perturbation-based model were considered: 

𝑟௜ ∈ ሺെ0.01, 0.01ሻ (49)
𝑟௜ ∈ ሺെ1.00, 1.00ሻ (50)
𝑟௜ ∈ ሺെ100, 100ሻ (51)

 
The bit-flip model was included to appropriately gauge the worst-case scenario, but no 

effort was made to force the bit selected to be in a particular position. 
Because of this, the impact of a bit-flip ranges from almost none (bit-flip in less significant 

bit of mantissa) to catastrophic (bit-flip in exponent or sign). Results for both the perturbation-
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based soft-fault model (PBSFM) and the bitflip model (BF) are presented separately, but as 
averages over all trials executed for each methodology. 
 
Note: The working assumption in this study is that faults only affect the values of the entries lij and 
uij. If faults are also allowed to affect the indices used in the sparse storage scheme, then it is 
possible that the strictly lower triangular structure of the Jacobian could be altered, which would 
have a large impact on the convergence of the FGPILU algorithm. 

8.2.1 Comparison of Fault Models 

In order to provide a better feel for the effect that each of these fault models can have, a 
quick investigation into the relative effects of each fault model is presented in this subsection. 
Each of these methods for simulating the occurrence of a fault works on an input vector, x, and 
corrupts in some way the specified component(s). 

To illustrate the potential impact of each fault model for the FGPILU algorithm under study 
in this paper, x is taken to be the initial set of non-zero components for the 2D finite difference 
discretization of the Laplacian that is used (i.e., the LAPLACE2D matrix detailed in Table 4). 
Recall that all of the matrices in this study are symmetrically scaled to have unit diagonal, so that 
the entries in the vector x are bounded inside of [−1,1]. 

Due to the nondeterministic nature of both of these fault models, the comparison between 
them was made over 1000 trials. In each trial, a fault is injected according to one of the 
methodologies in order to create a vector with a fault, xˆ, and the norm of the difference in these 
two quantities, 

𝑑 ൌ ห|𝑥 െ 𝑥ො|ห (52)

 
was computed. In this comparison, the magnitude of 𝑥ො is bounded for the perturbation-based fault 
model, but it is possible for the bit-flip fault model to produce a result of either NaN or INF for 
certain combinations of component and bit selected. For the purposes of this quick-look analysis, 
these results were discarded since scanning for either of these incorrect values is not a difficult 
problem. Summary results are provided in Table 3. 

In the table, the “Bit-flip Model” column corresponds to randomly selecting a single 
component of the vector x, randomly selecting a bit to flip, and injecting a single bit-flip. The 
column “Bit-flip Model (bounded)” corresponds to the same bit-flip model, but where bit-flips that 
caused large magnitude changes due to bit-flips in exponent bits were removed. In particular, any 
instance where d > 10000 was removed from the data. The three columns corresponding to the 
perturbation-based, soft-fault model (PBSFM) are separated by the bounds on the range from 
which the perturbations were sampled. The “(s)” column corresponds to faults in ri ∈ (−0.01,0.01), 
the “(m)” column to faults in ri ∈ (−1,1), and the “(l)” column relates to faults in ri ∈ (−100,100). 

The vector d corresponds to the size of the fault introduced by the given fault model. In the 
table, the mean of the 1000 entries of d is provided along with the maximum value and the mean 
and standard deviation of the log of the entries in d. 
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Table 3: Comparison of the effects between the various fault models used for  
the matrix LAPLACE2D 

 Bit‐flip 

Model 
Bit‐flip Model 

(bounded) 
PBSFM (s) PBSFM (m) PBSFM (l) 

mean(d) — 8.2388e-02 6.4500e+00 6.4499e+02 6.4499e+04 
max(d) 4.4942e+307 1.0000e+00 6.4593e+00 6.4575e+02 6.4584e+04 

mean(log(d)) -3.2281e+00 -7.0040e+00 8.0956e-01 2.8096e+00 4.8096e+04 
std(log(d)) 3.4646e+01 5.0639e+00 1.7075e-04 1.7287e-04 1.7194e-04 

 

The data presented in Table 3 shows the potential impact of a fault introduced by each of 
the fault models. Note that the “Bit-flip Model” contained 12 cases (1.2%) that exceeded the 
threshold of ห|𝑥 െ 𝑥ො|ห ൐ 10000, indicating that while a severely large impact is possible, it is not 
probable. The statistics on the log values of the entries in d give some indication as to the relative 
order of magnitude of the various fault models and the spread of the level of impact. Generally, 
the size of the faults induced by the bit-flip model are much more varied than those created by the 
perturbation-based soft-fault model. The perturbation-based model was selected in order to model 
the typical worst-case effect on the FGPILU algorithm, and the inclusion of the bit-flip model was 
intended to provide completeness and show that the fault-tolerant variants proposed throughout 
the paper are capable of handling large errors. 

8.3 Results for Symmetric Matrices 

The test matrices that were used in this set of experiments predominantly come from the 
University of Florida sparse matrix collection maintained by Tim Davis [Dav94], and the matrices 
selected for this study are the same as the ones that were selected for the studies [CAD15, CSC17, 
and CS18b] that looked into the performance of the FGPILU algorithm on GPUs both with and 
without the presence of faults. Note that these problems also include the problems selected by 
Nvidia®* for testing the incomplete LU factorization that is part of the CUDA®† library [Nau11]. 

There are six matrices selected from the University of Florida sparse matrix collection, and 
the two other test matrices that were used come from the finite difference discretization of the 
Laplacian in both 2 and 3 dimensions with Dirichlet boundary conditions. For the 2D case, a 
5-point stencil was used on a 500 × 500 mesh, while for the 3D case, a 27-point stencil was used 
on a 50 × 50 × 50 mesh. 

All of the matrices considered in this portion of the study are symmetric positive-definite 
(SPD) and, as such, the symmetric version of the FGPILU algorithm (i.e., the incomplete Cholesky 
factorization) was used. Also, recall from section 5 that each of the eight matrices used in this 

                                                 
* Nvidia Corporation, Sunnyvale, California 
† Nvidia Corporation, Santa Clara, California. 
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study will be symmetrically scaled to have a unit diagonal in order to help improve the performance 
of the FGPILU algorithm. A summary of all of the matrices that were tested is provided in Table 4. 

Plots of where the non-zeros are located in the matrix are provided for all eight matrices in 
Figure 2 for the case where the matrices are unordered, and in Figure 3 for the case where all of 
the matrices have been reordered using a Reverse Cuthill-McKee (RCM) algorithm. The RCM 
algorithm is designed to reduce the bandwidth of the input matrix, and this effect can be seen in 
the clustering of non-zero terms around the main diagonal in the images shown in Figure 3 relative 
to the dispersal of non-zero elements shown in Figure 2. This reordering was shown to be effective 
for similar matrices with respect to the convergence of the FGPILU algorithm in [CAD15, CP15, 
CSC17, and CS18b]. 

 

Table 4: Summary of the eight symmetric positive-definite matrices used in this study;  
descriptions come from [Dav94] 

Matrix Name Abbreviation Dimension Non‐zeros Description 

APACHE2 APA 715,176 4,817,870 SPD 3D finite 
difference 

ECOLOGY2 ECO 999,999 4,995,991 circuit theory applied to 
animal/gene flow 

G3_CIRCUIT G3 1,585,478 7,660,826 circuit simulation 
problem 

OFFSHORE OFF 259,789 4,242,673 3D FEM, transient 
electric field diffusion 

PARABOLIC 
FEM 

PAR 525,825 3,674,625 parabolic FEM, 
diffusion-convection 
reaction 

THERMAL2 THE 1,228,045 8,580,313 unstructured FEM, 
steady state thermal 
problem 

LAPLACE2D L2D 250,000 1,248,000 Laplacian 2D finite 
difference, 5-point 
stencil 

LAPLACE3D L3D 125,000 3,329,698 Laplacian 3D finite 
difference, 27-point 
stencil 

 
Additionally, the condition number of each of these matrices (as estimated by the condest 

function in MATLAB®*; see Table 5) gives some further indication of how easy the problem will 
be to solve. Matrices with a lower condition number tend to have better performance in iterative 
methods. 

                                                 
* MathWorks, Inc., Natick MA 
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The experiments in this section are divided into two sets. This first set of experiments 
focuses on the convergence of the FGPILU algorithm despite the occurrence of faults and features 
comparisons of the L and U factors produced by the preconditioning algorithms. The second set 
of experiments shows the impact of using, in a Krylov subspace solver, the preconditioners 
obtained from the first set of experiments. Note that in all of the experiments conducted, the 
condition ujj = 0 was never encountered. Since all the test matrices are SPD, the preconditioning 
algorithms are incomplete Cholesky variants, and the solver is the preconditioned conjugate 
gradient (PCG), as implemented in the MAGMA library [Inn15]. 

 

Table 5: Condition number for each of the symmetric  
positive-definite problems 

Matrix Condition Number 

APACHE2 5.3169E+06 
ECOLOGY2 6.6645E+07 
G3_CIRCUIT 2.2384E+07 
LAPLACE2D 6.0107E+03 
LAPLACE3D 1.1060E+03 
OFFSHORE 2.2384E+13 

PARABOLIC_FEM 2.1108E+05 
THERMAL2 7.4806E+06 

 
Finally, note that the implementation of the variants that was examined in this paper is not 

optimal from a performance point of view. The goal of the experiments was to quantify the ability 
of each of the variants proposed to provide a measure of resilience to the FGPILU algorithm when 
it is forced to run through undetected (by the system) soft faults. This focus translates to observing 
the efficacy of the various algorithms; this is captured in the results that are presented throughout 
the remainder of this section. Because of this focus, the excessively small convergence chosen to 
declare the FGPILU algorithm converged (i.e., 10−8), and some issues with resource contention, 
the time for all of the FGPILU variants (e.g., Figure 7 [right side] and Figure 8 [right side]) may 
be inflated relative to the performance of traditional incomplete factorization (IC). Further 
optimization, including the use of optimal checkpointing libraries for GPU-based applications (i.e., 
[NTM11], etc.) and extended performance analysis would be needed to produce performance-
oriented prototypes of each of the variants. 
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Figure 2: Sparsity plots showing the locations of all non-zeros for each of the eight matrices,  
with no reordering applied, that were considered in the first set of experiments 
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Figure 3: Sparsity plots showing the locations of all non-zeros for each of the eight matrices,  
with the Reverse Cuthill-McKee (RCM) reordering applied, that were considered  

in the first set of experiments 
 

8.3.1 Convergence of the FGPILU Algorithm 

For the purposes of this study, the FGPILU algorithm is said to have converged 
successfully if the nonlinear residual norm progresses below 10−8. Although this threshold is 
unnecessarily small from a practical point of view, it is possible to achieve good performance from 
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a preconditioner with a larger nonlinear residual norm; it was chosen so that more sweeps would 
have to be conducted before the algorithm converges to better judge the impact of faults. The 
progression of the nonlinear residual norm for a single fault-free run of each problem is depicted 
in Figure 4 (left side), which is a as an example of the typical progression of the nonlinear residual 
norm as the algorithm progresses towards convergence. 

 

 

Figure 4: The progression of the nonlinear residual for 30 sweeps of a typical fault-free run  
for each of the 8 test problems (left); and the progression of the nonlinear residual  
for the Apache test problem for three different fault injection times and fault sizes  

in the (-1,1) range (right). (The horizontal dashed line indicates the FGPILU  
convergence tolerance of 𝟏𝟎ି𝟖.) 

 
To illustrate the potential impact of a fault, Figure 4 (right side) shows the impact a fault 

can have on the FGPILU algorithm when it is injected (and ignored) at the beginning, the middle, 
or near the end the period of time it would take the algorithm to converge with no faults present. 
Note that the Apache test problem converges to the desired level of nonlinear residual in 
20 iterations when faults are not present. 

From Figure 4 (right side), it may be observed that it took about twice as many sweeps for 
FGPILU to converge under a single occurrence of a fault; and the number of these extra sweeps is 
similar for each of the three injection locations. Although the example shown in Figure 4 (right 
side) is typical of what was observed experimentally with the test cases selected, it is by no means 
general or conclusive. Faults may cause the FGPILU algorithm to diverge entirely or cause the 
resulting L and U factors to cause the Krylov subspace solver to stagnate or even diverge. A major 
point of the example in Figure 4 (right side) is to show the nonmonotonous decrease of the FGPILU 
residual norm after a fault takes place. 

Aggregate results for the performance of several variants of the FGPILU algorithm are 
provided in the following figures as follows: 

 When no attempt is made to mitigate the impact of the faults (No FT), 
 The CPA-FGPILU variant wherein the L and U factors may be replaced in their 

entirety, described in Algorithm 6 (CPA), 
 The CP-FGPILU, which rolls back a single row and column of the L and U factors 

and is described in Algorithm 7 (CP), 
 The periodic correction step based on checking component-wise progression of the 

elements in the L and U factors, which is given in Algorithm 8 (SS),  
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 The periodic correction step based on checking component-wise progression of the 
individual nonlinear residuals, τij , which is given in Algorithm 9 (CW). 

 
8.3.1.1 Perturbation-Based Faults 
 

This section examines the effects of a soft fault (modeled as a perturbation as described in 
section 8.2) on the FGPILU algorithm and the variants discussed throughout the paper. Figure 5 
gives the convergence of the FGPILU algorithm itself – as judged by the number of sweeps until 
the desired tolerance is met and the percentage of trials that resulted in preconditioning factors that 
led to a successful solution of the associated linear system. 

 

 

Figure 5: For perturbation-based faults (PBSFM): the number of sweeps required for convergence  
for each of the eight test problems (left); and the percentage of runs that produced a preconditioner  

that corresponded to a successful PCG solve (right) 
 
Figure 5 (left side) shows the average number of sweeps to reach convergence for the cases 

that were successful. Note that this number is generally lower for the checkpoint-based schemes, 
but that this is not the case for all of the problems that were tested. However, the higher success 
rate of the CPA-FGPILU and CP-FGPILU algorithms combined with the generally faster 
convergence of those methods suggests that, with the parameters used in this study, they are more 
effective at mitigating faults. 

The small degradation in the number of sweeps to convergence depicted in Figure 5 (left 
side) for certain problems (i.e., L3D) for the No FT variant reflects the fact that only successful 
runs are included in the averages here. In Figure 5 (right side), a corresponding drop in the “success 
rate” can be seen for the problems where the increase in the number of sweeps required is not as 
large as expected for variants without fault mitigation. Here, a preconditioner is deemed as 
resulting in success if the PCG solve using it terminates before the maximum number of iterations 
is reached. Practically, this means that if a fault caused the FGPILU algorithm to diverge and/or 
produce preconditioning factors that could not lead to convergence inside of the PCG solver, then 
the amount of sweeps required for the FGPILU algorithm would not be included in the left images 
of either Figure 5 or Figure 6, but that this run would cause the success rates captured in the right 
sides of Figures 5 and 6 to decrease. 
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For the FGPILU variants tested, the success rates captured in Figure 5 (right side) show 
that both of the checkpoint-based variants are usually more successful than the self-stabilizing one 
at mitigating faults modeled as perturbations and producing acceptable preconditioners. 

It is important to note that a large, unoptimized value of β = 4 was used for the percent 
difference check inside of the SS runs and that this value may certainly be improved and tuned for 
the particular case at hand. The lower success rates associated with the SS-FGPILU algorithm are 
due to the fact that some of the smaller faults are not caught by this large value of β, and the 
Jacobian moves to a portion of the domain where the mapping is not a contraction. Finding a way 
to obtain optimal parameters for the FGPILU algorithm variant utilizing the periodic correction 
step featured in Algorithm 8 efficiently from intrinsic properties of the linear system in question 
is left as future work. It is possible that the method presented by this algorithm could be tuned to 
the specific problem at hand in a manner that efficiently made the FGPILU algorithm resilient to 
soft faults. 

8.3.1.2 Bit-Flip Faults 

This section provides results concerning the convergence of the FGPILU algorithm (and 
the variants presented in this work) when subjected to faults directly corresponding to a bit-flip. 
The range of impacts possibly induced by a bit flip-fault is wider than those caused by the 
perturbation-based fault model that was used above in the previous subsection. This gives the 
possibility of creating a fault that drastically impedes the ability of the FGPILU algorithm to 
converge as well as making it possible for a fault to have an almost negligible impact; detectable 
by only the strictest of fault-detection mechanisms. As before, the results are averaged over 
multiple trials and aggregate results are presented. 

 

 

Figure 6: For bit-flip (BF) faults: the number of sweeps required for convergence  
for each of the eight test problems (left); and the percentage of runs that produced  

a preconditioner that corresponded to a successful PCG solve (right) 

 
Figure 6 (left side) shows the number of sweeps until convergence for each of the FGPILU 

algorithm variants when subjected to a single bit-flip fault. The number of sweeps in this case (i.e., 
with a bit flip instead of a perturbation) is fairly consistent across the methods tested, especially 
when compared with Figure 5. The success rates for the trials run with bit flips (see Figure 6 (right 
side)) are significantly higher relative to the success rates when the algorithm variants were subject 
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to perturbation-based faults. This owes to the fact that only a single component is affected by the 
faults injected using a bit-flip-based methodology. 

Generally speaking, the higher variance with the amount of data corruption associated with 
a random bit flip causes the trials using a bit-flip fault methodology to have very little or 
catastrophic impact. This is seen when comparing Figure 5 and Figure 6 in that in the number of 
sweeps taken until convergence on the successful runs (i.e., the top images of each figure), the 
number of sweeps until convergence is generally lower for faults modeled as bit flips and that the 
variance in performance (as judged by the number of sweeps until convergence) between the 
different variants of the FGPILU algorithm is lower. 

8.3.2 Preconditioner Performance in Iterative Methods 

In this set of experiments, a maximum number of 3000 PCG iterations was used; any run 
that had not converged by that point was declared to have diverged. While all of the 
preconditioners to be evaluated are forms of incomplete LU decomposition, they are constructed 
by algorithms described in section 8.3.1. For the purpose of an extended comparison, results are 
provided for the traditional Incomplete Cholesky (IC) and the Fine-Grained Parallel Incomplete 
Cholesky (ParIC); neither of these two variants is subjected to faults. 

8.3.2.1 Perturbation-Based Faults 

Figure 7 captures only the cases in which a preconditioner was successfully prepared (cf. 
Figure 5 (right side)). Figure 7 (left side) indicates that a successful FGPILU variant is typically 
capable of accelerating the PCG solve to the levels similar to those achieved by the no-fault 
constructions of a more traditional incomplete LU factorization. The few anomalous bars from 
Figure 7 (left side) correspond to runs of the FGPILU algorithm where no fault tolerance was 
attempted (NoFT) and enough of these runs were able to produce a PCG solve that converged in 
far more iterations than would typically be required to skew the averages. This seems to suggest 
that this behavior is not entirely anomalous and that the FGPILU algorithm has some nature level 
of resilience (else, the solves would not have been “successful” in the first place) to soft faults. 

 

 

Figure 7: For perturbation-based faults (PBSFM): the number of iterations required for  
successful PCG solves for each of the eight test problems (left); and the time required  

for successful PCG solves for each of the eight test problems (right) 
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The timing results presented in Figure 7 (right side) are for the total time required for the 
preconditioner preparation and PCG solve. While the former may vary much depending on which 
variant is considered, the latter is rather uniform across the variants due to their similar numbers 
of iterations performed to convergence. More efficient implementations of the fault tolerance 
mechanisms and a more realistic tolerance for the nonlinear residual norm may improve the 
performance of the three fault-tolerant variants of the FGPILU algorithm; however, the initial 
results show that the periodic correction step proposed in Algorithm 9 and represented by CW may 
be one of the more efficient variants. 

 
8.3.2.2 Bit-Flip Faults 

Again, the differing impacts caused by a fault modeled as a bit-flip – as opposed to the 
perturbation-based data corruption that corresponds to the other fault injection methodology 
described in section 8.2 – are explored at the level of timing and accuracy results in the 
corresponding PCG solve. 

 

 

Figure 8: For bit-flip (BF) faults: the number of iterations required for successful PCG solves  
for each of the eight test problems (left);and the time required for successful PCG solves  

for each of the eight test problems (right) 
 
Figure 8 (left side) shows that the number of sweeps required for the PCG solver until 

convergence is even across all FGPILU algorithm variants. This shows that when the 
corresponding FGPILU algorithm variant successfully produces preconditioning factors, the effect 
that the factors have on the PCG solver is similar. The fact that no runs without fault tolerance 
(NoFT) were able to converge in a large number of iterations similar to Figure 7 (left side) is also 
indicative of the dichotomy of possible effects caused by a bit-flip; either the effect is fairly 
negligible and the preconditioning factors that are produced accelerate the PCG solve as expected, 
or the effect is large enough that incomplete factorization does not lead to a successful solve of the 
associated linear system. 

Conversely, Figure 8 (right side) shows that the time required for both preconditioner 
preparation and the PCG solve vary more from one method to another. There is more overhead 
associated with the two checkpointing schemes than for the other variants, and this could be (at 
least partially) mitigated by optimizing the number of times the required checkpoint data is stored 
to limit the data transfer and read/write overhead, or improving the implementation that is used for 
checkpointing. This is seen as well in Figure 7 (right side), but the discrepancy between the 
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checkpointing-based variants (CP and CPA) and the other variants is not as great. In the case of 
the periodic correction step variants (SS and CW), the overhead is possibly due to the extra work 
required on the component level since the perturbation-based faults tend to corrupt all of the 
components in the preconditioning factors L and U whereas, in the bit-flip fault, only a single 
component is corrupted. In general, the CW variant seems to exhibit the least amount of overhead 
from a time-oriented perspective. 

8.3.3 Discussion of FGPILU Algorithm Variants in the Symmetric Case 

The experiments conducted here have shown that (1) the FGPILU algorithm is naturally 
resilient to smaller faults as modeled here – either by perturbations or bit-flips that affect less 
significant bits in the mantissa, and (2) larger faults can cause FGPILU to diverge and produce L 
and U factors that (if used) prohibit the corresponding Krylov subspace method from solving the 
original linear system Ax = b successfully. By examining the images on the right sides of Figures 5 
and 6, a few conclusions can be drawn: 

 The data indicates that the FGPILU algorithm and the variants discussed here tend to 
be more resilient to errors that only corrupt a single component. 

 The rates of successful convergence within the desired tolerance are higher for all the 
proposed variants than for the original algorithm, regardless of the generated fault 
types. 

8.3.3.1 Highlights of FGPILU Variant Differences 

The component-wise check put forth in Algorithm 9 (CW) has the ability to be 
implemented in a very efficient manner, but it may not detect faults as well as the CP algorithm 
(Algorithm 7) from which it stems. For particular problems that have a higher natural success rate 
(see the NoFT columns from the images on the right sides of Figures 5 and 6), the CW variant 
could provide a low overhead approach to fault tolerance for the FGPILU algorithm. 

The two checkpointing-based algorithms (CP and CPA) offer the highest likelihood of 
achieving the correct final answer, but they also tend to rank quite highly with respect to the time 
required for convergence. One possibility to alleviate this additional computational burden is to 
adjust their input parameters to lessen the amount of checkpointing that occurs based on the 
problem at hand, which is beyond the scope of this paper. Hence, the results reported here focused 
only on a single set of parameters designed to compare the variants and show their potential 
efficacy. 

The self-stabilizing variant (SS) may need the most work of any of the variants in terms of 
tuning parameters for success with a given problem, but it is the only one of the four variants tested 
that avoids computing (global or individual) nonlinear residual norms entirely. As such, one may 
implement it very efficiently, and SS-FGPILU may be very effective if the problems of interest 
are similar enough to leverage the same values of the input parameters. 

Lastly, note that while the variants presented here do perform differently and may be best 
suited to different use cases, when they are able to successfully converge, they tend to produce 
very similar performance in the associated Krylov subspace solver. 
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8.3.3.2 Error Detection Capability 

The proposed fault-tolerant variants of the FGPILU algorithm are designed not to detect 
every fault that occurs but rather to make the end user unaware of the negative convergence effects 
of any faults that do occur. Such a design choice has been made, in part, because some faults may 
have a negligible effect and because comprehensive error detection means additional modification 
to the original FGPILU routine. 

For example, while in the CPA variant (Algorithm 6), it is straightforward to define 
detection as a positive check on the progression of the global nonlinear residual norm, but for the 
other variants, it is not as simple. The success of Algorithm 9 is very closely related to the ability 
of the algorithm to detect the presence of a fault on the fine-grained level. Large faults tend to be 
easy to detect looking solely at changes in the individual nonlinear residual norms τij’s, and the 
FGPILU algorithm tends to converge naturally through faults that have a sufficiently small impact. 
However, detection of the more moderately sized faults is key to ensuring a high success rate and 
is related to the parameters γ and F (see section 7.4 for their discussion). 

8.4 Results for Nonsymmetric Matrices 

This section attempts to provide a set of results complementary to what was presented in 
section 8.3, by examining problems that are more difficult to solve. The test problems that were 
used in this portion of the study are intended to form a representative but not complete set of 
matrices that are harder to solve than the simpler SPD problems that have been utilized previously. 
The convergence of the fixed point iteration associated with the FGPILU algorithm displays good 
convergence with problems that are SPD [CSC17, CAD15, CP15], however, solving fixed point 
iterations that feature nonlinear functionals (i.e., in Algorithm 2) is often difficult. Developing the 
associated convergence theory, especially results that carry practical meaning, is also typically 
hard to accomplish (see for example: [BT89, OR00]). 

The test matrices used here come from a variety of sources. The first comes from the 
seminal work on the performance of incomplete LU factorization for indefinite matrices [CS97], 
fs_760_3. The next matrix comes from the domain of circuit simulation, ecl32, and has been 
studied previously [LD99, Gup02]. The last matrix comes from the set of eight SPD matrices that 
were studied in section 8.3, and it is the matrix among those eight with the largest condition number 
(as estimated by MATLAB’s®* condest function), “offshore.” Condition numbers for the eight 
previously studied SPD problems range from 1.11e+03 to 2.24e+13. A brief summary of all three 
matrices is provided in Table 6. 

                                                 
* MathWorks, Inc., Natick MA 
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Table 6: Characteristics of the matrices used: Column “Sym?” reflects the symmetry, “PD?” provides 
positive-definiteness, “Dim.” – number of rows, and “Non-zeros” – number of non-zeros in each matrix 

Matrix 

Name 
Abbr. Sym? PD? Condest Dim. Non‐zeros Description 

fs_760_3 FS N N 9.93E+19 760 5,816 chemical 
engineering 

ecl32 ECL N N 9.41E+15 51,993 380,415 circuit 
simulation 

Offshore OFF Y Y 2.24E+13 259,789 4,242,673 electric 
field 
diffusion 

 
The matrices that are presented here attempt to give some indication as to the performance 

of the nonlinear fixed point iteration associated with the FGPILU with respect to matrices that are 
more challenging computationally than the problems that are featured in the majority of the 
previous work on the algorithm (i.e., [CP15, CAD15, CSC17, CS18a, and CS18b]). 

Lastly, it is important to note that many other problems from both [CS97], [BHT00], 
[Dav94], and the domain of circuit simulation were considered; only about 7 percent of the 
problems studied were able to converge with the standard initial guess and with no fundamental 
alterations to the matrix. While this percentage could be increased with a more careful analysis of 
each problem, it is brought up here to emphasize the difficulty this fixed point algorithm can have 
with nonsymmetric and indefinite problems. 

8.4.1 Convergence of the FGPILU Algorithm 

In these fault-free experiments, the convergence of the FGPILU algorithm is examined for 
three different levels (0,1, and 2) of the incomplete LU factorization (see [Ben02] or [Saa03] for a 
clear description of levels of incomplete LU factorizations), and three different values of α in the 
α-shift described in section 6.1. Note that regardless of the ordering being utilized, all runs start 
with a symmetrically scaled matrix such that the entries on the diagonal are less than or equal to 1. 
As such, appropriate values for α range from 0 to 1, and in this study, three discrete values were 
selected from this range: 0, 0.5, and 1.0. 

More extreme values for α can help improve the convergence of the FGPILU algorithm by 
increasing the diagonal dominance of the matrix to which the FGPILU algorithm is applied, but 
this comes at the expense of preparing the preconditioner for a problem increasingly less related 
to the original problem. As an example, for the “offshore” problem with AMD ordering and 
symmetrical scaling, the FGPILU algorithm converges in a progressively smaller number of 
sweeps for increasing values of α. However, the overall performance of the Krylov subspace solver 
deteriorates. Details are provided in Table 7. Note that as α is increased, the number of sweeps 
required for the FGPILU algorithm to reduce the nonlinear residual norm below the desired 
tolerance is greatly decreased, but both the number of iterations and the time required for 
convergence of the Krylov subspace solver are greatly increased. 
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Table 7: Effects of increasing α for the “offshore” problem 

α FGPILU 

Sweeps 
Krylov solver 

iterations 
Krylov solver 

time 

0 24 30 24.8067 
1 9 56 46.4995 
10 5 144 130.0958 

 

For each of the three matrices that were tested: four orderings were tested (MC64, AMD, 
RCM, and the natural ordering), three levels of ILU fill-in were tested (levels 0, 1, and 2), and 
three factors for α were used (0, 0.5, and 1.0). This leads to a total of 108 permutations to test. Of 
these 108 combinations, 84 (77.78 percent) led to a case where the FGPILU algorithm converged, 
but only 29 (26.85 percent) resulted in a successful GMRES solve of the entire linear system using 
a restart parameter of 50 and a tolerance of 1e-10. Details for those 29 cases are provided below 
in Table 8. 

 

Table 8: Successful runs with their parameter combinations 

Matrix Ordering α ILU 
Level 

Sweeps Krylov Its. Time (s) 

offshore AMD 0 0 19 30 18 
offshore AMD 0.5 0,1,2 10,11,11 40,34,34 24,55,144 
offshore AMD 1 0,1,2 8,9,9 56,54,54 34,96,229 
offshore RCM 0 0 19 19 35 
offshore RCM 0.5 0,1,2 10,11,11 37,34,34 68,306,771 
offshore RCM 1 0,1,2 9,9,9 54,54,54 101,484,1226 
offshore Natural 0 0 22 22 84 
offshore Natural 0.5 0,1,2 11,12,12 38,34,34 146,312,695 
offshore Natural 1 0,1,2 9,10,10 54,54,54 210,491,1104 
ecl32 AMD 0 2 15 127 104 
ecl32 RCM 0 2 24 9 39 
ecl32 Natural 0 2 18 11 16 
fs_760_3 AMD 0 2 55 3 0.4 
fs_760_3 RCM 0 1,2 52,63 2,2 0.4,0.4 
fs_760_3 MC64 0 1 16 3 0.3 
fs_760_3 Natural 0 1 16 3 0.3 
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In general, higher levels of fill are capable of producing better preconditioning factors 
[BHT00 and CS97], but they come at the cost of increased storage and computational costs. There 
is an inherent trade-off in using higher fill levels to produce incomplete factors that are closer to 
the full L and U factors that must be evaluated. A few other general observations follow: 

 The two nonsymmetric problems tend to perform better with smaller values of α and 
higher levels of fill-in allowed, and 

 The level of ILU fill-in tends to not have as much of an impact on whether or not the 
problem can be solved when compared to the ordering or value for α, but it affects the 
performance. In the results found here, the benefit of having more complete L and U 
factors from going to a higher fill-in level tends to be outweighed by the increased 
computational cost of the fixed point iteration associated with the FGPILU algorithm 
for a drastically larger number of elements. 

As an example of the drastic increase in the number of non-zero elements for each of the 
matrices, consider the data in Table 9. 

Table 9: Increase in non-zeros for different levels of ILU fill-in.  
(The data in the first two rows is given in millions (M) of  

non-zero elements, and the last row specifies  
thousands (K) of non-zero elements.) 

Matrix nnz(ILU-0) nnz(ILU-1) nnz(ILU-2) 

offshore 4.5M 10.0M 21.7M 
ecl32 0.4M 1.0M 2.0M 
fs_760_3 6.5K 17.6K 32.3K 

 

8.4.2 Resilience of the FGPILU Algorithm 

The experiments conducted in this section reflect the resilience of the FGPILU algorithm 
with respect to transient soft faults for this section set of problems. The only variant considered 
for this set of experiments is the CPA-FGPILU variant detailed in Algorithm 6. The reason for this 
selection is that the success of the FGPILU algorithm for these problems in a fault-free case was 
low enough that only the most successful variant of the FGPILU algorithm was considered for this 
problem set. 

Further, in evaluating the resilience of the FGPILU algorithm, only combinations of 
ordering, ILU-level, and α from section 7.5 that were successful in the fault-free scenario have 
been selected for experimentation. A single set of parameters for the fault detection check in 
Algorithm 6, τ(sweep) > γꞏτ(sweep+r), was used. In these experiments, γ and r were set to one so that a 
strict check on the monotonicity of the nonlinear residual norm is performed after every sweep. 
For SPD problems, this level of check may be unnecessary [CSC17 and CS18b], but this provides 
the maximum level of protection for the FGPILU algorithm and provides a measure of how 
effective this check can be for the more difficult problems under investigation in this study. 

A summary of the data found in these experiments is provided in Table 10, which depicts 
the percentage of runs that succeeded – resulted in a successful linear system solve – subject to 
faults (column Scenario), when no fault tolerance (column NoFT) and the checkpointing FGPILU 
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variant (column CP) were employed, respectively. Three ratios of the results with CP and NoFT 
are shown in Table 10 as “Timing,” “Sweeps,” and “Its,” defining the timing increase, reduction 
in the total number of sweeps needed, and the change in the GMRES iterations, respectively. As an 
alternative representation, a visual representation of portions of this data is provided in Figure 9. 

 
 
Table 10: Solver performance using FGPILU with no fault tolerance (NoFT) and checkpointing (CP) 

 

Scenario Success Rate 

(NoFT) 
Success Rate 

(CP) 
Timing 

Ratio 
Sweeps 

Ratio 
Its. Ratio 

Total 46.65% 100.00% 1.02 0.63 1.01 
Small fault 88.59% 100.00% 1.03 0.69 1.03 
Medium fault 42.94% 100.00% 1.01 0.48 1.00 
Large fault 14.71% 100.00% 1.00 0.73 0.99 

 

Figure 9: Percentage of successful runs for no fault tolerance (NoFT) and checkpointing (CP) (left);  
and ratios showing relative performance of the checkpointing variant  

to the nominal FGPILU algorithm (right) 
 
The checkpointing algorithm mitigates well the potential impact of a fault. Note that the 

largest benefit comes from correcting the impact of a large fault. 
Smaller faults – which cause effects similar to those produced by bit flips in a less 

significant bit of the mantissa – tend to be corrected naturally by the iterative nature of the fixed 
point iteration. 

Another important factor in comparing any fault tolerance methods is quantifying how 
much overhead they introduce. Due to the nondeterministic block asynchronous nature of the GPU 
implementation of the FGPILU algorithm in the absence of faults and the inherent randomness 
involved in the fault model utilized in this study, it is difficult to compare individual cases. 
However, comparing runs utilizing the same parameters over all cases where both the fault-free 
variants and the checkpointing variant solved the linear system successfully, there is about a 
2 percent increase in the time required to reach a solution in order to provide fault tolerance to the 
FGPILU algorithm using this methodology. There is more of an impact on cases with small faults 
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since it is often possible for the iterative nature of the algorithm to correct the impact of a 
sufficiently small fault. Note that varying the parameters γ and r that determine the frequency and 
strictness of the check could change both the efficiency and efficacy of the checkpointing variant 
of the FGPILU. 
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9.0 SUMMARY AND FUTURE WORK 

 
This study has examined the potential impact of soft faults on the FGPILU algorithm and 

proposed several variants to remedy the impact that these faults may have. Soft faults that are 
undetected by the original FGPILU algorithm have the potential to cause severe disruption to the 
preconditioning routine; and, even if the FGPILU algorithm reports successful convergence, the 
solver that uses the incomplete factors generated by the FGPILU algorithm as a preconditioner 
may be affected. The ability of the FGPILU algorithm to tolerate and mitigate certain soft faults 
arising in the construction of L and U factors has been explored using several algorithm variants 
and two distinct ways of modeling the impact of a soft fault. The results shown here indicate that 
any undetected soft fault that affects multiple components will be significantly more 
compromising for the FGPILU algorithm. The variants of the FGPILU algorithm discussed in this 
paper have provided mechanizations that supply a measure of resilience to the procedure and allow 
it to converge successfully. Additionally, the techniques discussed offer an abundance of methods 
that can be used to create further variants that may provide better performance and/or resilience 
for specific problem domains. 

In the future, it would be beneficial to create more streamlined performance prototypes of 
each of the variants in order to get a more accurate gauge of the relative performance between 
them. It would also be advantageous to further explore the convergence of the FGPILU algorithm 
– both subject to faults and in a fault-free environment – in more diverse problem domains. The 
vast majority of the problems that have been studied in the majority of the work on the FGPILU 
algorithm (i.e., [CP15, CAD15, CSC17, and CS18b], and the majority of the effort showcased in 
this report) have all explored problems that tend to be similar in nature. This study has presented 
some experiments and analyses concerning the convergence and resilience of the FGPILU 
factorization with respect to more difficult problems, but this avenue of research could be further 
explored to give a more complete picture of the performance of the algorithm over a wide range 
of potential use cases. 

Moving forward, further adaptations to the FGPILU algorithm are possible. This series of 
experiments has worked with level-based, incomplete LU factorization, but for many problems 
throughout science and engineering, there are more effective strategies for selecting which non-
zero elements to allow in the incomplete factors. A variant of threshold-based, incomplete LU 
factorization (in the conventional case, ILUT [Saa94]) that takes advantage of fine-grained 
parallelism called ParILUT [ACJ17] has been proposed recently that may prove more effective for 
nonsymmetric and indefinite matrices such as those studied in section 8.4. Also, it would be helpful 
to compare the performance of various solvers, such as Bi-CGSTAB and TFQMR, with the 
preconditioning factors that are generated by the FGPILU algorithm. 

Another avenue for future exploration includes expanding the experimentation conducted 
with respect to the parameters used in the various fault-tolerance techniques. In particular, the 
parameters could be further analyzed in an attempt to optimize the balance of the increased 
computational cost with the increased level of resilience against the impact of a soft fault. Most of 
the experiments discussed here used a very limited range of parameters for the different algorithms 
utilized in experimentation, and further optimization for many of these parameters is certainly 
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worth pursuing. If possible, it may be helpful to tie the parameters of the algorithm to intrinsic 
properties of the matrix itself. 

While it has been shown in previous works [CP15 and CAD15] that it is possible to 
generate a suitable ILU preconditioner using a small number of sweeps of the FGPILU algorithm, 
the use of fine-grained preconditioning algorithms is increasing in general, and as new fine-grained 
preconditioning algorithms are developed, some may use the FGPILU algorithm as a building 
block and require the FGPILU algorithm to execute successfully inside of a more complex 
preconditioning scheme. In these cases, it may be critical to have the FGPILU algorithm converge 
more completely, and the work presented here could be used as a starting point towards ensuring 
that can happen successfully – even when computing faults occur. 
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